
Journal of Systems Architecture 137 (2023) 102853

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Composable distributed real-time systems with deterministic network
channels✩

Henrik Austad a,∗, Erling Rennemo Jellum b, Sverre Hendseth b, Geir Mathisen b,
Torleiv Håland Bryne b, Kristoffer Nyborg Gregertsen a, Sigurd Mørkved Albrektsen a,
Bjarne Emil Helvik c

a SINTEF Digital, Mathematics and Cybernetics, Strindv. 4, Trondheim, 7034, Norway
b NTNU, Department of Engineering Cybernetics, O.S. Bragstads plass 2D, Trondheim, 7034, Norway
c NTNU, Department of Information Security and Communication Technology, O.S. Bragstads plass 2B, Trondheim, 7034, Norway

A R T I C L E I N F O

Keywords:
Real-time networks
Time-flow-graph
Distributed
CPS
IIoT
TSN
Linux

A B S T R A C T

A system that needs to interact with the physical world in a timely manner is called a real-time system. When
such a system is composed of multiple subsystems, or nodes, each of which is a geographically separate system,
such a system of systems is called a distributed real-time system. The computation at each node must adhere
to the timing requirements, and the connecting communication channels must never cause delays that trigger
further timing violations. In this paper, we introduce Deterministic Network Channels, a network construct using
Time Sensitive Networking QoS mechanisms that add reliable and deterministic communication for distributed
tasks. Introducing such network channels as a construct allows designers to focus on higher-level primitives
when building distributed systems. We describe our reference implementation and evaluate it by extending
Timed C with network channels. Building on this, we also perform a thorough performance evaluation to
determine practical bounds for both Linux and TSN under heavy workloads and adverse network conditions
to show how the proposed reference implementation performs in real-world scenarios. In our tests, we can
synchronize two separate machines running commercial off-the-shelf hardware to within 15 μs of each other
under severe internal and external interference.
1. Introduction

In a real-time system, the correctness of a computation is not only
dependent on its logical output, but also on the time at which the
computation is ready. Meeting the temporal requirements of a system is
a challenging task as most hardware architectures are not deterministic
to time. Neither are most programming models that leave the program-
mer to fight temporal demons such as enforcing deadlines and handling
timeouts on their own. Both require a deep understanding of both
the problem domain and the hardware used for the system and often
result in subtle, yet devastating timing bugs. A common technique is to
configure timers to interrupt the program at specific points to prune
away some of this non-deterministic timing. This increases overall
complexity by exposing minute details about hardware capabilities, -
configuration, and interrupts. It also shifts focus away from the core
application being developed to the system on which it runs.

✩ This work was funded by the Norwegian Research Council under grant 323340 via SINTEF, under grant 327538, and by the Centre of Excellence NTNU
AMOS via grant 223254.
∗ Corresponding author.
E-mail addresses: henrik.austad@sintef.no (H. Austad), erling.r.jellum@ntnu.no (E.R. Jellum), sverre.hendseth@ntnu.no (S. Hendseth),

geir.mathisen@ntnu.no (G. Mathisen), torleiv.h.bryne@ntnu.no (T.H. Bryne), kristoffer.gregertsen@sintef.no (K.N. Gregertsen), sigurd@albrektsen.net
(S.M. Albrektsen), bjarne@ntnu.no (B.E. Helvik).

The C programming language continues to be the most popular
language for embedded systems. C is a small language, it has few
keywords, a limited set of standard libraries, and, by allowing direct
memory reference, exposes the underlying hardware to developers. This
is a tremendous expressive power — and danger, causing many to
consider C an unsafe language. What is more, as the design of C lends
itself naturally to compilers and hardware, writing a C implementation
(i.e., ‘‘compiler’’) is a relatively easy task, which is another reason why
C is normally the first language supported on a new architecture. This
makes C a common language for small and embedded systems.

Timed C is an extension of the C programming language developed
at the KTH Royal Institute of Technology [1]. It adds timing primitives
to the programming language and thus abstracts away the configuring
of timers and interrupts with a portable API. Timed C brings time as a
vailable online 2 March 2023
383-7621/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.sysarc.2023.102853
Received 20 September 2022; Received in revised form 21 February 2023; Accepte
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d 22 February 2023

https://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:henrik.austad@sintef.no
mailto:erling.r.jellum@ntnu.no
mailto:sverre.hendseth@ntnu.no
mailto:geir.mathisen@ntnu.no
mailto:torleiv.h.bryne@ntnu.no
mailto:kristoffer.gregertsen@sintef.no
mailto:sigurd@albrektsen.net
mailto:bjarne@ntnu.no
https://doi.org/10.1016/j.sysarc.2023.102853
https://doi.org/10.1016/j.sysarc.2023.102853
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2023.102853&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
‘‘first-class member’’ and facilitates communication between local tasks.
Currently, it does not support network transport, preventing Timed C
from extending to distributed systems design. One reason for Timed
C’s ‘‘non-distributedness’’ is largely the network itself. The uncertainty
in both delivery (i.e. packages being lost in transit) and delivery jitter
(i.e. variance in transmission delay through the network) in ordinary
packet-switched networks (PSN) must be properly addressed before
such a network can be safely used in real-time systems.

As the world progresses towards ‘‘Industry 4.0’’ with Industrial IoT
(IIoT) and Cyber–Physical Systems (CPS), the complexity and size of in-
dustrial systems continue to grow and expand. This shift to distributed
architectures can effectively mitigate complexity as encapsulating each
function in a separate node lends itself well to fault tolerance where
critical functions are physically separated. However, with this dis-
tribution also comes increased complexity in managing the network
connection between the nodes.

In this paper, we extend the Time Flow Graph formalism first
described in Timed C with primitives for setting up and using determin-
istic network channels. We then describe a reference implementation and
implement this on top of Time Sensitive Networking (TSN) streams and
Linux before we show how this can be used to extend the capabilities
of Timed C.

This simplifies building scalable and composable distributed real-
time systems (drts) in C. We then evaluate the real-time performance
of such network channels running on a GNU/Linux system.

The rest of this paper is organized as follows: in Section 2 we list
the specific contributions made by this work. Section 3 covers the
background in real-time systems, TSN, and Timed C. In Section 4 we
first extend the Time-Flow Graph formalism with network channels
before we present our reference implementation, a federated architec-
ture extension to Timed C. Section 5 describes the experimental setup
for our reference implementation. The results of these experiments are
shown in Section 6 before we conclude in 7.

2. Contributions

In this work, we add support for deterministic network channels
that provide guaranteed delivery, bounded latency, and ease of use. We
have extended Timed C, a coordination framework for real-time tasks,
such that it can be used to create drts which we have called ‘‘Federated
Timed C’’. In summary:

C1: We have extended the Time Flow Graph formalism from Timed C
to handle network channels for distributed systems and defined
the requirements for composability.

C2: We have extended Timed C by bringing network channels as a
composable construct to tasks, enabling a distributed system to
be designed as a Timed C program.

C3: We have specified and implemented reference code with a
reliable, deterministic network transport construct, including
bounded latency that allows reasoning about timing constraints
in distributed systems.

C4: We have quantified the network transport latency and Linux’s
real-time capabilities to further strengthen the confidence in the
latency bounds provided by the network channels.

The developed code is available under an open-source license at
GitHub [2]with a preconfigured TimedC for also available [3]. Finally,
all the tools used for generating interference are also available under
open licenses.

3. Background and motivation

Broadly speaking, a Distributed Real-Time System (drts) must con-
tain at least 3 components to be able to exhibit what we call ‘‘real-time
behavior’’. First, each node in the system must be a capable real-time
2

Fig. 1. Distributed real-time system with logical channels connecting nodes on 3
different hosts. In the expanded view of Node 3, we see that it contains two separate
processes that both use the same network interface, but where the logical channels are
distinctly between Process A and P2 and between process B and P1.

system. Second, the network connection between the nodes must be
both reliable and deterministic in that no data should be lost nor
should it be unduly delayed. Last, all nodes must share a common
understanding of time.

3.1. Real-time systems

The temporal requirements of the components of the real-time
system are specified through deadlines. Depending on the consequence
of missing a deadline, real-time systems are broadly divided into 3
categories: (a) Soft real-time, where a missed deadline is not fatal but
the value of the result declines rapidly; (b) Firm real-time, where the
value of a delayed result is worthless, but the system may yet recover;
and (c) Hard real-time systems where a missed deadline results in a
total system failure. Where soft real-time systems need care and atten-
tion, hard real-time systems often require a combination of rigid and
well-structured development processes, formal verification, thorough
testing, and certified toolchains and operating systems.

A real-time system is typically composed of several modules or
subsystems where each serves a distinct role. Not all parts may have the
same real-time requirements, and requirements may not fall firmly into
one category, but rather be ‘‘somewhere in between’’. It is quite com-
mon to have sections with soft to no real-time requirements whereas
others have more stringent requirements. In such mixed-criticality
cases, it is essential to have a clear separation of dependencies and
execution. The system may run in multiple threads in the same process,
as separate processes located on isolated CPU cores — or something in
between. Common for all such cases is the need for a methodical design
approach and a robust and deterministic run-time.

3.2. Distributed real-time systems

A drts is a ‘‘system of systems’’ where each subsystem itself is a
real-time system. The subsystems are interconnected via a real-time
network [4]. Fig. 1 shows a construed drts. In each node, there are one
or more processes that run the node’s part of the system. Between the
nodes are logical channels through which the processes pass control sig-
nals, data, or both. Depending on the abstraction level, these channels
appear either as any other synchronization (or data sharing) primitive,
a raw network socket, or something in between. These logical channels
are ultimately handled by the network layer and are thus dependent
upon the real-time behavior of the underlying network.

There are several reasons to choose a distributed architecture for a
real-time system. First of all, the physical layout of the system may be
distributed and thus lend itself naturally to a distributed architecture.
Second, we mitigate a major drawback of single-host architecture,
namely decreasing composability. When a ‘‘single-host system’’ grows,
it becomes increasingly more difficult to contain the side effects of

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

s

CPU load, available memory, traffic on shared data buses, changes in
scheduler timing, and so on. In other words, it is difficult to shield
some parts of an application from others on such a system. Attempting
to handle this may in turn lead to increased complexity when new
components are added, making the quest for subsystem shielding even
more difficult.

Extending a distributed architecture can be straightforward as long
as shared resources and data dependencies are avoided. It can be as
simple as adding a new node to the system. Fault tolerance can also be
easier to implement in a distributed architecture because different func-
tions and resources are already cleanly separated. This naturally lends
itself to a design where critical functionality can easily be duplicated
on multiple nodes.

The challenge lies in extending a drts with overlapping functional-
ities. The moment one node is dependent upon signals or data arriving
from another node, the real-time behavior of the other nodes and the
network becomes relevant. Thus, the delay between the nodes directly
affects the system behavior.

3.3. Composability and composable drts

A system is composable to a property if, once the property has
been established for a subset of the nodes, the addition or removal
of nodes does not affect the property [5]. For drts, the timing and
network latency are relevant properties. In a non-composable system,
the timing behavior of an individual component could change if new
components were added to the system. An example of such a system is
a multi-threaded program running on a single-core CPU managed by a
non-real-time operating system. When each component is in a separate
thread, any additions will change the timing. In general, the question
of composability arises in systems with resource sharing. In the multi-
threaded example CPU, memory and storage are other examples of
shared resources. For a drts, the network must be managed as another
shared resource.

A drts can only achieve composability over a shared medium if
it is possible to properly shield critical network traffic from other,
unrelated traffic. For some systems, the sensitivity to disturbance can
be so low that arrival guarantees are adequate. For other applications,
such as industrial protocols and control loops, higher demands are
placed on the delivery latency provided by the network. A common
technique for reducing the variance in the delay to a minimum is to use
a time-triggered communication system [5] to properly shield critical
traffic.

In general, you can differentiate between event-triggered and time-
triggered communication protocols. In an event-triggered protocol, the
control of the timing of the transactions lies with the individual nodes
of the drts whereas in a time-triggered protocol, the control resides
within the communication system. The available throughput is then
often multiplexed in the time domain. Traditional PSNs are event-
triggered systems, and must therefore have attributes that allow them
to behave in a time-triggered manner.

3.4. Real-time networks and TSN

Unless each node has a dedicated link to every other node, the
connecting fabric must provide a way to reduce interference from
unrelated traffic. Time Sensitive Networking (TSN) is a set of IEEE
standards that are a continuation of Audio/Video Bridging (AVB) [6].
TSN enables time-triggered communication over Ethernet and provides
strict Quality-of-Service (QoS) guarantees for time-sensitive or critical
traffic. Initially built on top of IEEE 802.3 Ethernet, QoS is governed by
IEEE 802.1Q Bridges and Bridged Networks [7] standards. It can also
use other packet-switched transport protocols such as 802.11n, MoCA
v2, and ITU-T G9960.

