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Abstract

Although genome-wide association studies (GWAS) on complex traits have achieved great
successes, the current leading GWAS approaches simply perform to test each genotype-phenotype
association separately for each genetic variant. Curiously, the statistical properties for using
these approaches is not known when a joint model for the whole genetic variants is consid-
ered. Here we advance in GWAS in understanding the statistical properties of the ”population
structure correction” (PSC) approach, a standard univariate approach in GWAS. We further
propose and analyse a correction to the PSC approach, termed as ”corrected population cor-
rection” (CPC). Together with the theoretical results, numerical simulations show that CPC is
always comparable or better than PSC, with a dramatic improvement in some special cases.
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1 Introduction

In high dimensional data analysis where the number of covariates p is larger than the number of
samples n, penalized regression approaches, such as Lasso, are one of the most popular approach [1,
2, 3, 4]. However, interpreting the results of the Lasso in terms of hypothesis testing or uncertainty
quantification is difficult.

Motivated by genome-wide association studies (GWAS), we focus on the following question:
given a response vector y of n samples and a matrix of (genetic) covariates Xn×p formed by p
(genetic) covariates of n samples, we want to determine which covariates associate with the response.
Although the variable selection problem is a classical problem in statistics, in this context it is still
a big challenge as the number of covariates is huge compared to the sample size, which prohibits
the use of the classical methods. Moreover, in many practical situation, the genomic data are huge
and can not even be examined on a personal laptop. For example, in human genomics, the number
of covariates (SNPs, single-nucleotide polymorphism) as well as the number of samples are often
at hundreds thousands [5]; or it can be at order tens of millions covariates when using k-mers (an
alignment-free biomarker type) as in bacterial genomics [6] with thousands of samples.

Besides the computational reason, most of the theoretical result on the Lasso are on `2 estimation
of the parameter and not on variable selection. These two objectives are known to be incompatible
in general, see [7, 8] (and [9] illustrated this in the case of the Lasso). Some results for variable
selection were derived for thresholded versions of the Lasso, for example in [?], but are valid under
strong assumptions that are usually not satisfied in GWAS. Some procedure leading to significance
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tests and confidence intervals are proposed e.g in [10, 11, 12] but they are not easy to handle and
costly to compute when using penalized regression such as Lasso.

This leads to the widely use of a univariate model for testing the association of a trait and a
covariate (say X·1):

y = α1X·1 + e

to estimate α1 and test its significant. However, the omitted variables have an effect, which we will
model by multivariate and so the fitted model should be:

y = β1X·1 +
∑
j>1

βjX·j + ε.

The effect of omitted variables (that is, the difference between α1 and β1, depends strongly on the
dependence between X·1 and the other covariances. In GWAS data, the covariates (often SNPs) are
in some dependent structures which is called linkage disequilibrium. This is due to the population
structure: many of SNPs have different frequencies in each population [13, 14].

If one uses a univariate regression and ignores the effect of the other covariates, then they can
be effectively modelled as part of the error as e =

∑
j>1 βjX·j + ε. However the covariates are

correlated due to the population structure, this leads to a correlation between the tested covariate,
say X·1, and the noise term together with the noise of the samples. These correlations can cause
in inflated type-1 error rates [15]. To handle this problem, the so-called ’population structure
correction’ approach had been introduced and successfully applied in practice, see for example
[13, 14, 16] among others.

In principle, population structure correction is an alternative way to implicitly model the other
covariates that are not being tested at the time. This can be done through the latent subspace of
these variables. A natural way is to use principal component analysis to extract some features that
contain most information of the other covariates X·−1 and use these features as representatives
added in the univariate regression of X·1. In this way, it can be seen as a dimension-reduction
approach. Another way that is also being the standard approach in GWAS is to use ’linear mixed
model’ framework in which the covariates that are not directly being tested are treated as random.
However, several works had shown that inclusion of X·1 in calculating the principal components
can lead to loss in power [17, 18]. This motivates and leads to the popular usage of leave-one-
chromosome-out method [16, 17, 18].

