
An Experiment-based Comparative Analysis of
Pigment Classification Algorithms using

Hyperspectral Imaging

Dipendra J. Mandal1, Marius Pedersen1, Sony George1, Hilda Deborah1, and
Clotilde Boust2

1Department of Computer Science, Norwegian University of Science and Technology (NTNU),
Norway

2Center for Research and Restoration of Museums of France (C2RMF), France

Abstract

Hyperspectral imaging techniques are widely used in cultural heritage for docu-

mentation and material analysis. A pigment classification of an artwork is an essential

task. Several algorithms have been used for hyperspectral data classification, which

are more appropriate than each other, depending on the application domain. However,

very few have been applied for pigment classification tasks in the cultural heritage

domain. Most of these algorithms work effectively for spectral shape differences and

might not perform well for spectra having a difference in magnitude or for spectra that

are nearly similar in shape but might belong to two different pigments. In this work,

we evaluate the performance of different supervised-based algorithms and some ma-

chine learning models for the pigment classification of a mockup using hyperspectral

imaging. The result obtained shows the importance of choosing appropriate algorithms

for pigment classification.

Keywords – Hyperspectral Imaging, Pigment Classification, Cultural Heritage, Ma-

chine Learning

1 Introduction

Hyperspectral Imaging (HSI) technology, initially developed and used for remote sensing

applications, is also being used more frequently in the Cultural Heritage (CH) domain for
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analyzing artwork and has provided great potential in its scientific analysis. In CH, proper

pigment classification of artwork materials such as paintings is of essential importance for

conservators to precisely analyze an object and its historical value. Generally, reflection,

transmission, and absorption of electromagnetic energy by a given material produce a unique

spectrum at a given wavelength. The shape of the spectrum is distinctive because every

material has a different chemical composition and an inherent physical structure [1]. For

pigment classification using HSI, mainly supervised classification algorithms are used; they

compare the spectrum within a region of interest with spectral library spectra with a specific

tolerance [2, 3].

Many supervised-based classification algorithms exist for HSI, mostly in remote sensing

applications, for example, mineral identification [4, 5]. However, few of these algorithms

are being adopted directly or with some modification in other application domains such as

medical imaging [6, 7], food and agriculture [8, 9], forensics [10]. Moreover, to the best

of our knowledge, Only a few have been implemented in the CH domain, especially for

pigment classification of artwork such as paintings. HSI acquisition for CH are usually per-

formed under controlled laboratory conditions, where the distance between the camera and

the object is relatively small and one has control over illumination types and geometry. In

contrast, for remote sensing, HSI data are collected using natural illumination with a more

considerable distance between the camera and target, causing temporal illumination varia-

tions and atmospheric effects. Due to these differences between two application domains,

various classification algorithms adopted in remote sensing cannot be directly adapted or

might not work effectively for CH applications. For example, an algorithm insensitive to

intensity variation can perform well in remote sensing. However, it might not perform with

the same accuracy for CH objects because magnitude measures are essential in CH. Faded

or aged pigments [11], pure pigment mixed with different binding mediums [12], mixed
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pigments (e.g., pigment mixed in different weight percentages of Lead White [13]), etc. can

have variations in magnitude, which is essential to determine for both diagnostic and con-

servative purposes. Very few of these algorithms have been used for pigment identification

of artwork using HSI, and therefore it is necessary to explore and evaluate them. Fur-

thermore, many materials associated with CH lack pure end members, particularly when

they undergo weathering [14], aging [15, 16, 17], or restoration processes over time [18].

Therefore, accurately determining the composition of a specific material or differentiating

it from other materials within an image can pose challenges, making the task of identifying

and mapping materials in HSI more challenging.

Deep learning has recently provided new possibilities by solving more complex questions in

many applications [19, 20]. In CH, spectra of the pigments get affected with different types

of medium used as binders; spectra might look identical, i.e. might have a small shift in

peak or small change in magnitude [12], and under such conditions, most of the supervised

algorithms do not perform well for classification. However, distinguishing such conditions

might be important for art historians and conservators to select the proper conservation

methods. Also, in the case of fading, there might only be a minor change in the magnitude

of a spectrum. In medical imaging, Zhi et al. [21] used a Support Vector Machine (SVM) for

tongue diagnosis using HSI, where spectra obtained from the surface of the tongue under

different conditions have changed mainly in magnitude. Devassy et al. [9] used a One-

dimensional Convolutional Neural Network (1D-CNN) to classify strawberries and found

that the result was better than supervised algorithms. To the best of our knowledge, using

deep learning-based models for pigment classification of artwork is not common practice

and, therefore, it will be worthwhile to explore their potential.

This paper presents the comparative experimental analysis of various supervised algorithms

and machine learning models for pigment classification on a mockup using HSI in the Visible
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Near-Infrared (VNIR) region. The algorithms used are the Spectral Angle Mapper (SAM),

Spectral Correlation Mapper (SCM), Spectral Information Divergence (SID), Spectral Sim-

ilarity Scale (SSS), and the hybrid combinations of SID–SAM and SID–SCM. We also used

the Jeffries–Matusita (JM) distance function combined with SAM (JM-SAM). Likewise,

some machine learning models used are SVM, Fully Connected Neural Network (FC-NN),

and 1D-CNN. The rest of this paper is structured as follows. Section II provides an overview

of data processing techniques and algorithms, followed by details about the algorithms used

in Section III. Object details, imaging technology, and the experimental framework used

are given in Section IV. Section V covers the results with a discussion. Finally, Section VI

presents our conclusions, followed by future work.

