
Near-Optimal Multi-Accelerator Architectures for Predictive Maintenance at the Edge

Mostafa Koraeia, Juan M. Cebrianb, Magnus Jahrec

aSINTEF AS, Oslo, Norway
bUniversity of Murcia, Murcia, Spain

cNorwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract

Predictive maintenance systems face a rich set of constraints along dimensions such as latency, throughput, physical size, monetary
cost, as well as energy and power consumption.

To meet performance requirements, predictive maintenance systems require specialized compute units (i.e., accelerators) in
addition to conventional processor cores. Unfortunately, size and cost constraints commonly result in developers being forced into
selecting System-on-Chip (SoC) platforms that do not have sufficient resources to fully accelerate all performance-critical functions
— in essence raising the challenging question of how to optimally distribute the available resources across accelerators. This work
introduces the Resource-Constrained Accelerator Selection (RCS) methodology, which identifies near-optimal multi-accelerator
configurations for predictive maintenance applications.

RCS takes a library of resource-scalable accelerator architectures as input and then selects the combination of accelerator con-
figurations that minimizes end-to-end latency. We find that enabling RCS for typical predictive maintenance applications requires
a resource-scalable Fast Fourier Transform (FFT) accelerator and propose ScaleFFT to fill this gap.

We apply RCS and ScaleFFT to a collection of edge computing applications with different sensor bandwidths and find that
they reduce end-to-end latency by 2.4× on average for a 256K-point FFT compared to a state-of-the-art configuration that only
accelerates the machine learning algorithm. Moreover, we demonstrate that RCS enables real-world gains in oil well and train track
monitoring systems.

Keywords: Edge computing, FPGA, Accelerator, FFT, Predictive maintenance, Machine learning
2010 MSC: 00-01, 99-00

1. Introduction

Edge computing systems move a significant part of a sys-
tem’s computational load from the cloud-based back-end to the
devices that capture data from, and potentially act upon, the en-
vironment. The motivation for edge computing is (i) to improve5

response time by moving critical decisions from the cloud to
the edge, (ii) avoid overwhelming the network or cloud-based
back-end with a massive amount of data, or (iii) leverage the
distributed nature of the system to make decisions that bene-
fit from both local and global perspectives [1]. For example,10

many systems have to perform inference locally as the network
links lack the bandwidth to transmit all sensor data [2]. An
interesting application area are the so-called Industry 4.0 appli-
cations, which introduce devices that continuously collect data
about the status of production assets. This enables Predictive15

Maintenance (PdM) which provides an opportunity to reduce
operating costs by minimizing unplanned downtime and avoid-
ing equipment failure [3].

In general, PdM systems perform three main functions. First,
they periodically or continuously monitor an asset, e.g., using20

∗Juan M. Cebrian
Email addresses: Mostafa.Koraei@sintef.no (Mostafa Koraei),

jcebrian@um.es (Juan M. Cebrian), magnus.jahre@ntnu.no (Magnus
Jahre)

accelerometers or ultrasonic sensors to sense vibrations. Sec-
ond, they perform conventional signal processing on the cap-
tured data, such as a Fast Fourier Transform (FFT), to make
it more amendable to analysis, e.g., converting the signal from
the time domain to the frequency domain. Third, they apply25

a machine learning algorithm to detect anomalies. Differen-
tiating normal and abnormal behavior in the asset is typically
much simpler in the frequency domain. For example, an issue
with the train track will typically manifest itself as vibrations
at abnormal frequencies in the bogie of the train, and this is30

more easily detected in the frequency domain than in the time
domain.

Designing PdM edge systems is challenging because they
are heavily constrained in terms of latency, throughput, power
dissipation (e.g., heat), energy consumption (e.g., battery life-35

time and capacity), physical size, and cost. Moreover, many in-
dustrial applications are produced in low volume, i.e., as little as
tens or hundreds of systems are sufficient to meet demand. Cre-
ating custom Application Specific Integrated Circuits (ASICs)
is hence not economically viable due to high non-recurring en-40

gineering costs [4]. At the same time, accelerating signal pro-
cessing and machine learning algorithms is typically critical to
meet latency and energy constraints.

Developers are hence forced to select an off-the-shelf Sys-

Preprint submitted to Future Generation Computer Systems November 28, 2023

tem on Chip (SoC) platform that (i) supports acceleration, (ii)45

interfaces cleanly with the application-specific sensors, and (iii)
contains conventional processor cores on which the application
parts that are non-acceleratable can be executed. The key alter-
natives are SoCs that combine processor cores with a Field Pro-
grammable Gate Array (FPGA) (e.g., Xilinx Zynq [5] or Intel50

Agilex [6]), a Graphics Processing Unit (GPU) (e.g., NVIDIA’s
Tegra [7]), or a Digital Signal Processor (DSP) (e.g., Texas In-
strument’s KeyStone Architecture [8]); industrial PCs such as
Intel NUC [9] have insufficient support for accelerators. Real-
world PdM systems tend to favor FPGA-enabled SoCs because55

they are significantly easier to interface with sensors than GPU-
and DSP-based SoCs. For example, the intricacies of inter-
facing with sensors resulted in that the DSP-based 66AK2G1x
KeyStone SoC could only read sensor data at a rate of 64 Kilo-
Samples Per Second (KSPS), while the FPGA-based Zynq SoC60

easily reached the 128 KSPS and 256 KSPS required for our
train and oil well use cases, respectively. PdM systems hence
typically require an FPGA to efficiently interface with sensors.
In addition, using the FPGA for acceleration reduces the num-
ber of components in the system and therefore its cost and phys-65

ical size. FPGAs are however challenging to program [10], and
it is hence attractive to leverage reusable accelerator architec-
tures. FPGA-vendors refer to such reusable accelerators as In-
tellectual Property (IP) cores.

Our goal in this paper is to understand how best to select and70

size accelerators for PdM at the edge. If the constraints are suf-
ficiently relaxed, the issue is trivial as one can simply size each
accelerator maximally, i.e., combine a fully accelerated FFT
with the best-performing machine learning accelerator configu-
ration. The problem becomes more challenging when resources75

are limited — essentially posing the question of how much of
the limited FPGA resources should be devoted to each acceler-
ator. We observe that answering this question requires two key
technologies. More specifically, we need (i) a methodology for
selecting the accelerator configurations that collectively min-80

imize end-to-end latency under resource constraints, and (ii)
resource-scalable accelerators, i.e., accelerators that can be con-
figured to occupy different design points in terms of FPGA re-
source consumption and performance. Prior works that focus
on accelerator selection methodologies [11, 12, 13] fall short85

because they do not consider resource-scalable accelerators. In
addition, we find that resource-scalable neural network acceler-
ators are abundant (e.g., [14, 15, 16]), but state-of-the-art FFT
accelerators (e.g, [17, 18, 19, 20]) are not resource-scalable be-
cause they assume that the system has sufficient resources to90

fully accelerate the FFT.
Our first key contribution is hence the Resource-Constrained

Accelerator Selection (RCS) methodology. RCS takes a library
of accelerator families with configurations that span the perfor-
mance versus resource consumption spectrum of each family as95

input. RCS then uses the information about resource consump-
tion and latency available in the library to select the configu-
ration of each accelerator that minimizes the predicted end-to-
end latency. For PdM systems, end-to-end latency is the time
it takes from the sensor starts capturing the first sample until100

all data is fully processed. End-to-end latency is the key per-

formance metric for PdM systems because they repeatedly (i)
capture sample(s), (ii) use an FFT to transform sample data
from the time domain to the frequency domain, and (iii) ap-
ply machine-learning on the frequency-domain representation105

to detect abnormal behavior. Depending on the application, the
PdM system is either stationary or mobile. In a stationary sys-
tem, the end-to-end latency determines time-on-station, i.e., the
amount of time the system must remain stationary to inspect the
asset (e.g., our oil well use case). In a mobile system, the end-110

to-end latency determines spatial resolution, i.e., the amount of
time the system will move before new samples can be collected
(e.g., our train track monitoring use case).

While resource-scalable machine learning accelerators are
abundant1, no resource-scalable FFT accelerator exists. Our115

second key contribution is hence a resource-scalable FFT ac-
celerator architecture which we call ScaleFFT. Our key insight
is that we can create a resource-scalable accelerator family by
exploiting the hierarchical nature of the FFT transform. More
specifically, all ScaleFFT configurations consist of two accel-120

erators, one for the Discrete Fourier Transform (DFT) and one
which reorganizes data in a butterfly pattern. ScaleFFT then
uses the conventional processor cores, which edge PdM sys-
tems anyway require to implement non-performance-critical func-
tionality, to manage the two accelerators. In this way, Scal-125

eFFT is able to create accelerator configurations that are posi-
tioned between fully accelerated configurations such as Xilinx’
XFFT [22] and accelerators proposed in prior work [17, 18] —
which are fast but require significant FPGA resources — and a
software-only FFT implementation — which is slow because it130

runs on a processor core but requires no FPGA resources.
We evaluate RCS and ScaleFFT on a representative FPGA-

accelerated edge computing platform running PdM applications
ranging from medium to high signal bandwidth. More specifi-
cally, we consider 32, 64, and 256 KSPS configurations that are135

representative of PdM applications that monitor a range of as-
sets, including wind turbine gear boxes, train bogies, and acous-
tic/vibration inspections for oil wells. Moreover, we consider
CNNs with different computational requirements for each sig-
nal bandwidth. RCS identifies the optimal configuration point140

in all applications we consider, i.e., RCS selects the ScaleFFT
and Xilinx DPU configurations that use the FPGA resources
most efficiently. That said, RCS is heuristics-based so it is
in general difficult or even impossible to guarantee optimally.
RCS reduces end-to-end latency by 2.4× on average for a 256K-145

point FFT compared a state-of-the-art approach that solely ac-
celerates the CNN while satisfying all constraints.

To investigate the effects of using RCS in real-world PdM
applications, we applied it to an oil well inspection system and
a railway track monitoring system. Oil wells must be periodi-150

cally inspected for safety; production is stopped during inspec-
tion. The speed at which the oil well can be inspected is hence
critically important as the facility is essentially idle during this
operation. We must also consider the additional expenses due to
the operation time of a drilling platform or drill ship, which can155

1RCS uses Xilinx’ Deep Learning Processing Unit (DPU) IP [21] as the
Convolutional Neural Network (CNN) accelerator family in this work.