Although univariate regression approach with population structure correction has become the
state-of-the-art approach in GWAS, there are several numerical works have showed that fitting a
penalized multivariate regression can exceed it, e.g [19, 20, 21, 22, 23]. This can be explained as
that using population structure correction can be biased. Moreover, population structure correction
very much depends on the added latent features of untested covariates.

In this paper, we study the statistical properties of the population structure correction when
assuming the true underlying model is a multivariate linear regression. More specifically, we derive
explicitly the bias and the variance of the population structure correction method. Moreover,
we also propose and study a simple version of the leave-one-chromosome-out method, termed as
’corrected population correction’. We show theoretically and empirically that ’corrected population
correction’ approach reduces the variance compare to the population structure method.

The paper is organized as follow. In Section 2, the model formulation and different methods
are presented. The main results on the statistical properties of population structure correction and
corrected population correction are given in Section 3. Some numerical simulations are conducted
in Section 4 and we conclude the paper in the final section.
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2 Model and methods

2.1 Model

Given a response vector y of n samples and p covariates X·j with n � p, we assume that the
response vector relates to the covariates by the following linear model

Yi =

p∑
j=1

βjXi,j + εi, i = 1, . . . , n (1)

or, summarized by Y = Xβ + ε in matrix form with Y1
...
Yn

 =

 X1,1 . . . X1,p
...

. . .
...

Xn,1 . . . Xn,p


 β1

...
βp

+

 ε1
...
εn

 .

We assume that εi ∼ N (0, σ2). With a deterministic X, this leads to E(Y ) = Xβ.
The problem is to estimate the coefficient βj . Up to a re-ordering of the variables, say that

the coefficient is β1. For simplicity, there is no intercept: we assume that the variables are already
centered, and normalized.

Notations: For any matrix A, A(−j) denotes matrix A without its j-th column, and As:j is the
submatrix with only columns s, s+ 1, . . . , j. We use the same convention for column vectors: βs:j
means that we extract entries from s to j.

2.2 Population structure correction (PSC)

The idea is to perform a principal component analysis (PCA) on X and then use some principal
components corresponding to the top leading eigenvalues. In other words,

X>X = W̄>

 λ̄1 . . . 0
...

. . .
...

0 . . . λ̄p

 W̄ where W̄ =

 W̄1,1 . . . W̄1,p
...

. . .
...

W̄p,1 . . . W̄p,p


and λ̄1 ≥ · · · ≥ λ̄p ≥ 0. The matrix X>X is also known as the ’kinship’ matrix in genomic research.

Here it will be more convenience to think of PCA as an SVD, that is

X = Ū

 σ̄1 . . . 0
...

. . .
...

0 . . . σ̄r

 V̄ > = Ū Σ̄V̄ >

where r̄ = rank(X) and σ̄1 > · · · > σ̄r > 0. It is easy to see that V̄ contains the r̄ first columns of
W̄ , and so V̄ = W̄ as soon as rank(X̄) = p.

Then the idea is simply to estimate the model for some k,

Yi = ᾱX1,i +

k∑
j=1

γ̄jŪi,j + ē
(k)
i ,

or

Y = X·1ᾱ+ Ū(1:k)γ̄ + ē(k), (2)

hoping that ᾱ is a good proxy for β1 in model (1).
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2.3 Corrected population correction (CPC)

We propose a modified procedure: first, perform a PCA on X(−1) (X without its first column X·1
is denoted by X(−1)), in other words:

X(−1) = U

 σ1 . . . 0
...

. . .
...

0 . . . σr

V > = UΣV >

where r = rank(X(−1)) and σ1 > · · · > σr > 0.
Similar to PSC, it is simply to estimate the model, for some k,

Yi = αX1,i +

k∑
j=1

γjUi,j + e
(k)
i ,

or

Y = X·1 α+ U(1:k)γ + e(k), (3)

and hoping that α is a good proxy for β1 in model (1).
We would like to note that this method is a simple version of the so-called popular method

’leave-one-chromosome-out’ in GWAS [18].

