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Abstract— Bioimpedance modeling with equivalent electrical circuits has an 

important role in various biomedical applications, as it facilitates 
understanding of underlying physical and electrochemical processes in 
applications such as body composition measurements and assessment of 
clinical conditions.  However, estimation of model parameter values is not a 
straightforward task, especially when complex circuits with fractional-order 
components (e.g. constant phase elements) are used. In this paper, we propose 
a low-complexity method for parameter estimation of the Cole-impedance 
model suitable for low-cost embedded hardware (e.g. 8-bit microcontrollers). 
Our approach uses only the measured real and imaginary impedance, without 
any specific software package/toolbox, or initial values provided by the user. 
The proposed method was validated with synthetic (noiseless and noisy) data 
and experimental right-side, hand-to-foot bioimpedance data from a healthy 
adult participant. Moreover, the proposed method was compared in terms of accuracy with the recently published 
relevant work and commercial Electrical Impedance Spectroscopy software (Bioimp 2.3.4).  The performance 
evaluation in terms of complexity (suitable for deployment for the microcontroller-based platform with 256 kB of RAM 
and 16 MHz clock speed), execution time (18 seconds for dataset with 256 points) and cost (<25 USD) confirms the 
proposed method in regards to reliable bioimpedance processing using embedded hardware. 
 

Index Terms— Bioimpedance, Cole equation, estimation, equivalent circuits, fractional-order circuits. 
 

 

I.  INTRODUCTION 
IOMPEDANCE is usually defined as the electrical impedance 
of biological cells and tissues [1]. The measurement of 

tissue bioimpedance has numerous biomedical applications that 
include the detection of muscle contraction [2], body 
composition analysis [3], respiration monitoring [4], [5] knee 
joint health observation [6], and ankle edema assessment  [7]. 
Moreover, bioimpedance is also used for monitoring and 
detection cell morphological changes of liver tissues [8],  blood 
glucose monitoring [9], and cell proliferation rate assessment 
[10].  

To support biomedical applications, measured bioimpedance 
data is evaluated by comparing the modulus and/or phase angle 
changes at discrete frequencies collected from tissues in 
different conditions (e.g. contracted and relaxed skeletal 
muscle). Another analysis approach is based on the use of 

 
This research was funded through the European Union’s Horizon 

2020 research and innovation programme under grant agreement No. 
854194.  Corresponding author: Mitar Simić.  

Mitar Simić and Goran M. Stojanović are with the Faculty of Technical 
Sciences, University of Novi Sad, 21000 Novi Sad, Serbia (e-mails: 
mitar.simic@uns.ac.rs, sgoran@uns.ac.rs).  

Todd J. Freeborn is with the Department of Electrical and Computer 
Engineering, The University of Alabama, Box 870286, Tuscaloosa, AL, 
35487, USA (e-mail: tjfreeborn1@eng.ua.edu).  

equivalent electrical circuits to represent the tissue impedance 
over a range of frequencies.  This approach aims to connect the 
tissue bioimpedance to underlying physical and 
electrochemical processes represented by electrical 
components (e.g. resistors, capacitors, constant phase 
elements). For example, a widely used equivalent electrical 
circuit for modelling of the electrical impedance of biological 
cells is composed of three lumped elements in a  2R-1C 
arrangement.  In this arrangement the resistors model 
extracellular and intracellular liquids and the capacitor models 
the cell membrane dielectric properties [11]. However, many 
experimental studies have shown that the simple 2R-1C model 
is not able to accurately fit bioimpedance data but replacing the 
capacitor with a constant phase element (CPE) improves the 
model fit [12], [13], [14], [15]. The 2R-1C equivalent circuit 
model when the capacitor is replaced with a CPE is given in 
Fig. 1.  This circuit is the electrical representation of the Cole 
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impedance equation, defined by Kenneth S. Cole in 1940 [16].   
 

 
Fig. 1.  The equivalent electrical circuit of the Cole-impedance model. 