2

be as high as 200K to 400K USD per day, yielding 12.5K USD
per hour on average [23]. RCS reduces inspection time from 2.1
hours to 1.7 hours (for 120 points of inspection), thereby sav-
ing an estimated 5.0K USD compared to our baseline (FPGA
accelerated DPU, software FFT) for each inspection job. The160

inspection system we consider in this work is scheduled to be
deployed at several oil installations in the upcoming years.

Railway infrastructures play a critical role in transporta-
tion and logistics and must be reliable. It is hence attractive
to continuously monitor train tracks by installing a monitor-165

ing system in train bogies to detect problems early and thereby
avoid service disruption. We evaluate RCS in the context of
the TrainDAQ [24] track monitoring system. TrainDAQ uses
high-bandwidth accelerometers (i.e., 15 to 30 kHz) and high-
speed and high-resolution Analog to Digital Converters (ADCs)170

to monitor the train track and feeds the signal to an FPGA-
accelerated edge computing platform to perform signal process-
ing and machine learning inference and thereby identify anoma-
lies. In TrainDAQ, higher performance results in better spatial
resolution, i.e., each train will inspect more of the track, and we175

find that RCS improves spatial resolution by 54% compared to
the baseline by better utilizing the FPGA.

2. The Anatomy of Predictive Maintenance Systems

Broadly speaking, there are three main maintenance man-
agement strategies. The run-to-failure strategy performs main-180

tenance only after the occurrence of failures. This simple ap-
proach is frequently adopted, but it has significant costs as-
sociated with downtime after failure. The preventive mainte-
nance strategy schedules actions based on vendor statistics on
component failure rate. This statistical data is usually conser-185

vative which means that components are replaced way before
they will fail — leading to inefficient use of resources and in-
creased costs. The Predictive Maintenance (PdM) strategy is
hence a best-of-both-worlds approach in which PdM systems
monitors key components to assess their current condition [3].190

In other words, PdM aims to detect when a component needs
to be replaced which hence reduces costs compared to preven-
tative maintenance — because components are replaced when
necessary rather than conservatively — and reduces downtime
compared to run-to-failure — because components are replaced195

before they fail.
Figure 1 shows a generic PdM system that leverages an

FPGA-based SoC with a sampling process that consists of three
key steps. The first step is to capture sensor data (see 1). Real-
world PdM systems typically need a large number of sensors200

(e.g., the train bogie PdM system that we will discuss in de-
tail in Section 7 has 16 sensors). The amount of sensor data is
too much to be stored on-chip and it is hence written to main
memory through the Direct Memory Access (DMA) controller
(see 2). The second step is to transform sensor data from the205

time domain to the frequency domain with the FFT accelerator
(see 3). The FFT accelerator reads the sensor data from main
memory, computes the FFT, and writes the output back into
main memory. The third step is to perform machine learning
inference on the frequency-domain representation of the sensor210

data (see 4). This is done using the Deep Learning Processing
Unit (DPU) and leverages a failure prediction model that has
been trained offline. A logical overview of stages 3 and 4
can be seen in Figure 2. Pattern selection is performed by the
CPU. The output of DPU processing is either that the compo-215

nent is operating normally or that a problem has been detected
(see 5). If a problem has been detected, the system notifies an
operator and a maintenance action is scheduled.

The above approach is a good match for various PdM appli-
cations as it performs all analysis locally.220

This is a critical requirement because many real-world PdM
deployments either do not have network connectivity or the net-
work does not have sufficient capacity to transfer raw data. A
typical PdM use case is to use vibration sensors to detect bear-
ing wear, for instance in metal lathe [25], slitting machines [26],225

vehicle factories [27], woodworking [28], compressors [29],
and other industrial equipment [30, 31, 32, 33, 34, 35], but
adding the network infrastructure for transferring raw vibration
data is impractical or even impossible in such industrial envi-
ronments. In other cases, for instance wind turbines [36, 37]230

and the electrical network [38, 39, 40, 41], the data could be
stored on the device and downloaded manually when an op-
erator inspects the installation. In this case, the challenge is
that maintenance schedules can vary significantly between op-
erating companies which means that significant storage capac-235

ity would need to be added to account for the foreseen worst-
case inspection interval. Finally, the risks incurred by relying
on offline analysis are typically not acceptable in cases where
health and safety is at stake, for example in aeronautics [42,
43, 44, 45], railways [46, 47, 48], fuel cell status in electric ve-240

hicles [49], and engine and gearbox analysis [37, 50]. Overall,
we analyzed more than 50 PdM approaches referenced in recent
surveys [51, 52], and found that most described systems use ei-
ther cloud or offline resources to analyze sensor data. These
approaches hence requires adopting fully local processing, as245

we describe in this work, to be practically applicable.

3. Resource-Constrained Accelerator Selection

We now describe our RCS approach for configuring a near-
optimal multi-accelerator architecture for resource-constrained
PdM systems, i.e., how it identifies the accelerator configura-250

tions that yield the lowest end-to-end latency within the set
of accelerator configurations that satisfy all constraints. For
each accelerator type i (e.g., ScaleFFT), the accelerator vendor
synthesizes netlists at different performance versus resource-
consumption design points to yield a set of possible accelerator255

configurations Ai. The benefit of doing this is twofold. First,
this means that the time overhead of synthesizing the accel-
erators is incurred once for each accelerator variant. Second,
it means that the resource consumption (e.g., number of DSP
blocks, block RAMs, lookup tables, and flip-flops) and latency260

of each accelerator configuration can be accurately predicted.
Our proposed approach is in line with current industry practice.
More specifically, Xilinx ships a collection of pre-synthesized
configurations for the DPU we use this work [21]. This step is
hence a one-time cost for each accelerator type.265

3

AD
C

 a
nd

 In
pu

t C
irc

ui
ts

Signal Processing Chain
(FFT/IFFT/...)

DMA Controller DMA Controller

Neural Network (Xilinx DPU
IP Core)

ARM Core

Field Programmable Gate Array (FPGA) fabric

DDR3 Memory

43

1 2 5
S1

S2

Sn

Figure 1: Architecture of an FPGA-based PdM system. The FPGA is responsible for (i) interfacing to the Analog-to-Digital Converters (ADCs) to write sample
data to memory, (ii) transforming sensor data into the frequency domain by applying the FFT, and (iii) detect failures by performing machine learning inference.
The ARM cores in the SoC executes non-accelerated functions and manages the accelerators.

R
aw

 d
at

a
fro

m
AD

C

FFT X

Fixed Pattern

IFFT Scaling FFT

Signal Processing Chain

Neural Network
(Xilinx DPU IP Core)

Pr
ed

ic
tio

n
re

su
lts

to
 th

e
pr

oc
es

so
r

Figure 2: Overview of the signal processing chain from raw sensor data to DPU inference.

The next step is to predict end-to-end latency T across ac-
celerator configurations, and we use a simple performance model
to achieve this. More specifically, we assume that the applica-
tion consists of a part that cannot be accelerated (tnot-accelerated)
as well as n tasks that can be accelerated:

T = tnot-accelerated +

n∑
i=0

ta∈Ai
i (1)

Each task i takes ta
i seconds to execute when using accelerator

configuration a, and the accelerator configurations that can be
used to accelerate task i are of type i and hence part of the set
Ai, e.g., ScaleFFT can accelerate the FFT task but not machine
learning inference. Recall that ta

i can be retrieved directly from270

the vendor-provided synthesis results. We further include the
CPU execution time of each task in Ai as an accelerator which
uses no resources. For applications that can be pipelined, we
set ta

i to the latency of producing all results for the last pipeline
stage and the latency of producing the first result for the pipeline275

stages that overlap with the last pipeline stage.
In addition to guiding accelerator selection, Equation 1 also

yields insight into when acceleration is an effective optimiza-
tion. More specifically, tnot-accelerated bounds the attainable speed-
up according to Amdahl’s law [53], i.e., end-to-end latency will280

converge towards tnot-accelerated as more performant accelerator
configurations are selected. Acceleration is thus most favorable

when tnot-accelerated accounts for an insignificant part of end-to-
end latency. For our benchmarks, tnot-accelerated is the time it takes
to collect samples, which accounts for maximally 18% of end-285

to-end latency in our baseline. Similarly, accelerator selection
is trivial when the largest accelerator configuration of each type
can be selected while satisfying resource constraints.

We focus on PdM systems where system requirements (e.g.,
cost or physical size) forces developers to select platforms in290

which maximally sizing all accelerators require more resources
than are available. The next step in the RCS methodology is
hence to select resource-feasible accelerator configurations which
yield near-optimal end-to-end latency. We start by identifying
all accelerator variants that (i) can be used by the target appli-295

cation, and (ii) do not require more of any resource than those
available in the target device. We then evaluate all combina-
tions of accelerator types. If the resource consumption of the
combination of accelerators is less than U% of any resource,
we predict end-to-end latency using Equation 1. The reason300

for not drawing the limit at 100% utilization is that the post-
synthesis mapper typically has to time-multiplex different com-
ponents onto the same resource to fit the design onto the FPGA
when a resource is nearly fully utilized, resulting in a latency
overhead. We empirically determined that setting U to 95% is305

sufficient to avoid this issue.
There are two key reasons why the accelerator configura-

4

tion selected by RCS can differ from the optimal accelerator
configuration. First, the accelerator (IP-core) vendor only pro-
vides a discrete set of accelerator configurations, and it is hence310

possible that the target PdM system would perform better with
an accelerator configuration that is not in this set. The num-
ber of feasible configurations of an accelerator is however typ-
ically limited and it is hence unlikely that vendors do not pre-
synthesize attractive configurations. Second, it is not guaran-315

teed that the accelerator will achieve its predicted latency. Our
evaluation in Section 6 however shows that our aforementioned
utilization-limiting heuristic is effective.2 For these reasons, we
claim that RCS is able to select near-optimal accelerator con-
figurations for resource-constrained PdM systems.320

RCS evaluates O(mn) configurations in the worst case where
m is the maximum number of configurations for any accelerator
type and n is the number of accelerator types. While the run-
time of RCS would be a concern if the number of accelerator
types and configurations were large, resource-constrained PdM325

systems have few accelerator types and configurations. More
specifically, we consider two accelerator types, the DPU and
ScaleFFT, with 2 and 6 configurations, respectively, while con-
temporary workstations can easily evaluate many millions of
data points in seconds. Moreover, (i) the search can be easily330

parallelized, and (ii) it is not necessary to further explore config-
urations that exceed the resource constraint after considering a
subset of accelerator types. Since search time is not an issue for
resource-constrained PdM systems, we leave the exploration of
better search heuristics for future work.335

4. ScaleFFT: Resource-Scalable FFT Acceleration

As we have seen, FFT transformations are a critical step in
many predictive maintenance systems. The faster we move the
data from time to frequency domain, the sooner we can feed the
data to the corresponding machine learning algorithms and in340

turn enable early detection of system malfunctions. FFT trans-
formations are however computationally expensive, and there-
fore typically requires hardware acceleration to satisfy perfor-
mance requirements.