2.4 Why does PSC need to be corrected?

In general, the CPC model is not “correct” in the sense that E(Y ) 6= X·1α+U1:kγ. In other words,
in (3) we don’t have E(e(k)) = 0, in general. However, assume that k = rank(X−1), then we have

Y = X·1α+ Uγ + e

and note that X(−1) = UΣV > leads to X(−1)V (V >V )−1Σ−1 = U . Thus, this model is equivalent
to (1) with α = β1, by identification:

X·1α+X(−1)(V (V >V )−1Σ−1γ) = Xβ = X·1β1 +X(−1)

 β2
...
βp


(and so ε = e in this case). Therefore, for a well chosen k, the model is actually exact. For this
reason, we can reformulate the problem as: with the true model

Y = X·1α+ Uγ + ε, (4)

γ ∈ Rr where r = rank(X(−1)), what is the effect on α to estimate instead, for some k,

Y = X·1α+ U(1:k)γ1:k + e(k) (5)

where we actually have e(k) = U(k+1):rγ(k+1):r +ε. This is simply a problem of omission of variables:
what is the effect of the omission of U(k+1):r?

On the other hand, for k = rank(X), we have

Y = Xβ + ε = Ū Σ̄V̄ >β + ε = Ū(Σ̄V̄ >β) + ε = Ū γ̄ + ε
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and so the PSC model

Y = ᾱX1 + Ū γ̄ + ε (6)

is simply not identifiable (the variable X·1 is twice in the model). When k < rank(X), the model
might be identifiable, but the fact that X·1 is in the first term, and “partly” in the second, will lead
to a greater bias than in CPC. This drawback has been figured out in the field of genetic research
[18]. For a formal statement see the analysis below.

3 Statistical Analysis

In the following we explicitly derive the bias and the variance for each considered methods above.
These results bring insights on understanding how the population structure correction is working
practically. All technical proofs are postponed to Section A.

3.1 Main theorems

We first provide some statistical properties for the CPC method.

Theorem 1. Assume that model (1) or equivalently (4) holds. Then with CPC method we have

bias(α̂) =
X>·1U(k+1):rγ(k+1):r

X>·1X·1 −
∥∥X>·1U1:k

∥∥2 ,

Var(α̂) =
σ2

X>·1X·1 −
∥∥X>·1U1:k

∥∥2 . (7)

It can be seen that X>·1U(k+1):rγ(k+1):r measures the correlation between X·1 and the other part
of X (as in the true model (4)) which was not included in the wrong model (5). Obviously, if the
wrong model is actually not “too wrong” in the sense that ‖U(k+1):rγ(k+1):r‖ ' 0 then the bias
would be small. But when this is not the case, the term is problematic only if X·1 is correlated
with this quantity.

The denominator X>·1X·1 −
∥∥X>·1U1:k

∥∥2
is just an identifiability term: if X·1 is too correlated

with the other variables used in model (5), then the variance of α̂ will increase (as usual) but also
the bias due to misspecification.

Remark 1. As γ is unknown in practice, but the cj := X>·1U(j) are observed. So we can give a
result under an assumption that depends only on γ. For example if we assume that ‖γ‖1 ≤ B (as
in the Lasso) then

|bias(α̂)| ≤
‖γ‖1

∑r
j=k+1 |cj |

X>·1X·1 −
∑k

j=1 c
2
j

≤
B
∑r

j=k+1 |cj |
X>·1X·1 −

∑k
j=1 c

2
j

.

Statistical properties of the PSC method are given in the following theorem.

