
Applied Soft Computing 134 (2023) 109989

I
a

b

w
o
p
t
i
i
t
f
h
c
a
i
a
p
I

a
I

h
1

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

Sparse deep neural networks formodeling aluminum electrolysis
dynamics
Erlend Torje Berg Lundby a,∗, Adil Rasheed a,b, Jan Tommy Gravdahl a,
var Johan Halvorsen b

Norwegian University of Science and Technology, Department of Engineering Cybernetics, Trondheim, Norway
SINTEF Digital, Department of Mathematics and Cybernetics, Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 27 July 2022
Received in revised form 19 October 2022
Accepted 29 December 2022
Available online 9 January 2023

Keywords:
Aluminum electrolysis
Sparse neural networks
Data-driven modeling
Nonlinear dynamics
Ordinary differential equations

a b s t r a c t

Deep neural networks have become very popular in modeling complex nonlinear processes due to their
extraordinary ability to fit arbitrary nonlinear functions from data with minimal expert intervention.
However, they are almost always overparameterized and challenging to interpret due to their internal
complexity. Furthermore, the optimization process to find the learned model parameters can be
unstable due to the process getting stuck in local minima. In this work, we demonstrate the value of
sparse regularization techniques to significantly reduce the model complexity. We demonstrate this for
the case of an aluminum extraction process, which is highly nonlinear system with many interrelated
subprocesses. We trained a densely connected deep neural network to model the process and then
compared the effects of sparsity promoting ℓ1 regularization on generalizability, interpretability, and
training stability. We found that the regularization significantly reduces model complexity compared
to a corresponding dense neural network. We argue that this makes the model more interpretable, and
show that training an ensemble of sparse neural networks with different parameter initializations often
converges to similar model structures with similar learned input features. Furthermore, the empirical
study shows that the resulting sparse models generalize better from small training sets than their
dense counterparts.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
t
m
c
D
p

1. Introduction

First principle physics-based models (PBMs) have been the
orkhorse in modeling complex dynamical systems. However,
wing to an incomplete understanding of the phenomena, com-
utationally expensive nature, and uncertainty associated with
he factors influencing the dynamics, the PBMs are slowly yield-
ng their place to their data-driven modeling counterpart. The
ncreased availability of copious amounts of data, cheap computa-
ional resources, and significant algorithmic advancements have
urther fueled interest in data-driven models (DDMs). The DDM
as the potential to accurately model even poorly understood
omplex phenomena directly from the data. As a result, a broad
rray of scientific communities have explored their applicabil-
ty in many engineering applications. Some examples of DDM
pproaches to modeling dynamical systems are the use of tensor-
roduct based model [1], auto-regressive models [2] and Sparse
dentification of Nonlinear Dynamics (SINDy) from a dictionary

∗ Corresponding author.
E-mail addresses: erlend.t.b.lundby@ntnu.no (E.T.B. Lundby),

dil.rasheed@ntnu.no (A. Rasheed), jan.tommy.gravdahl@ntnu.no (J.T. Gravdahl),
var.J.Halvorsen@sintef.no (I.J. Halvorsen).
 i

ttps://doi.org/10.1016/j.asoc.2023.109989
568-4946/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a
of candidate functions [3] . Lately, there has been an increased
interest in using neural networks to model nonlinear dynamical
systems due to their highly expressive power. Examples are using
neural networks to model simulated dynamics of a pressurized
water nuclear reactor [4], identification of the dynamics of the
production and purification process of bio-ethanol [5], prediction
of chemical reactions [6], and determine chlorinated compounds
in fish [7]. Authors in [8] convincingly demonstrated how DDM
outperforms PBM in the absence of the full understanding of
physics. However, despite their advantages, they suffer from cer-
tain shortcomings [9]; they are challenging to interpret, difficult
to generalize to solve previously unseen problems, and unstable
to train. These are critical shortcomings to overcome before the
models can be used in high-stake applications. We discuss each
of these briefly.

Interpretability: This can be defined as the ability of a model
o express itself in human interpretable form [10]. A simple
odel like linear regression having very few trainable parameters
an be a good example of an interpretable model. However, a
eep Neural Network (DNN), constituting millions of trainable
arameters, can be extremely difficult or almost impossible to

nterpret. We can attempt to remedy this by training DNNs with

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.asoc.2023.109989
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.109989&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:erlend.t.b.lundby@ntnu.no
mailto:adil.rasheed@ntnu.no
mailto:jan.tommy.gravdahl@ntnu.no
mailto:Ivar.J.Halvorsen@sintef.no
https://doi.org/10.1016/j.asoc.2023.109989
http://creativecommons.org/licenses/by/4.0/

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

a
r

o
t
p
d
f
d
c
A
o
e

t
c
s
e
i
m
B
o
g
D
s
t

a
P
a
I
u
a
k
m
N
e
r
t
o
i
t
t
w
l
n
t
D

i
A
g
t
R
m
e
d
o
i
t
a
c
i
w
i
s

sparsity prior, thereby reducing the number of parameters and
evealing a more parsimonious structure.

Generalizability: This refers to the model’s ability to predict
utcome values for unseen data from the same distribution as the
raining data. Highly complex and overparameterized models are
rone to overfitting, meaning they do not generalize to unseen
ata not adequately represented during the training. The over-
itting can be mitigated by increasing the amount and variety of
ata. However, in many complex physical systems, the cost and
hallenges of data acquisition limit the amount of training data.
s a result, the trained DNN can fail to generalize. However, if the
verparameterization issue is addressed, then there is tentative
vidence that the DNN will be better at generalization [11].
Stability: The training of a DNN requires solving an optimiza-

ion problem in a multidimensional space. Depending upon the
omplexity of the problem, the dimension can easily be in thou-
ands or even millions, and multiple local minima might be
ncountered. Even the same DNN with just a slightly different
nitialization of the parameters can end up in very different
inima, and the risk of bad ending up in a bad minima is high.
y stability in the context of the current work, we mean that the
ptimization leads to a reasonable minima, which, even if not
lobal, yields a similar loss value. On the contrary, an unstable
NN will be the one where the optimization process yields incon-
istent results, gets stuck in bad local minima, or fails to converge
o an acceptable parameter configuration.

Combining PBM and DDM in a hybrid modeling approach is
n emerging strategy to address the individual shortcomings of
BM and DDM [9]. In [8,12,13], the equations known from PBM
re augmented by a corrective source term generated by a DNN.
n [14], the prediction of a PBM is subtracted from a coarse sim-
lation to obtain residual measurements. A compressed sensing
lgorithm uses these residual measurements to model the un-
nown disturbance signal of the dynamics. In [15], a novel hybrid
odeling approach is proposed called Physics Informed Neural
etwork (PINN). PINN utilizes known first principle knowledge
xpressed in partial differential equations (PDE) and their cor-
esponding boundary conditions to regularize a neural network
hat is trained to approximate the solution of the PDE. Authors
f [16] introduce a method called Physics Guided Machine Learn-
ng (PGML). The training of the DNN is augmented with simplified
heories relevant to the system’s dynamics. Instead of passing
hese features as inputs to the network, they are concatenated
ith the hidden layers of the network, avoiding information

oss in earlier layers. As most examples above illustrate, neural
etworks are often vital in hybrid models. Thus addressing the
hree issues with DNN mentioned above will benefit not only
DMs but also the hybrid models.
In this work we address the challenges of generalizability,

nterpretability, and stability by training sparse neural networks.
uthors in [11] show empirically that sparse neural networks can
eneralize better than dense neural networks on classification
asks. This line of reasoning is intuitively related to Occam’s
azor, and even early research such as [17] has investigated trim-
ing small neural networks to increase interpretability. How-
ver, most recent research in deep learning focuses on high-
imensional data and use architectures with millions to billions
f parameters. Fully interpreting these models is unfortunately
ntractable and is not given much attention in this work. On
he other hand, dynamical systems can often be expressed in
relatively low dimensional state space despite their rich and
omplex behavior. This makes them a good candidate for further
nvestigation. Unfortunately, the research on sparse neural net-
orks for modeling dynamical systems is limited. The authors

n [18] propose a sparse Bayesian deep learning algorithm for

ystem identification. The method was tested on a simulator of

2

a cascade tank [19] with two states and one input, and on a
simulator of coupled electric drives [20] with three states and
one input. Besides this, little research has been done, and the
critical shortcomings of DNN mentioned above remain mostly
unaddressed. In this work we attempt to address the following
research questions:

• What effect can sparsity promoting regularization have on
the complexity of neural networks?

• Can one generate insight from the interpretation of sparse
neural networks, or are they as difficult to interpret as their
dense counterparts?

• Can sparsity promoting regularization improve the data ef-
ficiency of neural networks?

• Can the model uncertainty of neural networks be reduced,
and their accuracy improved so that they are better suited
for modeling the complex dynamics over both short and
long-term horizons?

To conduct the study, we have chosen the dynamics involved
in Hall–Héroult process for aluminum electrolysis, which is a
reasonably complicated system with many states and inputs. In
this process, alumina (Al2O3) is dissolved in cryolite (Na3AlF6)
and then reduced to aluminum. The reaction is driven by a line
current sent through the electrolytic bath [21]. Accurate dynamic
models are crucial for optimizing product quality and energy
consumption. The dynamics are highly nonlinear, and interrelated
sub-processes make modeling even more challenging. Further-
more, the harsh environment in the electrolytic cells requires
extra effort to ensure safe operation. Most recently developed
models for this system are PBMs. For example, authors in [22]
developed a mass and energy balance model based on the first
law of thermodynamics. The resulting model includes, among
other things, a complete control volume analysis, an extensive
material balance, a 3D finite element model (FEM) for modeling
resistance in the cell lining and shell, and a Computational Fluid
Dynamics (CFD) simulation for computing gas velocity stream-
lines. In [23], a multi-scale, multi-physics modeling framework
including magneto-hydrodynamics, bubble flow, thermal con-
vection, melting and solidification based on a set of chemical
reactions was developed. Although highly interpretable, these
kinds of PBMs are based on numerous assumptions, an incom-
plete understanding of the physics, discretization errors, and
uncertainties in the input parameters. For example, the magneto-
hydrodynamic phenomena or the reactivity and species concen-
tration distribution are challenging to model [24]. Thus these
first-principle model predictions might deviate significantly from
measurements of the true system. For the aluminum electrolysis
process, DNNs have been applied to predict essential variables
that are difficult to measure continuously. In [25], a dense, single-
layer neural network with more than 200 neurons was used
to simulate bath chemistry variables in the aluminum electrol-
ysis. The paper mainly addresses the training speed of neural
networks using an extreme learning machine. In [26] dense neu-
ral networks were used to predict variables in the electrolysis
cell. The study accounted for the changing properties of the
electrolysis cells by collecting data over the course of their life-
cycle. In [27], dense neural networks with two hidden layers
were used to model the properties of the carbon anode. While
the literature mentioned above addresses important challenges
in modeling this particular process, none consider the issues of
interpretability, generalizability, and training stability.

The article is structured as follows. Section 2 presents the
relevant theory for the work in the case study. Section 3 presents
the method applied in the paper and the experimental setup of
the simulator for data generation. In Section 4, the results are
presented and discussed. Finally, in Section 5, conclusions are
given, and potential future work is presented.

