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Abstract. We study composition operators on the Hardy space H2 of Dirichlet series with

square summable coefficients. Our main result is a necessary condition, in terms of a

Nevanlinna-type counting function, for a certain class of composition operators to be compact
on H2. To do that we extend our notions to a Hardy space H2

Λ of generalized Dirichlet series,

induced in a natural way by a sequence of Beurling’s primes.

1. Introduction

We consider the increasing sequence {pn}n≥1 of primes and an arbitrary increasing sequence
{qn}n≥1 satisfying the following:

(i) The set {log(pn)}n≥1 ∪ {log(qn)}n≥1 is Q-linear independent.
(ii) {qn}n≥1 is increasing, unbounded and each term is greater than 1.

For our purposes we will say that a real number q > 1 is a generalized prime if the set
{log(pn)}n≥1 ∪ {log(q)} is Q-linear independent.

We will denote by Np,q = {λn}n≥1 the increasing sequence of numbers that can be written
as a (unique) finite product of terms of the set {pn}n≥0 ∪ {qn}n≥1, i.e.

λ = paqb := pa1
1 · p

a2
2 · . . . · q

b1
1 · q

b2
2 · . . . .

A Dirichlet series is a function g of the form

g(s) =
∑
n≥1

an
ns
, s = σ + it.

The set of numbers Np,q = {λn}n≥1 corresponds to generalized Dirichlet series, meaning
function of the form

f(s) =
∑
n≥1

an
λsn
, s = σ + it.

It is well-known that if a generalized Dirichlet series converges at a point s0 = σ0 + it0, then it
converges for every s ∈ Cσ0 , where by Cθ we denote the half-plane {z : Re z ≥ θ}, θ ∈ R.

The first to introduce such systems of numbers was Beurling [6]. Studying general Beurling’s
systems gives us a better understanding of the exceptional system of the classical primes. We
refer the interested reader to [12, 18, 13, 25] for results related to number theory, like the prime
number theorem and the Riemann hypothesis. Our point of view is more operator theoretical,
a system of Beurling’s primes naturally induces a Hardy space of generalized Dirichlet series,
with frequencies Λ = {log λn}n≥1 [17]. The idea behind using such systems is that the behavior
of certain operators does not depend on the choice of primes.

The space H2
Λ of generalized Dirichlet series with square summable coefficients is defined as

H2
Λ =

f(s) =
∑
n≥1

an
λsn

: ‖f‖2H2
Λ

=
∑
n≥1

|an|2 < +∞

 .
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The Hardy space H2 [15] is the subspace of H2
Λ containing all Dirichlet series,

H2 =

f(s) =
∑
n≥1

an
ns

: ‖f‖2H2 =
∑
n≥1

|an|2 < +∞

 .

Gordon and Hedenmalm [14] determined the class G of analytic functions ψ : C 1
2
→ C 1

2
that

induce bounded composition operators Cψ(f) = f ◦ ψ on H2. The class of symbols G consists
of all ψ(s) = c0s+ϕ(s), where c0 is a non-negative integer and ϕ is a Dirichlet series such that:

(i) If c0 = 0, then ϕ(C0) ⊂ C 1
2
.

(ii) If c0 ≥ 1, then ϕ(C0) ⊂ C0 or ϕ ≡ iτ for some τ ∈ R.

Furthermore, a symbol ψ ∈ G with c0 ≥ 1 induces a norm-one composition operator. We will
use the notation G0 and G≥1 for the subclasses that satisfy (i) and (ii), respectively.

Defining the space H2
Λ, in some sense we added infinitely many prime-like numbers on the

structure of H2. Our first aim is to prove that this does not have an effect on the behavior,
meaning boundedness and compactness of a composition operator with symbol ψ ∈ G≥1.

Theorem 1.1. A symbol ψ(s) = c0s+ϕ(s) ∈ G≥1, induces a bounded operator Cψ on H2
Λ with

norm ‖Cψ‖ = 1.

Theorem 1.2. Suppose ψ(s) = c0s + ϕ(s) ∈ G≥1 and that Cψ is a compact operator on H2.
Then, Cψ is compact on H2

Λ.

In Section 4, we work on the compactness of composition operators on the Hardy space H2.
O. F. Brevig and K–M. Perfekt [9] characterized compact composition operators on H2 with
symbols in G0. For symbols ψ(s) = c0s+ϕ(s) ∈ G≥1, F. Bayart [5] gave the following sufficient
condition for the composition operator Cψ to be compact

(1) lim
Rew→0+

Nψ(w)

Rew
= 0,

where the Nevanlinna-type counting function Nψ is defined as

Nψ(w) =
∑

s∈ψ−1({w})
Re s>0

Re s.

