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PARTIAL SERRE DUALITY AND COCOMPACT OBJECTS

STEFFEN OPPERMANN, CHRYSOSTOMOS PSAROUDAKIS AND TORKIL STAI

Dedicated to Henning Krause on the occasion of his sixtieth birthday

Abstract. A successful theme in the development of triangulated categories
has been the study of compact objects. A weak dual notion called 0-cocompact
objects was introduced in [38], motivated by the fact that sets of such objects
cogenerate co-t-structures, dual to the t-structures generated by sets of com-
pact objects. In the present paper, we show that the notion of 0-cocompact
objects also appears naturally in the presence of certain dualities.

We introduce “partial Serre duality”, which is shown to link compact to
0-cocompact objects. We show that partial Serre duality gives rise to an
Auslander–Reiten theory, which in turn implies a weaker notion of duality
which we call “non-degenerate composition”, and throughout this entire hier-
archy of dualities the objects involved are 0-(co)compact.

Furthermore, we produce explicit partial Serre functors for multiple flavors
of homotopy categories, thus illustrating that this type of duality, as well
as the resulting 0-cocompact objects, are abundant in prevalent triangulated
categories.
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1. Introduction

The concept of a triangulated category, introduced independently by Verdier [40]
and Puppe [15], appears naturally in various branches of mathematics. It is om-
nipresent in areas like algebraic geometry, stable homotopy theory, and represen-
tation theory; triangulated categories give a common framework for doing modern
homological algebra in very different contexts.
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2 OPPERMANN, PSAROUDAKIS AND STAI

Now, it might happen that we want to examine a triangulated category T which
is somehow ‘too big’, making it hopless to really understand certain facets off the
bat. For instance, T might have coproducts. In this scenario compact objects can
be helpful: Following Beligiannis–Reiten [6], any set X of compact objects gives rise
to a decomposition of the ambient category, in the form of a (stable) t-structure

(
⊥(X⊥),X⊥

)
.(t1)

If T is even generated by compact objects, then more tools become available:
Neeman [31] proved that T satisfies Brown representatibility, which in turn unveils
a fairly constructive localization theory. This covers many categories that occur in
nature, for instance derived categories of rings and of (most) schemes are compactly
generated.

Alas, the naive dual approach leads to a rather empty theory, in the sense that
the resulting notion of cocompactness seldom appears in categories we wish to
study: We show in Theorem 2.3 that if A is Grothendieck abelian, then the only
cocompact object in D(A) is 0. On the other hand, non-trivial cocompact objects
can only exist in K(ModR) if we put certain subtle restrictions on the underlying
set-theory (see Remark 2.6).

So it becomes a natural goal to identify a more applicable variant of cocompact-
ness, that is, a notion which not only allows for far-reaching theorems, but also
actually shows up in categories one might be interested in.

In [38], coveting a more potent dual of (t1), we introduced the weaker notion of
0-cocompactness ad hoc, and showed that if X is a set of 0-cocompact objects, then

(
⊥ X, (⊥ X)⊥

)
(t2)

is a (stable) t-structure in T. The point was that the definition was forgiving enough
to apply to the homotopy categories studied in that paper.

In fact, the analogy to the classical theory has recently been strengthened with
a Brown representability theorem for 0-cocompactly cogenerated triangulated cate-
gories [29]. Appendix A offers an enhanced version which additionally provides an
explicit construction of the representing objects.

In the current manuscript we explain how 0-cocompact objects—as well as their
duals, the 0-compacts—come up in connection with certain dualities. In particular,
there is an abundance of such objects in several categories of interest.

Below we present the main results of the paper, divided into three areas. All
categories are k-categories for some commutative ring k. In this brief introduction
we suppress any assumptions on existence of (co)products in the categories that
appear; the full picture can be found in the pertinent sections.

I. Partial Serre duality. The study and use of Serre functors goes back to the
work of Bondal–Kapranov [9] on mutations of exceptional collections. Since its
introduction, the concept has become important in several areas. For instance, in
representation theory the presence of a Serre functor is equivalent to the existence of
almost split triangles [19,20], and identifying objects along the Serre functor is the
idea behind cluster categories [12]; for geometers the Serre functor is a most utile
weapon for handling the derived category of coherent sheaves [10]. This classical
concept of a Serre functor is limited to triangulated categories which are Hom-finite
over some field; we extend the notion in the following sense.

Fix an injective cogenerator I of Mod k, and write (−)∗ = Homk(−, I). A partial
Serre functor for a subcategory X of a triangulated category T, is a functor S : X −→
T such that

T(X,T )∗ ∼= T(T, SX)
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naturally in X ∈ X and in T ∈ T.
Over a field k, [7, 8] established such duality formulae in certain singularity

categories of algebras and in stable module categories of finite group schemes. On
the other hand, for k = Z and I = Q/Z the object SX is known by topologists as
the ‘Brown–Comenetz dual’ of X [11].

Experts may recall that the fact that a Serre functor in the sense of [9] is exact,
is a non-trivial result. In Theorem 3.3 (proven in Appendix B) we offer an enhance-
ment to our setup: The collection X of all the ‘Serre dualizable objects’ in T is a
triangulated subcategory. Moreover, there is a partial Serre functor S : X −→ T

which is exact.
However, our main motivation for studying this concept is that it links the

notions of compactness and 0-cocompactness.

Theorem 3.5. If S : X −→ T is a partial Serre functor, then X consists of compact
objects while S(X) consists of 0-cocompact objects.

And so begins the important task of finding examples of partial Serre functors;
this becomes a method for identifying 0-cocompact objects in practice.

II. Homotopy categories. If T is a compactly generated triangulated category,
then by Brown representability each compact object is Serre dualizable, and so
there is a partial Serre functor S : Tc −→ T. It follows that T is also 0-cocompactly
cogenerated, by the essential image S(Tc) — see Corollary 3.6.

However, such an approach does not reveal any explicit information about the
induced 0-cocompact objects. We would really prefer to actually construct partial
Serre functors, not least in categories where Brown representability fails.

Let R be any ring (if no other base ring is available, we can always choose k = Z).
Write (−)∨ = HomR(−, R) and ν = (−∨)∗, and let modR be the category of finitely
presented R-modules.

Each bounded complex M over modR appears in an exact sequence

P1
p
−→ P0 −→M −→ 0,

where the Pi are contractible and belong to Cb(projR). Indeed, this is nothing but
a projective presentation in the category of complexes. Let SMM = Ker (ν(p)) [2].

Theorem 4.9. Let R be a ring. Then SM defines a partial Serre functor

SM : Kb(modR) −→ K(ModR)

In Proposition 4.11 we show how to calculate SMM using just complexes of
projectives, and not projective objects in the category of complexes. In particular,
if M is a module, then the 0-cocompact object SMM is simply the complex

τM −֒→ νP ′
1 −→ νP ′

0,

where P ′
1 −→ P ′

0 −→M −→ 0 is a projective presentation in modR and τM is the
‘usual’ AR-translate of M .

By construction, the colocalizing subcategory of K(InjR) generated by the essen-
tial image SM(modR), consists of complexes of pure-injectives. This spurs Corol-
lary 6.6, which shows that each complex of R-modules admits a pure-injective (and
a pure-projective) resolution.

On the other hand, if Λ is an Artin algebra then, choosing I as an injective
envelope of the semisimple k/rad k, the functor SM becomes an auto-equivalence.
In particular, Kb(modΛ) is a set of 0-cocompact objects in K(ModΛ) (Observa-
tion 4.10).

Recall from [27, 37] that the inclusion K(InjR) −֒→ K(ModR) admits a left
adjoint λ. If X is a left bounded complex, then λX is an injective resolution of X .
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Dually, by e.g. [35] the inclusion K(ProjR) −֒→ K(ModR) admits a right adjoint
ρ. If X is a right bounded complex, then ρX is a projective resolution of X .

Theorem 4.13. Let R be a ring, and let Kb
fpr(R) be the subcategory of Kb(ModR)

consisting of complexes admitting degree-wise finitely generated projective resolu-
tions.

(1) There is a partial Serre functor SI : λ(Kb
fpr(R)) −→ K(InjR) given by

SI(λX) = νρX.

(2) There is a partial Serre functor SP : ρ(Kb
fpr(R

op))∨ −→ K(ProjR) given by

SP((ρX)∨) = ρ(X∗).

Recently, the authors of [8] showed that if A is a Gorenstein algebra which is
finite dimensional over a field, then there are Serre functors

Ssg : Dsg(A) −→ Dsg(A) and SG : GprojA −→ GprojA.

We now realize that there is a bigger picture here: In Section 5 we explain how
partial Serre duality may be transported along an adjoint triple, and thus

• if R is a noetherian ring, then SI induces a partial Serre functor

Ssg : Dsg(R) −→ Kac(InjR) (Theorem 5.5) and

• if R also has a dualizing complex, then SP induces a partial Serre functor

SG : (GProjR)c −→ GProjR (Theorem 5.9).

III. Auslander–Reiten theory. The concept of an almost split triangle in a
triangulated category T, due to Happel [19], is a powerful combinatorial tool: In
fortunate cases, the collection of such triangles determines all the morphisms in T.

Existence theorems in this direction can thus be of some impact. For instance,
if T satisfies Brown representability and X is a compact object with local endomor-
phism ring, then there is an almost split triangle

τX −→M −→ X −→ τX [1].(∗)

Here τX [1] is the representing object of HomEnd(X)(T(X,−), IX), where IX is an in-
jective envelope of the simple End(X)-module—see e.g. Beligiannis [5] or Krause [25].
However, τX can sometimes be calculated using a more global approach:

Theorem 7.3; Theorem 7.6. Suppose that the triangulated category T is idem-
potent complete, and that S : X −→ T is a partial Serre functor.

For each object X in X with local endomorphism ring, the triangle (∗) exists and
appears as a summand of a triangle

SX [−1] −→ N −→ X −→ SX.(∗∗)

Suppose moreover that k is noetherian, and that I is the direct sum of the injective
envelopes of the simple k-modules. If End(X) is k-finite, then (∗∗)=(∗).

By their definition, AR-triangles are completely self-dual. Partial Serre duality,
on the other hand, is not self-dual: The Serre dual of a compact object is just
0-cocompact. In Section 8 we introduce the notion that composition from X to Y
is non-degenerate if any non-zero T-submodule of T(X,−) or T(−, Y ) contains a
non-zero morphism X −→ Y .

In the light of Proposition 8.5, this is a weaker form of partial Serre duality: If
X admits a Serre dual, then composition from X to SX is non-degenerate. Still,
there is an existence criterion for almost split triangles even in these terms: Suppose
that X and Y have local endomorphism rings, and that either End(X) or End(Y )
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is artinian. In Corollary 8.4 we show that if composition from X to Y is non-
degenerate, then there is an almost split triangle of the form

Y [−1] −→ E −→ X −→ Y.(∆)

Conversely, one might ask what the existence of such a triangle in general tells
us about X . Clearly, composition from X to Y must be non-degenerate. Now
the point is that this weaker form of duality is self-dual, capturing more than
classical compactness: In Theorem 8.7 we show that if composition from X to
Y is non-degenerate, then X is 0-compact and Y is 0-cocompact. It follows in
particular that any object X which appears in an almost triangle of the form (∆),
is 0-compact—see Corollary 8.9.

It might be helpful to summarize some of the connections between these versions
of compactness and duality in a graph.

X is compactX is ‘Serre dualizable’

X appears in almost split
τX −→M −→ X −→

X has a ‘non-degenerate partner’

X is 0-compact

if local End and

Brown rep.,

[5, 25],Thm 7.1

if Brown rep.

Thm 3.5

Thm 8.3

Thm 8.5

Thm 8.7

if local End

Thm 7.3

Acknowledgments. The authors thank Georgios Dalezios, Lidia Angeleri Hügel,
Martin Kalck, Rosanna Laking, and Jorge Vitória for discussions, comments and
questions.

2. (Co)compactness and 0-(co)compactness

In a triangulated category T with coproducts, an object X is compact if the
natural morphism ∐

T(X,Yi) −→ T(X,
∐

Yi)

is invertible for each family {Yi}. The subcategory of all compact objects in T is
denoted by Tc. Dually—albeit appearing far less frequently in the literature—if T
admits products, then an object Y is cocompact if the natural morphism

∐
T(Xi, Y ) −→ T(

∏
Xi, Y )

is an isomorphism for each collection {Xi}.
We will now recall the more recent notion of 0-cocompactness as introduced

in [38], together with its dual. A bit of terminology is involved:
For a class of objects X in T, an object G is said to be a contravariant X-ghost

if T(G,X) = 0; a morphism g is a contravariant X-ghost if T(g,X) = 0. Dually, an
object G is a covariant X-ghost if T(X, G) = 0. In an abelian category, a diagram

A0
a0−→ A1

a1−→ A2 −→ · · ·

is dual Mittag-Leffler (dual ML) if the increasing chain Ker ai ⊂ Ker ai+1ai ⊂ · · ·
stabilizes for each i.
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Definition 2.1. An object X ∈ T is 0-cocompact if holimT is a contravariant
X-ghost for each sequence

T : · · · −→ T2 −→ T1 −→ T0

such that colimT(T, X) = 0 and T(T, X [1]) is dual ML.
Dually, X is called 0-compact if hocolimT is a covariant X-ghost for each se-

quence

T : T0 −→ T1 −→ T2 −→ · · ·

such that colimT(X,T) = 0 and T(X [1],T) is dual ML.

It is clear that any (co)compact object is 0-(co)compact; the question of the
converse is more interesting. Indeed, the fact that 0-cocompactness in practice
does appear more often than cocompactness, is the mainspring of our work.

Example 2.2. Consider the category K(Mod k) for a field k. Then the only co-
compact object is 0, while all objects are 0-cocompact.

Since any complex is homotopy equivalent to a complex with zero differential we
have K(Mod k) ≃ (Mod k)Z, and can mainly argue in the category of vector spaces.
For the first claim, note that

∐
I Homk(k,X) ( Homk(

∏
I k,X) whenever the index

set I is infinite and X is non-zero.
For the second claim let X ∈ K(Mod k) and T be as in the definition of 0-

cocompact. We assume that all complexes have zero differential. Let d be a
degree such that Xd 6= 0. Pick an element (· · · , t2, t1, t0) ∈ limT di . If tn 6= 0
then we can find a linear map T dn −→ Xd which does not send tn to 0. This
linear map will give rise to a non-zero element of colimHomk(T di , X

d), and hence
of colimHomK(Mod k)(Ti, X), contradicting the first assumption on the sequence. It

follows that limT di = 0.

Now assume that the sequence · · · −→ T d−1
2 −→ T d−1

1 −→ T d−1
0 does not satisfy

the Mittag-Leffler condition. That means there is a subsequence

· · ·
ϕ3
−→ T d−1

n2

ϕ2
−→ T d−1

n1

ϕ1
−→ T d−1

n0

such that T d−1
n0

) Imϕ1 ) Imϕ1ϕ2 ) · · ·. It follows that the maps in the sequence

Hom(T d−1
n0

, Xd) −→ Hom(Imϕ1, X
d) −→ Hom(Imϕ1ϕ2, X

d) −→ · · ·

are all proper epimorphisms. Note that Xd = X [1]d−1, thus we have a contradiction
to the assumption that Hom(T, X [1]) is dual ML. It follows that the sequence

· · · −→ T d−1
2 −→ T d−1

1 −→ T d−1
0 does satisfy the Mittag-Leffler condition, and in

particular lim1 T d−1
i = 0.

