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Abstract

The rates of chemical reactions involved in cell-to-cell communication can serve as a powerful tool for advanced theranostics
and in establishing a molecular communication link between bio-transceivers. Reaction rates are usually experimentally measured
by quantifying chemical products, which is challenging when several signal transduction mechanisms are involved in the signaling
pathway. Without loss of generality, we focus on extracellular vesicle (EV) cell-to-cell signaling and propose a computational
method to estimate the chemical reaction rates which characterize a process by which EVs are taken by cells. The method is
based on measuring only the time-course of environmental EVs, and eliminates the need to measure either bound or internalized
EVs which is usually essential for experimental evaluation of the rates by using advanced molecular imaging modalities. As an
alternative to a proposed approximation by a linear system model, our computation exploits a nonlinear system model in which the
impact of limited receptor sites on the recipient cell membrane is incorporated. The reaction rates are obtained through a suggested
linear and iterative approach as well as a novel way of applying Michaelis-Menten kinetics in the frequency domain. The range of
validity of each technique is evaluated by varying the number of free binding sites on the cell membrane in relation to the initial
number of environmental EVs. In conclusion, the proposed methods are very effective in assessing the dynamics of the EV uptake
using a simple in vitro platform.

Keywords: Extracellular vesicle, chemical reaction rates, computational biology, molecular communication.

1. Introduction

Extracellular vesicles (EVs) are nano-sized phospholipid
spheres that are exchanged between cells in every living organ-
ism [1]. Cell-derived EVs act as signal transducers that can be
used as diagnostic biomarkers and therapeutic agents [2]. The
processes of EV release (e.g., exocytosis and vesicle budding)
and uptake (e.g., endocytosis, fusion and phagocytosis), Fig-
ure 1, are characterized by chemical reaction rates which are
studied in chemical kinetics [3, 4]. Values of chemical re-
actions involved in EV transport yield information about the
reaction’s mechanism and transition states, and are critical for
the creation of mathematical models that are used as a tool to
describe the characteristics of EV transport. Moreover, such
values are essential for prototyping EV-based therapy [5, 6], for
example, anticancer therapy [7], giving insights into how fast
the biomolecule-carrying EV absorption occurs or what is the
survival rate of cancer cells that is closely dependent on the rate
and amount of the received biomolecules. Furthermore, values
of chemical reactions are important for effectively establishing
a communication link between bio-transceivers in an EV-based
communication network [8, 9].

Reaction rates involved in the EV signaling pathway are
usually measured experimentally where the characterization of
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Figure 1: EV uptake by the recipient cell can be driven by many different path-
ways: endocytosis, fusion and juxtacrine. This illustration is created using
BioRender.com.

EVs is done either by using techniques based on light scatter-
ing of particles, such as nanoparticle tracking analysis (NTA)
and confocal microscopy (CM), or electron beam scattering of
molecules, such as transmission electron microscopy (TEM)
and scanning electron microscopy (SEM) [10]. NTA is used
to evaluate the number and concentration of EVs, together with
monitoring the dynamics of environmental EVs in the well after
their isolation. Instead, TEM, CM and SEM are used to track
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Figure 2: A schematic of experimental data acquisition for the suggested sce-
nario of uptake rates estimation. This illustration is created using BioRen-
der.com.

local interactions of EVs and the target cells. The current prac-
tice to measure the reaction rates associated with the uptake of
EVs by cells is to monitor the time-course of the bound and
internalized EVs and then determine the kinetic constants gov-
erning the interactions of EVs with the cell membrane. How-
ever, this strategy is not only technically challenging because it
is hard to differentiate between the bound and internalized EVs
when assaying acquired data [11], but also sensitive to potential
mechanical deformations of the cell membrane incurred by its
interaction with EVs [12].

Mathematical modeling is often used in combination with in
vitro experiments to alleviate such limitations when deeply ex-
amining cell-to-cell signaling and identifying critical compo-
nents involved in the signaling cascade [13]. Some examples
where transport of (nano)particles were studied through math-
ematical models based on Fick’s second law of diffusion and
a convection-diffusion-reaction equation, in combination with
experimental models, include the stent-based drug release and
delivery [14], the permeation of drugs through different layers
of the skin [15], and the transport of a water-soluble drugs from
cylindrical tablets [16]. Other examples include the models for
tumor cell apoptosis upon drug reception [17] and nutrient up-
take [18], as well as the models of the growth and invasion of
Glioblastoma spheroids [19, 20].