TSN uses the concept of Bridges and End Stations to describe
network entities that send streams of regular, periodic traffic from one
3

F

Talker to one or more Listeners. Talkers and Listeners are both End-
Stations, Bridges are network entities with 2 or more ports (i.e., switches
and routers) that forward traffic through the network. A Talker first
announces an available stream before one or more Listeners can sub-
scribe by requesting the necessary capacity through the network. If
the network can accommodate the request with available buffers and
bandwidth, the reservation succeeds. The Listener then receives data
with extremely low packet loss1 and bounded latency. An administra-
tive upper reservation bound is typically set to 75% of link capacity to
ensure that Best Effort (BE) traffic can flow. Any reserved link capacity
that is left unused can be freely used by any BE traffic class.

TSN uses shapers to form traffic, and the first shaper introduced was
the Credit Based Shaper (CBS, [7, Ch. 35]) that provides a bounded
end-to-end (E2E) latency of 2 ms (for ‘‘class A’’) over a maximum
of 7 network hops in a 100 Mbps network. Class B streams provide
a 50 ms bounded latency guarantee and include the possibility of 2
wireless links in the path. CBS is a class-based shaper and is designed
for constant bitrate, periodic traffic. By actively working to reduce
traffic bursts on all bridges, total network burstiness is managed. These
guarantees can be given due to the admission control provided when
reserving resources. The Time Aware Shaper (TAS) [9] provides time-
deterministic messaging by employing Time Division Multiple Access
(TDMA) through the gate control lists. Each item on the list specifies if
the gates for the priority queues should be open or closed. By carefully
aligning gateOpen events for only scheduled traffic across the path, TAS
can guarantee a 100 μs bounded latency (over 5 hops in a 1 Gbps
network). For more sporadic traffic, TSN has a third shaper, the Asyn-
chronous Traffic Shaper (ATS, [10]). ATS is based on the Urgency Based
Scheduler [11], which does not require tight time synchronization of all
bridges. ATS is thus more scalable than TAS and can handle sporadic
traffic with less reservation overhead than CBS.

This comes as a contrast to other QoS schemes such as Integrated
Services (IntServ, [12]) and Differential Services (DiffServ, [13]). The
former is often called ‘‘Hard QoS’’ as it is based on reserving capacity
for individual streams, and, as with TSN, a reservation may fail if
inadequate resources are available. Due to the per-stream reservation,
IntServ has scalability problems when the number of streams grows and
the network increases in size. DiffServ is a class-based QoS and thus
avoids many of the scalability problems IntServ faces, but at the cost
of sacrificing QoS guarantees for individual streams. A combination of
both was shown by Harju and Kivimaki [14] to provide both good QoS
and scalability for large-scale IP-based networks.

This combination of IntServ and DiffServ is one of the approaches
taken by IETF Deterministic Networking (DetNet). The goal of DetNet
is to ‘‘provide a capability to carry specified unicast or multicast data
flows for real-time applications with extremely low data loss rates and
bounded latency within a network domain’’ [15]. Unlike TSN, DetNet
operates on routable network traffic and does not provide explicit
technology recommendations but instead, states desired behavior. A
DetNet can be realized over a TSN but is not limited to TSN only.
Nor is it required to be homogeneous in the sense that a DetNet can
traverse both TSN and Multiprotocol Label Switching (MPLS) networks,
and even hops over non-DetNet aware bridges. DetNet targets large
Wide Area Networks (WAN) with explicit real-time demands but does
not aim to meet as high demands as TSN which can be as low as
100 μs. The exact capabilities depends on the network configuration,
what DetNet provides is a standardized way to configure and provision
large network and express timing requirements.

1 TSN guarantees no packet loss due to buffer congestion, but traffic can
till be lost if the link itself is disrupted or the bridge becomes unavailable.
or this, frame replication [8] can be used to create redundant paths.

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

p
e
d
p
s
i
p
p
v

p
w
o
t
o
a
c
a
m
o
n

i
I
i
F
c
a

1

2

3

4

5

6

7

8

9

L
t
t

t
t
l
r
s
n
t
t
s

3.5. Precision time protocol

For a component in a system to be able to reason about information
from any other component, a shared understanding of time is required.
Comparing two sensor readings becomes pointless if the capture time
is unknown. This is normally solved in a single system by having a
local source of time, e.g., a CPU clock. With a drts it is no longer
possible to directly share a clock in this manner. In Lamport’s seminal
paper [16] about time and order of events in systems, he lay the
foundation and need for time domains and network time protocols in
distributed systems.

In 2002, IEEE published the first version of the Precision Time
Protocol (PTP). One of the main goals of PTP was to enable an ac-
curate time-keeping architecture for distributed systems operating in
environments where access to high-quality time signals (e.g., atomic
clock, Global Navigation Satellite System, GNSS) was either impossible
or too expensive. PTP operates with the notion of clocks and treats both
network infrastructure and endpoints as such. Network equipment is
either transparent clocks or boundary clocks and endpoints are typically
ordinary clocks. During normal operation, the clocks in the network
select a single clock to act as the authoritative source of time, the Grand
Master (GM). The GM periodically sends updates, and all other clocks
then update the offset and phase difference between their local clock
and the GM clock. PTP specifies both a software- and a hardware-driven
approach. In the software-driven case, the accuracy is greatly affected
by how fast the system can react to new PTP messages. Any uncertain-
ties in how tightly the local and remote times are coupled decrease
the clock accuracy. Some network cards are capable of intercepting
PTP sync messages and associating a local timestamp with incoming
messages. This all but eliminates local variations in reacting to the
messages and greatly improves the clock accuracy.

In a system where PTP is supported by both network switches and
receiving hardware, the error between the GM and any clock is typi-
cally much less than 1 μs, and with careful configuration, PTP is capable
of even higher accuracy. As an example, Project White Rabbit [17]
achieved sub-nanosecond accuracy by using FPGAs and Synchronous
Ethernet (SyncE) to reduce the remaining jitter throughout the net-
work. In 2008, PTP underwent a large revision PTPv2 is the version
supported by most network infrastructures and endpoints today. 2019
saw a new update to what is known as PTPv2.1 [18]. PTPv2.1 is
backward compatible with v2 profiles, but v1 is not compatible with
v2.

3.6. Linux, preempt_rt and rt-tests

The Linux kernel [19] is a general-purpose operating system (GPOS)
kernel, that, when bundled with system libraries, many of which are
maintained by GNU [20], creates an open and free POSIX-compliant
OS (‘‘GNU/Linux’’). preempt_rt [21] started as a series of patches to
modify the Linux kernel to create a deterministic real-time operating
system (RTOS). It does this by making large portions of the kernel pre-
emptable, most notably system calls (syscalls) and interrupt-handlers.
By changing many of the interrupt handlers into kernel threads, they
can be scheduled as regular threads. As we will see in Section 6, using
preempt_rt can improve the determinism significantly when the system
operates under heavy load.

cyclictest is part of the rt-test suite [22] and was originally
developed to measure the accuracy of the reworked timer infrastructure
in the Linux kernel. It has since proved to be a very effective tool
for both profiling the real-time performance of systems as well as
pinpointing troublesome drivers and applications since it can direct the
Linux kernel tracing subsystem [23].
4

a

3.7. Timed C

There exist several frameworks, dedicated languages, and exten-
sions that address one or several of the critical elements for drts. One
such candidate is Timed C and due to its clean design and small size,
is imminently suited to extend and experiment with.

Timed C is an extension to the C programming language developed
at KTH [1,24,25]. It consists of a set of constructs and primitives that
allows a programmer to specify the intended timing of a program
directly. It can be seen as a way of making time itself a ‘‘first-class
citizen’’ of C. Timed C is meant to be portable and generates code for
both POSIX and FreeRTOS.

Timed C uses the concept of timing points. Timing points allow the
rogrammer to specify soft, firm, and hard real-time requirements. For
xample, the program should reach a certain point within a specified
eadline. Semantically, timing points create a logical timeline for the
rogram. Logical time only progresses at the timing points and program
equences between the timing points take zero logical time. When
mplemented as a physical system, the program will also exist on a
hysical timeline. A timeline violation occurs if the program arrives at a
hysical time that is greater than its associated logical time. A timeline
iolation can also be interpreted as a missed deadline.

The consequence of a missed deadline depends on the type of timing
oint, which represents the type of real-time guarantee it is associated
ith. A soft timing point does not change the program flow in case
f a missed deadline but instead returns the amount of overshoot so
hat the application may deal with it. A firm timing point, on the
ther hand, interrupts the program flow when a deadline is missed
nd jumps directly to the timing point forcing the currently executing
ode to be aborted [26, III. B]. A hard timing point will behave like
firm timing point, but instead of jumping to a timing point, it will
ove to a dedicated error-handling routine. The exact implementation

f timing points is outlined in [26]. Currently, hard timing points are
ot enforced in Timed C on x86 architecture.

Listing 1 shows a contrived example where timing points can be
nserted into a system such that a sensor can be read regularly at 50 Hz.
f process() should exceed the available time, the program will be
nterrupted and the control flow can be diverted to a rescue routine. In
ig. 2 a timing diagram for initialization and two iterations of the loop
an be found. sdelay() implements a soft timing point, fdelay()
firm.

int main(void) {
init();
sdelay(10, ms);
while (1) {

read_sensor();
process();
fdelay(20, ms);

}
}

isting 1: Timed C program using sdelay() and fdelay() to insert
iming points in a system that reads and processes a sensor value. After
he initial setup, the main loop repeats every 20 ms (50 Hz).

Timed C also contains the concurrent construct task which is a
hin wrapper around the system multithreading library (pthreads in
he case of Linux). Tasks can communicate through fifochannels and
vchannels. The former gives buffered non-blocking write and blocking
ead synchronization while the latter is a shared variable without
ynchronization. Listing 2 shows a system with 2 parallel tasks commu-
icating over a shared fifochannel. No run-time schedules the different
asks according to the specific timing points, instead Timed C relies on
he underlying RTOS for scheduling. Tasks can be assigned to different
cheduling policies; the priority among the tasks is determined by static

nalysis of the timing points found in each task (see lines 3 and 12 in

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
Fig. 2. Timing diagram of code in Listing 1. Note that L3 and L7 are of variable
length, if L2 completes after 4 ms, then L3 adapts to spend 6 ms. The loop should run
at 50 Hz, hence the 20 ms timing point. In the first iteration, the lines L4–L6 consume
10 ms, and in the second iteration, 16 ms. L7 then adapts to ensure a full 20 ms loop.

Listing 2). Soft timing points are just translated into sleep statements,
while firm timing points also start a countdown timer which would
interrupt the program when the deadline is missed. Timed C is, as
such, not a complete framework for implementing real-time systems.
It is, however, a capable coordination framework in which one can
implement systems with explicit timing constraints.

int fifochannel(fifo);
task reader() {

spolicy(FIFO_RM);
int val;
while (1) {

cread(fifo, val);
printf("fifo: %d\n", val);

}
}

task writer() {
spolicy(EDF);
int w = 0;
while(1) {

cwrite(fifo, w);
fdelay(100, ms);

w++;
}

}

void main(){
cinit(fifo, 0);
reader();
writer();

}

Listing 2: Two periodic tasks with different scheduling policies
exchanging data through a shared fifochannel.

A formalism called Time Flow Graphs [26] is a way of representing a
Timed C task. Timing points and the code fragments in between timing
points are represented as nodes and the dependencies are represented
as edges. A methodology for verifying the temporal properties specified
in a Timed C program is also proposed. TFG is further discussed in
Section 4.1.

3.8. Related work

Ptides [27] is a programming model for distributed systems based
on the relationship between model time and real-time. In Ptides, known
bounds on network latency and execution times enable distributed
synchronization with little communication. Lingua Franca [28] is a
coordination framework for distributed real-time systems based on the
Reactor model of computation (MoC) [29]. The Reactor model is a
timed, discrete-event MoC. It includes a notion of logical time which is
related to Timed C but has a more formal definition of time between
synchronization points, as well as the simultaneity of events. In Lingua
Franca, software components, called reactors, communicate with time-
tagged signals through named ports. The time tags are drawn from the
5

logical timeline and logical time does not elapse during computation.
Reactors react to events in time tag order and this ensures determinism
at each logical instant. Distributed execution is achieved either with
centralized coordination or decentralized coordination through Ptides.
The distributed execution builds on sockets and while this is compatible
with TSN, it leaves the challenging and error-prone task of correctly
setting up the network for the user.

In ‘‘Temporal issues in Cyber–Physical Systems’’ [30], Broman et al.
discuss how accurate clocks can and must be included in cyber–physical
systems and how PTP can be used to accurately distribute time. Stan-
ton [31] discusses how distributed coordination of tasks should target
a future time instead of reacting to a message which then triggers
an immediate action. This reduces the impact of network jitter but is
vulnerable to inaccuracies in the time domain.

Gutiérrez et al. [32] showed by daisy chaining TSN nodes that the
timeliness of the forwarding and shaping of TSN is well suited for
running the control signal network for robotic systems. They did not
test this with interfering traffic so no evaluation of stream protection
was performed.