2 Overview of Algorithms and Processing Techniques

Generally, a spectral matching technique is employed for pigment classification, i.e., finding

a spectral similarity between two spectra at any given pixel in an image. The best fit

indicates the most significant possibility of being reference material for a given pixel. The

distinction between different algorithms used for classification is their ability to consider

shapes and magnitude differences between two spectra. This section provides an overview

of the classification algorithms employed in various application domains with HSI.

Shivakumar et al. [22] compared the performance of SAM and SCM for classifying nine

different classes for remote sensing applications using HSI. There was spectral overlapping

between the datasets for some of the classes, and they identified that SCM to be more

efficient compared to SAM for the classes with a highly similar spectrum. Similarly, SCM

was compared with SAM for mineral analysis [23] and it was found that SCM algorithm

has better results due to its wide variation of data from -1 to 1. Qin et al. [24] used SID
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methods to identify lesions in citrus using HSI. Devassy et al. [25] experimented to explore

the performance of five different algorithms, namely SAM, SCM, ED, SID, and Binary

Encoding (BE), for the task of ink classification using HSI. The overall accuracy (average

of all inks used) for the SAM algorithm was high compared to all other methods used. None

of the methods worked effectively to classify between inks that had nearly similar spectral

signatures with only change in magnitude.

For a given two vectors (spectra), Change Vector Analysis (CVA) computes the change in

spectral vectors and compares their magnitude with the specified threshold value [26]. It

was originally designed for only two spectral dimensions (2 spectral bands); further, using

the directional cosine approach, it can be extended to a N -dimensional space [27] and is

computed using Equation (1).

αi = cos−1


ti − ri√√√√ nb∑

i=1

(ti − ri)
2

 (1)

where ti and ri are the tests and reference image, and nb is the total number of bands

with i = 1, 2, .....nb. In this method, we will obtain the number of angles αi equal to the

number of bands, which makes the computation complex, details on this explanation and

its drawbacks are explained in [28]. Osmar et al. [28] in their study of change detection

methods in a tropical environment using HSI, proposes a new approach to calculate the

spectral direction of change using the SAM and the SCM method, and for magnitude,

they computed the Mahalanobis distance and the Euclidean distance. The best result was

obtained using SAM for similarity and ED for magnitude.
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Many hybrid approaches to compute the classification of HSI data have shown improved

results in many applications. Using a hybrid approach of SAM and SID was found to

produce better results than using them alone [29]. Naresh et al. [30] computed the hybrid

of SCM and SID (SIDSCM) for the classification of vigna species and compared their

result with the hybrid method of SAM and SID. They performed an experiment for various

spectral regions and found that for region 400-700 nm it has a better result. Zhang et

al. [31] used the hybrid approach by combining Minimum Noise Fraction (MNF) and SAM

methods to identify defective tomatoes.

Li et al. [32] proposed a new method called Extended Spectral Angle Mapper (ESAM) for

detecting disease in citrus for multi- and hyperspectral datasets. The result was compared

with supervised methods, Mahalanobis distance, and unsupervised method; k-means and

ESAM were found to have better accuracy (86%) than the other two methods (around 64%).

Jeffries-Matusita (JM) [33] are mainly used for the separability criterion and optimal band

selection, so only the most distinct bands are selected for the data classification task [34, 35].

The JM method is a pairwise distance measure that can be applied mostly to two class cases.

Authors have proposed many extensions of JM [36] to use for multiclass classification. The

most common is to take the average JM distance computed for all pairs of classes. Deborah

et al. [37] evaluated the performance of four different distance functions named Root Mean

Square Error (RMSE), Goodness-of-Fit Coefficient (GFC) [38], Jeffrey divergence, and

Levenshtein distance on both synthetic and real hyperspectral datasets to find a suitable

distance measure for spectral image processing. They found that for the magnitude change,

only RMSE followed by Jeffrey divergence performed in the desired way.

Deborah et al. [39] compared different distance functions for pigment classification tasks

on HSI datasets with the presence of spectral noise and variations. Intending to identify

the appropriate methods based on suitable selection criteria, they found the Euclidean
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distance of a Cumulative Spectrum (ECS) to be the most suitable distance function for

spectral data. However, in their study, evaluation of these distance functions on artificially

simulated spectra and some real spectra from pigment patches from the Kremer pigment

chart [40], these charts are screen printed and usually the pigments are in a water-based

binder, which might not be the exact representation of the real spectra obtained from

an artwork. Bhattacharyya Distance (BD) which measures the separability between two

classes, has been used in remote sensing applications frequently [41, 42], was used to select

the number of bands required for efficient classification, and then SAM and Support Vector

Machine (SVM) were used for identification of stress symptoms in plants [43]

In recent years, machine learning-based classification methods have been popular and exten-

sively used in many different applications. SVM is one of the machine learning approaches

used for classification tasks and has shown efficient results, especially when the training

data size is relatively small [44, 5]. Deep learning-based convolutional neural network mod-

els can learn spectral features more effectively using deeper layers; in many cases, such

methods can give us higher classification accuracy than traditional algorithms. Pouyet et

al. [45] used the Deep Neural Network (DNN) and compared the result with SAM for pig-

ment identification and mapping using HSI in the SWIR region and found that the DNN

model produced better results than SAM. Devassy et al. [9], in their study of strawberry

classification based on sugar content, found that algorithms SID and SAM, which rely on

the spectrum’s geometry, did not perform well, as the two reference spectrum were nearly

identical in shape and a small difference in the magnitude of the NIR region of the spec-

trum. They also showed that One-Dimensional Convolution Neural Network (1D-CNN)

based classification gives better accuracy (96%) compared to SAM (60%) and SID (58%).