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

2

2

c

y

p t

m
t
f
(
f

θ

c
r
r
t
c
c
b

2

(
l
t
e
l
u
D

L

. Theory

.1. Deep neural networks (DNN)

A DNN is a supervised machine learning algorithm [28] that
an be denoted by

= f̂(x; θ), (1)

where y ∈ Rs is the output vector of the network model and
s its length. x ∈ Rd is the input vector to the network model,
and d is the input dimension. Here, θ ∈ Rp denotes all trainable
arameters in the network model where p is the number of the

parameters. Each layer j+1 operates on the output vector from the
previous layer Zj

∈ RLj and outputs a vector Zj+1
∈ RLj+1 :

Zj+1
= σ (Wj+1Zj

+ bj+1). (2)

Wj+1
∈ RLj+1×Lj is called the weight matrix, and bj+1

∈ RLj+1 is
the called the bias vector of layer j + 1. θ = {θ1, ..., θj+1, ...},
and θj+1

= {Wj+1, bj+1
}. σ is a non-linear activation function.

That is,

σ (Wj+1Zj
+ bj+1) = (σ (W j+1

1 Zj
+ bj+1

1), ...,

σ (W j+1
i Zj

+ bj+1
i), ..., σ (W j+1

Lj+1
Zj

+ bj+1
Lj+1

))T . (3)

W j+1
i are the row vectors of the weight matrix Wj+1 and bj+1

i , i =

1, ..., Lj+1 are the entries of the bias vector bj+1. Thus, the
activation function calculates the output of each neuron in layer
j+1 as a nonlinear function of the weighted sum of outputs from
the neurons in the previous layer plus a bias. Each neuron outputs
one value, and the weight in the consecutive layer determines the
importance of the output of each neuron in the current layer. The
nonlinear activation function σ can, for example, be the sigmoid
function, hyperbolic tangent function or the binary step function
to mention a few. For the last decade or so, the popularity of the
piece-wise linear (PWL) activation function Rectified Linear Unit
(ReLU) has grown exponentially. This is in part due to its compu-
tational simplicity, representational sparsity and non-vanishing
gradients. The ReLU activation function is given by:

σ (z) = max{0, z}. (4)

ReLU is the only activation function used in the current work.

2.2. Sparse neural networks and regularization

Dense neural networks are often overparameterized models,
meaning that they have more parameters than can be estimated
from the data and thus often suffer from overfitting. In [29],
it is shown empirically that randomly initialized dense neural
networks contain subnetworks that can improve generalization
compared to the dense networks. These subnetworks, character-
ized by significantly fewer non-zero trainable parameters than
their dense counterpart, are called sparse neural networks. Their
utility can further be seen in terms of increased computational
performance for inference and training, and increased storage
and energy efficiency. Typically large-scale models that require
millions to billions of parameters and arithmetic operations can
highly benefit from such sparsification. To conclude sparsifica-
tion of complex models will lead to simpler models which are
relatively easier to interpret, generalize, and train.

There are many existing schemes and methods for training
sparse neural networks. Coarsely speaking, model sparsity can
be divided into structured sparsity, which includes pruning for
example entire neurons, and unstructured sparsity, which deals
with pruning individual weights. Furthermore, methods can be
classified into one out of three: data-free (such as magnitude

pruning [30]), data-driven (such as selection methods based on

3

the input or output sensitivity of neurons [31]) and training-aware
methods (like weight regularization) based on the methods way
of selecting candidates for removal. A comprehensive review is
given in [32]. Among the methods that can be used to sparsify a
complex network, regularization techniques are the most popular
ones, with a solid mathematical foundation. In regularization,
penalty terms R(w) defined on the weights are added to the cost
function C:

C(xi, yi, θ) = L(yi, f̂(x; θ)) + λR(w). (5)

The vector θ = {w, b} denotes the adaptable parameters, namely
he weights w and biases b in the network model. Furthermore,
{(xi, yi)}Ni=1 is the training data, L(·, ·) is the loss function to
inimize and the positive scalar coefficient λ is a hyperparameter

o weight the terms L(·, ·) and R(·). The standard choice of loss
unction L(·, ·) for regression tasks is the Mean Squared Error
MSE). In the training process, the cost function is minimized to
ind optimal values of the parameters:

∗
= argmin

θ

{
1
N

N∑
i=1

C(xi, yi, θ)

}
. (6)

The most intuitive sparsity promoting regularizer is the ℓ0
norm, often referred to as the sparsity norm:

Rℓ0 (w) = ∥w∥0 =

∑
i

{
1 wi ̸= 0,
0 wi = 0.

(7)

The ℓ0 norm counts the number of nonzero weights. Unfortu-
nately, the ℓ0 norm has several drawbacks that make it less
suitable for optimization. The ℓ0 norm is nondifferentiable and
sensitive to measurement noise. Furthermore, in terms of com-
putational complexity, the problem of ℓ0 norm is shown to be
NP-hard [33]. The ℓ1 norm is a convex relaxation of the ℓ0 norm,
and is given by:

Rℓ1 (w) = ∥w∥1 =

∑
i

|wi|. (8)

Due to its geometrical characteristics, ℓ1 minimization is sparsity
promoting. However, the ℓ1 norm usually does not reduce the
weights to zero but rather to very small magnitudes. Thus, mag-
nitude pruning can be applied after ℓ1 minimization to achieve
true sparse models. Fig. 1 illustrates how ℓ1 regularization can
lead to a sparse solution. The contours represented by the ellipse
correspond to the mean squared error part (L(yi, f̂(x; θ))) of the
ost function C(xi, yi, θ) while the contours represented by the
hombus correspond to the regularization term. The stronger the
egularization parameter λ the more the weights θ will be pushed
owards the origin. It can be clearly seen that the two contours
orresponding to the two parts of the cost function has a good
hance interesting on the axis which will results in many θ values
eing zero.

.3. Region bounds for PWA neural networks

The complexity of neural networks with Piecewise Affine
PWA) activation functions such as ReLU can be analyzed by
ooking at how the network partitions the models’ input space
o an exponential number of linear response regions [34,35]. For
ach region in the input space, the PWA neural network has a
inear response for the output. Authors in [36] present asymptotic
pper and lower bounds for maximum number of regions for a
NN with ReLU activation:

ower : Ω

((n
d

)(L−1)d
nd
)

,(dL) (9)

Upper : O n .

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

i
e
e

d
t
b
o
n
n
r
t
f
r
i
T
s
m

2

a
t
s
s
x
a
u

x

w
i
u
n
a

t
s
i

g

c

c

W
e

x

x

x

x

x

Fig. 1. Illustration of ℓ1 regularization. θ1 and θ2 are the model parameters. θMSE
s the MSE estimate. The ellipses show the contours of the error from the MSE
stimate. The blue diamond illustrates the ℓ1 constraints. θ∗ is the parameter
stimate when ℓ1 regularization is added to the optimization.

is the input dimension, L is the number of hidden layers, and n is
he number of activation functions or neurons in each layer. The
ounds in Eq. (9) are valid for networks with the same number
f neurons in each layer. The bonds for networks with an uneven
umber of neurons show similar exponential results and are thus
ot included for convenience. Eq. (9) illustrates the exponential
elation between the input dimension, number of neurons, and
he depth of the network. For realistic amounts of data sampled
rom a physical system, the number of linear regions that a
elatively small dense neural network partition the input space
nto exceeds the sampled data by several orders of magnitude.
hus, in order to generalize to larger areas of the models’ input
pace, the number of regions needs to be reduced drastically. This
otivates sparsifying the model.

.4. Simulation model

The simulation model used in this article is based on the mass
nd energy balance of an aluminum electrolysis cell. The deriva-
ion of the model is found in the Appendix. In this section, the
imulation model is put in a state space form, where constants,
ystem states, and control inputs are denoted by the symbols ki,
i, or ui respectively. The simulation model can be expressed as
nonlinear system of ODE’s with 8 states x ∈ R8 and 5 inputs
∈ R5 on the form:

˙ = f (x,u), (10)

here ẋ ∈ R8 is the time derivative of the states x, and f (x,u)
s a nonlinear function. Table 1 gives the physical meaning and
nits of all the state and input variables, and Table 2 gives the
ummerical values of the constants in the simulator. Fig. 2 gives
schematic drawing of the process.
The nonlinear functions in Eqs. (11)–(15) that partly describes

he dynamics of the system states are defined in advance of pre-
enting the system dynamics in order to simplify the expressions
n Eq. (10):

1 = 991.2 + 112cx3 + 61c1.5x3 − 3265.5c2.2x3

−
793cx2

−23cx2cx3 − 17c2x3 + 9.36cx3 + 1
(11)
4

Table 1
Table of states and inputs.
Variable Physical meaning Unit

x1 mass side ledge kg
x2 mass Al2O3 kg
x3 mass ALF3 kg
x4 mass Na3AlF6 kg
x5 mass metal kg
x6 temperature bath ◦C
x7 temperature side ledge ◦C
x8 temperature wall ◦C

u1 Al2O3 feed kg
u2 Line current kA
u3 AlF3 feed kg
u4 Metal tapping kg
u5 Anode–cathode distance cm

g2 = exp
(
2.496 −

2068.4
273 + x6

− 2.07cx2

)
(12)

g3 = 0.531 + 3.06 · 10−18u3
1 − 2.51 · 10−12u2

1

+ 6.96 · 10−7u1 −
14.37(cx2 − cx2,crit) − 0.431

735.3(cx2 − cx2,crit) + 1
(13)

g4 =
0.5517 + 3.8168 · 10−6u2

1 + 8.271 · 10−6u2
(14)

g5 =
3.8168 · 10−6

· g3 · g4 · u2

g2(1 − g3)
(15)

g1 is the liquidus temperature Tliq defined in Eq. (A.59), g2 is the
electrical conductivity κ defined in Eq. (A.33), g3 is the bubble
coverage φ defined in Eq. (A.37), g4 is the bubble thickness dbub
defined in Eq. (A.36), and g5 is the bubble voltage drop Ubub
defined in Eq. (A.35). The expressions and coefficients of the
physical properties in Eqs. (11)–(15) are taken from different
academic works that have estimated these quantities. These aca-
demic works are cited in Appendix. Notice that the mass ratios
in the electrolyte of x2 (Al2O3) and x3 (AlF3) can be expressed as:

x2 = x2/(x2 + x3 + x4) (16)

x3 = x3/(x2 + x3 + x4) (17)

ith the nonlinear functions g1, ... g5 described, the state space
quations in Eq. (10) is described by the following equations:

˙1 =
k1(g1 − x7)

x1k0
− k2(x6 − g1) (18)

ẋ2 = u1 − k3u2 (19)

˙3 = u3 − k4u1 (20)

˙4 = −

(
k1(g1 − x7)

x1k0
− k2(x6 − g1)

)
+ k5u1 (21)

˙5 = k6u2 − u4 (22)

˙6 =
α

x2 + x3 + x4

[
u2

(
g5 +

u2u5

2620g2

)
− k9

x6 − x7
k10 + k11k0x1

−

(
k7(x6 − g1)2 − k8

(x6 − g1)(g1 − x7)
)]

(23)

k0x1

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

E
r
E

3

3

v
m
F
i
n
m

Fig. 2. Schematic of the setup. The figure show the states and inputs in Table 1.
R
W

R

w

ẋ7 =
β

x1

[
−

(
k12(x6 − g1)(g1 − x7)

− k13
(g1 − x7)2

k0x1

)
+

k9(g1 − x7)
k15k0x1

−
k9(x7 − x8)

k14 + k15k0x1

]
(24)

ẋ8 = k17k9

(
x7 − x8

k14 + k15k0 · x1
−

x8 − k16
k14 + k18

)
(25)

q. (18)–(25) are derived in Appendix, where Eq. (18)–(25) cor-
esponds to Eq. (A.47), Eq. (A.43), Eq. (A.44), Eq. (A.45), Eq. (A.48),
q. (A.61), Eq. (A.57), and Eq. (A.58) respectively.