For large-scale industrial automation, the Open Platform Communi-
cation Unified Architecture (OPC-UA, [33]) is becoming the prevalent
solution. The main focus of OPC-UA is device interoperability and is a
device-centric, platform-independent architecture to integrate sensors
and controllers. Although OPC-UA is primarily a centralized architec-
ture, with amendment 14 [34] a publisher–subscriber (‘‘PubSub’’) is
specified. This approach allows OPC-UA to scale to very large systems
since most of the data can flow directly between the devices and not
through a central aggregator. One drawback with OPC-UA has always
been its complexity and as a system grows, it becomes increasingly
difficult to configure the system to achieve desired latency whilst
simultaneously not overloading the network and losing traffic as a
result [35]. To improve the reliability and determinism of PubSub,
Bruckner et al. [36] investigated the usability of TSN and OPC-UA, and
a recent joint effort by IEEE and IEC has started the standardization of
TSN for Industrial Automation [37] where OPC-UA is part of the stan-
dardization effort. Recently the Open-Source Automation Development
Lab (OSADL) has begun development to integrate TSN in the Publisher-
subscribe profile [38] and provide a ready-made solution for industrial
applications.

Another popular architecture is the Distributed Data Service (DDS,
[39]), a data-centric, decentralized model that is purely publisher–
subscriber. Each node can subscribe to a set of topics and the ar-
chitecture orchestrates the delivery of data to the right recipients.
The updated Robot Operation System (ROS2 [40]) has chosen DDS to
handle the data handling. Agarwal et al. [41] used TSN to complement
DDS and the simulations showed high message rates with very low
latency for real-world data obtained from a wind farm. Their results
show that TSN and DDS are a good match for real-world applications.

Communicating Sequential Processes (CSP) was first described by
Tony Hoare in 1978 [42] and is a process algebra for specifying
and verifying concurrency in systems by using message-passing and
channels as synchronization primitives. Modeling concurrent systems
suffer from a state space explosion when the size grows. To model and
understand how these systems interact at the communication system
level, a mathematical framework such as CSP is needed. CSP has suc-
cessfully been used to verify critical systems such as avionics software
at the International Space Station [43]. Messages and channels lend
themselves naturally to distributed systems.

Whitney et al. [44] created a Go library called Gluster to support
distributed applications in Go. Go is made for programming concurrent
applications and is based on CSP. Gluster uses a Master/Worker model
where a Master node schedules goroutines on the Worker nodes in the
distributed system.

Both OPC-UA and DDS define a protocol format for exchanging
data whereas Timed C, which we focus on in this paper, is more of
a coordination framework for real-time tasks. In a sense, both Lingua

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
Franca and Timed C could have used DDS or OPC-UA as the data
integration protocol, and compared to our proposed network channel,
both DDS and OPC-UA could in theory use this network channel as a
transport layer. As this will add several layers of complexity for very
little gain, we choose to connect Timed C and netchannels and evaluate
the result.

To the best of our knowledge, no other work defines similar network
channels with the same level of quantitative evaluation to demonstrate
how deterministic networking can be used to build composable network
primitives for distributed real-time systems.

4. Deterministic network channels and Federated Timed C

We extend Timed C with primitives for inter-task communication
via TSN as building blocks to what we informally refer to as ‘‘Feder-
ated Timed C’’. These communication primitives are called netchannels
as they are semantically similar to the existing fifochannels. While
fifochannels can deliver time deterministic inter- and intra-process task
communication, netchannels extends this to network task communica-
tion.

This section starts out by defining the formal semantics of both
types of channels using Time Flow Graphs (TFG), before presenting the
reference implementation for deterministic channels in Timed C.

4.1. Formalization

The Time Flow Graph (TFG) formalism introduced in [26] can be
used to reason about the composability of Federated Timed C programs.
In TFG a Timed C task is represented as a graph 𝐺 = (𝑉 ,𝐸) where the
nodes 𝑉 = (𝑃 ∪𝐹) is the set of timing points 𝑃 and code fragments be-
tween timing points 𝐹 . The edges 𝐸 represent the dependency relations
between the nodes. A TFG can be analyzed at two levels of abstraction,
at the program level or at the platform level. The highest level is the
program level which lacks any information about the physical hardware
on which it will execute. Analysis on the program level is purely in
the logical time domain where code fragments have zero execution
time. The second level is the platform level. It is a refinement of the
program level where platform-dependent information about WCET of
code fragments, release jitter, and trigger precision is included. Analysis
on the platform level is on a refined logical timeline which we shall call
the quasi-physical timeline. An operational semantics is also defined as
a transition system.

A Federated Timed C program can be represented as a parallel
composition of Timed C tasks communicating and synchronizing over
asynchronous channels. We define the extended TFG 𝑉𝑒𝑥𝑡 = (𝑉 ∪ 𝐶) =
(𝑃 ∪ 𝐹 ∪ 𝐶), where 𝐶 is a set of abstract communication channels.
For Federated Timed C, 𝐶 = 𝐹𝐶 ∪ 𝑁𝐶 ∪ 𝐼𝐶, where 𝐹𝐶 is the set
of fifochannels, 𝑁𝐶 is the set of netchannels and 𝐼𝐶 is the set of IP
channels. IP channels are logical channels of best-effort traffic that
connect two separate nodes and are not the primary target in Federated
Timed C.2 They are only added to benchmark the netchannels. Notice
that lvchannels are not represented as they are not a message-passing
construct, but rather a shared variable. The endpoint of a channel 𝑐𝑖 is
either a receiver or a sender.

Consider the Federated Timed C program in Listing 3 and its cor-
responding TFG in Fig. 3. Channel endpoints 𝑐 ∈ 𝐶 are represented by
hexagons and the arrows denote the reader and writer. Timing points
𝑝 ∈ 𝑃 , are represented by circles and code fragments 𝑓 ∈ 𝐹 by squares.
The subscript on the components is a reference to the line number in
Listing 3.

2 As is shown in Section 6, using netchannels without stream protection can
be detrimental to overall system performance-
6

task sensor() {
int val;
while(1) {

val = sense();
chan_write(val);
fdelay(10, ms);

}
}

task processer() {
while(1) {

int val = chan_read();
process(val);

}
}

Listing 3: A simple Federated Timed C program composed of two tasks
communicating over an abstract channel and can be realized as either
fifochannel, netchannel or IP channel.

Fig. 3. TFG of Listing 3 for Sensor and Processer communicating over an abstract
channel.

We extend and redefine the program property for arrival time such
that 𝑡𝐴 ∶ 𝑉𝑒𝑥𝑡 → T. Here T represents time, it is either a relative time,
i.e., a duration, or, in the case of 𝑡𝐴 an absolute time. The arrival time
of a node is the logical time when it starts executing. We also define
the release time of a node as 𝑡𝑅 ∶ 𝑉𝑒𝑥𝑡 → T. The release time is the
logical time when a node finishes executing. Lastly, we define the latency
of a channel as 𝑡𝐿 ∶ 𝐶 → T. The latency of a channel, 𝑡𝐿(𝑐) is the
communication delay from the writer to the reader. From [26] 𝑡𝐷(𝑣) is
the relative deadline of node 𝑣.

To formally define arrival and release times we also define the
following functions.

• 𝑝𝑇𝑃 (𝑣) is the set of previous/upstream timing points that has no
other timing points between themselves, and the node 𝑣. Consider
the TFG in Fig. 4. Here 𝑝𝑇𝑃 (𝑣) = {𝑝7, 𝑝6}.

• 𝑝𝐶(𝑣) is the set of upstream channels that has no other channels
between themselves and the node 𝑣. Again consider Fig. 4, in this
case, 𝑝𝐶(𝑣) = 𝑐8. Notice that the cardinality of this set is never
greater than one.

• 𝑘 ∶ 𝐶 → {𝑤𝑟𝑖𝑡𝑒𝑟, 𝑟𝑒𝑎𝑑𝑒𝑟} returns the type of channel end. In the
case of Fig. 4 𝑘(𝑐8) = 𝑟𝑒𝑎𝑑𝑒𝑟.

• 𝑜 ∶ 𝐶 → 𝐶 returns the other connected channel end. In the case
of Fig. 4 𝑜(𝑐) = 𝑐 .
9 8

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
Fig. 4. Example TFG with multiple tasks, timing points, and channels.

Table 1
Arrival and release times for multiple iterations based on from Fig. 3
and Listing 3.
Iteration 𝑡𝐴(𝑐5) 𝑡𝑅(𝑝6) 𝑡𝐴(𝑐12) 𝑡𝑅(𝑐12)

1 0 10 0 0
2 10 20 0 10
3 20 30 10 20

The arrival time of a node is equal to the maximum of the release
times of the set of upstream timing points and channels. This can be
expressed formally as:

𝑡𝐴(𝑣) = max{𝑡𝑅(𝑢),∀𝑢 ∈ (𝑝𝑇𝑃 (𝑣) ∪ 𝑝𝐶(𝑣))} (1)

The release time of a node depends on its type. The release time of a
code fragment 𝑡𝑅(𝑓) and writer channel 𝑡𝑅(𝑐𝑤) is per definition equal to
their respective arrival times. The release time of a timing point 𝑡𝑅(𝑝) is
given in its function argument. E.g., 𝑡𝑅(𝑝6) = 10 ms in Fig. 3 and Listing
3. The release time of a reader channel 𝑡𝑅(𝑐𝑟) is either its arrival time
or the arrival time of its corresponding channel end plus the channel
latency. It can be expressed as.

𝑡𝑅(𝑐𝑟) =

{

𝑡𝐴(𝑐𝑟), if 𝑡𝐴(𝑐𝑟) ≥ 𝑡𝐴(𝑜(𝑐𝑟)) + 𝑡𝐿(𝑐𝑟)
𝑡𝐴(𝑜(𝑐𝑟)) + 𝑡𝐿(𝑐𝑟), otherwise

(2)

∀𝑐𝑟 ∶ 𝑘(𝑐𝑟) ∈ {𝑟𝑒𝑎𝑑𝑒𝑟} (3)

The channel latency depends on the channel type.

1. Fifochannels are modeled as without latency, i.e., 𝑡𝐿(𝑐 ∈ 𝐹𝐶) =
0.

2. IP channels have unknown, possibly unbounded latency. 𝑡𝐿(𝑐 ∈
𝐼𝐶) = 𝑡 ∈ T

3. Netchannels have unknown but bounded latency. 𝑡𝐿(𝑐 ∈ 𝑁𝐶) =
𝑡 ∈ T ∶ 𝑡 ≤ 2 ms.

With these additional constructs, we can reason about the logical
timing of the Federated Timed C program in Fig. 3. We assume that
𝑐5, 𝑐12 ∈ 𝐹𝐶, i.e., the tasks are communicating through a fifochannel.
The arrival and release times must be calculated at each iteration of
the loop are calculated in Table 1.

At the first iteration of the loop both Sensor and Processer will
reach their respective channels, 𝑐 and 𝑐 2 at logical time 𝑡 = 0.
7

5 1
Fig. 5. Two hosts communicating through a network channel with a shared manifest
describing the channel.

They perform synchronous communication and are released without
advancing logical time. Processer contains no timing points and reaches
𝑐12 in the second iteration while logical time is still 0. Sensor contains
a timing point 𝑝6 which incurs a 10 ms delay and will not reach 𝑐5
until 10 logical ms. Processer therefore blocks on 𝑐12 for 10 ms. In this
way, the channel synchronizes the logical time of the two tasks. Timing
information for 3 iterations of Listing 3can be found in Table 1.

A Federated Timed C program is composable to its logical timing if
the timing is unchanged by introducing other, independent, Federated
Timed C tasks. Formally, a program 𝐺1 is composable when 𝑡𝐴(𝑣)
and 𝑡𝑅(𝑣) are bounded or deterministic for all 𝑣 ∈ 𝑉 . Under these
conditions. it can be composed with other programs, e.g., 𝐺1 ∥ 𝐺2
without changing its logical timing.

Per the definition, the only constructs introducing potentially vari-
able timing properties are the channels. A program composed with
only fifochannels is deterministic as fifochannels have bounded logical
latency. Netchannels have strictly bounded latency and guaranteed
delivery provided by the TSN QoS, and thus also satisfy this condition.
IP channels, on the other hand, have best-effort delivery (i.e., no QoS
from the network) and with a possibly unbounded latency, the channel
latency is non-deterministic.

From this, we see that without bounded latency guarantees, which
is only achievable by reserving transmission slots and buffer capacities,
a network channel can never be composable. Conversely, by using
QoS mechanisms such as TSN that shields critical traffic and pro-
vides bounded latency, network channels can be treated as composable
components.

Note that composability is a property of our model of the program.
In actual execution, the zero-delay execution of code fragments would
naturally not hold. However, with a time-triggered architecture, such as
an RTOS employing TDMA scheduling, execution times would remain
deterministic and the overall program, composable.

