
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Håvard Pettersen

Discovering call graphs in binary
programs from unknown instruction
set architectures

Master’s thesis in Master of Science in Informatics
Supervisor: Donn Morrison
June 2023

Håvard Pettersen

Discovering call graphs in binary
programs from unknown instruction
set architectures

Master’s thesis in Master of Science in Informatics
Supervisor: Donn Morrison
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sammendrag

Denne studien tar for seg utfordringen med reverse engineering av binærfiler
fra ukjente instruksjonssett-arkitekturer, en kompleks oppgave med potensielle
implikasjoner for programvarevedlikehold og cyber-sikkerhet. Den foresl̊atte
løsningen er et nyskapende program designet for å oppdage opkoder og lage
call grafer, noe som potensielt kan lette og forenkle prosessen med reverse en-
gineering. Empirisk testing p̊a ulike binærfiler i forskjellige arkitekturer viser
at programmet nøyaktig kan oppdage spesifikke opkoder og h̊andtere data med
støy effektivt. Det bemerkes imidlertid at det krever at binærfilen har visse
egenskaper, som fast lengde p̊a instruksjoner. Til tross for disse begrensnin-
gene, kan programmet være et verdifullt verktøy for reverse engineering, hvor
det er en klar mangel i n̊aværende forskning, samt legge grunnlaget for videre
forskning.

i

Abstract

This study addresses the challenge of reverse engineering binaries from un-
known instruction set architectures, a complex task with potential implications
for software maintenance and cyber-security. The proposed solution is a novel
program designed to detect opcodes and create call graphs, potentially facil-
itating and simplifying the reverse engineering process. Empirical testing on
various binary files in different architectures shows that the program can accur-
ately detect specific opcodes and handle noisy data effectively. However, it is
noted that it requires the binary file to have certain properties, such as fixed-
length instruction size. Despite these limitations, the program may provide a
valuable tool for reverse engineering, offering a new tool where there is a clear
research gap, while laying the groundwork for further research.

ii

Table of Contents

Sammendrag i

Abstract ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Background 3

2.1 Domain knowledge on reverse engineering 3

2.2 Related work . 9

3 Methodology 11

3.1 Proposed solution . 11

3.2 Analysis strategy and data generation 16

4 Results 17

4.1 Experimental setup . 17

4.2 Return and call opcode detection . 19

4.3 OCP-Score as a metric . 22

4.4 Call graph creation . 27

5 Discussion 28

6 Conclusion 30

7 References 31

iii

List of Figures

1 Compilation steps in C . 3

2 LLVM Compiler architecture . 4

3 Instruction format of the MIPS architecture 5

4 Example C function . 5

5 MIPS architecture - example program 5

6 Aarch64 architecture - example program 6

7 x86 64 architecture - example program 6

8 ELF file structure . 7

9 Example call graph . 8

10 Context of the proposed solution . 11

11 Frontend user interface . 15

12 Instruction length parameter and OCP-Score 22

13 Call opcode length parameter and OCP-Score 23

14 Return opcode length parameter and OCP-Score 24

15 PC offset parameter and OCP-Score 25

16 Return to function distance parameter and OCP-Score 26

17 Call graph - source code . 27

18 Call graph - source code with merged functions 27

19 Call graph - generated by the program 27

iv

List of Tables

1 Explanation of the API parameters 14

2 Binaries used in the analysis . 17

3 API parameters used in the analysis 18

4 Top 5 most probable candidates - OpenVPN MIPS 19

5 Top 5 most probable candidates - OpenVPN Aarch64 20

6 Top 5 most probable candidates - cURL MIPS 20

7 Top 5 most probable candidates - cURL Aarch64 20

8 Top 5 most probable candidates - Cross-compiled cURL MIPS . . . 21

9 Top 5 most probable candidates - cURL x86 64 21

List of Algorithms

1 Detect call graph from binary . 12
2 Get potential edges - relative adressing 12

v

1 Introduction

In an era defined by rapid technological advancements and a vast amount of different
systems, further amplified by the rise of the Internet of Things, the importance of
understanding and decoding the inner workings of software cannot be understated.
At the heart of this is the concept of reverse engineering. Reverse engineering in
the context of software, is the practice of inspecting, deconstructing, and analyzing
the structure and operation of a binary file in order to understand its architecture,
design, and functionality. This is often done without access to source code or design
documentation, making it a painstaking, yet critical, part of software analysis and
security.

The reverse engineering process is notably important in areas such as cyber-security,
where detecting and understanding malware is key to developing and maintaining
robust security. It also plays a vital role in maintaining and debugging legacy soft-
ware and firmware, where the original documentation or developers may not be
available. For these reasons, reverse engineering is a critical skill in the digital age
and an important area in need of further research and development efforts.

In the broader context, several tools and methods have been developed over time
to aid the reverse engineering process. Most of these tools require a posteriori
knowledge about the instruction set architectures of the binary being analyzed,
often explicitly needing the architecture in its dataset, which poses limitations and
challenges when dealing with unknown instruction set architectures.

The current methods for reverse engineering binaries from unknown instruction set
architectures are limited and often involve invasive procedures such as hardware
decapsulation, which can be costly, slow, and potentially damaging to the hardware
[1]. Additionally, obfuscation measures are often used to deliberately make the
process even more challenging and time-consuming. Examples of such techniques
are custom virtual machines used to execute the binary file.

When looking at the process of reverse engineering from a methodological perspect-
ive, a common practice is detecting important functions and focusing the reverse
engineering efforts on them, so-called sub-routine scanning [2]. Hence, a tool cap-
able of generating call graphs for binaries would alleviate much of the needed efforts
in the current reverse engineering process.

1

There is a clear need for heuristic tools that can assist reverse engineers in ex-
tracting meaningful information from such binaries without prior knowledge of the
instruction set architectures. With this in mind, the following research questions
are formulated:

RQ1. Can call-graph information be heuristically deduced from binary programs
of an unknown instruction set architecture?