 
Referring to Fig. 1, note that the Cole-impedance model 

includes a constant phase element (CPE).  This is an element 
which has a current-voltage relationship described by a 
fractional-order (α) differential equation [17].  As a result, the 
Cole-impedance model is dependent on both frequency and the 
fractional-order. Solving for the parameters of the Cole-
impedance model  is not a straightforward task and is usually 
achieved using complex non-linear least squares (NLLS) 
methods [12], [18], [19], [14], meta-heuristic optimization 
algorithms (Flower Pollination Algorithm and Moth-Flame 
Optimizer) [20], fast spectral measurement and regularization 
[21], or least absolute deviation method [22]. One approach 
uses the fractional operational matrix for estimating the CPE 
parameters using a time-domain fitting method. This eliminates 
the need for impedance measurements, but requires finite-
difference time-domain analysis, which requires computation 
of convolutional integrals or discretization of 
rational/polynomial functions [23]. Each of the methods 
described in the above mentioned references are iterative and 
mostly available within specific software packages (for 
example MATLAB/Python), or require certain toolboxes (e.g. 
SciPy for Python).  These numerical approaches typically 
require that an initial value is provided by the user which is 
iterated upon to find the Cole-impedance parameters that best 
represent the bioimpedance dataset. In these cases, the 
accuracy, execution time and convergence are dependent on the 
quality of the initial values provided by the user. Another 
limitation of these numerical approaches is that they require a 
personal computer (PC)-based configuration for deployment, 
which increases overall price, complexity and reduces the 
possibility for in-situ applications. While successful 
deployment and accurate Cole-impedance parameter estimation 
has been achieved with embedded hardware (e.g. Raspberry Pi 
3 platform [18]), the use of lower-performance hardware has 
the opportunity to further reduce costs associated with 
bioimpedance instrumentation and its processing. The recently 
published embedded hardware-based approaches for the 
parameter estimation of the equivalent electrical circuits were 
limited to non-fractional models, such as Randles circuit [24], 
[25]. 

The main goal of this paper is to advance state of the art with 
a Cole-impedance parameter estimation method that does not 
require specific software toolboxes/packages or initial values 
provided by the user.  The estimation method is validated 
experimentally using a low-cost, 8-bit embedded system using 

both simulated and experimental bioimpedance data. 
II. METHODS 

A. Cole-impedance model and its application in body 
composition analysis 

The complex impedance of the Cole-impedance model (Fig. 
1) is given by: 

𝑍(𝜔) = 𝑅(𝜔) + 𝑗𝑋(𝜔) = 𝑅! +
𝑅" − 𝑅!

1 + (𝑅" − 𝑅!)𝐶(𝑗𝜔)#
 (1) 

where R(ω) is the real part of the impedance, X(ω) is the 
imaginary part of the impedance, and R∞, R0, C and α are the 
Cole-impedance model parameters. R∞ and R0 are resistances at 
zero and infinite frequency. These two parameters are also very 
important for clinical applications, such as body composition 
analysis (total-body water, body mass index,  
intracellular/extracellular fluid, etc.) [26]. At zero frequency the 
current flows only through the extracellular fluid, as the cell 
membrane acts as an insulator, therefore body impedance is 
described with the parameter R0. However, at infinite 
frequency, the cell membrane acts as a short circuit, the current 
flows through the intracellular and extracellular fluid, which is 
identified with the parameter R∞. While the exact values of the 
other two parameters (C and α) are often not used for body 
composition analysis, they do provide insight into the of 
relaxation constant τ=[(R0-R∞)C]1/α and consequently the 
characteristic angular frequency ωc=1/τ of the model. The 
characteristic frequency (fc=ωc/(2π)) has been explored  to 
improve the accuracy of total body water estimation [27]. 
Therefore, the three parameters of most importance for 
bioimpedance analysis focused on body composition 
applications are R0, R∞ and fc. To simplify the notation in this 
work, we will use R1=R0-R∞. This is common in bioimpedance 
analysis [28] as it simplifies the complexity of equations, which 
is particularly useful in our proposed method for parameter 
estimation (Section II.C). 

B. Motivation for the development of the new estimation 
method 

There are two measured electrical quantities (R and X) at 
each discrete bioimpedance measurement at an angular 
frequency ω. To quantify differences in bioimpedance 
measurements collected at different timepoints (and potentially 
representing different physiological states) or from different 
subjects, the discrete set of measurements are used to estimate 
the Cole-impedance parameters that best fit the measured data.  
This has the benefit of reducing the dimensionality of datasets 
prior to their use and association with underlying physiology or 
electrochemical processes for bioimpedance analysis. 

Some of the Cole parameters can be estimated by graphical 
analysis of the data in a Nyquist plot. For example, at very low 
frequency (theoretically ω should be zero), impedance of the 
Cole impedance model is purely resistive and equal to R∞+R1. 
At very high frequency (ω→∞), a capacitor can be treated as a 
short circuit, therefore the total impedance is equal to R∞. 
However, the low and high frequency measurements do not 
provide enough information to estimate all four model 
parameters which requires measurement of additional 

R∞ 

R1=R0-R∞

CPE
ZCPE=1/(C(jω)α )
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intermediate frequencies. In addition to the theoretical 
requirements of frequencies to measure, measurements from 
very low frequencies (typically <10 Hz) to very high 
frequencies (>100 MHz) are not easily achieved without bulky 
and costly equipment, which limits their practical measurement. 
However, a filter-based measurement technique which makes 
possible estimation of the Cole-model parameters without 
impedance measurement was reported [15], but it is based on 
the DC and high frequency gain measurements while also 
requiring numerically solving of a non-linear equation for 
parameter α. 

