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Abstract
Time series forecasting is an important problem,withmany realworld applications.Transformermodels havebeen successfully
applied to natural language processing tasks, but have received relatively little attention for time series forecasting. Motivated
by the differences between classification tasks and forecasting, we propose PI-Transformer, an adaptation of the Transformer
architecture designed for time series forecasting, consisting of three parts: First, we propose a novel initializationmethod called
Persistence Initialization, with the goal of increasing training stability of forecastingmodels by ensuring that the initial outputs
of an untrained model are identical to the outputs of a simple baseline model. Second, we use ReZero normalization instead of
Layer Normalization, in order to further tackle issues related to training stability. Third, we use Rotary positional encodings
to provide a better inductive bias for forecasting. Multiple ablation studies show that the PI-Transformer is more accurate,
learns faster, and scales better than regular Transformer models. Finally, PI-Transformer achieves competitive performance
on the challenging M4 dataset, both when compared to the current state of the art, and to recently proposed Transformer
models for time series forecasting.

Keywords Transformer · Time series forecasting · M4 competition · Deep neural networks

1 Introduction

The ability to forecast the future is a valuable tool across
a wide range of applications, such as finance, energy, and
industry. Forecasting allows for better decision-making in
the present, and even small improvements in accuracy can
often provide great benefits.

The Transformer [1] has recently become the domi-
nant method for most Natural Language Processing (NLP)
tasks [2, 3]. It has also been successfully applied to a diverse
set of challenging problems outside of NLP, such as protein
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folding [4] and Reinforcement Learning [5]. However, rela-
tively little attentionhas beengiven to the use ofTransformers
for time series forecasting. Most prior work in this direction
has focused on the addressing the computational limitations
of the Transformer, by proposing computationally efficient
alternatives to regular attention [6–8]. In contrast, this work
is primarily focused on improving the forecasting accuracy
of the Transformer on time series with shorter forecasting
horizons, by addressing differences between time series data
and text data.

Time series forecasting and natural language modeling
might at first glance appear to be highly similar; they both
form ordered sequences, and forecasting the next step of a
time series can be seen as analogous to predicting the next
token in a language modeling task.

However, there are also important differences between
time series data and text data. First, time series forecasting is
a continuous regression problem, while language modeling
is a discrete classification problem. Consequently, in order
to use the Transformer to forecast, the final softmax activa-
tion layer must be removed. We argue that this makes the
model more sensitive to how the weights are initialized, as
the initial forecasts will now be proportional to the weights
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of the final linear layer. Conversely, models including a final
softmax layer are likely to be more robust to weight ini-
tialization. A random initialization of such a model likely
has an approximately uniform output distribution, which is
arguably a good starting point for a reasonably balanced clas-
sification task. Second, time series data often do not have any
particular semantics associated with the beginning or con-
clusion of a sequence. In other words, for time series data,
there is in general no reason to assume any meaning from
the fact that the sequence started or ended at some particular
point in time. As a consequence, time series sequences can
often be subdivided into smaller sub-sequences, a technique
which is commonly referred to aswindowing. In contrast, for
text sequences, both the start and the end of a sequence has
semantic meaning, because the start and end of the sequence
signifies the bounds of a connected body of text.

We propose three modifications of the Transformer archi-
tecture, directly motivated by these differences. First, we
propose an adaptation called Persistence Initialization (PI),
which aims to improve the Transformer’s ability to forecast.
It has long been known that initialization is an important com-
ponent in the process of trainingdeepneural networks [9–11].
Persistence Initialization works by implicitly initializing the
model in such away that the initial forecasts (before training)
becomeequal to the forecasts of apersistencemodel. The per-
sistence model, also known as a random walk method [12],
is defined by letting the forecast x̂t+1 be equal to the previous
value xt . In order to implement PI, we add two components:
a residual skip connection, and a scalar multiplicative gating
parameter γ . The residual skip connection has the effect of
adding the value at time t (i.e. xt ) to the forecast value for
time t+1 (i.e. x̂t+1). The scalar multiplicative gating param-
eter γ is initialized to 0, and is multiplied with the outputs
of the Transformer. As a consequence of this combination,
only the skip connection contributes to the initial forecasts,
which means that any complex model can be effectively ini-
tialized as a persistence model, regardless of the values of
the randomly initialized parameters within the model.

Our second proposed adaption attempts to further improve
training stability by replacing the commonly used Layer
Normalization [13] layer with ReZero normalization [14].
ReZero is a technique designed to improve the training sta-
bility of deep networks, and was proposed as an alternative
to normalization layers such as Layer Norm and Batch norm.
Note that while the implementation of Persistence Initializa-
tion is almost identical to that of ReZero, these techniques
are intended to solve different problems. The goal of ReZero
normalization is to control themagnitude of gradients in deep
networks, while The goal of Persistence Initialization is to
improve theTransformer’s forecasting accuracy byproviding
an inductive bias towards models with a significant autore-
gressive component.

Our third proposed adaptation is related to the difference
in the semantics of the time series sequences, compared to
natural language sequences. Instead of using the absolute
sinusoidal encoding [1], we propose to use the relativeRotary
Encoding [15], which has been shown to outperform the
sinusoidal encoding in some NLP tasks [15]. In the context
of time series, we argue that a relative positional encod-
ing provides a better inductive bias for forecasting. Time
series sequences are often “windowed”, which means that
the absolute position within the window has no semantic sig-
nificance. Consequently, absolute positional encodings are
ill-suited for forecasting, as they put undue emphasis on
an arbitrary location in the sequence. In contrast, a rela-
tive encoding emphasizes the position of the outputs, i.e. the
forecasts, which should result in a better inductive bias for
forecasting.

In summary, our contributions are:

1. We propose Persistence Initialization, a novel and general
adaptation autoregressive for time series forecasting with
neural networks. This adaptation initializes the model
such that it starts off as a persistence model, which pro-
vides a good starting point for further learning.

2. We propose the PI-Transformer architecture, a Trans-
former architecture with three main modifications: Per-
sistence Initialization, ReZero normalization, and Rotary
positional encodings. We perform two ablation studies
to verify the importance of each modification. The first
ablation study compares the effects of the components of
Persistence Initialization, and the second compares the
effect of positional encoding and normalization layers.
Both studies show that the proposed modifications are
necessary for good forecasting performance.