. Method and experimental setup

.1. Training with sparsity promoting regularization

In this article, sparse DNN models are utilized to predict state
ariables in the aluminum electrolysis simulator. All the weight
atrices in a DNN model are ℓ1 regularized to impose sparsity.
ig. 3 illustrates how weights are enumerated according to their
nput and output nodes. Layer j has i nodes and layer (j+1) has r
odes. Layer j = 0 corresponds to the input layer, and consist of
easured or estimated states x(t) and control inputs u(t) at time

step t . The output layer consists of the estimated time derivatives
of the states ẋ(t) at time step t .

The weight matrix Wj+1 corresponds to the weights that con-
nect layer j to j + 1. Wj+1 is arranged as follows:

Wj+1 =

⎡⎢⎢⎣
w11 w12 ... w1i
w21 w22 ... w2i
...

. . .

⎤⎥⎥⎦ . (26)
wr1 wr2 . . . wri e

5

Fig. 3. Enumerated weights according to their input and output nodes between
layer j and (j + 1).

egularization terms Rℓ1,j+1 are defined for each weight matrix
j+1 :

ℓ1,j+1 =

∑
i,k∈Wj+1

|wi,k|. (27)

here wi,k are the model weights from layer j to j + 1, or
quivalently, the elements of W . The regularization terms for
j+1

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

w
l
i

3

i

o
v
i

t
t
T
i
t
a
t
b
c
e
u
t
e
d
3
m
i
o
z
(
s
T

X

t
c

Y

Table 2
Constants in the simulator.
Constant Physical meaning Numeric value

k0 1/(ρslAsl) 2 · 10−5

k1 2kslAsl/∆fusHcry 7.5 · 10−4

k2 hbath−slAsl/∆fusHcry 0.18

k3 0.002
MAl2O3 ·CE

z·F 1.7 · 10−7

k4 CNa2O
4MAlF3
3MNa2O

0.036

k5 CNa2O
2Mcry

3MNa2O
0.03

k6 0.002MAl ·CE
z·F 4.43 · 10−8

k7 k2 · cpcry, liq 338

k8 k1 · cpcry, liq 1.41

k9 Asl 17.92

k10 1/hbath−sl 0.00083

k11 1/(2ksl) 0.2

k12 k2 · cpcry, s 237.5

k13 k1 · cpcry, s 0.99

k14 xwall/(2kwall) 0.0077

k15 1/(2ksl) 0.2

k16 T0 35

k17 1/(mwallcp, wall) 5.8 · 10−7

k18 1/hwall−0 0.04

α 1/cpbath, liq 5.66 · 10−4

β 1/cpcry, sol 7.58 · 10−4

Table 3
Initial conditions for system variables.
Variable Initial condition interval

x1 [3260, 3260]
cx2 [0.02, 0.03]
cx3 [0.10, 0.12]
x4 [13500, 14000]
x5 [9950, 10000]
x6 [975, 975]
x7 [816, 816]
x8 [580, 580]

Table 4
Control functions.
Input Deterministic term Random term interval ∆Trand
u1 3e4(0.023 − cx2) [−2.0, 2.0] ∆T
u2 14e3 [−7e3, 7e3] 30 · ∆T
u3 13e3(0.105 − cx3) [−0.5, 0.5] ∆T
u4 2(x5 − 10e3) [−2.0, 2.0] ∆T
u5 0.05 [−0.015, 0.015] 30 · ∆T

each layer are added to the cost function:

w∗
= argmin

w

{
1
N

N∑
i=1

(yi − f(xi))2 + λ1Rℓ1,1...

+ λj+1Rℓ1,j+1 + · · · + λLRℓ1,L

}
,

(28)

here 1
N

∑N
i=1 (yi − f(xi))2 is the MSE, and λj+1, j = 0, ..., 3 is a

ayer-specific hyperparameter that determines how the weights
n Wj+1 are penalized.

.2. Experimental setup and data generation

Data for the aluminum electrolysis process is generated by
ntegrating the non-linear ODEs given by Eqs. (18)–(25) with a
6

set of chosen initial values for the state variables x(t0), and fourth-
rder Runge–Kutta (RK4) algorithm. The initial conditions of each
ariable xi for each simulation are randomly chosen from a given
nterval of possible initial conditions given in Table 3. For x2 and
x3, concentrations cx2 and cx3 are given.

Data-driven models depend on a high degree of variation in
the training data to be reliable and valid in a large area of the
input space. The input signal determines how the system is ex-
cited and thus what data is available for modeling and parameter
estimation. Operational data from a controlled, stable process is
generally characterized by a low degree of variation. Even large
amounts of data sampled over a long period from a controlled
process cannot guarantee that the variation in the training data
i large enough to ensure that the trained model generalizes to
unseen data. Therefore, random excitation are added to the input
signals to increase the variation in the sampled data. The intuition
is that the random excitation will push the dynamics out of the
standard operating condition so that variation in the training data
increases. In general, each control input i is given by:

ui = Deterministic term + Random term. (29)

The control inputs u1, u3 and u4 are impulses. The random
erm is zero for these control inputs when the deterministic
erm is zero. The deterministic term is a proportional controller.
he control inputs u2 and u5 are always nonzero. These control
nputs have constant deterministic terms and a random term
hat changes periodically. The random term stays constant for
certain period ∆Trand before changing to a new randomly de-

ermined constant. Choosing the period ∆Trand is a matter of
alancing different objectives. On one hand, it is desirable to
hoose a large period ∆Trand so that the system can stabilize and
volve under the given conditions to reveal the system dynamics
nder the given conditions. On the other hand, it is desirable to
est the systems under many different operational conditions. By
mpirically testing different periods ∆Trand, and seeing how the
ynamics evolve in simulation, it turns out that setting ∆Trand =

0∆T is a fair compromise between the two. Table 4 gives the nu-
erical values of the deterministic term of the control input, the

nterval of values for the random terms, and the duration ∆Trand
f how long the random term is constant before either becoming
ero (u1, u3, u4) or changing to a new randomly chosen value
u2, u5). One simulation i with a given set of initial conditions is
imulated for 1000 time steps, and each time step ∆T = 30 s.
he simulation generate the data matrix as in Eq. (30):

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(0) x2(0) ... x8(0) u1(0) ... u5(0)

x1(1) x2(1) ... x8(1) u1(1) ... u5(1)
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

x1(k) . . . xi(j) . . . u1(j) . . . u5(j)
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

x1(999) x2(999) ... x8(999) u1(999) ... u5(999)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(30)

The number j within the parenthesis of variable i indicates the
ime step for when xi(j) is sampled. The target values are then
alculated as

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(1)−x1(0)
∆T ...

x8(1)−x8(0)
∆T

x1(2)−x1(1)
∆T ...

x8(2)−x8(1)
∆T

...
. . .

...
x1(k)−x1(j−1)

∆T ...
x8(j)−x8(k−1)

∆T
...

. . .
...

x1(1000)−x1(999) x8(1000)−x8(999)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (31)
∆T ...
∆T

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

T

t
i
i
s
a
a
e
a

A

k
s
t
o
t

Each training set Sk from simulation k are put in input and
outputs are put in pairs:

Sk = [X,Y] =

⎡⎢⎢⎢⎢⎢⎢⎣
[xT (0),uT (0)]T , y(0)

...
...

[xT (j),uT (j)]T , y(j)
...

...

[xT (999),uT (999)]T , y(999)

⎤⎥⎥⎥⎥⎥⎥⎦ . (32)

The training sets from each simulation are normalized before they
are stacked

Sstack =
[
ST
1 , ST

2 , ..., ST
k ,, ST

n

]T
. (33)

Here, n is the number of simulated time-series X. The number of
time series simulations n varies in the experiments to evaluate
the model performance as a function of training size. Then, all
input–output pairs in the stacked training set are shuffled:

Strain = shuffle(Sstack). (34)

The shuffled training set is put in mini-batches [Xbatch, i, Ybatch, i],
and the models are trained on these mini-batches. The test set
also consists of several time series simulations generated in the
same way described above. The test set is given by:

Stest = {{X1}, {X2}, ..., {Xp}}. (35)

Stest (i) = {Xi} = {([xk, uk])}1000k=1 is one simulated time series,
and {xk}1000k=1 is being forecasted by the models. In all experiments,
20 models of each dense and sparse networks with different
initialization are trained on the training set and then evaluated
on the test set.

3.3. Performance metrics

In aluminum electrolysis, data is generally sampled at rare
instants during the operation. Thus, a model needs to accurately
forecast several time steps without feedback from measurements
to ensure safe and optimal operation. Therefore, the models’
capability to estimate the states x over a given time horizon with-
out measurement feedback becomes an important measure of
performance. The initial conditions x(t0) are given to the models.
Then the consecutive n time steps of the states are estimated
{x̂(t1), ..., x̂(tn)}. This is called a rolling forecast. The model
estimates the time derivatives of the states dx̂i/dt based on the
current control inputs u(ti) and initial conditions x0(t) if t = t0,
or the estimate of the current state variables x̂(ti) if t > t0:

dx̂(ti)
dt

=

{
f̂ (x̂(ti), u(ti)), if ti > t0
f̂ (x0(ti), u(ti)), if ti = t0

(36)

hen, the next state estimate x(ti+1) is calculated as

x̂(ti+1) = x̂(ti) +
dx̂(ti)
dt

· ∆T . (37)

The rolling forecast can be computed for each of the states
xi for one set of test trajectories Stest . However, presenting the
rolling forecast of multiple test sets would render the interpre-
tation difficult. By introducing a measure called Average Nor-
malized Rolling Forecast Mean Squared Error (AN-RFMSE) that
compresses the information about model performance, the mod-
els can easily be evaluated on a large number of test sets. The
AN-RFMSE is a scalar defined as:

AN-RFMSE =
1
p

p∑ 1
n

n∑(
x̂i(tj) − xi(tj)

std(xi)

)2

, (38)

i=1 j=1

7

where x̂i(tj) is the model estimate of the simulated state variable
xi at time step tj, std(xi) is the standard deviation of variable xi in
he training set Strain, p = 8 is the number of state variables and n
s the number of time steps the normalized rolling forecast MSE
s averaged over. Hence, for every model f̂j and every test set time
eries Stest (i), there is a corresponding AN-RFMSE. This generates
matrix, where each row represents individual model instances,
nd every column represents one test set simulation Stest (i). Each
ntry in the matrix is the AN-RFMSE for a given model instance
nd a given Stest (i). The matrix is given by:

N-RFMSEmat =

⎡⎢⎣AN-RFMSE11 . . . AN-RFMSE1n
...

...
...

AN-RFMSEk1 . . . AN-RFMSEkn

⎤⎥⎦ . (39)

is the number of models, and n is the number of time series
imulations in the test set Stest . There are two AN-RFMSEmat ma-
rices, one for sparse models and one for dense models. Averaging
ver all columns at each row, that is, averaging over all test set
ime series for each model instance, generates a vector

AN-RFMSEvec =

⎡⎢⎣
1
n

∑n
ii
AN-RFMSE1i

...
1
n

∑n
ii
AN-RFMSEki

⎤⎥⎦ =

⎡⎢⎣AN-RFMSE1
...