C. Proposed estimation method 
The main objective of our work is to formulate a method for 

the Cole-impedance model parameter estimation that uses only 
the measured resistance and reactance, without needing any 
specific software toolboxes/packages or initial values provided 
by the user. Moreover, the proposed solution is optimized for 
deployment on low-cost microcontroller-based hardware 
platforms. This is intended to reduce the processing 
requirements to integrate bioimpedance analysis within 
embedded hardware. 

The proposed estimation method begins with the 
decomposition of (jω)α to: 
(𝑗𝜔)! = 𝜔! cos

𝛼𝜋
2 + 𝑗𝜔! sin

𝛼𝜋
2 = 𝑎(𝜔) + 𝑗𝑏(𝜔) (2) 

which shows that for a set of discrete angular frequencies (ω1, 
ω2,…,ωN) a matrix of values (ai,j,bi,j) can be calculated for a 
given value of α. Note, that the parameter α is limited to the 
range between 0 and 1, and that for a defined number of α-steps 
(M), the matrix will have 2M rows and N+1 columns.  A 
representation of this matrix is given in Table I. 

TABLE I 
THE MATRIX OF (a,b) PAIRS CALCULATED USING EQ. (2) FOR M DIFFERENT 

VALUES OF α. 
 Value 

of α 
Calculated values of (a,b) pairs on frequencies from ω1 

to ωN for the specific value of α 

2M 
rows 

α1 a1,1 (ω1, α1) a1,2 (ω2, α1) … a1,N (ωN, α1) 
α1 b1,1 (ω1, α1) b1,2 (ω2, α1) … b1,N (ωN, α1) 
α2 a2,1 (ω1, α2) a2,2 (ω2, α2) … a2,N (ωN, α2) 
α2 b2,1 (ω1, α2) b2,2 (ω2, α2) … b2,N (ωN, α2) 
… … … … … 
αM aM,1 (ω1, αM) aM,2 (ω2, αM) … aM,N (ωN, αM) 
αM bM,1 (ω1, αM) bM,2 (ω2, αM) … bM,N (ωN, αM) 

 N+1 columns 
 

After substitution of Eq. (2) into the Cole-impedance given 
by Eq. (1), the real (or resistive) component R(ω) becomes: 

𝑅(𝜔) = 𝑅" +
𝑅#(1 + 𝑎𝑅#𝐶)

(1 + 𝑎𝑅#𝐶)$ + (𝑏𝑅#𝐶)$
 (3) 

while the imaginary (or reactive) component X(ω) is: 

𝑋(𝜔) =
−𝑏𝑅#$𝐶

(1 + 𝑎𝑅#𝐶)$ + (𝑏𝑅#𝐶)$
 (4) 

The characteristic angular frequency ωc of the equivalent 
circuit of the Cole-impedance model shown in Fig. 1, is equal 
to the reciprocal value of the time constant, given by:   

𝜔% =
1

(𝑅#𝐶)#/!
 (5) 

By substituting ω=ωc in Eq. (3), it becomes: 

𝑅(𝜔 = 𝜔%) = 𝑅% = 𝑅" +
𝑅#
2  (6) 

which is frequency-independent and α-independent. To 
estimate the characteristic angular frequency from the measured 
dataset requires that sufficient discrete measurements are 
collected such that the frequency with maximum reactance, 
X(𝜔%), can be identified and used to estimate Rc=R(ω=ωc). 

Therefore, using equations (3), (4) and (6) with the a and b 
values in the given frequency range for a fixed α, it is possible 
to solve for the Cole-impedance parameters at each 
measurement frequency (ωi),  

The model parameter R∞ is given by: 
𝑅"(𝜔') = 𝑅% 	+	(𝑎𝑋(𝜔') 	−	(𝑏$𝑅$(𝜔') 	−
	2𝑅(𝜔')𝑅%𝑏$ 	+	𝑅%$𝑏$ +	𝑎$𝑋$(𝜔') +

	𝑏$𝑋$(𝜔'))# $⁄ )/𝑏  
(7) 

The model parameter R1 is given by: 
𝑅#(𝜔') = −(2𝑎𝑋(𝜔') − 	2(𝑏$𝑅$(𝜔') −

2𝑏$𝑅(𝜔')𝑅% + 𝑏$𝑅%$ + 𝑎$𝑋$(𝜔') + 𝑏$𝑋$(𝜔'))# $⁄ )/
𝑏  

(8) 