RQ2. How effective is an approach such as this and what are its limitations?

The central contribution of this study is the development and validation of a novel
program that can be used to detect opcodes and generate call graphs from binaries
with unknown instruction set architectures. The program is evaluated in detail,
revealing its capabilities and limitations. During the development of the program,
an equation for attributing a probability value to opcodes has been formulated. This
equation not only ranks the opcodes based on likelihood, showing the user only the
most probable pairs but also provides a quick-reference value for an easy overview.
In addition to this, a user-friendly web-based interface has been developed, enabling
users to view the generated call graphs. The collection of software, tools, algorithms,
and theory developed in this project is hereby referred to as a framework.

The structure of the rest of the report is as follows: The next chapter gives the ne-
cessary background needed to understand the report and reviews the current state-
of-the-art in reverse engineering. The subsequent chapters describe the proposed
solution, followed by a detailed analysis and discussion of the effectiveness and lim-
itations of the program, validated through testing multiple binary files from different
architectures. Lastly, the findings are summarized, and potential avenues for further
research are proposed.

2

2 Background

This section will go through the basics of reverse engineering, as well as describe
the current state-of-the-art. It is in large parts based on the work done in the
preliminary project [3].

2.1 Domain knowledge on reverse engineering

The domain knowledge required for this project ranges from how programs are com-
piled to assembly language, binary file structure, and instruction set architecture.
These topics are massive, and only a high-level overview of the most important
aspects will be covered here.

Compilation

Compilation is the process of transforming code in a high-level language into machine-
readable code. In the C programming language, the compilation of a program com-
prises several steps, as depicted in Figure 1.

The responsibility of each step is as follows: The pre-processor copies header files to
the source code, expands macros, and removes comments; the compiler is respons-
ible for transforming the source code to an assembly language targeting a specific
architecture, as well as doing optimization; the assembler transforms the assembly
code into machine code; the linker links additional libraries to the program.

Figure 1: The steps a C compiler goes through transform source code
to machine code.

Compilers are typically divided into two parts: the frontend and the backend, as can
be seen in Figure 2. The frontend is responsible for converting the source code to a
low-level intermediate representation, similar to assembly language. Loop unrolling
and other code optimizations are done in this intermediate representation. Finally,
the backend is responsible for converting the intermediate representation to assembly
or machine code, targeting a specific architecture. This separation is useful since one
can reuse the same frontend for multiple architectures, and reuse the same backend
for multiple programming languages.

3

Figure 2: Architecture for the LLVM compiler, showcasing a single op-
timizer for different frontend languages and backend architectures [4].

Instruction set architecture

An instruction set architecture serves as an abstract model of the computer on which
software runs, and when compiling a program, one must target a specific instruction
set architecture. This instruction set architecture defines the supported instructions,
data types, addressing modes, and other relevant aspects of the architecture. Con-
sequently, a program compiled for eg. the x86 64 architecture will not execute on a
computer with ARM architecture without the use of emulators.

Assembly code is a mnemonic of machine code, meaning there is a one-to-one map-
ping between them. For instance, an instruction mov r1 #2 could be assembled
into the following bytes: 0x5e83a2. In much the same way, disassembly would
mean translating the bytes back to the original assembly instructions. Typically,
an instruction consists of an opcode, which specifies the operation, and operands,
which determine the values to operate on. These operand values can include memory
addresses, immediate values, or registers.

The instruction format demarcates the bits of an instruction representing the op-
code, and the bits representing the operands. An instruction format can either be
fixed length, where all instructions are the same length, or variable length, allow-
ing instructions to be of different lengths, as is the case in the x86 64 architecture.
Figure 3 illustrates an example of such an instruction format, in this case for the
MIPS architecture. Additionally, the endianness of the instruction set architecture
is an important consideration, indicating the order in which bytes are stored. An
instruction stored as 0x1234 would be interpreted as 0x1234 for big-endian, and
0x3412 for little-endian.

4

Figure 3: Instruction format of the MIPS architecture, showcasing the
arithmetic, jump and I-type instruction formats [5].

To further illustrate the differences between different instruction set architectures,
the function presented in Figure 4 has been compiled for different architectures using
the online Compiler Explorer tool 1, which can be seen in Figures 5, 6, and 7.

int func(int a, int b) {

return a + b;

}

Figure 4: Example C function which sums two integers.

addiu sp,sp,-8

sw s8,4(sp)

move s8,sp

sw a0,8(s8)

sw a1,12(s8)

lw v1,8(s8)

lw v0,12(s8)

nop

addu v0,v1,v0

move sp,s8

lw s8,4(sp)

addiu sp,sp,8

jr ra

(a) MIPS assembly code

27dbfff8

afbe0004

03a0f025

afc40008

afc5000c

8fc30008

8fc2000c

00000000

00621021

03c9e825

8fbe0004

27bd0008

03e00008

(b) MIPS machine code

Figure 5: Assembly and machine code for the example C program in
figure 4 compiled for the MIPS architecture.

1https://godbolt.org/

5

sub sp, sp, #0x10

str w0, [sp, #12]

str w1, [sp, #8]

ldr w1, [sp, #12]

ldr w0, [sp, #8]

add w0, w1, w0

add sp, sp, #0x10

ret

(a) Aarch64 assembly code

d10043ff

b9000fe0

b9000be1

b9400fe1

v9400be0

0b000020

910043ff

465f03c0

(b) Aarch64 machine code

Figure 6: Assembly and machine code for the example C program in
figure 4 compiled for the Aarch64 architecture.

push rbp

mov rbp,rsp

mov [rbp-0x4],edi

mov [rbp-0x8],esi

mov edx, [rbp-0x4]

mov eax, [rbp-0x8]

add eax,edx

pop rbp

ret

nop [rax+rax*1+0x0]

(a) x86 64 assembly code

55

48 89 e5

89 7d fc

89 75 f8

8b 55 fc

8b 45 f8

01 d0

5d

c3

0f if 44 00 00

(b) x86 64 machine code

Figure 7: Assembly and machine code for the example C program in
figure 4 compiled for the x86 64 architecture.