4.1. State-of-the-art FFT Accelerators345

There are several strategies for accelerating FFT transfor-
mations. One approach is to use embedded vector processors or
low power GPUs, but these architectures are usually expensive
and have energy requirements that are not feasible for continu-
ous monitoring purposes. Digital signal processors (DSPs) are350

a much better option regarding price and energy, but they usu-
ally have a fixed FFT width, making it harder to adapt to dif-
ferent scenarios. Moreover, DSPs can be easily overwhelmed
when receiving information from many sensors.

2This is in part due to our focus on resource-constrained systems. For high-
performance FPGA platforms, performance often saturates due to limited mem-
ory bandwidth and significant complexity is hence commonly devoted to in-
crease the operational intensity of accelerators (see e.g., [54]). Our platform
would saturate memory bandwidth at 512 KSPS which is beyond the require-
ments of current and emerging PdM systems (e.g., our oil well use case is in
the high end of commercially deployed systems and requires 256 KSPS).

Cooley and Tukey laid the foundations of the FFT back in355

1965 [55]. Over the course of 50 years, there have been many
pipelined FFT hardware proposals [56]. Most proposals share
a common idea, to divide the FFT transformation into several
discrete Fourier transformations (DFT) that run in parallel, cou-
pled with a butterfly network to produce an identical output360

(e.g., [17, 18]). Figure 3 shows how an 8-point FFT can be com-
puted by using smaller DFTs based on Cooley’s design [55].
More specifically, four 2-point DFTs run in parallel and feed
data to two 4-point butterfly networks and then on to a single
8-point butterfly network.365

This FFT implementation requires partitioning the input ar-
ray into multiple sub-arrays that match the input size of the
DFTs. For example, a 1024-point FFT using 64-point DFTs
would need to process 16 sub-arrays. It is also important to
note that sub-array ordering is not linear. Figure 3 also shows370

the order of the sub-arrays when using 4-point DFTs to generate
an 8-point FFT. The first sub array contains following elements
0,2,4,6 and the second one contains 1,3,5,7. If we use 2-point
FFTs, sub-arrays are [0,2][4,6][1,3][5,7]. The reordering pat-
tern is specific to an FFT, i.e., it varies across FFTs.375

There are many practical constraints that can limit the size
of the FPGA, including costs, area and energy. Therefore, and
for the sake of example, let us assume that the resources re-
quired for performing two 4-point FFT in parallel and the 8-
point butterfly network exceed the resources available on the380

FPGA (faded out in Figure 3). In all previous works, this lack
of resources would translate into moving the FFT transforma-
tion to a pure software implementation, hence (dramatically)
under-utilizing the FPGA.

4.2. Resource-Scalable FFT Acceleration385

Our solution, which we call ScaleFFT and illustrate in Fig-
ure 4, is to design a re-programmable butterfly network that can
be used on all stages of the process to emulate the behavior of
a bigger FFT implementation via iterative process (e.g., a 4-
point butterfly that emulates a 8-point as shown in Figure 4).390

In this way, we can create FFT accelerators in which perfor-
mance scales with the amount of FPGA resources allocated —
thereby enabling FFT acceleration in resource-constrained pre-
dictive maintenance systems which have some FPGA resources
available but not enough resources to fully accelerate the FFT.395

For the sake of simplicity, we rely on standard intellectual
property (IP) cores for implementing FFT accelerators on the
FPGA. Indeed, the standard IP library for FFT in Vivado (Xil-
inx) offers different input lengths for the DFTs. We implement
a parallel butterfly network to do the rest of the computations.400

Figure 5 provides an overview of ScaleFFT when mapped
onto an FPGA-accelerated SoC. Both the FFT-core and the but-
terfly network have access to the platform’s DDR3 memory
through an AXI DMA controller. This allows for direct read-
ing and storing of data in memory. A software program run-405

ning on the ARM-cores of the SoC implements a state ma-
chine that controls the data elements to be fed to the FFT-core
and butterfly network. A memory pointer generator function is
used to manage sub-arrays for DFTs, butterfly network and el-

5

2-point DFT

2-point DFT

2-point DFT

2-point DFT

D
D

R
3

vi
a

AX
I D

M
A

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]
4-

po
in

t b
ut

te
rfl

y
4-

po
in

t b
ut

te
rfl

y

[0]

[2]

[1]

[3]

[4]

[6]

[5]

[7]

Stage 1

4-point FFT

4-point FFT

8-
po

in
t b

ut
te

rfl
y

[0]

[4]

[1]

[5]

[2]

[6]

[3]

[7]

Stage 2

D
D

R
3

vi
a

AX
I D

M
A

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]

NOT ENOUGH

RESOURCES ON

FPGA

Figure 3: High-level architecture of a state-of-the-art FFT accelerator. Existing accelerators assume that there are sufficient FPGA resources to fully accelerate the
FFT and hence fall short in resource-constrained use cases.

Table 1: SoC resource comparison.
SoC Model/ Resource Z-7020 Z-7035
Logic Cells (K) 85 275
Block RAM (Mb) 4.9 17.6
DSP Slices 220 900

ement arrangement. This function also controls the AXI DMA-410

controller based on the state machine.

5. Experimental Setup

5.1. Platform
We have used a Zynq 7020 and 7035 FPGA modules with a

TE0701-06 as carrier board (Table 1). The FPGA of the mod-415

ules can cover up to 8 kilo-point FFTs based on the Xilinx
FFT IP core. We have used an FPGA mezzanine card (FMC)
plugged to the carrier board to connect the FPGA to another
board with analog to digital converters (ADCs) and analogue
front end circuits for the accelerometers. Accelerometers have420

an integrated electronics piezo-electric (IEPE) interface which
converts the high impedance signal of the piezoelectric material
into a voltage signal with a low impedance of typically 100 Ω.
Most IEPE sensors work at a constant current between 2 and
20 mA. Since our system is usually installed near the sensors425

we use a 5 mA constant current to reduce the power dissipation.
The system is standalone and during benchmarking and moni-
toring, the system is connected to a PC via an UART interface.

For measuring the power dissipation we monitor the current of
the FPGA module separated from ADCs and the carrier board.430

We repeat each test twice and present average clock ticks as re-
ported by performance counters attached to the ARM cores. We
measure clock ticks separately for the FFT and neural network
inference tasks to report time spent on each function.

5.2. Benchmarks435

As discussed in Section 2, predictive maintenance systems
typically require a neural network accelerator and an FFT accel-
erator. We use an IP from Xilinx, the Deep Learning Processing
Unit (DPU), as our neural network accelerator. To test our RCS
proposal, we use different combinations of DPU implementa-440

tions and FFT sizes. Each DPU implementation has different
FPGA resource requirements, mainly block RAMs (BRAM),
registers, DSPs and Look-Up Tables (LUTs). This sets a con-
straint on the available resources for the FFT transformation.
We use two different types of DPU, and for each DPU we eval-445

uate two implementations.
Predictive maintenance applications primarily differ on the

frequency bandwidth of the sensors, requiring FFTs with differ-
ent lengths. We hence choose FFT-lengths that are representa-
tive of predictive maintenance applications positioned at differ-450

ent design points such that we span the design space. In wind
turbine applications, gearboxes have relatively low speeds. This
translates to bandwidth requirements between 5 and 10 KHz for
its sensors, and a sample rate of 32 Kilo Samples Per Second

6

2-point DFT

2-point DFT

[0]

[1]

[2]

[3]

Stage 1

4-
po

in
t b

ut
te

rfl
y

[0]

[2]

[1]

[3]

4-point FFT

[0]

[2]

[1]

[3]D
D

R
3

vi
a

AX
I D

M
A

D
D

R
3

vi
a

AX
I D

M
A

2-point DFT

2-point DFT

[4]

[5]

[6]

[7] 4-
po

in
t b

ut
te

rfl
y

[4]

[6]

[5]

[7]

4-point FFT

[4]

[6]

[5]

[7]

D
D

R
3

vi
a

AX
I D

M
A

Stage 2

[0]

[4]

[1]

[5]

4-
po

in
t b

ut
te

rfl
y

X[0]

X[1]

X[2]

X[3] D
D

R
3

vi
a

AX
I D

M
A

[2]

[6]

[3]

[7]

4-
po

in
t b

ut
te

rfl
y

X[4]

X[5]

X[6]

X[7] D
D

R
3

vi
a

AX
I D

M
A

Stage 3

Figure 4: ScaleFFT transforms the FFT into an iterative process of shorter FFTs and butterfly networks. The resource requirements of each stage can hence be
traded off against the number of stages, i.e., providing more resources reduces latency.

State Machine
Controller

Memory Pointer
Generator

Processor Side Programmable Logic

DDR3
Memory

AXI
DMA

AXI
DMA

AXI
DMA

AXI
DMA

FFT IP
(M Point)

Butterfly
(K parallel
instances)

Figure 5: High-level architecture of ScaleFFT mapped to an FPGA-based SoC.