4.2. Reference implementation overview

We now turn our attention to the implementation example, which
is informally referred to as netchannels and when used in combination
with Timed C becomes Federated Timed C. As previously stated, extend-
ing a real-time system with reliable networking support complicates
code and configuration files (e.g., error handling, the configuration of
network interfaces, correct addresses must be set, and QoS parameters
specified). A netchannel is the implementation of a logical channel and
is mapped to a TSN stream. Streams and channels are used somewhat
interchangeably in the text. In essence, a stream indicates the actual
TSN link, whereas a channel means the logical channel between two
nodes that may be a TSN stream (Fig. 1 in Section 3.2).

In Listing 3, we present a trivial example for a network channel
which can be shown in Fig. 5. We now adapt this to two Timed C tasks
communication using a network channel. In Table 2 we have listed a
partial API and C macros that allow us to write very clear and precise
code from within a Timed C program.

By adding simple primitives for a reliable channel that follows the
same design principles as fifochannel in Timed C, our design makes it

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
Table 2
Brief FTC API summary, for simplicity, only parameters passed to the macros are listed. For full reference, see [2]. chan is
the manifest label, which the macros use to inject a predictable variable name in the code alongside the appropriate function
call. Listing 4 describes a channel in a small manifest.
Macro name Corresponding C-functions Comment

NETFIFO_RX(chan) pdu_create_standalone() Rx-end of a net-channel
NETFIFO_TX(chan) pdu_create_standalone() Tx-end of a net-channel
CLEANUP() nh_destroy_standalone() De-init and free all PDUs and nethandlers.

WRITE(chan,val) pdu_send_now() Write data to channel and return
READ(chan,val) pdu_read() Reading from the channel will block
WRITE_WAIT(chan,val) pdu_send_now_wait() Write and wait a pre-determined time
READ_WAIT(chan,val) pdu_read_wait() Read and wait a pre-determined time.
Fig. 6. Two hosts running simultaneous wakeup using READ_WAIT()/WRITE_
WAIT()-pair with an AVB class A stream providing 2 ms upper bound on E2E delivery
latency.

as easy to use a network channel as a normal fifo. The parameters
are specified in a manifest file and streams in the network must use
globally unique Stream ID attributes. A single file can be used for the
entire application without fear of ‘‘ID collisions’’. This not only avoids
errors where two nodes use almost the same parameters for a stream,
but it also opens up the possibility for automated tools to verify network
configurations at compile time.

The network channel also has temporal delivery guarantees such
that once a network stream has been established it reduces the problem
known as the Byzantine Generals Problem [45], by ensuring that no
frames are unexpectedly lost during transit.3 The macros lend them-
selves to convenient and clean code, it is important to note that these
are simple ‘‘glue-ins’’ for functions whose argument is inferred by the
pre-processor and the manifest.

Network channels should be indistinguishable from fifochannels in
that a sender writes to a channel and the receiving end performs a
blocking read. The example of a drts in Fig. 1 shows a set of logical
channels connecting the processes running on the different nodes. In
Fig. 5 we see an example of the extension made to Timed C, where
a network channel is described in a shared manifest and acts as such
a logical channel. The channel is currently single-writer/single-reader,
but nothing is preventing such a pipe from being multiple readers
as it relies on multicast addressing and AVB/TSN stream reservation.
Fig. 6 depicts the timing characteristics of such a logical channel where
two hosts perform a simultaneous wakeup. This particular scenario is
evaluated in Section 6.5.

The code itself does not contain any dependencies to Timed C
allowing it to be used as either a standalone system (example tools can
be found in the repository [2]) or included in other frameworks. The

3 Granted, if parts of the network for some reason are removed, then data
will be lost. We will not cover stream duplication and elimination in this paper.
8

core system is bundled as a set of header files and libraries and made
available through a clear C-API with an accompanying set of macros.
In our example tools, we utilize the API provided by the macros as this
resulted in the cleanest code and implementation from within Timed
C.

For stream protection, the SRP client code from AvNU’s OpenAVB
project [46] can be found in the srp/ subfolder. The code has been
slightly modified to allow for multiple streams and easier integra-
tion with our system but is otherwise unchanged. It links to a sepa-
rate archive and it is marked in the repository where our reference
implementation is available [2].

4.3. Detailed architecture

To better explain the underlying architecture, it is useful to expand
the example from Fig. 6 to include more tasks in each node. This
shows how multiple logical channels are handled by a single socket pair
between the two hosts. In Fig. 7, we see that Task A.1 uses the provided
WRITE() macro to send data. For the task itself, everything else is
abstracted away. Likewise, the listener (task B.1) uses READ() which is
a blocking call where the caller waits for data on the declared network
pipe. Until Task A.1 writes a value to the pipe, Task B.1 will wait. This
pipe is described in the shared manifest (Listing 4). Similarly, multiple
tasks on Host A can communicate over their own logical channels.

Tasks can also synchronize execution in the temporal domain by
ensuring that both tasks continue exactly at the same time using the
WRITE_WAIT() and READ_WAIT() pair. For a class A channel, both
tasks will wait for 2 ms after the value was initially captured ensuring that
the sender will wait for exactly 2 ms and the receiver will wait for 2 ms
- ‘‘network latency’’. This gives an intuitive primitive for synchronizing
two tasks without complex logic. By pairing up two such channels, it is
trivial to construct a rendezvous mechanism where nodes wait until
both are present before continuing at the same time. Looking back
at the requirements for composability in Section 4.1, we see that this
channel pair is also composable. In Section 6 we evaluate the accuracy
of the simultaneous wakeup.

We split the system into 3 parts: (a) core, (b) writer, and (c) reader.

4.3.1. Core
The core orchestrates the flow of data leaving one writer and data

entering destined for a reader. The core is not meant to be used directly
by a Timed C task but rather provides the needed infrastructure for
the sender and receiver. Core data, such as active network card, PTP
clock file descriptor, etc are kept by a nethandler container. The
core handles resource management which is instrumental in how we
can offer a set of simple macros. It also contains a linked list of all
active outgoing and incoming channels and finally a map that connects
a stream_id to the correct listener task. This last part is how individual
streams are handled and is described in Section 4.3.3.

Each network channel is further described internally by a struct de-
tailing (network) address, stream_id, stream reservation handler (from
AvNU’s OpenAVB project, [46]), callback function for incoming data
and buffer space for the latest frame traversing the channel. It also
contains a Linux pipe pair used to communicate data to/from Timed C

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

1

2

3

4

5

6

7

8

9

10
Fig. 7. net_pipe detailed architecture. To send a value from Task A.1 to B.1, A.1 first issues a WRITE() which feeds the data through a local pipe to a tx-worker. The data is
then sent via the tx-socket to the corresponding Rx socket at Host B. B has a single Rx worker responsible for capturing all incoming traffic and forwarding it to the correct local
task using the StreamID. Task B.1 receives the data by issuing a READ() which blocks on a local pipe awaiting incoming data.
1

2

3

4

5

6

7

8

9

10

11
tasks and this is where READ/WRITE terminates. The shared manifest is
used to describe each network channel and configure it with the correct
values.

struct net_fifo net_fifo_chans[] = {{
/* DEFAULT_MCAST */
.dst = {0x01, 0x00, 0x5E,

0x01, 0x11, 0x42},
.stream_id = 42,
.class = CLASS_A,
.size = 8,
.freq = 50,
.name = "mcast42"

}};

Listing 4: Manifest for a system with a single pipe sending 8 bytes
of data every 20 ms (50 Hz). The label ‘‘mcast42’’ is used with both
macros and functions to indicate which entry to use from the manifest
and later, identify the correct object in the functions.

The manifest seen in Listing 4 is an array of struct net_fifo
which contains:

dst Destination address, a multicast address associated with a specific
stream.

stream_id The unique identifier for the stream.

class The AVB QoS class sets the expected observation interval and
maximum E2E latency.

size The maximum amount of data each packet contains. In this partic-
ular example, we plan to send a single uint64_t value, which
is 8 bytes.

freq How often data is sent This should be either the frequency of
periodic data or an upper bound on how often sporadic data
will be sent through this channel.

name a unique moniker used to find the correct entry in the table and
also by the macros to inject variables and functions into the code
(to properly hook into the core of Federated Timed C).

4.3.2. Writer
For a task to send data, it needs to declare a netfifo_tx (see Listing

5). The label used corresponds to an entry in the manifest. During
the setup process, each declared channel creates and configures its
outgoing socket, and creates a pipe pair where the writer part is made
available to the task and the reader-end is handed to a dedicated thread.
This thread is what allows us to implement the same abstraction as
Timed C’s fifochannel since the thread will wait for data to arrive
and handle all the logic of sending a correctly assembled avtp-frame.
If tasked with using stream reservation, proper values are declared
9

via SRP/MRP and announced to the network during the setup phase.
Finally, to take advantage of dedicated hardware queues and the Credit
Based Shaper, we set the socket priority such that Linux and the mqprio
Qdisc can direct the traffic to the correct queue. Our test system uses an
Intel I210 Network controller which has 4 tx-queues 2 of which support
Credit Based Shaper. A prerequisite for using traffic steering is that
Linux Qdiscs are configured (this is shown in Listing 14 in Appendix B).

#include "manifest.h"
const int LOOPS = 1000000;
task writer() {

NETFIFO_TX(mcast42);
for (uint64_t i = 0; i < LOOPS; i++) {

WRITE_WAIT(mcast42, &i);
sdelay(20);

}
CLEANUP();

}

Listing 5: Code for talker, based on Fig. 6.
The talker based on the sequence in Fig. 6 is shown in Listing 5.

The talker sends an incrementing value every 20 ms (50 Hz) using
the channel described by the manifest in Listing 4. Behind the scenes,
the core assembles an outgoing frame using the experimental type tag
from IEEE 1722 [47], sets the presentation_time to the current PTP
timestamp, and updates all relevant fields before sending the frame.
It also uses the PTP timestamp from when the frame was created and
sleeps for a total of 2 ms (or 50 ms in the case of Class B streams). The
current version of netchannel supports Class A and B, TSN’s Scheduled
Traffic which provides a 100 μs E2E bound is listed as future work. The
final CLEANUP() ensures that streams are unannounced (removed from
the network) and that memory is freed.

4.3.3. Reader
The receiving end of the channel in Listing 5 is shown in Listing

6, line 6. When declaring a channel to be a receiver (using NET-
FIFO_RX()), the core machinery uses the mcast42 label to retrieve
the fields from the manifest and configure the receiver accordingly.
This declares to the network stack that data should be received and
delivered to the socket and configures a callback function for the
corresponding StreamID so that data for this stream is delivered to
the correct fifo. When the client code calls read_wait(), it blocks in the
correct queue until a frame with the expected StreamID arrives.

When a new frame is received for this stream, it is forwarded
to the reader. If READ_WAIT() is used, the full PTP capture times-
tamp is reconstructed. The reader schedules a wakeup at the same
time as the writer. In this way, the writer knows that the data will
be received, and when the receiver will continue forward. By using
the WRITE_WAIT()/READ_WAIT() pair, both tasks will continue
forward together at the same time.

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

1

2

3

4

5

6

7

8

9

10
#include "manifest.h"
task reader() {

NETFIFO_RX(mcast42);
uint64_t d = 0;
while (1) {

READ_WAIT(mcast42, &d);
/* use d */

}
CLEANUP();

}

Listing 6: Code for listener example, based on Fig. 6.

4.4. Automatic stream reservation

From the manifest, the network subsystem extracts the required val-
ues to reserve bandwidth correctly all the way from sender to receiver.
A talker (writer) first announces available streams and waits for new
subscribers (readers) to connect. Note: once announced, the system
waits for at least one listener to subscribe before continuing. This is
so that the task knows that someone is receiving the data. Likewise, a
listener waits for a matching announcement before subscribing.

4.5. Description of protocol format

We use a basic AVTP common data header [47, 4.4.3] without
any extra subheaders. The type is marked as EF_STREAM4 to sig-
nal to any other AVB-capable device on the network that this an
experimental stream and most likely non-standard AVB traffic. The
manifest specifies the amount of data that will be copied into the
stream_data_payload from the fifo used by the core of federated
Timed C. AVB is an L2 protocol, which means that everything is
included directly in the payload field an ethernet frame (with VLAN
extension). The protocol format is described in depth in the transport
protocol definition [47, Sec. 4.4.4.1].

4.6. Integration with timed C

The core of netchannels is a small set of functions and macros that
form the API. The code is contained in an archive and can be easily
linked with any C/C++ application. Our modification to Timed C limits
itself to adding relevant headers and libraries to the build system for
Timed C/KTC. For convenience, a fork of KTC with added libraries and
headers is published to github [3, branch: net_chan].

• A set of header files exposing required API and constants.
• 2 static libraries libtimedc_avtp.a and libmrp.a (the latter being a

slightly reworked client library for AvNu’s MRP service to connect
and configure the mrpd daemon)

• Add references to timedc_avtp and MRP in Ktc.pm, the configu-
ration file for the KTC compiler

• Add example code for writer and reader to demonstrate how
netchannels can be used from within Timed C.