Finally note that holimT = limT⊕ lim1 T[−1]. Thus we have Hom(holimT, X) =

0 if and only if for any d such that Xd 6= 0 we have limTd = 0 and lim1 Td−1 = 0,
which are exactly the two points established above.

Theorem 2.3. Let A be a Grothendieck abelian category which has exact products.
Then the only cocompact object in D(A) is 0.

Remark 2.4. The assumptions of the theorem are slightly stronger than what
we need: For the proof, it suffices to assume that A is an abelian category with
countable products and coproducts, and with enough injectives, which satisfies that
the natural morphism from countable coproducts to products is monic , and that
D(A) is left complete in the sense of Neeman, see [36].

In the proof we will utilize the following observation.

Lemma 2.5. Let C be a cocompact object in a triangulated category T. If we have
C = holimCi then C is a direct summand of a finite direct sum ⊕ni=1Ci.
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Proof. Consider the triangle C −→
∏
i Ci −→

∏
iCi −→ C[1] defining the homo-

topy limit. Note that any for any n we have the following short exact sequence.

0
⊕n

i=1 Ci
⊕n

i=1 Ci 0

C
∏
Ci

∏
Ci C[1]

C
∏
i>n Ci

∏
i>n Ci C[1]

The induced map in the top row is an isomorphism, whence the monomorphism
splits coherently. It follows that the bottom row also is a direct summand of the
middle row, and in particular is a triangle.

By cocompactness of C, and hence also C[1], the map
∏
i Ci −→ C[1] vanishes

on all but finitely many factors. Thus by choosing n sufficiently large we can
ensure that the rightmost map in the bottom row vanishes. It follows that C is a
direct summand of

∏
i>n Ci. Again using that C is cocompact it is in fact a direct

summand of a finite subproduct. �

Proof of Theorem 2.3. Note first that any object C is the homotopy limit of a
sequence of bounded complexes (this property is called being “left complete”): Since
products in A are exact, products in D(A) are calculated componentwise. Since the
sequence of canonical left truncations is eventually constant in any given component,
it follows that the homotopy limit of the canonical truncations is indeed C.

If C is cocompact, then it follows by Lemma 2.5 that C is a direct summand of
a finite direct sum of its canonical left truncations, hence a left bounded complex.
(Here we note that a complex X is left bounded if and only if ∃n∀m > n∀I ∈
inj(A) | D(A)(X, I[m]) = 0, hence left bounded complexes are closed under direct
summands in D(A).)

Next we note that any left bounded complex is isomorphic in D(A) to a left
bounded complex of injectives. Such a complex is the homotopy limit of its bru-
tal right truncations, which are finite complexes of injectives. Thus, envolking
Lemma 2.5 again, we see that any cocompact C is a direct summand of a finite
direct sum of finite complexes of injectives, and thus itself a finite complex of
injectives. (The finite complexes of injectives are characterized by the fact that
∃n∀m > n∀A ∈ A | Hom(X,A[m]) = 0, hence this collection of complexes is closed
under direct summands in D(A).)

So we consider finite complexes of injectives. If the complex is not contractible,
then we may assume that C is concentrated in non-positive degrees and that the
map C−1 −→ C0 is not a split epimorphism.

We consider the map Σ: (C0)(N) −→ C0, giving by identity on every component.
Note that for any map ϕ : (C0)(N) −→ C0 which factors through projection to a
finite subcoproduct (C0)(N) −→ (C0){1,...,n}, the difference Σ − ϕ is still a split
epimorphism.

Now, since C0 is injective we may extend Σ to a map Σ̂: (C0)N −→ C0. It follows

immediately that also Σ̂− ϕ is a split epimorphism for any ϕ ∈ HomA(C0, C0)(N).
Consequently, the natural map

HomD(A)(C
0, C)(N) −→ HomD(A)((C

0)N, C)

does not hit Σ̂, hence is not an isomorphism. �
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Remark 2.6. For homotopy categories the situation is more subtle, and depends
on our model of set theory. We will use methods we learned from [16]—see this
book also for a full account of the unexplained notation.

On the one hand, one can see that if there is a measurable cardinal, then no
category K(ModR) can contain a non-zero cocompact object: If I is a set admitting
a non-principal ω1-ultrafilter, then an easy adaptation of [16, Example 3.1] gives
an element of HomK(ModR)(X

I , X) which does not lie in the image of the canonical

map from HomK(ModR)(X,X)(I) for any object X .
On the other hand, if there is no measurable cardinal, and R is a slender ring

(for instance R = Z, see [16, Section III.2]), then the  Loś–Eda-theorem (see [16,
Corollary 3.3]) implies that R, considered as a complex concentrated in one degree,
is cocompact.

When it comes to closure properties, (co)compact objects are much better be-
haved than 0-(co)compacts: The triangulated subcategory Tc is thick, and often
easy to describe completely in concrete examples. The collection of 0-cocompact
objects in T, on the other hand, is typically much more difficult to control. For
instance, a summand of a 0-cocompact object need not be 0-cocompact again.

We do however have the following closure property.

Lemma 2.7. Let Xi be a set-indexed collection of 0-cocompact objects. Then
∏
Xi

is 0-cocompact.

Proof. Since Hom commutes with products in the second argument, it suffices to
observe that a product of sequences has vanishing colimit only if each factor has
vanishing colimit, and similarly is dual ML only if each factor is dual ML. �

Compact generation. For each collection S of objects in T we consider

S⊥ = {T ∈ T |T(S, T [n]) = 0 for each n}.

S is said to generate T if S⊥ = 0; if T admits a generating set consisting of compact
objects, then T is compactly generated. If T is compactly generated by S, then T

coincides with its smallest triangulated subcategory which contains S and is closed
under coproducts.

The following is Neeman’s Brown representability theorem from [32].

Theorem 2.8. If T is a compactly generated triangulated category, then T satisfies
Brown representability, that is, each cohomological functor Top −→ Ab which takes
coproducts of T to products in Ab, is isomorphic to T(−, T ) for some T ∈ T.

Some useful consequences of Theorem 2.8, extracted from [31,32], are:

Theorem 2.9. Suppose F : T′ −→ T is an exact functor between triangulated
categories with T′ compactly generated.

(1) F admits a right adjoint if and only if F preserves coproducts.
(2) F admits a left adjoint if and only if F preserves products.
(3) If F admits a right adjoint G, then F preserves compact objects if and only

if G preserves coproducts.

Let us also recall a trick from [30, Theorem 2.1].

Theorem 2.10. Let T be a compactly generated triangulated category, and let
X ∈ Tc. Then the subcategory X⊥ of T is compactly generated again.

Moreover, the left adjoint to the inclusion X⊥ −֒→ T induces an equivalence

(X⊥)c ≃ Tc / thickX

up to direct summands.
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0-cocompact cogeneration. For a class of objects S in T we also consider

⊥ S = {T ∈ T |T(T [n], S) = 0 for each n}.

S cogenerates T if ⊥ S = 0; if T admits a cogenerating set which consists of 0-
cocompact objects, then T is 0-cocompactly cogenerated. By [38, Theorem 6.6], if T
is 0-cocompactly cogenerated by S, then T coincides with its smallest triangulated
subcategory which contains S and is closed under products.

We end this section with some observations which are (weak) duals of results
from the previous subsection. As one would expect, this story is far less complete
than its classical counterpart.

For our dual version of Theorem 2.8 we refer to Appendix A.
As for Theorem 2.9, we have the following partial ‘0-cocompact dual’:

Theorem 2.9op. Let F : T′ −→ T be a triangle functor with a right adjoint G. If
F preserves countable products, then G preserves 0-cocompact objects.

In particular, if F additionally reflects 0-objects, then G takes any set of 0-
cocompact cogenerators for T to a set of 0-cocompact cogenerators for T′.

Remark 2.11. In contrast to the situation of Theorem 2.9, here we do not get
an “if and only if” statement. Indeed we have seen in Example 2.2 that all objects
in K(Mod k) are 0-cocompact for a field k. Thus any endofunctor of K(Mod k)
preserves 0-cocompacts, but clearly not every left adjoint endofunctor preserves
countable products.

Proof. Let X ∈ T be 0-cocompact and consider a sequence

T : · · · −→ T2 −→ T1 −→ T0

in T′ such that colimT′(T, GX) = 0 and T′(T, GX [1]) is dual ML. By adjunc-
tion we have that colimT(FT, X) = 0 and that T(FT, X [1]) is dual ML, hence
T(holimFT, X) = 0. If F preserves countable products then it preserves homotopy
limits, so in particular

0 = T(holimFT, X) = T(F holimT, X) ∼= T′(holimT, GX)

i.e. GX is 0-cocompact. The last claim follows immediately. �

Finally, our statement corresponding to Theorem 2.10 is

Theorem 2.10op. Suppose T is 0-cocompactly cogenerated by S, and let X ∈ S.
Then the subcategory ⊥X of T is 0-cocompactly cogenerated again.

Proof. The stable t-structure (t2) — see page 2 — shows that the subcategory ⊥X
is an aisle, so by [24] the inclusion ⊥X −֒→ T admits a right adjoint G. We now
observe that ⊥X is closed under countable products: Take a countable subset {Ti}
of ⊥X . Then

∏
Ti = holimT for the obvious system

T : · · · −→ T2 ⊕ T1 ⊕ T0 −→ T1 ⊕ T0 −→ T0,

and T(T, X [i]) is the zero-sequence for each i. In particular it is dual ML with
vanishing colimit, so

∏
Ti ∈

⊥X by the 0-cocompactness of X . It follows from
Theorem 2.9op that the essential image G(S) is a set of 0-cocompact cogenerators
for ⊥X . �

3. Partial Serre functors

Recall that T is a k-category for some commutative ring k. Let us choose an
injective k-module I, which cogenerates Mod k. We write (−)∗ = Homk(−, I).
Typical examples include k being artinian and I the injective envelope of k/rad k,
or k being the ring of integers and I = Q/Z.
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Observation 3.1. We collect a few central properties of the functor (−)∗, all of
which are immediate.

• (−)∗ is contravariant and exact.
• (−)∗ reflects 0-objects and isomorphisms.
• There is a natural monomorphism id −→ (−)∗∗.

Definition 3.2. A partial Serre functor for a subcategory X ⊂ T is a functor
S : X −→ T such that

T(X,T )∗ ∼= T(T, SX)

naturally in X ∈ X and in T ∈ T.

In the special case of a compactly generated triangulated category T, andX = Tc,
the existence of a partial Serre functor was observed by Rouquier in [39, Corol-
lary 4.23] (see also our Corollary 3.6 below). In [3, Example 5.12], Ballard applied
these functors to quasi-projective schemes, calling them “Rouquier functors”.

The functorial properties of partial Serre functors are interesting in their own
right. In particular, in the case that T is a triangulated category, a partial Serre
functor is automatically a triangle functor. However, here we are mostly concerned
with the connection between partial Serre functors and notions of (co)compactness.
Therefore the proof of the following theorem, which summarizes the functorial prop-
erties, is postponed to Appendix B.

Theorem 3.3. Suppose T is a triangulated category, and let X be the full subcate-
gory consisting of all objects X such that T(X,−)∗ is representable.

Then X is a triangulated subcategory of T, and there is a partial Serre functor
S : X −→ T. Moreover, S is a triangle functor.

Observation 3.4. Any partial Serre functor S : X −→ T is faithful, since we have

T(X,Y ) −֒→ T(X,Y )∗∗ ∼= T(SX, SY )

for each X,Y ∈ X by applying the duality formula twice.
On the other hand, S is full only when the subcategory X has ‘sufficiently small’

Hom-sets: If k is a field, this amounts to X being Hom-finite; if k = Z and I = Q/Z,
then S is full provided that T(X,Y ) is a finite abelian group for each X,Y ∈ X.

Partial Serre duality links 0-cocompact objects to compact objects:

Theorem 3.5. Let T be a triangulated category. If X,Y ∈ T satisfy

T(X,−)∗ ∼= T(−, Y ),

then X is compact and Y is 0-cocompact.

Proof. Let us first show that X is compact. Consider a set of objects {Ti} ⊂ T,
and for each i let µi : Ti −→

∐
Ti be the canonical morphism. By assumption we

have

T(X,
∐
Ti)

∗ T(
∐
Ti, Y )

T(X,Ti)
∗ T(Ti, Y )

∼=

T(X,µi)
∗ µ∗

i

∼=

and taking products in the lower row gives another commutative diagram:

T(X,
∐
Ti)

∗ T(
∐
Ti, Y )

∏
T(X,Ti)

∗
∏

T(Ti, Y )

∼=

∼=
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Since the right hand vertical morphism is invertible, so is the left hand vertical one.
Moreover, the left hand vertical morphism is the dual of the natural morphism

∐
T(X,Ti) −→ T(X,

∐
Ti),

so the claim follows since (−)∗ reflects isomorphisms.
We now show that Y is 0-cocompact. Let

T : · · · −→ T2 −→ T1 −→ T0

be a sequence such that colimT(T, Y ) = 0 and T(T, Y [1]) is dual ML. We want to
conclude that holimT is a contravariant Y -ghost. Equivalently, we can show that
holimT is a covariant X-ghost. The triangle

holimT −→
∏

Ti −→
∏

Ti −→ holimT[1]

induces a long exact sequence

· · · T(X,
∏
Ti[−1]) T(X,

∏
Ti[−1]) T(X, holimT)

T(X,
∏
Ti) T(X,

∏
Ti) · · · .

In particular there is a short exact sequence

0 −→ lim1 T(X,T[−1]) −→ T(X, holimT) −→ limT(X,T) −→ 0,

and it suffices to show that the outer terms vanish. Since the system T(T, Y [1]) is
the dual of the system T(X,T[−1]), it follows that the latter is ML, so its derived
limit vanishes. On the other hand, the vanishing of colimT(T, Y ) ∼= colim (T(X,T)∗)
implies the vanishing of colim (T(X,T)∗)

∗ ∼= lim (T(X,T)∗∗). Moreover, since lim

is left exact the monomorphism of diagrams T(X,T) −→ T(X,T)∗∗ induces a
monomorphism limT(X,T) −→ lim (T(X,T)∗∗), whence limT(X,T) = 0. �

In particular, Theorem 3.5 says that if S : X −→ T is a partial Serre functor,
then X ⊂ Tc, while the essential image S(X) consists of 0-cocompact objects.

Corollary 3.6. Let T be a compactly generated triangulated category. Then there
is a partial Serre functor S : Tc −→ T, and the essential image S(Tc) is a set of
0-cocompact cogenerators for T.

Proof. For each compact object X , the functor T(X,−)∗ is representable by Brown
representability (Theorem 2.8), so by Theorem 3.3 there is a partial Serre functor
S : Tc −→ T. The set S(Tc) consists of 0-cocompact objects by Theorem 3.5, hence
the last claim follows from the fact that (−)∗ reflects the vanishing of k-modules. �

Example 3.7. Let Λ be an Artin algebra. Then D(ModΛ)c = perf Λ, and

S = − ⊗L
Λ DΛ: perf Λ −→ D(ModΛ)

is a partial Serre functor (we will give a more general argument in Example 5.3)
inducing an equivalence perf Λ ≃ S(perf Λ) = {bounded complexes over injΛ} of
subcategories of D(ModΛ). Note that S is an autoequivalence on perf Λ if and
only if Λ is Gorenstein, a fact already observed in [19], in which case each perfect
complex is 0-cocompact in D(ModΛ).