3. We evaluate PI-Transformer on the challenging M4 fore-
casting dataset, and show that PI-Transformer achieves
competitive accuracy, outperforming the winner of the
original M4 competition. Furthermore, PI-Transformer is
highly accurate without the need for a large ensemble of
models, in contrast to other state-of-the-art methods on
the M4 dataset. To the best of our knowledge, this is the
first time a Transformer model has been successfully used
to forecast the complete M4 dataset to a high degree of
accuracy. We also compare PI-Transformer with recent
existing Transformer architectures for time series fore-
casting, and show that PI-Transformer outperforms these
by a large margin on the M4-Hourly dataset.

In order to ensure reproducibility, all the code related to
our work is publicly available1. The rest of the paper is orga-

1 A public implementation is available at https://github.com/EspenHa/
persistence_initialization.
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nized as follows: Section 2 provides some background on the
Transformer, Section 4 describes our proposed adaptation,
Section 3 reviews existing related work, Section 5 describes
the experiments, and Section 6 provides analysis and dis-
cussion of the results. Finally, Section 7 concludes with a
summary.

2 Background

2.1 Decoder-only transformer

A decoder-only Transformer [1] consists of blocks of causal
self-attention layers and feedforward layers, both followed
by a residual skip connection and Layer-Normalization [13].
The model can be defined recursively by letting Xi be the
output of the i th block, as follows:

Xi (Xi−1) = FFi (SAi (Xi−1)) (1)

SAi (X) = LayerNorm(X + SelfAttentioni (X)) (2)

FFi (X) = LayerNorm(X + FeedForwardi (X)), (3)

where Xi is a matrix of shape L×dmodel, with L representing
the “sequence” or “time” dimension and dmodel representing
the feature dimension. X0 is the base case of the recursion,
and represents the initial input to the model. The number
of blocks N is a hyperparameter which determines the final
output of the model, XN .

In order to define self-attention, we must first define
multi-head attention.Multi-head attention combinesmultiple
attention heads, by giving each head a separate set of learn-
able weights, ensuring that each head can perform a different
operation. Self-attention is then defined as a special case of
multi-head attention where the keys, queries, and values are
all equal:

SelfAttention(x) = MHA(X , X , X) (4)

MHA(Q, K , V ) = Concat(head1, ..., headh)WO (5)

head j = Attention
(
QW ( j)

Q , KW ( j)
K , VW ( j)

V

)
(6)

Attention(Q, K , V ) = softmax

(
QKT

√
dhead

+ M

)
V , (7)

where h is the number of attention heads, and dhead =
dmodel/h. The learnable weight matrices W ( j)

Q , W ( j)
K , and

W ( j)
V are of shape dmodel × dhead. WO is a learnable weight

matrix of shape dmodel × dmodel, and has the effect of mixing
the outputs of each head. M is an upper triangular mask-
ing matrix, which ensures that the model does not attend to
“future” time steps.

The feed-forward layer is performedpoint-wise, i.e. it only
considers information in the current time step, like a 1-D

convolution. It is defined as two affine transformations with
a ReLU non-linearity in between:

FeedForward(X) = ReLU(XW1 + b1)W2 + b2, (8)

where W1 and W2 are learnable weight matrices of shape
dmodel × dff and dff × dmodel, and b1 and b2 are learnable
bias vectors of shape dff and dmodel.

2.2 Positional encoding

The Transformer cannot distinguish elements of a sequence
based on their ordering, because the attention operation is
permutation invariant. Consequently, it is necessary to pro-
vide explicit positional information to the model, which is
the purpose of the positional encoding.

2.2.1 Absolute positional encoding

The sinusoidal positional encoding is one of the most com-
monly used absolute positional encodings. The encoding is
applied by adding it to the inputs of the model, and can be
implemented by creating amatrix E of size L×dmodel, where
L is the sequence length. Each row contains dmodel/2 pairs
of sine and cosine functions with varying wavelengths, with
each pair sharing the same wavelength. The wavelength is
increased geometrically for each pair, which can be written
as follows:

Ei,2 j = sin

(
i

K j/dmodel

)
(9)

Ei,2 j+1 = cos

(
i

K j/dmodel

)
(10)

where i ∈ [1, L] is the position in the sequence, and j ∈
[1, dmodel/2] is the index of the feature dimension. The value
of K determines what the largest wavelength will be, and is
commonly set to 10000.

2.2.2 Rotary encoding

The Rotary Encoding [15] is a relative positional encod-
ing, which was introduced as an alternative to the absolute
positional encoding and other previously proposed relative
positional encodings. It encodes relative positional informa-
tion in the angle between the key and query vectors. This
is different to most other positional encodings, which are
typically additive. The encoding function f is derived by
considering a relation between qm , a query vector at position
m, and kn , a key vector at position n. The dot product of
the encoded vectors should be equal to the output of some
function g, which only depends on the original vectors and
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the relative distance between their positions:

f (qm,m) · f (kn, n) = g(qm, kn, m − n) (11)

We will consider only case of 2D vectors q and k. (The
general case of an arbitrarily sized vector is more cumber-
some to state, but is a straightforward generalization of the
2D case.) The desired relation can be achieved by the fol-
lowing encoding:

f (x, k) = xeikθ , (12)

where the 2D vector x is considered as a number in the com-
plex plane, and θ is a real non-zero constant. This encoding
satisfies the desired relation with the following function:

g(qm,kn,m − n) = Re[qmk∗
ne

i(m−n)θ ], (13)

where Re[·] is the real part of the complex number and k∗
n is

the complex conjugate of kn .

2.3 Normalization

Training deep neural networks can be a challenging, due to
issues such as the vanishing gradient problem.Normalization
layers [13, 16] have been proposed to speed up the training
process, and to make training more robust to random weight
initialization. The Transformer architecture also includes
normalization layers, specifically Layer Normalization [13].
There are mainly two alternatives for the location of the nor-
malization layer within the architecture; the first is post-layer
normalization, and the second is pre-layer normalization.
The original Transformer [1] used post-layer normalization,
however pre-layer normalization has been found by some to
lead to more effective training [17]. The two orderings can
be formalized as follows. Let Sublayer(·) refer to either the
multi-head attention or the feedforward layers of the Trans-
former. Then we have:

PostLN(x) = LayerNorm(x + Sublayer(x)) (14)

PreLN(x) = x + Sublayer(LayerNorm(x)) (15)

ReZero [14] is an alternative to Layer Normalization for
training deep networks. Instead of calculating statistics and
using these to normalize the data, it simply uses a multiplica-
tive gating parameter α, which is initially set to 0:

ReZero(x) = x + α · Sublayer(x) (16)

The same α parameter is used within a single Transformer
block, both for the multi-head attention layer and for the
feedforward layer.