Conversely, Bailleul [1] for finitely valent symbols, where φ is supported on a finite set of
primes and Brevig and Perfekt [8] under the assumption that φ is supported on single prime,
proved that (1) is also necessary for the composition operator Cψ to be compact. We say that
a Dirichlet series φ is supported on a set of primes P if

φ(s) =
∑
p|n
p∈P

an
ns
.

Our next result is a necessary condition without any additional assumption on the symbol
ψ ∈ G≥1. Specifically, we replace pointwise convergence in (1) with L1(T∞) convergence. This
answers a question posed by F. Bayart [5, Question 3.6].

Theorem 1.3. Suppose a symbol ψ ∈ G≥1 induces a compact composition operator Cψ on H2.
Then

(2) lim
Rew→0

ˆ

T∞

Nψχ(w)

Rew
dm∞(χ) = 0.
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The classical technique for proving such necessary conditions for compactness goes through
the submean value property of the associated counting function and the behavior of the re-
producing kernels near the boundary, see for example [24]. In Section 4.1 we prove the weak
submean value property for the average counting function

´
T∞

Nψχ(w) dm∞(χ), Theorem 4.6.

Using geometric function theory results, related to the distortion and the boundary behavior of
conformal maps, we will be able to transfer our notions to the disk setting. The weak submean
value property will then follow by classical results due to Shapiro [24].

The main difficult in our setting is that reproducing kernels, kw(s) = ζ(w + s), on H2 are
well defined only for points w ∈ C 1

2
.

F. Bayart have found an Example 5.2, of a non-compact and bounded composition operator
with symbol in G≥1, that satisfies (2). Theorem 1.3 gives us the L1(T∞) convergence of the
quantity Nψ(w)(Rew)−1 → 0. It may be a step closer, but the characterization of compact
composition operators, with symbols in G≥1, remains an open problem [4, 5].

For our purposes it was enough to study composition operators Cψ with symbols in the class
G≥1. It would be interesting to have a characterization of the symbols that induce bounded
composition operators on H2

Λ.

Acknowledgments. I would like to thank my supervisor, Karl–Mikael Perfekt, for his constant
support and guidance. I am indebted to him and Ole Fredrik Brevig for the idea to add Beurling
primes to the structure of the Hardy spaces of Dirichlet series. Also, I would like to extend
my gratitude to Frédéric Bayart for letting me include his Example 5.2 and for our fruitful
mathematical conversations during my research visit at the Laboratoire de Mathématiques Blaise
Pascal, Clermont-Ferrand.

Part of the work has been conducted during a research visit at the Department of Mathematics
in the Aristotle University of Thessaloniki.

Notation. Throughout the article, we will be using the convention that C denotes a positive
constant which may vary from line to line. We will write that C = C(Ω) to indicate that the
constant depends on a parameter Ω.

2. Background material

2.1. Composition operators in the disk setting. The classical Hardy spaces H2 consists
of all holomorphic functions in the unit disk with square summable Taylor coefficients

H2 =

f(s) =
∑
n≥0

anz
n : ‖f‖2H2 =

∑
n≥0

|an|2 < +∞

 .

By the Littlewood subordination principle [20], every holomorphic self-map of the unit disk,
φ, induces a bounded composition operator on H2. J. Shapiro in his seminal paper [24] charac-
terized the compact composition operator Cφ in terms of the Nevanlinna counting function

Nφ(z) =
∑

zi∈φ−1({z})

log
1

|zi|
, z 6= φ(0).

The composition operator Cφ is compact on H2 if and only if

(3) lim
|z|→1−

Nφ(z)

log 1
|z|

= 0.
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In order to prove the above theorem, J. Shapiro makes use of the Littlewood–Paley and the
Stanton formulae for the norm of a function f ∈ H2 and its image Cφ(f), respectively.

(4) ‖f‖2H2 = |f(0)|2 +
2

π

ˆ

D

|f ′(z)|2 log
1

|z|
dA(z).

(5) ‖Cφ(f)‖2H2 = |f ◦ φ(0)|2 +
2

π

ˆ

D

|f ′(z)|2Nφ(z) dA(z),

where dA(z) = dx dy, z = x+ iy, is the area measure.

2.2. The infinite polytorus and vertical limits. The infinite polytorus T∞ is the countable
infinite Cartesian product of copies of the unit circle T,

T∞ = {χ = (χ1, χ2, . . . ) : χj ∈ T, j ≥ 1} .

As a compact abelian group with respect to coordinate-wise multiplication it posses a unique
Haar measure m∞ [23]. We can identify the measure m∞ with the countable infinite product
measure m×m× · · · , where m is the normalized Lebesgue measure of the unit circle.