AN-RFMSEk

⎤⎥⎦ . (40)

The elements of AN-RFMSEvec is the average AN-RFMSE over all
test set time series for every model instance.

Fig. 4 summarizes the workflow in the case study. Each step is
briefly explained in the figure text, and more thoroughly through-
out Section 3.

4. Results and discussion

In this section, we present and discuss the main findings of
the work. In doing so, we will analyze the results from the per-
spective of interpretability, generalizability and training stability.

4.1. Interpretability perspective

As discussed earlier, the interpretability of a model is the
key to its acceptability in high-stake applications like the alu-
minum extraction process considered here. Unfortunately, highly
complex dense neural networks having thousands to millions
of parameters which were the starting point for the modeling
here are almost impossible to interpret. Fig. 5 shows the model
structure of a dense DNN model learned for the generated data.
The figure illustrates how densely trained neural networks yield
uninterpretable model structures.

Fortunately, through the regularization it was possible to sig-
nificantly reduce the model complexity resulting in a drastically
reduced number of trainable parameters (see the Figs. 6–13). It
can be argued that the reduced model complexity of sparse neu-
ral networks increases the model interpretability. With domain
knowledge about the aluminum electrolysis process, the sparse
models can be evaluated as we will do in the remainder of this
section.

The results related to the interpretability aspect is presented
in the form of model structure plots which can be used to explain
the input–output mapping of the models. If the model structures
are very sensitive to the initialization, then there interpretation
will not make sense therefore, 100 DNNs with different initial-
ization are trained independently and their common trends are
emphasized in the discussions. We now present each of the model
outputs {f̂1(x,u), ..., f̂8(x,u)}. It is worth mentioning that these
outputs are estimates of each of the time derivatives of the states
{ẋ , ..., ẋ } respectively.
1 8

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

i
b

g
s
o
a
f

Fig. 4. Schematic presentation of the experimental setup. This includes the data simulation, preprocessing of training data, model training and model evaluation.
At the first step (blue box), training and test data is simulated. Each frame in the blue box corresponds to a simulation of the dynamics from some random initial
conditions. The training and test data are separated, where the test data is given directly to the evaluation part of the case study, while the training data is sent to
preprocessing. In the preprocessing stage, input features are arranged from a given simulation is put in a input metric, output features are calculated (see Eq. (31))
before they are put in a corresponding output matrix. Then, both input and output features are normalized and put in pairs. After all simulations are arranged in
input output pairs, all pairs are shuffled before put in mini-batches for training. In the training procedure, the model parameters are optimized on the mini-batches.
The trained models are sent to evaluation. In this stage, models are given the initial conditions from the test set. In addition, the models are given the control
inputs in the test set at every time step. The model the forecasts the test set trajectories in a rolling forecast. The estimated trajectories are compared to the test
set trajectories and evaluated according to accuracy measures, uncertainty in terms of disagreement between models with different initial parameters trained on the
same data with same hyperparameters, and according to the number of blow ups of a given model type (models trained with same hyperparameters), meaning the
number of times that model type estimate diverges from the test set they are estimating. .
Table 5
Frequency of learned features for each output {f̂1, ..., f̂8}. Each column i correspond to
an output f̂i of the neural network. Each row element j correspond to one of the features
{x1, x2, ..., x8, u1, u2, ..., u5}. The value of the table element (i, j) is the percent of how
many out of one hundred models of the output fi that feature j occurs.
Feature Output functions

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8
x1 86 1 1 86 2 100 99 100
x2 100 2 2 100 1 100 100 100
x3 100 2 2 100 0 93 100 87
x4 100 0 0 100 0 87 100 87
x5 2 0 0 2 0 2 2 2
x6 100 2 2 100 1 100 100 87
x7 22 1 1 21 1 7 89 89
x8 100 1 1 100 2 87 100 100
u1 100 100 100 100 0 100 100 87
u2 4 0 0 4 1 100 18 18
u3 2 0 100 2 0 2 4 4
u4 2 0 0 2 100 3 3 3
u5 3 0 0 3 1 100 18 18
T
m
t
b
n
l

4.1.1. Model output f̂1
The simulation model for the first output f1 defined in Eq. (18)

s a function of the features {x1, x2, x3, x4, x6, x7}. f1 can further
e divided into three sums f1 = h1(x1, x2, x3, x4, x7) + h2(x6) +

h3(x2, x3, x4), where h1 = k1
g1(x2,x3,x4)−x7

k0x1
, h2 = −k2x6 and h3 =

1(x2, x3, x4). g1 is a nonlinear function defined in Eq. (11). Fig. 6
hows the three most common learned structures of the first
utput of the neural network f̂1(x,u). In total, these structures
ccount for 86% of all learned structures of f̂1. The top structure
orms the resulting structure for 63% of the models. It is a function
8

of seven inputs f̂1 = f (x1, x2, x3, x4, x6, x8, u1). All input features
are connected to the same neuron in the first layer. Moreover, it is
only one neuron in each hidden layer. The upper bound in Eq. (9)
states that this model structure only has ndL

= 17·3
= 1 region.

his is equivalent to stating that the model collapses to one linear
odel. The middle and the bottom structures of Fig. 6 has more

han one neuron in the hidden layers. However, the structures can
e divided into two disconnected subnetworks since the hidden
eurons are not connected before they are added in the output
ayer. Hence, also these models collapse to linear models with a

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

v

s
t
F
B
f
f
c
x
l
a
t
x
t

Fig. 5. Model structure of each output function {f1, .., f8} for one of the trained dense neural network models. Blue circles represent neurons, inputs and outputs
in the model. Xi represent system variable i in the input layer, Ui represents control input i in the input layer, and Zi represents latent variable i in the layer it is
isualized. The directed edges indicate weights in the model.
ingle region. This means that the neural networks do not capture
he nonlinear dynamics in the simulation model. All structures of
ig. 6 are erroneously including x8 and u1 in their feature basis.
esides, x7 which is present in the simulation model f1 is not
ound by the top and bottom structures in Fig. 6. In fact, x7 is
ound only in 22% of the models f̂1 according to Table 5. The exact
ause of this erroneous feature selection is not trivial. However,
8 which is the wall temperature correlates highly with the side
edge temperature x7. Thus, x8 can possible have been learned as
feature of f1 instead of x7. Moreover, the alumina feed u1 on

he other hand affects the time derivative of the mass of alumina
˙2, the time derivative of mass of aluminum fluoride ẋ3 and the
ime derivative of cryolite ẋ4 directly. All these variables affect
ẋ1 through the liquidus temperature g1(x2, x3, x4). To understand
how this might cause the learning algorithm to find u1 as a
feature of f̂1, consider the following: let u1 be zero until time t .
Then, {x2, x3, x4} will be updated due to u1 at the next sampled
time step t + 1. However, the fourth-order Runge Kutta solver
splits the sampling interval into 4 smaller intervals {t+0.25, t+
9

0.5, t+0.75, t+1} and solve the ODE equations at all these time
steps. Thus, the state variables {x2, x3, x4} are updated already at
time t + 0.25. Since ẋ1 is depending on these variables, x1 will be
updated at t+0.5. Therefore, at time t+1, when data is sampled,
x1 would also be changed. Hence, the learning algorithm finds u1
to affect the time derivative ẋ1. This could might have been solved
by shortening the sampling interval. Furthermore, x1 not included
as a feature in 14% of the models. This might be a combination
of parameter initialization and that x1 is multiplied by the small
constant k0 = 2 · 10−5.

4.1.2. Model output f̂2
Fig. 7 shows the most common learned structure among the

models f̂2 that models the time derivative of alumina f2 = ẋ2. 97%
of the structures end up as the structure in Fig. 7. The simulation
model f2 in Eq. (19) is a linear model dependent on {u1, u2}. The
learned models f̂2 only finds u1 as the relevant feature. The reason
for this might be that u2 is proportional to a very small constant
k = 1.7·10−7. Variations in the line current u are not big enough
3 2

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

Fig. 6. Most common learned structures for f̂1(x,u).

Fig. 7. Most common learned structure for f̂2(x,u). 97% of f2 ends up with this structure.

10

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

t
b

4

f
x
a
s
i
T
s
i

4

m

Fig. 8. Most common learned structures for f̂3(x,u).
t
f
T
t
i
i
f
i
H
t
c
t
i

4

o be significant for the learning algorithm. The dynamics caused
y u2 are captured in a bias in the models.

.1.3. Model output f̂3
Fig. 8 shows the four most common learned structures of f̂3.

ˆ3 models the time derivative of the aluminum fluoride mass
˙3 in the cell. The simulation model ẋ3 = f3 in Eq. (20) is

linear model depending on the features {u1, u3}, and in all
tructures in Fig. 8, only these two features are found. As shown
n Table 5, these features are found in 100% of the trained models.
he structures found are mainly linear models. However, in the
econd and fourth structures, some weights connect the features
n intermediate layers.

.1.4. Model output f̂4
Fig. 9 shows the four most common learned structures among

odels f̂ that models the mass rate of liquid cryolite Na AlF in
4 3 6 m

11
he bath, namely ẋ4. ẋ4 is simulated by the simulation model ẋ4 =

4 in Eq. (20). f4 consist of the features {x1, x2, x3, x4, x6, x7, u1}.
able 5 show that {x2, x3, x4, x6, x8, u1} are included in 100% of
he learned models, x1 is included in 86% of the models and x7
s included in only 21% of the models. As for f̂1, x8 is erroneously
ncluded in the basis of the model. This might be explained by the
act that x7 and x8 highly correlate and that the wrong feature is
ncluded. The structures in Fig. 9 are all forming linear models.
owever, the simulation model ẋ4 = f4 is partly nonlinear. Thus,
he approximation f̂4 oversimplifies the dynamics. This might be
aused by a high weighting of the sparse regularization term. If
he loss function is less penalized, there is room for more weights
n the model and, therefore, more nonlinearities.

.1.5. Model output f̂5
Fig. 10 shows the most common learned structure among the

odels f̂ and include 98% of the learned model structures. f̂ is
5 5

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

m
x
E
H
T
s
b
a

Fig. 9. Most common learned structures for f̂4(x,u).
4

m
p
l
m
i
{

odeling the mass rate of produced aluminum in the cell ẋ5. The
5 time series are produced by the simulation model ẋ5 = f5 in
q. (22). f5 is a linear model dependent on the features {u2, u4}.
owever, most of the model structures are only depending on u4.
his can be caused by the fact that u2 is proportional to a very
mall constant k6 = 4.43 · 10−8. Thus, variations in u2 might not
e large enough for the learning algorithm to find u2 significant
s a basis for f̂5.
12
.1.6. Model output f̂6
Fig. 11 shows the most common model structures of f̂6. f̂6

odels the bath temperature time derivative ẋ6. The bath tem-
erature x6 is simulated by the ODE in Eq. (23). It is a non-
inear equation depending on {x1, x2, x3, x4, x6, x7, u2, u5}. The
ost common structure, learned by 57% of the models f̂6 is

llustrated in the top plot of Fig. 11. This structure has the basis
x1, x2, x3, x4, x6, x8, u1, u2, u5}. Hence, it finds u1 and x8, which is

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

a
c
T
T
m
t
a
m
i
t
t
h
i
f
a
i
h
s
h
i
f

4

f
x
t
b
p
e
6
s
a
h
i

t
o
l

Fig. 10. Most common learned structures for f̂5(x,u).
erroneously found in many of the structures above. A possible ex-
planation for this trend is given above. The structure has two neu-
rons in the first layer, one with the basis {x1, x2, x6, x8, u1, u2, u5}

nd one with the basis {x1, x2, x3, x4, x6, x8, u1}. Since the model
ollapses to a linear model, all terms are summed in the end.
hus, the separation of the basis is thus of little importance.
he second plot from above in Fig. 11 is the second most com-
on structure, and accounts for 11% of the models f̂6. It has

he same feature basis as the most common structure, but they
re arranged differently in the first layer. However, since both
odel structures are linear models, this arrangement is of minor

mportance. The third structure in Fig. 11 which account for 7% of
he structures of f̂6 has the basis {x1, x2, x6, u1, u2, u5}. Compared
o the other structures, {x3, x4, x8} is not present. Since it only
appens rarely, this is maybe partly caused by bad parameter
nitialization. The fourth most common structure, which accounts
or 6% of the structures, has the same feature basis as the first
nd the second most common structures. This structure is plotted
n the bottom of Fig. 11. While all other structures in Fig. 11
ave one linear response region, the fourth most common model
tructure models some nonlinearities. That is, neurons in the first
idden layer are connected in the second hidden layer. Hence, the
nput space must be divided into several linear response regions
or this structure.