Table 1 summarizes the list of algorithms used for HSI data processing, their area of study,

and details of the classification/network parameters.
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Table 1: Summary of algorithms used for HSI datasets with its applications and model
parameters; Th:Threshold value, BS: batch size, LR: learning rate, DR: dropout rate, ReLu:
rectified linear unit, HL: hidden layer, CL: convolutional layer, FCL: fully connected layer,
KS: kernel size

Algorithms Application Wavelength Parameters
ED Ink classification [25] 400-1000 nm -

SAM Pigment classification [46] 400-1000 nm Th:0.1
Mineral classification [47] 380-2500 nm -
Ink classification [25] l400-1000 nm -
Minerals and land classification [48] - -

SCM Ink classification [25] 400-1000 nm -
Pigment identification [3] 370–1100 nm -
Pigment mapping [49] 400-2500 nm Th:0.1

SID Mineral classification [47] 380-2500 nm -
Ink classification [25] 400-1000 nm -
Minerals and land classification [48] - -
Crops classification [50] 200-2400 nm -

SSS Crops classification [51] - -

SIDSAM Crop classification [29] 400-2500 nm -
Mineral classification [47] 380-2500 nm -
Dye and pigment based Inkjet prints [52] 400-1000 nm -

SIDSCM Plant classification [30] 350-2500 nm -
Mineral classification [47] 380-2500 nm -

JMSAM Landcover classification [53] - -
Mineral classification [47] 380-2500 nm -
Ink classification [25] l400-1000 nm -
Dye and pigment based Inkjet prints [52] 400-2500 nm -

SVM Tongue diagnosis [21] 400-1000 nm -
Crops classification [54] - Polynomial Kernel

FC-NN Aerial images classification [55] - BS:500, LR: 0.05,
DR:0.25, ReLU

Pigment classification [45] 1000-2500 nm HL: 4, LR : 0.001,
Adam, ReLU/Sigmoid

1D-CNN Soil texture classification [56] 400-1000 nm CL:4, FCL:2,
Softmax

Classification of strawberry [9] 380-2500 nm Filters: 8, HL: 2,
BS:32, KS: 3
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3 Classification Algorithms

In this Section, we describe the algorithms used for our experiment in detail.

3.1 Euclidean Distance (ED)

Classification can be computed by calculating the minimum distance between the spectrum

to be classified and the reference spectrum of the class. For a given n-dimensional image

spectrum ti and a reference spectrum ri, the ED between them is defined using Equation (2),

where nb is the number of spectral bands. ED is proportional to the magnitude of the

squared subtractive difference vector, but not its shape [57].

ED =

√√√√ nb∑
i=1

(ti − ri)
2 (2)

3.2 Spectral Angle Mapper (SAM)

SAM is one of the most popular spectral classification methods used in CH applications

due to its easy and rapid approach to mapping spectral similarity. SAM, developed by

Boardman (1992) [58], measures the spectral similarity between any two spectra (test and

reference). Arccosine angles between the two spectra are calculated by treating them as

N -dimensional vectors in space, where N is equal to the number of spectral bands. The

angle between two spectra is calculated using Equation (3), where α is the spectral angle in

radians, ti is the image spectrum, ri is the reference spectrum, and nb is the total number

of bands. A smaller angle indicates a more decisive match between the spectra. Kruse et

al. [58] describe a simplified representation of the spectral angle mapper algorithm using a
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two-dimensional scatter plot for two band image data. Since the SAM algorithm measures

an angle between two vectors and the angle does not change with the length of the vectors,

i.e., insensitive to the gain. Therefore, this algorithm does not consider magnitude shifts in

the spectrum; for details, please refer to Osmar et al. [23].

α = cos−1


nb∑
i=1

tiri√√√√ nb∑
i=1

ti
2

√√√√ nb∑
i=1

ri
2

 (3)

3.3 Spectral Correlation Mapper (SCM)

SCM calculates the Pearson correlation coefficient between two spectra. It standardizes the

data, centralizing itself in the mean of the test and reference spectra. By applying arccosine,

it can be expressed in angles. This algorithm excludes negative correlation and retains

shading effect minimization characteristics similar to SAM, resulting in better classification

results [23, 28]. SCM can be computed using Equation (4), where α is the arccosine of the

spectral correlation measure in radians, ti and t̄i are the image spectrum and its sample

mean, similarly ri and r̄i are the reference spectrum and its sample mean; and nb is the

total number of bands.

