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Abstract: In this study, we propose a semiparametric, parsimonious value-at-risk forecasting model,
based on quantile regression and machine learning methods, combined with readily available market
prices of option contracts from the over-the-counter foreign exchange rate interbank market. We aim
at improving existing methods for VaR prediction of currency investments using machine learning.
We employ two different methods, i.e., ensemble methods and neural networks. Explanatory variables
are implied volatilities with plausible economic interpretation. The forward-looking nature of the
model, achieved by the application of implied volatilities as risk factors, ensures that new information
is rapidly reflected in value-at-risk estimates. To the best of our knowledge, this study is the first to
utilize information in the volatility surface, combined with machine learning and quantile regression,
for VaR prediction of currency investments. The proposed ensemble models achieve good estimates
across all quantiles. The light gradient boosting machine model and the categorical boosting model
both yield estimates which are better than, or equal to, those of the benchmark model. In general,
neural network models are quite unstable.

Keywords: value-at-risk; over-the-counter foreign exchange (OTC FX) options; quantile regression;
machine learning (ML)

1. Introduction

The ability to model value-at-risk (VaR) with high accuracy is an important tool for
quantifying risk in financial markets (Schaumburg 2012). VaR is an estimate of the loss that
will be exceeded with a small probability during a fixed holding period. It measures the
worst attainable expected loss over a given time horizon at a given confidence level. The
(parametric) VaR measure typically relies on the assumption that the associated portfolio (or
investment position) is normally distributed, implicitly assuming normal market conditions.
The normal assumption has been criticized in the literature, but does not need to be “too”
wrong when portfolios are well diversified. Another limitation with VaR is that if it is used
as the objective in an optimization problem, the problem becomes nonconvex, and one
must use complicated numerical methods to find VaR efficient portfolios.

In addition to occupying a prominent role in regulatory frameworks, VaR will continue
to be important for financial institutions as a measure of market risk. For instance, VaR
could be used by banks to compute the amount of assets needed to cover losses.

VaR has been criticized for not explicitly considering tail risk. The expected shortfall
(ES) is a risk measure closely related to VaR and is often labeled conditional VaR or tail risk.
The VaR metric assigns a 100% weighting to the Qth quantile and zero to other quantiles.
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The expected shortfall, however, gives equal weight to all quantiles greater than the Qth
quantile and zero weight to all quantiles below the Qth quantile. In certain situations, the
ES gives traders in financial markets better incentives to control risk than those of the VaR
measure. However, we have elected to employ the VaR measure since, typically, traders
are constrained from constructing portfolios with excessive tail risk by detailed mandates
of which the VaR metric is but one important component. Some useful studies that have
employed both VaR and the ES are: Chaiboonsri and Wannapan (2021) and Yamai and
Yoshiba (2005).

This study utilizes market prices for option contracts on the EURUSD exchange rate
quoted in the over-the-counter (OTC) foreign exchange (FX) interbank market. The models
we employ use implied volatility metrics, i.e., ATM implied volatilities and risk reversals,
to forecast VaR. ATM implied volatility is the risk-neutral expectation of spot rate volatility
over the remaining life of the option. Risk reversal reflects the difference in the demand
for out-of-the money options at high strikes compared to low strikes. Thus, it can be
interpreted as a market-based measure of skewness, the most likely direction of the spot
movement over the expiry period.

This study extends the work of de Lange et al. (2022). As noted by the authors,
machine learning models might further improve their predictions as such models can
handle nonlinearities among explanatory variables. The contribution of this study is
employing different machine learning models and techniques to improve VaR predictions
of currency investments compared to the benchmark quantile regression implied moments
(QR-IM) model. From our literature study on machine learning methods presented in
Section 2 below, we discovered that neural networks and ensemble methods have both been
successfully used for VaR predictions. Therefore, we elected to employ neural networks
and ensemble methods for our VaR predictions. For this purpose, recurrent neural network
(RNN) and long short-term memory neural network (LSTM) stand out among the neural
network models; both these models appear to yield more accurate forecasting results for
time series data compared to the feedforward networks, which, however, are still widely
used. Amidst the ensemble methods, the random forest model is the most frequently used.
Gradient boosting methods have also been used, but less commonly. Ensemble methods
and neural networks are considered to be state-of-the-art models in the machine learning
community today. We test gradient boosting methods as well as random forest alongside
recurrent neural networks, long short-term memory neural networks, and feedforward
networks. The various models are created using different model architectures as well as
hyperparameter tuning and model stacking for the ensemble models.

We examine several options for tuning and improving the two concepts of ensemble
methods and neural networks. In addition, the training and validation datasets are con-
structed using the QR-IM, XGBoost, and LGBM models. The QR-IM model was proposed
by de Lange et al. (2022) for forecasting value-at-risk in currency markets. All models are
trained with the same data and validated on the same out-of-sample period.

To the best of our knowledge, this study is the first to utilize information in the
volatility surface, more precisely at-the-money volatility and risk reversals as proxies for
higher order moments, combined with machine learning and quantile regression to provide
accurate VaR estimates.

Our main findings are:

1. The LightGBM model and the categorical boost model yield more accurate VaR
estimates than the benchmark QR-IM model.

2. The ensemble models achieve good estimates across all quantiles.
3. The neural network models are, in general, quite unstable and could benefit from

more training data and perhaps a better model architecture.
4. Model stacking and hyperparameter tuning overall improved the model predictions.

The remainder of this paper is organized as follows: Section 2 provides an overview
of the literature, Section 3 presents the data, Section 4 describes the methodology, Section 5
presents and discusses the results, and Section 6 states the conclusions.
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2. Literature Review

Quantile regression methods are often applied to value-at-risk forecasting. Engle and
Manganelli (2004) proposed the CAViaR method. This model could directly estimate quan-
tiles instead of modeling the whole distribution. Taylor (2008) proposed the exponentially
weighted quantile regression (EWQR) model for estimating value-at-risk. He found that
this model outperformed both the GARCH-based methods and the CAViaR models. Chen
and Chen (2002) found that calculating VaR at the Nikkei 225 index using quantile regres-
sion outperformed the conventional variance-covariance approach. In addition, Shim et al.
(2012) employed semiparametric support vector quantile regression (SSVQR) models to
estimate VaR on return data on the S&P 500, NIKEI 225, and KOSPI 200 indices. They found
that their models outperformed variance-covariance and linear quantile regression models.