.1.7. Model output f̂7
Fig. 12 shows the two most common structures for the models

ˆ7. f̂7 models the time derivative of the side ledge temperature ẋ7.
˙7 = f7 is simulated by the ODE in Eq. (24). ẋ7 is depending on
he feature basis {x1, x2, x3, x4, x6, x7, x8}. Table 5 states that the
asis {x2, x3, x4, x6, x8, u1} is present for 100% of the models, x1 is
resent for 99% of the models and x7 is present in 89% of the mod-
ls. The top plot in Fig. 12 show the structure that accounts for
3% of the models. The bottom plot account for 10% of the model
tructures of f̂7. These two structures collapse to linear models,
nd have the same feature basis {x1, x2, x3, x4, x6, x7, x8, u1}, but
ave minor differences in how weights are connected between
nput layer and first hidden layer. u1 is also for this model out-
put erroneously found as a basis, and a possible explanation is
mentioned above.

4.1.8. Model output f̂8
Fig. 13 show the two most common model structures for the

last model output f̂8. f̂8 models the time derivative of the wall
emperature ẋ8 = f8, which is simulated in Eq. (25). ẋ8 depends
n the feature basis {x1, x7, x8}. However, the most common
earned structure for f̂8 has the basis {x1, x2, x3, x4, x6, x7, x8, u1}.
This is the exact same structure as the most common learned
structure for f̂7. Therefore, a possible explanation is that f̂8 adapts
the same parameters as f̂7 in some cases as they highly corre-
lates. The bottom plot in Fig. 13 show the second most common
13
learned structure of the model output f̂8. This structure is learned
by 11% of the models f̂8. The feature basis for this structure
is {x1, x2, x7, x8}, and reminds more of the actual basis. In this
structure, there is only one erroneous learned feature, namely
x2. Figs. 6–13 and Table 5 show that the sparse learning is quite
consistent in finding the same feature basis and structure with
similar characteristics. However, some differences that affect the
models are present.

It is clear that doing a similar analysis for models in Fig. 5
is impossible as all interconnections make the models a black
box. On average, 93% of the weights of dense DNNs are pruned
in the sparse DNN models. For the outputs f̂1, f̂4, f̂6, f̂7 and f̂8,
approximately 40% of the input features are pruned of the model
structures. For f̂2, f̂3 and f̂5, 85%–95% of the input features are
pruned. For all outputs of the sparse DNN models, around 85%–
95% of the neurons are pruned at each layer. In a neural network,
the number of matrix operations only decreases if neurons are
pruned. That is, removing a neuron in layer j is equivalent to
removing a row in weight matrix Wj and a column in weight
matrix Wj+1. The dense models have a compact model structure,
where most weights are nonzero. The dense DNN models in the
case study have the shapes 13-15-14-12-8. The first number is the
number of features, the second, third, and fourth numbers are the
number of neurons in hidden layers, and the last is the number
of outputs. This shape gives 669 matrix operations in a forward
pass. An average sparse DNN, has the shape 13 − 6 − 6 − 6 − 8.
This gives 198 matrix operations. Thus, the number of matrix
operations in the forward pass of a sparse DNN model is reduced
by approximately 70%.

4.2. Generalizability perspective

This section focuses on the models’ performance on test data
in terms of accuracy and uncertainty. Furthermore, we also in-
vestigate the impact of the training data quantity and prediction
horizon on the performance measured in terms of AN-RFMSE.

4.2.1. Comparison of sparse and dense rolling forecast
Figs. 14 and 15 show the performance of the ensembles of 20

sparse and 20 dense DNNmodels with different parameter initial-
ization forecasting the state variables x in one of the time series
in the test set Stest (i) = {Xi} as defined in Eq. (35). The models are
trained on a dataset Strain = {{X1, Y1}, {X2, Y2}, ..., {X10, Y10}}

consisting of ten time series {X1, .., X10} with 999 time steps
each.

Figs. 14 and 15 indicate that the forecasts of sparse and dense
models are showing similar performance for the first time steps
after they are given the initial conditions. However, while the
forecasts calculated by sparse models show a consistently slow
drift from the simulated values of x, the mean and standard
deviation of forecasts calculated by dense models suddenly drifts

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989
Fig. 11. Most common learned structures for f̂6(x,u).
exponentially. The narrow banded standard deviation of sparse
neural networks can indicate that these models converge to mod-
els with similar characteristics during training despite different
14
parameter initialization. Furthermore, the consistently slow drift
between the sparse DNN model forecast of x and the true values
of x indicate that the sparse models are generalizing better as

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

h
w
a
d
t
s
a
t
d
F

Fig. 12. Most common learned structures for f̂7(x,u).
f
t

they are showing good forecasting capabilities in a broader re-
gion than the dense DNN models. Figs. 14 and 15 show some
interesting results that indicate better generalization of sparse
DNN models than dense DNN models and that the convergence
of model parameters for sparse DNN models are more robust to
random initialization than dense DNN models are.

4.2.2. Impact of the training data quantity and prediction horizon
Fig. 16 shows the median, maximum and minimum elements

of the AN-RFMSEvec vector.
Fig. 16 contains a good amount of information about the model

performance of dense DNN models and the sparse DNN models
with weight penalty λℓ1 = 1e−2. Figs. 16(a) to 16(d) report me-
dian and extreme values of AN-RFMSEvec over four different time
orizons for five ensembles of models trained on five datasets
ith different sizes. Hence, the results in Fig. 16 show how dense
nd sparse DNNmodels perform with varying amounts of training
ata over varying time horizons. Figs. 16(a) to 16(d) show that
he ensembles of sparse models trained on datasets with varying
ize show similar results, both in terms of median AN-RFMSE
nd extreme values. However, as Fig. 16(d) shows, there seems
o be a small trend that model ensembles trained with more
ata perform slightly better over longer forecasting horizons.
urthermore, the band between the minimum and maximum
15
values of AN-RFMSE is overall relatively small for all ensem-
bles of models and all forecast horizons for sparse models. The
converging behavior of the performance of ensembles of sparse
models as a function of the amount of data in the training set
indicates that only small amounts of data are required to gain
significance for the model parameters. While the sparse models
show stable performance across ensembles of models with dif-
ferent amounts of training data and slowly increasing values of
AN-RFMSE proportional to the length of the forecasting horizon,
the same cannot be said about the performance of the dense
models. When considering the dense models, Figs. 16(a) to 16(d)
indicate that there is a trend where both median, minimum and
maximum values of AN-RFMSE decreases significantly as sizes
of training set decreases. This expected trend indicates that the
performance improves with increasing dataset size. However, the
trend is not consistent for all ensembles of dense DNN models
for all forecasting horizons. Furthermore, the maximum values
of AN-RFMSE for ensembles of dense DNN models for longer
orecasting horizons such as in Fig. 16(c) and Fig. 16(d) show
hat AN-RFMSE exponentially increases for some of the models
within the ensemble. This indicates that the dense DNN models
are likely to have some input regions where the model output
is not sound. If the model estimate enters a region with poorly
modeled dynamics, the model estimate might drift exponentially.

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

t
t
m

r
d
d
o
F
d
w

Fig. 13. Most common learned structures for f̂8(x,u).
d
i
r
(
i
c
d
w
m
d
w

For short-term prediction, that is in Figs. 16(a) and 16(b), the
trend is that dense models show better performance for median
and minimum values than sparse models, especially within the
ensembles with large training sets. This may be because dense
models have more flexibility in terms of more parameters. How-
ever, it is important to state that the weights of the sparse models
evaluated in Fig. 16 are especially hard penalized, indicating that
the flexibility of these models are limited. For longer forecasting
horizons (Fig. 16(c) and Fig. 16(d)), sparse models are always
showing better performance than dense models in terms of me-
dian AN-RFMSE. This is a typical example of a bias–variance
rade-off. For all forecasting horizons and within all groups of
raining set sizes, sparse models are always showing a smaller
aximum value of AN-RFMSE.
While it is valuable to have models that can give reasonable

estimates in the long term, short-term prediction accuracy can
be given extra attention since the models typically perform best
on shorter horizons, and can therefore be used more aggressively
for optimal control. As observed above, dense models tend to
give better median accuracy than sparse models with hard ℓ1
egularization in shorter prediction horizons if trained on larger
atasets. We, therefore, conducted a study where we compared
ense models with sparse models trained with different levels
f weight regularization with different sizes of the training set.
ig. 17 show the mean prediction accuracy of an ensemble of
ense models and three different ensembles of sparse models
ith different degree of weight penalization (namely λℓ1 = 1e−4,
16
λℓ1 = 1e−3 and λℓ1 = 1e−2). Each ensemble consists of 20
models, and each of the models forecast 200 timesteps of 50
different test trajectories. The median accuracy is expressed in
terms a ratio called median prediction error ratio. This ratio is
given by of the ratio between the median prediction error of the
given ensemble of models and the median prediction error of the
ensemble of dense models. This means that the median prediction
error ratio of dense models is always one, and that smaller ratio
indicates higher median accuracy. For low and medium data sizes
(Figs. 17(a) and 17(b)), the median accuracy of all ensembles of
sparsely regularized models are more accurate then dense models
also in the short term. In this data regime, the different sparse
models show similar prediction capabilities. In Fig. 17(c), the
median prediction error ratio for models trained on 100 000 data
points are plotted. In this data regime, the median accuracy ratio
between medium sparse models (λℓ1 = 1e−3 and λℓ1 = 1e−4) and
ense models remains quite similar to the median accuracy ratio
n the between dense and medium sparse models in the low data
egime. Moreover, the prediction error ratio of very sparse models
λℓ1 = 1e−2) and the other models increase significantly. This
s probably because the model accuracy of very sparse models
onverges at low data limits. In contrast, medium sparse and
ense models can exploit their nonlinear prediction capabilities
hen large amounts of training data are available. In Fig. 17(d),
edian prediction error ratios for models trained on 200 000
ata samples are presented. At this point, sparse models trained
ith λℓ1 = 1e−4 has a median model prediction error ratio of

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

s
b

0
e

Fig. 14. Sparse rolling forecast of state variables {x1, .., x8} at each time instant. The true values of x and control inputs u are taken from one simulated set of test
et trajectories Xi ∈ Xtest . The orange dotted lin of 20 forecasts calculated by 20 sparse neural network models with different parameter initialization. The orange
and shows the standard deviation of the same 20 forecasts calculated by 20 sparse models.
.5, sparse models trained with λℓ1 = 1e−3 has a prediction
rror ratio of 1.1 and sparse models trained with λℓ1 = 1e−2

has a prediction error ratio of approximately 7. In this large data
regime, it seems clear that the medium sparse, and dense models
are very accurate. In contrast, the accuracy of very sparse models
converges for small training datasets. Furthermore, the sparse
model trained with the smallest sparsity regularization parameter
(λℓ = 1e−4) still outperforms the dense models. This study
1

17
illustrates that dense models require enormous amounts of data
to outperform sparse models.