6

Binary file structure

After compilation, the program is typically stored in a binary file format, with the
Executable and Linkable Format (ELF) being the most common. The reason this
is of interest is that a binary file often contains more than just instructions, it also
contains data and metadata. In the case of ELF files, they consist of sections and
segments of different types of data. In Figure 8, which shows the contents of an
ELF file, we are specifically interested in the .text segment, as that is where the
instructions are stored. When dealing with an unfamiliar file format, it is of interest
to identify the start and end of the corresponding .text segment, to accurately isolate
and extract the instructions.

Figure 8: ELF file structure [6].

7

Call graphs

To detect call graphs in a binary with an unknown instruction set architecture, the
most relevant task is detecting the function boundaries, namely the byte position at
which a function starts, and where it ends. Notably, all the architectures depicted
in Figures 5, 6, and 7 exhibit distinct function epilogues and prologues, through
return instructions and stack operations, respectively. An example of a call graph
for a simple program, consisting of a main function that calls two other functions,
can be seen in Figure 9. A more complex call graph may have characteristics such
as recursion and loops.

Figure 9: Call graph constructed from a program containing a main
function which calls function 1 and function 2.

Addressing modes

Call instructions generally reference other functions in one of three ways: absolute
addressing, where the operand of the instruction is the address we want to access;
relative addressing, where the operand of the instruction contains the offset from
the current address; and register addressing, where the address of the callee is stored
and accessed through a register. In general, it is simpler to detect where a function
points when it uses absolute and relative addressing, with register addressing being
difficult without runtime knowledge.

Other challenges

Developing a static analysis method capable of disassembling any binary file for any
architecture is an exceedingly difficult problem. However, it is feasible to create
a tool that aids in the disassembly process for a subset of architectures. In inter-
preted languages like Python, it is possible to create an executable using tools like
PyInstaller2. However, without prior knowledge of it being a Python executable,
conducting static analysis on such files can prove challenging. This is due to both
the interpreter being bundled with the executable, and the code itself being inter-
preted byte code. As a general rule of thumb, a program written in a lower-level
language like C will be easier to extract meaningful information from than a program
written in a higher-level language.

2https://pyinstaller.org/en/stable/

8

2.2 Related work

There is quite a bit of research within the field of reverse engineering, ranging from
malware detection to architecture classification. However, most research are tar-
geting a specific set of architectures, while research on the analysis of unknown
instruction set architectures is scarce.

Clemens [7] uses a dataset of 16,000 binaries from 20 different architectures to detect
endianness and instruction set architecture. The approach relied heavily on byte
frequency distributions as features, suggesting that they retained sufficient opcode
information for accurate instruction set architecture classification. The approach is
similar to the approach of Kairajarvi et al. [8], and relies on the instruction set
architecture being part of the training data.

Sharif et al. [9] developed a system called Rotalume to reverse engineer binaries
that have been obfuscated using programs such as VMprotect 3. This approach was
however dependent on executing the binary in a protected environment, in order to
extract runtime information, which makes the approach unfeasible for binaries with
an unknown architecture.

On the methodology front, an observational study demonstrated the three-phased
process of reverse engineering: overview, sub-component scanning, and focused ex-
perimentation [2]. The program discussed in this report falls primarily within the
overview phase. It provides reverse engineers with a high-level visualization, in the
form of a call graph, facilitating an informed decision in the sub-component scanning
phase.

There also exist several tools that may assist in different parts of the reverse en-
gineering process. IDA Pro 4, a widely used disassembly tool, allows interactive
disassembly of binaries across popular architectures. Similarly, the Python library
angr 5, assists in symbolic analysis of binary files, provided the architecture of the
binary is known and supported. Objdump is a popular unix library that is useful in
disassembling binaries, but it can only do so if the file contains appropriate headers,
for example, an ELF file. ILspy 6 and JD Project 7 are tools that can be used to
disassemble .NET and Java binaries respectively.

3https://vmpsoft.com/
4https://www.hex-rays.com/ida-pro/
5https://angr.io/
6https://github.com/icsharpcode/ILSpy
7http://java-decompiler.github.io/

9

In an unpublished work by Chernov et al. [10], a heuristic approach is presented,
where they detect instruction set architectural features in binaries with unknown
instruction set architecture. They present multiple assumptions of the binary file
of an unknown architecture: Call opcodes usually have the absolute address of
a function as an operand, a function prologue is closely spatially located to the
previous functions epilogue, and call and return opcodes are amongst the most
commonly used opcodes. Through the use of frequency distributions and address
matching, they were able to detect subroutines and control flow in binaries, through
only static analysis of the binary file. The work done in this report is based on the
same assumptions made by Chernov et al. but differs in its implementation. It will
also be the first published research on this specific topic.

Most studies discussed have necessitated prior knowledge of the instruction set archi-
tecture, with only the last paper presented by Chernov et al. focusing on unknown
architectures. As such there is a clear research gap identified in this area, which this
paper aims to contribute towards.

10

3 Methodology

This section introduces the proposed solution, as well as the data generation and
analysis strategy.

3.1 Proposed solution

The proposed solution8 consists of a set of services and algorithms to analyse the
binary, hereby referred to as the program, and a web-based user interface, hereby
referred to as the frontend. The program, developed in Python 9, takes as input a
binary file and a list of parameters, and it gives as output a list of potential call
graphs along with their corresponding probability. Figure 10 shows how a possible
context where a reverse engineer might use the program as part of the process of
reverse engineering a binary towards a high-level representation.

Figure 10: Context of the use of the proposed solution, occurring
between architectural feature extraction and sub-component scanning.