α = cos−1


nb∑
i=1

(ti − t̄i) (ri − r̄i)√√√√ nb∑
i=1

(ti − t̄i)
2

nb∑
i=1

(ri − r̄i)
2

 (4)
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3.4 Spectral Information Divergence (SID)

SID measures spectral similarity between the spectrum of test and reference data for each

pixel based on the concept of divergence, i.e. measuring probabilistic discrepancy between

them. The probability distribution of the test and reference spectra is expressed as Equa-

tion (5) and Equation (6), respectively [59].

pi =
ti∑nb
i=1 ti

(5)

qi =
ri∑nb
i=1 ri

(6)

where, ti is the image spectrum, ri is the reference spectrum, and nb is the total number of

bands. Using these two probability distributions, SID can be calculated with Equation (7).

SID =

nb∑
i=1

pi log

(
pi
qi

)
+

nb∑
i=1

qi log

(
qi
pi

)
(7)

3.5 Spectral Similarity Scale (SSS)

SSS evaluates the shape and magnitude difference between two spectra. Granahan et

al. [60, 51] used the SSS to analyze hyperspectral atmospheric correction techniques. This

algorithm uses the Euclidean distance metric for magnitude, and correlation for comparing

the shape of the spectra. This method combines the calculations of both, giving each an

equal weighting [61]. SSS has a scale of minimum of zero and maximum of the square

root of two; smaller the value, the higher the similarity between the spectrum i.e. if two

spectrum are collinear then its SSS value will be equal to zero. SSS can be computed using
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Equation (8).

SSS =
√
(de)2 + (r̂)2 (8)

Here, de is the Euclidean distance between two spectra and is computed using Equa-

tion (9) and its value ranges from 0 to 1 due to the factor 1/nb.

de =

√√√√ 1

nb

nb∑
i=1

(ti − ri)
2 (9)

Equation (10) computes the value for r̂, where r is the correlation coefficient between

the two spectra and is computed using Equation (11).

r̂ = (1− r2) (10)

r2 =


nb∑
i=1

(ti − t̄i) (ri − r̄i)√√√√ nb∑
i=1

(ti − t̄i)
2

nb∑
i=1

(ri − r̄i)
2



2

(11)

3.6 SIDSAM

As the name suggests, SIDSAM is computed by multiplying SID by taking the tangent of

SAM or with the sine function of SAM, i.e., by computing the perpendicular distance be-

tween two vectors (test and reference). Both of these measures produce similar results [29].
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This hybrid computation makes two similar spectra even more comparable and two dis-

similar spectra more distinctive, thus significantly improving the spectral discriminability.

SIDSAM can be computed as either of the Equations (12) or (13), where SID and SAM

can be computed using Equations (7) and (3)respectively.

SIDSAM = SID ∗ tan(SAM) (12)

SIDSAM = SID ∗ sin(SAM) (13)

3.7 SIDSCM

Similar to SIDSAM, we also tested the hybrid combination of SIDSCM, computed by mul-

tiplying SID by either taking a tangent of SCM or with the sine function of SCM [30].

SIDSCM can be computed as either of Equations (14) or (15), where SID and SCM can be

computed using Equations 7 and (4) respectively.

SIDSCM = SID ∗ tan(SCM) (14)

SIDSCM = SID ∗ sin(SCM) (15)

3.8 Jeffries Matusita-Spectral Angle Mapper (JMSAM)

Similarly to SIDSAM, JMSAM is also a hybrid similarity measure algorithm in which

the spectral capabilities of both algorithms are orthogonally projected by using either a

tangent or a sine function [53]. A smaller JMSAM value indicates a strong match between
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the reference and test spectra. It can be computed using either Equation (16) or (17).

JMSAM = JMD ∗ tan(SAM) (16)

JMSAM = JMD ∗ sin(SAM) (17)

Here, Jeffries-Matusita distance (JMD) is one of the spectral separability measures com-

monly used in remote sensing applications and can be computed using Equation (18), where

B is the Bhattacharyya distance and is computed using Equation (19) and SAM is computed

using Equation (3).

JMD = 2
(
1− e−B

)
(18)

B =
1

8
(µt − µr)

T

[
σt + σr

2

]−1

(µt − µr) +
1

2
ln

[
|σt+σr

2 |√
|σt||σr|

]
(19)

Here, µt and µr are the mean of the test and reference spectra, respectively; σt and σr are

the covariance of the test and reference spectra, respectively.

3.9 Support Vector Machine (SVM)

Support vector machine is a supervised classification algorithm used in machine learning

and has been used successfully for HSI classification tasks [62, 63, 64]. These are usually

used to separate two or more data classes using a hyperplane. Objects to be classified are

represented as a vector in an n-dimensional space. Then SVM method draws a hyperplane

so that all points of one class are on one side of this hyperplane and points of the other class
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are on the other side. Of course, there could be multiple such hyperplanes. SVM tries to

find the one that best separates these classes by computing the maximum distance between

the data points of these classes closest to the hyperplane, also called support vectors. This

method is similar to the Neural Network, but instead of computing the weight and bases

of each point, SVM adjusts these parameters by computing it only on the support vectors

and determining the decision boundaries for classification.

3.10 Fully Connected Neural Network (FC-NN)

In the FC-NN architecture, all the nodes in one layer are connected to the nodes in the next

layer. The data are inputted into the first layer of the neural network, where individual

neurons pass the data to a second layer. The second layer of neurons does its task, and so on,

until the final layer. Each neuron assigns a weight to its input. Once all the input weights

flow out of the neuron, they are summed, and biases are added, which help offset the output.