3 Related work

3.1 Transformers for time series forecasting

Following the introduction of the Transformer [1] in 2017,
researchers also started to use Transformers for time series
tasks. However, the topic of using Transformers for time
series tasks have received relatively little research attention,
compared to the use of Transformers for other kinds of data.

The main focus of the work on Transformers for time
series has been on the quadratic computational complex-
ity of the attention operation. In the context of NLP, there
are numerous works attempting to address this issue, see
for instance the recent survey by Tay et al. [18]. We will
not attempt to summarize this line of work here, but instead
focus on works that specifically target time series forecasting
problems.

The first work in the direction of efficient Transformers for
time serieswas byLi et al. [6], who introduced the LogSparse
Transformer. The architecture improves the efficiency of the
attention operation by removing queries that are far away
from the current time step, by exponentially increasing the
space between consecutive queries, resulting in a complexity
of O(N log N ) instead of O(N 2). Moreover, a causal con-
volution layer was added before the attention layer, to allow
the model to easily discover similarities between ranges of
time series points.

The Informer [7] is a Transformer designed for the task of
Long Sequence Time-Series Forecasting, which was defined
by the authors as forecasting horizons of size 48 or longer.
The authors propose an efficient attention operation, which
first approximates the query-key similarity and then selects
the most important queries, resulting in O(N log N ) com-
putational complexity. The model uses an encoder-decoder
architecture that produces forecasts for the entire horizon
in a single evaluation. Compared to the LogSparse Trans-
former, this leads to improved speed when forecasting long
horizons, as the model does not need to iteratively generate
forecasts.

The Autoformer [8] is another Transformer designed for
Long Sequence Time-Series Forecasting, and similarly to the
Informer, it also has an encoder-decoder architecture which
forecasts the entire horizon in a single step. It proposes a
different modification of the attention operation, replacing
the dot-product attentionmechanismwith an auto-correlation
based mechanism, again with O(N log N ) complexity. Like
the Informer, it can evaluate long horizons quickly and effi-
ciently, and moreover, the authors show improved accuracy
compared to the Informer on several datasets.

In contrast to these works, we are primarily interested in
improving the forecasting accuracy of the Transformer, and
do not attempt to improve the computational complexity of
the model.
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3.2 M4 competitionmethods

Time series forecasting is an increasingly relevant area of
research. However, in our opinion, there has not been a
clear consensus within the Machine Learning community on
how to benchmark forecasting models. Earlier work, such as
the LogSparse Transformer by Li et al. [6], frequently used
the traffic2 and electricity3 datasets. However, these datasets
have some issues that make them less suitable as a bench-
mark dataset. There are at least three different train/test split
points used for each dataset, which makes comparing perfor-
mance across different splits difficult [19]. Moreover, these
datasets contain missing data, which complicates the train-
ing and evaluation setup. The traffic dataset also has missing
data during some public holidays, but lacks documentation
regarding which specific dates have been removed [19].

We suggest that the M4 dataset should be used as a
standard benchmark dataset for research into time series fore-
casting. TheM4datasetwas introduced in theM4 forecasting
competition [20], the fourth competition in a series of highly
influential forecasting competitions, known as the Makri-
dakis competitions. The dataset contains 100,000 time series;
compared to previously used datasets in Machine Learning
forecasting studies, this is a very large dataset. These time
series were collected from a wide range of domains, and
exhibit a wide range of behaviors. The organizers of the
competition provided forecasts of several well-known base-
line methods, including various naïve methods, exponential
smoothing methods, and the well-known ARIMA method.
These baseline methods are able to capture linear relation-
ships well, and are often difficult to beat in many real world
problems which have strong auto-correlation. However, on
the M4 dataset, the best methods outperform these baselines
substantially, which indicates the necessity of being able to
capture non-linear dynamics to achieve a high level of accu-
racy on this dataset.

The M4 dataset has several desirable properties com-
pared to previously used forecasting datasets. It is quality
controlled, and there are no missing data. The evaluation
procedures are clearly defined, and there is no confusion
regarding train/test split points. Furthermore, the M4 dataset
is large, which arguably is a precondition for Deep Learning
methods to be successful. (The small size of the previous
M3 competition dataset is believed to be a major reason for
why neural networks did not perform well in that competi-
tion [21].)

The M4 competition included 61 methods in total. These
methods used a wide variety of techniques, the majority of
which were not Deep Learning techniques. However, to the

2 https://archive.ics.uci.edu/dataset/204/pems+sf
3 https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams2011
2014

surprise of some, the winning method relied heavily on Deep
Learning. This method was developed by Smyl [22], and
was a hybrid model combining a recurrent neural network
with multiple exponential smoothing models. The parame-
ters of the exponential smoothing model were learned for
a single time series, while the neural network parameters
were shared across time series. The recurrent neural network
was a dilated LSTM [23] with attention [24] and resid-
ual connections [25]. Moreover, several such hybrid models
were combined in ensembles in order to improve forecasting
accuracy.

After the competition was finished, Oreshkin et al. pro-
posed a new method which outperformed even the winner of
the competition, called N-BEATS [19]. The authors wanted
to show that a deep neural network could perform well on
the M4 dataset, without the need for classical time series
forecasting techniques, such as those used in Smyl’s hybrid
model. N-BEATS consists of blocks of feed-forward net-
works, which are combined such that each block provides
a partial forecast, and these are added together to produce
the final forecast. Furthermore, instead of using a regular
residual skip connection, the partial forecasts are subtracted
from the input of the next block, which the authors call
double residual stacking. The final model is an ensemble
of 180 such networks, which are trained with 18 different
configurations in order to ensure sufficient diversity in the
ensemble.

None of the works on Transformers for time series from
the previous section evaluate their method on the complete
M4 dataset. While Li et al. [6] evaluate their LogSparse
Transformer on the hourly portion of the M4 dataset, the
authors do not report their performance in the metric used in
the competition (OWA), making it difficult to compare their
accuracy to the original M4 contestants.

To the best of our knowledge, our proposed method is
the first to achieve competitive results on the complete M4
dataset using a Transformer model. Moreover, to the best of
our knowledge, our method is also the first to achieve com-
petitive results using a single neural network model, instead
of using ensembles of Deep Learning models.