We have recently proposed a computational approach which,
in combination with a simple experimental setup, can be uti-
lized for the estimation of chemical rates associated with the
EV uptake [5]. In the experimental setup, the cells are cul-
tured in multiple wells and then mixed with a known concen-
tration of EVs, as illustrated in Figure 2. Different wells are
used for different time-points of data acquisition where only
the EVs present in the medium were quantified by NTA; in this
regard, the time-course of the environmental EVs could be char-
acterized. The suggested computational approach is based on a
closed-form fitting function derived from ordinary differential
equations (ODEs) that correspond to the kinetic model of EV
uptake [5]. The suggested model, however, does not consider
the number of available binding sites on the cell membrane
which is a critical factor in the receptor-mediated endocytotic
pathway of EV uptake.

Here we extend our previous model by exploiting a nonlin-
ear system model in which the impact of limited receptor sites
on the recipient cell membrane is incorporated. The reaction
rates are then computed through a suggested iterative approach
by which the rate parameters are obtained after several updates
to satisfy the predefined relative error requirements. In the lit-
erature, several time domain approaches for parameter estima-
tion have been well studied [21]. These techniques use a nu-
merical method to iteratively solve the ODEs and estimate the
parameters such that the norm of the object function is mini-
mized. However, optimization algorithms often encounter con-
vergence issues. For example, deterministic optimization meth-
ods are highly dependent on the initial estimation to avoid lo-
cal minima, while stochastic optimization methods are time-
consuming. Classical statistical estimators, such as the maxi-
mum likelihood method and the least square method, require
large temporal data sets collected under different conditions,
which are computationally intensive. Bayesian approaches re-
quire prior knowledge of parameters, which is usually obtained
from preliminary experiments that increase the time and cost of
the estimation process. To overcome these issues, we propose a
frequency domain approach that results in closed-form expres-
sions for the reaction rates. The closed-form expressions are
used together with an iterative approach to simultaneously es-
timate the nonlinear part of the model and the rate parameters.
This approach is also advantageous over existing methods, for
example, an ill-posed inversion method [22] which is applica-
ble for linear models and hardly satisfies the result uniqueness
and stability.

In addition, we extend our previous linear system model
based solution in [5] by deriving closed-form expressions for
rate estimation which avoids computationally complex curve
fitting. Moreover, we suggest computing the reaction rates by
applying Michaelis-Menten kinetics directly in the frequency
domain under the pseudo-steady-state assumption. We com-
pare the validity region of these three approaches with respect
to the ratio between free receptor sites and environmental EVs,
as well as the absolute values of the rate parameters. This is
done by numerical particle-based simulations (PBS) which are
set to resemble experimental data from the microscopic point
of view, thus avoiding the time and resource-consuming exper-
iments for the purpose of the presented results. Of note, our
proposed methodology is not restricted to the estimation of the
chemical reaction rates involved in EV signaling, and could be
applied to analyses of reaction mechanisms and transition states
involved in other types of molecular communication.

In the following, the considered system model for the cur-
rent problem is presented in Section 2, and the iterative-, lin-
ear, and Michaelis-Menten approaches are defined in Section 3.
Section 4 explains the PBS that is applied for evaluating the
performance of the different approaches. The numerical results
for selected parameter values extracted from the literature are
discussed in Section 5, and the paper is concluded in Section 6.
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2. System Model

The Fick’s law equation is exploited when constructing
mathematical models of the spatio-temporal concentrations
of particles which are governed by diffusion (including sub-
diffusion in an anomalous media) and advection [16, 19, 20,
23]. Such models are typically referred to as partial-differential
equation (PDE)-based models. On the other hand, ODE-based
models are used to investigate the release and uptake rates of
particles, as well as the dynamics of cell growth and death. In
ODE-based models, the system model is characterized by a se-
ries of ODEs in which the unknowns are functions of time; in
such models, coefficients characterizing diffusion and/or advec-
tion are excluded. Some examples where ODE-based models
are utilized include studying the interactions between microglia
and neural stem cells [24], the functionality of the immune sys-
tem and normal cells in tumor growth [25], and the uptake of
nutrients by a tumor cell with the presence of biomolecular fuel,
such as glucose and lactate [18].