Theorem 2. Assume that model (1) holds. For the model (6), with PSC method, we have

bias( ˆ̄α) =
X>·1 (Ū(k+1):r̄γ̄(k+1):r̄ −X·1β1)− β1

∥∥X>·1 Ū1:k

∥∥2

X>·1X·1 −
∥∥X>·1 Ū1:k

∥∥2 ;

Var(ˆ̄α) =
σ2

X>·1X·1 −
∥∥X>·1 Ū1:k

∥∥2 . (8)
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In the following theorem, we derive the relationship between the variances of these two methods.

Theorem 3. The corrected population correction method reduces the variance of the original pop-
ulation structure correction, i.e Var(α̂) ≤ Var(ˆ̄α).

Remark 2. From Theorem 3, it states that the corrected population correction (CPC) always
returns estimate with smaller variance comparing to the structured population correction (SPC).
From simulations, we conjecture that the biasness of CPC method is also smaller than those from
SPC method, however this is not easy to show from our analysis.

3.2 Reliable implication check

Assuming that X is normalized, that is X>·1X·1 = 1. As we have that |X>·1U(k+1):rγ(k+1):r| ≤∑r
s=k+1 |X>·1Usγs|, and using Cauchy-Schwarz inequality yields |X>·1Us|2 ≤ ‖X·1‖2‖Us‖2 ≤ 1 and

we obtain |X>·1U(k+1):rγ(k+1):r| ≤
∑r

s=k+1 |γs|. Thus, we have

|bias(α̂)| ≤
∥∥γ(k+1):r

∥∥
1∣∣∣1− ∥∥X>·1U1:k

∥∥2
∣∣∣ :=

N

D
, Var(α̂) ≤ σ2∣∣∣1− ∥∥X>·1U1:k

∥∥2
∣∣∣ :=

σ2

D
.

Now, CLT yields α̂ ∼ N (E (α̂),Var(α̂)). We want to test the null hypothesis that

H0 : α = 0.

Under this null hypothesis, we have |E(α̂)| ≤ N
D and (1 − a)100% confidence interval is E(α̂) ∈[

α̂− za
2

√
Var(α̂), α̂+ za

2

√
Var(α̂)

]
or α̂ ∈

[
−E(α̂)− za

2

√
Var(α̂),E(α̂) + za

2

√
Var(α̂)

]
. Thus we

obtain

α̂ ∈

[
−N
D
− za

2

√
σ2

D
,
N

D
+ za

2

√
σ2

D

]
,

where za
2

= Φ−1(1− a
2 ) and Φ−1(·) is the normal cumulative distribution function.

The above analysis lead to the following tests for the null hypothesis:

If α̂ /∈

[
−N
D
− za

2

√
σ2

D
,
N

D
+ za

2

√
σ2

D

]
then reject H0.

If the noise variance σ is not known, one can use a consistent estimate σ̂, for example as in
[24, 25, 26] and the confidence interval would become

α̂ ∈

[
−N
D
− t(n−1,a

2
)

√
σ̂2

D
,
N

D
+ t(n−1,a

2
)

√
σ̂2

D

]
,

where the normal cumulative distribution function is replaced by the student distribution.

4 Numerical simulations

Setup

In this section, we investigate basic properties of the PSC and CPC methods studied above. We
fix p = 100, n = 1000 for low dimension setting and p = 1000, n = 600 for high dimension setting.
The noise variance is fixed at σ2 = 1.
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We generate the parameter β ∈ Rp such that its first component β1 is fixed to 1, and other
non-zero components was sampled uniformly at random from {±1}. The sparsity of β will be
changed in each setting corresponding to ‖β‖0 = 20, 100. The response Y is simulated as in linear
model (1).

For each setting, we simulated 100 independent datasets and report the average results together
with their standard deviations. The number of principal components k added in models (3) and
(2) are varied from 1 to 30.

Example: worst case scenario for PSC

Here we show cases that PSC does not work well while CPC performs superior results.
We consider the structured X such that its first two columns X·1 and X·2 are corresponding to

its first two leading principal components. A brief summary of the data can be found in the Figure
1.

Figure 1: Summary the structured X: When X·−1 is removed, a principal component
is also removed.