4 Method

4.1 The time series forecasting task

A time series is defined to be a sequence of fully observ-
able measurements x = [x1, . . . , xT ] ∈ R

T , where xt
is the observation at time t , and T is the length of the
series. The goal of forecasting is to predict y given x, where
y = [xT+1, . . . , xT+H ] ∈ R

H , and H is the forecasting
horizon.
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4.2 The PI-transformer

We will now introduce the PI-Transformer architecture. The
architecture can be divided into four parts: normalization,
linear projections, a decoder-only Transformer with Rotary
positional encodings and ReZero normalization, and Persis-
tence Initialization. A diagram of the complete architecture
is shown in Fig. 1.

4.2.1 Normalization

The first step of our method is the normalization step. We
first divide by the mean μH of the H most recent values of

SelfAttention

Normalization
function

Linear
Projection

ReZero

Transformer

FeedForward

ReZero

Persisitence
Initialization Multiplicative

Gating

Residual Skip
Connection

Inverse
normalization

function

Linear
Projection

Fig. 1 The proposed adaptation consists of a skip connection and
a scalar multiplicative gating mechanism initialized to 0. The initial
model becomes the naïve persistence model, i.e. the model that predicts
x̂t+1 = xt

x, and then perform a log transform:

z = f (x) = ln
x

μH
, (17)

By using only the H most recent values, instead of the entire
sequence,we can better capture the trend of the series close to
the forecasting window. To produce an output in the original
data space, we perform the inverse transformation:

f −1(z) = μH · ez (18)

During training, gradients are back-propagated through the
inverse transformation. From this point on, we will focus on
how to forecast the value of zt+1, as this can be converted
to a forecast in the original data space by using the inverse
normalization function: x̂t+1 = f −1(ẑt+1).

4.2.2 Transformer model

Our method generates forecasts autoregressively by using
a decoder-only Transformer architecture, similar to genera-
tive language models in NLP [3]. The architecture consists
of blocks of causal self-attention layers and by feedforward
layers. In order to improve the stability of training the Trans-
former for forecasting, we connect the layers using residual
skip connections with ReZero gating [14].

In NLP, embedding layers are commonly used to trans-
form text tokens into feature vectors with size dmodel. We
instead need to transform a univariate time series into a
sequence of feature vectors, which we do with a linear pro-
jection. In other words, the initial input to the Transformer,
X0, is defined as follows:

X0 = zWin , (19)

where Win ∈ R
1×dmodel is a learnable weight matrix and z is

the normalized input vector. Now, if we let Xi be the output
of the i-th Transformer block, the rest of the model can be
defined recursively:

Xi (Xi−1) = FFi (SAi (Xi−1)) (20)

SAi (X) = X + αi · SelfAttentioni (X) (21)

FFi (X) = X + αi · FeedForwardi (X), (22)

where αi is the learnable ReZero scalar parameter shared
between the self-attention and feedforward layer within each
block.

The feedforward layer is defined as in the original Trans-
former, i.e. (8). However, for the self-attention layer, we
replace the standard absolute sinusoidal positional encod-
ing with a relative positional encoding, more specifically
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the Rotary encoding [15]. The effect of the Rotary encod-
ing is to multiply each key and query with a rotation matrix,
which causes positional information to be encoded in the
angle between the vectors. The use of the Rotary encoding is
motivated by the fact that there the absolute position within
a time series window has no semantic significance, in con-
trast to text data, where the start of the sequence often has
a semantic meaning (for instance as the start of a document
or a sentence). Instead of adding the positional encoding to
the input features of the model, as is done with a standard
sinusoidal encoding, the Rotary encoding is implemented by
modifying the definition of self-attention:

Attention(Q, K , V ) = softmax

(
Q̃r K̃ T

r√
dqk

+ M

)
V , (23)

where Q̃r and K̃r represents the Q and K matrices with
Rotary positional encoding applied.

Finally, we perform a linear projection on the output of
the final Transformer block in order to go back to a univariate
sequence. We define the T (z), the “Transformer function”,
to be the value after this projection:

T (z) = XNWout, (24)

where XN is the output of the N th block, and Wout ∈
R
dmodel×1 is a learnable weight matrix.

4.2.3 Persistence initialization

Persistence Initialization (PI) is a technique to implicitly
initialize an autoregressive neural network for forecasting,
in order to improve training stability and forecasting per-
formance. Specifically, the neural network is initialized to
become a persistence model, which is a model that sim-
ply uses the last known value at time t as the forecast for
t + 1, i.e. ẑt+1 = zt . One way of combining this persis-
tence forecast with the forecast from the Transformer model
defined above, would be to add the outputs of both models:
ẑt+1 = zt + T (z). However, this combined model will not
become a persistence model at initialization, as the initial
outputs will depend on the randomly initialized weights of
network. In order to ensure that the neural network does not
contribute to the initial forecasts, we introduce a new zero-
initialized gating parameter γ :

ẑt+1 = zt + γ · T (z) (25)

This results in a combined architecture with the property that
the forecasts produced by the initial model are exactly equal
to the persistence forecast. However, the combined archi-
tecture is still able to improve upon this simple forecast by
changing the value of γ through learning.

5 Experimental settings

5.1 Dataset

Public datasets have played an important role for the develop-
ment of both deep learningmethods and forecastingmethods.
There are clear benefits to having a publicly available high
quality dataset, of which the most important is that it allows
researchers to measure progress in a standardized way. How-
ever, Machine Learning research focusing on time series
forecasting has lacked a commonly agreed up benchmark
dataset. We propose to use the M4 dataset [20] for this
purpose.

The M4 dataset was introduced in the fourth Makridakis
competition, held in 2018. The previous Makridakis com-
petitions have been very influential for the development of
forecasting methods, and are well regarded in the forecasting
community. The M4 dataset consists of 100,000 time series
fromvarious domains, divided into six sub-sets based on their
sampling frequency. Each frequency has a corresponding
forecasting horizon H : Yearly (H = 6), Quarterly (H = 8),
Monthly (H = 18), Weekly (H = 13), Daily (H = 14), and
Hourly (H = 48). Table 1 contains some descriptive statis-
tics for each frequency. We consider each data frequency
as an independent learning problem, and consequently train
separate models for each data frequency.