(KSPS) is enough to capture all fundamental harmonic frequen-455

cies. On the other hand, in train bogie vibration analysis, the
frequencies of interest are directly related to the speed of the
train, with sensors measuring from 10 to 20 KHz. A sample
rate of 64 to 128 KSPS is hence enough for this application. Fi-
nally for down-hole oil well inspection, sensor bandwidth’s are460

between 40 and 60 KHz. The recommended sample rate in this
scenario is hence between 128 and 256 KSPS. Please note that
none of mentioned sampling rates can be fully accelerated on
our SoCs due to lack of resources.

6. Results465

This section shows the evaluation results in terms of perfor-
mance, energy and FPGA resource utilization. Our baseline,
depicted as a horizontal red line in the figures, uses a soft-
ware implementation of the FFT and a FPGA-accelerated DPU.
BXXX-Y describe combinations of DPU and FFT accelerators.470

0

2

4

6

8

10

2
5

6

5
1

2

1
K

2
K

4
K

*

8
K

2
5

6

5
1

2

1
K

2
K

4
K

8
K

2
5

6

5
1

2

1
K

2
K

4
K

8
K

*

2
5

6

5
1

2

1
K

2
K

4
K

8
K

B800-1 B800-2 B512-1 B512-2

Tí
im

e
(S

ec
o

n
d

s)

Sensor ADC DPU FFT Baseline

Figure 6: Execution time breakdown for 32K samples FFT on Zynq 7020

0

5

10

15

2
5

6

5
1

2

1
K

2
K

4
K

8
K

2
5

6

5
1

2

1
K

2
K

*

4
K

8
K

2
5

6

5
1

2

1
K

2
K

4
K

8
K

2
5

6

5
1

2

1
K

2
K

4
K

*

8
K

B800-1 B800-2 B512-1 B512-2

Tí
im

e
(S

ec
o

n
d

s)

FFT DPU Sensor ADC Baseline

Figure 7: Execution time breakdown for 64K samples FFT on Zynq 7020

XXX is the DPU parallelism architecture, while Y relates to
different implementations of said DPU. DPU B512 has 8 in-
put/output channel parallelism and B800 has 10 input/output
channel parallelism. Arrows in the figures show the combina-
tion selected by RCS (as described in Section 3), and the true475

optimal configuration is marked with a star (*). We identify
the true optimal configuration by executing all configurations
on the target platform and selecting the configuration with the

7

0

10

20

30

40

50

60

2
5

6

5
1

2

1
K

2
K

4
K

8
K

2
5

6

5
1

2

1
K

2
K

*

4
K

8
K

2
5

6

5
1

2

1
K

2
K

4
K

8
K

2
5

6

5
1

2

1
K

2
K

4
K

*

8
K

B800-1 B800-2 B512-1 B512-2

Tí
im

e
(S

ec
o

n
d

s)

FFT DPU Sensor ADC Baseline

Figure 8: Execution time breakdown for 256K samples FFT on Zynq 7020

lowest end-to-end latency; recall that RCS predicts end-to-end
latency from vendor-provided timing information.480

6.1. Performance

Figures 6, 7, and 8 show end-to-end latency broken down
into sensing, FFT, and DPU computations for different FFT
sampling sizes. These sampling sizes match the applications
discussed in Section 5.2. The x-axis shows the actual size of the485

FFT accelerator, ranging from 256-point FFT to the maximum
size allowed by the available resources, between 2K and 8K,
depending on the DPU/FFT combination. All configurations
show good scalability until a saturation point, outperforming
the baseline design by a significant amount as sampling size490

increases. For example, for a 256K-point FFT, the configura-
tion selected by RCS speeds up execution from 47% to 78%,
depending on the selected DPU.

There are two key scalability limiting factors for our pro-
posed FFT accelerator. The first one has to do with FPGA495

synthesis optimization based on resource utilization. Indeed,
Figure 9 shows the resource utilization for the B512-1 design
for the 256K-point FFT. For a 8K FFT implementation, we are
reaching 98% BRAM usage, meaning that the synthesis tool
will have less chances to find a performance-optimal design.500

Since we are over our threshold value of 95% (see Section 4),
the 8K implementation is not selected by RCS, but the 4K (Fig-
ure 8). This synthesis variability translates into fluctuations in
the performance scalability as we double the resources allo-
cated to the FFT accelerator. This can be seen most clearly505

for B512-1 regardless of input size, as it slowly saturates after
the 4K implementation.

On the other hand we have the utilization of FFT and but-
terfly network themselves. For example, B800-1 shows good
scalability up to 2K length for 32K and 64K-point FFTs, with510

25% and 60% speedups, respectively. However, for 256K-point
FFTs, it scales with 4K too (78% speedup). This is due to the
fact that, for relatively small inputs, the main bottleneck of our
design is the FFT-core (Figure 4). As the input size increases,
the pressure on the butterfly network does too. For example, a515

256K-point FFT needs to run 2 additional butterfly passes on
all points. If we compare a 64K-point FFT implementation
using a 4K FFT IP to a 256K-point FFT, we need double the
butterfly network times. Since more time is spent on the butter-
fly network, and it is not currently a bottleneck, we see further520

scalability with accelerator size.

DSP(0-100%)

BRAM(0-100%)
LUT(0-100%)

Bu�erfly Length

REGS(0-100%)

256

512

1K

2K

4K

8K

DPU FFT Free

Figure 9: Resource breakdown for B512-1 on Zynq 7020 (256K-point FFT)

0

10

20

30

40

50

60

2
5

6

5
1

2

1
K

2
K

4
K

8
K

2
5

6

5
1

2

1
K

2
K

4
K

*

8
K

2
5

6

5
1

2

1
K

2
K

4
K

8
K

*

2
5

6

5
1

2

1
K

2
K

4
K

8
K

B800-1 B800-2 B512-1 B512-2

Tí
im

e
(S

ec
o

n
d

s)

FFT DPU Sensor ADC Baseline

Figure 10: Execution time breakdown for 256K samples FFT on Z7035 FPGA

We see the opposite behavior for B512-1 and the 256K point
FFT. In this case, the extra load on the butterfly network com-
bined with the near complete usage of BRAMs (98%, as shown
in Figure 9) provokes a slowdown in performance. To show that525

this is resource-related, we synthesized our designs in a Z-7035
SoC, depicted in Figure 10. This figure shows a slight scalabil-
ity improvement for B512-1, and, since resources are below the
95% threshold, the 8K implementation is selected by RCS.

6.2. Power/Energy Efficiency530

We measured the FFT FPGA implementation power dissi-
pation in the range of 150 to 250 mW in real hardware. These
values match the estimations from Xilinx XPE 2019 tool that
reports 200 to 300 mW for the FPGA-side. FPGA power dis-
sipation is relatively small compared to system power (2.6 to535

2.75 W). However, the FFT accelerator relies heavily on the
CPU, therefore the power increase of a larger FFT is limited.

Figure 11 shows the energy and power measurements for
the B512-1 and a 64K-point FFT. We limit our measurements
to this specific configuration for the sake of visibility. We con-540

firmed that the conclusions achieved for this configuration are
representative of other designs. Since variations on power are
marginal (max 250 mW), energy savings are huge for FFT de-
signs after 1K. In particular, energy is reduced by 37% for 2K,
45% for 4K and 60% for 8K.545

8

2.5

2.6

2.7

2.8

2.9

3

3.1

0
5

10
15
20
25
30
35
40
45

256 512 1K 2K 4K 8K So�

B512-1

Po
w

er
 (

W
a�

s)

En
er

gy
 (

Jo
u

le
s)

Energy Power

Figure 11: Power and Energy for 64K samples FFT on Zynq 7020

7. Real-World Case Studies

7.1. Oil Well Inspection
Now we describe how our RCS methodology and ScaleFFT

accelerator can be leveraged to optimize an oil well inspection
system. The purpose of this system is to examine an oil well to550

identify the quality of its pipes. This is carried out by physically
moving the inspection system through the complete well as il-
lustrated in Figure 12. An oil well is typically 1.5 to 3 km long,
and the performance of the inspection system is critical as pro-
duction must be halted during inspection. In other words, the555

slower the system, the longer it takes to inspect the well, and
the longer the facility is idle. The average cost of running an
off-shore oil platform varies widely (e.g., from 200k USD per
day in 2019 to 250k USD per day in 2020 [57]) but is generally
high and minimizing down-time can hence lead to substantial560

cost savings.
The oil well inspection system faces a rich set of constraints,

and this makes it a good example of a resource-constrained
edge system. The system needs to perform 288 FFT trans-
forms at least every 20 m to detect anomalies which results in565

a data rate of 4.2 megabytes per meter (MB/m); one measure-
ment per 20 m is a typical minimum requirement. Upstream
bandwidth is limited to 200 Kb/s, which means that inspection
speed would be limited to 172 s per meter if the processing was
not performed at the edge. For a well length of 2.4 km, which570

yields 120 measurement points, a complete inspection would
hence take 6.7 hours if we assume that it takes one hour to move
the system through the well. More specifically, we stop the
system for 172 s at each of the 120 measurement points which
means that the system spends 5.7 hours collecting samples (and575

hence 6.7 hours in total when including trip-time). Performing
anomaly detection at the edge is hence attractive as it makes the
system compute-bound rather than communication-bound, and
the compute bandwidth of edge systems is much higher than the
upstream bandwidth, i.e., we achieve a processing bandwidth of580

1,500 kb/s with the RCS-selected system configuration whereas
upstream bandwidth is only 200 kb/s. In our system, anomaly
detection is performed using a convolutional neural network.

Our objective was hence to maximize compute performance
while respecting all constraints. The first key constraint is the585

physical size of the system as it needs to fit within the 0.1 m
diameter of the well. Second, power consumption is limited to
3.5 W because there is no space for ventilation in the electronics

housing and temperatures within an oil well temperature range
from 80 C to 170 C. Moreover, this application is important yet590

low volume as there are a limited number of wells in the world
and they only need to be inspected infrequently. For this rea-
son, we selected the Zynq 7000 which contains two hard ARM
Cortex-A9 CPU cores and an FPGA fabric as this means that
we can accelerate the FFT and neural network inference on a595

single chip; we could not include a DSP in our system without
exceeding the physical size constraint.