The Q-linear independence of the set {log(pn)}n≥1∪{log(qn)}n≥1, implies that T∞ is isomor-
phic to the group of characters of ((Qp,q)+, ·), where (Qp,q)+ are the fractions of (Np,q, ·). Given
a point χ = (χ1, χ2, . . . ) ∈ T∞, the corresponding character χ : (Qp,q)+ → T is the completely
multiplicative function on Np,q such that χ(pj) = χ2j , χ(qj) = χ2j−1, extended to (Qp,q)+

through the relation χ(λ−1
n ) = χ(λn). From now on we identify a point χ = (χ1, . . . ) ∈ T∞ with

the corresponding character χ(λn).
Suppose f(s) =

∑
n≥1

an
λsn

and χ(λn) is a character. The vertical limit function fχ is defined as

fχ(s) =
∑
n≥1

an
λsn
χ(λn).

Kronecker’s theorem [7] justifies the name, since for any ε > 0, there exists a sequence of
real numbers {tj}j≥1 such that f(s + itj) → fχ(s) uniformly on Cσu(f)+ε. The abscissae of
convergence are defined likewise with the theory of Dirichlet series.

σc(f) = inf

σ ∈ R : f(s) =
∑
n≥1

an
λσn

converges

 ,

σa(f) = inf

σ ∈ R : f(s) =
∑
n≥1

|an|
λσn

converges

 ,

σu(f) = inf

σ ∈ R : f(s) =
∑
n≥1

an
λsn

converges uniformly in Cσ

 .

For a symbol ψ(s) = c0s+ ϕ(s) ∈ G we set

ψχ(s) = c0s+ ϕχ(s),

and we observe that for every χ ∈ T∞ and f ∈ H2
Λ,

(6) (Cψ(f))χ = fχc0 ◦ ψχ.
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Note that for a Dirichlet series f ∈ H2 ⊂ H2
Λ the vertical limit function has the form

fχ(s) =
∑
n≥1

anχ(n)

ns
,

where the character χ(n) exists in the dual group of (Q+, ·), which is also isomorphic to T∞.

2.3. Hardy spaces on the infinite polytorus and the Bohr-lift. We will make a short
presentation of those topics and we refer to [11, 15, 22] for further information. For our purposes
it would be enough to define only the spaces H2(T∞) and H∞(T∞), but for expository reasons
we will consider 1 ≤ p ≤ ∞. Let us first recall what happens in one dimension. The Hardy space
Hp, 1 ≤ p ≤ ∞ consists of all functions in Lp(T, dm) with vanishing negative Fourier coefficients.
The Fourier coefficient of a function g ∈ L1(T∞) at a sequence a = (a1, a2, . . . ) ∈ Z∞0 is defined
as

ĝ(a) =

ˆ

T∞

g(z)z−a dm∞(z),

where Z∞0 is the set of all compactly supported sequences with integer terms and

za = za1
1 · z

a2
2 · . . . ,

is the multi-index notation. Similarly, we will denote by N∞0 the set of all compactly supported
sequences of non-negative integers.

In a similar manner to the unit circle, the Hardy space Hp(T∞), 1 ≤ p ≤ ∞ is defined as
the subspace of Lp(T∞), which contains all the functions with vanishing Fourier coefficients at
sequences in Z∞0 \ N∞0 .

By the definition of Np,q = {λn}n≥1, for every n ∈ N there exist two unique sequences in N∞0 ,
γp(λn) and γq(λn), such that

λn = pγp(λn)qγq(λn).

Starting with a generalized Dirichlet polynomial f(s) =
∑
n≥1

an
λsn

and mapping its prime term

to a new variable, in the following way

p−si 7→ χ2j , q−si 7→ χ2j−1, i ∈ N,

we define the Bohr-lift of f as

(7) B(f) :=
∑
n≥1

anχ(λn).

The Bohr-lift is an isometric isomorphism between H2
Λ and H2(T∞). It is also, a norm

preserving homeomorphism from H∞ into H∞(T∞), see for example [15]. By H∞ we denote
the space of all bounded Dirichlet series in C0, equipped with the uniform norm.

By Carleson theorem for H2(T∞) [16, Theorem 1.5], for every f ∈ H2
Λ the series B(f) :=∑

n≥1

anχ(λn) converges for almost every character χ ∈ T∞.

Thus, for every f ∈ H2
Λ and for almost every χ ∈ T∞, we have that

σc(fχ) ≤ 0.