5.2 Metrics

Performance in on theM4 dataset is measured ametric called
Overall Weighted Average (OWA) [20]. OWA is a combi-
nation metric, which combines the Mean Absolute Scaled
Error (MASE) and symmetric Mean Absolute Percentage
Error (sMAPE) metrics. MASE and sMAPE are both scale-
independent error metrics which are commonly used in the
time series forecasting literature [26]. The purpose of these
metrics is to enable comparisons of forecasting accuracy
across time series data with varying scales. In order to com-
bine sMAPE and MASE metric into the single OWAmetric,
thesemetric scores are scaled by correspondingmetric scores
from a baseline model. In the M4 competition, the base-
line model was the Naïve2 model, which is a persistence
model that is seasonally adjusted by multiplicative decom-
position [20, 27]. After scaling the metrics, their values are
combined by taking the average of the two, as follows:

OWA = 1

2

[
sMAPE

sMAPENaı̈ve2
+ MASE

MASENaı̈ve2

]
(26)

5.2.1 MASE

MASE is a scaled version of Mean Absolute Error (MAE).
The scaling factor forMASE is theMAE of a baseline model
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Table 1 Descriptive statistics
for each frequency in the M4
dataset

Yearly Quarterly Monthly Weekly Daily Hourly

Number of time series 23,000 24,000 48,000 359 4227 414

Forecasting horizon, H 6 8 18 13 14 48

Seasonality, S 1 4 12 1 1 24

Minimum length 19 24 60 93 107 748

25% percentile length 26 70 100 392 337 748

50% percentile length 35 96 220 947 2954 1008

75% percentile length 46 123 324 1616 4211 1008

Maximum length 841 874 2812 2610 9933 1008

on the training set. The baseline model used in the M4 com-
petition is the seasonal naïve model, which always predicts
the value S steps in the past (e.g. 24 for all hourly time
series, 12 for all monthly time series, etc.). Let x be the
training portion of the series, y the true continuation of the
series, and ŷ be the forecast. Then MASE can be defined as
follows:

MASE = 1

N

N∑
i=1

1
H

∑H
j=1|y(i)

j − ŷ(i)
j |

1
T (i)−S

∑T (i)

j=S+1|x (i)
j − x (i)

j−S|
, (27)

where N is the number of time series, T (i) is the length of
the time series, H is the forecasting horizon, and S is the
seasonality. The superscript (i) (as in x (i)) denotes the time
series with index i , with 1 ≤ i ≤ N .

5.2.2 sMAPE

sMAPE calculates the symmetric percentage difference
between the forecast and the actual values. sMAPE scales
the absolute error at each time step by the average between
the forecast and ground truth at that time step, and can
be defined as follows, using the previously introduced
notation:

sMAPE = 100 · 1

N

N∑
i=1

1

H

H∑
j=1

|y(i)
j − ŷ(i)

j |
(|y(i)

j | + |ŷ(i)
j |)/2

(28)

5.3 Training

We used a sliding window approach to train our models. In
other words, instead of full length time series, fixed length
sub-sequences (windows) were used to train. This was done
to avoid the computational issues related to attention over
long sequences. The size of the sliding window was defined
to be nH , where H is the forecasting horizon and n is a
hyperparameter determining the size of the window relative
the forecasting horizon.

During training, teacher forcing was used to produce H
predictions in parallel. Consequently, it is necessary to sam-
ple sub-sequences of length L = nH + H to train themodel,
where the first nH elements are the sliding window inputs
and the final H elements are targets. To construct a training
mini-batch, we first a sampled a time series i with uniform
probability, and then sampled from the sub-sequences within
that time series with (conditional) uniform probability.

We created our validation set by combining all the right-
most sub-sequences of length L . However, in order to have
a greater number of sub-sequences available in the training
set, we excluded the rightmost sub-sequences belonging to
the shortest sequences of the dataset. Using set notation, the
procedure can be described as follows: Create an index set
I = { i | ∀i,1≤i≤N T (i) ≥ P25 }, where T (i) is the length
of time series i , and P25 is equal to the 25th percentile in the
distribution of time series lengths. Then the validation set is
Xval = ⋃

i X
(i)
val = {x (i)

T (i)−L<t≤T (i) | i ∈ I}, where the
xa≤t≤b notation indicates the sub-sequence of x starting at a
and ending at b, i.e.: [xa, xa+1, . . . , xb−1, xb]. The training
set is then created by enumerating all possible sub-sequences
without overlapping targets in the validation set: Xtrain =⋃

i X
(i)
train = ⋃

i {x (i)
j≤t< j+L | ∀ j,1≤ j≤T (i)−L−HII (i)}, where

II is the indicator function for I. See Fig. 2 for a graphical
representation.

Fig. 2 The validation set was created by taking the rightmost sub-
sequence of length L = nH + H . The training set was created by
enumerating all sub-sequences that do not overlap with the forecasting
horizon (i.e. the final H time steps) of the validation set sub-sequence
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5.4 Hyperparameters

We performed manual hyperparameter tuning with the goal
of finding a general setting which could work well across
all data frequencies of the M4 dataset. However, most of the
tuning focused on the Monthly frequency. We were largely
successful in finding a general setting for all data frequencies,
except for the value of n, which determines the size of the
input window relative to the forecasting horizon.

For the Yearly, Quarterly, Monthly, and Daily frequencies
we set n = 3; while for the Weekly and Hourly frequencies
we set n = 4. A value of n = 3 resulted in to poor perfor-
mance on the Weekly and Hourly frequencies, likely due to
seasonal patterns that are only included with window sizes
corresponding to n = 4. In the case of Weekly, n = 4 corre-
sponds to 52 weeks, which indicates the presence of yearly
seasonality. For the Hourly frequency, n = 4 corresponds
to 192 hours, which is approximately 8 days, indicating a
weekly seasonality.

The remaining hyperparameters were set to be identical
for all data frequencies. The model has 4 layers, 4 attention
heads, dmodel = 512, and dff = 2048. We use the Lamb [28]
optimizer with default hyperparameters, bias correction, and
gradient clipping for gradients with norms greater than 10.
Our loss function is defined to be identical to the MASE
metric (27).Wedefine a training epoch to consist of 128mini-
batches of size 1024. As our stopping criterion, we use early
stopping with a patience value of 8, such that training was
stopped after 8 epochswithout improvement in the validation
loss.

5.5 Ablation studies

In order to better understand the effects of the various com-
ponents of our models, we perform two ablation studies. To
reduce the complexity of these studies, we focus exclusively
on the monthly portion of M4 dataset, which contains 48%
of the series in the M4 dataset.

The first ablation study focuses on the effects of Persis-
tence Initialization, and the second ablation study focuses
on the effect of the positional encoding and the normaliza-
tion layer. Moreover, in both studies we are also interested
in the effect of the size of the Transformer model, and
possible interactions between architectural components and
model size. For this reason we also we vary the model
size by setting the hyperparameter dmodel to values in the
set {32, 64, 128, 256, 512}, with the feedforward size dff set
to 4 · dmodel.