Here, we exploit an ODE-based system model to describe
various mechanisms including fusion, receptor-mediated endo-
cytosis, macropinocytosis and phagocytosis associated with EV
uptake by cells [26] (Figure 1). EV fusion is accomplished
by merging EVs with the cell membrane and releasing their
content into the EV recipient cell cytoplasm. On the other
hand, receptor-mediated pathways such as clathrin-mediated-
and caveolae-mediated endocytosis require a ligand on the EV
membrane surface to employ specific receptors on the cell
plasma membrane and leverage binding and internalization. We
assume that the EV can be degraded in the environment via a
first-order chemical reaction mechanism of the form

A
kh−−−→ ∅, (1)

where ’A’ indicates the unbound EVs and kh is the degradation
(half-life) chemical reaction rate. We also assume that the EV
may reversibly react with a receptor ’R’ to form an activated
EV-receptor complex ’AR’, via a second-order chemical reac-
tion mechanism of the form

A + R
kb−−−→←−−−
kr

AR
ki−−−→ P + R, (2)

where kb, kr, and ki are the binding-, recycling-, and internaliza-
tion chemical reaction rate, respectively. Furthermore, ’P’ de-
notes an EV finally internalized into the cell. Here we assume
the number of the recipient cells is constant during the simu-
lations and the chemical reaction rates are time-independent.
Also, we assume that the uptake mechanism is not influenced
by the number of initial EVs in the medium where the recipient
cells are cultured [27].

Following (1) and (2), the dynamics of bound and environ-
mental EVs are given by the following ODEs:

dqAR(t)
dt

= kb f (t) − krqAR(t) − kiqAR(t) , (3)

and
dqA(t)

dt
= −kb f (t) + krqAR(t) − khqA(t) , (4)

respectively, satisfying the following initial conditions:

qA(0) = Q0, qAR(0) = 0. (5)

The term qA(t) is the number of EVs in the environment (ini-
tially set to Q0) and qAR(t) is the number of EVs bound to the
cells.

We explore how limited receptor sites affect the dynamics of
EVs using a function defined as

f (t) =
[
N − qAR(t)

]
qA(t) , (6)

where N is the total number of receptor sites per cell. When
EVs are already bound to the receptors on the recipient cell
membrane, the binding probability of the remaining EVs de-
creases. To account for this effect, we introduce a modification
factor, given by

[
N − qAR(t)

]
in (6), which modifies the bind-

ing rate. This generates nonlinear terms in the equations for
the binding of EVs to the cell membrane, namely (3) and (4).
We discuss how to determine f (t) using an iterative approach in
Section 3.1.

3. Computational Approaches

We exploit a frequency domain approach to derive the
closed-form expressions for the chemical rates estimation. This
approach imposes low computational cost and provides a plat-
form to characterize the binding, recycling and internalization
rates simultaneously. The input data are supposed to be pro-
vided for the environmental EVs which are quantified by PBS
when combining the approach with in silico modeling or NTA
when combining the approach with in vitro modeling. Taking
the Fourier transform of (3) and (4) yields

jωQ̃AR( jω) = kbF̃( jω) − krQ̃AR( jω) − kiQ̃AR( jω) , (7)

and

jωQ̃A( jω) = −kbF̃( jω) + krQ̃AR( jω) − khQ̃A( jω) + Q0, (8)

respectively, where Q̃AR( jω), F̃( jω) and Q̃A( jω) denote the
Fourier transform of qAR(t), f (t) and qA(t), respectively. A
closed-form expression for Q̃AR( jω) is obtained from (7) in
terms of F̃( jω) as

Q̃AR( jω) =
kbF̃( jω)

jω + kr + ki
, (9)

and a useful equation for the chemical rates estimation is de-
rived from (8) as

H( jω) =
F̃( jω)

( jω + kh) Q̃A( jω) − Q0
= − jω + kr + ki

jωkb + kbki
. (10)

We assume that kh is known, as the half-life of EVs is a well-
studied and easily investigated issue. In principle, kh can also be
estimated by reformulating (10), although this will increase the
overall rate estimation error. Eq. (10) provides a way to extract
closed-form expressions for the reaction rates, as we explain be-
low. This advantage significantly reduces the estimation time,
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unlike numerical methods in the time domain and statistical ap-
proaches. H( jω) is a complex function that can be expressed in
the following form

H( jω) = R(ω) + jI(ω), (11)

where R(ω) and I(ω) denote the real and imaginary parts of
H( jω) given by

R(ω) = −ω
2 + krki + k2

i

kb(ω2 + k2
i )
, (12)

and
I(ω) =

ωkr

kb(ω2 + k2
i )
, (13)

respectively. I(ω) has the peak value I(ωp) = Ip at

ω = ωp = ki. (14)

Two more expressions could be simply derived for kb and kr in
terms of Ip given by

kb = −kr + ki

kiR(0)
, (15)

and

kr = −
2kiIp

R(0) + 2Ip
, (16)

respectively. Thus, we have closed-form solutions for the
chemical reaction rates, which depend on only two points of
H( jω), the DC component and the maximum of the imaginary
component. According to (10), we need to specify F̃( jω) be-
fore estimating the rate parameters. This is discussed in the
following subsection through an introduced iterative approach.