2.4. The ergodic theorem. It is known [22, Section 2.2] that given a sequence {an}n≥1 of
Q-linear independent real numbers, then the Kronecker flow {Tt}t∈R is ergodic, where

(8) Tt(χ1, χ2, . . . ) = (e−ita1χ1, e
−ita2χ2, . . . ).

By Birkhoff–Khinchin ergodic theorem, we obtain the following.
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Theorem 2.1 ([10, 22]). If g ∈ L1(T∞), then for almost every χ0 ∈ T∞,

(9) lim
T→+∞

1

2T

T̂

−T

g (Ttχ0) dt =

ˆ

T∞

g(χ) dm∞(χ).

If g is continuous, then (9) holds for every χ0 ∈ T∞.

Consequently, for every f ∈ H2
Λ and for almost every character χ0(λn)

(10) lim
T→+∞

1

2T

T̂

−T

|fχ0(it)|2 dt =

ˆ

T∞

|B(f)|2 dm∞ (χ) .

2.5. The Littlewood–Paley and Stanton’s formulae. As in [4, Lemma 2], for every f ∈ H2
Λ

and T > 0, we have the following Littlewood–Paley formula

(11) ‖f‖2H2
Λ

= |f(+∞)|2 +
2

T

ˆ

T∞

∞̂

0

T̂

−T

∣∣f ′χ(σ + it)
∣∣2 σ dt dσ dm∞(χ).

Suppose ψ(s) = c0s+ ϕ(s) ∈ G≥1, by a non-injective change of variables [24],

(12) ‖Cψ(f)‖2 = |f(+∞)|2 +
2

π

ˆ

C0

ˆ

T∞

∣∣f ′χc0 (w)
∣∣2Nψχ(w, T ) dm∞(χ) dA(w),

where the counting function Nψχ(w, T ) is defined as

Nψχ(w, T ) =
π

T

∑
s∈ψ−1

χ ({w})
| Im s|<T
Re s>0

Re s.

3. When do composition operators change adding primes?

In this section we will study the behavior of a composition operator Cψ, ψ ∈ G≥1 on the
space H2

Λ. Our approach has been inspired by results in [8, Section 3].
Let Nq = {bk}k≥1 be the increasing sequence of numbers that can be written as a finite

product of terms of the set {qn}n≥1. We observe that b−si H2 ⊥ b−sj H2, when bi 6= bj . Thus, H2
Λ

has the following orthogonal decomposition

(13) H2
Λ =

⊕
k≥1

b−sk H
2.

Proposition 3.1. Let ψ(s) = c0s+ϕ(s) ∈ G≥1 and k ∈ N. Then, the composition operator Cψ
maps b−sk H2 into b−c0sk H2 and its restriction Cψ,k to b−sk H2 has norm ‖Cψ‖ = 1.

Proof. First, we observe that

Cψ(b−sk n−s) = b−sc0k b
−ϕ(s)
k Cψ(n−s) ∈ b−sc0k H2.

The Bohr–lift respects multiplication [15], that is

B (mf) = B (m)B (f) , m ∈ H∞, f ∈ H2.

For every Dirichlet polynomial f , we have that∥∥Cψ(b−sk f)
∥∥2

H2
Λ

=
∥∥∥b−sc0k b

−ϕ(s)
k Cψ(f)

∥∥∥2

H2
Λ

=

ˆ

T∞

∣∣∣B (b−ϕ(s)
k

)
B (Cψ(f))

∣∣∣2 dm∞(χ).
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As we have already discussed, the Bohr–lift is norm preserving between H∞ and H∞(T∞).
Therefore ∥∥∥B (b−ϕ(s)

k

)∥∥∥
H∞(T∞)

=
∥∥∥b−ϕ(s)
k

∥∥∥
H∞
≤ 1.

Thus ∥∥Cψ(b−sk f)
∥∥
H2

Λ

≤ ‖Cψ(f)‖H2 ≤
∥∥b−sk f

∥∥
H2

Λ

. �

Corollary 3.2. Let ψ(s) = c0s + ϕ(s) ∈ G≥1. Then, the induced composition operator on H2
Λ

has the following orthogonal decomposition

(14) Cψ =
⊕
k≥0

Cψ,k.

Proof of Theorem 1.1. The proof follows directly from the Corollary 3.2. �

Proof of Theorem 1.2. By (14), it is sufficient to prove the following:

(i) ‖Cψ,k‖ → 0.
(ii) Cψ,k is compact for every k ≥ 0.