The model parameter C is given by: 
𝐶(𝜔') = ((𝑏𝑅% − 𝑏𝑅(𝜔') 	+ 	𝑎𝑋(𝜔'))(𝑏𝑅% +

	𝑎𝑋(𝜔') −	(𝑏$𝑅$(𝜔') − 	2𝑏$𝑅%𝑅(𝜔') + 𝑏$𝑅%$ +
𝑎$𝑋$(𝜔') + 𝑏$𝑋$(𝜔'))# $⁄ ))/(2𝑏𝑋(𝜔')(𝑎$ +
𝑏$)(𝑅$(𝜔') − 	2𝑅(𝜔')𝑅% 	+ 𝑅%$ + 𝑋$(𝜔'))) −
(𝑏$𝑅$(𝜔') − 3𝑏$𝑅(𝜔')𝑅% − 2𝑎𝑏𝑅(𝜔')𝑋(𝜔') +

	2𝑏$𝑅%$ 	+ 	3𝑎𝑏𝑅%𝑋(𝜔') + 	2𝑎$𝑋$(𝜔') +
𝑏$	𝑋$(𝜔'))/(2𝑏𝑋(𝜔')(𝑎$ + 𝑏$)(𝑅$(𝜔') 	−

2𝑅(𝜔')𝑅% 	+	𝑅%$ 	+ 𝑋$(𝜔')))  

(9) 

Finally, the unique set of estimated Cole-impedance model 
parameters is obtained as the mean of arrays R∞(i), R1(i) and 
C(i), given by Eq. (7)-(9), respectively. 

Equations (7)-(9) are calculated for each value of α in range 
[0,1] with defined step Δα. As reference values of model 
parameters are mostly not available, as a criterion for choice of 
α, we propose the minimum sum of mean relative error for 
estimated real part of impedance (Rest(α, ωi)) and imaginary part 
of impedance (Xest(α, ωi)): 

argmin
!

/
1
𝑁
23 4

𝑅"#$(𝛼, 𝜔%) − 𝑅(𝜔%)
𝑅(𝜔%)

4
&

%'(

< +
1
𝑁
234

𝑋"#$(𝛼, 𝜔%) − 𝑋(𝜔%)
𝑋(𝜔%)

4
&

%'(

<? (10) 

A typical plot of the sum of mean relative errors, calculated 
using Eq. (10), for different values of α is shown in Fig. 2. 

 
Fig. 2.  Plot of mean relative error calculated with Eq. (10) for different 

values of α. 
 

The impact of the characteristic frequency on the estimation 
accuracy is determined with the following analysis. The largest 
absolute error in characteristic frequency estimation is equal to 
half of the frequency step, as shown in Fig. 3.  Assuming that 
the characteristic frequency is between the frequency points 
labelled fk and fk+1 in Fig. 4 then the maximum relative error in 
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characteristic frequency estimation, REfc, occurs for the cases 
when fc=fk+(fk+1-fk)/2 and Δfc=0.5(fk+1-fk).  The maximum 
relative error can then be determined as: 

𝑅𝐸@! =
𝛥𝑓%
𝑓%

=
(𝑓AB# − 𝑓A)/2

𝑓A + (𝑓AB# − 𝑓A)/2
=
𝑓AB# − 𝑓A
𝑓AB# + 𝑓A

 (11) 

The actual relative error will be smaller if the characteristic 
frequency is closer than a half of the frequency step to some 
measurement frequency. 

 
Fig. 3.  Characteristic frequency estimation. 

 
The flowchart that outlines each of the steps in the proposed 

method is shown in Fig. 4. 

 

Fig. 4.  The flowchart of the proposed method. 
In cases using linear frequency steps, the relative error will 

be higher at lower frequencies. One approach to reduce this 
error is to decrease the size of the frequency step and measure 
a greater number of frequencies. However, this approach will 
increase the overall measurement time and may increase 
complexity of the required hardware to implement smaller step 
sizes and store/process a larger number of measurements. 
Therefore, our approach will use a logarithmic frequency 
distribution to ensure constant relative error across the complete 
frequency range. Fig. 5 shows the maximum relative errors 
calculated using Eq. (11) for linear and logarithmic sweeps 
across the frequency range from 3 kHz to 1 MHz with 256 
discrete points.  Notice the linear sweep has a higher maximum 
relative error below approximately 5 kHz, supporting the earlier 
discussion. 

 
Fig. 5.  The maximum relative errors in cases of linear and logarithmic 

frequency distribution. 
 