In this case, it is clear to see that PSC can actually be very biased whereas CPC is very stable
and accurate, see Figure 2. This example demonstrates that including X1 (the covariate being
tested) in the calculation of the principal components can be very harmful.

Figure 2: Structured X. Estimates of β1 with different number of Principal compo-
nents (PCs)

7



Behaviour in other cases

We further consider the following settings for the design matrix:

• Independent X: In this setting, Xij ∼ N (0, 1).

• Dependent X: We consider Xi· ∼ N (0,Σ), where Σij = 0.5|i−j|.

• Binary X: the Xij is simulated from the set {±1} with equal probability.

Results from simulations, Figures 4,5 and 6 confirm our theoretical results above. In general,
the CPC method performs similarly to PSC method. However, CPC return the results with less
variation than the PSC method. Moreover, the PSC method is very much depending on k, the
number of principal components added in the model.

Real data assessment in a wheat GWAS data

We apply two methods to a real wheat GWAS data which is available in the R package ’BGLR’
[27]. The data consists of 599 wheat lines: lines (responses) were evaluated for grain yield and each
line has been genotyped with 1279 markers.

We run CPC and PSC across 1279 covariates and report the absolute errors

|β̂CPS
j − β̂PSC

j |

and the relative errors
|β̂CPC

j − β̂PSC
j |

|β̂PSC
j |

.

These results are given in Figure 3.
Regarding the histogram in Figure 3, the conclusion is clear: for most coefficients, PSC and

CPC lead to similar estimation, but for some of them, the deviation is extremely high. There are in
total 55 covariates such that their relative errors are greater than 0.5 (and there are 33 covariates
such that their relative errors are greater than 1). Therefore, including the covariate being tested
in the calculation of the principal components could create a huge difference.

Figure 3: Histogram of the absolute errors and relative errors of 1279 covariates in
wheat data with 10 principal components.
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5 Closing Discussion

In this paper, we have dicussed the statistical properties of the widely used method, structure pop-
ulation correction method, in genome-wide association studies. We have also proposed and studied
a simple version of the ’leave-one-chromosome-out’ in GWAS, termed as Corrected population
correction method. Our theoretical analysis and simulations show that the structure population
correction method (although efficient computationally) should be used with more careful as it comes
with higher variance due to model-mispecification. The corrected population correction method,
which requires higher computational cost, returns better results as it avoids model-mispecification.
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Figure 4: Independent X. Estimates of β1 with different number of Principal compo-
nents (PCs)

Figure 5: Dependent X. Estimates of β1 with different number of Principal compo-
nents (PCs)

Figure 6: Binary X. Estimates of β1 with different number of Principal components
(PCs)
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A Proofs

A.1 Proof of Theorem 1 for CPC

Analysis of the bias

In (5), let’s define the matrix Z = (X·1|U1:k), put ζ = (α|γ>i:k)>, then it becomes:

Y = Zζ + e(k)

and the least square estimator is given by

ζ̂ = (Z>Z)−1Z>Y = (Z>Z)−1Z>[Zζ + e(k)] = ζ + (Z>Z)−1Z>e(k). (9)

So the bias of this estimator is simply

bias(ζ̂) = E
(
ζ̂
)
− ζ = (Z>Z)−1Z>E(e(k)),

that is

bias(ζ̂) = (Z>Z)−1Z>U(k+1):rγ(k+1):r. (10)

Let us now make this more explicit. First,

Z>U(k+1):rγ(k+1):r =


X>·1U(k+1):rγ(k+1):r

0
...
0

 ,

and

ZTZ =


X>·1X·1 X>·1U(1) . . . X>·1U(k)

X>·1U(1) 1
...

. . .
...

X>·1U(k) 0 . . . 1

 .

Now we know that the bias of ζ̂ in (10) satisfies

(ZTZ)bias(ζ̂) = Z>U(k+1):rγ(k+1):r,

and it can be written explicitly as
X>·1X·1 X>·1U(1) . . . X>·1U(k)

X>·1U(1) 1 . . . 0
...