First we will prove (i). By Theorem 2.1, for every Dirichlet polynomial f ∈ H2 and for almost
every χ0 ∈ T∞, we have that∥∥Cψ,k(b−sk f)

∥∥2

H2
Λ

=

ˆ

T∞

∣∣∣B (b−ψk Cψ(f)
)

(χ)
∣∣∣2 dm∞(χ)

= lim
T→+∞

1

2T

T̂

−T

b
−2 Re(ψχ0 (it))
k

∣∣B (Cψ(f)) (λ−itn χ0)
∣∣2 dt.

The symbol ψ has boundary values ψχ(it) = lim
σ→0+

ψχ(σ + it) for almost every t ∈ R and for

almost every χ ∈ T∞. Furthermore, the vertical limit ψχ is in the class G≥1, see [3, 8]. Thus

∥∥Cψ,k(b−sk f)
∥∥2

H2
Λ

≤ lim
T→+∞

1

2T

T̂

−T

bbkc−2 Re(ψχ0 (it)) ∣∣B (Cψ(f)) (λ−itn χ0)
∣∣2 dt

=
∥∥Cψ(bbkc−sf)

∥∥2

H2 ,(15)

where b·c is the floor function. We assume that (i) fails, without loss of generality there exist
δ > 0 and a sequence of Dirichlet polynomials {fk}k≥1 in the unit ball of H2 such that

(16)
∥∥Cψ(bbkc−sfk)

∥∥
H2 ≥

∥∥Cψ(b−sk fk)
∥∥
H2

Λ

> δ, k ∈ N.

The sequence {bbkc−sfk}k≥1 converges weakly to 0 in H2 and as consequence

lim
n→+∞

∥∥Cψ(bbkc−sfk)
∥∥
H2 = 0.

This contradicts with (16). Therefore,

‖Cψ,k‖ → 0.

For (ii), we consider an arbitrary sequence {b−sk gj}j≥1, which converges weakly to 0 and we
observe that {gj}j≥1 is also weakly convergent to 0 in H2. This implies that∥∥Cψ(b−sk gj)

∥∥
H2

Λ

≤ ‖Cψ(gj)‖H2 → 0.

Thus, Cψ,k is compact for every k ≥ 1. �
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4. Symbols that do not depend on a prime

4.1. Submean value property. Let Ω be an open subset of C. We say that a function
u : Ω→ [−∞,∞) satisfies the submean value property if for every disk D(w, r) ⊂ Ω

u(w) ≤ 1

|D(w, r)|

ˆ

D(w,r)

u(z) dA(z),

where |D(w, r)| = πr2 is the area of the disk.
Shapiro [24, Section 4] proved that for every holomorphic self-map of the unit disk φ, the

Nevanlinna counting function Nφ satisfies the submean value property in D \ {φ(0)}.
The aim of this subsection is to prove the weak submean value property Theorem 4.6 for the

average
´

T∞
Nψχ(w) dm∞(χ), where ψ ∈ G≥1.

(17)

ˆ

T∞

Nψχ(w) dm∞(χ) ≤ C

|D(w, r)|

ˆ

D(w,r)

ˆ

T∞

Nψχ(z) dm∞(χ) dA(z).

Our argument will rely on a technique which has been developed in [9, 19] and allows us to
transfer our notions in the disk setting.

We consider the unique conformal map F from the unit disk onto the rectangle

R = {z : | Im z| < 2, 0 < Re z < 2},

with F (0) = 1 and F ′(0) > 0.

Lemma 4.1. Suppose s is a point with 0 < Re s < 1 and | Im s| < 2. Then

(18) 1− |F−1(s)|2 ≤ C Re s.

Furthermore, if 0 < Re s < 1 and | Im s| < 1. Then

(19) 1− |F−1(s)|2 ≥ C Re s.

Proof. By the Koebe quarter theorem [21, Corollary 1.4], for every s ∈ R, we have that

(20)
1− |F−1(s)|2

4
∣∣(F−1)

′
(s)
∣∣ ≤ dist(s, ∂R) ≤ 1− |F−1(s)|2∣∣(F−1)

′
(s)
∣∣ .

By the Caratheodory [21, Theorem 2.6] and the Kellogg-Warschawski theorems [21, Theo-
rem 3.9], there exist absolute constants δ1, δ2 > 0 such that for 0 < Re s < 1 and | Im s| < 1

0 < δ1 < |
(
F−1

)′ | < δ2 <∞.

This and (20) imply (19).

Again, by the Kellogg-Warschawski theorem there exists r > 0 such that |
(
F−1

)′
(s)| is

bounded in R ∩D
(
F−1(±2i), r

)
. Now, (18) follows by the Koebe quarter theorem working as

above. �

Lemma 4.2 ([19]). Let Ω be a bounded subdomain of C and φ : D→ Ω be holomorphic. Then,
the classical Nevanlinna counting function Nφ(w) satisfies the submean value property.