The rationale for choosing Python as the programming language was primarily due
to its simplicity, enabling quick iterations of the program and ease of development,
with the most obvious trade-off being speed and efficiency. During development, the
program was validated against a small binary from the Chip8 architecture, due to its
instruction format being well-suited for static analysis. In Sections 4 and 5 we will
further analyse and discuss the program against a more common and comprehensive
set of architectures.

During the development of the program, modularity and modifiability were key non-
functional requirements of the program, since future work on it may be done. To
achieve this, the program was separated into functions with single responsibilities.
A high-level pseudo-code of the main algorithm can be seen in Algorithm 1. The ex-
tract instruction function separates the bytes of the binary into a list of instructions,
based on the provided instruction length, and file offsets. The get potential edges
function finds all instructions with the given call opcode where its operand points to

8https://github.com/haavapet/binary-analysis
9As of the writing of this report, a CLI version of this project is in development using

the Rust programming language. This project should ensure much faster analysis of big bin-
aries, as well as ease of use by virtue of being a CLI tool. The project can be viewed at
https://github.com/haavapet/binary-analysis-rs, and will feature additional functionality such as
optional parameters and multi-threading.

11

a valid instruction, with either relative or absolute addressing. The filter valid edges
function validates edges by confirming that the given return opcode is one of the
few instructions above the called instruction, to ensure there is a distinct function
epilogue followed by a function prologue.

Algorithm 1 Detect call graph from binary

instructions = extract instructions(...) ▷ bytes → List[Instructions]
top candidates = Heap(...)
for call candidates do

potential edges = get potential edges(...)
for return candidates do

valid edges = filter valid edges(...)
probability = get probability(...)
store candidate in heap(...)

end for
end for
for candidate in top candidates do

create graph for candidate(...)
end for
return candidates with graph

As an illustration of the modularity and modifiability of the program; during the
later stages of development, support for relative addressing was added as an optional
functionality. This required only adding an if/else clause based on a new parameter
to the API, and modifying the get potential edges function with a few lines of code.
A simplified view of this functionality can be seen in Algorithm 2.

Algorithm 2 Get potential edges - relative adressing

potential call instructions = get instructions with opcode(...)
for potential call instructions do

signed operand = int to signed int(instruction.operand)
if signed operand hits relative instruction address then

add edge(...)
end if

end for
return edges

It is highly recommended to inspect the documentation in the source code for a
more thorough understanding of the algorithms.

12

As part of developing the program to detect call graphs in binary files, a formula
for computing and associating a probability score to a given call opcode and return
opcode has been created. The formula can be seen in Equation 1, and is hereby
referred to as Opcode Candidacy Probability Score (OCP-Score).

OCP-Score =
2 · (length valid edges) + (length potential edge)

3 · (call count)
(1)

call count refers to the number of instructions with the given call opcode. po-
tential call edges refers to the number of edges associated with the candidate call
opcode, in particular, those instances where the operand points to a valid address.
length valid edges refers to the number of edges where there is a function epilogue,
specifically a candidate return instruction, above the called instruction.

The OCP-Score is normalized to a value between 0 and 1, explained by the constraint
that length valid edges and length potential edges are always less than or equal
to call count. It is worth noting that length valid edges is weighted more heavily
than potential call edges, due to being more strongly correlated with only call
instructions as opposed to call and branch instructions. The OCP-Score will be
evaluated and discussed further in Sections 4 and 5.

13

The analysis of the binary file requires a handful of parameters provided alongside
the file itself. The parameters, their type, and a description can be seen in Table 1.
All parameters are currently required by the API, however, a potential modification
with sane defaults and increased search space, could require only the first three
parameters while keeping the rest optional, which would greatly increase usability.

Table 1: Explanation of the API parameters.

Parameter Type Description

instructionLength int Length of an instruction in bits

retOpcodeLength int Length of instruction return opcode
in bits

callOpcodeLength int Length of instruction call opcode in
bits

fileOffset int Byte position of code section start
in binary

fileOffsetEnd int Byte position of code section end in
binary

pcOffset int Address of first instruction

pcIncPerInstr int Distance between the address of
each instruction

endiannes string ”big” or ”little”

nrCandidates int How many graph candidates to re-
turn

callCandidateRange int, int Only search the [x:y] most popular
instruction with a bitmask of cal-
lOpcodeLength as a potential call
candidate

retCandidateRange int, int Only search the [x:y] most popu-
lar instruction with a bitmask of
retOpcodeLength as a potential re-
turn candidate

returnToFunction-
PrologueDistance

int Distance from function epilogue (re-
turn instruction) to function pro-
logue (call operand address)

unknownCodeEntry bool Search the binary for the most op-
timal fileOffset and fileOffsetEnd,
drastically increases runtime

includeInstructions bool Include instructions in the result ob-
ject. Recommended False for big
binaries if rendering graph

isRelativeAddressing bool Relative or absolute addressing for
call operands

14

Alongside the aforementioned Python program, a frontend written in React is also
included. Due to this inclusion, the FastAPI library 10 was chosen as the API for the
program, enabling the integration between the program and the frontend through
a RESTful interface. The frontend provides a simple graphical interface where the
user can upload a file, input the required parameters, and then display the created
call graphs. Figure 11 shows the interface of the frontend.

(a) Upload file page (b) Form page

(c) Display graph page (d) Modal after clicking function 0

Figure 11: User interface of the frontend solution, showing the different
pages for uploading a binary file, entering parameters, and displaying
the generated call graph.

The development of the program has incorporated multiple practices from the XP
framework, such as test-driven development, coding standards, and continuous in-
tegration [11, p. 49]. Among the tests are end-to-end tests to validate the program
as a whole, along with several tests for the different modular parts of the program,
such as instruction extraction. Continuous integration through GitHub actions en-
sures that incremental updates to the program are validated, and pre-commit hooks
ensure that faulty code is not pushed to the GitHub repository. In addition to tests,
linters for both the program and the frontend, as well as static type checking for the
program, are also included. This ensures that certain code standards are held, and
enforces consistent code styles throughout the code.