Recall that a triangle X −→ Y −→ Z −→ X [1] is called pure if the morphism
Z −→ X [1] is a covariant Tc-ghost. Equivalently, for each compact object C, the
induced sequence 0 −→ T(C,X) −→ T(C, Y ) −→ T(C,Z) −→ 0 is exact. An object
E ∈ T is pure-injective if T(−, E) takes pure triangles to short exact sequences.
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Remark 3.8. If S : X −→ T is a partial Serre functor, then SX is pure-injective
for each X ∈ X. Indeed, we only need to check that T(−, SX) ∼= T(X,−)∗ takes
pure triangles to short exact sequences. As X is compact, the functor T(X,−) does
enjoy this property by definition. Since (−)∗ is exact, the claim follows.

We do not know if 0-cocompactness in general implies pure-injectivity. On the
other hand, as was pointed out to us by Angeleri Hügel, there are pure-injective
objects which are not 0-cocompact:

Example 3.9. Since Q is injective as Z-module, it is pure-injective in D(ModZ).
However, Q is not 0-cocompact: In the proof of Theorem 2.10op we saw that if an ob-
ject X is 0-cocompact, then the subcategory ⊥X is closed under countable products,
and it is not hard to realize that ⊥Q does not enjoy this property. Indeed, let p be
a prime, and consider the Prüfer p-group P = colimZ/(pi). Then HomZ(P,Q) = 0,
since HomZ(Z/(pi),Q) = 0 for each i. However, the torsion submodule of PN is a
proper submodule, so HomZ(PN,Q) 6= 0.

Similarly, for a field k, the pure-injective k(X) is not 0-cocompact in D(Mod k[X ]).

4. Partial Serre functors in homotopy categories

The aim of this section is to construct, in elementary terms, partial Serre functors
for homotopy categories of module categories (Theorem 4.9), as well as for homotopy
categories of injective or of projective modules (Theorem 4.13).

The homotopy category of all modules is typically not compactly generated, and
does not even satisfy Brown representability. Thus we cannot apply the general
abstract existence result from Corollary 3.6. Also for the homotopy categories of
injectives or of projectives, the results in the current section apply beyond the cases
where these categories are known to be compactly generated.

Even in cases where the abstract existence result does apply, having an explicit
construction can be useful: For instance if we want to explicitly describe almost
split triangles, rather than just claim their existence, we need to have an explicit
description of the corresponding partial Serre functor first.

Before actually constructing anything, we record some facts from homological
algebra that will be useful in the sequel.

Totalization. Let R be a ring. By a double complex X we mean a diagram

X i,j X i+1,j

X i,j+1 X i+1,j+1

rX

cX cX

rX

in which the rows and columns are complexes of R-modules, and moreover each
square commutes. In the following discussion, we denote by Tot∐(X) the totaliza-

tion of X with respect to coproducts, while TotΠ(X) is the totalization of X with
respect to products. We denote by ∂X the differential on either variant of the total
complex. Recall that

∂X |Xi,j = rX + (−1)icX .

Let f : X −→ Y be a morphism of double complexes. Then we can form a double
complex Conerow(f) by taking the row-wise mapping cones of f and equipping the
columns of this object with the obvious differentials. In explicit terms, if X =
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(X i,j , rX , cX) and Y = (Y i,j , rY , cY ), then Conerow(f) is as follows.

Y i,j ⊕X i+1,j Y i+1,j ⊕X i+2,j

Y i,j+1 ⊕X i+1,j+1 Y i+1,j+1 ⊕X i+2,j+1

(

rY f
0 −rX

)

(

cY 0
0 cX

) (

cY 0
0 cX

)

(

rY f
0 −rX

)

Lemma 4.1. Let f : X −→ Y be a morphism of double complexes. Then

Cone

(
Tot∗(X)

Tot∗(f)
−−−−−→ (Tot∗(Y ))

)
= Tot∗ (Conerow(f))

as complexes for ∗ ∈ {∐,Π}.

Proof. Recall that

Cone(TotΠ(f))n =


 ∏

i+j=n

Y i,j


⊕


 ∏

i+j=n+1

X i,j


 ,

and that the differentials dC of this complex are given by

dC|Y i,j = ∂Y and dC|Xi,j = f − ∂X .

On the other hand, Conerow(f)i,j = Y i,j ⊕X i+1,j, and the differentials dCrow of this
double complex are given as dCrow |

Y
i,j = rY + cY and and dCrow |

X
i,j = f − rX + cX .

In particular,

TotΠ(Conerow(f))n =
∏

i+j=n

(Y i,j ⊕X i+1,j),

so the two complexes of the proposition do coincide in each degree. Moreover, the
differentials ∂T of the latter complex are given by

∂T|Y i,j = rY + (−1)icY = ∂Y

and, since X i,j lives in degree (i − 1, j) of this complex,

∂T|Xi,j = f − rX + (−1)i−1cX = f − ∂X .

Of course, the same can be said using
∐

instead of
∏

. �

If f : X −→ Y is a morphism of double complexes, then for each n we have a
chain map f•,n : X•,n −→ Y •,n. Visually, f•,n is the ‘horizontal layer’ at height n
in the triple complex f . Notice that f•,n is a quasi-isomorphism if and only if the
n’th row of the double complex Conerow(f) is acyclic.

Lemma 4.2. Let f : X −→ Y be a morphism of double complexes.

(1) If X and Y are left bounded and each f•,n is a quasi-isomorphism, then
the chain map

Tot∐(f) : Tot∐(X) −→ Tot∐(Y )

is a quasi-isomorphism.
(2) If X and Y are right bounded and each f•,n is a quasi-isomorphism, then

the chain map

TotΠ(f) : TotΠ(X) −→ TotΠ(Y )

is a quasi-isomorphism.
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Proof. Claim (2) is dual to claim (1), so it suffices to prove the latter.

By Lemma 4.1, it suffices to show that Tot∐(Conerow(f)) is acyclic. But by
assumption, Conerow(f) is a double complex in which each row is acyclic and each
diagonal is bounded on the lower left. The claim now follows from the Acyclic
Assembly Lemma, see e.g. [42, Lemma 2.7.3 and subsequent Remark]. �

When R is a ring and X,Y ∈ C(ModR), we write HomR(X,Y ) for the double
complex having HomR(X i, Y j) in position (i, j). In particular

HomR(X,Y ) = TotΠ(HomR(X,Y )),

meaning HomC(X,Y ) = Z0 HomR(X,Y ), and HomK(X,Y ) = H0 HomR(X,Y ).
If Z ∈ C(ModRop), then X⊗̃RZ denotes the double complex having Xj ⊗R Z

i

in position (i, j)—note the choice of coordinates—and

X ⊗R Z = Tot∐(X⊗̃RZ).

The usual ⊗–Hom-adjunction extends to an isomorphism of double complexes

(X⊗̃RZ)∗ ∼= HomR(X,Z∗).(4.3)

Let us write (−)∨ = HomR(−, R). Note that this functor induces an equivalence
(projR)op −→ projRop, and hence also

C(projR)op −→ C(projRop) and K(projR)op −→ K(projRop).

Lemma 4.4. Let R be a ring, let M be a complex of R-modules, and let P be a
complex of finitely generated projective R-modules. Then we have an isomorphism

HomR(P,M) ∼= M⊗̃RP
∨

of double complexes, which is natural in P and in M .

Proof. It suffices to observe that for M ∈ ModR and P ∈ projR, there is a natural
morphism M ⊗R P

∨ −→ HomR(P,M) given by m⊗ φ 7−→ [p 7→ m · φ(p)], which is
invertible when P = R. �

Remark 4.5. If P (or M) is a bounded complex then this isomorphism clearly
implies that

HomR(P,M) ∼= M ⊗R P
∨.

However, in general these two complexes are different, since the left hand side is a
product totalization while the right hand side is a coproduct totalization.

The homotopy category of modules. Let R be a ring. Akin to the classi-
cal Auslander–Reiten translation of a finitely presented module, we find for each
bounded complex M of finitely presented R-modules a complex SM as follows. Let

P1
p
−→ P0 −→M −→ 0

be a projective presentation in the category Cb(modR). Explicitly, this means that
P1 and P0 belong to Cb(projR), and are moreover contractible. Define

SM = Ker(ν(p))[2],

where ν = (−∨)∗.
The fact that this S defines a partial Serre functor Kb(modR) −→ K(ModR) is

a relatively straightforward extension of the familiar results from modR, but we
give a thorough account for the convenience of the reader.

We first remark that the required projective presentation exists:
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Construction 4.6. For a bounded complex M over modR, say

M =
(
M0 −→M1 −→M2 −→ · · · −→Mn

)
,

pick epimorphisms P i0 −→M i with P i0 ∈ projR. Form the commutative diagram

P 0
0 P 0

0 ⊕ P
1
0 P 1

0 ⊕ P
2
0 · · · Pn−1

0 ⊕ Pn0 Pn0

M0 M1 M2 · · · Mn 0

where the top row is equipped with the obvious differentials making it a contractible
complex. Now repeat, replacing M by the induced complex of kernels, to obtain a
contractible complex P1, and hence a projective presentation of M in Cb(modR).

Now we work towards a version of Auslander’s defect formula.

Lemma 4.7. Let R be a ring, P a finite contractible complex of finitely generated
projectives. Then

HomC(ModR)(P,−)∗ ∼= HomC(ModR)(−, νP [1])

functorially in P .

Proof. As double complexes, we know that

HomR(P,−)∗ ∼= (−⊗̃RP
∨)∗ Lemma 4.4

∼= HomR(−, (P∨)∗) (4.3)

= HomR(−, νP ).

Since P is a finite complex, all these double complexes have finite diagonals. So
in particular Tot∐ and TotΠ coincide and commute with dualizing. Therefore, as
complexes we have

HomR(P,−)∗ ∼= HomR(−, νP ).

Note that since P is contractible these two complexes are exact. It follows that

HomC(ModR)(P,−)∗ = (Z0(HomR(P,−)))∗

∼= Z1(HomR(P,−)∗)

∼= Z1(HomR(−, νP ))

= Z0(HomR(−, νP [1])) = HomC(ModR)(−, νP [1]). �

Let E : 0 −→ A −→ B −→ C −→ 0 be an extension in C(ModR). The defects
Edefect and Edefect are defined, respectively, by exactness of the sequences

0 −→ HomC(C,−) −→ HomC(B,−) −→ HomC(A,−) −→ Edefect −→ 0;

0 −→ HomC(−, A) −→ HomC(−, B) −→ HomC(−, C) −→ Edefect −→ 0.

Proposition 4.8 (Auslander’s defect formula). Let R be a ring and take an exten-
sion E : 0 −→ A −→ B −→ C −→ 0 in C(ModR). For each M ∈ Cb(modR) there
is an isomorphism

Edefect(M)∗ ∼= Edefect(SM [−1])

which is natural in M .

Proof. Let P1
p
−→ P0 −→ M −→ 0 be a projective presentation. Note that the Pi

satisfy the assumptions of Lemma 4.7 above. The exact sequence

0 −→ HomC(ModR)(M,−) −→ HomC(ModR)(P0,−) −→ HomC(ModR)(P1,−)

dualizes to the upper row in the following diagram of functors on C(ModR) with
exact rows, where we write (−,−) for HomC(ModR)(−,−).
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(P1,−)∗ (P0,−)∗ (M,−)∗

(−,Ker ν(p)[1]) (−, νP1[1]) (−, νP0[1])

∼= ∼=

The vertical isomorphisms are precisely the ones provided by Lemma 4.7. Note
that Ker ν(p)[1] = SM [−1] by definition of S.

From E we thus get the following commutative diagram with exact rows and
columns.

(C, SM [−1]) (B, SM [−1]) (A, SM [−1])

(P1, C)∗ (P1, B)∗ (P1, A)∗

(P0, C)∗ (P0, B)∗ (P0, A)∗

(M,C)∗ (M,B)∗ (M,A)∗

The Snake Lemma yields that the cokernel in the first row, which is Edefect(SM [−1]),
coincides with the kernel in the last row, which is Edefect(M)∗. �

Theorem 4.9. Let R be a ring. Then S defines a partial Serre functor

S : Kb(modR) −→ K(ModR) : M 7−→ Ker(ν(p))[2].

Proof. Let M ∈ Kb(modR) and X ∈ K(ModR). We need to show that

HomK(M,X)∗ ∼= HomK(X, SM)

naturally in M and X .
Let CX = coCone(idX). Then we have the short exact sequence

E : 0 −→ X [−1] −→ CX −→ X −→ 0

in C(ModR). Moreover, a map to X is null-homotopic if and only if it factors
through CX . In other words,

HomK(−, X) = Edefect.

Similarly HomK(X [−1],−) = Edefect. We know from Proposition 4.8 that

HomK(M,X)∗ = Edefect(M)∗

∼= Edefect(SM [−1]) = HomK(X [−1], SM [−1]) = HomK(X, SM). �

Observation 4.10. Let Λ be an Artin algebra. We can now offer an arguably more
conceptual explanation than the one given in [38, Corollary 6.10] of the fact that
bounded complexes of finitely generated modules are 0-cocompact objects in the
homotopy category K(ModΛ): We choose I to be an injective envelope of k/rad k.

In this setup S admits a quasi-inverse S−. Explicitly, for each M choose an
injective copresentation 0 −→M −→ I0 −→ I1 in Cb(modΛ), and let

S−(M) = Cok
(
ν−I0 −→ ν−I1

)
[−2].

Here we use the fact that ν− = HomΛop((−)∗,Λ) is a quasi-inverse of ν as a functor
from finitely generated projective to finitely generated injective modules. It is
immediate from the construction that S and S− are mutually quasi-inverse.

In particular, the partial Serre functor S is an auto-equivalence on the subcate-
gory Kb(modΛ), which thus consists of 0-cocompact objects by Theorem 3.5.
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For explicit calculation, it is sometimes convenient to not need projective objects
in the category of complexes, but rather just complexes of projectives. The following
gives an alternative way of calculating SM using these.

Proposition 4.11. If Q
q
−→ P −→ M −→ 0 is an exact sequence in Cb(modR)

with Q and P consisting of projective modules, then we have

SM = Tot

(
Ker(ν(q)) −֒→ νQ

ν(q)
−−→ νP

)

in K(ModR). Here νP is the 0-th column of the double complex.

Proof. Observe that if P and Q happen to be projective in the category of com-
plexes, then the claimed formula is just a restatement of the definition of S. Indeed,
in that case νP and νQ are contractible, and thus the total complex is isomorphic
to Ker ν(q)[2]. The proof now consists of two independent steps, showing respec-
tively that we may replace P and Q by projectives in the category of complexes,
without changing the result of the formula.

Step 1: Let Q
q
−→ P −→ M −→ 0 be an exact sequence of complexes with Q

and P consisting of projectives.
Choose P = coCone(idP ). Then P is projective in the category of complexes,

and appears in a canonical degree-wise split exact sequence

0 −→ P [−1]
f
−→ P

g
−→ P −→ 0.

Since g is an epimorphism, the pullback of g and q is even bicartesian. In particular,
the middle row of the following diagram is also exact.