Lemma 4.3. Let ψ ∈ G≥1. Then, there exists an absolute constant C > 0 such that

(21) Nψ(w, 1) ≤ C

|D(w, r)|

ˆ

D(w,r)

Nψ(z, 2) dA(z),

for every disk D(w, r) ⊂ C0 \ C 1
2
.
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Proof. Let Fσ(z) = F (z) + σ be the Riemann map from the unit disk onto the rectangle

Rσ = {z : σ < Re z < 2 + σ, | Im z| < 2} ,

with Fσ(0) = 1 + σ and F ′σ(0) > 0.
By Lemma 4.1

(22) 1− |F−1
σ (s)|2 ≤ C1(Re s− σ),

whenever σ < Re s < 1, | Im s| < 2 and

(23) 1− |F−1
σ (s)|2 ≥ C2(Re s− σ),

whenever σ < Re s < 1, | Im s| < 1.
We observe that Re s ≤ Reψ(s) and that

1−
∣∣F−1
σ (s)

∣∣2 ∼ log
1∣∣F−1

σ (s)
∣∣ , s ∈ Rσ ∩ C0 \ C 1

2
.

By (23), for z ∈ D(w, r) ⊂ C0 \ C 1
2

Nψ(z, 1, 2σ) := π
∑

s∈ψ−1({z})
| Im s|<1
Re s>2σ

Re s = π
∑

s∈ψ−1({z})
| Im s|<1

2σ<Re s< 1
2

Re s

≤ 2π
∑

s∈ψ−1({z})
| Im s|<1
σ<Re s< 1

2

(Re s− σ) ≤ C
∑

s∈ψ−1({z})
| Im s|<2
σ<Re s< 1

2

(
1−

∣∣F−1
σ (s)

∣∣2) ≤ CNψ◦Fσ (z).

By (22), for z ∈ D(w, r), we have that

Nψ◦Fσ (z) ≤ C
∑

s∈ψ−1({z})
| Im s|<2
σ<Re s< 1

2

(
1−

∣∣F−1
σ (s)

∣∣2) ≤ Cπ
2

∑
s∈ψ−1({z})
| Im s|<2
σ<Re s< 1

2

Re s = CNψ(w, 2, σ).

By Lemma 4.2 the function Nψ◦Fσ satisfies the submean value property and

Nψ(z, 1, 2σ) ≤ C1Nψ◦Fσ (z) ≤ C2Nψ(z, 2, σ).

Therefore

(24) Nψ(w, 1, 2σ) ≤ C

|D(w, r)|

ˆ

D(w,r)

Nψ(z, 2, σ) dA(z).

We can apply the monotone convergence theorem to let σ → 0+, yielding that

Nψ(w, 1) ≤ C

|D(w, r)|

ˆ

D(w,r)

Nψ(z, 2) dA(z),

for an absolute constant C > 0. �

The following theorem will allow us to apply Theorem 2.1 for the counting function Nψχ(w).

Theorem 4.4. [4] Let ψ(s) = c0s+ ϕ(s) ∈ G≥1. Then, for every w ∈ C0

(25) Nψ(w) ≤ Rew

c0
.
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The following lemma will be of key importance for the proof of the weak submean value
property, Theorem 4.6, and Theorem 4.7. Despite its technical and maybe serendipitous look,
the idea behind Lemma 4.5 may be useful. See, for example the interchange of limits problem
[9, Problem 1] and the partial solution of it [19, Theorem 4.9].

Lemma 4.5. Let ψ ∈ G≥1, T > 0 and w ∈ C0. Then

(26)

ˆ

T∞

Nψχ(w) dm∞(χ) =

ˆ

T∞

Nψχ(Rew) dm∞(χ) =
1

2πc0

ˆ

T∞

+∞ˆ

−∞

Nψχ(w + it, T ) dt dm∞(χ).

Proof. We observe that s ∈ ψ−1
χ ({w+it}) if and only if s− it

c0
∈ ψ−1

χχt({w}), where χt(n) = n−
it
c0

and t ∈ R. Therefore

ˆ

T∞

+∞ˆ

−∞

Nψχ(w + it, T ) dt dm∞(χ) =
π

T

ˆ

T∞

+∞ˆ

−∞

∑
s∈ψ−1

χχt
({w})

−T− t
c0
<Im s<T− t

c0
Re s>0

Re s dt dm∞(χ).