In order to ensure fair comparisons, we perform 9 repeated
experiments for each model setting, such that each repeated
experiment has different weight initialization and data sam-
pling. This minimizes the effect of randomness due to weight

initialization and data sampling, and ensures that we are not
cherry-picking the best performing models after the fact.

5.5.1 First ablation study

The first ablation study investigates the effects of the skip
connection and the multiplicative gating. We compare archi-
tectures with neither skip connections nor multiplicative
gating (29), architectures with a skip connection but with-
out multiplicative gating (30), and architectures with both
a skip connection and multiplicative gating, i.e. Persistence
Initialization (31):

ẑt+1 = T (z) (29)

ẑt+1 = zt + T (z) (30)

ẑt+1 = zt + γ · T (z) (31)

5.5.2 Second ablation study

The second ablation study compares the effect of the posi-
tional encoding and the normalization layers. We compare
two positional encodings: the original sinusoidal encod-
ing [1], and the Rotary encoding [15], both of which
are described in Section 2.2. We compare three kinds of
normalization: ReZero, post-activationLayerNorm, and pre-
activation Layer Norm, as described in Section 2.3. This
results in a total of six combinations of architecture settings
for the second ablation study.

5.6 M4 comparison

In our second experiment we want to measure the perfor-
mance of our PI-Transformer on the complete M4 dataset, in
order to compare it to other state-of-the-art methods that have
been evaluated on the complete M4 dataset. In particular, we
compare against the top 10 methods of the M4 competition.
We also compare against two versions of the N-BEATS [19]
method, which was developed after the conclusion of the
competition.

All the top performing methods on the M4 dataset are
ensemble methods, and for this reason we are mainly inter-
ested in two issues: forecasting performance and ensemble
size. This presents an obvious difficulty, as an ensemble
model might have better forecasting accuracy compared to
a single model, which would mean that neither model is
strictly superior. To address this issue, we measure both
the performance of a single PI-Transformer model, and the
performance of an ensemble of PI-Transformers. First, we
perform 9 repeated experiments for each subset of the M4
dataset. As in the previous ablation studies, each repeated
experiment has different weight initialization and data sam-
pling. We will consider the model with the median OWA
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score within each data subset to estimate the expected per-
formance of a single PI-Transformer on that subset. The total
OWA score is computed by concatenating the predictions of
these median-score models from each data frequency into a
single prediction on the complete dataset. Second, in order
to estimate the effect of using a PI-Transformer in an ensem-
ble, we compute the mean of the 9 predictions for each data
subset. These mean predictions are then concatenated into a
single prediction for the complete M4 dataset.

5.7 Comparison to other transformer models for
time series

For the sake of completeness, we perform a final experi-
ment where we compare the performance of our architecture
against three Transformer models which have been applied
to time series forecasting: LogSparse Transformer [6],
Informer [7], and Autoformer [8].

In this comparison, we only use data from the Hourly sub-
set of theM4 dataset, for two reasons. First, the Informer and
Autoformer architectures were designed to deal with very
long forecasting horizons. The Hourly sub-set of the M4 for
has the longest forecasting horizon (H = 48), so it is the part
of the M4 dataset that most resembles the problems these
architectures were designed for. Second, in the case of the
LogSparse Transformer, the authors report the performance
of their model on the Hourly sub-set of the M4 dataset. This
allows us to refer to the authors’ own reported performance,
instead of re-implementing the architecture.

Similarly to previous experiments, we perform repeated
experiments and report the median score. However, we only
perform 5 repeats in this comparison instead of 9, as was
done previously. (For the LogSparse Transformer, we use
the authors’ own reported performance, which was not the
median of 5 repeated experiments.)

We used publicly available code4,5 to implement the
Informer and Autoformer. However, we found training the
Autoformer to be challenging, as the loss values were gen-
erally high throughout training. This was especially the case
as the number of parameters increased, and for this reason
we decided to only consider the relatively small setting of
dmodel = 32. Similarly to the previous experiments, we set
dff = 4 · dmodel. For the Autoformer and the Informer we
used 2 encoder layers and 2 decoder layers, and for the Trans-
former we used 4 layers, as before. This setting results in a
similar number of parameters for the three models. We use
a context window of length H for the decoder of both the
Informer and Autoformer.

We also found the previously used strategy of early stop-
ping on the validation loss to be unreliable when training

4 https://github.com/zhouhaoyi/Informer2020
5 https://github.com/thuml/Autoformer

the Informer and Autoformer, as the validation loss would
often have much larger variance than in the previous experi-
ments. (We believe this difference comes from the one-shot
forecasting approach taken by both methods. In contrast, our
autoregressive model uses teacher forcing during training,
leading to more stable loss values, as the model only has to
perform 1-step predictions.) To provide a more fair compar-
ison, we instead allocate a fixed amount of computation to
eachmethod by setting a limit of 100 epochs, and then select-
ing the weights with the lowest validation loss to compute
the final test score.

The authors of LogSparse Transformer measured per-
formance on M4-Hourly using a 0.5-quantile loss. To be
comparable, we also report the 0.5-quantile loss, which can
be defined as follows:

R0.5 =
∑N

i=1
∑H

j=1|y(i)
j − ŷ(i)

j |
∑N

i=1
∑H

j=1|y(i)
j |

(32)

6 Results and discussion

6.1 First ablation study

The first ablation study focuses on the components of Per-
sistence Initialization.We comparemodels using Persistence
Initialization (PI) to two different ablation settings: models
lacking both skip connection and multiplicative gating, and
models with a skip connection but no multiplicative gating.
Additional details regarding this experiment can be found in
Section 5.5.

Figure 3 shows box plots of OWA test scores the three
settings, and Fig. 4 shows the training and validation loss
curves of the three settings. To give additional context about
the accuracy of the settings relative to other methods, the
box plots in Fig. 3 also includes striped lines representing
the first and second place entries in theM4 competition. As a
shorthand we will refer to the three settings by their ordering
in the plots; i.e. setting 1 refers to models lacking both skip
connections and gating, setting 2 refers to the models with
skip connections but no gating, and setting 3 refers to models
with Persistence Initialization.