The total changeset to KTC is minimal [3] and it also shows that
including netchannels to any other software system is fairly easy. In this
paper, we have evaluated this in Timed C, so this is what we focus on
for the rest of the paper.

4 In truth, we use AVTP_SUBTYPE_TIMEDC which is a #define to the
experimental value.
10
Fig. 8. Test system setup w/network setup. Critical traffic flows between Talker and
Listener through a network channel. Additional noise is generated and introduced on
the same physical link between the two core switches.

Table 3
Test-machines HW/SW configuration, Talker and Lis-
teners are close to identical in HW configuration,
Talker have 32 GB RAM.

Test machines

Motherboard ASUS P11C-I
CPU Intel Xeon E-2224
Freq 3.40 GHz
Memory 16/32 GB
Storage WD Black SN750 PCIe v3
NIC Dual I210AT
OS Debian 11
kernel v5.16.2-rt19 & 5.10.0

5. Experimental setup and evaluation

In this section, we evaluate the reference implementation of our
network channel concept and show how accurate this system can be
using GNU/Linux and contemporary x86 hardware.

Fig. 8 shows the test scenario where the test machines were con-
nected via 2 switches (Cisco Catalyst 3650 24PDM-S, with AVB, en-
abled). Additionally, two extra systems were used to generate a tunable
load that could consume all available network bandwidth between
the 2 core switches (bridges). This was done to investigate the core
contribution of composable network channels so that they will not be
affected by adverse network conditions. If TSN QoS guarantees perform
as expected, any induced network load should not lead to excessive
delay variations and dropped frames.

Table 3 describes the test machines used in the experiment, the
only difference being the amount of available memory. As the scenarios
are not memory-bound, this is not a relevant difference. Both were
configured to run a standard Debian Linux kernel (v5.10.0-11-amd64)
and a custom kernel with preempt_rt enabled (v5.16.2-rt19).

5.1. Test scenarios

We used a slightly modified version of the talker and listener code
presented in Listings 5 and 6. We enabled logging and needed to be able
to adjust real-time measures and SRP behavior. The complete code can
be found in Listings 11 and 12 (Appendix A). File I/O is a notorious
problem for real-time applications since there are no safe ways to read
or write to file in a critical path. Both the IO stack in the OS as well as a
storage medium can introduce large, unpredictable delays. Instead, we
exploited the available memory in our test machine and cached all the
results in memory before finally writing it to disk at the end of the test
run. We also allocated and locked all required memory before starting
the profiling to avoid page faults during testing.

During testing, we logged the RMS error for the PTP clock reported
by ptp4l. This allowed us to compound the PTP clock uncertainty
with measurement noise from the test application used. If the PTP
accuracy is poor (high RMS), we would have less confidence in the
distributed system’s accuracy.

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
5.2. Test tools

To quantify the e2e latency and wakeup latency, the code samples
shown in Listings 5 and 6 are not well suited to profile the performance.
The core code has instrumentation hooks that allow us to capture
timestamps in a CSV format.

For every frame leaving or entering the system, timestamps were
captured and saved to a buffer and written to a file after the test-run
had completed. In particular, we captured when an outgoing frame
was created (in pdu_send() used by WRITE(), WRITE_WAIT()
macros) when the execution was passed to the Rx worker blocking on
recv_msg() and finally we logged when the task itself was woken
and selected to run (when we return from READ(), READ_WAIT()).

The logs from both sender and receiver were then merged during
post-processing to reveal E2E latency and detect dropped frames. E2E
was computed from the time the frame left the application to when
it was received. This includes delay in the network stack, scheduling
jitter, and network transmission delay.

Note: both WRITE_WAIT() and READ_WAIT() uses CLOCK_
MONOTONICto suspend for the necessary time; using the PTP clock di-
rectly is not possible in clock_nanosleep(). CLOCK_MONOTONIC
is a strictly increasing clock meaning that even when the local clock is
adjusted for drift, it will never move backward. This provides a more
stable clock reference, especially when sleeping for relatively short
durations. Initial investigation showed that the relative error between
CLOCK_MONOTONIC and PTP time was not significant for the duration
of the sleep cycle as this was less than 2 ms and once ptp4l had
stabilized, clock adjustments were done in small steps.

5.2.1. Local interference - CPU and file I/O
To simulate a heavily loaded system with a mixture of high CPU

utilization and heavy file I/O interrupts, we ran a multi-threaded
compilation job of a large software system. Our systems have a total
of 4 physical cores, we started a total of 32 threads that would read
one or more files, and run through various CPU-intensive compilation
stages before writing the result back to disk.

Our experience shows that running a highly parallel compilation
task will saturate both the CPU and create a high level of file I/O
interrupts and be a highly effective ‘‘real-time demonstrator’’. The
effect is readily measured and will efficiently expose missing real-time
measures (e.g., task priorities, task isolation, memory locking, interrupt
shielding). We downloaded the latest Linux and ran Listing 7 while our
test application was running.

make allyesconfig
for i in $(seq 1 100); do

make clean ;
make -j32 all > /dev/null;

done

Listing 7: Steps to induce local load. The effect of the interference
can be observed in Tables 5 and 6 where the effectiveness of real-time
measures is also demonstrated.

We also used cyclictest with the following configuration switches
to establish a baseline. Results were captured for both vanilla and
preempt_rt kernel with the different load scenarios. The results are
presented in Section 6.2 and were used to guide the decision for which
kernel to use in the test scenarios.

cyclictest --duration=3600 -m -S -p90 \
--policy=rr -i200 -h500000 -q

Listing 8: Cyclictest command options used to measure the real-time
response of the kernel task scheduler and wakeup machinery.
11
5.2.2. Network noise generator
To induce a suitable amount of network noise that would trigger

a worst-case scenario for (un)protected flows, we created a small tool,
noisegen [48], that would saturate any link with UDP traffic of a
configurable size. For an unprotected stream, any high-rate interfering
stream will trigger dropped frames through the network. From an
AVB perspective, large frames will induce the highest interference. For
our network, UDP packages with a payload of 1470 bytes proved to
cause the highest ratio of dropped unprotected frames. By default, the
generator saturates the network completely, but it is also possible to
reduce transmitted noise to approx. 20% of link utilization or enter a
periodic cycle where it will fill a link for N seconds before suspending
for another 𝑁 seconds. (This latter mode is what we see in Fig. 10.) The
code was run by specifying the target, payload size, and period (second
granularity). The effective bandwidth was logged by the receiver every
second, which meant that it did not correlate perfectly with the logs
from the Timed C profiling application. The purpose was to induce
a network load and quantify the effect of AVB QoS capabilities. We
can never perfectly replicate interfering traffic in a network, so any
observed jitter, delay, and dropped frames must be captured by the AVB
client (our Timed C distributed system). The second granularity allows
us to visually adjust the induced load with the plots of the network but
will not be used in any rigorous analysis of system performance.

src $> ./noisegen -I 192.168.10.1 -s 1470 -p 30
sink $> ./noisegen -I 192.168.10.1 -s 1470 -r > log

Listing 9: Running noisegen to introduce cross-link traffic ref. Fig. 8.
With this setting, an average of 67.700 UDP packets/s with 1470

bytes payload was sent back-to-back. Accounting for header size, check-
sums, and inter-frame gaps, this corresponded to 83.1% utilization
of a 1 Gbps link. On a smaller network without VLAN trunking and
service protection, this same setting resulted in 98.87% utilization. For
unprotected streams, these conditions caused excessive frame drops.
In both networks, unprotected traffic suffered severe packet loss with
close to 100% dropped traffic. With a set of 0 received frames, it is not
possible to draw any conclusions regarding E2E delay, jitter, or packet
delivery. Instead, we used the cyclic mode to periodically apply noise
and better illustrate the effect of stream protection.

5.3. 3rd party tools

5.3.1. SRP daemon setup
TSN uses the Stream Reservation Protocol (SRP, [7, Ch. 34]) to

dynamically reserve resources for a path between Talker and Listener.
The AvNU Alliance has implemented a server through its OpenAVB ini-
tiative to handle these configuration messages that run as a standalone
service [46].

The daemon has not been modified, but we have extracted the
MRP-client code and included it in our project to handle the interface
between our application and the mrpd daemon. Originally written as
a standalone binary, we had to perform some slight modifications to
make it into a linkable library, the change is available under srp/ in our
code repository [2]. To keep the separation clean, the SRP client code
is now compiled into a separate library (libmrp) with corresponding
headers residing under include/srp in the project catalog.

5.3.2. LinuxPTP - Timing setup and accuracy
On each machine, linuxptp [49] has been configured to run in

802.1AS mode. This is provided by a pre-made configuration files for
the PTP daemon ptp4l. No changes to PTP priority fields were needed
for the clients, causing one of the switches to act as GM for the network.
As the network ran in isolation, this meant that the absolute time

compared to a global reference source such as GNSS was wrong, but

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

w
p
o
n
c
t
i

c

L

5

t
b

w
|

t
i
b

m
d
d
b

internally in the time domain, all nodes agreed on the same source —
hich ultimately is what matters. ptp4l was run with sched_rr and
riority 30 to remove most of the interference from other tasks, no
ther measures were taken to shield it. To reduce the impact of the
etwork noise system running locally on the test machines, ptp4l was
onfigured to use socket priority 4 in Listing 10. Setting up the network
o provide a dedicated strict priority queue for ptp4l is described further
n Listing 14.

hrt --rr 30 ptp4l -i enp2s0 \
--step_threshold=1 -f gPTP.cfg \
--socket_priority=4

isting 10: PTP Setup.

.3.3. Linux real-time and network configuration
In short, ‘‘real-time measures’’ are all the small and large steps taken

o improve the system responsiveness and predictability as experienced
y its real-time tasks.

To avoid unpredictable delays due to major page faults, all memory
as locked in memory. This is done using mlockall(MCL_CURRENT
MCL_FUTURE) which ensures that dynamic memory will not be writ-
en to swap. It is important to note that this does not page the memory
n, so care must be taken to touch all memory before the critical sections
egin.

Another common source of execution jitter is the CPUs’ aggressive
easures to enter lower cstates. This is done to save power and the
eeper a CPU transitions, the longer it will take to return. This intro-
uces variations in the order of 100 s of μs, so by default it is disabled
y default (to keep cstate untouched, nf_keep_cstate() can be

used during initialization).
Our test machines have 4 physical cores and with the help of

HyperThreading (HT) can run up to 8 threads in ‘‘parallel’’. Rather
crudely put, HT provides extra virtual cores and will quickly change
which thread is executing by swapping a set of hardware registers
whenever the executing thread stalls on a memory access. This means
that HT can provide several delays where the length is dependent upon
the execution path of an unrelated thread. To avoid this, HT has been
disabled in BIOS.

To reduce the effect of interference from other tasks and interrupts,
a shielded set of 2 cores was created in which the application itself
was run. All other movable tasks were moved away from these cores to
reduce scheduler interference. It further used sched_rr scheduler and
priority 80 to out-rank any standard kernel thread and avoid task
preemption. All interrupt handlers that could be moved were further
affined to other cores by adjusting the IRQ affinity. This is particularly
useful when using preempt_rt as several interrupt handlers are
moved to dedicated kernel threads.

To manage the network traffic, a mqprio qdisc was attached to
the I210 network card and configured to use the default AVB VLAN
parameters before a Credit Based Shaper Qdisc was attached to Tx-0
and assigned socket priority 3. This is shown in Listing 14. The design
and operation of Linux Qdisc are complex and outside the scope of this
paper.

A full example of local steps taken to improve RT behavior is
presented in Appendix B.

5.4. Running the test scenarios

Once ready, we profiled both kernels to determine the accuracy of
a standard and a ‘‘real-time tweaked’’ system. We tested these kernels
under different scenarios:

1. idle: No other tasks were running other than standard back-
ground tasks.

2. CPU Load: A local task spawning multiple threads that all in-
12

duced high CPU load and high IO activity (Section 5.2.1).
3. Network noise: High network load on the shared link causing the
switches to drop unprotected frames (Section 5.2.2).

We then applied (a) no measures, (b) real-time measures (further de-
scribed in Section 5.3.3) (c) real-time measures and performed stream
reservation to protect the network stream. The latter was handled by
the core part and the mrpd client library.

By splitting the load and measures this way, we aimed to quantify
the different capabilities of the kernels and the real-time measures
available in Linux. We also wanted to determine how TSN and stream
reservation performed in practice under various loads.

Finally, two longer tests were run with the preempt_rt kernel and all
RT measures enabled. The first ran without enabling stream reserva-
tion, the latter with the stream being protected by the network as it
moved from talker to listener. In addition, heavy network cross-traffic
with a worst-case frame size was added to both these long-running tests
to cause as much external interference to the traffic as possible.