A few studies have applied quantile regression in the context of forecasting volatility
or VaR of foreign exchange rates. Taylor (1999) found that a quantile regression approach
provided a better fit to multi-period data when forecasting volatility compared to variations
of the GARCH(1,1) model. Huang et al. (2011) used quantile regression to forecast foreign
exchange rate volatility. Jeon and Taylor (2013) included implied volatility as an additional
regressor in CAViaR models and obtained increased precision of FX VaR estimates.

Effective explanatory variables are essential to make accurate forecasts of value-at-
risk for currency crosses. Chang et al. (2013) provided an outline of different forecasting
objectives using options data, including option-implied individual moments. Barone-Adesi
et al. (2019) and Huggenberger et al. (2018) showed how to use options data to compute
forward looking VaR and conditional VaR measures. The information content of option
combinations, such as risk reversal, was studied in the context or arbitrage-free option
pricing and hedging in studies by Bossens et al. (2010) and Sarma et al. (2003). de Lange
et al. (2022) forecasted value-at-risk in foreign exchange markets using OTC at-the-money
option contracts from the foreign exchange interbank market to model volatility, and
risk reversals as a proxy for higher order moments. Their QR-IM model outperformed
benchmark models such as GARCH and CAViaR-SAV for VaR forecasts.

Several previous studies have confirmed the forecasting ability of a plain vanilla
feedforward neural network over traditional statistical models. However, standard neural
networks have limitations. Most notably, these models rely on the assumption of indepen-
dent data observations, which presents a problem when data points are related through
time. In order to overcome this problem, Bijelic and Ouijjane (2019) used a gated recurrent
unit type of neural network to produce one-step-ahead volatility forecasts of the EURUSD
exchange rate. Their model was outperformed by a GARCH (1,1) model for the VaR 95%.
Xu et al. (2016a) recognized that multi-period VaR was a complex nonlinear function of the
holding period and the one-step ahead volatility forecast. They employed support vector
exponentially weighted quantile regression (SVEWQR), which incorporated the SVQR
model as a special case, by considering an exponentially weighted quantile regression via
SVM to estimate multi-period VaR. They discovered that their model outperformed several
traditional methods including the volatility models, filtered historical simulation, and
linear quantile regression, on three stock indices. Further, Heryadi et al. (2021) modeled
value-at-risk of foreign exchange rates using tree models, support vector machines, and
ensemble models. Another study which applied neural networks for predicting foreign
exchange rates was by He et al. (2018).

Neural networks have been used in a vast variety of studies that aimed to model
value-at-risk. Petneházi (2021) used convolutional neural networks to forecast value-at-risk.
By modifying the algorithm slightly, the convolutional networks could estimate arbitrary
quantiles of the distribution, not only the mean, thus allowing the network to be applied to
VaR forecasting. Pradeepkumar and Ravi (2017) forecasted financial time series volatility
using a developed particle swarm optimization trained quantile regression neural network,
named SPOQRNN. They compared their model to three traditional forecasting models
including GARCH, multilayer perceptron, general regression neural network, and random
forest, and found that the SPOQRNN outperformed the other models.
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A few authors have used artificial neural networks (ANNs) for forecasting value-at-
risk. Taylor (1999) applied a quantile regression neural network approach to estimate the
conditional density of multi-period returns. The model was compared to GARCH-based
quantile estimates on daily exchange rates. Xu et al. (2016b) developed a new quantile
autoregression neural network (QARNN) model based on an artificial neural network
architecture. By optimizing an approximate error function and standard gradient-based
optimization algorithms, the QARNN output conditional quantile functions recursively.
This allowed the QARNN to explore nonlinearity in a financial time series. Yen et al. (2009)
used ANN to forecast VaR on a stock index. The authors stated that the model benefited
from adding more exogenous parameters in the estimation process, such as interest rates.

Yan et al. (2015) used long short-term memory neural networks in a quantile regression
framework to learn the tail behavior of financial asset returns. Their model captured
both the time-varying characteristic and the asymmetrical heavy-tail property of financial
time series. The authors combined the sequential neural network with a self-constructed
parametric quantile function to represent the conditional distribution of asset returns.
Kakade et al. (2022) proposed a hybrid model that combined LSTM and a bidirectional
LSTM with GARCH to forecast volatility. The model was evaluated on periods with
extreme volatility, i.e., the 2007–2009 global financial crisis and the covid recession of 2020–
2021. The proposed model provided significant improvement in the quality and accuracy
of VaR forecasts compared to benchmark GARCH models.

Ensemble methods have been used by a number of studies for estimating VaR. An-
dreani et al. (2022) introduced the use of mixed-frequency variables in a quantile regression
framework by merging the quantile regression forest algorithm and a mixed-data-sampling
model. The empirical application of the model delivered adequate VaR forecasts, and, in
terms of quantile loss, it outperformed popular existing models used for VaR forecasting,
such as the GARCH model. Jiang et al. (2017) proposed a hybrid semiparametric quantile
regression random forest approach to evaluate value-at-risk. The model was used to explain
the nonlinear relationship in multi-period VaR measurement. Görgen et al. (2022) used a
generalized random forest (GRF) for predicting value-at-risk for cryptocurrencies. They
found that random forest outperformed quantile regression methods, including GARCH-
type and CAViaR models, when tailored to conditional quantiles. The authors stated that
the adaptive nonlinear form of GRF appeared to capture time variations of volatility and
spike behavior in cryptocurrency return especially well, in contrast to more conventional
financial econometric methods. Gradient boosting methods were tested by Cai et al. (2020)
for modeling VaR. They found the method to be effective at capturing risk.

3. Data

We applied our ensemble and neural network models to empirical data for the EU-
RUSD spot exchange rate, taking implied volatility quotes as input data, and examined
the models’ predictive properties. Daily exchange rates and implied volatility quotes were
sourced from Bloomberg and covered the period from January 2009 to December 2020.