The Haar measure m∞ is rotation invariant. This and Tonelli’s theorem imply that

ˆ

T∞

+∞ˆ

−∞

Nψχ(w + it, T ) dt dm∞(χ) =
π

T

ˆ

T∞

+∞ˆ

−∞

∑
s∈ψ−1

χ ({w})
−T− t

c0
<Im s<T− t

c0
Re s>0

Re s dt dm∞(χ)

=
π

T

ˆ

T∞

∑
s∈ψ−1

χ ({w})
Re s>0

Re s

c0(T−Im s)ˆ

c0(− Im s−T )

dt dm∞(χ)

= 2c0π

ˆ

T∞

Nψχ(w) dm∞(χ) = 2c0π

ˆ

T∞

Nψχ(Rew) dm∞(χ).�

Theorem 4.6. Let ψ ∈ G≥1. Then, there exists an absolute constant C > 0 such that

(27)

ˆ

T∞

Nψχ(w) dm∞(χ) ≤ C

|D(w, r)|

ˆ

D(w,r)

ˆ

T∞

Nψχ(z) dm∞(χ) dA(z),

for every disk D(w, r) ⊂ C0 \ C 1
2
.

Proof. By Lemma 4.3

(28) Nψχ(w + it, 1) ≤ C

|D(w, r)|

ˆ

D(w,r)

Nψχ(z + it, 2) dA(z).

The proof follows by Lemma 4.5 integrating (28) with respect to χ ∈ T∞ and then t ∈ R. �

4.2. Necessity when omitting a prime. This subsection is devoted to the following weaker
version of Theorem 1.3.

Theorem 4.7. Suppose ψ(s) = c0s+ϕ(s) ∈ G≥1 with ϕ(s) =
∑
p-n

an
ns , where p is a prime number.

If the induced composition operator is compact on H2, then

lim
Rew→0

ˆ

T∞

Nψχ(w)

Rew
dm∞(χ) = 0.
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To prove the theorem we will use a variant of the classical technique, which gives necessary
conditions for compactness. But, it is worth mentioning the ideas behind the steps of the proof.
First, we considered a symbol that does not depend on a prime. We did that in order to separate
the derivative of the reproducing kernel and the counting function under the integral sign on
the infinite polytorus, (30). Then, using Lemma 4.5, the average counting function arises, (31).
In the last step of the proof, we make use of the translation invariance of that average, to start
with an integral on the real line and then introduce a proper disk to gain an additional power
of Re sn and derive the necessary inequality, (33).

Proof. Without loss of generality we assume that p = 2. Let {sn}n≥1 ⊂ C0 be an arbitrary
sequence such that Re sn → 0+. We observe that the induced sequence {Ksn,2}n≥1 of normalized
reproducing kernels associated to the prime 2, defined as

Ksn,2(s) =
√

1− 4−Re sn
∑
n≥0

1

2n(sn+s)

converges weakly to 0, as n→∞. Therefore

(29) lim
n→+∞

‖Cψ(Ksn,2)‖ = 0.

Stanton’s formula (12) yields to the following

‖Cψ(Ksn,2)‖2 ≥ C
ˆ

C0

ˆ

T∞

∣∣(Ksn,2)′χc0 (w)
∣∣2Nψχ(w, 1) dm∞(χ) dA(w)

≥ C
ˆ

C0

ˆ

T

∣∣∣(Ksn,2)′
χ
c0
1

(w)
∣∣∣2 ˆ

T∞

Nψχ(w, 1) dm∞(χ) dA(w).(30)

By Parseval’s formula and Lemma 4.5

‖Cψ(Ksn,2)‖2 ≥ C(1− 4−Re sn)

ˆ

C0

∑
n≥1

n24−n(Re sn+Re s)

ˆ

T∞

Nψχ(w, 1) dm∞(χ) dA(w)

≥ C(1− 4−Re sn)

+∞ˆ

0

∑
n≥1

n24−n(Re sn+σ)

ˆ

T∞

Nψχ(σ) dm∞(χ) dσ

≥ C

3 Re sn
2ˆ

Re sn
2

1− 4−Re sn(
1− 4−(Re sn+σ)

)3 ˆ
T∞

Nψχ(σ) dm∞(χ) dσ.