These parameters are tuned by optimization during training, that is, compute the error of

classification, also called loss, and then tune the weights and biases over many iterations

to minimize this loss. The goal of neural networks is to adjust their weights and biases so

that they can produce the desired output when applied to new unseen data. One of the

common problems when training the network is overfitting (also called generalization error)

of the dataset, i.e., Instead of learning, it memorizes the data. To avoid it, one needs to use

regularization, i.e., early stopping with dropout layers and changing the network structure

and parameters (weight constraint) [65]. A dropout function added to the network helps

to disable the neurons randomly. This forces the network to learn how to make accurate

predictions with only randomly left neurons, helping the network to prevent overfitting.

For further details, see [66, 67].
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3.11 One-dimensional Convolutional Neural Network (1D-CNN)

CNN is one of the most popular neural networks used for various computer vision and

machine learning tasks [68, 69, 70]. CNN architecture is built using three main layers:

convolutional layer, pooling layer, and fully connected layer. As the name suggests, the

convolutional layer performs the linear operation between matrixes, that is, convolution

between the input neurons and kernel, generating an output activation map. For 1D-CNN,

only 1D convolution is performed, that is, scalar multiplications and additions. In this

layer, the number of weights is equal to the size of the kernel and does not depend on the

input neuron, as in FC-NN. The feature map generated from this layer is passed through

pooling a layer which helps to reduce the dimension of the feature map while maintaining

the most important information. This helps to introduce translation invariance and reduces

overfitting. A fully connected layer takes the output of the pooling layers, flattens them,

and turns them into one long vector that can be an input for the next stage, where it applies

weights to predict the correct label, and finally outputs the probabilities for each class using

the activation function. Figure 1 shows the architecture of a general convolutional neural

network [71].

4 MATERIALS AND METHODS

In this section, we describe the mockup and the HSI acquisition laboratory setup, details

on the data post-processing steps, and classification algorithms.

4.1 Test Object

As shown in Figure 2, a pigment mockup was prepared and used in a laboratory envi-

ronment. We used pigment tubes composed of high-stability pigments and oil, purchased
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V1 V2 V3 V4 V5 V6

H1 H2 H3 H4 H5 H6

Fully Connected Layer

Max Pooling Layer

Input V

Convolu!onal Layer

Shared Weights W

Pooling Size

Kernel Size

Figure 1: The architecture of a typical CNN consists of a convolutional layer, a max pooling
layer, and a fully connected layer.

from Zecchi [72]. The pigments were selected on the basis of the mostly studied in CH re-

search articles, their spectrum characteristics, and consultation with experts. Veridian (V),

Cerulean Blue (CB), Green Earth (GE), Yellow Ochre Light (YOL),Burnt Umber (BU),

Ultramarine Blue Deep (UBD), Lead White Hue (LWH), Genuine Vermilion (GV), Cobalt

Blue Deep (CBD), and Ivory Black (IB) are pigments that are being used in the mockup.

The linen canvas used was primed using three layers of white gesso.

4.2 Experimental Setup

Hyperspectral data were obtained in a laboratory environment using the HySpex line scan-

ner VNIR-1800 from Norsk Electro Optikk [73]. The datacube obtained covers a spectral

range from 400 to 1000 nm with 186 spectral bands having a spectral resolution of 3.26
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P11 P2 P3 P4 P6P5 P7 P8 P9 P10

Figure 2: Pigment mockup; P1:Veridian, P2:Cerulean Blue, P3:Green Earth, P4:Yellow
Ochre Light, P5:Burnt Umber, P6:Ultramarine Blue Deep, P7:Lead White Hue, P8:Genuine
Vermilion, P9:Cobalt Blue Deep and P10:Ivory Black.

nm. In this experiment, a close-range 30 cm lens was used; it captures 1800 spatial pixels

across a linear field of view of approximately 86mm. A translation stage setup was used

where the pigment mockup was kept lying on a horizontal surface. The standard multistep

reference target from Spectralon [74] consisting of four shades of 99, 50, 25, and 12% re-

flectance values was kept along with the mockup during acquisition. This reference target

with a known reflectance factors is used for computing the normalized reflectance at the

pixel level.

4.3 Data Processing

The obtained raw hyperspectral data was post-processed for radiometric calibration using

the HySpex RAD software, which removes electronics noise, i.e., dark current, and converts

the raw images to the sensor absolute radiance values. Illumination correction, i.e., spatial

variability in illumination, was performed with the help of the standard reference target.

Further data processing steps are different for supervised and ML-based classification and

are explained in the following sections.
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4.3.1 Data Processing for Supervised Classification

To build a spectral library, a region of interest of approximate size equal to that of the

patches (10 × 10 mm) was considered, and the mean spectra from these regions were

saved in the library. To evaluate the performance of classification, a confusion matrix was

computed. The overall methodology is illustrated using a block diagram in Figure 3. All

data processing steps were computed using the open-source software Spectralpython [75].