3.1. Iterative Approach
Here we propose an iterative approach to evaluate F̃( jω).

Given F̃(i)( jω) as the estimated function at the ith iteration,
H(i)( jω) can be expressed as

H(i)( jω) =
F̃(i)( jω)

( jω + kh) Q̃A( jω) − Q0
, (17)

where Q̃A( jω) and Q0 are either measured by PBS or NTA,
and F̃(i)( jω) is assumed to be known from the (i − 1)th itera-
tion. H(i)( jω) is updated at each iteration leading to the new
estimated parameters i.e., k(i)

b , k(i)
r , k(i)

i given by (14)-(16). This
approach is here referred to as the iterative closed-form (Iter.
CF) approach, where the rate parameters are calculated by the
closed-form expressions. The closed-form solution depends
only on two points in the spectral signal and is thus quite sen-
sitive to variations of them. Therefore, we propose a second
method, termed iterative fitting (Iter. FIT), where we estimate
the reaction rates by applying curve fitting to (17) instead of us-
ing the closed-form solution. Since the curve fitting is based on
several samples, Iter. FIT is more robust against variations in
the spectral signal. However, it encounters more computational
costs and needs the initial guess of the reaction rates.

In both iterative approaches, k(i)
b , k(i)

r , and k(i)
i are used to

calculate a new estimate F̃(i+1)( jω). In order to determine
F̃(i+1)( jω), we combine (6) and (9) to derive an operator equa-
tion given by

qA(t) =
[I

N
+A(i)

] {
f (i+1)(t)

}
, (18)

where I{·} is the identity operator andA(i){·} is given by

A(i){·} = qA(t)
N
F −1

 k(i)
b

jω + k(i)
r + k(i)

i

F {·}
 . (19)

The operators F and F −1 indicate the Fourier transform and the
inverse Fourier transform, respectively.1 Also, f (i+1)(t) denotes
the estimated f (t) at the (i + 1)th iteration. We apply the esti-
mated rate factors k(i)

b , k
(i)
r , and k(i)

i in (19) and solve (18) using
the gradient descent method (GDM) to find the updated value
f (i+1)(t). At each iteration, we compare the relative errors of es-
timated rates with a predefined tolerance ϵ and make a decision
about continuing or ending the iterative process. We assume the
initial value f (0)(t) to be equal to qA(t). The flowchart for the
proposed approach is illustrated in Figure 3.

However, the iterative process suffer from an accumulated
estimation error by error propagation, especially for small val-
ues of N. Smaller values of N result in stronger nonlinearity
and lower power of f (t), as given by (6). Consequently, im-
precise rate estimates will lead to a larger estimation error of
f (i+1)(t). This yields inaccurate H(i+1)( jω) given by (17), which
once again gets back to estimation of f (i+2)(t) through (18). We
will compare the performance of Iter. CF and Iter. FIT in terms
of N in Section 5.

3.2. Michaelis-Menten Approach

As we discussed in Section 3.1, convergence of the iterative
approach towards precise rate estimates is challenging when the
number of free sites on the target cells, N, is small compared
to the environmental EVs. Thereby, we exploit an alternative
approach based on Michaelis-Menten (MM) kinetics, which is
one of the most commonly used models of enzyme kinetics,
and discuss its performance through error analysis simulations.
Based on the MM kinetics, we derive an equation for the rates
estimation which exclude F̃( jω) and is not significantly influ-
enced by the noise. The determination of reaction rates based
on MM kinetics typically requires a couple of measurements
at different initial environmental EV concentrations. From the
observation of the internalized EVs, the initial reaction rate is
derived as a function of initial environmental EV concentra-
tions. Finally, the reaction rates are obtained using a nonlinear
regression of the results to MM equation. By using approxi-
mate Bayesian computation, the number of measurements can
be reduced to the measurement at a single initial environmen-
tal EV concentration [28]. In contrast, the approach presented

1Here, we use a calligraphic notation to indicate an operation on a function
rather than a variable.
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Figure 3: Flowchart of the iterative approach.

in the following exploits MM kinetics in the frequency domain
and is based only on the temporal observation of environmental
EVs at a single given initial concentration. Consequently, ex-
perimental determination of internalized EVs is not necessary
in our approach.