. . .
...

X>·1U(k) 0 . . . 1




bias(α̂)
bias(γ̂1)

...
bias(γ̂k)

 =


X>·1U(k+1):rγ(k+1):r

0
...
0

 .

The generic equation in the second part of the system is

X>·1U(j)bias(α̂) + bias(γ̂j) = 0

yielding
bias(γ̂j) = −X>·1U(j)bias(α̂).
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Plugging this into the first equation:

X>·1X·1bias(α̂) +
k∑

j=1

X>·1U(j)bias(γ̂j) = X>·1U(k+1):rγ(k+1):r

gives X>·1X·1 − k∑
j=1

(
X>·1U(j)

)2

bias(α̂) = X>·1U(k+1):rγ(k+1):r.

Thus, we obtain

bias(α̂) =
X>·1U(k+1):rγ(k+1):r

X>·1X·1 −
∑k

j=1

(
X>·1U(j)

)2 =
X>·1U(k+1):rγ(k+1):r

X>·1X·1 −
∥∥X>·1U1:k

∥∥2 .

Variance analysis of CPC

From (9), assuming that Var(ε) = σ2, we have

Var(ζ̂) = (Z>Z)−1Z>Var(uk)Z(Z>Z)−1 = σ2(Z>Z)−1,

or

Z>ZVar(ζ̂) = σ2I.

As we are only interested in estimating the variance of α̂, from the above formula we obtain{
(X>·1X·1)Var(α̂) +

∑k
j=1Cov(α̂, γ̂j)X

>
·1U(j) = σ2,

(X>·1U(j))Var(α̂) + Cov(α̂, γ̂j) = 0.

Substituting the second equation into the first one to get

Var(α̂) =
σ2

X>·1X·1 −
∑k

j=1(X>·1U(j))2
.

A.2 Proof of Theorem 2 for PSC

Analysis of the bias

In (2), let’s define the matrix Z̄ =
(
X·1|Ū1:k

)
, put ζ̄ = (ᾱ|γ̄>i:k)>, and use the least square estimator:

ˆ̄ζ = (Z̄>Z̄)−1Z̄>Y (11)

and all we have is that
Y = Ū γ̄ + ε.

Thus, we have

E(ˆ̄ζ) = E
[
(Z̄>Z̄)−1Z̄>Y

]
= (Z̄>Z̄)−1Z̄>Ū γ̄

or,
(Z̄>Z̄)E(ζ̄) = Z̄>Ū γ̄. (12)
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First,

Z̄T Z̄ =


X>·1X·1 X>·1 Ū(1) . . . X>·1 Ū(k)

X>·1 Ū(1) 1
...

. . .
...

X>·1 Ū(k) 0 . . . 1


and then

Z̄T Ū =


X>·1 Ū

1 . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . 1 0 . . . 0

⇒ Z̄T Ū γ̄ =


X>·1 Ū γ̄
γ̄1
...
γ̄k

 .

Equation (12) above becomes:
X>·1X·1E( ˆ̄α) +

∑k
i=1X

>
·1 Ū(i)E(ˆ̄γi) = X>·1 Ū γ̄

X>·1 Ū(1)E( ˆ̄α) + E(ˆ̄γ1) = γ̄1
...

...
X>·1 Ū(k)E( ˆ̄α) + E(ˆ̄γk) = γ̄k.

The generic equations, for 1 ≤ j ≤ k, can be rewritten as

X>·1 Ū(j)E( ˆ̄α) + E(ˆ̄γj) = γ̄j ,

giving
E(ˆ̄γj) = γ̄j −X>·1 Ū(j)E( ˆ̄α).