3.1. Spot-Rate Returns

The daily returns are calculated as rt = ln
(

St
St−1

)
, where St is the spot exchange rate at

time t. In our case, this is the daily return of a dollar measured in euros. Table 1 displays
descriptive statistics for daily log-returns from January 2009 to December 2020 and Figure 1
plots the time series correspondingly. The return series exhibit the stylized facts that have
been widely documented in the financial economics literature, with unconditional means
close to zero, clustering of volatility, and fat-tailed return distributions.
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Table 1. Descriptive statistics for daily EURUSD log-returns. Time period, January 2009–September
2020 (source, Bloomberg).

n 2930

Mean −0.0001
Std. dev 0.0053

Skewness 0.0330
Kurtosis 4.7508

Min −0.0229
Max 0.0295
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3.2. Examining the Data

Figure 2 displays time series for at-the-money (ATM) volatilities and 25-delta risk
reversals (RRs) for European EURUSD options with one week to expiry and reveals the
stochastic nature of the volatility surface. ATM volatility levels spiked around important
economic events, such as the Brexit vote in June 2016 and the COVID-19 outbreak in March
2020. Figure 2c shows that the sign of the RR has changed over time and taken both positive
and negative values, which in itself is an interesting observation. If the risk reversal reflects
the relative probability of depreciation and appreciation of a currency, time-varying sign
and the magnitude of the risk reversal can be interpreted as an indication of time varying
probability of tail events. Figure 2b,d display empirical distributions, which are skewed
and leptokurtic for both variables. ATM volatility is naturally bounded below by zero, but
spikes during periods of market turmoil which causes a heavy right tail. The risk reversal
displays a highly non-normal, heavy-tailed empirical distribution.
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3.3. Testing the Dataset

In order to test the data for stationarity, we performed an augmented Dickey–Fuller
unit root test and concluded that our data were stationary. Further, to rule out multi-
collinearity, we ran a variance inflation factor (VIF) test. No sign of multicollinearity was
discovered. We also tested our data for heteroskedasticity using the Breusch–Pagan test
and serial correlation between the explanatory variables using a Breusch–Godfrey test. The
Breusch–Pagan test indicated some sign of heteroskedasticity, whereas no sign of serial
correlation was found.

4. Methods

In this section, we provide a brief outline of the models we have used to produce our
VaR forecast. We demonstrate how the dataset is generated, as well as briefly and generically
explain the QR-IM model, ensemble methods, and neural networks. We also provide a
short note on prepossessing of data and the implementation of models. A subsection is
devoted to the specific ensemble models and neural networks that we implemented on
our data.

4.1. Generating the Training Data

In order to examine the different machine learning methods, we needed to create a
proper dataset containing the required quantiles. In this study, we used two methods to
create the training dataset. First, we employed the methods proposed by de Lange et al.
(2022) using the QR-IM model. Our second approach was to use gradient boosting to
generate quantiles based on the generated predictions. This was achieved by using the
light gradient boosting machine model and the gradient boosting model; both models have
built-in options for quantile regression. The QR-IM is explained below.

The purpose of this study is to investigate the ability of a set of machine learning
models to provide accurate VaR estimates out-of-sample. This requires a training dataset
from which the ML models can learn the relationship between the conditional return
distribution for the Yq variables and the explanatory variables, the latter being at-the-
money volatility and the risk reversal in this study. We applied two different approaches to
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generate the conditional return distribution. First, we employed the methods proposed by
de Lange et al. (2022). Here, we used the QR-IM model to estimate the return quantiles,
conditional on at-the-money volatility and risk reversal values in the training sample.
This ensured that the ML methods were trained on a basis directly comparable to the
linear QR-IM model. By virtue of this particular approach, we ensured that any relative
performance advantage of the ML methods was due to their ability to capture nonlinearities.
We refer to this as the QR-IM generated dataset. It is fully conceivable that the optimized
ML models contain nonlinear weights and biases for a given minimum MSE, the latter
depicted by the linear training set. Indeed, judging from our out-of-sample results, this
is a likely explanation for the ML models outperforming the linear QR-IM benchmark
model. In addition, there are well known potential problems with linear quantile regression
models. One problem is the quantile crossing problem, which implies a non-monotonically
increasing cumulative density function. Another problem is that of sensitivity to outliers,
which leads to higher variance of estimators and is of particular relevance when estimating
conditional return quantiles out-of-sample, as we did in this study. Compared to the linear
quantile regression model, the more flexible ML models might very well be more robust
with regards to these well-known model risks, if they are present in the training set to
any extent.

Second, we relied on gradient boosting; referred to as the gradient boost and LGBM
datasets, respectively. The rational for the second method of generating data, i.e., through
gradient boosting, is mostly practical, i.e., the light gradient boosting machine model and
the gradient boosting model both have built-in options for quantile regression, which make
them well suited for generating conditional return distributions.

The Quantile Regression Implied Moments Model

The quantile regression implied moments (QR-IM) model was proposed by de Lange
et al. (2022). We employed this model for generating the benchmark in sample quantiles
for our currency data. The model is based on the hypothesis that the volatility surface
of OTC FX options contains information that can be utilized to improve the accuracy of
VaR estimates. Similar to de Lange et al. (2022), we studied data for at-the-money (ATM)
options and risk reversals (RR).

At-the-money options are struck at the FX forward rate. ATM options have an initial
delta of 50%. The ATM implied volatility is the risk-neutral expectation of spot rate volatility
over the remaining life of the option.

Risk reversals involve the simultaneous sale of a put option and purchase of a call
option. The two options are struck at the same delta. At the outset, a 25% delta risk reversal
will have a combined delta of 50% and very little sensitivity to gamma and vega because
of the offsetting effect of the long and short position. Risk reversals are usually quoted
as the difference in implied volatility of similar call and put options with the equal delta.
The risk reversal reflects the difference in the demand for out-of-the money options at high
strikes compared to low strikes. Thus, it can be interpreted as a market-based measure of
skewness, the most likely direction of the spot movement over the expiry period.

In the general case, the simple linear quantile regression model is given by:

Yq = α + βX + εq (1)

where Yq is the qth quantile of the random variable Y, X are regressors, and the distribution
of εq is left unspecified. The expression for the conditional q quantile, 0 < q < 1, is defined
as any solution to the minimization problem:

min
α, β

T

∑
t=1

(
q− IYt≤α+βXt

)
(Yt − (α + βXt)) (2)
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where t denotes time, and

IYt≤α+βXt
=

{
1 i f Yt ≤ α + βXt
0 otherwise

. (3)

In the QR-IM model, the conditional quantile function can be expressed as:

̂VaRq,t+1 = α̂q + β̂ATM
q ATMt + β̂RRRt + εq,t (4)

A vector of regression parameters
[

α̂q, β̂ATM
q , β̂R

]
can be obtained for each quantile

of interest, and the whole return distribution can be found, given observed values for the
at-the-money volatility (ATM) and the risk reversal (RR).