Q P M

Q̃ P M

P [−1] P [−1]

q

q̃

g

h f

Notice that Q̃ is again a complex of projectives; in fact, Q̃ = coCone(q). Moreover,
since the middle column is degree-wise split, so is the leftmost column. Indeed,
a splitting of h is obtained by composing q̃ with a splitting of f . It follows that
application of ν and then totalization, gives

Tot

(
Ker(ν(q)) −֒→ νQ

ν(q)
−−→ νP

)
= Tot

(
Ker(ν(q̃)) −֒→ νQ̃

ν(q̃)
−−→ νP

)
(∗)

up to a contractible summand.

Step 2: Let Q
q
−→ P −→ M −→ 0 be an exact sequence of complexes with Q

and P consisting of projectives.
Choose Q = coCone(idQ). Then Q is projective in the category of complexes,

and appears in a canonical degree-wise split exact sequence

0 −→ Q[−1]
f
−→ Q

g
−→ Q −→ 0.
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Form the commutative diagram

Q P M

Q P M

Q[−1]

q

p

f

and note that also the bottom row is exact: Since g is an epimorphism, p and q
have the same image. Application of ν yields the commutative diagram below; the
fact that the bottom left corner is νQ[−1], follows from the Snake Lemma.

Ker(ν(q)) νQ νP

Ker(ν(p)) νQ νP

νQ[−1] νQ[−1]

ν(q)

ν(p)

h ν(f)

Since the middle column is degree-wise split, so is the leftmost one: A splitting of
h is given by composing Ker(ν(p)) −֒→ νQ with a splitting of ν(f). It follows that,
up to contractible summands,

Tot

(
Ker(ν(q)) −֒→ νQ

ν(q)
−−→ νP

)
= Tot

(
Ker(ν(p)) −֒→ νQ

ν(p)
−−−→ νP

)
.(∗∗)

Now to complete the proof of the proposition, suppose Q
p
−→ P −→M −→ 0 is

an exact sequence in Cb(modR) and that Q and P consists of projective modules.
Successive application of the above two steps reveals a commutative diagram

Q P M

Q̃ P M

Q P M

q

q̃

p

with exact rows, where Q and P are projective objects in the category of complexes.
Then (∗) and (∗∗) give us, up to contractible summands,

Tot

(
Ker(ν(q)) −֒→ νQ

ν(q)
−−→ νP

)
= Tot

(
Ker(ν(q̃)) −֒→ νQ̃

ν(q̃)
−−→ νP

)

= Tot

(
Ker(ν(p)) −֒→ νQ

ν(p)
−−−→ νP

)

= Ker(ν(p))[2]

= SM. �

Example 4.12. If M is an R-module, then we can simply use a projective pre-

sentation in modR in order to calculate SM . That is, an exact sequence P1
p
−→

P0 −→M of modules with P0, P1 ∈ projR, resulting in

SM = Tot (τM −֒→ νP1 −→ νP0) = (τM −֒→ νP1 −→ νP0) ,
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where τ denotes the ‘usual’ Aulander–Reiten translation on the category of finitely
presented modules.

Note that ν is right exact, so in this case SM is quasi-isomorphic to νM .
In particular, if M is a finitely generated projective module, then our formula

degenerates and SM = νM .

Homotopy categories of injectives and of projectives. Let R be a ring. It
follows from [33] that the inclusion K(ProjR) −֒→ K(ModR) admits a right adjoint ρ.
Note that if X is right bounded, then ρX is a projective resolution of X . Indeed, let
Q ∈ K(ProjR) and suppose P is a right bounded complex which is quasi-isomorphic
to X . Denoting by Q≤n the brutal truncation of Q, which is trivially a quotient of
Q, we get

HomK(Q,X) = HomK(Q≤n, X) ∼= HomK(Q≤n, P ) = HomK(Q,P )

for sufficiently large n, where the isomorphism in the middle holds because Q≤n is
homotopically projective.

On the other hand, by [37], the inclusion K(InjR) −֒→ K(ModR) admits a left
adjoint λ. If X is left bounded, then λX is an injective resolution of X .

Theorem 4.13. Let R be a ring and let Kb
fpr(R) denote the subcategory of Kb(ModR)

consisting of complexes admitting degree-wise finitely generated projective resolu-
tions.

(1) There is a partial Serre functor S : λ(Kb
fpr(R)) −→ K(InjR) given by

S(λX) = νρX.

(2) There is a partial Serre functor S : ρ(Kb
fpr(R

op))∨ −→ K(ProjR) given by

S((ρX)∨) = ρ(X∗).

Remark 4.14. (1) In particular it follows that λ(Kb
fpr(R)) is a set of compact

objects in K(InjR). Note that if R is right coherent then λ(Kb
fpr(R)) is

nothing but the bounded derived category of finitely presented modules,
realized inside K(InjR) via injective resolutions. If R is even noetherian
then it is shown in [26] that these are in fact all the compact objects, and
that K(InjR) is compactly generated.

(2) Similarly, the set ρ(Kb
fpr(R

op))∨ consists of compact objects in K(ProjR). In
fact, by [33, Proposition 7.12] these are precisely all compact objects. If

R is left coherent then ρ(Kb
fpr(R

op))∨ is equivalent to the opposite of the
bounded derived category of finitely presented left R-modules and by [33,
Proposition 7.14] the category K(ProjR) is compactly generated.

Proof. (1): Let I ∈ K(InjR), and let X ∈ Kb
fpr(R). Pick a projective resolution

with finitely generated terms ρX of X , and let ρX −→ X be a quasi-isomorphism.
In particular, ρX is right bounded. Hence, by Lemma 4.2, the induced morphism
HomR(X, I) −→ HomR(ρX, I) of left bounded double complexes totalizes to a
quasi-isomorphism

Tot∐(HomR(X, I)) −→ Tot∐(HomR(ρX, I)).

Since X is a bounded complex, this means in particular that

HomK(X, I) = H0 TotΠ(HomR(X, I))

= H0 Tot∐(HomR(X, I))

∼= H0 Tot∐(HomR(ρX, I)).
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Moreover, since ρX consists of finitely generated projective R-modules, Lemma 4.4
gives an isomorphism of double complexes

HomR(ρX, I) ∼= I⊗̃R(ρX)∨.

With these observations we can verify the claim of the theorem as follows.

HomK(λX, I)∗ ∼= HomK(X, I)∗ λ is left adjoint

∼= H0 Tot∐(HomR(ρX, I))∗

∼= H0 Tot∐(I⊗̃R(ρX)∨)∗

∼= H0 TotΠ
(
(I⊗̃R(ρX)∨)∗

)
dual of ∐ is Π

∼= H0 TotΠ HomR(I, ((ρX)∨)∗) by (4.3)

= HomK(I, νρX).

(2): Let P ∈ K(ProjR), and let Y ∈ Kb
fpr(R

op). Pick a projective resolution
with finitely generated terms ρY of Y , and let ρY −→ Y be a quasi-isomorphism.
Since Y and ρY are right bounded, so are P ⊗̃RY and P ⊗̃RρY . In particular,
by Lemma 4.2 the induced morphism P ⊗̃RρY −→ P ⊗̃RY of double complexes
totalizes to a quasi-isomorphism

TotΠ(P ⊗̃RρY ) −→ TotΠ(P ⊗̃RY ).

Moreover, since ρY consists of finitely generated Rop-modules, we have

HomR((ρY )∨, P ) ∼= P ⊗̃RρY

by Lemma 4.4. Combining these observations yields

HomK((ρY )∨, P ) = H0 TotΠ(HomR(ρY ∨, P ))

∼= H0 TotΠ(P ⊗̃RρY )

∼= H0 TotΠ(P ⊗̃RY )

∼= H0 Tot∐(P ⊗̃RY ),

where the last equality holds since Y is a bounded complex. The claim now follows
by the following calculation.

(H0 Tot∐(P ⊗̃RY ))∗ ∼= H0 TotΠ
(
(P ⊗̃RY )∗

)
dual of ∐ is Π

∼= H0 TotΠ HomR(P, Y ∗) by (4.3)

= HomK(P, Y ∗)

∼= HomK(P, ρ(Y ∗)) ρ is right adjoint �

5. Transferring partial Serre functors to subcategories

Let R be a noetherian ring. Recall that an R-module is Gorenstein projective if
it appears as a boundary of a totally acyclic complex over ProjR. Such modules
form the full subcategory GProjR of ModR. We write GprojR = GProjR ∩modR.

The categories GProjR and GprojR are Frobenius exact, so the stabilizations
GProjR and GprojR are triangulated. The singularity category of R is the Verdier

quotient Dsg(R) = Db(modR)/ perfR, and there is an exact embedding

GprojR −֒→ Dsg(R).

If R is Gorenstein, then each finitely generated R-module admits a ‘Gorenstein
projective approximation’. This means that the inclusion GprojR −֒→ modR ad-
mits a right adjoint functor GP—the reader is referred to [2,13], see also [8, Propo-
sition 2.5].

The following is [8, Theorem 2.9].
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Theorem 5.1. Let A be a Gorenstein algebra which is finite dimensional over a
field. There are (classical) Serre functors

GprojA
[−1]◦GP ◦ν
−−−−−−−→ GprojA and Dsg(A)

[−1]◦Lν
−−−−−→ Dsg(A).

In ν here we dualize with respect to the base field. Note that the derived functor
Lν induces a well-defined functor on singularity categories, denoted by Lν above.

The goal of the current subsection is to extend Theorem 5.1, by relaxing the
size condition, lifting the homological restriction of Gorensteinness, and providing
partial Serre functors inside larger ambient categories. This will be achieved in
Theorem 5.5 and Theorem 5.9. Our strategy is to investigate how the partial Serre
functors of Theorem 4.13 induce partial Serre functors in certain subcategories of
K(InjR) and of K(ProjR). This will rely on the following general observation.

Lemma 5.2. Take an adjoint triple of triangle functors

T′ T
e

R

L

and let S : X −→ T be a partial Serre functor for a subcategory X ⊂ T.
Then the essential image L(X) ⊂ T′ admits a partial Serre functor S′ : L(X) −→

T′ given by S′(LX) = RSX for each X ∈ X.

Proof. T′(LX,−)∗ ∼= T(X, e−)∗ ∼= T(e−, SX) ∼= T′(−,RSX). �

Example 5.3. Note that in Lemma 5.2 it suffices for L to be defined on X and R

to be defined on S(X). An instance employing such a partially defined right adjoint
is the following.

Consider D(ModR), identified (via injective Cartan–Eilenberg resolutions) with
the full subcategory of homotopically injective complexes in K(InjR). Note that
this inclusion has a left adjoint: the natural projection q : K(InjR) −→ D(ModR).
In general q does not preserve compacts. Therefore our inclusion cannot have a
right adjoint in general.

However if we consider X = λ(Kb(projR)), the category of perfect complexes as
a subcategory of K(InjR) via injective resolutions, then the situation improves: By
Theorem 4.13 we have a partial Serre functor

SK(InjR) : X −→ K(InjR) : (λX) 7−→ νX

for X ∈ Kb(projR). Of course now the essential image SK(InjR)(X) consists of finite
complexes of injectives, and thus lies inside our subcategory of homotopically injec-
tives. Trivially we get a right adjoint defined on SK(InjR)(X), namely the identity.

Thus we obtain the partial Serre functor Kb(projR) −→ D(ModR) given by ν.

Observation 5.4. Consider a compactly generated triangulated category T and
some X ∈ Tc. By Theorem 2.10 the subcategory X⊥ ⊂ T is compactly generated
again, so Corollary 3.6 yields the existence of partial Serre functors

S : Tc −→ T and S′ : (X⊥)c −→ X⊥.

We may now observe that the latter is induced by the former: The subcategory
X⊥ is closed under products and, since X is compact, also under coproducts. By
Theorem 2.9 the inclusion functor X⊥ −֒→ T thus admits a left adjoint L and a right
adjoint R. Moreover, (X⊥)c = L(Tc) by Theorem 2.10 (up to direct summands). In
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particular, since the partial Serre functor S′ is unique up to natural isomorphism,
Lemma 5.2 yields the following commutative diagram.

(X⊥)c Tc

X⊥ T

S′ S

L

R

The singularity category. Let Kac(InjR) be the subcategory of acyclic complexes
in K(InjR). Note that λ(R) is compact when considered as an object in K(InjR),
and moreover that Kac(InjR) = (λ(R))⊥ as subcategories of K(InjR). Using this
fact, one may construct — see e.g. [26] — for R noetherian, an adjoint triple

Kac(InjR) K(InjR).

L

R

The left adjoint L takes the subcategory K(InjR)c ≃ Db(modR) to a compact
generating set for Kac(InjR); up to direct summands, Kac(InjR)c is equivalent to
the singularity category Dsg(R): More explicitly, the sequence of constructions

Dsg(R)
pick preimage
−−−−−−−−−→ Db(modR)

Lλ
−−→ Kac(InjR)c

is a well-defined functor, which is fully faithful and dense up to summands.

Theorem 5.5. Let R be a noetherian ring. There is a partial Serre functor

S : Dsg(R) −→ Kac(InjR)

given as follows. For an object X in Dsg(R), pick a representative X ∈ Db(modR).

Then SX = R νρ(X).

Proof. In view of the adjoint triple above, the claim follows immediately from The-
orem 4.13 and Observation 5.4 — note here that X is identified with LλX when
considering it as an object of Kac(InjR). �

It may not be completely obvious that Theorem 5.5 is in fact a generalization
of Theorem 5.1. However, If R is Gorenstein in the sense of Iwanaga [22], then we
have the following more direct description.

Corollary 5.6. Let R be an Iwanaga–Gorenstein noetherian ring. The partial
Serre functor S : Dsg(R) −→ Kac(InjR) of Theorem 5.5 is induced by the functor
Lν[−1] : Db(modR) −→ Db(ModR). More explicitly we have

S LλX = LλLνX [−1]

for X ∈ Db(modR).

Proof. Note first that Lν maps finite complexes of projectives to finite complexes of
injectives, which in turn vanish when pushed to Kac(InjR). In particular both sides
of the above equation vanish on Kb(projR), and we may replace X by a Gorenstein
projective finitely generated module concentrated in degree 0. Note in particular
that after this replacement LνX = νX .

By definition of Gorenstein projective there is a totally acyclic complex P of
finitely generated projectives, such that X = B1 P . After applying ν we obtain the
following complex, which is still exact.

νP : · · · −→ νP−1 −→ νP 0
︸ ︷︷ ︸

νρX

−→ νP 1 −→ νP 2 −→ · · ·
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Recall that there are no maps from acyclic complexes to left bounded complexes of
injectives in the homotopy category. Therefore the natural map

HomK(−, νP ) −→ HomK(−, νρX)

induces an isomorphism of functors on Kac(InjR). Since νP ∈ Kac(InjR) this means
that R νρX = νP .

On the other hand, observe that the right half of νP is an injective resolution of
νX , more precisely

λνX [−1] =
(
· · · −→ 0 −→ 0 −→ νP 1 −→ νP 2 −→ · · ·

)
,

where the shift is due to the fact that the complex on the right hand side begins in
degree 1. Similarly to before, we can observe that LλνX [−1] = νP : Here we use
that HomK(I,Kac(InjR)) = 0 for any right bounded complex of injectives I. Indeed,
given any map of complexes I −→ Kac(InjR), using the fact that the terms of I
have finite projective dimension (see [22, Theorem 2]) one iteratively from right to
left constructs a null-homotopy.