To quantify the exponential drift of model estimates for dif-
ferent levels of sparsity, we run a test on ensembles of models
trained on datasets with different data sizes.

Fig. 18 shows the frequency of blowups for models with dif-
ferent degree of ℓ1 regularization ranging from λℓ1 = 0 giving
dense DNNs to λℓ = 1e−2 giving very sparse DNNs. The models
1

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

t
i
m

a
e
D
s
e
s
s
a
n

Fig. 15. Dense rolling forecast of state variables {x1, .., x8} at each time instant. The true values of x and control inputs u are taken from one simulated set of
est set trajectories Xi ∈ Xtest . The orange dashed line shows the average of 20 forecasts calculated by 20 dense neural network models with different parameter
nitialization. The orange band shows the standard deviation of the same 20 forecasts calculated by 20 dense models. The forecast is shown until some of the dense
odel estimates starts to diverge from true values.
h
(
h
t
a
m
1
λ

T

re trained on four different datasets, and for each dataset and
ach value of regularization parameter λℓ1 , an ensemble of 20
NNs are trained. The models are then tested on 50 different
imulated test trajectories, yielding 1000 possible blowups for
ach ensemble of models. The training datasets consists of re-
pectively 25 000, 50 000, 100 000 and 200 000 datapoints to
how the effect sparsification has for preventing blow ups for
range of training set sizes. In each subfigure of Fig. 18, the
umber of blow ups are given after three different prediction
18
orizons. For the models trained on the smallest training set
show in Fig. 18(a) and Fig. 18(b)) the trend is clearly that the
igher degree of sparsity, the lesser the blow ups. For models
rained on larger datasets (Figs. 18(c) and 18(d)) the dense models
re still having significantly more blow ups than all the sparse
odels. However, when we compare very sparse models (λℓ1 =

e−2) with medium-, and little sparse models (λℓ1 = 1e−3 and
ℓ1 = 1e−3 respectively), the difference becomes less significant.
his can maybe be explained by the fact that the amount of data

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

F
v
D
a

Fig. 16. Median, maximum and minimum AN-RFMSE. There are five ensembles of models of both sparse and dense DNNs trained on datasets with different sizes.
or each ensemble of models, there is a corresponding colored bar indicating median values and an error bar indicating maximum and minimum values of the
ector AN-RFMSEvec . Moreover, the size of the training sets are indicated on the x-axis of the subplots. The blue bar shows the median AN-RFMSE among 20 sparse
NN models over 20 test sets. The orange bar shows the median AN-RFMSE among 20 dense DNN models over 20 test sets. For each subfigure, the AN-RFMSE
re calculated for a given number of timesteps reported in the captions of each subfigure 16(a)–16(d). Notice the logarithmic scale of the y-axis. The x-axis is in

thousand.
Fig. 17. Median prediction error ratio for short prediction horizon. All median prediction errors are divided by the median prediction error of dense models. Thus,
dense models will always have a prediction error ratio of 1.
converges to a sufficient level also for the models trained with
smaller sparsity promoting regularization on the parameters.

4.3. Training stability perspective

Sparsification on a large ensemble of neural networks gives
similar sparse structures. This has been shown in the structure
plots in the Figs. 6–13. Furthermore, Table 5 show that sparse
19
models to a large extent finds the same feature basis for each of
the model outputs {f̂1, ..., f̂8}.

Moreover, Fig. 16 clearly indicates for all forecasting horizons
that the uncertainty bounds for dense models are much larger
than those for sparse models. For the longer horizons, some of
the dense models tend to blow up. This is probably due to that
the model enters a region of the input space where it overfits.
This can be seen as poor generalization to that specific area.

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

F
d
m
u
m
a
t
s
w

5

p
s
o
b
c
t
i
m

Fig. 18. Effect of regularization on the number of blowups for different amount of training data.
ig. 18 quantify this by showing that state estimates calculated by
ense models tend to blow up much more frequently than sparse
odels for all forecasting horizons and all training dataset sizes
sed in the case study. This indicates that the risk of finding bad
inima is higher for dense models. Furthermore, sparse models
re more likely to converge to reasonable minima with smaller
raining data than dense models. Hence, the study shows that
parse models have better training stability than dense models
ith limited data.

. Conclusions and future work

This article presents a sparse neural network model that ap-
roximates a set of nonlinear ODEs based on time series data
ampled from the system variables included in the ODEs. The set
f nonlinear ODEs represents an aluminum electrolysis simulator
ased on the mass and energy balance of the process. This in-
ludes nonlinear and interrelated models of electrochemical and
hermal subprocesses. The sparsity in the model is achieved by
mposing sparsity using ℓ1 regularization on the weights. The
ain conclusions from the study can be itemized as follows:

• ℓ1 regularization drastically reduces the number of param-
eters in the deep neural network (DNN). In our case we
witnessed a 93% reduction in the parameters compared to
the corresponding dense DNN for a regularization parameter
of λℓ1 = 1e−2.

• The sparse neural network was more interpretable using
the domain knowledge of the aluminum electrolysis process.
In contrast, the dense neural networks were completely
black-box.

• Sparse neural networks were consistently more stable than
their dense counterparts. This was reflected in the model
uncertainty estimates based on a large ensemble of models.
Furthermore, dense model estimates tend to diverge from
the states that they are estimating way more often than
sparse models. This means that the parameters of sparse
20
neural networks are more likely to end up at a reasonable
minima than the parameters of dense DNN with limited
training data.

• For small to medium amounts of data, even the most sparse
models have better median prediction accuracy than the
dense models for a short prediction horizon.

• For medium to large amounts of training data, sparse mod-
els with low weight penalization still has better prediction
accuracy than dense models in the short term. However,
dense models outperform very sparse models in terms of
median prediction accuracy in short prediction horizons. For
longer prediction horizons, sparse models outperform dense
models both in terms of higher median accuracy.

While the sparse models show promising results within inter-
pretability and generalizability, there is still a high potential for
improvement. There is a desire to increase prediction accuracy
and decrease the bias of the sparse models. This might be ad-
dressed by investigating other sparsity structures at different
layers that better compromise the bias–variance trade-off. One
possible direction is to inject simplified theories known from first
principle into the neural network to possibly increase accuracy.
Lastly, we have not addressed the additional challenges related
to the presence of noise.

CRediT authorship contribution statement

Erlend Torje Berg Lundby: Conceptualization, Methodology,
Software, Validation, Formal analysis, Investigation, Data cura-
tion, Writing – original draft, Writing – review & editing, Visu-
alization. Adil Rasheed: Conceptualization, Methodology, Valida-
tion, Writing – original draft, Writing – review & editing, Su-
pervision. Jan Tommy Gravdahl: Validation, Writing – review &
editing, Project administration, Funding acquisition, Supervision.
Ivar Johan Halvorsen: Validation, Writing – review & editing,
Project administration, Supervision.

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

D

c
t

D

A

g
w
I

A

t
t

t
T
a
e
s
t
o
i
a
A

C
q
a

c

w
c

w
s
s

t

W
s

W

W
s
s
m
e
a
w
w
W

W

w

w

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

This work was supported by the industry partners Borre-
aard, Elkem, Hydro, Yara and the Research Council of Nor-
ay through the project TAPI: Towards Autonomy in Process

ndustries, project number 294544.

ppendix. Simulation model

In this section we will follow a purely physics-based approach
o deriving the equations. At appropriate places we will highlight
he challenges and assumption

The dynamical system simulated in this study is generated by
he set of ordinary differential equations (ODE’s) in Eqs. (18)–(25).
his system of equations is derived from a simplified model of
n aluminum electrolysis cell. This model comprises simplified
nergy and mass balance of the electrolysis cell. The model con-
ider an energy balance based on sideways heat transfer, energy
ransfer between side ledge and bath due to melting and freezing
f cryolite, and energy input as a function of electrical resistance
n the electrolyte and voltage drop due to bubbles. The mass bal-
nce includes mass transfer between side ledge and bath, input of
l2O3 and AlF3, production of metal and consumption of the raw

material Al2O3 and tapping of metal from the electrolysis cell. In
Table 1, the system states and inputs are described. The purpose
of the simulation model is not to mimic the exact dynamics of
an aluminum electrolysis cell, but rather to generate nonlinear
dynamics similar to what occurs in a real aluminum electrolysis.

A.1. Heat capacity

Heat capacity is a measure of the amount of thermal energy a
body of a certain material can store for a given temperature and
volume and is given by the definition [37]:

C =
δq
δT

. (A.1)

[J/◦C] is the heat capacity, δq [J] is an infinitesimal heat
uantity and δT [

◦C]. Specific heat capacity cp is heat capacity
t constant pressure per unit of mass:

p =

(
dh
dT

)
p
, (A.2)

here cp [J/(kg◦C)] is the specific heat capacity, h [J/kg] is spe-
ific enthalpy and T [

◦C] is temperature. The subscript p indicates
constant pressure. In the process of aluminum electrolysis, the
pressure can be assumed to be constant at p = 1 [atm].