The project can be run locally using either docker-compose 11, or the programming
environments’ respective package managers: poetry 12 for Python, and npm 13 for
React. For detailed instructions, see the included README file.

10https://fastapi.tiangolo.com/
11https://www.docker.com/
12https://python-poetry.org/
13https://www.npmjs.com/

15

3.2 Analysis strategy and data generation

The forthcoming analysis will analyse and validate three integral parts of the pro-
gram. The first part is to input the program with the correct parameters and
ensure that the returned call opcode and return opcode are correct. The second
part evaluates the assigned OCP-Score under different inputs, to detect how noisy
and potentially faulty data affects the output. The third part will be looking at the
created call graph of a small binary file, and comparing it to a call graph created by
inspecting the source code.

There were multiple considerations taken into account when choosing programs and
architectures for the opcode detection and OCP-Score evaluation analysis. Firstly,
the architecture should conform to a fixed-length instruction format, as that is what
the program expects and should be evaluated against. However, a reference binary
with a variable-length instruction format has been included to provide insights into
the behavior of the program under such conditions. Secondly, the binary should
contain sufficient immediate or relative call and return instructions. Lastly, the pro-
grams used should be commonly used, complex, and written in a low-level language
like C.

The most important characteristic of the binary used for the call graph creation was
that the program is sufficiently small, this is to ensure the creation of a human-
readable call graph, as well as reducing the manual labor required to create a call
graph from inspecting the source code. In addition to this, it is important that the
binary conforms to the same properties as mentioned in the previous paragraph.

The output of the program was fed to a Python script, which uses Matplotlib 14

to produce the graphs seen in the forthcoming section. The specific binaries used
in this analysis, along with their associated parameters, are explained in detail in
Section 4.1.

14https://matplotlib.org/

16

4 Results

This section will analyse three important parts of the proposed solution: opcode
detection, call graph creation, and the OCP-Score. In addition to this, the experi-
mental setup will be described such that the results can be reproduced.

4.1 Experimental setup

In order to reproduce the results in the following analysis, one can use the binaries
in Table 2, with the corresponding list of parameters found in Table 3.

There are seven binaries in total, and they are all included in the accompanying
GitHub repository. The binaries span three different programs: cURL, OpenVPN,
and Chipquarium.

Four architectures are used in the analysis. The MIPS and Aarch64 architectures
conform to a fixed-length instruction format, while the x86 64 architecture uses a
variable-length instruction format. The Chipquarium binary, used in the call graph
analysis, is compiled for the Chip8 architecture and is also the binary used during
the development and testing of the program.

During the analysis it was found that the cURL MIPS binary had almost no occur-
rence of immediate call instructions, hence a new version of cURL MIPS was cross-
compiled and included for reference. The binary was compiled with the -no-pie ,
-fno-pie , and -mplt compiler flags, causing more frequent use of immediate call
instructions.

Table 2: Binaries used in the analysis.

Program Architecture Source Version Used for

cURL MIPS GitHub Undisclosed Opcode detection &
OCP-Score evaluation

cURL Aarch64 cURL website 8.0.1 Opcode detection &
OCP-Score evaluation

cURL MIPS Cross-compiled
from source

8.0.1 Opcode detection

cURL x86 64 Compiled from
source

8.0.1 Opcode detection

OpenVPN MIPS GitHub Undisclosed Opcode detection &
OCP-Score evaluation

OpenVPN Aarch64 Arch repository 2.6.4-1 Opcode detection &
OCP-Score evaluation

Chipquarium Chip8 GitHub 1.0 Call graph

17

https://github.com/darkerego/mips-binaries
https://curl.se/
https://github.com/curl/curl/releases/tag/curl-8_0_1
https://github.com/curl/curl/releases/tag/curl-8_0_1
https://github.com/darkerego/mips-binaries
https://archlinuxarm.org/packages/aarch64/openvpn
https://github.com/JohnEarnest/chip8Archive/

The parameters found in Table 3 were obtained by analysing the binaries with
command-line tools such as readelf, size, and objdump, and by reading the doc-
umentation of the architectures.

A specific modification was implemented for the MIPS and Aarch64 parameters in
this process: the pcOffset and pcIncPerInstr parameters were divided by a value
of 4 compared to what their architecture specified for them. This adjustment serves
to emulate a left shift operation on the operand of the call instruction by a value of
2, as suggested by the architectural references [12][13].

As mentioned earlier, there is also a cross-compiled binary of cURL for the MIPS
architecture, this binary has the same parameters as the cURL MIPS binary, with
the exception of fileOffsetEnd which has a value of 567492 instead.

Table 3: API parameters used in the analysis.

Parameters

Binaries
cURL
MIPS

cURL
Aarch64

cURL
x86 64

OpenVPN

MIPS

OpenVPN

Aarch64

Chipquarium
Chip8

instructionLength 32 32 32 32 32 16

retOpcodeLength 32 32 8 32 32 16

callOpcodeLength 6 6 8 6 6 4

fileOffset 0 4096 0 0 68416 0

fileOffsetEnd 94560 2163136 501176 1782196 753456 1072

pcOffset 0x100000 ANY 0x100000 0x100000 ANY 0x200

pcIncPerInstr 1 1 1 1 1 2

endiannes ”big” ”little” ”little ”big” ”little” ”big”

nrCandidates 5 5 5 5 5 5

callCandidateRange 0, 20 0, 20 0, 20 0, 20 0, 20 0, 20

retCandidateRange 0, 10 0, 10 0, 10 0, 10 0, 10 0, 10

returnToFunction-
PrologueDistance

3 3 3 3 3 3

unknownCodeEntry False False False False False False

includeInstructions False False False False False False

isRelativeAddressing False True False False True False

18

4.2 Return and call opcode detection

Tables 4, 5, 6, and 7 present the top five probable candidates for call and return op-
codes for the OpenVPNMIPS, OpenVPN Aarch64, cURLMIPS, and cURL Aarch64
binaries, respectively. The correctly identified opcodes emerge as most probable with
a substantial margin in Tables 4 and 7, whereas the remaining two tables reveal con-
trasting outcomes.