The MM model is obtained under the quasi-steady-state as-
sumption in which the concentration of bound EVs does not
change in the time-scale of the internalization process. This
condition is well-satisfied when the number of binding sites is
small compared to the number of initial EVs. Mathematically,
this means ∂qAR(t)

∂t = 0 and (3) is then transformed to

0 = kb (N − qAR(t)) qA(t) − krqAR(t) − kiqAR(t) . (20)

Replacing qAR(t) in (4) using (20) and solving the equation in
the frequency domain, after some simple manipulations, yields

(( jω + kh) kr + ( jω + kbN + kh) ki) Q̃A( jω)+(
jωkb

2
+ kbkh

)
Q̃s( jω) =

(
kbQ0

2
+ kr + ki

)
Q0, (21)

where,
Q̃s( jω) = F {qA(t) qA(t)} . (22)

Eqs. (21) and (22) provide the new fitting equations for the rate
estimations. Because this approach does not require approxi-
mating the nonlinear part of the model (i.e. f (t)) iteratively, it
is computationally faster than the iterative approach. The per-
formance of all presented approaches is compared in terms of
N in Section 5.

3.3. Linear Model
When the number of receptor sites, N, is sufficiently large

compared to the number of bound EVs, qAR(t) can be ignored
in f (t) given by (6), and the dynamics of qAR(t) and qA(t) are
approximated by the following linear ODEs:

dqAR(t)
dt

≈ kbNqA(t) − krqAR(t) − kiqAR(t) , (23)

dqA(t)
dt

≈ −kbNqA(t) + krqAR(t) − khqA(t) . (24)

In this way, H( jω) in (10) is rewritten as

H( jω) =
NQ̃A( jω)

Q0 − ( jω + kh) Q̃A( jω)
. (25)

and the rate parameters are obtained using (14)-(16) accord-
ingly. Please note that the iterative approach that addresses the
estimation of F̃( jω) is not relevant for the linear model.

4. Particle-based Simulation

To analyze the performance of the rate estimation methods
presented in Section 3, we use numerical particle-based simu-
lations, where a particle here is equivalent to an EV. PBS is a
cost-effective and a more precise/high-resolution alternative to
experiments, which are often expensive in terms of time and re-
sources. PBS results resemble the experimental data from the
microscopic point of view, in our case the interaction between
EVs and the cell’s receptors and their internalization. Due to
the full control of the relevant parameters, PBS is well suited
for parameter studies such as the one performed in Section 5.
Besides the time and resource consuming effort, the direct con-
trol of all parameters as well as the determination of reference
parameters in experiments is crucial. In contrast to the ODE
solution according to (3) and (4) which describes the mean ex-
pected behavior, in PBS the reaction statistics are applied to
each particle. Thus, randomness is introduced and an individ-
ual result is obtained for each realization, which deviates from
the ODE solution. We denote the deviation of the PBS results
from the ODE solution as noise.

We focus our PBS on the degradation and uptake mechanism
given in (1) and (2). In this context, we assume that a total
of N receptor sites are available in the environment to interact
with EVs. These receptor sites can be either from a single cell
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or from multiple cells. Furthermore, we assume that all envi-
ronmental EVs are subject to the same reaction rates and are
present within the range of the receptor sites all the time and
thus are available for interaction. By this assumption we can
neglect the spatial component and focus on the reactions ac-
cording to (1) and (2). Depending on whether an EV is in the
environment or bound to a receptor site, it can react via two
(pseudo) first-order pathways. Based on the reaction rates, we
can determine probabilities for the reaction of an EV within a
time interval ∆t [29]:

ph =
kh

kh + kb∗

(
1 − e−∆t(kh+kb∗ )

)
, (26)

pb =
kb∗

kh + kb∗

(
1 − e−∆t(kh+kb∗ )

)
, (27)

pr =
kr

kr + ki

(
1 − e−∆t(kr+ki)

)
, (28)

pi =
ki

kr + ki

(
1 − e−∆t(kr+ki)

)
, (29)

kb∗ = kb (N − qAR(t)) , (30)

where ph, pb, pr, pi are the degradation (half-life), effective
binding, recycling, and internalization probabilities of an EV,
respectively. Furthermore, kb∗ denotes the effective binding
rate, which depends on the binding rate and on the number of
free receptor sites. It allows us to interpret the binding reaction
of an EV as a pseudo first order reaction. In PBS, for discrete
time steps of length ∆t for each EV, the probability of the possi-
ble chemical reactions is evaluated by a Bernoulli random vari-
able where the probability of success is equal to the probability
of reaction. If a reaction occurs, the number of environmental
and/or bound EVs, as well as the number of free receptor sites,
is adjusted for the next discrete time step.