The advantage of the proposed method is its low-complexity 

because all estimation steps include algebraic equations and not 
the implementation of a complex optimization algorithm. The 
limitation of the proposed method is the requirement that the 
characteristic frequency should be included in the frequency 
range. However, for many biomedical applications the 
characteristic frequency is in the range of few tens of kHz  [15], 
[27], [29]. For example, a study of 73 healthy adults reported 
that men in the study had lower characteristic frequency 
(around 57 kHz) compared to women in the study (around 80 
kHz), but men had smaller standard deviation [30], [31]. Most 
commercial bioimpedance analyzers can measure impedances 
in the frequency range from a few kHz up to several MHz, so it 
is reasonable to expect that our methods requirement to capture 
the characteristic frequency will not present a practical 
challenge. Beyond, body composition applications the Cole-
impedance model has been used in applications to characterize 
localized tissues and monitor tissue alterations. As an example, 
impedance measurements of localized biceps tissues of healthy 
adults before/after exercise from 10 kHz to 100 kHz were 
reported Freeborn and Fu in [32] and [33]. They reported 
decreases of R∞ and R1 after exercise to exhaustion (e.g. 
participants were unable to repeat the activity) while C and α 
did not change significantly [32]. In addition to the decrease of 
resistive parameters (R∞ and R1), after exercise, increases of C 
were reported at timepoints 72 h and 96 h after the eccentric 
exercise stimulus (expected to have induced reversible muscle 
damage) [33]. In addition to these works, a characterization of 
ex-vivo tissues as a function of degradation time has also used 
the single dispersion Cole-impedance model [34].  
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 It is important to note that not all biological tissues are well 
modeled by the Cole-impedance model and that higher-
complexity models (such as double-dispersion models) may be 
required for some applications.  While the use of a different 
model excludes this method from being used for those cases, 
future work should explore parameter estimation techniques 
using other models (such as the double-dispersion Cole-
impedance). 

III. RESULTS AND DISCUSSION 
A. Parameter estimation using synthetic datasets  

To evaluate the performance of the proposed method, 
parameter estimation was initially applied to a synthetic 
noiseless impedance dataset generated using reference values: 
R∞=84.40 Ω, R1=39.20 Ω, C=2.31 µF and α=0.747. The 
corresponding characteristic frequency is fc=41.16 kHz. In 
addition to the noiseless dataset, a noisy dataset with 0.25% 
random noise was also created. For this dataset, a frequency 
range of 3 kHz to 1 MHz composed of 256 logarithmically 
spaced points was used.  The frequency range and number of 
datapoints aligns with datasets previously reported in [18], as 
well as with the experimental setup used in later sections.  

Despite the fact that our estimation method is not platform 
dependent, and does not require any specific software package 
or toolbox, it has been implemented here in MATLAB to 
support further adoption and investigation by other researchers.  
Specifically, it was using MATLAB2013b deployed on a Dell 
G5 laptop (Core i7 9th generation). The estimated parameter 
values using the proposed estimation method with Δα=0.01 
applied to the noiseless dataset are summarized in Table II.  
These values show very good agreement with their ideal values 
and a comparison of measured and estimated impedance 
simulations using ideal and estimated parameters is given in 
Fig. 6(a). In order to determine the stability of the estimated 
values as well as the overall execution time, the procedure was 
repeated 10 times. Estimated values did not change across any 
of these repeated executions, while average execution time was 
105.7 ms with standard deviation of 2.3 ms. Actual values 
ranged from 103.6 ms to 110.4 ms, indicating good 
repeatability of the execution time. 

To evaluate how the addition of noise impacts the extracted 
model parameters, the proposed method was applied to the 
noisy data.  This yielded the estimated Cole-impedance 
parameters summarized in Table II. The comparison of 
measured and estimated impedance values is given in Fig. 6(b).  

TABLE II 
ESTIMATED VALUES OF COLE-IMPEDANCE MODEL USING NOISELESS AND 

NOISY DATASET. 
Noiseless dataset 

 R∞ (Ω) R1 (Ω) R0(Ω) C (µF) α fc (kHz) 
Reference 84.40 39.20 123.60 2.31 0.747 41.16 
Estimated 84.45 39.07 123.52 2.23 0.75 41.25 
RE (%) 0.06% 0.32% 0.06% 3.52% 0.40% 0.22% 

Noisy dataset (noise level: 0.25%) 
 R∞ (Ω) R1 (Ω) R0(Ω) C (µF) α fc (kHz) 

Reference 84.40 39.20 123.60 2.31 0.747 41.16 
Estimated 84.23 39.06 123.29 2.20 0.75 42.01 
RE (%) 0.20% 0.37% 0.25% 4.78% 0.40% 2.06% 

 

  
(a) (b) 

Fig. 6.  The Nyquist plots of reference and estimated impedance in 
case of (a) noiseless and (b) noisy dataset. 