A.2. Energy and mass balance

The first law of thermodynamics known as the energy conser-
vation principle states the following [38]:

dEi
= Ėin, i − Ėout, i. (A.3)
dt
21
dEi
dt [W] is the change of energy of species i in the system, Ėin, i [W]

is the energy input rate and Ėout, i [W] is the energy output
rate of species i the system. System is here used synonymous
to control volume. The energy of the system can be transferred
through heat, work or through the energy associated with the
mass crossing the system boundary. This can be expressed as
follows:

Ėin, i = Q̇in, i + Ẇin, i + ṁin, iein, i (A.4)

Ėout, i = Q̇out, i + Ẇout, i + ṁout, ieout, i (A.5)

where Q̇in, i [W] and Q̇out, i [W] are the rates of heat in and out
of the system and Ẇin, i [W] and Ẇout, i [W] is the rate of work
generated on the system. ṁin, i [kg/s] and ṁout, i [kg/s] is the
mass rate into the system and out of the system respectively,
whereas ein, i [J/kg] and eout, i [J/kg] is the specific energy of the
mass entering and leaving the system. The specific energy can be
formulated as:

e = u +
1
2
v2

+ gz, (A.6)

here u [J/kg] is the specific internal energy, 1
2v

2
[J/kg] is the

pecific energy related to velocity v [m/s], and gz [J/kg] is the
pecific energy related to elevation difference z [m].
The change of system energy dEi

dt = Ėi can be written as:

dEi
dt

=
d(miei)

dt
, (A.7)

where m [kg] is the mass of the system and ei [J/kg] is the
specific energy of the system. Since the relevant control volumes
are related to an aluminum electrolysis, it is reasonable to neglect
the terms 1

2v
2 and gz. In this work, Q̇ = Qin, i − Qout, i is defined

as positive when net heat is provided to the system, and W =

Win, i−Wout, i is positive when work is added to the system. Thus,
he resulting energy equation can be formulated as:

d(miui)
dt

= m
dui

dt
+ui

dmi

dt
= ṁin, iuin, i−ṁout, iuout, i+Q̇ +Ẇ . (A.8)

ork W [J] is organized transfer of energy. W can be divided into
everal types of work [39]:

= Wflow + W∆V + Ws + Wel + Wother . (A.9)

flow is the work associated with the volume displacements of
treams that enter and exit the system, W∆V is the work as-
ociated with changes of the volume of the system, Ws is the
echanical work supplied using movable machinery, Wel is the
lectrochemical work supplied when the system is connected to
n external electric circuit. Wother is the sum of other types of
ork, for example if surface areas changes or electromagnetic
ork. For an aluminum electrolysis, W∆V = Ws = Wother ≈ 0.
flow is given by:

flow = pV , (A.10)

here p is pressure and V is volume. Enthalpy H [J] is given by:

H = U + pV . (A.11)

here U = m · u [J]. Furthermore, H = h · m. Thus:

m
dui

dt
+ ui

dmi

dt
= ṁin, ihin, i − ṁout, ihout, i + Q̇ + Ẇel. (A.12)

Assuming that the flow work is neglectable compared to the other
quantities in the energy equation for aluminum electrolysis gives
that H ≈ U . Recall that cp =

dh
dT . Hence:

dui
≈

dhi
=

∂hi dTi
= cpi

dTi
, (A.13)
dt dt ∂Ti dt dt

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

w

T

w

A

m
e
f
t
f

Q

Q

d

w

E
f
t
d
o

Q

w
t
p
t
m
i
T
H
e

o

Q

C

here dT
dt = Ṫi [

◦C] is the temperature derivative with respect to
time. This yields:

dTi
dt

=
1

micpi

(
ṁin, ihin, i − ṁout, ihout, i + Q̇ + Ẇel − ui

dmi

dt

)
(A.14)

he mass rate equation can be formulated as:

dmi

dt
= ṁin − ṁout +

nj∑
j=1

ri,j, (A.15)

where ri,j is the reaction rate of species i being produced or
consumed in reaction j. Assuming that the contents of the control
volume to be perfectly mixed and assuming that the flow work
is neglectable gives:

ui ≈ hi = hout, i. (A.16)

Hence, the resulting temperature specific energy equation for
component i in a control volume is given by:

dTi
dt

=
1

micpi

⎛⎝ṁin,i(hin,i − hout,i) + Q̇ + Ẇel − hout, i

nj∑
j=1

ri, j.

⎞⎠
(A.17)

The latter equation states that the time derivative of the temper-
ature in the control volume is dependent on the composition of
species in the control volume. It is assumed that the temperature
is equal for all components in the control volume. Furthermore,
it is assumed that there is a common heat loss Q̇ from a control
volume to other control volumes, and that electrical power Ẇel
is performed on the whole control volume instead of on different
components in the control volume. When different components
are mixed in a control volume, the enthalpy of this mix is more
complex than adding the enthalpy of individual species. However,
the complexity of mixed enthalpy is left out of this simulation
model. The heat capacity of a mix of components in a con-
trol volume cpcv is simplified to be constant despite of that cpcv
varies with composition and temperature in the control volume.
The values for different species and control volumes are taken
from [40,41]. Thus, the simplified simulation equation for the
temperature derivative in a control volume is given by:

dTcv
dt

=
1

mcvcpcv

([ni∑
i=1

ṁin,i(hin,i − hout,i)

]
+ Q̇ + Ẇel

−

ni∑
i=1

⎡⎣hout, i

nj∑
j=1

ri, j

⎤⎦⎞⎠ (A.18)

here mcp is the sum of masses in the control volume.

.3. Heat transfer

Heat transfer Q̇ [W] will from this point be referred to as Q ,
eaning that the dot is omitted. the In the process of aluminum
lectrolysis, the two most important principles for heat trans-
er are convection and conduction. Conduction is heat transfer
hrough molecular motion within a solid material. The expression
or conduction is given by

= −k · A ·
∂T
∂x

. (A.19)

[W] is heat transferred, A [m2
] is the area the heat is trans-

ferred through ∂T
∂x [

◦C/m] is the temperature gradient in the
irection x that the heat is transferred, and k [W/(m◦C)] is the
22
thermal conductivity, a material dependent proportionality con-
stant. For a fixed cross-section area, the one dimensional steady
state heat flow through a wall of thickness x [m] from x = 0
with temperature T1 to x = 1 with temperature T1 integrates to:

Q = k · A ·
T1 − T2

x
, (A.20)

here T1 > T2. Thermal conductive resistance for a plane wall
can be extracted from the latter expression:

Rcond =
x

k · A
, (A.21)

where Rcond [
◦C/W] is the thermal resistance, x[m] is the thick-

ness of the solid material in the direction heat is transferred,
and k and A are as mentioned above. Thermal conductive anal-
ysis is analogous to an electrical circuit, where the temperature
difference is analogous to the potential difference V , the heat
flow is analogous to the electrical current I and thermal resis-
tance is analogous to electrical resistance Rel. Convection is the
heat transfer through the mass motion of a fluid. Heat transfer
between a surface at temperature Ts and a fluid at a bulk tem-
perature Tf is due to convection. Convection can be formulated
as:

Q = h · A · (Ts − Tf), (A.22)

where A [m2
] is the contact surface between a solid surface

and the liquid, the heat transfer coefficient h [W/(m2)◦C] is the
proportionality constant between the heat flux and the thermo-
dynamic driving force for the flow of heat, i.e. the temperature
difference (Ts − Tf).

Thermal resistance can be defined for a fluid Rconv , and is given
by:

Rconv =
1

h · A
. (A.23)

As for electrical circuits, thermal resistances can be coupled in
series, and the reciprocal of the total resistance equals the sum
of reciprocals of individual resistances:

1
Rtot

=

N∑
i=1

1
Ri

(A.24)

q. (A.24) together with the assumption of stationary heat trans-
er makes it possible to calculate the heat transfer from one edge
o the other through several resistors in series as the temperature
ifference between the edges divided by the sum of reciprocals
f individual resistors:

=
T1 − TN+1∑N

i=1 Ri
, (A.25)

here T1 > T2 > · · · > TN+1 is temperature and Ri are the resis-
ors. In the simulation model, the heat transfer is assumed to be
iecewise stationary, meaning that the heat transfer is assumed
o be constant from the middle of one control volume to the
iddle of the adjacent control volume. However, the heat transfer

s not assumed to be stationary through several control volumes.
hus, there are separate energy balances for each control volume.
eat transfer is only considered through the side walls of the
lectrolysis cell (see Fig. A.19).
Convective heat transfer Qbath−liq from the bath to the surface

f the side ledge

bath−liq = hbath−slAsl(Tbath − Tliq). (A.26)

onductive transfer Qliq−sl from surface of side ledge to the center
of the side ledge

Qliq−sl =
2kslAsl(Tliq − Tsl)

. (A.27)

xsl

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

C
c

Q

T
Q
t
s

Q

A

i
c

P

w
c
o
d
t
t
a

c

T
r
t

R

R
d

Fig. A.19. Convection and conduction through several materials.
T
b
i
C

κ

T

U

G
c
e
v

U

j

onductive heat transfer Qsl−wall from center of side ledge to the
enter of the side wall

sl−wall =
Asl(Tsl − Twall)

(xwall/2kwall) + (xsl/2ksl)
(A.28)

he heat transfer from the middle of the wall to the ambient
wall−0 consists of conductive heat transfer from the middle of
he wall to the surface of the wall, and the convection from the
urface of the wall to the ambient air

wall−0 =
Asl(Twall − T0)

(1/hwall−0) + (xwall/2kwall)
. (A.29)

.4. Electrochemical power

Electrochemical power Ẇel [W], from now referred to as Pel
s the amount of energy transferred to a system from a electrical
ircuit and is defined as:

el = Ucell · Iline, (A.30)

here Ucell [V] is the applied cell voltage and Iline [A] is the line
urrent sent through the electrolyte. The cell voltage is composed
f three different types of voltage contributions. these are the
ecomposition voltage, which is the theoretical minimum po-
ential for the decomposition of alumina, overvoltage, meaning
he excess voltage due to electrode polarization and ohmic volt-
ge drops, due to resistance of various sections in the cell [42].

These contributions can be divided into smaller contributions
caused by different effects in different parts of the cells. To
make the mathematical expression in the resulting nonlinear
simulation model less comprehensive, only ohmic voltage drop
ontributions are included. These are:

• Electrolyte voltage drop Uel [V]

• Bubble voltage drop Ubub [V]

he voltage drop over the electrolyte is due to the electrical
esistivity of the electrolyte. Assuming uniform current density,
he resistance of the electrolyte is given by:

el =
1
κ

d
A
. (A.31)

el [�] is the electrical resistance, κ [1/(�m)] is electrical con-
uctivity, d [m] is the interpolar distance and A [m2

] is the total
surface of the anodes. The expression for electrical conductivity
23
is given by [21]:

κ = exp
(
2.0156 −

2068.4
Tbath + 273

+ 0.4349 · BR

− 2.07CAl2O3 − 0.5CCaF2

− 1.66CMgF2 + 1.78CLiF + 0.77CLi3AlF6

)
. (A.32)

bath [
◦C] is the temperature of the electrolyte, BR [−] is the

ath ratio, while Cx[−] is the concentration of substance x. BR
s assumed to be constant at 1.2, CMgF2 = 0.01, CCaF2 = 0.05,
LiF = 0 and CLi3AlF6 = 0. Thus, κ can be simplified to:

= exp
(
2.496 −

2068.4
Tbath + 273

− 2.07CAl2O3

)
. (A.33)

he voltage drop due to resistance in the electrolyte is given by:

EL = REL · Iline (A.34)

as accumulation beneath the anode surface which reduces the
ross-sectional area of the electrolyte in that zone. Thus, the
ffective resistivity increases and causes the so called bubble
oltage drop Ubub [43]:

bub =
dbub · jA

κ

φ

1 − φ
. (A.35)

A [A/cm2
] is the anode current density dbub [cm] in the bubble

layer thickness and φ [−] is the bubble coverage as a fraction of
the anode:

dbub =
0.5517 + jA
1 + 2.167jA

, (A.36)

and

φ = 0.509 + 0.1823jA − 0.1723j2A + 0.05504j3A

+
0.4322 − 0.3781BR

1 − 1.637BR
+

0.431 − 0.1437(xAl2O3 − xAEAl2O3)

1 + 7.353(xAl2O3 − xAEAl2O3)
(A.37)

xAl2O3 [−] is the weight percent of alumina in the bath and
xAEAl2O3

[−] is the weight percent of alumina at where the anode
effect occurs, in this case it is assumed that xAEAl2O3

= 2.0. Since
the simulation model is simplified to only include contributions
from U and U , the total applied cell voltage in the simulation
bub EL

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

m

U

A

m

w

n

w
f

i
g
r
T
t
r

m

Q
a
e
f

i
t
r
e

m

m
a

m

E
E
u

E

∆

c
i
a
t
c

E

w

b
a
c
T
f
f
s

odel is given by:

cell = UEL + Ubub. (A.38)