Upon examining the binary in Table 5, it is observed that the call instruction appears
approximately 1600 times. However, roughly 1200 of these instances are deemed
invalid as they lack a preceding return instruction above the called function. The
NOP instruction (0xD503201F) frequently precedes function prologues in this binary,
which accounts for its higher OCP-Score as a potential return opcode.

The results also differ for the binary featured in Table 6. In this case, the call
instruction and return instruction are encountered about 40 and 200 times, respect-
ively. The return instruction does not rank within the top 20 instructions, and as a
result, it falls outside the predefined search range defined by the retCandidateR-
ange parameter. Despite this, the opcode associated with the branch instruction,
0x08, is assigned a OCP-Score of roughly 0.4.

Table 4: Top 5 most probable return and call opcodes from the Open-
VPN binary with MIPS architecture.

OCP-Score Call opcode Return opcode Correct

0.866 0x0C000000 0x03E00008

0.449 0x08000000 0x0320F809

0.412 0x08000000 0x8FBC0018

0.388 0x08000000 0xAFA20010

0.373 0x08000000 0x00001021

19

Table 5: Top 5 most probable return and call opcodes from the Open-
VPN binary with Aarch64 architecture.

OCP-Score Call opcode Return opcode Correct

0.612 0x94000000 0xD503201F

0.478 0x94000000 0xD65F03C0

0.426 0x94000000 0xD63F0060

0.398 0x14000000 0xD63F0060

0.396 0x14000000 0x72001C1F

Table 6: Top 5 most probable return and call opcodes from the cURL
binary with MIPS architecture.

OCP-Score Call opcode Return opcode Correct

0.389 0x08000000 0x8FBC0010

0.376 0x08000000 0x8FBC0020

0.368 0x0C000000 0x8FBC0010

0.365 0x08000000 0x8FBC0018

0.357 0x08000000 0x0320F809

Table 7: Top 5 most probable return and call opcodes from the cURL
binary with Aarch64 architecture.

OCP-Score Call opcode Return opcode Correct

0.698 0x94000000 0xD65F03C0

0.367 0x94000000 0xA94153F3

0.353 0x14000000 0xD65F03C0

0.346 0x94000000 0x52800020

0.334 0x94000000 0xAA1303E0

20

As mentioned earlier, an additional binary for cURL MIPS was cross-compiled with
additional compiler flags enabled, to ensure an appropriate frequency of immediate
call instructions. The results for this binary, along with the x86 64 binary, which
uses a variable-length instruction format, can be seen in Tables 8 and 9, respectively.

Table 8: Top 5 most probable return and call opcodes from the cross-
compiled cURL binary with MIPS architecture.

OCP-Score Call opcode Return opcode Correct

0.598 0x0C000000 0x03E00008

0.378 0x0C000000 0x00001025

0.345 0x0C000000 0x00002825

0.342 0x0C000000 0x24020001

0.340 0x0C000000 0x02002025

Table 9: Top 5 most probable return and call opcodes from the cURL
binary with x86 64 architecture.

OCP-Score Call opcode Return opcode Correct

0.001 0xF00000000 0x4800000000

0.001 0xF00000000 0x8B00000000

0.001 0xF00000000 0xFF00000000

0.001 0xF00000000 0x2400000000

0.001 0xF00000000 0x8900000000

21

4.3 OCP-Score as a metric

Figure 12 displays the maximum OCP-Score corresponding to various values of the
instruction length variable. The MIPS binaries exhibit a low OCP-Score for all
values except the correct one. In contrast, the Aarch64 architecture binaries display
greater variability, with higher OCP-Score for incorrect values.

This discrepancy may arise due to the differing addressing modes employed in the call
instructions. In the MIPS architecture with absolute addressing, a valid call operand
must point towards an address located between the first and the address of the last
instruction, for instance, within the range of 0x400160 and 0x5B3290in the case of
the OpenVPN MIPS binary. Conversely, a relative call instruction may involve lower
values, which are arguably more common in noisy data. For example, an operand
value of 4 would point toward the instruction preceding the call instruction itself.

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 12: OCP-Score for different inputs of the instructionLength para-
meter, shown for the cURL and OpenVPN binaries in the MIPS and
Aarch64 architectures.

22

Figure 13 displays the maximum OCP-Score corresponding to various values of call
opcode length. The data suggests that multiple values close to the correct value give
a high OCP-Score. The explanation for this is presented in Section 5.

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 13: OCP-Score for different inputs of the callOpcodeLength para-
meter, shown for the cURL and OpenVPN binaries in the MIPS and
Aarch64 architectures.

23

Figure 14 displays the maximum OCP-Score corresponding to various values of
return opcode length. Looking at the data it seems that the change in value is
not notably significant between different values. In general, when decreasing the
return opcode length, we either see an increase in OCP-Score due to the set of
instructions considered to be a return instruction increasing, or a decrease due to
another incorrect but more frequent set pushing it out of the return search range.

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 14: OCP-Score for different inputs of the retOpcodeLength para-
meter, shown for the cURL and OpenVPN binaries in the MIPS and
Aarch64 architectures.

24

Figure 15 displays the maximum OCP-Score corresponding to various values of
PC offset. It is important to clarify that these values do not affect the particular
instructions read from the binary file, but rather assign a specific address to each
instruction. For example, with a PC offset value of 0x1000, the first instruction
would be given an address of 0x1000. From the results, it is evident that the PC
offset value has no impact on relative addressing, which aligns with expectations.
However, in the context of absolute addressing in MIPS, the correct value gives a
significantly higher OCP-Score.