 
As it can be seen from Tables II, as well as Fig. 6, the 

proposed method provided estimated parameters that showed 
strong agreement with the ideal parameters used to generate the 
datasets. The relative errors (RE) in estimation of the three most 
important parameters (R0, R∞ and fc ) are lower than 2.06% and 
0.22% in case of the noisy and noiseless datasets, respectively. 
The differences in accuracy are attributed to the impact of the 
dataset noise on the estimation of the characteristic frequency 
and Rc, which influences the calculation of the Cole model 
parameters. This illustrates the need for appropriate signal 
filtering during implementation of this method on hardware that 
the impedance measurements to achieve the highest levels of 
accuracy.  

For a more comprehensive analysis, we created 10 noisy 
impedance datasets using random values for the Cole model 
parameters and applied the extraction process to each dataset.  
Both the reference and estimated parameters for all 10 cases are 
given in Table III. From these values, the estimated parameters 
have very small relative errors compared to the reference 
values. The execution time had very small variations for all 10 
datasets, ranging from 104.0 ms to 107.2 ms with an average 
estimation time of 105.3 ms with standard deviation of 1.2 ms. 

 
TABLE III 

ESTIMATED VALUES OF COLE-IMPEDANCE MODEL USING NOISY DATASET 
(0.25% NOISE LEVEL). 

Dataset No. R∞ (Ω) R1 (Ω) R0 (Ω) C 
(µF) α fc 

(kHz) 

1 Reference 680.00 760.00 1440.00 1.20 0.56 42.72 
Estimated 681.15 760.40 1441.55 1.21 0.56 42.31 

2 Reference 280.00 96.00 376.00 1.90 0.72 24.83 
Estimated 279.98 96.09 376.07 1.90 0.72 24.80 

3 Reference 816.14 251.09 1067.23 2.24 0.54 166.12 
Estimated 816.54 250.96 1067.50 2.25 0.54 164.65 

4 Reference 210.00 458.57 668.57 0.71 0.59 128.65 
Estimated 209.50 458.81 668.31 0.71 0.59 130.12 

5 Reference 170.56 596.34 766.90 1.50 0.61 15.83 
Estimated 169.50 595.13 764.63 1.49 0.61 16.03 

6 Reference 542.96 996.17 1539.13 0.64 0.57 64.29 
Estimated 538.66 996.75 1535.41 0.63 0.57 65.60 

7 Reference 652.62 734.41 1387.03 1.49 0.58 20.28 
Estimated 653.68 735.69 1389.37 1.50 0.58 20.04 

8 Reference 689.91 191.68 881.59 1.37 0.65 51.38 
Estimated 690.95 191.90 882.85 1.39 0.65 50.06 

9 Reference 525.92 239.28 765.20 2.32 0.64 19.45 
Estimated 525.25 238.84 764.09 2.30 0.64 19.75 

10 Reference 107.73 269.25 376.98 3.25 0.67 5.87 
Estimated 107.54 267.58 375.12 3.24 0.67 5.91 

 
The impact of higher noise levels on estimation accuracy was 
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also investigated. Using dataset No. 1 (R∞=680.0 Ω, R1=760.0 
Ω, C=1.20 µF and α=0.56) from Table III as the reference, 
datasets with 1%, 2%, 3% and 5% noise were generated.  The 
parameters were extracted from these noisy datasets and are 
given  in Table IV with simulations of the Cole impedance 
using these also given in  Fig. 7. As it can be seen from Table 
IV, the estimated values of model parameters, except C, are 
very close the reference values for noise levels up to 2%.  This 
supports that even in the presence of significant noise, this 
method is still able to effectively extract the Cole-impedance 
parameters from the dataset. 

 
TABLE IV 

ESTIMATED VALUES OF COLE-IMPEDANCE MODEL FOR DIFFERENT NOISE 
LEVELS. 

Noise  R∞ (Ω) R1 (Ω) R0 (Ω) C (µF) α fc (kHz) 
 Ref. 680.00 760.00 1440.0 1.20 0.56 42.72 

1% Est. 682.29 773.86 1456.16 1.39 0.55 39.86 
RE (%) 0.34% 1.82% 1.12% 15.60% 1.79% 6.69% 

2% Est. 685.22 789.02 1474.24 1.61 0.54 36.71 
RE (%) 0.77% 3.82% 2.38% 34.23% 3.57% 14.06% 

3% Est. 681.28 817.90 1499.19 2.09 0.52 33.51 
RE (%) 0.19% 7.62% 4.11% 73.83% 7.14% 21.57% 

5% Est. 676.81 868.86 1545.7 3.12 0.49 27.58 
RE (%) 0.47% 14.32% 7.34% 160.1% 12.5% 35.45% 

 

  
(a) (b) 

  
(c) (d) 

Fig. 7.  The Nyquist plots of reference and estimated impedance for 
different noise levels (a) 1%, (b) 2%, (c) 3%, and (b) 5%. 