We then used our RCS methodology to identify the near-
optimal configuration of an 256K-point FFT accelerator and a
B512 DPU which yields an end-to-end latency of 22.2 s (see600

Figure 8). In contrast, the latency of the dual-DPU baseline
configuration is 32.6 s. This yields overall inspection times of
1.7 h and 2.1 h for the RCS-optimized configuration and the
baseline, respectively, for an oil well depth of 2.4 km (120 points
of inspection) and 1 hour of travel time. Our scheme hence605

reduces downtime by 0.4 h compared to the single-accelerator
configuration and 5.0 h compared to the offline processing ap-
proach, yielding substantial cost savings of 5.0k and 62.5k USD,
respectively, at an average facility (12.5K per hour).

7.2. Train Track Inspection610

Railways are a valuable and important infrastructure and it
is hence crucial that they have high reliability, i.e., the socio-
economic consequences of unexpected downtime can be signif-
icant. An attractive way of monitoring the condition of the rail-
way tracks is to install monitoring equipment on the trains that615

use the track. More specifically, we consider a predictive main-
tenance system that is attached to the bogies of the train and
continuously monitors the tracks. To sense the condition of the
track, the system requires high-bandwidth (i.e., 15 to 30 kHz)
accelerometers. Moreover, we require Analog to Digital Con-620

verters (ADCs) that can capture accelerometer output at 24 bit
resolution at sampling rates of 64 to 128 KSPS. Practical sys-
tems require multiple accelerometers, and the amount of data
captured per sample is hence from 3 to 6 MB. The resulting
data rates are typically in the range of 3 to 6 MB/s which means625

that offline processing is inconvenient. Moreover, the system
is installed closed to the bogies and the train is moving at high
speed (sometimes through rural or unpopulated areas with lim-
ited communication coverage). It is hence necessary to perform
the computation at the edge.630

We evaluate RCS in the context of a train track inspection
system called TrainDAQ [24] which is built around a Trenz
Electronics System on Module (SoM) [58] with a Xilinx Zynq
7020 SoC (as shown in Figure 13). TrainDAQ uses an FPGA-
based platform because it enables implementing a highly par-635

allel system in the FPGA that captures the output of the ADCs
and write it into DDR3 memory using the Zynq’s DMA con-
troller. This is critical to achieve the required data rates while
maintaining the other constraints, i.e., energy and physical size.
While the train has abundant energy available, attaching the640

monitoring system to the train’s power would result in the train
having to be re-certified and would hence incur a significant
cost overhead. For this reason, a practical track monitoring sys-
tem must be powered by batteries. For each sample, the system

9

Inspection
Points

Downhole
tool with

edge computing

Well pipes

Seabed

Figure 12: Oil well monitoring case study. Production must be halted during inspection, and higher performance hence means that the inspection system can be
moved faster through the well which in turn reduces inspection time and hence costs.

IOT Module Input CardsFPGA ADCProcessor

Figure 13: Train Monitoring System

then performs an FFT transform for the output of each sensor645

and feeds the output of these transforms to the DPU. The output
of the DPU will then be a classification of the state of the part
of the track that was sampled. This is typically on the order of 4
to 12 KB per sample, depending on the state of the track, which
is then transmitted, via the IoT module in Figure 13, to a back-650

end system if possible. Otherwise, the samples are buffered to
be transmitted when connectivity is restored. The IoT module
also contains a GPS which is used to map samples to the track
segment they cover.

The TrainDAQ deployment that we consider in this work655

has a 64K point FFT and a B512 DPU. Our RCS methodology
selects the dual-DPU and 4K FFT configuration (see Figure 7).
The sensors are active for 0.25 s and TrainDAQ then uses 6.5 s
to process the sample in the RCS-selected configuration. This
results in a spatial resolution of one measurement per 469 me-660

ters when the train velocity is 250 km/h. In contrast, the single-
DPU baseline uses 10.1 s to process a sample which yields one
sample every 722 m; the sensors are active for the same time
in both configurations. At 100 km/h, the RCS-selected config-
uration and the baseline yields spatial resolutions of one sam-665

ple per 188 m and 288 m, respectively. RCS hence enables us
to improve spatial resolution by 54% by simply utilizing the
FPGA-resources better.

8. Related Work

For any accelerator, the unique challenge is that it needs to670

exploit the specifics of the key computation of the target ap-
plication domain to achieve high efficiency. For an FFT ac-
celerator, the key challenges are hence to efficiently implement
the Discrete Fourier Transform (DFT) and the butterfly data ex-
change (which is what ScaleFFT focuses on).675

Signal-processing acceleration is a well studied area in both
continuous signal processing on chip multi-processors [59] and
within the embedded domain [60]. Accelerators are also pro-
posed for domain-specific scenarios, such as robot motion plan-
ning [61], speech recognition [62], and slow sensors [63].680

Authors in [64, 65] try to answer how to optimize a compu-
tational problem within a given chip’s transistor budget. They
also provide a model which projects forward to see what future
gains can and cannot be enabled from chip specialization. We

10

focus on FPGA and IP-library optimization with resource lim-685

itations, not developing new optimized functions. Many prior
accelerator architectures can be approximated by composing a
small number of hardware primitives. Accelerators can be gen-
erated by searching within such a rich accelerator space, i.e.,
compiler-based Design Space Exploration (DSE) [66]. They690

follow a similar DSE procedure to us, but at a different level,
i.e., they do not consider resource optimization.

LogCA [11] and NeuroMeter [12] are high-level perfor-
mance and energy model tools for hardware accelerators, use-
ful to identify design bottlenecks. Similarly, we have our own695

model extracted from area and performance information ex-
tracted from DSE for the elements of the IP-library. Neural
network design space exploration for multi-chip designs and
workload orchestration can be considered similar to our pro-
posal. DSE commonly chooses an specific allocation across700

several benchmarks [13]. Analog/mixed-signal machine learn-
ing accelerators could be an alternative to FFT transformations
(e.g., [67]). Nevertheless they rely on ASIC, so it is not suit-
able for low volume applications. It could be interesting for our
future work to use a similar methodology for FPGAs.705

Other related work partitions the available FPGA resources
into multiple processors, each tailored for a different subset of
the CNN convolutional layers [14, 15, 16]. They also invest
significant effort to orchestrate data movement and design ef-
ficient mapping strategies. Others offer support for high-level710

programming, resource estimation, and rapid and automatic de-
sign space exploration on FPGAs [68]. We provide a model to
estimate end-to-end latency in resource-constrained PdM sys-
tems, whereas these works do not discuss what happens when
the FPGA does not have enough resources for all processors.715

Regarding the need for FFT transformations, authors from
[69] show the need to improve memory management for neural
networks on edge systems (e.g., move to frequency domain via
FFT). Data movement is a key issue when performing inference
in edge devices. Authors in [70] proposed an FFT-based deep720

and distributed memory hierarchy, thus enabling data move-
ment over short wires. Other works propose scheduling DNN
accelerators for data reuse [71, 72]. This could be applied to
FPGAs, e.g., moving data from FFT to DNN. This however
puts further pressure on resource optimization since FPGA re-725

sources are also used for storage.
Closest related works that combine FPGA resources for FFT

and deep learning include: the use FPGA implementations of an
efficient FFT processor for FMCW radar signal processing [17];
a 1 million-point FFT on a single FPGA [18]; an ultra-long FFT730

architecture implemented in a re-configurable application spec-
ified processor [19]; and accelerating convolutional neural net-
work with FFT on embedded hardware [20]. These works are
however very domain specific, focusing on either pure hard-
ware ASIC, CUDA, near data computations (e.g., processing in735

memory) or hardware/software co-design. Our solution is valid
for scenarios when volume is low, and it is not feasible to pro-
duce ASICs or processing-capable memories. Our design com-
bines hardware and software on FPGA, and differently from
all previous works, we offer an optimized design for resource-740

limited scenarios. In addition, this particular feature makes our

design a good candidate for an inline accelerator integrated in
the core [73].

9. Conclusion and Future Directions

We have now presented the Resource-Constrained Acceler-745

ator Selection (RCS) methodology and the ScaleFFT acceler-
ator architecture which collectively improve the performance
of FPGA-accelerated Predictive Maintenance (PdM) systems
by allocating FPGA resources to the FFT and neural network
accelerators such that end-to-end latency is minimized. RCS750

effectively identifies near-optimal configurations and reduces
end-to-end latency by 2.4× on average for a 256K-point FFT
compared to our state-of-the-art baseline which accelerates ma-
chine learning inference but runs the FFT in software. We
demonstrate the real-world impact of RCS by considering two755

use cases, i.e., an oil well inspection system and a train track
monitoring system. RCS reduces the cost of downtime due
to inspection by 5.0k USD for an oil well with 120 inspection
points compared to the baseline and improves spatial resolution
by 54% in the train track monitoring system.760

The accelerator selection problem is not limited to resource-
constrained PdM systems. For instance, leading mobile SoCs
contain many accelerator types [74], and recent high-performance
processor SoCs, such as the Apple M2 [75], contain multi-
ple accelerators. Since RCS exploits the unique characteristics765

of resource-constrained PdM systems — to provide high effi-
ciency while remaining (relatively) simple — more research is
likely needed to identify efficient accelerator configurations in
other domains. In particular, we expect that such approaches
likely require (i) more advanced accelerator search strategies,770

and (ii) more comprehensive performance models. We aim to
target these challenges in the future.

Acknowledgments

This work has been supported by the Research Council of
Norway through the BAMPAM (grant no. 286596) and Rail-775

CBM (grant no. 296248) projects.