4.2. Value-at-Risk

VaR is a statistical risk measure of potential losses and summarizes, in a single num-
ber, the worst loss over a target horizon that will not be exceeded with a given level of
confidence. Formally, the VaR at a level α of the profit and loss distribution X is defined as:

VaRα = min{m : P(L ≤ m) ≥ 1− α} (5)

The most common methods for calculating VaR are usually divided into parametric,
semiparametric, and nonparametric approaches.

4.3. Ensemble Learning

In this study, we employed the following two base methods for estimating VaR:
ensemble learning and neural networks. Ensemble learning is the process of using multiple
models, often called weak learners, trained over the same data and combined to obtain
better results. Weak learners, or base models, are models that, on average, perform slightly
better than random chance. This is either because they have a high bias or because they
have too much variance to be robust. The idea of ensemble methods is to attempt reducing
bias and/or variance of such weak learners by combining several of them to create a strong
learner that achieves better performance.

Low bias and low variance are two of the most desirable features of a model. There is
also a trade-off between degrees of freedom and the variance of a model. Introducing too
many degrees of freedom can cause high variance (bias–variance trade off).

When combining weak learners, we need to assure that our choice of weak learners is
consistent with the way we aggregate the models. If we choose base models with low bias
but high variance, we should employ an aggregating method that tends to reduce variance
and vice versa. In general, there are three major types of algorithms that aim at combining
weak learners: bagging, boosting, and stacking.

Bagging learns homogeneous weak learners independently and combines them fol-
lowing some type of deterministic averaging process. Boosting, which also often considers
homogeneous weak learners, learns them sequentially and combines them following a
deterministic strategy. Stacking learns weak learners in parallel and combines them by
training a meta-model which outputs a prediction based on the different weak model pre-
dictions. In general, both boosting and stacking mainly try to produce strong models with
less bias than their components, whereas bagging mainly focuses on getting an ensemble
model with less variance than its components.

4.4. Deep Learning

Deep learning refers to machine learning methods using deep neural networks to
approximate some unknown function based only on inputs and expected outputs. Below,
we briefly explain the concepts of artificial neural networks including some activation
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functions relevant to this study. Furthermore, the learning process of the neural network is
explained along with optimizers and the concept of batch and epoch.

4.4.1. Artificial Neural Network (ANN)

ANNs, hereafter referred to as neural networks (NNs), recognize underlying relation-
ships in a dataset through a process that mimics the way the human brain operates. NNs
are nonlinear functional approximators that can be tuned to approximate an unknown
function based on observations and target outputs. NNs are structured in consecutive
layers. Each layer takes an input, applies a transformation, and returns an output. The
perception, originally described by Rosenblatt (1958), acts as the inspiration for the neuron,
the foundational building piece of the layer. There is an associated weight for each element
in the input vector to the neuron. The bias of the neuron can optionally be added to the
input. Then, the neuron determines an output by adding the inputs and the weights
assigned to each input. An arbitrary positive number of neurons, each of which provides
an output, can make up a layer in an NN. Input can be a vector of size m and output can
be a vector of size n, equal to the number of neurons in the layer. Calculating the output
vector involves multiplying the input vector by the weight matrix of the layer:

y = xW + b (6)

where x is the input vector, y is the output vector, W is a m × n matrix containing the
weights for the n neurons in the layer, and b is the vector of biases.

4.4.2. Activation Functions

As mentioned in Section 4.4.1, neural networks are organized in successive layers;
each layer computes an output given an input as described in Equation (6). The output of
one layer is then subjected to a nonlinear transformation before being passed as input to
the following layer. This is referred to as an activation function. Commonly used activation
functions are:

The Logistic Function

The logistic function, also known as the sigmoid activation function, transforms the
values into the range [0, 1]:

σ(x) =
1

1 + e−x (7)

Tanh

The hyperbolic tangent function, simply referred to as tanh, is similar to the sigmoid
activation function, but instead outputs values in the range [−1, 1]:

σ(x) =
ex − e−x

ex + e−x (8)

ReLU

The rectified linear unit (ReLU) activation function outputs values in the range [0, 1].
It does this by taking the maximum of the input and zero:

σ(x) = max(0, x) (9)

All the above-mentioned activation functions are displayed in Figure 3, in blue, with
their derivatives in yellow.
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The process of adjusting the layer weights until the network satisfactorily approxi-
mates the target function is known as training the neural network. The function that the
neural network is attempting to approximate is (arbitrarily) denoted by F. An objective
function, frequently referred to as the loss function, is used to measure how closely the
network approximates F. When the neural network accurately approximates F, the loss
function has a global minimum. It calculates the distance between the output ŷ to the target
output y. One of the most commonly used loss functions, which was also employed in this
study, is the mean squared error (MSE). It is defined as:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2

4.5. Implementation

We used Keras to construct the neural network, which serves as an interface for the
TensorFlow library. TensorFlow was developed by Google and is both a free and open-
source library for machine learning. Keras offers both ordinary neural network layers,
recurrent layers, and LSTM layers, in addition to a multitude of different machine learning
methods.

4.6. The Chosen Ensemble Models

According to the literature review in Section 2, the random forest algorithm has more
frequently been employed to estimate VaR compared to the gradient boosting methods.
Therefore, in this study, for predicting VaR, we tested different gradient boosting methods
as well as the random forest.

Random Forest

The random forest model is an ensemble of many weak learners, in this case decision
trees. It can be applied to classification and regression problems. The regression procedure
using random forest starts by splitting of features, and then creates decision trees. Every
tree makes its individual decision based on the data. The average value of predictions from
all trees becomes the final prediction.

Gradient Boosting

Gradient boosting on decision trees is a form of machine learning that works by pro-
gressively training more complex models to maximize the accuracy of predictions. Gradient
boosting is particularly useful for predictive models that analyze ordered (continuous) data
and categorical data. Gradient boosting benefits from training on huge datasets. Gradient
boosting is one of the most efficient ways to build ensemble models. The combination of
gradient boosting with decision trees provides state-of-the-art results in many applications
with structured data.

Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an improved version of the gradient boosting
algorithm. This algorithm creates decision trees sequentially. Different weights are assigned
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to all the independent variables, which are then fed into the decision tree that predicts
results. The weight of wrongly predicted variables by the tree is increased and the variables
are then fed to the second decision tree. This is known as a greedy algorithm. Then, these
individual classifiers/predictors ensemble to give a strong and more precise model. This
works for regression, classification, ranking, and user-defined prediction problems.

Light Gradient Boosting Machine

Light gradient boosting machine, known as LightGBM, is a gradient lifting framework
which is based on the decision tree algorithm. It can be used in classification, regression, and
many more machine learning tasks. Compared to XGBoost it splits leaf-wise and chooses
the maximum delta value to grow, rather than level-wise. LightGBM has a significant
advantage when performing hyperparameter optimization because the different input
parameters are easily controlled.

Category Boosting

Categorical boosting, in short CatBoost, provides a way of performing classifications
and rankings of data by using a collection of decision-making mechanisms. The results gen-
erated by the learners are weighted and classified based on the strengths and weaknesses
of each learner.

4.7. Hyperparameter Architecture

Hyperparameter tuning is a little different for ensemble methods and neural networks.
Nevertheless, the general aim is to minimize the loss function and maximize accuracy while
reducing bias and overfitting. For both the ensemble methods and the neural networks,
choosing the correct architecture is not trivial. When it comes to the ensemble methods,
the chosen architecture is mostly based on the method in use, whether this is ordinary
random forest or some gradient boost technique. Choosing a method also restricts a lot of
the possible tuning. In this study, the process of hyperparameter tuning for the ensemble
methods was carried out by using software (if it existed), and trial and error. Typically, the
tuning parameters are the number of leaves, number of trees, and the learning rate.

In a neural network there are a lot of possible variations. The hyperparameters that
need to be adjusted in the neural network are the number of layers, number of nodes in
each layer, the lookback period, activation functions, learning rate, batch size, and number
of epochs. This was achieved through an iterative approach, optimizing one parameter at
a time.

Another possibility for tuning the models is the training and validation period. The
training data consists of data from 7 July 2009 to 29 December 2017. For the neural network,
there is also the training period. We split the training period 80/20 percent, into the neural
network training set and the test set, respectively. The validation set was equal for both
periods and consisted of data from 3 January 2018 to 25 September 2020. Too short a
training set can make the data prone to outliers, however it may be less overfitted. Too
long a training period makes the data prone to overfitting, and the model may be useless
for its actual task because one cannot test the model on enough data to detect anomalies in
the model.

A neural network needs many input parameters to find any patterns in the data. In
our data, there were only two parameters, which could be too few for a neural network to
work properly. Thus, a third parameter was created which was an interaction term between
the two already existing parameters.

Interaction term : x3 = ATM volatility ·25% delta Risk Reversal

4.8. The Considered Neural Networks

In this study, we employ the recurrent neural network, the long short-term memory,
and the feedforward neural network.
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Feedforward Neural Network

The feedforward neural network (FFNN) is an artificial neural network. Connections
between the nodes do not form any type of cycle. The information is passed only in one
direction through the hidden nodes to the output nodes. Feedforward neural networks
with a single hidden layer is the most widely used neural network for forecasting (Zhang
et al. 1998).

Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural networks where
connections between nodes can create a cycle, allowing output from some nodes to affect
subsequent input to the same nodes.

Long Short-Term Memory

The long short-term memory (LSTM) can consolidate information from far in the past
with that which is more recent, see Figure 4. A forget gate, an input gate, and an output
gate make up the LSTM cell. While the gates govern the information flow in and out of the
cell, the fundamental function of the LSTM cell is to recall information over time intervals.
The gates essentially decide which information is remembered and which is forgotten. The
information that the LSTM cell remembers is kept in its cell state Ct and computed based
on the input xt. The results of the previous output ht−1 is kept in the forget gate.
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4.9. Explainable AI

We introduce Shapley values to enhance comprehension of how the machine learning
models operate. Shapley (SHAP) values originate from game theory and are frequently
used for post hoc explainable modeling in machine learning models. The idea is to see the
impact each feature has on the target. For further explanation see the original paper by
Shapley (1951).

4.10. Developed Neural Network Models

For all models, a batch size of 5 was used. Each model was allowed to run for
120 epochs, but the final number varied based on whether early stopping was activated.
All models had their weights randomly initialized and used the Adam optimizer.

4.10.1. Feedforward Neural Network

The feedforward neural network (Figure 5) has three dense layers consisting of
12 nodes, and a dropout frequency of 0.2. After the three dense layers comes a sup-
press layer, with a dropout frequency of 0.2. This layer suppresses the data and makes the
predictions more stable. All layers have a ReLU activation function. The model output are
the predicted quantiles: α: [0.01, 0.025, 0.05, 0.95, 0.975, 0.99].
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4.10.2. Recurrent Neural Network

The recurrent neural network (Figure 6) has two dense layers consisting of 12 nodes
and between them a recurrent layer consisting of 8 nodes. All layers have dropout frequen-
cies of 0.2 and a ReLU activation function. The model output is the predicted quantiles: α:
[0.01, 0.025, 0.05, 0.95, 0.975, 0.99].
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4.10.3. Long Short-Term Memory Neural Network

The LSTM neural network (Figure 7) starts with a dense layer of 12 nodes, followed by
an LSTM layer with 8 nodes. Then, comes a suppress layer consisting of one node needed
to make the model more stable, followed by a LSTM layer with 8 nodes. All layers have
dropout frequencies of 0.2 and a ReLU activation function. Outputs from the model are the
predicted quantiles: α: [0.01, 0.025, 0.05, 0.95, 0.975, 0.99].
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4.11. Evaluating the Models

We let I(A) denote the indicator function, i.e., a function which returns 1 if the event
A occurs and 0 if not, represented by (11). The realized return is given by R, while the pre-
dicted return (VaR estimate) is given by R̂q. N provides the total number of predictions. We
introduce the following metrics with this notation, which are used to examine superiority
among the VaR models:

It(A) =

{
1 i f the event A occurs
0 i f A does not occur

(10)

If the VaR is specified at confidence level α, the breach level should roughly be equiva-
lent to α. The Breach ratio is given as:

Breach Ratio = 100·∑
T
t=1 I(R̂q < Rt)

T
(%) (11)