B. Microcontroller-based implementation and 
comparison with literature 

The development of low-cost microcontroller-based 
impedance measurement systems is gaining increased research 
interest [35] especially with the availability of commercial 
integrated circuits with impedance measurement functionality. 
Integrated circuits such as the AD5933 and AD9833 from 
Analog Devices support the realization of measurement 
systems that can measure impedances up to approximately 100 
kHz (AD5933 [36]) and 1 MHz (AD9833 [37]). With these 
integrated circuits, it is possible to realize wearable and portable 
devices with impedance sensing functionality.  Beyond 
measuring impedance, the integration of Cole-impedance 
extraction algorithms into these devices reduces the need for 
offline post-processing and larger data memory for storage of 
all raw data.   

To validate the performance of the proposed method using 

embedded hardware, the method was implemented on a 
microcontroller-platform based on the ATmega2560.  This also 
enabled comparison with recent works that used the Raspberry 
Pi3 (RPi3) hardware as a platform to estimate the Cole-
impedance parameters  [18].  A comparison of the main 
specification parameters of our test platform with the RPi3 are 
shown in Table V. Moreover, the platform used in this work is 
similar in terms of resources to MSP430FR2433-based 
platforms used for validation of first-order optimization 
methods (gradient descent and coordinate descent) [38] and the 
STM32F407-based platform for multi-objective algorithm 
implementations [39]. 

TABLE V 
COMPARISON OF MAIN SPECIFICATION PARAMETERS OF OUR WORK AND 

LITERATURE. 
 [18], 2019 This work 

Embedded Platform Raspberry Pi 3 DFRduino 
Mega2560 

Processor ARM® Cortex®-A53, 
VideoCore ATmega2560 

Flash memory Defined by memory card 256 kB 
Clock speed 1.2 GHz 16 MHz 

RAM 1 GB 8 kB 
Operating system Raspbian GNU/Linux 8 None 
Specific software 

requirements 
Python 3.4.2 and 

SciPy 0.14.0 None 

Price 35.00 USD [40] 25.00 USD [41] 
 
As it can be seen from Table V, the target platform for the 

proposed method has almost 30% lower price when compared 
to the RPi [18]. In addition to this lower price, there is no 
requirement for specific toolboxes or software packages (such 
as SciPy required in [21]), which is an advantage in terms of 
portability. The program code with the complete set of 
impedance data: arrays of ω, R and X with 256 elements and 
estimation method require just 6% of available 256 kB. 
Moreover, just 4731 of 8192 bytes of available RAM was 
occupied. 

The performance of the parameter estimation using noisy 
data on the microcontroller hardware compared to the method 
in [18] is shown in Table VI. The estimates from the proposed 
method show very small differences when compared to those 
estimated by the RPi3 platform. 

 
TABLE VI 

ESTIMATED VALUES OF COLE-IMPEDANCE MODEL USING NOISY DATASET 
AND COMPARISON WITH LITERATURE. 

 R∞ (Ω) R1 (Ω) C (µF) α fc (kHz) 
Reference  

values 84.40 39.20 2.31 0.747 41.16 

[18], 2019 84.47 38.98 2.21 0.751 41.16 
This work 84.23 39.06 2.20 0.75 41.99 

 
Execution time of the proposed method  

(texe=58.42 s) is approximately 1.88 times higher when 
compared to texe=31.1 s from [18]. That is not unexpected based 
on the higher clock speed of the platform in [18] (1.2 GHz) 
compared to this clock speed of the microcontroller platform 
used here (16 MHz). However, processing time with the 
proposed method can be signitficantly reduced if a two-step 
estimation is used. That is, in the first step a larger step of α is 
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used, for example 0.1. With this initial screening, the value of 
αinitial for the minimal error calculated with Eq. (10) is 
determined. In the second step, a finer step (for example, 
α=0.01) is used in the neighboring range around αinitial:  
αinitial-0.1 ≤α≤αinitial+0.1 for more precise calaculation of the 
minimal error with Eq. (10). Using this procedure, the same 
parameter values are estimated in 18.16 seconds, which is 1.71 
times faster than texe=31.1 s from [18]. The proposed 
optimization of the estimation procedure is significant for 
microcontroller-based platforms, resulting in more than 3 times 
faster estimation (18.16 s<58.42 s). This was expected because 
101 iterations with an α-step of 0.01 werre required in the range 
[0,1]. This was reduced to 32 using the two-step process (11 
iterations in the initial screening from 0 to 1 with α-step of 0.1, 
and 21 iterations with α-step of 0.01 in the range from 0.7 to 
0.9) are required. 