Plugging this into the first equation gives

E( ˆ̄α)

[
X>·1X·1 −

k∑
i=1

(
X>·1 Ū(i)

)2
]

+
k∑

i=1

X>·1 Ū(i)γ̄i = X>·1 Ū γ̄,

that is

E( ˆ̄α)

[
X>·1X·1 −

k∑
i=1

(
X>·1 Ū(i)

)2
]

+X>·1 Ū1:kγ̄1:k = X>·1 Ū γ̄

and thus

E( ˆ̄α)

[
X>·1X·1 −

k∑
i=1

(
X>·1 Ū(i)

)2
]

= X>·1 Ū(k+1):r̄γ̄(k+1):r̄.

Finally,

E( ˆ̄α) =
X>·1 Ū(k+1):r̄γ̄(k+1):r̄

X>·1X·1 −
∥∥X>·1 Ū1:k

∥∥2 .

Now for the bias,

bias( ˆ̄α) = E( ˆ̄α)− β1

=
X>·1 (Ū(k+1):r̄γ̄(k+1):r̄ −X·1β1) + β1

∥∥X>·1 Ū1:k

∥∥2

X>·1X·1 −
∥∥X>·1 Ū1:k

∥∥2 .
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Variance of PSC

From (11), we have

Var(ˆ̄ζ) = (Z̄>Z̄)−1Z̄>Var(Y )Z̄(Z̄>Z̄)−1 = (Z̄>Z̄)−1σ2

or

(Z̄>Z̄)Var(ˆ̄ζ) = σ2I.

As we are only interested in estimating the variance of ˆ̄α, from the above formula we obtain{
(X>·1X·1)Var(ˆ̄α) +

∑k
j=1Cov( ˆ̄α, ˆ̄γj)X

>
·1U(j) = σ2,

(X>·1U(j))Var(ˆ̄α) + Cov( ˆ̄α, ˆ̄γj) = 0.

Substituting the second equation into the first to get

Var(ˆ̄α) =
σ2

X>·1X·1 −
∑k

j=1(X>·1 Ū(j))2
.

A.3 Proof for Theorem 3

Proof for Theorem 3. We have that∥∥∥X>(−1)u
∥∥∥2

=
∥∥∥(0, X2, . . . , Xp)

>u
∥∥∥2
≤
∥∥∥X>u∥∥∥2

.

And from the definition that Ūj = arg max‖u‖2=1

∥∥X>u∥∥2
, we get∥∥∥X>U1:k

∥∥∥2
≤
∥∥∥X>Ū1:k

∥∥∥2

or ∥∥∥X>·1U1:k

∥∥∥2
+

p∑
j=2

∥∥∥X>(j)U1:k

∥∥∥2
≤
∥∥∥X>·1 Ū1:k

∥∥∥2
+

p∑
j=2

∥∥∥X>j Ū1:k

∥∥∥2
,

∥∥∥X>·1U1:k

∥∥∥2
+ max
‖x‖22=1

p∑
j=2

∥∥∥X>(j)x1:k

∥∥∥2
≤
∥∥∥X>·1 Ū1:k

∥∥∥2
+

p∑
j=2

∥∥∥X>j Ū1:k

∥∥∥2
.

By taking x = Ū1:k, we obtain∥∥∥X>·1U1:k

∥∥∥2
+

p∑
j=2

∥∥∥X>(j)Ū1:k

∥∥∥2
≤
∥∥∥X>·1 Ū1:k

∥∥∥2
+

p∑
j=2

∥∥∥X>j Ū1:k

∥∥∥2
.

And thus ∥∥∥X>·1U1:k

∥∥∥2
≤
∥∥∥X>·1 Ū1:k

∥∥∥2
.

This yields the conclusion of the theorem.

B Simulation results in other cases

14



Figure 7: Binary X. Estimates of β1 with different number of Principal components
(PCs)
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Figure 8: Structured X. Estimates of β1 with different number of Principal compo-
nents (PCs)

Figure 9: Independent X. Estimates of β1 with different number of Principal compo-
nents (PCs)

Figure 10: Dependent X. Estimates of β1 with different number of Principal compo-
nents (PCs)

16



References

[1] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, 2009.
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