6. Results

A key requirement for composability is to shield one part of a system
from whatever happens in another part. This is done using traditional
mechanisms available in Linux such as real-time priorities, CPU shield-
ing, and memory. Expanding from this, a network channel should not
be affected by unrelated traffic. The goal of using deterministic network
channels as a composable building block is to be sure that traffic is
not only delivered but delivered with a bounded latency regardless
of other traffic. To evaluate this, we designed an experiment where
the two test machines should wake up exactly at the same time and
continue simultaneously with a cooperative task. In our case, this was
merely logging the timestamp for later comparison but could be any
task requiring some form of synchronicity. The simultaneous wakeup
accuracy is therefore the main objective of the tests and should be
independent of both local interference and network noise. We ran
multiple tests profiling both gPTP accuracy as reported by ptp4l,
network traversal time (‘‘E2E-latency’’), and wakeup accuracy using
read_wait() and write_wait(). We tested the system as shown in Fig. 8.
The entire set of logs obtained and used to generate the tables and
figures are made available [50].

6.1. PTP accuracy

For the timestamps captured during testing to be of any value, we
must start by quantifying the PTP accuracy. Normally a system will
slave its system clock (CLOCK_REALTIME) to the PHC using phc2sys
but using the system clock for wakeup can be dangerous when it is
being continuously adjusted. Instead, we read the timestamp directly
from the PTP Hardware Clock (PHC) to remove one extra service
from the test and remove a potential source of errors. It is generally
recommended to use CLOCK_MONOTONIC, and we then must use 2
different clock sources; using the PHC is therefore not much extra
complexity and saves us an extra source of error.

Fig. 9 shows the PTP RMS accuracy reported by ptp4l for a long
run (8hr 50 min) with heavy network cross traffic in the setup depicted
in Fig. 8. ptp4l was run as specified in Section 5.3.2 on a Linux 5.16.2-
rt19 kernel. The performance was representative of other measured
high-load scenarios, we show the result for the preempt_rt kernel used
for the final tests. More details can be found in Table 4. The core
switches have the AVB option enabled which means PTP sync messages
are timestamped on both ingress and egress. Compared to the wakeup

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
Fig. 9. gPTP performance evaluation, Cat-2 selected as PTP GM. RMS values as reported from gPTP on both hosts during excessive network interference. A 10-min length, simple
moving average (SMA) window is overlaid on each dataset.
Table 4
gPTP performance summary for a long test, data
represents local time error from the master clock (PTP
GM). GM selected by the network to run on switch
closets to talker (Cat-2).

Listener Talker

duration 8 hr 50min
max 29 ns 7 ns
avg 10.8 ns 3.4 ns
𝜎 3.3 ns 0.8 ns

Table 5
Cyclictest performance summary, task wakeup accu-
racy from clock_nanosleep(), 60-minute sum-
mary during heavy CPU load, aggregated results
from all 4 threads. Wakeup deviation reported from
cyclictest scaled to μs.

5.10.0 5.16.2-rt19

samples 71 796 433 71 999 889
max 3092 μs 16 μs
avg 3.8 μs 1.1 μs
𝜎 24.5 μs 0.3 μs

accuracy (covered next), this is 3 orders of magnitude better and thus
more than sufficient for our tests.

6.2. Kernel wakeup accuracy

To test the real-time capabilities of the selected kernels, we ran
cyclictest for 1 h during heavy CPU and IO load (massively parallel
make of the Linux kernel source code). This is a common strategy
for testing the performance of new RT kernels and configurations.
Except for running cyclictest with real-time priority, no other real-time
measures were taken. The results are presented in Table 5.

Not only is the maximum latency reduced by a factor of 2 but
the standard deviation is also significantly lower yielding improved
determinism for the preempt_rt kernel. With these results in mind,
we felt comfortable moving forward using the prempt_rt kernel. These
results also yield lower bounds on the accuracy of our system regardless
of network performance on a Linux-based system. E.g., we cannot expect
to achieve better wakeup accuracy than 16 μs.
13
Table 6
E2E package latency of 50 Hz stream, the system running without
neither network interference nor SRP to reserve network resources. The
top half shows an otherwise idle system, and the lower section shows
delay values when running a CPU-intensive load.
E2E Delay 5.16.2-rt19

No RT With RT

Idle
max 697.4 μs 95.8 μs
min 134.7 μs 39.3 μs
avg 471.0 μs 56.5 μs
𝜎 51.3 μs 1.0 μs
CPU Load
max 256.7 μs 131.6 μs
min 69.2 μs 59.1 μs
avg 108.4 μs 87.5 μs
𝜎 9.2 μs 3.8 μs

6.3. Package transmission delay

As the machines are running with ptp4l and clock accuracy is
within 30 ns, we can safely use the PTP timestamps for when a frame
was created at write()/write_wait() and received to gauge the total
delay. The delay measured not only the network delay but also the
network stack at both ends. In Table 6 we present the values for 5.16.2-
rt19 with no network noise and no stream protection. The first test
was without any real-time measures, the second using all the measures
described in Section 5.3.3.

We see a clear improvement using real-time measures such as IRQ
affinity, task shielding, real-time priorities, and locking memory to
avoid page faults.

6.4. E2E delay with network noise

As shown in Fig. 8, we can apply cross-link noise to the system to
evaluate the effect of reserving network capacity. This experiment is
an almost exact replica of the package transmission delay except that
we now add network interference. Having established the benefit of
using real-time measures, we now use this for all tests and demonstrate
how stream reservation helps avoid package loss and reduce jitter.
In Fig. 10 we see a clear effect of protecting the stream with SRP.
Running without protection, we observe a near 100% frame drop in
Fig. 10(a) when the noise generator saturates the network. Using stream
protection in Fig. 10(b), we can see that no frames from the critical
stream are lost, yet we notice an increase in E2E delay jitter with
approximately 20 μs. This is consistent with worst-case interference

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
Fig. 10. Frame E2E delay in a 5-min test, variable network interference in 30-s cycles. Blue crosses indicate lost frames, and green circles represent E2E delay for frames. The
right 𝑦-axis (red) shows the consumed bandwidth of interfering traffic. See Table 7 for details. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Table 7
E2E delay, Linux v5.16.2-rt19, the system is idle
with periodic network interference (30-sec cycle of 0
to approximately 830Mbps traffic). The first column
shows delays and packet loss without any network
protection schemes; the second column shows results
when SRP is used to reserve network resources. Fig. 10
provide a graph view of same dataset.

No protection With SRP

max 4196.9 μs 184.3 μs
min 39.1 μs 39.0 μs
avg 126.2 μs 58.9 μs
𝜎 437.8 μs 4.3 μs
loss 48.3% 0%

of large frames for a shared link5 and internal forwarding delay on
the bridge. Table 7 provides additional details where especially the
max delay and standard deviation demonstrate the efficacy of stream
protection in this case.

6.5. Network triggered wakeup accuracy

The final and most important metric to evaluate for our network
channel is the coordinated wakeup accuracy. As described in Section 4,
WRITE_WAIT() and READ_WAIT() will let each node continue at
the same time; the goal is to have the talker and listener tasks waking
up simultaneously regardless of local load and network noise. Where
Fig. 10 shows the necessity of using SRP to protect critical traffic, we

5 A frame of 1470 bytes + headers will consume 12 μs in transmission delay.
14
Table 8
E2E summary using RT+SRP, a heavy CPU load on both machines
and variable network saturation (5 min noise period). For Listener
and Talker, a negative error means waking up after targeted time. For
relative error, values are absolute (which unit wakes up before the other
is not as relevant as how far apart they wake).

Listener Talker Relative error

max −17.4 μs −7.9 μs 15.3 μs
avg −2.3 μs −2.1 μs 0.25 μs
𝜎 0.70 μs 0.38 μs 0.80 μs

now look at the complete service, the accuracy of two systems run-
ning a coordinated wakeup with WRITE_WAIT() and READ_WAIT().
Fig. 11 shows the aggregated wakeup error between the two machines,
Table 8 shows the maximum relative error in our setup.

The result in Table 8 shows that a shared signal between two hosts
on a network can synchronize the execution flow to within 15.3 μs
under heavy load and high network interference. When we compare
this with the results presented in Table 5, we see that we are within the
bounds found by the de-facto Linux real-time performance measuring
toolkit.

Oliveira et al. [51] provide a thorough evaluation of preempt_rt on
comparable hardware to our test setup. Their load scenarios are more
detailed than what we used in our evaluation, yet we see that for heavy
loads, they present similar numbers. Similarly, for ARM-based devices,
Adam et al. evaluate several flavors of Raspberry Pi (RPi) and kernel
versions using cyclictest. The comprehensive summary ([52, Table 2])
they provide shows max latency numbers well below 100 μs for most
of the models tested.

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
Fig. 11. Delay wakeup accuracy, RT+SRP measures under heavy CPU load and interfering traffic (Kernel 5.16.2-rt19). A negative value means wakeup after target. The lower
right figure is the same as the left but restricted to +/−3𝜎.
6.6. Final remarks

Although the results obtained during testing show a clear advantage
of using protected streams, the amount of available hardware con-
strained the size of our experimental setup. We also only ran a single
stream between the talker and listener to reduce the possible sources
of errors. Due to the number of systems available for testing, both end
stations, and network bridges, we have not been able to accurately
quantify the effect of multiple reserved streams. The same limit applies
to the number of network bridges between a talker and listeners.

7. Conclusion

In this paper, we have presented network channels, an extension
to Timed C and Time Flow Graph that allows us to design, verify and
implement robust distributed real-time systems. This has been rooted in
a formal definition of TFG. A tool such as TFG is useful when describing
large and complex systems, and by extending TFG and Timed C, to
the network realm, it becomes possible to describe large, distributed
systems with the same tools. For a component such as a network
channel to be considered composable, the amount of temporal shielding
the network can provide must be comparable to the real-time demands.
For TSN using stream class A, an upper bound of 2 ms E2E latency is
specified in the standard which is what we have evaluated in this paper.
Whereas TSN also provides a 100 μs upper bound using the time-aware
scheduler, this has not been evaluated in this work as we did not have
access to supportive network equipment. A TSN network such as we
have used in this paper can therefore only provide composable channels
for systems that allow up to 2 ms delays.

A reference implementation has been described and evaluated on
Linux. We saw that preempt_rt greatly improves system determinism and
that SRP and TSN ensure that no packets are lost regardless of network
load. By using PTP, we can accurately reason about total transmission
delay through both the network and the local network stack on both
15
ends. The accuracy of the PTP clock synchronized during our test runs
shows that PTP is 3 orders of magnitude more accurate than scheduler
wakeup, allowing us to be confident that PTP timestamps can be used
to synchronize task wakeups events.

We showed that our framework for network channels can share
signals across a network domain and synchronize the execution of a
distributed system both during adverse network conditions and extreme
local loads. We show experimentally that the construct fulfills the
requirements for composability for systems that accept a 2 ms delay.
The API presents itself as clear and simple, leading to a clean design of
drts. We demonstrated this inside a Timed C example program, and as
noted in the beginning, including it in any other C program is trivial.

Finally, we discuss the limitations of our experimental setup and
how a future experiment could be constructed to further strengthen the
results.

8. Future work

We see maximum E2E delays of more than 100 μs in the system, but
we suspect that a large portion of this is due to variance in the delay
through the Linux network stack. Another interesting avenue is to look
into Linux’s Express Data Path (XDP) and move most of the network
processing to user space to further reduce network delay and jitter.

As the current revision of the network channel uses class A and
B from AVB, a logical next step is to enable the Time Aware Shaper
for scheduled traffic and add support for sporadic traffic via the Asyn-
chronous Traffic Shaper.

With the limits discussed in Section 6.6, we see a clear opportunity
for running the test scenario with multiple reserved streams as well
as adding additional network bridges. It would also be interesting
to create multiple streams flowing both ways between the systems
acting as talker and listener. This should show how well our reference
implementation scales with the number of logical channels as well as
adding further pressure on the network bridges.

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

t

D

c
i

D

A

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

L

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
Finally, as the shared manifest is a single, central place that specifies
all streams for the drts, combining this with a known network topology
o determine routing and time slots for TAS is a necessary next step.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

ppendix A. Code examples

See Listings 11, 12 and 13.