In particular νP lies in the image of Lλ again, and we have

S LλX
Thm 5.5

= R νρ(X) = νP = LλνX [−1]. �

Gorenstein projectives. Before we go on, let us briefly revisit the Gorenstein pro-
jective approximation functor. Let Ktac(ProjR) denote the subcategory of totally
acyclic complexes in K(ProjR), i.e. those exact complexes which remain exact un-
der HomR(−,ProjR). Recall e.g. from [38, Observation 2.21] that if the noetherian
ring R admits a dualizing complex, then there is an adjoint triple

Ktac(ProjR) K(ProjR).

L

R

The construction of this triple utilizes the fact that if DR is a dualizing complex
then

Ktac(ProjR) = (R⊕ ρHom(DR, λR))
⊥

as subcategories of K(ProjR), and that both R and ρHom(DR, λR) are compact in
K(ProjR). See [38, Proposition 2.15].

Proposition 5.7. Let R be a noetherian ring which admits a dualizing complex.
The inclusion GProjR −֒→ ModR admits a right adjoint GP : ModR −→ GProjR,
which is given by choosing a preimage in ModR before applying

K(ModR)
ρ
−→ K(ProjR)

R
−→ Ktac(ProjR)

B1

−→ GProjR.

Proof. Recall that taking (e.g. first) boundaries gives a triangle equivalence

B1 : Ktac(ProjR)
≃
−→ GProjR.

The quasi-inverse CR of B1 takes a Gorenstein projective R-module X to its com-
plete resolution CRX , i.e. a totally acyclic complex over ProjR with B1(CRX) = X .

Now, take X ∈ GProjR and M ∈ ModR. We first observe that

HomR(X,M) ∼= HomK(CRX,M).
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Indeed, there is an epimorphism φ : HomR(X,M) −→ HomK(CRX,M), as indi-
cated by the following diagram.

CRX : · · · P−1 P 0 P 1 · · ·

X

M : · · · 0 M 0 · · ·

The total acyclicity of CRX means in particular that the morphism ι : X −֒→ P 1 is
a left ProjR-approximation of X . Hence, a morphism f : X −→M factors through
ProjR if and only if it factors through ι, which is further equivalent to f ∈ Kerφ.

To complete the proof, it now suffices to use the right adjointness of ρ and R,
and the fact that B1 and CR are quasi-inverse:

HomR(X,M) ∼= HomK(CRX,M)

∼= HomK(CRX,R ρM)

∼= HomR(X,B1 R ρM) �

Remark 5.8. In the case of an Artin algebra Λ, this description of the functor GP
is fairly explicit. Indeed, the standard dual DΛ is a dualizing complex, and R(X)
can be calculated by taking ‘iterated approximations’ of X by products of copies
of Λ⊕ ρDΛ. For details, the reader is referred to [38, Theorem 6.6; Corollary 6.12]

We are now ready to complete this subsection with the following extension of
Theorem 5.1 for categories of Gorenstein projectives.

Theorem 5.9. Let R be a noetherian ring which admits a dualizing complex. There
is a partial Serre functor

S : (GProjR)c −→ GProjR.

For X ∈ GprojR it is given by S(X) = GP ν(X)[−1].

Proof of Theorem 5.9. By Observation 5.4, the adjoint triple ensures the existence
of a partial Serre functor

Stac : Ktac(ProjR)c −→ Ktac(ProjR),

induced by the partial Serre functor K(ProjR)c −→ K(ProjR) of Theorem 4.13.
It is clear that we can transfer this partial Serre functor to GProjR as the com-

position

S : (GProjR)c
CR
−−→ Ktac(projR)c

Stac−−→ Ktac(ProjR)
B1

−→ GProjR.

Now let X ∈ GprojR, and consider

CRX : · · · P−1 P 0 P 1 P 2 · · ·

X

Observe that
(
· · · −→ (P 2)∨ −→ (P 1)∨ −→ 0 −→ · · ·

)
is a projective resolution of

X∨[1] (when considering (P i)∨ in homological degree −i). It follows that the right
half of the above complex is ρ(X∨[1])∨. Since there are no maps in the homotopy
category from right bounded complexes of projectives to acyclic complexes we see
that

HomK(CRX,−) −→ HomK(ρ(X∨[1])∨,−)

induces a natural isomorphism on Ktac(ProjR), i.e. CRX = L(ρ(X∨[1])∨).
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Now

S(X) = B1 Stac CR(X) = B1 Stac L(ρ(X∨[1])∨)

= B1 RSK(ProjR)(ρ(X∨[1])∨) by Observation 5.4

= B1 R ρ (X∨[1])∗)︸ ︷︷ ︸
=νX[−1]

by Theorem 4.13

= GP ν(X)[−1] Proposition 5.7 �

6. Pure resolutions

Let R be a ring. Following Cohn [14], a sequence

E : 0 −→ A −→ B −→ C −→ 0

in ModR is called pure exact if E ⊗R N is exact for each N ∈ ModRop or, equiv-
alently, if HomR(M,E) is exact for each M ∈ modR. The pure exact sequences
define an exact structure on ModR; an R-module is pure-projective (resp. pure-
injective) if it is projective (injective) with respect to this exact structure. We de-
note by PProjR (resp. PInjR) the subcategory of pure-projectives (pure-injectives)
in ModR.

In this section we will utilize the following theorem. For a collection of objects
S in a triangulated category, we denote by Loc(S) the smallest triangulated sub-
category which contains S and is closed under coproducts. On the other hand,
Coloc(S) is the smallest triangulated subcategory which contains S and is closed
under products.

Theorem 6.1. Let T be a triangulated category.

(1) If T admits coproducts and S is a set of compact objects, then
(
⊥(S⊥), S⊥

)

is a stable t-structure in T. Moreover, ⊥(S⊥) = Loc(S).
(2) If T admits products and S is a set of 0-cocompact objects, then

(
⊥ S, (⊥ S)⊥

)

is a stable t-structure in T. Moreover, (⊥ S)⊥ = Coloc(S).

Proof. For (1) see for example [1, 6, 30]; (2) is [38, Theorem 6.6]. �

Since any finitely presented R-module is pure-projective and, as with any notion
of projectivity, PProjR is closed under summands and coproducts, we have

(i1) Loc(modR) ⊂ K(PProjR),

up to isomorphism.
On the other hand, recall from Section 3 the functor (−)∗ = Homk(−, I) (note

that we may always choose k = Z if there is no other base ring). For each N ∈
ModRop, the dual N∗ belongs to PInjR. Indeed, if E is a pure exact sequence, then
the sequence HomR(E, N∗) ∼= Homk(E ⊗R N, I) is exact. From the description in
Theorem 4.9 of the partial Serre functor S : Kb(modR) −→ K(ModR), we infer

(i2) Coloc(S(modR)) ⊂ K(PInjR).

A complexX of R-modules is pure acyclic if HomR(M,X) is acyclic for eachM ∈
modR. Let Kpac(ModR) be the subcategory of K(ModR) consisting of pure acyclic
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complexes. A chain map f : X −→ Y is a pure quasi-isomorphism if Cone(f) ∈
Kpac(ModR), and the pure derived category of R is the Verdier quotient

Dpure(R) =
K(ModR)

Kpac(ModR)
.

The first point of this section is that Dpure(R) may be realized both as a subcategory
of K(PProjR) and as a subcategory of K(PInjR):

Theorem 6.2. Let R be a ring.

(1) The pair

(Loc(modR),Kpac(ModR))

is a stable t-structure in K(ModR). In particular Dpure(R) is equivalent to
Loc(modR), and the natural quotient functor K(ModR) −→ Dpure(R) has
a fully faithful left adjoint.

(2) The pair

(Kpac(ModR),Coloc(S(modR))),

is a stable t-structure in K(ModR). In particular Dpure(R) is equivalent to
Coloc(S(modR)), and the natural quotient functor K(ModR) −→ Dpure(R)
has a fully faithful right adjoint.

Proof. Observe that Kpac(ModR) = (modR)⊥ by definition, and thus it follows
that we also have Kpac(ModR) = ⊥S(modR). Moreover, by Theorem 3.5 we know
that modR consists of compact objects while ⊥S(modR) consists of 0-cocompact
objects.

Now the stable t-structures exist by Theorem 6.1. For the final claims, note
that for a stable t-structure we always have that the localization by the aisle is the
co-aisle and vice-versa. �

Definition 6.3. Let R be a ring. An object of K(ModR) is called

(1) homotopically pure-projective if it belongs to ⊥Kpac(ModR); and
(2) homotopically pure-injective if it belongs to Kpac(ModR)⊥.

Corollary 6.4. Let R be a ring.

(1) The subcategory of homotopically pure-projectives coincides with the sub-
category Loc(modR). In particular it is contained in K(PProjR) (up to
isomorphism).

(2) The subcategory of homotopically pure-injectives coincides with the subcat-
egory Coloc(S(modR)). In particular it is contained in K(PInjR) (up to
isomorphism).

Proof. By Theorem 6.2, we have Loc(modR) = ⊥ Kpac(ModR). The “in particular”-
statement follows with (i1). The dual argument proves the second point. �

Remark 6.5. By [17, Theorem 3.6] the class of homotopically pure-projectives
in K(ModR) actually coincides with K(PProjR). Combining this fact with our
discussion it follows immediately that there is a triangle equivalence

Dpure(R) ≃ K(PProjR)

for any ring R.

Let X be a complex of R-modules. A pure-projective resolution of X is a pure
quasi-isomorphism P −→ X , with P homotopically pure-projective. Dually, a pure-
injective resolution of X is a pure quasi-isomorphismX −→ I, with I homotopically
pure-injective.



PARTIAL SERRE DUALITY AND COCOMPACT OBJECTS 27

The existence of pure-projective (resp. pure-injective) resolutions was estab-
lished for left (resp. right) bounded complexes in [43]. We can now get rid of these
restrictions:

Corollary 6.6. Let R be a ring. Each complex of R-modules admits

(1) a pure-projective resolution; and
(2) a pure-injective resolution.

Proof. Take X ∈ K(ModR). By Theorem 6.2, there is a triangle

P −→ X −→ A −→ P [1]

with P ∈ Loc(modR) and A ∈ Kpac(ModR). By Corollary 6.4, P is homotopically
projective. Since A is pure acyclic the map P −→ X is a pure quasi-isomorphism.

The proof of the second point is dual. �

In [43], a pure-projective resolution ofX is defined to be a pure quasi-isomorphism
P −→ X where P ∈ K(PProjR) is such that HomR(P,−) : K(ModR) −→ K(Mod k)
preserves pure acyclicity. Dually, a pure-injective resolution of X is a pure quasi-
isomorphism X −→ I where I ∈ K(PInjR) is such that HomR(−, I) preserves pure
acyclicity. We finish this section by showing that the definition of pure-projective
and -injective resolutions we worked with here is in fact equivalent to the one in [43].

Lemma 6.7. Let R be a ring and let X be a pure acyclic complex of R-modules.

(1) The complex Homk(F,X) is pure acyclic for each F ∈ mod k.
(2) The complex F ⊗k X is pure acyclic for each k-module F .

Proof. (1): Let M ∈ modR. By the adjunction formula we have

HomR(M,Homk(F,X)) = HomR(F ⊗kM,X).

The latter complex is acyclic, because F ⊗k M is a finitely presented R-module
again and X is pure acyclic.

(2): Let M ∈ ModRop. We have

(F ⊗k X)⊗RM = F ⊗k (X ⊗RM) = (X ⊗RM)⊗k F = X ⊗R (M ⊗k F ),

where the middle identity holds since k acts centrally on R. The final tensor product
is acyclic by definition of pure acyclicity. �

Proposition 6.8. Let R be a ring.

(1) Let P be a complex of R-modules. The functor HomR(P,−) preserves pure
acyclicity if and only if P is homotopically pure-projective.

(2) Let I be a complex of R-modules. The following are equivalent
(i) I is homotopically pure-injective.
(ii) HomR(−, I) preserves pure acyclicity.
(iii) HomR(−, I) maps pure acyclic complexes to contractible complexes.

Proof. (1): We observe first that P is homotopically pure-projective if and only
if HomR(P,−) maps pure acyclic complexes to acyclic complexes. This is just
because the homology of the complex HomR(P,X), where X is pure acyclic, is the
Hom-space in the homotopy category which is zero because P lies in ⊥ Kpac(ModR).

So it only remains to show that HomR(P,X) is also pure exact. Let F ∈ mod k.
Then we have the isomorphism

Homk(F,HomR(P,X)) = HomR(F ⊗k P,X) = HomR(P,Homk(F,X)),

and the claim follows from the fact that Homk(F,X) is pure acyclic from Lemma 6.7.
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(2): As in (1), we see that (ii) implies (i). The implication from (iii) to (ii) is
immediate. It remains to be shown that (i) implies (iii). So let X be a pure acyclic
complex. Then for any k-module F we have

Homk(F,HomR(X, I)) = HomR(F ⊗k X, I)

which is acyclic, because F ⊗k X is pure acyclic by Lemma 6.7. It follows (picking
F to be cycles of the complex HomR(X, I)) that HomR(X, I) is contractible. �

Corollary 6.9. Let R be a commutative ring and let I ∈ ModR be pure-injective.
If 0 −→ A −→ B −→ C −→ 0 is a pure exact sequence of R-modules, then

0 −→ HomR(C, I) −→ HomR(B, I) −→ HomR(A, I) −→ 0

is split exact.

Proof. Since R is commutative, we may choose k = R. The pure exact sequence is
a pure acyclic complex, and I — considered as a complex concentrated in degree 0

— is homotopically pure-injective. Now the claim follows from the implication from
(a) to (c) in Proposition 6.8(2). �

Remark 6.10. In [41, Theorem 5.4] Šťov́ıček stated a version of Corollary 6.6 for
an additive finitely accessible category A, using the language of cotorsion pairs.
More precisely, he proved that (C(PProjA),Cpac(A)) and (Cpac(A),C(PInjA)) are
functorially complete hereditary cotorsion pairs in the category of complexes C(A)
with the induced pure exact structure. It would be interesting to find a proof in the
general context of additive finitely accessible categories using the direct approach
of appealing to the stable t-structures in Theorem 6.1.

7. Almost split triangles

Let T be a triangulated category. Recall that a triangle

A
a
−→ B

b
−→ C −→ A[1]

is called almost split if a is left almost split and b is right almost split. In this case
EndT(A) and EndT(C) are local rings.

Theorem 7.1 (Beligiannis [5], Krause [25]). Let X ∈ T have local endomorphism
ring. Denote by IX an injective envelope of the simple EndT(X)-module. If the
functor HomEndT(X)(T(X,−), IX) is representable, then X appears in an almost
split triangle

τX −→M −→ X −→ τX [1].(∆τ )

Idea of proof. Let ρ : EndT(X) −→→ EndT(X)/radEndT(X) −֒→ IX be the canoni-
cal map. By assumption the functor HomEndT(X)(T(X,−), IX) is representable, and
we can choose τX such that τX [1] is a representative. In other words, there is a
natural isomorphism

φ : HomEndT(X)(T(X,−), IX) −→ T(−, τX [1]).