HSI Data
Dark current

Correc on

Radiance to

Reflectance

Illumina on

Correc on

Classifica on

Algorithms

Ground Truth

Data

Threshold Value

for each

Algorithms

Accuracy Assessment

Spectral

Library

Python

HyspexRadV2.0HySpex VNIR-1800

Figure 3: Workflow diagram for data processing

Selecting the appropriate threshold value for classification algorithms is critical as it may

vary depending upon the application. For example, Li et al. [32] mentioned the region

for selecting the threshold value for SAM to be 0.1 for citrus disease detection analysis

because, during the preliminary testing, they found that at a value of 0.15, many false

positives result. A similar empirical approach has been followed by Carvalho Júnior et

al. [28], and Fung et al. [76]. Thus we also computed the optimal threshold for each of

these algorithms through empirical observation. First, we selected a small segment of the

HSI dataset of a mockup, as shown in Figure 4. Next, the reference spectrum was extracted
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from a mockup’s flat region by taking an average of 11 × 11 pixels. Finally, we computed

the classification task for all algorithms with different threshold values and evaluated their

accuracy using the confusion matrix.

Figure 4: A snippet of a mockup with ten pigments and substrate; Colors are approximated
as RGB rendering using spectral python for bands 75, 46, and 19 of HSI datasets.

In CH applications such as pigment classification for a painting, misclassification, i.e., the

pigment being classified as the wrong pigment, is even more crucial than a pigment being

unclassified. Hence, there should be the minimum error for any given classification algo-

rithm. Therefore, we considered the classification accuracy for pigment classified as correct

pigment (P_P), misclassification (MC_), pigment classified as unknown (P_UN_), un-

known classified as a pigment (UN_P_), and unknown classified as unknown (UN_UN_).

Figure 5 shows the graph for these parameters over accuracy for the SID algorithm, and

we can observe that for threshold values between 0.01 to 0.03, the accuracy for pigment

classified as pigment and unknown classified as unknown is high. Also, for misclassification

value in the range of 0.1 to 0.3, pigments that are classified as unknown is minimum, and

unknown classified as unknown is relatively high and constant. A similar conclusion can

be drawn by visualizing the classification result shown in Figure 6. An optimal threshold

value used for different algorithms in our experiment is mentioned in Table 2 and graph for

each of the algorithms is attached in the Appendix B.

4.3.2 Data Processing for ML Classification

The obtained normalized reflectance HSI data needs to process before it is fed to the model;

data was labeled for different classes using the label encoder. For our dataset, we used one
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Figure 5: Graph for accuracy of five parameters used to determine the optimal threshold
value for the SID algorithm.

Table 2: The selected threshold value for eight different classification algorithms

Algorithms Threshold Value
ED 0.9

SAM 0.1
SCM 0.8
SID 0.03
SSS 1.1

SIDSAM 0.003
SIDSCM 0.005
JMSAM 0.09

hot encoder, meaning for each class, one value is hot (i.e., the value of 1), and the rest

are cold (i.e., the value of 0). We divided the dataset into training and testing, with
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Figure 6: Classification result for ten pigments patches obtained using SID algorithm for a
different set of threshold values.

an 80-20 split; Data was further normalized. We then build and implement the model;

first training dataset is used to train the model; for neural network weights and biases of

neurons are updated with each epoch till we get considerably minimum MSE and higher

accuracy. Finally, the test dataset is used to validate the model. A block diagram in

Figure 7 illustrates an overall workflow. Training spectra of 10 pigments and a substrate,

plotted over a spatial region of approx. 100 x 100 pixels with 186 spectral bands is attached

in Appendix A.
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Figure 7: Workflow diagram for ML data processing

SVM model was implemented in Python using the Sklearn library. Among the differences,

we tuned our model for three key hyperparameters, namely kernel types, regularization,

and gamma, using the Python library called GridSearchCV. This function cross-validates

the model to avoid overfitting using k-fold cross-validation and then computes a grid to

evaluate the performance of each combination of given hyperparameters. Table 3 shows the

details of hyperparameters.

Table 3: SVM key hyperparameters, the range used for tuning, and the optimum value
selected for classification; RBF: Gaussian Kernel Radial Basis Function

Hyperparameter Range Used Optimum Value Selected
Kernel ’Polynomial’, ’RBF’, ’Sigmoid’, ’Linear’ RBF

Regularization 0.1, 1, 10, 100, 1000 100
Gamma 1, 0.1, 0.01, 0.001 1
k-fold 5 5

For FC-NN, we build a sequential model with three dense layers, the first layer with 32 nodes

and hyperbolic tangent (tanh) as activation function followed by banormalizationtion. The
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second layer has 16 nodes tanh activation function followed by banormalizationtion and

dropout, and the third layer has 11 nodes and a softmax activation function. The activation

function introduces the non-linearity into the networks so that the networks can learn the

relationship between the input and output. Tangent hyperbolic is a non-linear function with

an s-shaped graph with output ranges from -1 to 1. One reason for using the tanh function is

that it is zero-centred, which makes the optimization icon process much more manageable.

The softmax activation function converts a value vector to a probability distribution and is

used in the output layer of multiclass classification. For details on the activation function,

please refer [77]. For multiclass classification, the categorical cross-entropy loss function

is usually used, and optimizationtion algorithms, which are used to update weights and

biases; we used adaptive moment Estimation (Adam), as it is the best among the adaptive

optimizers in most of the cases [78, 79]. The network architecture used for our experiment

is shown in Figure 8. The model was implemented in Python using Keras, a neural network

application programming interface.
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Figure 8: The architecture of the FC-NN classifier, used in our experiment.