#include <stdio.h>
#include <cilktc.h>
#include <timedc_avtp.h>
#include "manifest.h"

static bool running = false;
void sighandler(int signum)
{

printf("%s(): Got signal (%d), closing\n",
__func__, signum);

fflush(stdout);
running = false;

}

task writer()
{

printf("%s(): getting ready\n", __func__);
NETFIFO_TX(mcast42);

for (uint64_t i = 0; i < LOOPS && running; i++)
{

WRITE_WAIT(mcast42, &i);
if (!(i%100))

printf("%lu: written\n", i);
sdelay(20, ms);

}

uint64_t stop = -1;
WRITE_WAIT(mcast42, &stop);
printf("Magic stop marker written\n");

CLEANUP();
return NULL;

}

void main()
{

nf_set_nic(NIC);
printf("Run for %d, using %s\n", LOOPS, NIC);

printf("Using SRP\n");
nf_use_srp();
nf_set_logfile("netfifo_talker_rt_srp.csv");
nf_log_delay();

running = true;
signal(SIGINT, sighandler);
writer();

}

Listing 11: Talker example with profiling.
16
#include <stdio.h>
#include <cilktc.h>
#include <timedc_avtp.h>
#include "manifest.h"

task reader()
{

NETFIFO_RX(mcast42);
/* Default, terminal value, unless changed by
* remote, will terminate loop. */
uint64_t d = -1;
while (1) {

READ_WAIT(mcast42, &d);
if (!(d%100))

printf("Counter received! -> %lu\n", d);

if (d == -1) {
printf("Magic terminator, stopping\n");
break;

}
}
CLEANUP();
return NULL;

}

void main()
{

printf("Using %s\n", NIC);
nf_set_nic(NIC);
nf_use_srp();
nf_set_logfile("netfifo_listener_rt_srp.csv");
nf_log_delay();
reader();

}

isting 12: Listener example with profiling.

#pragma once
#define NIC "enp2s0.2"

#define LOOP_HZ 50
#define IT_MIN (50*60)
#define IT_HR (IT_MIN * 60)
#define LOOPS (5 * IT_HR)

#include <timedc_avtp.h>
struct net_fifo net_fifo_chans[] = {{

/* DEFAULT_MCAST */
.dst = {0x01, 0x00, 0x5E,

0x01, 0x11, 0x42},
.stream_id = 42,
.class = CLASS_A,
.size = 8,
.freq = 50,
.name = "mcast42"

}};

Listing 13: Manifest for profiling code.

Appendix B. Linux RT setup

See Listing 14.

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.

| \
tc qdisc replace dev enp2s0 parent root mqprio \
num_tc 4 \
map 3 3 1 0 2 2 2 2 2 2 2 2 2 2 2 2 \
queues 1@0 1@1 1@2 1@3 hw 0

tc qdisc add dev enp2s0 parent 8001:1 cbs \
idleslope 20000 sendslope -980000 \
hicredit 30 locredit -1470 offload 1

ip link add link enp2s0 name enp2s0.2 \
type vlan id 2 egress-qos-map 2:2 3:3

ip link set enp2s0.2 up
cset shield --cpu 2-3
cset shield -s -p $$

move network interrupts to reduce
interference from non-related network load
for irq in $(cat /proc/interrupts | \

grep -E ’(enp1s0|enp2s0$|enp2s0-TxRx-0|enp2s0-TxRx-1)’
cut -d ’:’ -f1);

do
echo "Setting affinty for irq ${irq} to: 1"
echo "1" > /proc/irq/${irq}/smp_affinity

done

for irq in $(cat /proc/interrupts | \
grep -E ’(enp2s0-TxRx-2|enp2s0-TxRx-3)’| \
cut -d ’:’ -f1);

do
echo "Setting affinty for irq ${irq} to: 14"
echo "1" > /proc/irq/${irq}/smp_affinity

done

Listing 14: Linux setup of Qdisc and shielding of 2 cores.

References

[1] S. Natarajan, D. Broman, Timed C: An extension to the C programming language
for real-time systems, in: 24TH IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2018, IEEE, 2018, pp. 227–239, http://
dx.doi.org/10.1109/RTAS.2018.00031, [ed] Pellizzoni, R., URL http://urn.kb.se/
resolve?urn=urn:nbn:se:kth:diva-235153.

[2] H. Austad, NetChannels, 2022, URL https://github.com/henrikau/net_chan.
[3] H. Austad, KTC fork with pre-built NetChannel extension included, 2022, URL

https://github.com/henrikau/ktc/tree/net_chan.
[4] K. Erciyes, Distributed Real-Time Systems, Theory and Practice, first ed., Springer

International Publishing, 2019, p. 341, http://dx.doi.org/10.1007/978-3-030-
22570-4.

[5] H. Kopetz, Real-Time Systems - Design Principles for Distributed Embedded
Applications, in: Real-Time Systems Series, Springer, 2011, http://dx.doi.org/
10.1007/978-1-4419-8237-7.

[6] Standard for Local and Metropolitan Area Networks–Audio Video Bridging (AVB)
Systems, IEEE Std 802.1BA-2011, 2011, pp. 1–45, http://dx.doi.org/10.1109/
IEEESTD.2011.6032690.

[7] Standard for Local and Metropolitan Area Network–Bridges and Bridged Net-
works, IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014), 2018, pp.
1–1993, http://dx.doi.org/10.1109/IEEESTD.2018.8403927.

[8] Standard for Local and Metropolitan Area Networks–Frame Replication and
Elimination for Reliability, IEEE Std 802.1CB-2017, 2017, pp. 1–102, http:
//dx.doi.org/10.1109/IEEESTD.2017.8091139.

[9] Standard for Local and Metropolitan Area Networks – Bridges and Bridged
Networks - Amendment 25: Enhancements for Scheduled Traffic, IEEE Std
802.1Qbv-2015 (Amendment To IEEE Std 802.1Q-2014 As Amended By IEEE
Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor
1-2015), 2016, pp. 1–57, http://dx.doi.org/10.1109/IEEESTD.2016.8613095.

[10] IEEE, Asynchronous Traffic Shaping, IEEE Std 802.1Qcr-2020, 2020, pp. 1–151,
http://dx.doi.org/10.1109/IEEESTD.2020.9253013.

[11] J. Specht, S. Samii, Urgency-based scheduler for time-sensitive switched ethernet
networks, in: 2016 28th Euromicro Conference on Real-Time Systems, ECRTS,
2016, pp. 75–85, http://dx.doi.org/10.1109/ECRTS.2016.27.

[12] R.T. Braden, D.D.D. Clark, S. Shenker, Integrated services in the internet architec-
ture: An overview, 1994, http://dx.doi.org/10.17487/RFC1633, RFC 1633. URL
17

https://www.rfc-editor.org/info/rfc1633.
[13] D.L. Black, Z. Wang, M.A. Carlson, W. Weiss, E.B. Davies, S.L. Blake, An archi-
tecture for differentiated services, 1998, http://dx.doi.org/10.17487/RFC2475,
RFC 2475. URL https://www.rfc-editor.org/info/rfc2475.

[14] J. Harju, P. Kivimaki, Co-operation and comparison of DiffServ and IntServ:
Performance measurements, in: Proceedings 25th Annual IEEE Conference on
Local Computer Networks, LCN 2000, 2000, pp. 177–186, http://dx.doi.org/10.
1109/LCN.2000.891025.

[15] N. Finn, P. Thubert, B. Varga, J. Farkas, Deterministic networking architecture,
2019, http://dx.doi.org/10.17487/RFC8655, RFC 8655. URL https://www.rfc-
editor.org/info/rfc8655.

[16] L. Lamport, Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21 (7) (1978) 558–565, http://dx.doi.org/10.1145/359545.
359563.

[17] M. Lipiński, T. Włostowski, J. Serrano, P. Alvarez, White rabbit: A PTP
application for robust sub-nanosecond synchronization, in: 2011 IEEE Interna-
tional Symposium on Precision Clock Synchronization for Measurement, Control
and Communication, 2011, pp. 25–30, http://dx.doi.org/10.1109/ISPCS.2011.
6070148.

[18] Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems, IEEE Std 1588-2019 (Revision of IEEE
Std 1588-2008), 2020, pp. 1–499, http://dx.doi.org/10.1109/IEEESTD.2020.
9120376.

[19] Kernel Maintainers, The Linux Kernel, 2022, URL https://www.kernel.org/doc/
html/latest/.

[20] GNU, The GNU C Library (glibc), 2022, URL https://www.gnu.org/software/
libc/.

[21] T. Gleixner, Real-time Linux history, 2022, URL https://wiki.linuxfoundation.
org/realtime/rtl/blog#preempt-rt_history.

[22] T. Gleixner, S. Rostedt, J. Kacur, RT-tests, 2022, URL https://wiki.
linuxfoundation.org/realtime/documentation/howto/tools/rt-tests.

[23] T. Gleixner, S. Rostedt, J. Kacur, Cyclictest latency debugging with ftrce, 2022,
URL https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/
cyclictest/tracing.

[24] S. Natarajan, Programming Language Primitives and Tools for Integrated
Real-Time Systems Development (Ph.D. thesis), KTH Royal Institute of Tech-
nology, 2021, QC 20210517. URL http://urn.kb.se/resolve?urn=urn:nbn:se:kth:
diva-294315.

[25] S. Natarajan, M. Nasri, D. Broman, B.B. Brandenburg, G. Nelissen, From code to
weakly hard constraints: A pragmatic end-to-end toolchain for timed c, in: Pro-
ceedings - Real-Time Systems Symposium, Institute of Electrical and Electronics
Engineers Inc., 2019, pp. 167–180, http://dx.doi.org/10.1109/RTSS46320.2019.
00025, QC 20200702 http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-274075.

[26] S. Natarajan, D. Broman, Temporal property-based testing of a timed c compiler
using time-flow graph semantics, in: Proceedings 2020 Forum on Specification &
Design Languages, FDL, Institute of Electrical and Electronics Engineers (IEEE),
2020, pp. 1–8, http://dx.doi.org/10.1109/FDL50818.2020.9232935, [ed] Alain
Girault. URL http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292191.

[27] P. Derler, T. Feng, E. Lee, S. Matic, H. Patel, Y. Zhao, J. Zou, PTIDES: A
programming model for distributed real-time embedded systems, 2008.

[28] M. Lohstroh, C. Menard, S. Bateni, E. Lee, Toward a Lingua Franca for determin-
istic concurrent systems, ACM Trans. Embedded Comput. Syst. 20 (2021) 1–27,
http://dx.doi.org/10.1145/3448128.

[29] M. Lohstroh, I. Romeo, A. Goens, P. Derler, J. Castrillón, E. Lee, A. Vincentelli,
Reactors: A Deterministic Model for Composable Reactive Systems, 2020, pp.
59–85, http://dx.doi.org/10.1007/978-3-030-41131-2_4.

[30] D. Broman, P. Derler, J. Eidson, Temporal issues in cyber-physical systems, J.
Indian Inst. Sci. 93 (3) (2013) 389–402.

[31] K.B. Stanton, Distributing deterministic, accurate time for tightly coordinated
network and software applications: IEEE 802.1AS, the TSN profile of PTP,
IEEE Commun. Stand. Mag. 2 (2) (2018) 34–40, http://dx.doi.org/10.1109/
MCOMSTD.2018.1700086.

[32] C.S.V. Gutiérrez, L.U.S. Juan, I.Z. Ugarte, V.M. Vilches, Time-sensitive network-
ing for robotics, 2018, CoRR abs/1804.07643, URL http://arxiv.org/abs/1804.
07643, arXiv:1804.07643.

[33] Unified Architecture, OPC Foundation.
[34] OPCFoundation, OPC 10000-14 unified architecture part 14 pub sub, OPC UA

Online Reference URL https://reference.opcfoundation.org/Core/Part14/.
[35] S. Cavalieri, F. Chiacchio, Analysis of OPC UA performances, Comput. Stand.

Interfaces 36 (2013) 165–177, http://dx.doi.org/10.1016/j.csi.2013.06.004.
[36] D. Bruckner, M.-P. Stǎnicǎ, R. Blair, S. Schriegel, S. Kehrer, M. Seewald, T.

Sauter, An introduction to OPC UA TSN for industrial communication systems,
Proc. IEEE 107 (6) (2019) 1121–1131, http://dx.doi.org/10.1109/JPROC.2018.
2888703.