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 15: OCP-Score for different inputs of the pcOffset parameter,
shown for the cURL and OpenVPN binaries in the MIPS and Aarch64
architectures.

25

Figure 16 displays the five highest OCP-Scores corresponding to various values of
return to function prologue distance. This value determines how far above a function
prologue one can search for a potential return instruction. From the data, we can
see that a value of 2 is necessary to correctly detect functions in MIPS, and a value
of 1 is sufficient in Aarch64. Values higher than this introduce additional noise in
the data, by amplifying the OCP-Score of incorrect opcodes.

(a) OpenVPN in MIPS architecture (b) OpenVPN in Aarch64 architecture

(c) cURL in MIPS architecture (d) cURL in Aarch64 architecture

Figure 16: OCP-Score for different inputs of the returnToFunctionPro-
logueDistance parameter, shown for the cURL and OpenVPN binaries
in the MIPS and Aarch64 architectures.

26

4.4 Call graph creation

To illustrate the call graph functionality effectively, a small program is optimal
as it allows clear visualization of the distinct function nodes and edges. In the
ensuing figures, different versions of a call graph from the Chipquarium program are
presented. Figure 17 depicts the call graph derived from inspecting the functions
and function calls in the source code. Figure 18 represents the same graph, with
the first five functions merged into one, and Figure 19 presents the call graph as
generated by the developed program. Both Figure 18 and 19 showcase identical
call graphs, albeit rendered via different graph engines. The rationale behind the
merging is due to undetected functions, and will be discussed further in Section 5.

Figure 17: Call graph of the Chipquarium binary hand-crafted from the
source code.

Figure 18: Call graph of the Chipquarium binary hand-crafted from the
source code with the first five functions merged into one.

Figure 19: Call graph of the Chipquarium binary as generated by the
program.

27

5 Discussion

Various aspects of the developed program were explored in the preceding analysis,
including the viability of the OCP-Score, the accuracy of the opcode detection, and
the correctness of the created call graph. In this section, we will discuss these results,
seek to answer the research questions and shed light on potential assumptions and
limitations.

Starting with the analysis of opcode detection, we can observe that given the binary
file has certain properties, such as fixed length instruction format and a significant
quantity of return and absolute or relative call instructions, one can effectively dis-
tinguish the return and call opcodes from the rest of the instructions. Conversely, a
lack of absolute or relative call instructions or a non-fixed length instruction format
causes the result to be inconclusive. Therefore, in response to RQ1: it is feasible
– given certain properties and parameters – to identify the correct call and return
instruction. If the results from the analysed binary are inconclusive, this may also
provide valuable insight to the reverse engineer: either the provided parameters are
incorrect, or the properties of the binary are not what the program expects, which
can guide subsequent analysis.

An interesting observation from the Aarch64 OpenVPN binary in Table 5, was the
low frequency of return instruction. However, the program contained a dispro-
portionately high amount of NOP instructions, often found in function epilogues.
These instructions have the unique property that they often occur successively, usu-
ally more than 3 times. This pattern should make them detectable, and a further
improvement to the program could discard them as candidates for call and return
instructions, which could further reduce noise.

In order to address RQ2, a thorough analysis of the OCP-Score was conducted to
determine the effectiveness and limitations of the approach. This analysis iterated
over one of the parameters, examining its sensitivity to noise and its impact on
the output. Figure 12 presented how the highest OCP-Score differed with differ-
ent values for the instruction length parameter. This parameter is unique in that
changing its values changes how instructions are extracted, and each value gives a
unique output. All values but the correct one generates a list of instructions that is
essentially a pseudo-random combination of bits. Out of the 68 total iterations, the
OCP-Score was dominant in the four cases where the correct value was chosen for
the parameter. This result strengthens the viability and usability of the OCP-Score,
indicating that it remains robust against random data.

When iterating over different call opcode lengths, we observe that multiple values
resulted in a high OCP-Score. This can be attributed to the fact that the most
significant bits of the operand rarely hold information. For instance, for absolute
calls and positive relative calls, the most significant bits are usually 0, while for
negative relative calls, the value is 1, due to it being a signed integer. An interesting
consequence of this is that increasing the call opcode length to a value such as 8 would
split the positive and negative relative call instructions into two distinct opcodes,
where one of them could have a higher OCP-Score than the correct call opcode with

28

a length of 6. This is where the use of the program combined with manual inspection
would prove useful. An experienced reverse engineer could inspect the instructions
and figure out that the value of the operand is a signed integer, and identify the
correct call opcode length.

Other parameters such as returnToFunctionPrologueDistance seen in figure
16, callCandidateRange and retCandidateRange require a minimal value to
correctly identify the call and return opcodes, but increasing it further would only
increase the noise in the resulting output. As an example of this, setting the re-
turnToFunctionPrologueDistance parameter to a significantly high value would
give the branch instruction as high of a OCP-Score as the call instruction, since the
likelihood of there being a return instruction in any of the eg. 1000 instructions
preceding the branch target is very high. Increasing the range of the other two
parameters also increases the likelihood of noise in the data, due to increased search
space.

The rationale for developing the OCP-Score was twofold: to have an ordering of the
result and only output the most probable candidates, as well as having a value that
can be quickly glanced at by a user. Nonetheless, it is important to be aware of the
limitations of the value, and use it in conjunction with a manual inspection of the
binary, the outputted call graph, and other analyses, for a better and more complete
understanding. For instance, an arbitrary instruction that only occurs a few times,
where the presumed operand would target an instruction with a return statement
preceding it, would output a very high OCP-Score. However, an experienced user
would notice that due to the infrequency of the instruction, it is either not likely to be
a call instruction, or at the very least the lack of data points renders it inconclusive.