References

[1] F. Liu, G. Tang, Y. Li, Z. Cai, X. Zhang, T. Zhou, A Survey on Edge
Computing Systems and Tools, Proceedings of the IEEE 107 (8) (2019)
1537–1562. doi:10.1109/JPROC.2019.2920341.780

[2] G. Gobieski, B. Lucia, N. Beckmann, Intelligence Beyond the Edge: In-
ference on Intermittent Embedded Systems, in: Proceedings of the In-
ternational Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2019, pp. 199–213. doi:

10.48550/ARXIV.1810.07751.785

[3] D. Durocher, G. Feldmeier, Predictive Versus Preventive Maintenance,
IEEE Industry Applications Magazine 10 (5) (2004) 12–21. doi:10.1

109/MIA.2004.1330766.
[4] M. Khazraee, L. Zhang, L. Vega, M. B. Taylor, Moonwalk: NRE Opti-

mization in ASIC Clouds, in: Proceedings of the International Conference790

on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), 2017, pp. 511–526. doi:10.1145/3093337.303774
9.

[5] Xilinx, Zynq-7000 SoC, https://www.xilinx.com/products/sili
con-devices/soc/zynq-7000 (accessed on 22 April 2022).795

11

http://dx.doi.org/10.1109/JPROC.2019.2920341
http://dx.doi.org/10.48550/ARXIV.1810.07751
http://dx.doi.org/10.48550/ARXIV.1810.07751
http://dx.doi.org/10.48550/ARXIV.1810.07751
http://dx.doi.org/10.1109/MIA.2004.1330766
http://dx.doi.org/10.1109/MIA.2004.1330766
http://dx.doi.org/10.1109/MIA.2004.1330766
http://dx.doi.org/10.1145/3093337.3037749
http://dx.doi.org/10.1145/3093337.3037749
http://dx.doi.org/10.1145/3093337.3037749
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000

[6] Intel, Agilex FPGA and SoC FPGA, https://www.intel.com/cont
ent/www/us/en/products/details/fpga/agilex.html (accessed
on 22 April 2022).

[7] NVIDIA, NVIDIA Tegra: Next Generation Mobile Development, http
s://developer.nvidia.com/tegra-development (accessed on 22800

April 2022).
[8] Texas Instruments, KeyStone Architecture, https://training.ti.co

m/node/1138812 (accessed on 22 April 2022).
[9] Intel, Intel NUC - Small Form Factor Mini PC, https://www.intel.

com/content/www/us/en/products/details/nuc.html (accessed805

on 22 April 2022).
[10] D. F. Bacon, R. Rabbah, S. Shukla, FPGA Programming for the Masses,

Communications of the ACM 56 (4) (2013) 56–63. doi:10.1145/2436
256.2436271.

[11] M. S. B. Altaf, D. A. Wood, LogCA: A High-Level Performance Model810

for Hardware Accelerators, in: Proceedings of the 44th Annual Interna-
tional Symposium on Computer Architecture (ISCA), 2017, p. 375–388.
doi:10.1145/3079856.3080216.

[12] T. Tang, S. Li, L. Nai, N. Jouppi, Y. Xie, NeuroMeter: An Integrated
Power, Area, and Timing Modeling Framework for Machine Learning815

Accelerators Industry Track Paper, in: 2021 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA), 2021, pp.
841–853. doi:10.1109/HPCA51647.2021.00075.

[13] Z. Tan, H. Cai, R. Dong, K. Ma, NN-Baton: DNN Workload Orches-
tration and Chiplet Granularity Exploration for Multichip Accelerators,820

in: 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 1013–1026. doi:10.1109/ISCA5201

2.2021.00083.
[14] Y. Shen, M. Ferdman, P. Milder, Maximizing CNN Accelerator Effi-

ciency Through Resource Partitioning, in: Proceedings of the 44th An-825

nual International Symposium on Computer Architecture (ISCA), 2017,
p. 535–547. doi:10.1145/3079856.3080221.

[15] H. Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, V. Chandra, Het-
erogeneous Dataflow Accelerators for Multi-DNN Workloads, in: 2021
IEEE International Symposium on High-Performance Computer Archi-830

tecture (HPCA), 2021, pp. 71–83. doi:10.1109/HPCA51647.2021.0
0016.

[16] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, Y. Chen, HyPar: Towards
Hybrid Parallelism for Deep Learning Accelerator Array, in: 2019 IEEE
International Symposium on High Performance Computer Architecture835

(HPCA), 2019, pp. 56–68. doi:10.1109/HPCA.2019.00027.
[17] J. Heo, Y. Jung, S. Lee, Y. Jung, FPGA Implementation of an Efficient

FFT Processor for FMCW Radar Signal Processing, Sensors 21 (19). do
i:10.3390/s21196443.

[18] H. Kanders, T. Mellqvist, M. Garrido, K. Palmkvist, O. Gustafsson, A 1840

Million-Point FFT on a Single FPGA, Poznan University of Technology
Academic Journals. Electrical Engineering 66-I (10) (2019) 3863–3873.
doi:10.1109/TCSI.2019.2918403.

[19] F. Han, L. Li, K. Wang, F. Feng, H. Pan, B. Zhang, G. He, J. Lin, An
Ultra-Long FFT Architecture Implemented in a Reconfigurable Appli-845

cation Specified Processor, IEICE Electronics Express 13 (13) (2016)
20160504–20160504. doi:10.1587/elex.13.20160504.

[20] T. Abtahi, C. Shea, A. Kulkarni, T. Mohsenin, Accelerating Convolutional
Neural Network With FFT on Embedded Hardware, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 26 (9) (2018) 1737–850

1749. doi:10.1109/TVLSI.2018.2825145.
[21] Xilinx, DPU for Convolutional Neural Network., https://www.xilinx

.com/products/intellectual-property/dpu.html#overview

(accessed on 22 April 2022).
[22] Xilinx, Fast Fourier Transform v9.1 – LogiCORE IP Product Guide, ht855

tps://www.xilinx.com/content/dam/xilinx/support/docume

nts/ip_documentation/xfft/v9_1/pg109-xfft.pdf (accessed
on 10 October 2022).

[23] Nermina Kulovic, Transocean Rigs Land New Jobs with Better Day
Rates, https://www.offshore-energy.biz/transocean-rig860

s-land-new-jobs-with-better-day-rates/ (accessed on 22
April 2022).

[24] Mantena, Mantena and The Research Council of Norway with exciting
collaboration, https://mantena.org/news_en/2021/mantena-and
-the-research-council-of-norway-with-exciting-collabo865

ration/ (accessed on 22 April 2022).

[25] A. Garg, V. Vijayaraghavan, K. Tai, P. M. Singru, V. Jain, N. Krishnaku-
mar, Model Development Based on Evolutionary Framework for Condi-
tion Monitoring of a Lathe Machine, Measurement 73 (2015) 95–110.
doi:10.1016/j.measurement.2015.04.025.870

[26] A. Kanawaday, A. Sane, Machine Learning for Predictive Maintenance
of Industrial Machines Using IoT Sensor Data, in: 2017 8th IEEE Inter-
national Conference on Software Engineering and Service Science (IC-
SESS), 2017, pp. 87–90. doi:10.1109/ICSESS.2017.8342870.

[27] B. Luo, H. Wang, H. Liu, B. Li, F. Peng, Early Fault Detection of Ma-875

chine Tools Based on Deep Learning and Dynamic Identification, IEEE
Transactions on Industrial Electronics 66 (1) (2019) 509–518. doi:

10.1109/TIE.2018.2807414.
[28] M. Calabrese, M. Cimmino, F. Fiume, M. Manfrin, L. Romeo, S. Cecca-

cci, M. Paolanti, G. Toscano, G. Ciandrini, A. Carrotta, M. Mengoni,880

E. Frontoni, D. Kapetis, SOPHIA: An Event-Based IoT and Machine
Learning Architecture for Predictive Maintenance in Industry 4.0, Infor-
mation 11 (4). doi:10.3390/info11040202.

[29] R. Prytz, S. Nowaczyk, T. Rögnvaldsson, S. Byttner, Predicting the
Need for Vehicle Compressor Repairs Using Maintenance Records and885

Logged Vehicle Data, Engineering Applications of Artificial Intelligence
41 (2015) 139–150. doi:10.1016/j.engappai.2015.02.009.

[30] S. Hong, Z. Zhou, Application of Gaussian Process Regression for
Bearing Degradation Assessment, 2012 6th International Conference on
New Trends in Information Science, Service Science and Data Mining890

(ISSDM2012) (2012) 644–648.
[31] G. K. Durbhaka, B. Selvaraj, Predictive Maintenance for Wind Turbine

Diagnostics Using Vibration Signal Analysis Based on Collaborative Rec-
ommendation Approach, in: 2016 International Conference on Advances
in Computing, Communications and Informatics (ICACCI), 2016, pp.895

1839–1842. doi:10.1109/ICACCI.2016.7732316.
[32] N. Kolokas, T. Vafeiadis, D. Ioannidis, D. Tzovaras, Forecasting Faults

of Industrial Equipment Using Machine Learning Classifiers, in: 2018
Innovations in Intelligent Systems and Applications (INISTA), 2018, pp.
1–6. doi:10.1109/INISTA.2018.8466309.900

[33] F. De Vita, D. Bruneo, S. K. Das, A Novel Data Collection Framework
for Telemetry and Anomaly Detection in Industrial IoT Systems, in: 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design
and Implementation (IoTDI), 2020, pp. 245–251. doi:10.1109/IoTD

I49375.2020.00032.905

[34] K. S. Kiangala, Z. Wang, Initiating Predictive Maintenance for a Con-
veyor Motor in a Bottling Plant Using industry 4.0 Concepts, The Interna-
tional Journal of Advanced Manufacturing Technology 97 (2018) 3251–
3271. doi:10.1007/s00170-018-2093-8.

[35] T. dos Santos, F. J. T. E. Ferreira, J. M. Pires, C. Damásio, Stator Winding910

Short-Circuit Fault Diagnosis in Induction Motors Using Random Forest,
in: 2017 IEEE International Electric Machines and Drives Conference
(IEMDC), 2017, pp. 1–8. doi:10.1109/IEMDC.2017.8002350.

[36] S. Biswal, G. Sabareesh, Design and Development of a Wind Turbine Test
Rig for Condition Monitoring Studies, in: 2015 International Conference915

on Industrial Instrumentation and Control (ICIC), 2015, pp. 891–896. do
i:10.1109/IIC.2015.7150869.