Calculating the nominal breach of the model over the total number of predictions is
one method of evaluating performance. The model with smaller Sum if breach is favored
given models with comparable breach ratios since this would suggest that the model is at
least closer to the true value of the loss. The Sum if breach is given as:

Sum i f breach =
T

∑
t=1

I(R̂q < Rt)(Rt − R̂q) (12)

It is also interesting to know how close a prediction is to the predicted medium when
no breach occurs. Thus, the Sum if no breach is given as:

Sum i f no breach =
T

∑
t=1

I(Rt < R̂q)
(

R̂q − Rt

)
(13)

The formulas are both expressed for the higher quantiles. The same formulas, however,
can be used for the lower quantiles. In addition, the following 4 metrics are used for further
comparison:

Total sum i f breach = ∑
q=α

|Sum i f breachα|

Total sum i f no breach = ∑
q=α

|Sum i f no breachα|

Max. VaR = max
(

R̂1, . . . , R̂T

)
Min. VaR = min

(
R̂1, . . . , R̂T

)
5. Results

In this section we present the results. Throughout all estimates, a fixed training
window from 1 July 2009 to 31 December 2017 is used, and the out-of-sample period is
from 1 January 2018 to 28 September 2020.

5.1. Estimating the Quantile Regression VaR Model

Table 2 displays the estimated quantile regression coefficients for the ATM variables
and the 25-delta RR variables. The model is estimated on daily Bloomberg data during
the in-sample period (July 2009–December 2017). The coefficients are scaled by 100 for
readability. Regarding the sign, magnitude, shape, and statistical significance of regression
coefficients, the results are consistent for both the ATM variable and the RR variable.
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Table 2. Quantile regression coefficients for the QR-IM model, along with the hit percentage. (i) and
(ii) denote statistical significance at the 1% and 5% confidence levels, respectively.

Quantile—α 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Constant −0.61 (i) −0.21 −0.07 0.09 0.05 0.12
ATM −0.06 (i) −0.09 (i) −0.08 (i) 0.09 (i) 0.12 (i) 0.15 (i)

25-delta RR 0.21 (i) 0.16 (i) 0.10 (ii) 0.16 (i) 0.30 (i) 0.38 (i)
Breach Ratio 1.04 2.48 4.97 94.99 97.43 99.01

The breach ratios of the estimated quantiles of the in-sample data are also shown in
Table 2. The breach ratio displays good coverage throughout the data with respect to the
estimated quantiles, as would be expected as the coefficients are statistically significant.

The estimated ATM coefficients support the view that the ATM is an indicator of
overall market risk. The upper panel of Figure 8 depicts a nonlinear, increasing relationship
between the quantiles and the ATM regression coefficients. The coefficients project the
shape of the tails of the conditional return distribution. It can be observed that the coeffi-
cients are negative for the lower quantiles and positive for the higher quantiles. In addition,
the absolute value of ATM coefficients is slightly higher in the right tail compared to the
left tail. This indicates a nonlinear relationship between implied volatility and returns.
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At-the-money (ATM) volatility (top panel) and 25-delta risk reversal (lower panel). In-sample period.
Coefficient values on the y-axes, quantiles along the x-axis.

The lower panel of Figure 8 reveals that the RR coefficients form a U-shaped pattern
and that all are positive. This indicates that implied volatility is more important when esti-
mating both ends of the tails. However, since all coefficients are statistically significant, all
quantile estimates of the return distribution will improve from employing implied volatility.

5.2. General Scheme for Evaluating the Machine Learning Models

We tested different uses of the algorithms for ensemble models: random forest, extreme
gradient boosting, light gradient boosting, and categorical boosting.

The data were split in two for training and validation. The training set started at the
beginning of the sample period and lasted until the end of 2017. The validation period
started in 2018 and last until the end of the dataset. This part was used for validation and
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testing the performance of the model. Figure 9 illustrates the concept. To illustrate the
scheme in full detail, we present the results for the random forest model in the next section.
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Figure 9. Time series dynamics for at-the-money volatility (left panel) and risk reversal (right panel)
during the training period and the validation period.

Illustrating the Scheme: Random Forest

In this section, we describe how the random forest algorithm was tested. The data
used in the training originated from the data generated by the QR-IM model in Equation (4),
discussed in the previous section. The model was trained individually on each quantile.
The in-sample data for RR and ATM volatility, along with the in sample estimated quantiles
in Section 5.1, were used for training the model. For testing, only the sampling data for RR
and ATM volatility were used. The results are listed in Table 3.

Table 3. Random forest performance, out-of-sample period.

Quantile—α 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Breach Ratio 0.7 2.1 5.75 95.09 97.62 99.44
Sum if breach −0.005 −0.018 −0.054 0.067 0.022 0.005

Sum if no breach −7.421 −5.641 −4.483 4.729 5.982 7.650
Min. Var −0.023 −0.022 −0.019 0.004 0.005 0.006
Max. VaR −0.008 −0.005 −0.004 0.016 0.023 0.029

The first thing to notice is the increased performance for estimates of higher-order
quantiles; 95%, 97.5%, and 99%. Second, the sum if no breach increases further away from
the mean. This makes sense as these estimates should be further away from the sampling
data compared to quantiles closer to the mean. Third, as expected, the sum if breach
decreases towards the tails of the distribution. Fourth, the sum if breach is almost equal
to zero at the quantiles in the tails. This suggests that the model yields promising results
when predicting spike behavior.

The graph shown in Figure 10 displays all the point estimates for the different quantiles,
produced by the random forest algorithm. One thing to notice is how closely the predictions
move in line with the underlying data. This gives a good indication of how well the model
works with the EURUSD data.
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Figure 10. Out-of-sample VaR estimates from the random forest model. Realized daily log-returns
represented by black dots.

Figure 11 shows the distribution of the SHAP values calculated from the random
forest ensemble method. The plot indicates symmetry in the estimation of the quantiles.
Further, risk reversal seems to be the more significant model parameter, as it displays
both the greatest density and magnitude in the figure. In this model, high values for the
risk reversal provide a positive contribution to the prediction, and low values provide a
negative contribution. Excluding outliers in the implied volatility, the high/low values
have the same contribution as seen for the risk reversal.
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Figure 11. Variable importance for the random forest model, expressed as Shapley values. The
figure shows that high values of explanatory variables increase VaR estimates. Furthermore, the risk
reversal has significant explanatory power for the tails of the return distribution.