[37] IEC/IEEE 60802 TSN profile for industrial automation |. https://1.ieee802.org/

tsn/iec-ieee-60802/.

http://dx.doi.org/10.1109/RTAS.2018.00031
http://dx.doi.org/10.1109/RTAS.2018.00031
http://dx.doi.org/10.1109/RTAS.2018.00031
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235153
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235153
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-235153
https://github.com/henrikau/net_chan
https://github.com/henrikau/ktc/tree/net_chan
http://dx.doi.org/10.1007/978-3-030-22570-4
http://dx.doi.org/10.1007/978-3-030-22570-4
http://dx.doi.org/10.1007/978-3-030-22570-4
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1007/978-1-4419-8237-7
http://dx.doi.org/10.1109/IEEESTD.2011.6032690
http://dx.doi.org/10.1109/IEEESTD.2011.6032690
http://dx.doi.org/10.1109/IEEESTD.2011.6032690
http://dx.doi.org/10.1109/IEEESTD.2018.8403927
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
http://dx.doi.org/10.1109/IEEESTD.2017.8091139
http://dx.doi.org/10.1109/IEEESTD.2016.8613095
http://dx.doi.org/10.1109/IEEESTD.2020.9253013
http://dx.doi.org/10.1109/ECRTS.2016.27
http://dx.doi.org/10.17487/RFC1633
https://www.rfc-editor.org/info/rfc1633
http://dx.doi.org/10.17487/RFC2475
https://www.rfc-editor.org/info/rfc2475
http://dx.doi.org/10.1109/LCN.2000.891025
http://dx.doi.org/10.1109/LCN.2000.891025
http://dx.doi.org/10.1109/LCN.2000.891025
http://dx.doi.org/10.17487/RFC8655
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655
https://www.rfc-editor.org/info/rfc8655
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/ISPCS.2011.6070148
http://dx.doi.org/10.1109/ISPCS.2011.6070148
http://dx.doi.org/10.1109/ISPCS.2011.6070148
http://dx.doi.org/10.1109/IEEESTD.2020.9120376
http://dx.doi.org/10.1109/IEEESTD.2020.9120376
http://dx.doi.org/10.1109/IEEESTD.2020.9120376
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.kernel.org/doc/html/latest/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://www.gnu.org/software/libc/
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt_history
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt_history
https://wiki.linuxfoundation.org/realtime/rtl/blog#preempt-rt_history
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/rt-tests
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/tracing
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/tracing
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/tracing
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294315
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294315
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-294315
http://dx.doi.org/10.1109/RTSS46320.2019.00025
http://dx.doi.org/10.1109/RTSS46320.2019.00025
http://dx.doi.org/10.1109/RTSS46320.2019.00025
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-274075
http://dx.doi.org/10.1109/FDL50818.2020.9232935
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292191
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb27
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb27
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb27
http://dx.doi.org/10.1145/3448128
http://dx.doi.org/10.1007/978-3-030-41131-2_4
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb30
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb30
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb30
http://dx.doi.org/10.1109/MCOMSTD.2018.1700086
http://dx.doi.org/10.1109/MCOMSTD.2018.1700086
http://dx.doi.org/10.1109/MCOMSTD.2018.1700086
http://arxiv.org/abs/1804.07643
http://arxiv.org/abs/1804.07643
http://arxiv.org/abs/1804.07643
http://arxiv.org/abs/1804.07643
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb33
https://reference.opcfoundation.org/Core/Part14/
http://dx.doi.org/10.1016/j.csi.2013.06.004
http://dx.doi.org/10.1109/JPROC.2018.2888703
http://dx.doi.org/10.1109/JPROC.2018.2888703
http://dx.doi.org/10.1109/JPROC.2018.2888703
https://1.ieee802.org/tsn/iec-ieee-60802/
https://1.ieee802.org/tsn/iec-ieee-60802/
https://1.ieee802.org/tsn/iec-ieee-60802/

Journal of Systems Architecture 137 (2023) 102853H. Austad et al.
[38] Open Source Automation Development Lab contributors, OPC UA PubSub over
TSN: OSADL - Open Source Automation Development Lab eG. URL https://www.
osadl.org/OPC-UA-PubSub-over-TSN.opcua-tsn.0.html.

[39] Object Management Group, Inc., Data distribution service, 2021, URL https:
//www.dds-foundation.org/.

[40] ROS: Home. https://www.ros.org/.
[41] T. Agarwal, P. Niknejad, M.R. Barzegaran, L. Vanfretti, Multi-level time-sensitive

networking (TSN) using the data distribution services (DDS) for synchronized
three-phase measurement data transfer, IEEE Access 7 (2019) 131407–131417,
http://dx.doi.org/10.1109/ACCESS.2019.2939497.

[42] C.A.R. Hoare, Communicating sequential processes, Commun. ACM 21 (8) (1978)
666–677, http://dx.doi.org/10.1145/359576.359585.

[43] B. Buth, J. Peleska, H. Shi, Combining methods for the livelock analysis of a
fault-tolerant system, in: International Conference on Algebraic Methodology and
Software Technology, Springer, 1999, pp. 124–139.

[44] J. Whitney, C. Gifford, M. Pantoja, Distributed execution of communicating
sequential process-style concurrency: Golang case study, J. Supercomput. 75
(2019) http://dx.doi.org/10.1007/s11227-018-2649-2.

[45] L. Lamport, R. Shostak, M. Pease, The Byzantine generals problem, ACM Trans.
Program. Lang. Syst. 4 (3) (1982) 382–401, http://dx.doi.org/10.1145/357172.
357176.

[46] Avnu, OpenAvnu git repository, 2022, URL https://github.com/Avnu/OpenAvnu.
[47] Standard for a Transport Protocol for Time-Sensitive Applications in Bridged

Local Area Networks, IEEE Std 1722-2016 (Revision of IEEE Std 1722-2011),
2016, pp. 1–233, http://dx.doi.org/10.1109/IEEESTD.2016.7782716.

[48] H. Austad, Tool repository, 2022, URL https://github.com/henrikau/tools.
[49] R. Cochran, The Linux PTP project. URL https://linuxptp.sourceforge.net.
[50] H. Austad, Logfiles from testruns, NetChannels, 2022, URL https://lethe.austad.

us/fs/netchan_22.tgz.
[51] D.B.d. Oliveira, D. Casini, R.S.d. Oliveira, T. Cucinotta, Demystifying the real-

time Linux scheduling latency, in: M. Völp (Ed.), 32nd Euromicro Conference
on Real-Time Systems, ECRTS 2020, in: Leibniz International Proceedings
in Informatics (LIPIcs), vol. 165, Schloss Dagstuhl–Leibniz-Zentrum für Infor-
matik, Dagstuhl, Germany, 2020, pp. 9:1–9:23, http://dx.doi.org/10.4230/LIPIcs.
ECRTS.2020.9, URL https://drops.dagstuhl.de/opus/volltexte/2020/12372.

[52] G.K. Adam, N. Petrellis, L.T. Doulos, Performance assessment of Linux Kernels
with PREEMPT_Rt on ARM-based embedded devices, Electronics 10 (11) (2021)
1331, http://dx.doi.org/10.3390/electronics10111331, Number: 11 Publisher:
Multidisciplinary Digital Publishing Institute. URL https://www.mdpi.com/2079-
9292/10/11/1331.

Henrik Austad received the M.Sc. degree in engineering cy-
bernetics in 2009 from the Norwegian University of Science
and Technology (NTNU). He has since worked with authen-
tication systems for distributed computing and the real-time
engineering of telepresence codecs for Cisco Systems. Since
2019 he has been a research scientist at SINTEF Digital
in Trondehim and is currently pursuing a Ph.D. at NTNU.
His research interest include real-time Linux, cyber–physical
systems, space applications and deterministic networking.

Erling Rennemo Jellum received his M.Sc. in Engineering
Cybernetics from the Norwegian University of Science and
Technology (NTNU) in 2020 and is currently pursuing
a Ph.D. at the same department. His research interests
include real-time systems, models of computation and
reconfigurable logic. He co-founded SentiSystems in 2020.

Sverre Hendseth received his Siv.ing. degree (M.Sc. in tech-
nology) from the Norwegian Institute of Technology (NTH),
in Trondheim, Norway in 1987 and his Dr. Techn. from
NTU in 1994. He has since 2003 been an associate professor
at the Norwegian University of Science and Technology
where he teaches in real-time programming and real-time
theory. His research interests include realtime systems,
programming languages, and software engineering.
18
Dr. Geir Mathisen is professor within Dependable Dis-
tributed Embedded Systems at Department of Engineering
Cybernetics, Norwegian University of Science and Technol-
ogy Norway, (NTNU). He also has a position as senior
scientist at SINTEF Digital. He is teaching real-time systems
and design of embedded systems and supervise Ph.D. candi-
dates. He has 30 years of experience in SINTEF, participated
in several large industrial research projects, in EU funded
research projects and acts as advisor for the industry.
Areas of expertise are real time distributed system analysis,
system architecture, design of real time control systems and
embedded systems.

Torleiv H. Bryne received his M.Sc. and Ph.D. in Engi-
neering Cybernetics in 2013 and 2017, respectively, both
from the Norwegian University of Science and Technology
(NTNU). He has previously been a Research Scientist at
SINTEF, Trondheim, Norway, and is currently an Associate
Professor at the Department of Engineering Cybernetics,
NTNU. His research interests are in the field of estimation
and timing applied to navigation and autonomous systems.
Unmanned aerial vehicles and marine applications are the
main focus areas of his research. He recently co-founded the
spin-off company SentiSystems.

Kristoffer N. Gregertsen received the M.Sc. degree in
engineering cybernetics in 2008 and the Ph.D. degree in
engineering cybernetics in 2012, both from the Norwegian
University of Science and Technology (NTNU) in Trond-
heim. He has worked at SINTEF Digital since 2012, and
is currently senior scientist and research manager for the
reliable automation group. His research interest include
embedded real-time systems, communication middleware,
cyber–physical systems, robotics, smart grid and space
applications.

Sigurd M. Albrektsen received his M.Sc. degree in en-
gineering cybernetics in 2011 and the Ph.D degree in
engineering cybernetics in 2018, both from the Norwegian
University of Science and Technology (NTNU) in Trond-
heim. He has worked as a research scientist at SINTEF
Digital since 2011. Sigurd co-founded SentiSystems in 2020
where he currently serves as the head of embedded de-
velopment. His research areas include embedded systems,
real-time systems, robotics, localization technologies and
sensor integration.

Bjarne E. Helvik received his Siv.ing. degree (M.Sc. in
technology) from the Norwegian Institute of Technology
(NTH), Trondheim, Norway in 1975. He was awarded the
degree Dr. Techn. from NTH in 1982. He has since 1997
been Professor at the Norwegian University of Science and
Technology (NTNU), the Department of Telematics and
Department of information Security and Communication
Technology, since 2022 as Emeritus. In the period 2009–
2017, he has been Vice Dean with responsibility for research
at the Faculty of Information Technology and Electrical
Engineering at NTNU. He has previously held various posi-
tions at ELAB and SINTEF Telecom and Informatics. In the
period 1988–1997 he was appointed as Adjunct Professor
at the Department of Computer Engineering and Telematics
at NTH. During 2003–2012 Principal investigator at the
Norwegian Centre of Excellence Q2S — the Centre for Quan-
tifiable Quality of Service and was in 2020–2021 Principal
investigator at the Centre for Research based Innovation
NORCICS — Norwegian Center for Cybersecurity in Critical
Sectors. His field of interests includes QoS, dependability
modeling, measurements, analysis and simulation, fault-
tolerant computing systems and survivable networks, as well
as related system architectural issues. His current research
is on ensuring dependability in services provided by multi-
domain, virtualised ICT systems, with activities focusing on
5G++ and SmartGrids.

https://www.osadl.org/OPC-UA-PubSub-over-TSN.opcua-tsn.0.html
https://www.osadl.org/OPC-UA-PubSub-over-TSN.opcua-tsn.0.html
https://www.osadl.org/OPC-UA-PubSub-over-TSN.opcua-tsn.0.html
https://www.dds-foundation.org/
https://www.dds-foundation.org/
https://www.dds-foundation.org/
https://www.ros.org/
http://dx.doi.org/10.1109/ACCESS.2019.2939497
http://dx.doi.org/10.1145/359576.359585
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb43
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb43
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb43
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb43
http://refhub.elsevier.com/S1383-7621(23)00032-2/sb43
http://dx.doi.org/10.1007/s11227-018-2649-2
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1145/357172.357176
https://github.com/Avnu/OpenAvnu
http://dx.doi.org/10.1109/IEEESTD.2016.7782716
https://github.com/henrikau/tools
https://linuxptp.sourceforge.net
https://lethe.austad.us/fs/netchan_22.tgz
https://lethe.austad.us/fs/netchan_22.tgz
https://lethe.austad.us/fs/netchan_22.tgz
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.9
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.9
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2020.9
https://drops.dagstuhl.de/opus/volltexte/2020/12372
http://dx.doi.org/10.3390/electronics10111331
https://www.mdpi.com/2079-9292/10/11/1331
https://www.mdpi.com/2079-9292/10/11/1331
https://www.mdpi.com/2079-9292/10/11/1331

	Composable distributed real-time systems with deterministic network channels
	Introduction
	Contributions
	Background and Motivation
	Real-time Systems
	Distributed Real-Time Systems
	Composability and Composable drts
	Real-Time Networks and TSN
	Precision Time Protocol
	Linux, preempt_rt and rt-tests
	Timed C
	Related work

	Deterministic Network Channels and Federated Timed C
	Formalization
	Reference Implementation Overview
	Detailed Architecture
	Core
	Writer
	Reader

	Automatic Stream Reservation
	Description of Protocol Format
	Integration with Timed C

	Experimental Setup and Evaluation
	Test scenarios
	Test tools
	Local interference - CPU and File I/O
	Network noise generator

	3rd party tools
	SRP daemon setup
	LinuxPTP - Timing setup and accuracy
	Linux Real-Time and Network Configuration

	Running the Test Scenarios

	Results
	PTP Accuracy
	Kernel Wakeup Accuracy
	Package Transmission Delay
	E2E Delay with Network Noise
	Network Triggered Wakeup Accuracy
	Final Remarks

	Conclusion
	Future work
	Declaration of Competing Interest
	Data availability
	Appendix A. Code examples
	Appendix B. Linux RT Setup
	References