The final analysis examined the call graphs generated from the Chipquarium binary.
The analysis revealed that the generated call graph was identical to the hand-crafted
call graph, provided that the first 5 functions were merged into a single function.
This illustrates the main limitation the program has with generating call graphs: if
a function never gets called, the program will not identify it as a function. There
are potential ways to remedy this, as most architectures have a distinct function
prologue, often involving stack operations. Assuming the program has accurately
identified most of the function prologues, the remaining functions could potentially
be identified using techniques such as machine learning.

The analysis demonstrated the viability of the developed program, ranging over
multiple architectures and binaries. The program can serve as a useful tool to help
users in the process of reverse engineering binaries from unknown instruction set
architectures, and fills a much-needed gap in the current research. Despite the
effectiveness of the program, it is important to be aware of its limitations and to use
it in combination with manual inspection and other techniques, for the best overall
results.

29

6 Conclusion

The primary objective of this research project was the development and evaluation of
the framework - consisting of the program, the frontend, and accompanying formulas
and theory - aimed at assisting in the reverse engineering of binaries from unknown
instruction set architectures. The analysis of the program was thorough, focusing
on the key functionalities, including opcode detection and the OCP-Score. The
results and discussion revealed promising capabilities of the program, validating its
functionality, despite certain limitations.

The main contribution of this report is the developed program, which has shown
a high degree of effectiveness when the binary files align with particular properties
such as a fixed-length instruction format and the presence of return and absolute or
relative call instructions. The accuracy of opcode detection and the robustness of
the OCP-Score in dealing with noisy data were notable outcomes of this study.

However, several limitations were also found and discussed, most notably binary
file properties that did not align with the program’s expectations, as was seen with
the x86 64 architecture. Furthermore, it was discussed that an integrated approach,
incorporating both automatic processing and manual inspection, is both beneficial
and necessary for an optimal result.

Regarding future work, several areas have been identified. Firstly, a method could
be developed to detect specific instructions, such as the NOP instructions, which
could further reduce noise in the output of the program. Secondly, a rewrite to a
more efficient programming language such as Rust or C++ could be beneficial when
analysing files of greater size. Another addition that would benefit users would
be the option of using a CLI interface rather than the developed API interface.
Additionally, it was found that branch instructions were often detected as the second
most probable call opcode, and potential enhancement to the program could detect
and include information on such branch instructions. The development of a method
to identify uncalled functions by searching for distinct prologues and epilogues could
enhance the capabilities of the program significantly. Lastly, providing sane defaults
and optional parameters for the API, requiring only a subset of the currently required
parameters, would greatly improve the usability of the program.

In conclusion, the developed framework has been proven to be a useful tool in reverse
engineering binaries from unknown instruction set architectures. While there is room
for improvement, the framework addresses a significant gap in the toolset available
for such tasks. As research in this field continues, it is expected that more tools
focusing on unknown instruction set architectures will be developed.

30

7 References

[1] M. Fyrbiak, S. Strauss, C. Kison, S. Wallat, M. Elson, N. Rummel, and C. Paar,
“Hardware reverse engineering: Overview and open challenges,” 2017 IEEE 2nd
International Verification and Security Workshop (IVSW), 2017.

[2] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek, “An ob-
servational investigation of reverse engineers’ process and mental models,” Ex-
tended Abstracts of the 2019 CHI Conference on Human Factors in Computing
Systems, 2019.

[3] H. Pettersen, “Towards discovery of program control flow in binary programs
from unknown instruction set architectures,” 2022.

[4] The architecture of Open source applications: Elegance, evolution, and
a few fearless hacks, vol. 1. Brown & Wilson, 2011. File:
RetargetableCompiler.png.

[5] K. P. Singh and S. Parmar, “Design of high performance MIPS cryptography
processor based on T-DES algorithm,” CoRR, vol. abs/1503.03166, 2015. File:
MIPS-instruction-Type.png.

[6] W. Commons, “Executable and linkable format.” https://en.wikipedia.org/wiki/
Executable and Linkable Format. File: ELF-layout--en.svg.

[7] J. Clemens, “Automatic classification of object code using machine learning,”
Digital Investigation, vol. 14, pp. S156–S162, 2015.

[8] S. Kairajärvi, A. Costin, and T. Hämäläinen, “Isadetect: Usable automated de-
tection of cpu architecture and endianness for executable binary files and object
code,” in Proceedings of the Tenth ACM Conference on Data and Application
Security and Privacy, pp. 376–380, 2020.

[9] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineering of
malware emulators,” in 2009 30th IEEE Symposium on Security and Privacy,
pp. 94–109, IEEE, 2009.

[10] A. Chernov and K. Troshina, “Reverse engineering of binary programs for cus-
tom virtual machines,” in ReCon 2012, 2012.

[11] K. Beck, Extreme programming explained : embrace change. Boston, Mass.:
Addison-Wesley, 2004.

[12] “Arm a-profile a64 instruction set architecture.” https://developer.arm.com/
documentation/ddi0602/2023-03/Base-Instructions/BL--Branch-with-Link-?
lang=en.

[13] “Mips reference sheet.” https://uweb.engr.arizona.edu/∼ece369/Resources/spim/
MIPSReference.pdf.

31

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/BL--Branch-with-Link-?lang=en
https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/BL--Branch-with-Link-?lang=en
https://developer.arm.com/documentation/ddi0602/2023-03/Base-Instructions/BL--Branch-with-Link-?lang=en
https://uweb.engr.arizona.edu/~ece369/Resources/spim/MIPSReference.pdf
https://uweb.engr.arizona.edu/~ece369/Resources/spim/MIPSReference.pdf

	Sammendrag
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Domain knowledge on reverse engineering
	Related work

	Methodology
	Proposed solution
	Analysis strategy and data generation

	Results
	Experimental setup
	Return and call opcode detection
	OCP-Score as a metric
	Call graph creation

	Discussion
	Conclusion
	References