The proposed 1D-CNN model was tuned for hyperparameters using KerasTuner [80]. We

tuned the model for the number of convolutional layers, their filter size, dropout, dense

layer filer size, learning rate and epoch. Figure 9 illustrates the block diagram of the tuned

model with its hyperparameter used. We used Adam as an optimizer with a learning rate

of 0.001 and categorical cross-entropy as the loss function.
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Figure 9: The architecture of tuned 1D-CNN model.

5 RESULT AND DISCUSSION

This section will look in detail at the classified image, the accuracy obtained for each

pigment, and the overall accuracy of the algorithms used. Figure 10 shows the classification

accuracy of each pigment for the different algorithms. The classification result for each of

these algorithms is attached in Appendix D. We can observe that the average accuracy

(average of 10 pigments) is high for all three machine learning algorithms. Of these three,

FC-NN has the highest accuracy, followed by 1D-CNN and SVM. For the eight supervised

algorithms used, SCM and SAM have high accuracy, followed by SID, SIDSAM, SIDSCM,

and SSS. ED and JM-SAM have the lowest classification accuracy.

Apart from machine learning algorithms, the other eight algorithms used have difficulty

classifying pigment 6 (P6) and pigment 9 (P9). We can see in Figure 11 that spectra

for both pigments are similar and have little difference in magnitude. This is a common
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Figure 10: Classification accuracy for each pigment for all 11 algorithms used; average
represents the accuracy for an average of 10 pigments for a given algorithm.

issue with supervised-based classification algorithms [9, 22]. In distance-based algorithms,

ED, SSS, and JMSAM, the classification accuracy for similar spectra (P6 & P9) are the

lowest. We also observed that the classification accuracy is low for these distance-based

algorithms, particularly for pigment 7 (White Hue), which has a spectrum similar to the

substrate (S), since it is misclassified as substrate, as shown in the confusion matrix in

Figure 12. Pigment 10, as shown in Figure 11, has a reflectance value below 0.05 for almost

the entire wavelength region (450-1000 nm), and it seems that the low magnitude value has

an influence on the classification accuracy for supervised-based algorithms. Spectra for all

pigments and substrates used are provided in Appendix C.
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P6

P9

P7

S

P10

Figure 11: Normalized reflectance spectra for pigment, used as a reference for supervised
classification; P6, P7, P9, P10, and S represent pigments 6, 7, 9, 10, and substrate, respec-
tively.

(a) (b)

(c)

Figure 12: Confusion matrix of (a) ED, (b) SSS, and (c) JMSAM

28



(a) (b) (c)

Figure 13: Classification results for pigment P1 (in red), P2 (in green), and P3 (in blue).
a, b, and c are obtained using algorithms SID, SIDSAM, and SIDSCM, respectively.

Classification accuracy for algorithm SID and its hybrid combinations (SIDSAM and SID-

SCM) are lower for pigments P1 and P3. Figure 13 shows the classification result for

pigments P1, P2, and P3 for SID, SIDSAM, and SIDSCM. Black color represents the un-

classified pixels, and we can observe that all three algorithms have similar areas that have

not been classified for P1 and P3. From the confusion matrix shown in Figure 14, we can

see that for P1 and P3, the unclassified (UC) percentage is the second highest value in all

three algorithms.
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(a) (b)

(c)

Figure 14: Confusion matrix; (a): SID, (b): SIDSAM, and (c): SIDSCM

Figure 15 shows the spectra for reference, classified pixels, and unclassified pixels for pig-

ments P1, P2, and P3. It can be observed that there is a difference in spectra in the range

of 800-1000 nm. The solid red line represents the reference spectrum, whereas red dash

lines are spectra for classified pixels, and solid green lines are for unclassified pixels for

P1. Similarly, the solid blue line is a reference spectrum for P3, and solid orange and solid

black lines are spectra for classified and unclassified pixels, respectively. We also plotted
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the range for P2, which is mostly classified. Dashed blue line is a reference spectrum for

P2, and solid grey lines are spectra for classified pixels.

P1 Ref.

P1 C

P1 UC

P3 Ref.

P3 UC

P3 C

P2  C P2 Ref.

Figure 15: Spectra for pigment P1 and P3; solid red line (P1 Ref.) and solid blue line (P3
Ref.) are reference spectra for P1 and P3, respectively; red dashed line (P1 C) and solid
green line (P1 UC) are spectra for classified and unclassified pixels of pigment P1; solid
orange line (P3 C) and solid black line (P3 UC) are spectra for classified and unclassified
pixels of pigment P3; dashed blue (P2 Ref.) and solid grey (P2 C) are spectra for reference
and classified pixels of pigment 2.

The SID algorithm uses a divergence measure to match the reference and target pixels;

the smaller the divergence value, the more likely the pixels are similar. We have used a

threshold of 0.03, meaning that pixels with a value less than 0.03 will only be classified,

and a value greater than the threshold will not be classified. We computed the divergence

value for a spectrum of classified and unclassified pixels with a reference spectrum for P1,

P2, and P3. The spectra used in the calculation are shown in Figure 16. The computed

divergence is shown in Table 4. We can see that spectra that are not classified in the case

of P1 and P3 have divergence values greater than a threshold. We can change this value

to get more pixels classified, but this will result in higher misclassification and increase the

unknown classified as a pigment, as shown in Figure 5.
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P2 Ref.

P3 Ref.