The box plots in Fig. 3 shows that each setting has a
different relationship between the size of the model and
forecasting accuracy. The two ablation settings do not show
improved accuracy as model size is increased. For setting 1,
the smallest model performs worse than the largest model.
In setting 2 all the model sizes perform at a similar level.
Only models in setting 3 (i.e. with PI) improve in accuracy
when model size is increased. Moreover, the largest model
size has a lower median OWA model than the winner of the

123

https://github.com/zhouhaoyi/Informer2020
https://github.com/thuml/Autoformer


Persistence Initialization: a novel adaptation... 26791

Fig. 3 Box plots of OWA test
scores from the first ablation
study. Each box represents 9
repeated runs. The striped lines
correspond to the first and
second place entries in the M4
competition

M4 competition, which shows that Transformer models with
Persistence Initialization are able to achieve a high level of
accuracy.

Looking at the loss curves for in Fig. 4, we see several
indications as to whymodels with PI achieve better accuracy.
Compared to the curves of the two ablation settings, the loss
curves of setting 3 (i.e. PI) are shifted both down and to the
left. In other words, models with PI start at a lower loss and
end at a lower loss, and do so in fewer iterations. It is not
surprising that these models start at lower initial loss values,
as PI is an initialization technique, designed to improve the
initial forecasts of a forecasting model. It might be more
surprising that these models also achieve lower final loss

values, as the Transformer is known to be a very powerful
architecture. One might expect that a Transformer without
PI would be able to achieve the same level of accuracy by
quickly learning to select the previous time step in one of its
attention heads. However, the fact that the models without
PI train for more iterations, only to achieve worse results,
suggests that learning this simple mapping is in fact non-
trivial.

In conclusion, this ablation study clearly shows that Per-
sistence Initialization has a large effect on the training
process, improving both performance and training stability.
Both the residual skip connection and the multiplicative gat-
ing parameter are necessary to see these effects.

Fig. 4 Validation and training
losses from the first ablation
study. Each line represents the
mean loss over 9 repeated runs,
with the shaded area
representing the standard
deviation. Note that this plot
contains a form of survival bias,
as training is stopped once the
validation loss flattens or
increases
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Fig. 5 Box plots of OWA test
scores from the second ablation
study. Each box represents 9
repeated runs. The striped lines
correspond to the first and
second place entries in the M4
competition. Note that some
boxes are located entirely
outside the bounds of the plot

6.2 Second ablation study

The second ablation study compares the effect of the posi-
tional encodings and normalization layers. We compare two
kinds of positional encodings and three kinds of normaliza-
tion layers. The two positional encodings are the standard
sinusoidal positional encoding and the Rotary encoding.
The three kinds of normalization layers are post-activation
Layer Normalization, pre-activation Layer Normalization,
and ReZero normalization. Additional details regarding this
experiment can be found in Section 5.5.

Figure 5 shows box plots of test scores for the six ablation
settings. As in the previous experiment, we include striped
lines representing the first and second place entries in the
M4 competition to give additional context about the level of
accuracy.

By inspecting the box plots we immediately see that
the Rotary encoding outperforms the sinusoidal encoding
in every setting of the experiment. This suggests that the
Rotary encoding is better suited for time series tasks than the
sinusoidal encoding. Furthermore, the models with ReZero
normalization show improved performance compared to the
other two options, indicating that ReZero might be the better
choice of normalization function for time series tasks.

6.3 M4 dataset performance

This experiment compares the PI-Transformer to other state-
of-the-art methods on the complete M4 dataset. We are
mainly interested in two issues: forecasting performance and
ensemble size. Table 2 compares our method to the top 10
methods of the M4 competition. We also include two ver-
sions of theN-BEATS [19]method, whichwas proposed after
the conclusion of the competition. See Section 5.6 for more
details regarding this experiment.

The size of an ensemble ofmodels is an important aspect of
practical usefulness in real world settings. This is especially
true when the ensemble members are themselves complex
models, such as Deep Learning models. The current top per-
forming method on the M4 dataset is the N-BEATS method
by Oreshkin et al. [19], which consists of an ensemble of
180 feed-forward neural networks. To ensure diversity in the
ensemble, the authors used three different loss functions and
six different window sizes, resulting in a total of 18 different
model configurations. The final ensemble was then formed
by using 18 copies of 10 identical model configurations,
resulting in 180 models in total. The authors also reported
the performance of a smaller ensemble which only used one
copy of each model configuration, which we have called N-
BEATS-18 in Table 2. The top performing method of the M4
competition was also an ensemble. The winner of the compe-
tition, Smyl [22], used a complex strategy which combined
models at multiple conceptual levels. First, at the level of
ensembles of models, the method combines forecasts from
6-9 independent training runs. Second, each of these train-
ing runs consisted of multiple models which were trained
on subsets of the dataset. Finally, the forecasts of each such
modelwere produced by taking the average of the predictions
produced by the models in the final 4-5 training epochs.

Both of these methods are arguably highly complex, but
they also substantially improved forecasting performance
compared simpler methods. The significance of the improve-
ments in accuracy can be most easily be seen by inspecting
the total OWA of the methods from rank 2 to until rank
6. The median difference between these consecutive ranks
is 0.001 OWA, and the difference between the best and
the worst method in this group is 0.010 OWA. In contrast,
the difference between the rank 1 method (i.e. the winner,
Smyl) and the rank 2 method is 0.017 OWA. This obser-
vation led the organizers of the competition to characterize
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Table 2 OWA test scores for each frequency of the M4 dataset. Bold
font is used to indicate the best model, an underline indicates second
best. N is the number of time series, and H is the forecasting horizon.

N-BEATS-18 is a version of the N-BEATS model with 18 models in
its ensemble instead of 180. We report the OWA score for this model
based on Fig. 3 from Oreshkin et al. [19]

Number Yearly Quarterly Monthly Weekly Daily Hourly Total
of N=23000 N=24000 N=48000 N=359 N=4227 N=414
models H=6 H=8 H=18 H=13 H=14 H=48