For sufficiently large n ∈ N, we have that for every t ∈ R

(31) ‖Cψ(Ksn,2)‖2 ≥ C (Re sn)
−2

3 Re sn
2ˆ

Re sn
2

ˆ

T∞

Nψχ(σ) dm∞(χ) dσ

= C (Re sn)
−2

3 Re sn
2ˆ

Re sn
2

ˆ

T∞

Nψχ(σ + it) dm∞(χ) dσ.
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Thus

‖Cψ(Ksn,2)‖2 ≥ C (Re sn)
−3

3 Re sn
2ˆ

Re sn
2

√
( Re sn

2 )2−(σ−Re sn)2ˆ

−
√

( Re sn
2 )2−(σ−Re sn)2

ˆ

T∞

Nψχ(σ + it) dm∞(χ) dt dσ

≥ C(Re sn)−1 1∣∣D(Re sn,
Re sn

2 )
∣∣

ˆ

D(Re sn,
Re sn

2 )

ˆ

T∞

Nψχ(w) dm∞(χ) dA(w).(32)

By Theorem 4.6,

(33) ‖Cψ(Ksn,2)‖2 ≥ C

´
T∞
Nψχ(sn) dm∞(χ)

Re sn
.

The proof now follows from the equation (29),

lim
Rew→0

´
T∞
Nψχ(w) dm∞(χ)

Rew
= 0. �

5. Proof of Theorem 1.3

The proof of Theorem 1.3 follows from Theorem 4.7 and Theorem 1.2. More specifically, let
Cψ be a compact composition operator with symbol ψ ∈ G≥1. Then, by Theorem 1.2 Cψ is
compact on H2

Λ. Theorem 4.7 remains true if we substitute H2 with H2
Λ. The symbol ψ ∈ G≥1

does not depend on the generalized prime q1 and thus

lim
Rew→0

ˆ

T∞

Nψχ(w)

Rew
dm∞(χ) = 0.

Note that in order to prove Theorem 1.3 it would be sufficient to add just one generalized prime,
for example q = π.

Now we present the counterexample of F. Bayart. We will make use of the following charac-
terization of compact composition operators with symbols ψ(s) = c0s+ψ(s) ∈ G≥1, where φ is
a Dirichlet polynomial.

Theorem 5.1 ([2]). Let ψ(s) = c0s + φ(s) ∈ G≥1, where φ is a Dirichlet polynomial. Then,
the induced composition operator Cψ is compact on H2 if and only if the symbol has restricted
range.

We say that a symbol ψ ∈ G has unrestricted range if

(34) inf
s∈C0

Reφ(s) =

{
1
2 if c0 = 0,
0 if c0 ≥ 1.

It is worth mentioning that a symbol with restricted range always induces a compact com-
position operator on H2, [3, Theorem 20, Theorem 21].

Example 5.2. We consider the symbol ψ(s) = 1 + s − 2−s. The composition operator Cψ is
not compact on H2, since ψ(s) = 1 + s− 2−s has unrestricted range. The vertical translations
of it have the following form

ψz(s) = 1 + s− z2−s, z ∈ T.
The function h(z) := inf

Re s>0
|ψz(s)| is continuous on z and vanishes only for z = 1. For ε > 0

sufficiently small there exists a constant C(ε) > 0 such that

h(z) ≥ 2ε, |z − 1| > C(ε)



COMPOSITION OPERATORS AND GENERALIZED PRIMES 13

and C(ε)→ 0+, as ε→ 0+. Applying Theorem 4.4, we have that

ˆ

T

Nψz (ε)

ε
dz =

1+C(ε)ˆ

1−C(ε)

Nψz (ε)

ε
dz ≤ 2C(ε).

Thus

lim
Rew→0

ˆ

T

Nψz (w)

Rew
dz = 0.
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[22] Hervé Queffelec and Martine Queffelec, Diophantine approximation and Dirichlet series, Texts and Readings

in Mathematics, vol. 80, Hindustan Book Agency, New Delhi; Springer, Singapore, [2020] ©2020, Second
edition [of 3099268].

[23] Walter Rudin, Fourier analysis on groups, Wiley Classics Library, John Wiley & Sons, Inc., New York,

1990, Reprint of the 1962 original, A Wiley-Interscience Publication.



14 ATHANASIOS KOUROUPIS

[24] Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404.

[25] Wen-Bin Zhang, Beurling primes with RH and Beurling primes with large oscillation, Math. Ann. 337

(2007), no. 3, 671–704.

Department of Mathematical Sciences, Norwegian University of Science and Technology (NTNU),

7491 Trondheim, Norway

Email address: athanasios.kouroupis@ntnu.no


	1. Introduction
	Acknowledgments
	Notation

	2. Background material
	2.1. Composition operators in the disk setting
	2.2. The infinite polytorus and vertical limits
	2.3. Hardy spaces on the infinite polytorus and the Bohr-lift
	2.4. The ergodic theorem
	2.5. The Littlewood–Paley and Stanton's formulae

	3. When do composition operators change adding primes?
	4. Symbols that do not depend on a prime
	4.1. Submean value property
	4.2. Necessity when omitting a prime

	5. Proof of Theorem 1.3
	References