Basically, we followed the scheme outlined above for evaluating all our machine
learning models. In addition to the random forest model, we further tested two XGBoost
models, three LightGBM models, one categorical boost (CatBoost) model, and three neural
networks. We also created a stacking model, combining the LGBM 2 model with the
CatBoost model. Stacking (similar to hyperparameter tuning) is a tool used for improving
model performance.

The difference in performance of the two XGBoost models (and the three LightGBM
models) stems from the difference in the datasets constructed to train them (Table 4). We
also tested three different neural networks: a feedforward neural network (FFNN), a
recurrent neural network (RNN) and a long-short term memory neural network (LTSM).
The different datasets used for training the model are summarized in Table 4.

To save space, we have not reported details from examining all models such as we
did with the random forest model above. Instead, we provide a summary comparing the
performance of the different models to the QR-IM model, which we have chosen as the
benchmark for this study.



J. Risk Financial Manag. 2023, 16, 312 18 of 23

Table 4. The different datasets used for training the models. (*) A new movement variable was
constructed, which captures the interaction between the ATM variable and the RR variable.

Model Dataset Used for Training

XGBoost (1) QR-IM generated dataset

XGBoost (2) Gradient boost generated dataset

LGBM (1) QR-IM generated dataset

LGBM (2) QR-IM generated dataset with new movement variable (*)

LGBM (3) LGBM generated dataset

Categorical Boosting QR-IM generated dataset

FFNN QR-IM generated dataset with new movement variable (*)

RNN QR-IM generated dataset with new movement variable (*)

LTSM QR-IM generated dataset with new movement variable (*)

However, first, a brief note on the neural networks:
For training and validation of the neural networks, we split the data in three parts.

The first part starts at the beginning of the dataset and lasts until the end of 2017. This part
is used for training and testing the model. From the first part, 80% of the data is used for
training and the remaining for testing. The second part starts in 2018 and lasts until the
end of the dataset, and this part is used for the model validation. All three periods are
illustrated in Figure 12.
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during training, testing, and validation period for the neural networks (FFNN, RNN, and LSTM).

5.3. Summary of Results: Comparing the ML Models to the QR-IM Model

We validate the out-of-sample performance of the different ML methods against the
QR-IM model developed by de Lange et al. (2022).

In general, the performance of the ensemble methods is more stable and consistent
than that of the neural networks. The ensemble methods handle the periods with outliers
better than the neural networks, whose predictions tend to explode around these events.

The ensemble models perform well compared to the baseline QR-IM model. Three
models stand out compared to the baseline model: LightGBM 2, CatBoost, and the stacking
model between the two. These models all perform better or equal to that of the QR-IM
model on the lower quantiles, i.e., 1%, 2.5%, and 5%. At the higher quantiles, i.e., 95%,
97.5%, and 99%, the QR-IM model is better or equal to the three models.
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The neural network models are, in general, quite unstable and are probably not partic-
ularly well suited for this task. The models produce worse or equal quantile predictions
compared to the QR-IM model for all quantiles.

All models are summarized with their breach ratios for the out-of-sample data
in Table 5.

Table 5. Summary of all model breach ratios during the out-of-sample period.

Quantile—α 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Baseline model Breach Ratio

QR-IM
Ensemble methods 0.7 2.1 6.3 95 97.5 99.3

Random Forest 0.7 2.1 5.75 95.09 97.62 99.44
XGB (1) 0.7 2.1 5.47 95.09 97.9 99.44
XGB (2) 1.26 3.65 7.01 95.37 98.46 99.16

LightGBM (1) 0.55 1.82 5.33 95.09 97.62 99.44
LightGBM (2) 0.7 2.1 5.05 95.23 97.76 99.44
LightGBM (3) 1.4 4.49 8.42 95.65 96.63 99.3

CatBoost
Stacking Models 0.7 2.23 5.47 94.95 97.62 99.44

LGBM2 & CatBoost
Neural network 0.7 2.18 5.31 95.05 97.67 99.44

FFNN 2.38 4.35 8.27 90.74 96.21 98.74
RNN 2.42 4.27 7.68 90.75 96.02 98.72
LTSM 3.13 4.97 8.68 96.16 96.16 98.44

We note that, for the sum if breach parameter, less is better. By having a small sum, the
model is better at predicting the outcome when a breach happens. However, if a small sum
if breach value is combined with a high value for sum if no breach, then the model may be
too conservative in its predictions. In Table 6, both the if breach (i.b.) and if no breach (i.n.b.)
sums are listed for all models. It is difficult to distinguish between the models and find a
superior model. The random forest, XGB model 1, and CatBoost algorithms are all very
similar when comparing the i.b. scores, all having an approximate score of 0.17. However,
the random forest is significantly better when comparing the i.n.b scores, having the lowest
score of 35.91. Thus, the random forest may be considered to be superior amongst the three.
It is more difficult to distinguish between the LBGM 1 and the LGBM 2, each having its one
superior trait. Thus, the choice of model depends on which feature, i.e., sum if breach or
sum if no breach, one deems to be more important. The LBGM model 1 has the lowest i.b.
score (0.164) among all models.

In Table 7, all the models are summarized with their Christoffersen test p-values and
DQ test p-values with four lags. For further comparison, we have reported results for
a set of benchmark models frequently employed in the literature. GARCH models can
accommodate a wide range of assumptions with regards to the distribution of residuals.
Filtered historical simulation (FHS) was introduced by Barone-Adesi et al. (2008). Here,
the conditional distribution of residuals is derived from the empirical distribution of
standardized returns. McNeil and Frey (2000) suggested fitting a GARCH model to the time
series or returns, and then applying EVT to the standardized residuals. We refer to these
approaches as FHS-GARCH and EVT-GARCH, respectively. The CAViaR methodology
from Engle and Manganelli (2004) models VaR as an autoregressive process. We apply
the symmetric absolute value specification (CAViaR-SAV), in which the estimated VaR
responds symmetrically to the absolute value of realized returns. Furthermore, we compute
VaR estimates from the GJR-GARCH model from Glosten et al. (1993), which allows for the
asymmetric response of conditional volatility to negative and positive returns through the
leverage parameter.
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Table 6. Breach values, i.b., and if not breach values, i.n.b., out-of-sample period.