P1 Ref.

P3 C

P2 C

P1 C

P3 UC

P1 UC

Figure 16: Spectrum of P1, P2, and P3; Ref., C and UC represent reference, classified and
unclassified, respectively.

Table 4: SID value computed between a spectrum of reference pixels with that of classified
and unclassified pixels for P1, P2, and P3. Remark indicates that either obtained SID value
is smaller or greater than a used threshold value of 0.03

Spectra SID Value Remark
P1 Ref. & P1 C 0.005 < 0.03

P1 Ref. & P1 UC 0.052 > 0.03
P2 Ref. & P2 C 0.003 < 0.03
P3 Ref. & P3 C 0.014 < 0.03

P3 Ref. & P3 UC 0.034 > 0.03

6 General Discussion

Experimental results show that ML algorithms outperform the supervised-based algorithms

used. The limitation of used supervised-based algorithms is that they cannot perform well if

pigments have nearly identical spectra (P6 and P9 and also if the magnitude of the spectrum

is very low (P10, reflectance factor below 0.05). We found for nearly identical spectrum,

SCM is a better measure than the SAM, and this could be because SCM considers value

from -1 to 1 whereas the cosine of SAM only varies from 0 to 1. Apart from pigments P1 and

P3, we found that the SID’s hybrid approach with SAM and SCM has almost similar results
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for our dataset. Due to the threshold value selected for classification, the accuracy for P1

and P3 is lower than for other pigments, i.e., in SID for P1 and P3 threshold value should

be greater than 0.3 as mentioned in Table 4. The classification accuracy of algorithms based

on spectral distance, such as ED, SSS, and JMSAM was the lowest. This could be because

these algorithms misclassified in-between white pigment (P7) and substrate (S), which is

not the case for other supervised algorithms.

ML-based algorithms need to be trained for which we need a large amount of data. Clas-

sification result depends upon how well the model is trained, i.e., how large the training

datasets are so that model can learn enough distinct features. For ML-based algorithms

to perform well and avoid overfitting of a model, it needs to be tuned for the appropriate

value of different hyperparameters, which will take a long computing time. This adds to the

cost of computational time and complexity for ML-based algorithms. On the other hand,

supervised-based algorithms do not require such a training set and are simple and easy to

compute. Therefore, for the pigments with less complex spectra (i.e., having less identical

spectrum), supervised-based algorithms such as SCM and SAM might be a good fit for the

classification task.

7 CONCLUSION

HSI is a non-invasive imaging technique used for the documentation and analysis of artwork

for various tasks, such as pigment classification. It is essential as it assists conservators and

curators in precisely analyzing an object and its historical value. In this paper, we evalu-

ated the spectral processing algorithms for pigment classification of a mockup using HSI.

We analyzed eight spectral image classification algorithms, i.e., ED, SAM, SCM, SID, SSS,

SIDSAM, SIDSCM, JMSAM, and three machine learning-based algorithms, SVM, FC-NN,
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1D-CNN for its classification accuracy. In general, machine learning algorithms outper-

formed the others. Supervised-based algorithms work well for the pigments if their spectra

are very distinct in shape from each other. Still, these algorithms have poor performance

for pigments having a similar spectrum (nearly identical) or spectrum with just a change

in magnitude. However, machine learning-based algorithms can overcome this limitation

by extracting the features from each training sample and thus perform better for pigment

classification. During our experiment, we trained the network for ten pigments. However,

extending the model’s scope to include a more extensive range of pigments would be ben-

eficial. Additionally, exploring diverse scenarios, such as mixed and aged pigments, would

be beneficial; therefore, one can conduct more comprehensive research in the future. By

doing so, we can refine the supervised algorithms and machine learning models mentioned

earlier to be more applicable to real-world cases in cultural heritage.
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Appendix
A Reflectance spectra of 10 pigments and substrate used to

train SVM, FC-NN and 1D-CNN.

(a) V (b) CB (c) GE

(d) YOL (e) BU (f) UBD

(g) LWH (h) GV (i) CBD
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(j) IB (k) (S)

Figure A.1: Training spectra of 10 pigments and a substrate, plotted over spatial region of
approximately 100×100 pixels with 186 spectral bands; Viridian (V), Cerulean Blue (CB),
Green Earth (GE), Yellow Ochre Light (YOL), Burnt Umber (BU), Ultramarine Blue Deep
(UBD), Lead White Hue (LWH), Genuine Vermilion (GV), Cobalt Blue Deep (CBD), Ivory
Black (IB), and Substrate (S).
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B Graph used for determining the optimal threshold value
for different algorithms
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Figure B.1: Classification accuracy graph of different algorithms at varying threshold val-
ues. The graph shows the accuracy of each algorithm in terms of pigment classified as a
pigment (P_P_), unknown region classified as unknown (UN_UN_), pigment classified
as unknown(P_UN_), unknown classified as a pigment (UN_P_) and pigment classifying
as another pigment, i.e., misclassification (MC_).
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C Normalized reflectance spectrum of 10 pigments and sub-
strate

S

Figure C.1
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D Classification result for all used algorithms.

(a) ED (b) SAM

(c) SCM (d) SID

(e) SSS (f) SIDSAM

(g) SIDSCM (h) JMSAM

49



(i) SVM (j) FC-NN

(k) 1D-CNN

Figure D.1
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