It is routine to check that we have an almost split triangle

τX −→M −→ X
φX(ρ)
−−−−→ τX [1]. �

In Theorem 7.1 the computation of the object τX relies on intrinsic properties
of the ring EndT(X). Our goal now is to show that in the presence of a partial Serre
functor, a more unified approach to calculating τ is sometimes available. We keep
our injective cogenerator I of Mod k, and (−)∗ = Homk(−, I).
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Lemma 7.2. Suppose S : X −→ T is a partial Serre functor. Then each X ∈ X

with local endomorphism ring appears in a triangle

SX [−1] −→ N
n
−→ X −→ SX(∆S)

with n right almost split.

Proof. By assumption there is an isomorphism φ : EndT(X)∗ −→ T(X, SX). For
each non-zero linear form γ on EndT(X) which vanishes on rad EndT(X), the triangle

SX [−1] −→ N −→ X
φ(γ)
−−−→ SX

has the desired property. Indeed, it suffices to observe that any radical morphism
Y −→ X composes to zero with φ(γ). �

Our first aim is to show that in the setup of Lemma 7.2 there is an almost split
triangle ending in X , and moreover that this triangle is a direct summand of (∆S).

Theorem 7.3. Assume T is idempotent closed. (Note that this is automatic for
instance if T has countable products or coproducts.) Suppose S : X −→ T is a partial
Serre functor. Let X ∈ X be an object with local endomorphism ring. Then

(1) The functor HomEndT(X)(T(X,−), IX) of Theorem 7.1 is representable, so
in particular the almost split triangle (∆τ ) exists.

(2) The triangle (∆τ ) is a direct summand of (∆S).

For the proof, we prepare the following two lemmas.

Lemma 7.4. Let X ∈ T be an object with local endomorphism ring. Then the
functor HomEndT(X)(T(X,−), IX) is a direct summand of T(X,−)∗.

Proof. We write E = EndT(X), and denote by S its simple module.
Since T(X,−)∗ = HomE(T(X,−), E∗) it suffices to show that IX is a direct

summand of E∗. Observe that since HomE(−, E∗) = (−⊗EE)∗, the E-module E∗ is
injective. Thus, by definition of IX it suffices to show that there is a monomorphism
from S to E∗.

Since I is a cogenerator of Mod k there is a non-zero map ρ : S −→ I. Now we
obtain the desired injection as

S −→ E∗ : s 7−→ [e 7→ ρ(se)]. �

Lemma 7.5. Let T be a triangulated category, let τX −→M
m
−→ X

s
−→ τX [1] be

an almost split triangle, and let Y −→ N
n
−→ X −→ Y [1] be a triangle with n right

almost split. Then the former triangle is a direct summand of the latter.

Proof. Consider the following diagram.

∆1 : τX M X τX [1]

∆2 : Y N X Y [1]

m s

n

Since m and n are both right almost split, the former factors through the latter, and
vice versa. This gives rise to morphisms of triangles ι : ∆1 −→ ∆2 and π : ∆2 −→
∆1. In particular, there are morphisms i : τX −→ Y and p : Y −→ τX such that
(pi)[1]◦s = s. But since EndT(τX) is local, the non-zero morphism s is left minimal.
Hence i is a split monomorphism, i.e. (∆1) is a summand of (∆2). �

Now the proof of Theorem 7.3 is very short.
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Proof of Theorem 7.3. The first point follows from Lemma 7.4: Since T is idem-
potent closed, direct summands of representable functors are representable again.
Once the first point is established, the second one is an immediate application of
Lemma 7.5 �

Our next aim is to show that in certain cases, there is no difference between the
triangles (∆τ ) and (∆S). More precisely, we will show the following.

Theorem 7.6. Assume that k is noetherian, and let I =
∐

m∈MaxSpeck I(k/m) be
the direct sum of the injective envelopes of the simple k-modules.

Let S : X −→ T be a partial Serre functor. If the endomorphism ring of X ∈ X

is local and finite over k, then the triangle (∆S) is almost split.

Also for the proof of this theorem we prepare several lemmas.

Lemma 7.7. Let k be noetherian, and let E be a finite k-algebra which is local.
Then m = Ker (k −→ E/radE) is a maximal ideal of k.

Proof. Since the target of the map above is a skewfield we observe that m is a
prime ideal. Moreover we note that the quotient field of k/m is a k-submodule of
E/ radE. Since k is noetherian this quotient field is also finite over k, whence even
over k/m. However, no non-trivial localizations of integral domains are finite. The
only remaining possibility is that m is a maximal ideal. �

Lemma 7.8. Let k be noetherian, and let E be a finite k-algebra which is local.
Let m be as in Lemma 7.7 above. Then Homk(E,

∐
n∈MaxSpec k

n6=m

I(k/n)) = 0.

Proof. For x ∈ k \m we observe that x becomes invertible in E by Lemma 7.7.
Let ϕ : E −→ I(k/n) for some maximal ideal n 6= m. Since E is finitely generated,

so is Imϕ. It follows that (Imϕ)ns = 0 for some s. Choose x ∈ n \ m. Now x acts
both nilpotently and invertibly on Imϕ, whence ϕ = 0. �

Lemma 7.9. Let k be a commutative noetherian ring, and let E be a finite k-algebra
which is local. Let I be as in Theorem 7.6.

Then Homk(E, I) is an injective envelope of E/radE.

Proof. We have already established, in the proof of Lemma 7.4, that there is a
monomorphism from E/radE to Homk(E, I). It follows immediately from its de-
scription that this factors through Homk(E/radE, I) −֒→ Homk(E, I).

Let m be as in Lemma 7.7. Note that by Lemma 7.8 we may replace I by I(k/m)
without affecting the Hom-sets.

Observe that Homk(E/radE, I(k/m)) = Homk(E/radE, k/m), since m annihi-
lates E/radE by construction. It follows in particular that the induced monomor-
phism E/radE −→ Homk(E/radE, I(k/m)) is an isomorphism, since these two
objects are finite dimensional of the same dimension over k/m.

Thus we need to show that Homk(E/radE, I(k/m)) is an essential submodule of
Homk(E, I(k/m)). In other words, we need to show that any non-zero submodule
of HomR(E, I(k/m)) contains a morphism which vanishes on radE.

To this end, we show that for each φ ∈ HomR(E, I(k/m)) there is some n such
that φ(radE)n = 0. Note that E/mE is local with radical radE/mE, and moreover
finite dimensional over k/m. It follows that radE/mE is nilpotent, that is there is
s such that radE ⊆ m

sE. Finally, observe that there is some t such that φmt = 0.
Indeed, since E is finitely generated over k, so is Imφ, so there is a t such that
(Imφ)(rad k)t = 0. �

Proof of Theorem 7.6. We write EndT(X) = E. By Lemma 7.9 we know that
Homk(E, I) is an injective envelope of E/radE. The argument in the proof of
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Lemma 7.4 shows that

HomE(T(X,−), IX) ∼= T(X,−)∗.

Thus τX [1] of Theorem 7.1 coincides with SX . It follows that the triangles (∆τ ) and
(∆S) coincide (by Theorem 7.3 or directly by comparing the two constructions). �

Connecting back to Section 4, we obtain the following application.

Corollary 7.10. If Λ is an Artin algebra, then Kb(modΛ) has almost split trian-
gles.

Proof. We found a partial Serre functor for K(ModΛ) in Section 4, and argued in
Observation 4.10 that if we choose I to be an injective envelope of the semisimple
k/rad k, then this functor induces an auto-equivalence on Kb(modΛ). As the as-
sumptions of Theorem 7.6 are satisfied, we have almost split triangles completely
inside Kb(modΛ), starting and ending in any object with local endomorphism ring
in that subcategory. �

8. Non-degeneracy

For a partial Serre functor S, there is no symmetry between the objects X and
SX . For instance we have seen in Theorem 3.5 that X is compact, while SX is only
0-cocompact. Similarly, in the construction of almost split triangles (Theorem 5.1)
the third term is required to be compact, while the first term will typically not be
cocompact. However the definition of almost split triangles is completely self-dual.

In this section we study the following concept, which will serve as a weaker but
symmetric version of partial Serre duality.

Definition 8.1. Let X,Y ∈ T. We say that composition from X to Y is non-
degenerate if the following conditions are satisfied.

(1) For each 0 6= f : X −→ T there is some g : T −→ Y such that gf 6= 0.
(2) For each 0 6= g : T −→ Y there is some f : X −→ T such that gf 6= 0.

Remark 8.2. Composition from X to Y is non-degenerate if and only if any non-
zero T-submodule of T(X,−) or T(−, Y ) contains a non-zero map X −→ Y .

Our aim is to show that composition being non-degenerate is closely linked to
almost split triangles (Theorem 8.3) and partial Serre functors (Proposition 8.5).
Then, in Theorem 8.7, we will show that even this weak notion of duality implies
that the two objects are 0-compact and 0-cocompact, respectively.

Theorem 8.3. Let X,Y ∈ T be such that EndT(X) and EndT(Y ) are local rings.
Let f : X −→ Y be a non-zero morphism. We denote by

∆: Y [−1]
d
−→ E

e
−→ X

f
−→ Y

the triangle ending in f . Then the following are equivalent.

(i) ∆ is an almost split triangle;
(ii) d is left almost split;
(iii) e is right almost split;
(iv) gf = 0 whenever g is not a split monomorphism;
(v) fh = 0 whenever h is not a split epimorphism;
(vi) for each 0 6= t : T −→ Y there is s : X −→ T such that ts = f ;
(vii) for each 0 6= s : X −→ S there is t : S −→ Y such that ts = f ;
(viii) composition from X to Y is non-degenerate, and f · rad EndT(X) = 0;
(ix) composition from X to Y is non-degenerate, and rad EndT(Y ) · f = 0;
(x) composition from X to Y is non-degenerate, and any non-zero EndT(X)-

submodule of T(X,Y ) contains f ;
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(xi) composition from X to Y is non-degenerate, and any non-zero EndT(Y )op-
submodule of T(X,Y ) contains f .

Proof. (iv) ⇐⇒ (v): Suppose (iv) holds and let h : H −→ X be such that fh 6= 0.
Consider the following diagram.

X Y

H Y Cone(fh)

f

fh

h

g

Then g is not split mono which by assumption implies gf = 0. Thus there is some
s : X −→ H such that f = fhs, which in turn implies that hs is invertible in
EndT(X), since this ring is local. So h is a split epimorphism. A dual argument
shows that (v) =⇒ (iv).

(iii) ⇐⇒ (v): This is just the fact that a morphism factors through e if and only
if it becomes 0 when composing with f — a basic property of triangles.

(ii) ⇐⇒ (iv) is the dual of (iii) ⇐⇒ (v).

Now we have seen that (ii) to (v) are equivalent. Since (i) ⇐⇒ (ii) ∧ (iii) by
definition, it follows that also (i) is equivalent to these statements.

(iv) ⇐⇒ (vi): Consider the triangle T
t
−→ Y

g
−→ G −→ T [1]. Note that we can

construct t from g and vice versa. Moreover t is non-zero if and only if g is not split
mono. Now the claimed equivalence is the fact that f factors through t if and only
if it becomes zero when composing with g.

(v) ⇐⇒ (vii) is the dual of (iv) ⇐⇒ (vi).

Now we know that (i) to (vii) are equivalent. Clearly (vi) and (vii) combined
imply that composition from X to Y is non-degenerate. Moreover f ·rad EndT(X) =
0 is a special case of (v), and rad EndT(Y ) · f = 0 is a special case of (iv). Thus we
know that (i) through (vii) imply (viii) and (ix).

(viii) =⇒ (xi): It clearly suffices to consider cyclic submodules EndT(Y ) · g for

0 6= g ∈ T(X,Y ). Consider the triangle Cone(g)[−1]
α
−→ X

g
−→ Y −→ Cone(g).

Suppose fα 6= 0. By non-degeneracy of composition from X to Y there is some
β : X −→ Cone(g)[−1] such that fαβ 6= 0. But since g 6= 0, α is not split epi, which
implies αβ ∈ rad EndT(X). This contradicts (viii), hence fα = 0. Thus f factors
through g, i.e. f ∈ EndT(Y ) · g.

(ix) =⇒ (x) is the dual of (viii) =⇒ (xi).

(x) =⇒ (vi): Let 0 6= t : T −→ Y . By non-degeneracy there is a map s1 : X −→ T
such that ts1 6= 0. By assumption we thus have f ∈ ts1 EndT(X), i.e. there is
s2 ∈ EndT(X) such that ts1s2 = f .

(xi) =⇒ (vii) is the dual of (x) =⇒ (vi). �

In particular the above theorem says that any almost split triangle gives rise
to a non-degenerate composition. In case that one of the endomorphism rings is
artinian, we have the following converse.

Corollary 8.4. Let X and Y be objects in T with local endomorphism rings, and
assume that at least one of these two endomorphism rings is artinian.

If composition from X to Y is non-degenerate, then there is an almost split
triangle

Y [−1] −→ E −→ X −→ Y.

Proof. Note that T(X,Y ) 6= 0 by definition of non-degeneracy. Assume EndT(X) is
artinian. This implies that rad EndT(X) is nilpotent. It follows that there is some
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non-zero f ∈ T(X,Y ) such that f · rad EndT(X) = 0. The claim now follows from
implication (viii) =⇒ (i) in Theorem 8.3 above. �

Proposition 8.5. Let S : X −→ T be a partial Serre functor. Then composition
from X to SX is non-degenerate for each X ∈ X.

Proof. Let us start with a non-zero morphism f : X −→ T , and complete it to a tri-

angle Cone(f)[−1] −→ X
f
−→ T −→ Cone(f). By the naturality of the isomorphism

defining partial Serre duality we have the following commutative square.

T(X, SX) T(X,X)∗

T(Cone(f)[−1], SX) T(X,Cone(f)[−1])∗

∼=

∼=

Since f is non-zero the map T(X,Cone(f)[−1]) −→ T(X,X) is not onto, and hence
its dual is not mono. It follows that the left vertical map above is not mono
either, that is there is a non-zero map from X to SX such that the comosition with
Cone(f)[−1] −→ X vanishes. It follows that this map factors through f .

Now take a non-zero g : T −→ SX . By assumption we have a natural isomor-
phism

φ : T(−, SX) −→ T(X,−)∗.

Let η = φT (g). Then η is non-zero, so in particular there is some f : X −→ T
such that η(f) 6= 0. We claim that gf 6= 0. Of course, it suffices to show that
φX(gf) 6= 0. But by the commutative diagram

T(T, SX) T(X,T )∗

T(X, SX) T(X,X)∗

φT

φX

we have φX(gf) = η(f ◦ −), which is non-zero since φX(gf)(idX) = η(f) 6= 0. �

Remark 8.6. An object X may have several ‘non-degenerate partners’. Indeed, if
SX and τX exist, then composition from X to either is non-degenerate. However,
in general τX is only a summand of SX .

Theorem 8.7. Let X,Y ∈ T be such that composition from X to Y is non-
degenerate. Then X is 0-compact and Y is 0-cocompact.

The proof of this result relies on the following observation.

Lemma 8.8. Let X,Y ∈ T be such that composition from X to Y is non-degenerate.
Then the following statements hold.

(1) An object is a covariant X-ghost if and only if it is a contravariant Y -ghost.
(2) A morphism f : S −→ T is a covariant X-ghost if and only if it is a con-

travariant Y -ghost.