Quantile—α 1.0% 2.5% 5.0% 95.0% 97.5% 99.0% |Sum|

Ensemble methods

Random Forest i.b.
i.n.b

−0.005
−7.421

−0.018
−5.641

−0.054
−4.483

0.067
4.729

0.022
5.982

0.005
7.650

0.171
35.91

XGB (1) i.b.
i.n.b.

−0.006
−7.442

−0.019
−5.680

−0.052
−4.521

0.064
4.756

0.023
6.028

0.005
7.643

0.169
36.07

XGB (2) i.b.
i.n.b.

−0.025
−5.860

−0.056
−5.152

−0.184
−3.612

0.112
4.155

0.040
5.477

0.020
6.391

0.437
30.65

LightGBM (1) i.b.
i.n.b.

−0.004
−7.445

−0.017
−5.668

−0.053
−4.500

0.066
4.748

0.022
6.005

0.004
7.691

0.166
36.06

LightGBM (2) i.b.
i.n.b.

−0.005
−7.445

−0.019
−5.682

−0.055
−4.526

0.060
4.816

0.020
6.046

0.005
7.712

0.164
36.23

LightGBM (3) i.b.
i.n.b.

−0.020
−6.255

−0.054
−4.860

−0.104
−4.110

0.067
4.929

0.033
5.657

0.010
7.164

0.288
32.97

CatBoost
Neural network

i.b.
i.n.b.

−0.006
−7.411

−0.020
−5.641

−0.056
−4.496

0.064
4.789

0.022
6.017

0.005
7.688

0.173
36.04

FFNN i.b.
i.n.b

−0.052
−9.477

−0.098
−8.139

−0.188
−6.752

0.186
6.420

0.086
7.917

0.038
9.873

0.648
48.57

RNN i.b.
i.n.b

−0.069
−9.120

−0.157
−8.486

−0.208
−6.287

0.201
6.274

0.088
8.406

0.047
10.064

0.770
47.00

LTSM i.b.
i.n.b

−0.052
−9.303

−0.095
−8.114

−0.200
−6.529

0.213
6.132

0.110
7.346

0.046
9.242

0.716
46.66

Table 7. The p-values for the Christoffersen test and DQ test (with four lags), out-of-sample. High
values indicate high accuracy.

Christoffersen Test
(p-Value) 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Random forest 0.398 0.489 0.364 0.364 0.846 0.200
XGB (1) 0.398 0.489 0.564 0.917 0.489 0.200
XGB (2) 0.175 0.000 0.000 0.000 0.157 0.001

LightGBM (1) 0.200 0.343 0.810 0.917 0.846 0.200
LightGBM (2) 0.398 0.489 0.945 0.781 0.660 0.200
LightGBM (3) 0.306 0.002 0.000 0.419 0.157 0.398

CatBoost 0.398 0.660 0.564 0.945 0.846 0.200
FHS-GARCH 0.210 0.000 0.380 0.310 0.380 0.670
EVT-GARCH 0.430 0.000 0.380 0.030 0.380 0.670
CAViaR-SAV 0.070 0.000 0.200 0.170 0.000 0.930

GJR-GARCH (Student t) 0.430 0.000 0.500 0.090 0.380 0.670

DQ Test (p-Value) 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Random forest 0.622 0.929 0.191 0.727 0.255 0.965
XGB (1) 0.806 0.944 0.192 0.280 0.858 0.965
XGB (2) 0.128 0.000 0.000 0.000 0.084 0.001

LightGBM (1) 0.673 0.938 0.319 0.648 0.717 0.964
LightGBM (2) 0.617 0.942 0.491 0.381 0.201 0.963
LightGBM (3) 0.000 0.001 0.000 0.951 0.506 0.991

CatBoost 0.692 0.943 0.371 0.678 0.204 0.964
FHS-GARCH 0.820 0.000 0.690 0.620 0.710 0.000
EVT-GARCH 0.900 0.000 0.700 0.230 0.700 0.000
CAViaR-SAV 0.710 0.000 0.700 0.230 0.700 0.000

GJR-GARCH (Student t) 0.880 0.000 0.930 0.410 0.710 0.000
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The XGB model 2 and LightGBM model 3 both reject the null hypotheses. Thus, the
observed number of VaR breeches is significantly different from the expected number
of breeches for the two models. The remaining ML models, on the one hand, generally
display high p-values, indicating high forecasting performance across the quantiles. The
conventional benchmark models, on the other hand, cannot deliver consistent results.

6. Conclusions

In this study, we employ ensemble methods and neural networks to forecast value-at-
risk for daily exchange rates. Our aim is to improve VaR predictions of currency investments
compared to a benchmark quantile regression implied moments (QR-IM) model. The
ensemble methods, which are forward looking and utilize directly observable option prices
as explanatory variables, show great potential at predicting the daily exchange rate. The
neural network, though also forward looking and utilizing directly observable option prices
as explanatory variables, does not perform at a desired prediction level.

We emphasize six key outtakes from our study:

• The ensemble methods are better at predicting the spike behavior of the EURUSD than
the neural networks. The ensemble methods are well suited for predicting the daily
EURUSD currency cross distribution, including its VaR.

• The second LightGBM model, categorical boost, and the stacking model between the
two, stand out in terms of comparing the breach values to the base line QR-IM model.
These models all perform better or equal to the latter at the lower quantiles and have
poorer or equal performance at the higher quantiles.

• The random forest and LightGBM 1 and 2 have the best performances among the
stand-alone models in terms of i.b. and i.n.b. values.

• Neural networks can improve a lot compared to the ensemble methods. One way of
doing this might be to introduce more layers and more nodes. However, by doing so,
the models become more of a black box.

• The advantage of neural networks compared to ensemble methods is the way they
estimate the quantiles. On the one hand, neural networks are constructed such that
all quantiles can be estimated simultaneously. On the other hand, ensemble methods
forecast one quantile at a time. For huge datasets, the possibility of computing all
quantiles simultaneously can significantly improve computational time.

• Model stacking and hyperparameter tuning significantly improved the models in
terms of the overall performance of the breach ratio.

Future Research

Several possible directions can be taken to further examine the models explored in
this study. The models’ performances should be tested in less efficient markets than the
EURUSD. Including more explanatory variables, such as macroeconomic variables, might
improve the models. In addition, one could try different types of combinations of layers
in the neural networks. This should lead to better forecasts and more stable results, at the
cost of transparency of these networks. Lastly, ensemble methods might be improved by
further exploring hyperparameter tuning and stacking methods.
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