5. Numerical Results

In this section, we investigate the validity of the approaches
presented in Section 3 and their estimation errors by numerical
particle-based simulations
colorblackdiscussed in Section 4. The curve fitting for non-
negative parameter estimation in the Iter. FIT and MM ap-
proaches is performed by the Matlab Optimization ToolboxTM,
which uses a trust-region-reflective method [30]. For our con-
sidered parameters discussed in Section 5.1, the initial guesses
of the curve fitting algorithm applied in the Iter. FIT and MM
approaches are chosen to be 100 for ki and 10−1 for kb and
kr. These are not to be confused with the initialized rates
k(−1)

b = k(−1)
r = k(−1)

i for the initial tolerance check in Figure 3.
All rates in the curve fitting algorithm are upper bounded by 10.
When performing curve fitting, we do not consider the entire
spectral signal, but only the region in which 97% of the spec-
tral energy of Q̃A( jω) in MM or of the denominator of H( jω) in
Iter. FIT lies (typically at low frequencies). The Iter. CF and lin-
ear approach depend only on the DC part and the maximum of
the imaginary part of H( jω) whose angular frequency is equal
to the internalization rate (see (14)). By observing qA(t), we
can roughly estimate the order of magnitude of ki. Therefore,

Table 1: Default simulation parameters, which are applied throughout the nu-
merical results, if not stated otherwise. Parameters with a bar denote dimen-
sional parameters.

Parameters Symbol Value Ref.
Binding rate kb 0.13 [31]
Recycling rate kr 0.11 [32]

Internalization rate ki 1 [31]
k̄i 0.0046 s−1

Half-life rate kh 0 [31]

Binding sites N

0.1 (MM)
1 (Iter. FIT)
10 (Iter. CF)

10 (Lin.)

Initial EV quantity Q0 1 [31]
Q̄0 105

Samples in PBS Ns 105

PBS Monte Carlo runs NMC 103

Tolerance ϵ 10−3

we generously restrict the considered frequency range for these
two approaches in our scenario to |ω| < 10. By this procedures
we prevent a large influence of low energy signal components
on the curve fitting and numerical edge effects.

In order to evaluate the performance of the different proposed
approaches, we utilize the normalized mean squared estimation
error (NMSEE) which is defined as

NMSEE =
1

NMC

NMC−1∑
n=0

∣∣∣∣∣∣k − k̂
k

∣∣∣∣∣∣
2

, (31)

where NMC is the number of PBS realizations and k̂ is the esti-
mated rate.

5.1. Parameter Selection

The simulation parameters and rate parameters under con-
sideration are given in Table 1. We use the listed parameters
as reference parameters, which are assumed for the numerical
simulations if the parameter is not varied. Inspired by [31], we
consider a dimensionless scenario which is more general and
compact since units are omitted. To achieve this, all concentra-
tions are given relative to the initial environmental EV concen-
tration Q̄0 and all temporal parameters are given relative to k̄i.
Accordingly, the dimensionless parameters can be determined
as

Q0 =
Q̄0

Q̄0
, N =

N̄
Q̄0
, kb =

k̄bQ̄0

k̄i
, kh,r,i =

k̄h,r,i

k̄i
, t = k̄i t̄.

(32)

In [31], k̄b is given in units of mL/molecule/s and the reactant
in molecule/mL. In PBS, we work with the absolute number of
EVs and receptor sites, which needs to be taken into account in
the calculation of the dimensionless binding rate kb. However,
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Figure 4: Obtained number of EVs in environment and bound to the cell with
respect to time for a single PBS realization and ODE solution of (3) and (4).
The considered parameters are given in Table 1 and N = 0.1.

this is not important for the evaluation of our estimation meth-
ods and we therefore omit the calculation and directly adopt the
dimensionless parameter from [31] for the sake of simplicity.
The variation of individual parameters can influence the total
time until all environmental EVs are internalized and thus the
temporal dynamics. To counteract this effect and capture the
full dynamics of the signal, we consider in the simulations the
period adaptive between zero and ten times the duration that is
theoretically needed to internalize 90% of all EVs based on (3)
and (4). We divide this range into Ns equally distributed sam-
ples. As an example, for the scenario in Figure 4 this results in
a total time of 10× 163 = 1630 with a step size of ∆t = 0.0163.
It should be noted that in PBS Ns is limited only by hardware,
whereas in laboratory measurements the sampling rate is deter-
mined by the available equipment and the temporal effort. A
sufficient required time resolution of the laboratory measure-
ments can nevertheless be achieved by interpolation between
and/or extrapolating beyond the measuring points.

Figure 4 shows qA(t) and qAR(t) for a single realization of the
PBS. As a comparison, the ODEs (3) and (4) are numerically
solved as well. It can be observed that the noisy PBS simulation
follows the ODE solution.