M4 Rank 10 7 0.824 0.883 0.899 0.939 0.990 0.485 0.869

M4 Rank 9 2 0.836 0.878 0.881 0.782 1.002 0.410 0.865

M4 Rank 8 1 0.788 0.898 0.905 0.968 0.996 1.012 0.861

M4 Rank 7 2 to 3 0.801 0.908 0.882 0.957 1.060 0.653 0.860

M4 Rank 6 4 0.806 0.853 0.876 0.751 0.984 0.663 0.848

M4 Rank 5 4 0.802 0.855 0.868 0.897 0.977 0.674 0.843

M4 Rank 4 24 0.813 0.859 0.854 0.795 0.996 0.474 0.842

M4 Rank 3 4 to 15 0.820 0.855 0.867 0.766 0.806 0.444 0.841

M4 Rank 2 9 0.799 0.847 0.858 0.796 1.019 0.484 0.838

M4 Rank 1 6 to 9 0.778 0.847 0.836 0.851 1.046 0.440 0.821

N-BEATS-181 18 - - - - - - 0.802

N-BEATS1 180 0.758 0.800 0.819 - - - 0.795

PI-Transformer2 1 0.777 0.852 0.833 0.733 0.987 0.431 0.815

PI-Transformer3 9 0.769 0.836 0.813 0.697 0.987 0.397 0.800

1 Authors do not report OWA scores for columns containing “-”
2 Median OWA scores from 9 repeated experiments
3 Mean ensemble of the predictions of the 9 repeated experiments

the difference between ranks 6 to 2 as “miniscule”, while
the difference between ranks 2 and 1 was characterized as
“considerable” [29]. A similar argument can be made for the
difference between N-BEATS and the rank 1 method, which
is even greater: 0.026 OWA.

In this experiment, we trained 9 PI-Transformer mod-
els for each frequency of the M4 dataset. We measure the
expected OWA of a single PI-Transformer by the median
OWA of the 9 models. We measure the OWA of an ensem-
ble of PI-Transformer models by using the mean of the 9
predictions, which is arguably a more fair comparison to the
other methods of Table 2, as most of these are in fact also
ensembles.

As can be seen from Table 2, the median-OWA PI-
Transformer achieved a score between the winner of the M4
competition and the N-BEATSmethod. The difference to the
winner of the competition is 0.006 OWA, which is relatively
small, as we have discussed above. However, wewould argue
that the most important advantage of our method is that it is
easier to use for Machine Learning practitioners.

The mean-ensemble PI-Transformer achieves a score
between N-BEATS-18 and the full N-BEATS model. As
before, the differences in OWA are small: 0.002 to 0.005
OWA.Considering that N-BEATS consists of an ensemble of
180 models, we believe that our approach represents a favor-
able trade-off between forecasting accuracy and ensemble
size in this case.

6.4 Comparison with other transformer models for
time series

In this experiment, we compare our proposed Transformer
architecture against three other Transformer models recently
proposed for time series forecasting: the LogSparse Trans-
former [6], the Informer [7], and the Autoformer [8]. The
details regarding the experimental setup for this experiment
can be found in Section 5.7.

Table 3 shows the results of the comparison. As can be
seen from the table, our method outperforms the others, both
in terms of OWA and in terms of R0.5.

Table 3 ComparisonofTransformermodels onM4-Hourly.We include
the R0.5 score to be comparable with the LogSparse Transformer, as the
authors do not report the OWA score

OWA R0.5

LogSparse Transformer1 - 0.067

Informer2 0.670 0.056

Autoformer2 1.033 0.078

PI-Transformer2 0.525 0.046

For this experiment, we only used small models with dmodel = 32.
1 Score taken from [6]
2 Median scores of 5 repeated experiments
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This shows that our method is able to achieve better fore-
casting accuracy compared to recently proposedTransformer
methods for time series. However, we would emphasize
that these architectures are inherently different, and were
designed for different purposes. The PI-Transformer is a
decoder-only architecture, while the Informer and Auto-
former are encoder-decoder architectures.Wehave attempted
to make the comparison between these models as fair as pos-
sible by keeping the number of parameters in these models
approximately equal. This required using two encoder lay-
ers and two decoder layers for the Informer and Autoformer,
compared to the four decoder layers of our PI-Transformer.
However, this results in models with different depth; a better
comparison might be to use a depth of 4 for both the encoder
layers and decoder layers, regardless of the total parameter
count. Moreover, our model is an autoregressive architecture
which needs to perform several model evaluations whenever
the forecasting horizon is greater than 1, in contrast to the
Autoformer and Informer which produce a full horizon of
forecasts in a single evaluation. Consequently, these models
are likely much faster to evaluate.

6.5 Interpretations of persistence initialization

It is perhaps surprising that adding a single parameter, as
Persistence Initialization does, can have such a big impact
on forecasting accuracy. Persistence Initialization is a rel-
atively simple change, and the Transformer is a powerful
model. One might expect that it would be able to “discover”
this pattern by itself, by using the attention mechanism to
select the previous time step in one of its attention heads.
In this section we will discuss some interpretations of what
Persistence Initialization is doing.

One interpretation, which is the one suggested by our
naming choice, is that themodel is initialized to becomeaper-
sistence model. During training the model changes from the
naïve persistence model to become a more complex model.
In other words, Persistence Initialization can be seen as a
kind of implicit weight initialization.

A related interpretation is that Persistence Initialization is
a re-parametrization of the forecasting problem. Instead of
directly forecasting the values of the time series, the model
must instead predict the difference to the previous time step.
Furthermore, theway themodel is initialized corresponds to a
prior belief that these differences are zero. This interpretation
is somewhat related to the concept of differencing, which is a
technique commonly used in statistical forecasting methods
to make time series more stationary. However, Persistence
Initialization is not the same as differencing, as only the out-
puts of the PI-Transformer are (implicitly) differenced, and
not the inputs.

A third interpretation is that we are combining twomodels
in a way that is somewhat similar to boosting. In boosting,

a sequence of models are trained iteratively to predict the
residual errors of the previous models.We combine the naïve
persistence model and a Transformer, such that the Trans-
former predicts the residuals of the persistence model. The
persistence model has a fixed weight of 1, and the weight of
the Transformer is the gating parameter γ .

7 Conclusion

In this work, we have presented Persistence Initialization,
a novel and general adaptation for autoregressive time
series forecasting with neural networks. Furthermore, we
introduced PI-Transformer, a Transformer model based on
Persistence Initialization, Rotary positional encodings, and
ReZero normalization. We perform two ablation studies, and
show that the PI-Transformer learns faster, is more accurate,
and scales better than Transformer models without our pro-
posedmodifications.Moreover, wemeasure the performance
of our proposed PI-Transformer model on the complete M4
dataset, and find that it is able to achieve a high level of
forecasting accuracy, similar to other state-of-the-art meth-
ods. Our method outperforms the original winner of the
M4 competition, and achieves a comparable level of accu-
racy to N-BEATS, which is an ensemble of 180 deep neural
networks, using a significantly smaller ensemble of only 9
PI-Transformers.
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