[37] O. Aydin, S. Guldamlasioglu, Using LSTM Networks to Predict Engine
Condition on Large Scale Data Processing Framework, in: 2017 4th Inter-
national Conference on Electrical and Electronic Engineering (ICEEE),920

2017, pp. 281–285. doi:10.1109/ICEEE2.2017.7935834.
[38] R. G. Vasconcelos Machado, H. de Oliveira Mota, Simple Self-Scalable

Grid Classifier for Signal Denoising in Digital Processing Systems, in:
2015 IEEE Global Conference on Signal and Information Processing
(GlobalSIP), 2015, pp. 1057–1061. doi:10.1109/GlobalSIP.20925

15.7418359.
[39] S. Eke, T. Aka-Ngnui, G. Clerc, I. Fofana, Characterization of the Op-

erating Periods of a Power Transformer by Clustering the Dissolved Gas
Data, in: 2017 IEEE 11th International Symposium on Diagnostics for
Electrical Machines, Power Electronics and Drives (SDEMPED), 2017,930

pp. 298–303. doi:10.1109/DEMPED.2017.8062371.
[40] T. Huuhtanen, A. Jung, Predictive Maintenance of Photovoltaic Panels

via Deep Learning, in: 2018 IEEE Data Science Workshop (DSW), 2018,
pp. 66–70. doi:10.1109/DSW.2018.8439898.

[41] M. W. Hoffmann, S. Wildermuth, R. Gitzel, A. Boyaci, J. Gebhardt,935

H. Kaul, I. Amihai, B. Forg, M. Suriyah, T. Leibfried, V. Stich, J. Hicking,
M. Bremer, L. Kaminski, D. Beverungen, P. zur Heiden, T. Tornede, In-

12

https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex.html
https://developer.nvidia.com/tegra-development
https://developer.nvidia.com/tegra-development
https://developer.nvidia.com/tegra-development
https://training.ti.com/node/1138812
https://training.ti.com/node/1138812
https://training.ti.com/node/1138812
https://www.intel.com/content/www/us/en/products/details/nuc.html
https://www.intel.com/content/www/us/en/products/details/nuc.html
https://www.intel.com/content/www/us/en/products/details/nuc.html
http://dx.doi.org/10.1145/2436256.2436271
http://dx.doi.org/10.1145/2436256.2436271
http://dx.doi.org/10.1145/2436256.2436271
http://dx.doi.org/10.1145/3079856.3080216
http://dx.doi.org/10.1109/HPCA51647.2021.00075
http://dx.doi.org/10.1109/ISCA52012.2021.00083
http://dx.doi.org/10.1109/ISCA52012.2021.00083
http://dx.doi.org/10.1109/ISCA52012.2021.00083
http://dx.doi.org/10.1145/3079856.3080221
http://dx.doi.org/10.1109/HPCA51647.2021.00016
http://dx.doi.org/10.1109/HPCA51647.2021.00016
http://dx.doi.org/10.1109/HPCA51647.2021.00016
http://dx.doi.org/10.1109/HPCA.2019.00027
http://dx.doi.org/10.3390/s21196443
http://dx.doi.org/10.3390/s21196443
http://dx.doi.org/10.3390/s21196443
http://dx.doi.org/10.1109/TCSI.2019.2918403
http://dx.doi.org/10.1587/elex.13.20160504
http://dx.doi.org/10.1109/TVLSI.2018.2825145
https://www.xilinx.com/products/intellectual-property/dpu.html#overview
https://www.xilinx.com/products/intellectual-property/dpu.html#overview
https://www.xilinx.com/products/intellectual-property/dpu.html#overview
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.xilinx.com/content/dam/xilinx/support/documents/ip_documentation/xfft/v9_1/pg109-xfft.pdf
https://www.offshore-energy.biz/transocean-rigs-land-new-jobs-with-better-day-rates/
https://www.offshore-energy.biz/transocean-rigs-land-new-jobs-with-better-day-rates/
https://www.offshore-energy.biz/transocean-rigs-land-new-jobs-with-better-day-rates/
https://mantena.org/news_en/2021/mantena-and-the-research-council-of-norway-with-exciting-collaboration/
https://mantena.org/news_en/2021/mantena-and-the-research-council-of-norway-with-exciting-collaboration/
https://mantena.org/news_en/2021/mantena-and-the-research-council-of-norway-with-exciting-collaboration/
https://mantena.org/news_en/2021/mantena-and-the-research-council-of-norway-with-exciting-collaboration/
https://mantena.org/news_en/2021/mantena-and-the-research-council-of-norway-with-exciting-collaboration/
http://dx.doi.org/10.1016/j.measurement.2015.04.025
http://dx.doi.org/10.1109/ICSESS.2017.8342870
http://dx.doi.org/10.1109/TIE.2018.2807414
http://dx.doi.org/10.1109/TIE.2018.2807414
http://dx.doi.org/10.1109/TIE.2018.2807414
http://dx.doi.org/10.3390/info11040202
http://dx.doi.org/10.1016/j.engappai.2015.02.009
http://dx.doi.org/10.1109/ICACCI.2016.7732316
http://dx.doi.org/10.1109/INISTA.2018.8466309
http://dx.doi.org/10.1109/IoTDI49375.2020.00032
http://dx.doi.org/10.1109/IoTDI49375.2020.00032
http://dx.doi.org/10.1109/IoTDI49375.2020.00032
http://dx.doi.org/10.1007/s00170-018-2093-8
http://dx.doi.org/10.1109/IEMDC.2017.8002350
http://dx.doi.org/10.1109/IIC.2015.7150869
http://dx.doi.org/10.1109/IIC.2015.7150869
http://dx.doi.org/10.1109/IIC.2015.7150869
http://dx.doi.org/10.1109/ICEEE2.2017.7935834
http://dx.doi.org/10.1109/GlobalSIP.2015.7418359
http://dx.doi.org/10.1109/GlobalSIP.2015.7418359
http://dx.doi.org/10.1109/GlobalSIP.2015.7418359
http://dx.doi.org/10.1109/DEMPED.2017.8062371
http://dx.doi.org/10.1109/DSW.2018.8439898

tegration of Novel Sensors and Machine Learning for Predictive Mainte-
nance in Medium Voltage Switchgear to Enable the Energy and Mobility
Revolutions, Sensors 20 (7). doi:10.3390/s20072099.940

[42] V. Mathew, T. Toby, V. Singh, B. M. Rao, M. G. Kumar, Prediction of
Remaining Useful Lifetime (RUL) of Turbofan Engine Using Machine
Learning, in: 2017 IEEE International Conference on Circuits and Sys-
tems (ICCS), 2017, pp. 306–311. doi:10.1109/ICCS1.2017.83260

10.945

[43] C. Zhou, C.-K. Tham, GraphEL: A Graph-Based Ensemble Learning
Method for Distributed Diagnostics and Prognostics in the Industrial In-
ternet of Things, in: 2018 IEEE 24th International Conference on Par-
allel and Distributed Systems (ICPADS), 2018, pp. 903–909. doi:

10.1109/PADSW.2018.8644943.950

[44] A. Rivas, J. M. Fraile, P. Chamoso, A. González-Briones, I. Sittón, J. M.
Corchado, A Predictive Maintenance Model Using Recurrent Neural Net-
works, in: SOCO, 2019. doi:10.1007/978-3-030-20055-8_25.

[45] P. Adhikari, H. G. Rao, M. Buderath, Machine Learning based Data
Driven Diagnostics & Prognostics Framework for Aircraft Predictive955

Maintenance, in: 10th International Symposium on NDT in Aerospace
Dresden, Germany, 2018. doi:10.1109/icton51198.2020.9203551.

[46] H. Li, D. Parikh, Q. He, B. Qian, Z. Li, D. Fang, A. Hampapur, Improv-
ing Rail Network Velocity: A Machine Learning Approach to Predictive
Maintenance, Transportation Research Part C: Emerging Technologies 45960

(2014) 17–26. doi:10.1016/j.trc.2014.04.013.
[47] A. Lasisi, N. Attoh-Okine, Principal Components Analysis and Track

Quality Index: A Machine Learning Approach, Transportation Research
Part C: Emerging Technologies 91 (2018) 230–248. doi:10.1016/j.

trc.2018.04.001.965

[48] I. Daniyan, K. Mpofu, M. Oyesola, B. Ramatsetse, A. Adeodu, Artificial
Intelligence for Predictive Maintenance in the Railcar Learning Facto-
ries, Procedia Manufacturing 45 (2020) 13–18, learning Factories across
the value chain – from innovation to service – The 10th Conference on
Learning Factories 2020. doi:10.1016/j.promfg.2020.04.032.970

[49] R. Onanena, F. Chamroukhi, L. Oukhellou, D. Candusso, P. Aknin,
D. Hissel, Estimation of Fuel Cell Life Time Using Latent Variables
in Regression Context, in: 2009 International Conference on Machine
Learning and Applications, 2009, pp. 632–637. doi:10.1109/ICMLA.
2009.35.975

[50] T. Praveenkumar, M. Saimurugan, P. Krishnakumar, K. Ramachandran,
Fault Diagnosis of Automobile Gearbox Based on Machine Learning
Techniques, Procedia Engineering 97 (2014) 2092–2098, ”12th Global
Congress on Manufacturing and Management” GCMM - 2014. doi:

10.1016/j.proeng.2014.12.452.980

[51] T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P.
Basto, S. G. S. Alcalá, A Systematic Literature Review of Machine Learn-
ing Methods Applied to Predictive Maintenance, Computers and Indus-
trial Engineering 137 (2019) 106024. doi:10.1016/j.cie.2019.106
024.985

[52] J. Dalzochio, R. Kunst, E. Pignaton, A. Binotto, S. Sanyal, J. Favilla,
J. Barbosa, Machine Learning and Reasoning for Predictive Maintenance
in Industry 4.0: Current Status and Challenges, Computers in Industry
123 (2020) 103298. doi:10.1016/j.compind.2020.103298.

[53] G. M. Amdahl, Validity of the single processor approach to achieving990

large scale computing capabilities, in: Proceedings of the Spring Joint
Computer Conference (AFIPS), 1967, pp. 483–485.