When compared to previously reported microcontroller-
based approaches for the Cole-impedance model parameter 
estimation [42], [43], our work advances the software 
estimation methods by eliminating the need for specific DC and 
high frequency measurement or numerical solving of the non-
linear equation [15]. Further, the approach presented here also 
overcomes limitations of previous estimation methods that were 
limited to integer-order models [24], [25].  

C. Parameter estimation using experimentally obtained 
bioimpedance 

Experimental bioimpedance measurements were collected 
from a single participant after receiving informed consent using 
a commercial ImpediMed SFB7 device.  This device collects 
256 measurement points from 3 kHz to 1 MHz (logarithmic 
distribution, 100 points/dec). The participant was a 24 year old 
male (height: 173 cm and weight: 79 kg). The data collection 
procedures were approved by the regional ethics committee of 
Gothenburg with ethical approval number 274-11. The 
electrical impedance was measured between the participant's 
right hand and right foot using a 4-electrode configuration, as 
defined by ImpediMed SFB7 manual. In this configuration, one 
electrode pair is used for current delivery and the second pair is 
for voltage sensing. The device collected 10 consecutive 
measurements each requiring approximately 1 second to 
complete. The 10 datasets (M1-M10) were used for estimations 
with the proposed method and the BioImp software (version 
2.3.4). The BioImp is software associated with the ImpediMed 
SFB7 device, primarily focused on the body composition 
analysis. Comparison of the estimated values of the parameters 
important for the body composition analysis (R0, R∞ and fc) 
between the two methods is given in Table VII. In the last row, 
the average value (µ) and standard deviation (σ) for all 10 
estimations are given. As it can be seen, both estimation 
methods extracted very similar values of model parameters for 
all 10 measurements. 

TABLE VII 
COMPARISON OF THE ESTIMATED VALUES WITH THE PROPOSED METHOD 

AND BIOIMP SOFTWARE.. 
Measurement No. R∞ (Ω) R0 (Ω) fc (kHz) 

M1 Bioimp 394.31 610.53 31.39 
This work 397.71 607.39 31.13 

M2 Bioimp 400.17 616.11 32.45 
This work 400.92 619.50 31.35 

M3 Bioimp 398.69 615.19 32.40 
This work 397.95 615.43 32.37 

M4 Bioimp 398.42 615.45 32.46 
This work 397.88 615.62 32.39 

M5 Bioimp 400.89 616.68 32.48 
This work 400.17 618.15 32.18 

M6 Bioimp 399.88 616.40 32.52 
This work 400.99 623.07 30.20 

M7 Bioimp 399.18 616.40 32.33 
This work 400.58 619.64 30.90 

M8 Bioimp 399.14 615.32 32.38 
This work 400.49 618.93 30.92 

M9 Bioimp 399.21 615.91 32.26 
This work 400.38 618.96 31.04 

M10 Bioimp 398.97 616.10 32.20 
This work 400.07 618.83 31.08 

µ±σ Bioimp 398.89±1.77 615.41±1.79 32.29±0.33 
This work 399.71±1.32 617.55±4.16 31.36±0.73 

 
As an illustrative example, the comparison of the measured 

and estimated bioimpedances for dataset M1 is shown in Fig. 8. 

 
Fig. 8.  The Nyquist plots of measured and estimated bioimpedance 

with the proposed method (dataset M1). 
For an additional performance evaluation of the proposed 

method the mean absolute percentage error (MAPE) was 
calculated: 

𝑀𝐴𝑃𝐸(%) =
1
𝑁AB

𝑍CDEF − 𝑍GD@
𝑍GD@

B
H

'I#

× 100% (12) 

where Zref is impedance modulus of the original impedance 
spectrum and Zmeas is the impedance modulus produced using 
the estimated parameters. Using (12) the obtained mean MAPE 
value for all 10 datasets is 0.196±0.054 %. 

IV. CONCLUSION 
The proposed low-complexity method for parameter 

estimation of Cole-impedance model, deployed on a low-cost 
embedded platform using an 8-bit microcontroller, was shown 
to be reliable solution for bioimpedance data processing. The 
estimation accuracy is comparable with more complex 
algorithms based on non-linear least squares approach, while 
required resources and price (25 USD<35 USD [18]) are 
significantly lower. 

The development of low-complexity algorithms for efficient 
bioimpedance data processing with embedded hardware is 
important for supporting portable and wearable sensing systems 
with significant resource constraints. The proposed algorithm 
enables on-site parameter estimation, which enables prompt 
decision making, reducing the time lag between measurement 
and actions. Moreover, the overall cost of the system is reduced, 
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which is very important goal in increase of number of portable 
devices for bioimpedance analysis (total body water, body mass 
index, etc.). 
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