5.2. Parameter Studies

In the following, we examine the performance of the rate es-
timation approaches introduced in Section 3 with respect to the
parameters. Figure 5 shows the performance of the four dif-
ferent approaches with varying number of binding sites N. It
should be mentioned that N represents the ratio of binding sites
to initial environmental EVs. This can be achieved experimen-
tally by changing the number of binding sites N̄, for example,
by varying the number or type of cells. On the other hand,
the initial environmental EV concentration Q̄0 can be increased
or decreased. From Figure 5, different regions can be identi-
fied where each approach is preferable and provides useful rate
estimates. Depending on N, all approaches have their justifi-
cation. For better visualization, we have highlighted three re-
gions in color and labeled them with the approaches that give
an NMSEE < 100 at all three rate estimates. The MM approach
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Figure 5: Normalized mean squared estimation error for the reaction rates with
respect to number of binding sites of the cells. The considered parameters are
given in Table 1.
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Figure 6: Normalized mean squared estimation error for the reaction rates with
respect to initial EV quantity in the medium. The considered parameters are
given in Table 1. Since N is fixed, the dimensional number of binding sites
changes accordingly.

performs best in the region with low N. In this region, the gov-
erning MM kinetics assumption that the substrate concentration
is much larger than the enzyme concentration is fulfilled and the
quasi-steady-state assumption is satisfied. The maximum of the
MM approach observed for kb and N = 100 is due to the upper
bound of all rates in the curve fitting algorithm. From N = 100

the estimate of ki reaches this upper bound, which is compen-
sated by a decreasing NMSEE for kb as N increases. A low N
also means a more dominant nonlinear part in (6). This leads
to poor performance of both the iterative approach and the lin-
ear approach. Conversely, the influence of the nonlinear part
in (6) decreases as N increases. This improves the rate esti-
mation of the iterative approach as well as the rate estimation
of the linear approach, which is based only on the linear part
in (6). The iterative approach provides the best rate estimates
for the parameters under consideration especially in the range
10−1 < N < 102. Iter. FIT outperforms Iter. CF clearly for
N < 101. In this range the spectral signal becomes more noisy.
While the closed-form solution depends only on two points in
the spectral signal and is therefore sensitive to noise, curve fit-
ting based on numerous points offers more robustness against
noise. Furthermore, it can be concluded from Figure 5 that, for
the assumed scenario, the estimation of kb is more accurate than
the estimation of kr and ki.

In the remaining analysis, we investigate the influence of in-
dividual system parameters on the performance of the rate es-
timation approaches. In doing so, we set N for each individ-
ual approach to a value where the respective approach performs
well, as listed in Table 1. Figure 6 shows the influence of the
initial number of environmental EVs, Q̄0, on the NMSEE when
estimating kb, kr and ki. Since N is fixed, N̄ changes accord-
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Figure 7: Normalized mean squared estimation error for the overestimation
(negative relative estimation error) and underestimation (positive relative esti-
mation error) of the initial EV quantity in the well. The considered parameters
are given in Table 1.

ingly. For all rates, the estimation improves with increasing Q̄0.
This is to be expected, since the deviation from the expected
value decreases with increasing number of EVs in PBS. In other
words, the PBS result approaches the solution given in (3) and
(4) as Q̄0 increases. For the scenario under investigation, at
least Q̄0 = 104 EVs for MM approach, at least Q̄0 = 104.5 EVs
for Iter. FIT, and at least Q̄0 = 105 EVs for Iter. CF and linear
approach should be selected to bring the NMSEE of all rates
below 100.

Our proposed rate estimation approaches require knowledge
of N and Q0. While Q̄0 is comparatively easy to measure di-
rectly, N̄ can be determined by additional saturation binding
assay experiments and estimated for the final experiment. How-
ever, both are experimentally determined values that involve a
certain degree of imprecision. Figure 7 illustrates this influ-
ence on the rate estimate when Q0 is overestimated or underes-
timated indicated by Q̂0. Note that Q0 is dimensionless and N
is given relative to it. Thus, an overestimation of Q0 can also be
interpreted as an underestimation of N, and an underestimation
of Q0 as an overestimation of N as well. Figure 7 shows that
over- or underestimation mainly affects the NMSEE of kb. This
observation is consistent with previous analysis [5]. The reason
is that the binding process described by kb is directly influenced
by Q0, while kr and ki depend only on the bound EVs. For the
assumed scenario, the NMSEE is below 100 for all rate esti-
mates even with an over- or underestimation of Q0 up to 30%.
This result demonstrates that the proposed approaches are ro-
bust to an imprecise determination of Q0 and N.