Proof. Since composition from X to Y is non-degenerate, (1) is clear and

f is a covariant X-ghost⇐⇒ fα = 0 for each α : X −→ S

⇐⇒ βfα = 0 for each α : X −→ S and β : T −→ Y

⇐⇒ βf = 0 for each β : T −→ Y

⇐⇒ f is a contravariant Y -ghost. �
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Proof of Theorem 8.7. We show that Y is 0-cocompact; the proof that X is 0-
compact is dual.

Take a sequence
T : · · · −→ T2 −→ T1 −→ T0

in T such that T(T[−1], Y ) is dual ML and colimT(T, Y ) = 0. It suffices to show
that T(X, holimT) vanishes. As in the proof of Theorem 3.5 there is a short exact
sequence

0 −→ lim1 T(X,T[−1]) −→ T(X, holimT) −→ limT(X,T) −→ 0,

so we need only prove that the outer terms are zero.
We first show that limT(X,T) vanishes. So assume to the contrary that there

is some (. . . , φ2, φ1, φ0) ∈ limT(X,T) with φi 6= 0. Then, by non-degeneracy of
composition from X to Y , there is some ψ : Ti −→ Y such that ψφi 6= 0. But
by assumption, the image of ψ in colimT(T, Y ) vanishes, that is the composition

Tj −→ Ti
ψ
−→ Y is zero for sufficiently large j. In particular, the non-zero ψφi

factors through the zero morphism Tj −→ Y , as indicated by the following diagram,
and we have a contradiction.

X Ti Y

Tj

φj

φi ψ

Let us now show that lim1 T(X,T[−1]) = 0. It suffices to demonstrate that

T(X,T[−1]) = · · · −→ T(X,T2[−1])
t2−→ T(X,T1[−1])

t1−→ T(X,T0[−1])

is ML. Assume to the contrary that for some k, the sequence of subgroups

Im tk ⊃ Im tktk+1 ⊃ · · ·

does not stabilize. Without loss of generality, we may assume that k = 0 and that
each image is properly contained in the previous one. In other words, for each i
there is some φi : X −→ T0[−1] such that φi factors through Ti[−1], say via ψi, but
not through Ti+1[−1]. The following diagram, with the bottom row a triangle,

X Ti[−1]

Ti+1[−1] T0[−1] Cone Ti+1

ψi

φi

∄

reveals that the composition

X
ψi
−→ Ti[−1] −→ T0[−1] −→ Cone

is non-zero. By non-degeneracy of composition from X to Y , there is some non-zero

X
ψi
−→ Ti[−1] −→ T0[−1] −→ Cone −→ Y.

In particular, we can find a morphism ωi : T0[−1] −→ Y such that the composition

Ti[−1] −→ T0[−1]
ωi−→ Y is non-zero, while Ti+1[−1] −→ T0[−1]

ωi−→ Y does vanish.
In other words, in the commutative diagram

Keri T(T0[−1], Y ) T(Ti[−1], Y )

Keri+1 T(T0[−1], Y ) T(Ti+1[−1], Y )
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with exact rows, we have ωi ∈ Keri+1 \Keri. In particular, the sequence

Ker1 ( Ker2 ( Ker3 ( · · ·

does not stabilize, contradicting the assumption that T(T[−1], Y ) is dual ML. �

Corollary 8.9. Let X −→ Y −→ Z −→ X [1] be an almost split triangle in a
triangulated category. Then X is 0-cocompact and Z is 0-compact.

Proof. This is an immediate consequence of Theorem 8.3 and Theorem 8.7. �

Appendix A. Dual Brown representability

The aim of this appendix is to give a proof of a ‘constructive’ version of dual
Brown representability for triangulated categories with enhancements, cogenerated
by a set of 0-cocompact objects. Note that it was already pointed out by Modoi
in [29] that these categories do satisfy dual Brown representability, so our original
contribution here is only the explicit description of the representing objects.

Throughout this appendix, T is a triangulated category at the base of a sta-
ble derivator. Moreover T is cogenerated by a set of 0-cocompact objects. By
Lemma 2.7 we know that products of 0-cocompact objects are 0-cocompact again,
whence we may assume that T is cogenerated by a single 0-cocompact object S,
which we may moreover assume to be invariant under suspension.

With this setup, we will prove the following.

Theorem A.1. Let F : T −→ Ab be a homological functor commuting with prod-
ucts. For any commutative diagram

T(T0,−) T(T1,−) T(T2,−) · · ·

F

T(f1,−) T(f2,−) T(f3,−)

such that all the induced maps ImT(fi, S) −→ F (S) are isomorphisms, we have

F ∼= T(holimTi,−).

In particular T satisfies dual Brown representability.

The proof of this theorem is less direct than one might imagine: We first show,
in Proposition A.5, that if F already is representable then we do get the desired
isomorphism of functors. Then we show, in Proposition A.8, that in general F is
at least an epimorphic image of T(holimTi,−). The argument for this part comes
from [28]. Finally we complete the proof by employing a trick of Neeman’s [34].

While large parts of the argument are available in the literature, we found that
the varying notation made it slightly challenging to read the entire proof. Therefore
we believe it might be worthwhile to give a complete account here.

Let us start with two brief observations translating our assumptions on F .

Observation A.2. For any set of objects Ti, any natural transformation from∐
T(Ti,−) to F factors uniquely through

∐
T(Ti,−) −→ T(

∏
Ti,−).

Indeed we have the following commutative square

{
∐

T(Ti,−) −→ F} {T(
∏
Ti,−) −→ F}

∏
F (Ti) F (

∏
Ti)

∼= ∼=

where the lower horizontal map is an isomorphism by assumption.
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Observation A.3. For any triangle T1 −→ T2 −→ T3 −→ T1[1], and any natural
transformation T(T2,−) −→ F such that composition T(T3,−) −→ T(T2,−) −→ F
vanishes, there is a factorization as indicated by the following diagram.

T(T1,−) T(T2,−) T(T3,−)

F
∃

This follows from the fact that F is cohomological by employing the Yoneda lemma.

Of course the “in particular” part of Theorem A.1 above only follows if we can
find at least one such diagram, given F . There is a straight-forward way of doing
so:

Construction A.4. Pick an epimorphism of End(S)-modules End(S)(I0) −→ F (S).
Equivalently, we have a natural transformation T(S,−)(I0) −→ F which induces an
epimorphism on S. By Observation A.2 this gives rise to a natural transformation
T(SI0 ,−) −→ F which induces an epimorphism on S. We pick T0 = SI0 and this
natural transfomation.

Now assume a natural transformation ψi : T(Ti,−) −→ F inducing an epimor-
phism ψSi : T(Ti, S) −→ F (S) is already constructed. Pick an epimorphism of
End(S)-modules End(S)(Ii+1) −→ KerψSi . Similarly to the first step, this gives rise
to a natural transformation T(SIi+1 ,−) −→ T(Ti,−) such that the sequence

T(SIi+1 ,−) −→ T(Ti,−)
ψi
−→ F

is exact on S. In particular the composition vanishes. Picking Ti+1 to be the
object fitting in the triangle Ti+1 −→ Ti −→ SIi+1) −→ Ti+1[1] we can employ
Observation A.3 and obtain a natural transformation T(Ti+1,−) −→ F . Moreover,
evaluating at S we can use the exactness observed above to conclude that we have
the desired image.

As an intermediate step towards Theorem A.1 we will prove the following.

Proposition A.5. Theorem A.1 holds under the additional assumption that F is
representable.

The proof is based on the following result due to Keller and Nicolás [23].

Theorem A.6. Let T be a triangulated category at the base of a stable derivator.
Given a commutative diagram

· · · X2 X1 X0

· · · Y2 Y1 Y0

ϕ2 ϕ1 ϕ0

there is a choice of cone morphisms

· · · −→ Cone(ϕ2) −→ Cone(ϕ1) −→ Cone(ϕ1)

such that there is a triangle

holimXi −→ holimYi −→ holimCone(ϕi) −→ holimXi[1].

Moreover, we will utilize the following observation.

Lemma A.7. Let · · · −→ X2 −→ X1 −→ X0 be a sequence of contravariant
S-ghosts. Then holimXi = 0.
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Proof. The vanishing of all maps implies that the sequence

· · · ←− T(X2, S)←− T(X1, S)←− T(X0, S)

has vanishing colimit and is dual ML. It follows, since S is 0-cocomapact and in-
variant under suspension, that holimXi is an S-ghost. But since S is a cogenerator,
this means that holimXi = 0. �

Proof of Proposition A.5. Let F = T(X,−). Thus, via the inverse of the Yoneda
functor, we have the commutative diagram

· · · X X X

· · · T2 T1 T0

ψ2 ψ1 ψ0

Applying Theorem A.6, we obtain a triangle

holimX −→ holimTi −→ holimCone(ψi) −→ holimX [1]

for suitable cone morphisms. Clearly holimX = X , so it remains to show that
holimCone(ψi) = 0.

By definition, a cone morphism makes the following diagram commutative.

X Ti Coneψi X [1]

X Ti+1 Coneψi+1 X [1]

Applying T(−, S) this turns into

T(Coneψi, S) T(Ti, S) T(X,S)

T(Coneψi+1, S) T(Ti+1, S) T(X,S).

To see this, note that the epimorphisms follow from the fact that the image of the
middle vertical map is T(X,S) by assumption. Since S is assumed to be invariant
under suspension, it follows that we also get the claimed monomorphisms.

Again invoking the fact that the image of the middle vertical map is T(X,S),
we see that the left vertical map needs to vanish. In other words, all our cone
morphisms are contravariant S-ghosts. Now the claim follows from Lemma A.7. �

Now we return to the general situation, where F is not assumed to be repre-
sentable a priori.

Proposition A.8. In the situation of Theorem A.1, there is a natural epimorphism
T(holimTi,−) −→ F .

This result, as well as the argument here are based on [28, Theorem 8].

For the proof we will need to show that, for any given X ∈ T, the induced map
T(holimTi, X) −→ F (X) is surjective.

Given X , we consider the functor T(X,−), and construct the diagram of functors

T(X0,−) T(X1,−) T(X2,−) · · ·

T(X,−)

T(g1,−) T(g2,−) T(g3,−)

as described in Construction A.4. In particular X0 = SI0 , and Cone gi = SIi for
suitable sets Ii. By Proposition A.5 we know that X = holimXi.
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With this setup, the key step in the proof of Proposition A.8 is the following.

Lemma A.9. Given a sequence of maps T(Xi,−) −→ F making the solid part
of the following diagram commutative, we can find the dashed arrows making the
entire diagram commutative.

T(X0,−) T(X1,−) T(X2,−) · · ·

F

T(T0,−) T(T1,−) T(T2,−) · · ·

T(g1,−)

T(ϕ0,−)

T(g2,−)

T(ϕ1,−)

T(g3,−)

T(ϕ3,−)

T(f1,−) T(f2,−) T(f3,−)

Proof. Constructing from left to right, observe first that we can find ϕ0 since X0 =
SI0 and T(T0, S

I0) −→ F (SI0) is a surjection.
Next, assume we have already constructed ϕi. Note that we have a triangle

Xi+1 −→ Xi −→ SIi+1 −→ Xi+1. Thus, in order to obtain a map ϕi+1 making the
square between T(ϕi,−) and T(ϕi+1,−) commutative, it suffices to show that the
composition

Ti+1
fi+1
−−−→ Ti

ϕi
−→ Xi −→ SIi+1

vanishes. Equivalently we may consider the sequence

T(SIi+1 ,−) −→ T(Xi,−)
T(ϕi,−)
−−−−−→ T(Ti,−)

T(fi+1,−)
−−−−−−→ T(Ti+1,−),

and moreover it suffices to consider the evaluation at S. Now note that, by assump-
tion, ImT(fi+1, S) = F (S), so the above vanishing is implied by the vanishing of
the composition

[T(SIi+1 , S) −→ T(Xi, S)
T(ϕi,S)
−−−−−→ T(Ti, S) −→ F (S)]

= [T(SIi+1 , S) −→ T(Xi, S)
T(gi+1,S)
−−−−−−→ T(Xi+1, S) −→ F (S)],

which holds since the first two maps come from consecutive maps in a triangle.
Note however that at this point we cannot be sure that the triangle involving

T(ϕi+1,−) and F commutes. Let

δ = [T(Xi+1,−) −→ F ]− [T(Ti+1,−) −→ F ] ◦ T(ϕi+1,−)

be the obstruction to the triangle commuting. Of course δ ◦ T(gi+1,−) = 0. Since
F is homological, it follows that δ factors through the map

T(Xi+1,−) −→ T(SIi+1 [−1],−),

say via δ′. Since S is assumed to be invariant under suspension we may disregard the
shift. Now recall that T(Ti+1, S) −→ F (S) is a surjection. It follows that any map
T(SIi+1 [−1],−) −→ F , in particular δ′, factors through T(Ti+1,−) −→ F . Thus
we find a map δ′′ : Ti+1 −→ SIi+1 [−1] making the following diagram commutative.

T(Xi+1,−) T(SIi+1 [−1],−)

T(Ti+1,−) F

δ′

T(δ′′,−)

δ

It follows that we can replace ϕi+1 by ϕi+1 + [SIi+1 [−1] −→ Xi+1] ◦ δ′′, fixing the
commutativity of the triangle involving T(ϕi+1,−) and F , while not affecting the
previously commutative square involving T(ϕi,−) and T(ϕi+1,−). �
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Remark A.10. The iterative construction in the proof of Lemma A.9 does not
actually require the entire diagram. In particular any map T(Xi,−) −→ F factors
through T(ϕi,−).

Now we are ready to prove the proposition.

Proof of Proposition A.8. Let X ∈ T. We have X = holimXi, with the sequence
Xi as discussed directly below the proposition. Recall that F is a homological
functor commuting with products. Thus the triangle

holimXi −→
∏

Xi −→
∏

Xi −→ holimXi[1]

gives rise to the exact sequence
∏

F (Xi[−1]) −→
∏

F (Xi[−1]) −→ F (holimXi) −→
∏

F (Xi) −→
∏

F (Xi).

By definition, the kernel of the last map is limF (Xi), while the cokernel of the
first map is lim1 F (Xi[−1]). Thus we have the lower sequence in the following
diagram. The upper sequence exists by the same argument applied to the functor
T(holimTi,−).

lim1 T(holimTi, Xi[−1]) T(holimTi, holimXi) limT(holimTi, Xi)

lim1 F (Xi[−1]) F (holimXi) limF (Xi)

In order to show that the middle vertical map is surjective it suffices to show that
the outer two are surjective.

We first consider the left hand side. Note that Remark A.10 holds analogously
for Xi[−1], so all the maps T(Ti, Xi) −→ F (Xi) are surjective. In particular the
same holds for the maps T(holimTi, Xi) −→ F (Xi). Now the left vertical map is

onto by right exactness of lim1.
Next we look at the right hand side. Note that an element of limF (Xi) is a

sequence of elements xi ∈ F (Xi) such that F (gi)(xi) = xi−1. Translating via
the Yoneda lemma these are maps xi : T(Xi,−) −→ F such that assumptions of
Lemma A.9 are satisfied. By that lemma we obtain maps ϕi : Ti −→ Xi. Now
(ϕi ◦ [holimTi −→ Ti]) is an element of limT(holimTi, Xi), and moreover a preimage
of (xi). �

Now we are ready to complete the proof of Theorem A.1. The missing piece
is [34, Theorem 1.3].