[54] M. Koraei, O. Fatemi, M. Jahre, DCMI: A scalable strategy for accelerat-
ing iterative stencil loops on FPGAs, ACM Transactions on Architecture
and Code Optimization 16 (4) (2019) 1–24.995

[55] J. W. Cooley, J. W. Tukey, An Algorithm for the Machine Computation
of the Complex Fourier Series, Mathematics of Computation 19 (1965)
297–301.

[56] M. Garrido, A Survey on Pipelined FFT Hardware Architectures, Journal
of Signal Processing Systemsdoi:10.1007/s11265-021-01655-1.1000

[57] Energy Today, S&P Ratings: Offshore Rig Rates to Remain Low Till
2021, https://www.offshore-energy.biz/sp-ratings-off
shore-rig-rates-to-remain-low-till-2021/ (accessed on 22
April 2022).

[58] Trenz Electronic, Trenz Electronic TE0701 Carrier Board, https://wi1005

ki.trenz-electronic.de/display/PD/TE0701+TRM (accessed on
22 April 2022).

[59] B. Belhadj, A. Joubert, Z. Li, R. Héliot, O. Temam, Continuous Real-

World Inputs Can Open Up Alternative Accelerator Designs, in: Proceed-
ings of the International Symposium on Computer Architecture (ISCA),1010

2013, pp. 1–12. doi:10.1145/2485922.2485923.
[60] D. Liaqat, S. Jingoi, E. de Lara, A. Goel, W. To, K. Lee, I. De Moraes Gar-

cia, M. Saldana, Sidewinder: An Energy Efficient and Developer Friendly
Heterogeneous Architecture for Continuous Mobile Sensing, in: Proceed-
ings of the International Conference on Architectural Support for Pro-1015

gramming Languages and Operating Systems (ASPLOS), 2016, pp. 205–
215. doi:10.1145/2980024.2872398.

[61] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, D. J. Sorin, The Microar-
chitecture of a Real-Time Robot Motion Planning Accelerator, in: 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture1020

(MICRO), 2016, pp. 1–12. doi:10.1109/MICRO.2016.7783748.
[62] R. Yazdani, A. Segura, J. M. Arnau, A. Gonzalez, An Ultra Low-Power

Hardware Accelerator for Automatic Speech Recognition, in: Proceed-
ings of the International Symposium on Microarchitecture (MICRO),
2016, pp. 1–12. doi:10.1109/MICRO.2016.7783750.1025

[63] A. Wang, L. Chen, W. Xu, XPro: A Cross-End Processing Architec-
ture for Data Analytics in Wearables, in: Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA), 2017, pp. 69–80.
doi:10.1145/3140659.3080219.

[64] A. Fuchs, D. Wentzlaff, The Accelerator Wall: Limits of Chip Special-1030

ization, in: 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2019, pp. 1–14. doi:10.1109/HPCA

.2019.00023.
[65] S. Kumar, N. Sumner, V. Srinivasan, S. Margerm, A. Shriraman, Nee-

dle: Leveraging Program Analysis to Analyze and Extract Accelera-1035

tors from Whole Programs, in: 2017 IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2017, pp. 565–576.
doi:10.1109/HPCA.2017.59.

[66] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, T. Nowatzki, DSAGEN:
Synthesizing Programmable Spatial Accelerators, in: 2020 ACM/IEEE1040

47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 268–281. doi:10.1109/ISCA45697.2020.00032.

[67] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, N. Shanbhag, PROMISE: An End-to-End Design of a Pro-
grammable Mixed-Signal Accelerator for Machine-Learning Algorithms,1045

in: 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), 2018, pp. 43–56. doi:10.1109/ISCA.2018.00

015.
[68] D. Koeplinger, R. Prabhakar, Y. Zhang, C. Delimitrou, C. Kozyrakis,

K. Olukotun, Automatic Generation of Efficient Accelerators for Recon-1050

figurable Hardware, in: 2016 ACM/IEEE 43rd Annual International Sym-
posium on Computer Architecture (ISCA), 2016, pp. 115–127. doi:

10.1109/ISCA.2016.20.
[69] M.-Z. Ji, W.-C. Tseng, T.-J. Wu, B.-R. Lin, C.-H. Chen, Micro Darknet

For Inference: ESL Reference for Inference Accelerator Design, in: 20191055

International SoC Design Conference (ISOCC), 2019, pp. 69–70. doi:

10.1109/ISOCC47750.2019.9027644.
[70] S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin,

H. Kambalasubramanyam, P.-E. Gaillardon, Wire-Aware Architecture
and Dataflow for CNN Accelerators, in: Proceedings of the 52nd Annual1060

IEEE/ACM International Symposium on Microarchitecture (MICRO),
2019, p. 1–13. doi:10.1145/3352460.3358316.

[71] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Demmel,
J. Wawrzynek, Y. S. Shao, CoSA: Scheduling by Constrained Optimiza-
tion for Spatial Accelerators (2021). doi:10.48550/ARXIV.2105.011065

898.
[72] X. Chen, Y. Han, Y. Wang, Communication Lower Bound in Convolu-

tion Accelerators, in: 2020 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), 2020, pp. 529–541. doi:

10.1109/HPCA47549.2020.00050.1070

[73] D. Trilla, J.-D. Wellman, A. Buyuktosunoglu, P. Bose, NOVIA: A Frame-
work for Discovering Non-Conventional Inline Accelerators, in: MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO ’21, 2021, p. 507–521. doi:10.1145/3466752.3480094.

[74] M. D. Hill, V. J. Reddi, Accelerator-level parallelism, Communications1075

of the ACM 64 (12) (2021) 36–38.
[75] Apple, MacBook Air: M2 chip model tech specs, https://www.appl

e.com/mt/macbook-air-m2/specs/ (accessed on 11 August 2022).

13

http://dx.doi.org/10.3390/s20072099
http://dx.doi.org/10.1109/ICCS1.2017.8326010
http://dx.doi.org/10.1109/ICCS1.2017.8326010
http://dx.doi.org/10.1109/ICCS1.2017.8326010
http://dx.doi.org/10.1109/PADSW.2018.8644943
http://dx.doi.org/10.1109/PADSW.2018.8644943
http://dx.doi.org/10.1109/PADSW.2018.8644943
http://dx.doi.org/10.1007/978-3-030-20055-8_25
http://dx.doi.org/10.1109/icton51198.2020.9203551
http://dx.doi.org/10.1016/j.trc.2014.04.013
http://dx.doi.org/10.1016/j.trc.2018.04.001
http://dx.doi.org/10.1016/j.trc.2018.04.001
http://dx.doi.org/10.1016/j.trc.2018.04.001
http://dx.doi.org/10.1016/j.promfg.2020.04.032
http://dx.doi.org/10.1109/ICMLA.2009.35
http://dx.doi.org/10.1109/ICMLA.2009.35
http://dx.doi.org/10.1109/ICMLA.2009.35
http://dx.doi.org/10.1016/j.proeng.2014.12.452
http://dx.doi.org/10.1016/j.proeng.2014.12.452
http://dx.doi.org/10.1016/j.proeng.2014.12.452
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1016/j.cie.2019.106024
http://dx.doi.org/10.1016/j.compind.2020.103298
http://dx.doi.org/10.1007/s11265-021-01655-1
https://www.offshore-energy.biz/sp-ratings-offshore-rig-rates-to-remain-low-till-2021/
https://www.offshore-energy.biz/sp-ratings-offshore-rig-rates-to-remain-low-till-2021/
https://www.offshore-energy.biz/sp-ratings-offshore-rig-rates-to-remain-low-till-2021/
https://wiki.trenz-electronic.de/display/PD/TE0701+TRM
https://wiki.trenz-electronic.de/display/PD/TE0701+TRM
https://wiki.trenz-electronic.de/display/PD/TE0701+TRM
http://dx.doi.org/10.1145/2485922.2485923
http://dx.doi.org/10.1145/2980024.2872398
http://dx.doi.org/10.1109/MICRO.2016.7783748
http://dx.doi.org/10.1109/MICRO.2016.7783750
http://dx.doi.org/10.1145/3140659.3080219
http://dx.doi.org/10.1109/HPCA.2019.00023
http://dx.doi.org/10.1109/HPCA.2019.00023
http://dx.doi.org/10.1109/HPCA.2019.00023
http://dx.doi.org/10.1109/HPCA.2017.59
http://dx.doi.org/10.1109/ISCA45697.2020.00032
http://dx.doi.org/10.1109/ISCA.2018.00015
http://dx.doi.org/10.1109/ISCA.2018.00015
http://dx.doi.org/10.1109/ISCA.2018.00015
http://dx.doi.org/10.1109/ISCA.2016.20
http://dx.doi.org/10.1109/ISCA.2016.20
http://dx.doi.org/10.1109/ISCA.2016.20
http://dx.doi.org/10.1109/ISOCC47750.2019.9027644
http://dx.doi.org/10.1109/ISOCC47750.2019.9027644
http://dx.doi.org/10.1109/ISOCC47750.2019.9027644
http://dx.doi.org/10.1145/3352460.3358316
http://dx.doi.org/10.48550/ARXIV.2105.01898
http://dx.doi.org/10.48550/ARXIV.2105.01898
http://dx.doi.org/10.48550/ARXIV.2105.01898
http://dx.doi.org/10.1109/HPCA47549.2020.00050
http://dx.doi.org/10.1109/HPCA47549.2020.00050
http://dx.doi.org/10.1109/HPCA47549.2020.00050
http://dx.doi.org/10.1145/3466752.3480094
https://www.apple.com/mt/macbook-air-m2/specs/
https://www.apple.com/mt/macbook-air-m2/specs/
https://www.apple.com/mt/macbook-air-m2/specs/

	Introduction
	The Anatomy of Predictive Maintenance Systems
	Resource-Constrained Accelerator Selection
	ScaleFFT: Resource-Scalable FFT Acceleration
	State-of-the-art FFT Accelerators
	Resource-Scalable FFT Acceleration

	Experimental Setup
	Platform
	Benchmarks

	Results
	Performance
	Power/Energy Efficiency

	Real-World Case Studies
	Oil Well Inspection
	Train Track Inspection

	Related Work
	Conclusion and Future Directions