Besides the determination of Q0 and N, the experimental
measurement of qA(t) will also be subject to measurement
noise. Reasons for this are, for example, variations of envi-
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Figure 8: Normalized mean squared estimation error for the reaction rates with
respect to additive white Gaussian noise variance. The considered parameters
are given in Table 1.

ronmental parameters like temperature or imperfection of the
used measuring instruments. To investigate the influence of
these macroscopic noise sources on the rate estimation, we add
a zero-mean additive white Gaussian noise with a variance of
σ̄2 to the PBS samples. Please note that σ̄2 is given in dimen-
sional form. Figure 8 shows the impact of different σ̄2 val-
ues on the performance of each approach. As expected, the
performance of all rate estimation approaches decreases as the
noise power increases. However, noise affects the different esti-
mates differently. The multiplication jωQ̃A( jω) in the MM and
Iter. FIT approach leads to an increased noise power with in-
creasing frequency. Increasing σ̄2 leads to a wider considered
frequency range in which 97% of the energy lies. The noise
samples falling into the extended frequency range thus degrade
the rate estimation using curve fitting. In contrast, Iter. CF and
the linear approach are based on closed-form expressions and
the relevant frequency range is fixed. The noise here is mainly
manifested by a noisy spectral signal, which with increasing σ̄2

affects the amplitude values and the location of the maximum in
the imaginary part of H( jω), which are essential for this estima-
tion approach. As can be seen from Figure 8, the MM approach
shows the highest robustness to the added measurement noise,
whereas the Iter. FIT approach is the most vulnerable.

Figure 9 shows the effect on the NMSEE of kb, kr, or ki when
these are varied over a wide range, respectively. For the MM
approach, it is noteworthy that the NMSEEs for kb and kr have
a clear minimum at 10−1. This can be explained by the fact
that the initial point of the curve fitting algorithm for these rates
is chosen exactly at 10−1. While the MM approach gives poor
estimates at low rates for the scenario under investigation, the
other three approaches show a more robust behavior, at least for
kb and ki. Both rates provide an NMSEE of less than 100 for the
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Figure 9: Normalized mean squared estimation error for the reaction rates with
respect to reaction rate value. The considered parameters are given in Table 1.

considered scenario. Only ki shows a higher NMSEE for ki <
10−1. The results demonstrate that the proposed approaches are
strongly dependent on the chosen parameters. Especially due to
the nonlinearity in the system, certain parameter combinations
can lead to high estimation errors. Likewise, increasing either
Q̄0 (less noise in the PBS), Ns (wider frequency range) or the
total observation time (higher frequency resolution) can lead to
an improvement of the rate estimates.

5.3. Computational Complexity Analysis
In the following, a comparison of the computational com-

plexity of the proposed approaches is given. Among all con-
sidered approaches, the curve fitting algorithm is the one with
the highest computational complexity, followed by the gradient
descent method and the calculation of the closed-form expres-
sions. Consequently, the linear approach has the least compu-
tational complexity. If Iter. CF requires multiple iterations, its
computational complexity is higher than that of a single curve
fitting call in the MM approach. One iteration of the Iter. FIT
approach is significantly more complex than an Iter. CF itera-
tion. The number of iterations depends strongly on the chosen
error tolerance ϵ, as well as on the general scenario. For the
scenario under investigation and the parameter study from Fig-
ure 5, the average number of required iterations of the iterative
approaches are shown in Figure 10. It can be seen that a max-
imum of 10 and 16 iterations on average are required for the
Iter. CF and Iter. FIT, respectively. It can also be observed that
the number of required iterations decreases for small and large
values of N, and is generally similar for both approaches.

6. Conclusion

We designed original computational methods for the estima-
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tion of chemical reaction rates involved in the EV signaling
pathway, particularly associated with the process of EV uptake
by recipient cells. They are meant to be combined with a sim-
ple experiment, where the recipient cells are cultured in a well
and mixed with the known number/concentration of the EVs,
from which data are acquired. Our proposed approaches ex-
ploit only the monitored number of EVs in the medium where
the cells are cultured, without any need to monitor the EVs that
either bound to- or internalize into the recipient cells. For the
purpose of demonstrating the validity of our approaches, we
used particle-based simulations for generating synthetic data
that resemble experimental data, thus omitting to conduct ac-
tual experiments. The performance of the proposed methods is
evaluated and thoroughly discussed using the normalized mean
squared estimation error. We managed to obtain the normalized
mean squared estimation error for the EV binding rate of less
then 10%, even with an overestimation or underestimation of
the number of initial EVs up to 30%; this is the highest pre-
cision among the estimated rates. Future work will consist in
combining our model with real data to identify adequate math-
ematical models of EV signaling more finely. This will largely
help the development of EV-mediated therapy and EV-mediated
molecular communication links.
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G. Lavieu, Quantitative characterization of extracellular vesicle uptake
and content delivery within mammalian cells, Nature communications
12 (1) (2021) 1–11.

[5] M. Zoofaghari, M. Damrath, H. K. Rudsari, F. Pappalardo, M. Veletić,
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