Proof of Theorem A.1. By Proposition A.8 there is a natural epimorphism

T(holimTi,−) −→ F.

Note that its kernel again satisfies the assumptions of Proposition A.8, and thus
is an epimorphic image of some T(holimT ′

i ,−). In particular F has a projective
presentation as indicated in the left half of the following diagram.

T(holimT ′
i ,−) T(holimTi,−) T(C,−)

F

Let C denote the cocone of the map colimTi −→ colimT ′
i . We have the exact

sequence as in the diagram above from this triangle. Finally, note that since F is
homological we get the dashed morphism making the triangle to its left commuta-
tive. It follows that F is a direct summand of T(C,−), hence is representable.

Now the claim of Theorem A.1 follows from Proposition A.5. �
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Appendix B. Exactness of partial Serre functors

The aim of this appendix is to prove the following theorem, summing up functo-
rial properties of partial Serre functors.

Theorem 3.3. Suppose T is a triangulated category, and let X be the full subcate-
gory of all objects X such that T(X,−)∗ is representable.

Then X is a triangulated subcategory of T, and there is a partial Serre functor
S : X −→ T. Moreover, S is a triangle functor.

Most of this theorem is actually fairly easily seen. In fact, the existence of a par-
tial Serre functor S : X −→ T follows easily from our assumption on representability

— see Observation B.1 below. The main technical challenges in proving the theorem
are showing that X is triangulated, which we will show in Corollary B.8 for the case
that T is idempotent closed and in the very last subsection in general, and that S

is a triangle functor—see Theorem B.10.

General observations on partial Serre functors.

Observation B.1. Let X be a subcategory of T such that for any object X ∈ X

the functor T(X,−)∗ is representable. Fix for all X a representing object SX and
a natural isomorphism

ηX : T(X,−)∗ −→ T(−, SX).

Then S defines a functor X −→ T by requiring the following square of functors
to be commutative for any morphism f : X1 −→ X2 in X.

T(X1,−)∗ T(X2,−)∗

T(−, SX1) T(−, SX2)

f ·−

ηX1 ηX2

Sf◦−

Note that the lower natural transformation exists and is unique since ηX1 is an
isomorphism, and that it is uniquely representable as composition with some map
by the Yoneda Lemma.

It follows directly from the commutative square defining Sf that η becomes a
natural isomorphism of functors on X×Top, i.e. that S is a partial Serre functor.

Remark B.2. One may see that a Serre functor on X is unique up to unique

natural isomorphism. Indeed, if S̃ is a different choice of a partial Serre functor

on X, with corresponding natural isomorphism η̃ : T(−,−)∗ −→ T(−, S̃−), then

η̃ ◦ η−1 is a natural isomorphism T(−, S−) −→ T(−, S̃−), which, by the Yoneda

lemma, comes from a natural isomorphism S −→ S̃.

Observation B.3. Let T be a k-category, and [1] be an automorphism of T. If
T(X,−)∗ is representable for some object X , then so is T(X [1],−)∗:

T(X [1],−)∗ ∼= T(X,−)∗ ◦ [−1] ∼= T(−, SX) ◦ [−1] ∼= T(−, (SX)[1]).

In particular, the subcategory of all objects X such that T(X,−)∗ is representable,
is invariant under all automorphisms of T.

Note however that we may not be able to choose ηX[1] to be induced by ηX
consistently over the entire subcategory X. To account for this, we observe that at
least there is a natural isomorphism controlling the difference between the two.

Observation B.4. Let S be a partial Serre functor on a subcategory X of T.
Assume T has an automorphism [1], and that X is invariant under [1]. Then there



PARTIAL SERRE DUALITY AND COCOMPACT OBJECTS 41

is a unique natural isomorphism ζ : S◦ [1] −→ [1]◦S such that the following diagram
of isomorphisms commutes functorially in X and in T .

T(X,T )∗ T(X [1], T [1])∗

T(T, SX) T(T [1], S(X [1]))

T(T [1], (SX)[1])

ηX,T

[1]

ηX[1],T [1]

[1] T(T [1],ζX )

X is triangulated. Denote by ModT the category of functors Top −→ Mod k, and
by modT the subcategory of finitely presented functors. Recall that by [18, Theo-
rem 3.1] the category modT is Frobenius abelian, and its injectives are precisely the
direct summands of representable functors. (Note that in [18] the objects of modT

are described as images of morphisms of representable functors, rather than as cok-
ernels of such morphisms. However, since we can always complete triangles there
is no difference between these categories.) Therefore we are particularly interested
in injective functors.

Lemma B.5. Let T be an additive category, and let T be an object in T. Then
T(T,−)∗ is injective in ModT.

Proof. We observe that for F ∈ ModT we have the natural isomorphism

(ModT)(F,T(T,−)∗)
∼=
←→ F (T )∗.

The map from left to right is given by sending a natural transformation η to the

composition
(
F (T )

ηT
−→ T(T, T )∗

evid−−→ I
)

. The map from right to left sends a linear

form φ to the natural transformation

F (X) −→ T(T,X)∗

f 7−→ [t 7→ (φ ◦ F (t))(f)].

Since F (T )∗ is exact in F it follows that T(T,−)∗ is injective. �

Proposition B.6. Suppose T is triangulated and idempotent complete, and let
T ∈ T. Then the functor T(T,−)∗ is representable if and only if it is finitely
presented.

Proof. Clearly any representable functor is finitely presented.
Assume conversely that T(T,−)∗ is finitely presented. Since it is injective even

in ModT, it is also injective in modT. Now, since T is assumed to be idempotent
complete, the claim follows from [21, Proposition 15.1]. �

Theorem B.7. Let T be triangulated and idempotent complete, and take a triangle
X −→ Y −→ Z −→ X [1] in T.

If both T(X,−)∗ and T(Y,−)∗ are representable, then T(Z,−)∗ is representable.

Proof. By Proposition B.6, it suffices to show that T(Z,−)∗ is finitely presented.
Consider the exact sequence

T(X,−)∗ −→ T(Y,−)∗ −→ T(Z,−)∗ −→ T(X [1],−)∗ −→ T(Y [1],−)∗.

Since the leftmost two terms are finitely presented—in fact they are representable—
it follows that the image of the map T(Y,−)∗ −→ T(Z,−)∗ is finitely presented.
Since the rightmost two terms are finitely presented by Observation B.3, and modT

is abelian, we also have that the image of the map T(Z,−)∗ −→ T(X [1],−)∗ is
finitely presented. Now the claim follows, since extensions of finitely presented
functors are finitely presented. �
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Corollary B.8. Let T be triangulated and idempotent complete. Then the collection
of objects X such that T(X,−)∗ is representable, is a triangulated subcategory of T.

S is a triangle functor.

Proposition B.9. Let T be a category with an automorphism [1], and let X ⊂ T

be a [1]-invariant subcategory admitting a partial Serre functor S. Let

X
x
−→ Y

y
−→ Z

z
−→ X [1] and T

t
−→ U

u
−→ V

v
−→ T [1]

be sequences of objects and morphisms in X and T, respectively.
Assume that for any f and g in the following diagram, there is a morphism h

making the diagram commutative.

X Y Z X [1]

T U V T [1]

x

∀f

y

∀g

z

∃h f [1]

t u v

Then also in the following diagram we have that for any f and g there is h making
it commutative.

U V T [1] U [1]

SX SY SZ (SX)[1]

u

∃h

v

∀f

t[1]

∀g h[1]

Sx Sy ζX◦Sz

Proof. The assumption may be reformulated into the statement that the morphism
between the kernels in the following commutative diagram, is onto.

Ker1 T(X,T )⊕ T(Y, U)⊕ T(Z, V ) T(X,U)⊕ T(Y, V )⊕ T(Z, T [1])

Ker2 T(X,T )⊕ T(Y, U) T(X,U)

epi

Here the vertical maps are projections to the respective summands, and the hori-
zontal maps are given by




t ◦ ⋆ −(⋆ ◦ x) 0
0 u ◦ ⋆ −(⋆ ◦ y)

−(⋆[1] ◦ z) 0 v ◦ ⋆


 and [t ◦ ⋆ − (⋆ ◦ x)],

respectively. Here t ◦ ⋆ stands for f 7−→ t ◦ f , and similar.
We may consider the kernels of the vertical projections, and a cokernel morphism

as indicated in the following diagram.

T(Z, V ) T(Y, V )⊕ T(Z, T [1]) Cok0

Ker1
T(X,T )⊕T(Y,U)

⊕T(Z,V )
T(X,U)⊕T(Y,V )

⊕T(Z,T [1]) Cok1

Ker2 T(X,T )⊕ T(Y, U) T(X,U)

mono

epi

By the Snake Lemma we observe that the map Ker1 −→ Ker2 being epi is equivalent
to the map Cok0 −→ Cok1 being mono.
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Dualizing the upper two rows and the rightmost three columns of this diagram,
and identifying via the natural isomorphism η defining the partial Serre functor, we
obtain the diagram

Cok∗1
T(U,SX)⊕T(V,SY )

⊕T(T [1],SZ)
T(T,SX)⊕T(U,SY )

⊕T(V,SZ)

Cok∗0 T(V, SY )⊕ T(T [1], SZ) T(V, SZ)

epi

with the horizontal maps given by



⋆ ◦ t 0 −(ζX ◦ Sz ◦ ⋆)[−1]
−(Sx ◦ ⋆) ⋆ ◦ u 0

0 −(Sy ◦ ⋆) ⋆ ◦ v


 and [−Sy ◦ ⋆ ⋆ ◦v].

Most of these entries are immediate from the naturality of η, only the term in the
right upper corner warrants further explanation. Note that the map in question
is induced via η by the composition along the upper row of the following diagram.
Hence it is precisely the composition appearing in the lower row of that diagram.

T(Z, T [1])∗ T(X [1], T [1])∗ T(X,T )∗

T(T [1], SZ) T(T [1], S(X [1])) T(T, SX)

T(T [1], (SX)[1])

(⋆◦z)∗

ηZ,T [1]

[1]∗

ηX[1],T [1] ηX,T

Sz◦⋆

ζX◦⋆ [1]

Here the left square commutes by the naturality of η, and the pentagon on the right
comes from Observation B.4.

Now we can translate the statement that the morphism between kernels is sur-
jective, back to a commutative diagram: It means that for any f ∈ T(V, SY ) and
g ∈ T(T [1], SZ) such that Sy ◦ f = g ◦ v—i.e. for each element of the lower kernel—
there is h ∈ T(U, SX) such that h ◦ t = (ζX ◦ Sz ◦ g)[−1] and Sx ◦ h = f ◦ u — i.e.
a preimage in the upper kernel. In diagrammatic language we thus have

U V T [1] U [1]

SX SY SZ (SX)[1]

u

∃h

v

∀f

t[1]

∀g h[1]

Sx Sy ζX◦Sz

as desired. �

Theorem B.10. Let T be a triangulated category, and let X be a triangulated
subcategory admitting a partial Serre functor S.

Then S : X −→ T is a triangle functor.

Proof. The first ingredient to a triangle functor is a natural isomorphism

S ◦ [1] −→ [1] ◦ S.

We have already constructed such a natural isomorphism ζ in Observation B.4.
However, here we will choose the natural isomorphism −ζ.

It remains for us to show that for any triangle X
x
−→ Y

y
−→ Z

z
−→ X [1] in X,

the sequence

SX
Sx
−→ SY

Sy
−→ SZ

(−ζX )◦Sz
−−−−−−→ (SX)[1]

is a triangle in T.
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Note that there exists a triangle (SZ)[−1] −→ U −→ SY
Sy
−→ SZ. By the ax-

ioms of triangulated categories, any two triangles satisfy the assumptions of Propo-
sition B.9. We will apply that proposition to our original triangle and the one
involving U . Choosing the two free vertical maps in the conclusion to be identities,
we obtain the commutative diagram

U SY SZ U [1]

SX SY SZ (SX)[1]

u

∃h

Sy

id

t[1]

id h[1]

Sx Sy ζX◦Sz

Let T ∈ T. Applying T(T,−) to the above diagram we obtain

T(T, (SY )[−1]) T(T, S(Y [−1])) T(Y [−1], T )∗

T(T, (SZ)[−1]) T(T, S(Z[−1])) T(Z[−1], T )∗

T(T, U) T(T, SX) T(X,T )∗

T(T, SY ) T(T, SY ) T(Y, T )∗

T(T, SZ) T(T, SZ) T(Z, T )∗.

(Sy)[−1] ◦ ⋆

t ◦ ⋆

u ◦ ⋆

Sy ◦ ⋆

S(y[−1]) ◦ ⋆

S(z[−1]) ◦ ⋆

Sx ◦ ⋆

Sy ◦ ⋆

y[−1] · ⋆

z[−1] · ⋆

x · ⋆

y · ⋆

ζY [−1][−1] ◦ ⋆ ηY [−1],T

∼=

ζZ[−1][−1] ◦ ⋆ ηZ[−1],T

∼=

h ◦ ⋆ ηX,T

∼=

id ηY,T

id ηZ,T

The leftmost upper square commutes by naturality of ζ. For the second left square
from the top, note that S(z[−1]) ◦ ζZ[−1][−1] = ζX [−1] ◦ (Sz)[−1] by naturality of
ζ, and this in turn is equal to h ◦ t.

The leftmost column of this diagram is exact, and so is the rightmost column,
since it is the dual of an exact sequence. Thus the middle column is also exact, so
the Five lemma applies, and tells us that h ◦ ⋆ is an isomorphism. By the Yoneda
lemma this implies that h is an isomorphism.

Now

SX
Sx
−→ SY

Sy
−→ SZ

(−ζX )◦Sz
−−−−−−→ (SX)[1]

is isomorphic to the triangle U
u
−→ SY

Sy
−→ SY

−t[1]
−−−→ U [1], hence it is a triangle

itself. �

The case that T in not idempotent closed. By [4], any triangulated category

T is canonically embedded into an idempotent closed triangulated category T̂. More

precisely, T̂ is the category of injective objects in modT.

We denote by X and X̂ the subcategories of objects X and X̂ such that T(X,−)∗

and T̂(X̂,−)∗ are representable, respectively. One easily observes, using the fact

that any object in T̂ is a direct summand of an object in T, that X ⊂ X̂. Note that

by Theorem B.7 we know that X̂ is a triangulated subcategory of T̂.
Now let X −→ Y −→ Z −→ X [1] be a triangle in T, such that T(X,−)∗ and

T(Y,−)∗ are representable, say by SX and SY . By the above comment we know

that T̂(Z,−)∗ is representable, say by ŜZ ∈ T̂. Finally we apply Theorem B.10,

which tells us that SX −→ SY −→ ŜZ −→ SX [1] is a triangle in T̂. But since T
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is a triangulated subcategory of T̂, and two of the terms of the triangle lie in T, so

does ŜZ. Thus we have shown that T(Z,−)∗ is representable.
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21. Alex Heller, Stable homotopy categories, Bull. Amer. Math. Soc. 74 (1968), 28–63.
22. Yasuo Iwanaga, On rings with finite self-injective dimension. II, Tsukuba J. Math. 4 (1980),

no. 1, 107–113.
23. Bernhard Keller and Pedro Nicolás, Weight structures and simple dg modules for positive dg

algebras, Int. Math. Res. Not. IMRN (2013), no. 5, 1028–1078.
24. Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér.
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