.5. Mass rates

The substances considered in the simulation model are alu-
ina (Al2O3), aluminum fluoride (AlF3) and cryolite (Na3AlF6) in

the bath and liquid aluminum (Al) in the metal pad below the
bath. Aluminum is extracted from alumina, which is dissolved in
the electrolytic bath. In addition to alumina, carbon anodes are
consumed in the net reaction, producing molten aluminum and
carbon dioxide gas (CO2):

2Al2O3 + 3C → 3CO2 + 4Al. (A.39)

This reaction occurs at a rate according to Faraday’s law for
aluminum electrolysis [41]:

ral =
CE · Iline
z · F

, (A.40)

here ral [mol/s] is the reaction rate of the primary reaction of
the Hall–Héroult process presented in Eq. (A.39), z = 12 is the
umber of electrons in the reaction, F = 96486.7 [(A · s)/mol]

is the Faraday constant, and CE[−] is the current efficiency, as-
sumed constant at CE = 0.95. The fed alumina contains several
impurities [41]. In the simulation model derived used in this
work, only sodium oxide (Na2O) is considered as additions in the
feeded alumina. The content of Na2O in alumina react as:

3Na2O + 4AlF3 → 2Na3AlF6 + Al2O3. (A.41)

3 Mol Na2O reacts with 4 Mol of AlF3 and produces 2 Mol of
Na3AlF6 and 1 Mol of Al2O3. The reaction rate of the latter reaction
rbath [kmol/s] can be formulated as:

rbath =
CNa2O

3MNa2O
uAl2O3 , (A.42)

here CNa2O [−] is the weight percent of Na2O in the alumina
eed, MNa2O [g/mol] is the molar mass of Na2O and uAl2O3 kg/s
is the rate of alumina feed. The reaction in Eq. (A.41) affects the
mass balance of both AlF3, Na3AlF6 and Al2O3. Therefore, rbath is
ncluded in the mass balance equations of all these species. The
eneral mass rate Eq. (A.15) is used in the derivation the mass
ate of side ledge, cryolite, alumina, aluminum fluoride and metal.
he control volumes in which there are nonzero mass rates are
he bath/electrolyte, the metal pad and the side ledge. The mass
ates in the electrolyte are:

˙ Al2O3 = (1 − CNa2O)uAl2O3 −
2

1000
ralMAl2O3 + rbathMAl2O3 . (A.43)

ṁAl2O3 [kg/s] is the mass rate of alumina and MAl2O3 [g/mol] is
the molar mass of alumina. 2

1000 ralMAl2O3 [kg/s] is the reaction
rate of alumina produced due to the reaction in Eq. (A.39) and
rbathMAl2O3 [kg/s] is the reaction rate of alumina due to the
reaction in Eq. (A.41). The mass rate of AlF3 is given by:

ṁAlF3 = uAlF3 − 4rbathMAlF3 , (A.44)

where ṁAlF3 [kg/s] is the mass rate of aluminum fluoride, uAlF3
[kg/s] is the input rate of aluminum fluoride and 4rbathMAlF3 [kg/s]
is the reaction rate of produced aluminum fluoride from the
reaction in Eq. (A.41). The mass rate of cryolite in the bath is given
by:

ṁcry = wfus + 2rbathMcry. (A.45)

ṁcry [kg/s] is the mass rate of cryolite in the electrolyte, 2rbathMcry
[kg/s] is the reaction rate of produced cryolite due to the reaction
 t

24
in Eq. (A.41) and wfus [kg/s] is the mass rate of cryolite transferred
between the side ledge and the bath. wfus is given by:

wfus =
Qbath−liq − Qliq−sl

∆fusHcry
. (A.46)

bath−liq and Qliq−sl is given in Eq. (A.26) and (A.27) respectively,
nd ∆fusHcry is the heat of fusion for cryolite, i.e. the amount of
nergy required to melt one kg of cryolite. The heat of fusion
or cryolite at 1000 ◦C is ∆fusHcry = 119495 [J/kg] [41], and is
assumed to be constant in the simulation model. The side ledge
s necessary to withstand the highly corrosive molten cryolite in
he oven. The side ledge consists of frozen cryolite [41]. The mass
ate of side ledge is therefore the transfer of cryolite between the
lectrolyte and side ledge due to melting and freezing:

˙ sl = −wfus. (A.47)

˙ sl [kg/s] is the mass rate of side ledge, and wfus [kg/s] is given
bove. The mass rate of aluminum is given by:

˙ Al =
2

1000
ralMAl − utap. (A.48)

ṁAl [kg/s] is the mass rate of aluminum, 2
1000 ralMAl [kg/s] is

the reaction rate of produced aluminum due to the reaction
in Eq. (A.39), and utap [kg/s] is the control input of tapping metal
from the oven.

A.6. Temperature derivatives

Eq. (A.18) is used to calculate the temperature derivatives in
the electrolyte, side ledge and side wall. As mentioned above,
Q̇ = Q and Ẇel = Pel. In the electrolyte, the energy is transferred
in and out of the control volume in many different ways. Heat
Qbath−sl is transferred through convection from the bath to the
side ledge surface (Qbath−liq) and from the side ledge surface to the
center of the side ledge with conductive heat Qliq−sl. The resulting
heat transfer can be formulated as:

Qbath−sl =
Tbath − Tsl

(xsl/2kslAsl) + 1/(hbath−slAsl)
. (A.49)

nergy is transferred through mass transfer in several ways.
nergy needed to heat and melt substances fed as control input
is given by:

u = ∆fusHAl2O3uAl2O3 + ∆fusHAlF3uAlF3

+ (Tbath − Tin)(c̄pAl2O3 uAl2O3 + c̄pAlF3 uAlF3). (A.50)

fusHi [J/kg] is the specific heat of fusion for substance i, and
¯pi [J/(◦Ckg)] is the average heat capacity from Tin to Tbath. Energy
s also transferred through mass transfer between the electrolyte
nd the side ledge. When side ledge (frozen cryolite) melts into
he bath, energy is required both to heat and melt the frozen
ryolite. The energy required to heat the frozen cryolite is:

tc, liq = wfuscp,cry,liq(Tbath − Tliq). (A.51)

fus [kg/s] is as mentioned above the mass rate of cryolite
etween bath and side ledge, and is positive when cryolite melts
nd is transferred to the bath. cp,cry,liq [J/(◦Ckg)] is the heat
apacity of molten cryolite Tbath [

◦C] is the bath temperature and
liq [

◦C] is the liquidus temperature at which cryolite melts and
reezes. Etc, liq [W] is the energy required to heat molten cryolite
rom liquidus temperature to bath temperature. The subscript tc
tands for temperature change and the subscript liq indicates that

he substance is liquid. When Etc,liq is positive, it is because Wfus

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989

i

t
h
o

E

E
c
p
t
l

T

T

T

Q

−

[

a
[

T

A

i
s
e
s
e
m
d
(
s

T

s positive, indicating that cryolite is melting. Thus, when Etc,liq is
negative, cryolite is freezing. The energy needed to melt frozen
cryolite is given by:

Esc = wfus∆fusHcry. (A.52)

Esc [W] is the energy required to melt the mass of frozen elec-
trolyte. The subscript sc stands for state change, meaning that it
transitions between solid and liquid. ∆fusHcry [J/kg] is the heat of
fusion for cryolite as mentioned above. When Esc is positive, cryo-
lite is melted and energy is required whereas when Esc is negative,
cryolite freezes, and energy is released. Energy is required for the
primary reaction in Eq. (A.39) since it is endothermic:

Eral = ral∆Hral . (A.53)

Eral [W] is the amount of energy required for the reaction to take
place, ral [mol/s] is as mentioned above the reaction rate of the
primary reaction in the process, and ∆Hral = 2197582 [J/mol] is
the enthalpy of reaction for (A.39). Since the reaction in Eq. (A.41)
is exothermic, this reaction releases energy to its surroundings.
This is given by:

Erbath = 1000rbath∆Hrbath . (A.54)

Erbath [W] is the energy released due to the reaction in (A.41) rbath
[kmol/s] = 1000 [mol/s] is the reaction rate of (A.41) and
∆Hrbath = −993283 [J/mol] is the enthalpy of reaction for (A.41).
The time derivative for the bath temperature is given by:

Ṫbath =
Pel − Qbath−sl − Eu − Etc, liq − Esc − Eral − Erbath

mbathcpbath, liq
. (A.55)

mbath [kg] is the mass of the liquid bath and cpbath, liq [J/(◦C ·kg)] is
the enthalpy of the liquid bath. For the side ledge control volume,
he energy transfer is through melting and freezing of cryolite and
eat transfer. The energy transfer related to melting and freezing
f cryolite is given by:

tc sol = wfuscpcry, sol (Tliq − Tsl). (A.56)

tc sol [W] is the energy required into the side ledge when frozen
ryolite heats from side ledge temperature Tsl to liquidus tem-
erature Tliq. wfus [kg/s] is given above and cpcry, sol [J/(◦C · kg)] is
he heat capacity of solid cryolite. The time derivative of the side
edge temperature is given by:

˙sl =
Qliq−sl − Qsl−wall − Etc sol

mslcpcry, sol
(A.57)

˙sl [
◦C/s] is the temperature change in the side ledge, Qliq−sl [W]

and Qsl−wall [W] is the heat in and out of the side ledge respec-
tively.msl [kg] is the mass of the side ledge, and cpcry, sol [J/(◦C·kg)]
is the heat capacity of solid cryolite. There is no mass transfer
through the wall. Therefore, the only energy transfer through this
control volume is through heat transfer. The time derivative of the
wall temperature Ṫwall [

◦C/s] is given by:

˙
wall =

Qsl−wall − Qwall−0

mwallcpwall

. (A.58)

sl−wall [W] is the heat from the side ledge to the wall, Qwall−0 [W]

is the heat from the wall to the ambient, mwall [kg] is the mass of
the wall and cpwall [J/(◦C · kg)] is the heat capacity of the wall.

A.7. Liquidus temperature

In [44], the liquidus temperature Tliq was determined for pri-
mary crystallization of cryolite (Na3AlF6) in a system consisting
of the bath components Na3AlF6 − −AlF3 − −LiF − −CaF2 −

MgF − −KF. The liquidus temperature was determined by
2

25
thermal analysis in a vertical alumina tube furnace under argon
atmosphere. An empirical cure was fitted, which is valid from
temperatures 1011 ◦C to approximately 800 ◦C. The curve is given
by:

Tliq = 1011 + 0.50[AlF3] − 0.13[AlF3]2.2

−
3.45[CaF2]

1 + 0.0173[CaF2]
+ 0.124[CaF2][AlF3] − 0.00542 ([CaF2][AlF3])1.5

−
7.93[Al2O3]

1 + 0.0936[Al2O3] − 0.0017[Al2O3]
2 − 0.0023[AlF3][Al2O3]

−
8.90[LiF]

1 + 0.0047[LiF] + 0.0010[AlF3]2

− 3.95[MgF2] − 3.95[KF]. (A.59)

x] denote the weight-% of component x. In the simulator, it is
ssumed that the following components are constant at values
MgF2] = 1%, [CaF2] = 5%, [KF] = [LiF] = 0%. This yields:

liq = 991.2 + 1.12[AlF3] − 0.13[AlF3]2.2 + 0.061[AlF3]1.5

−
7.93[Al2O3]

1 + 0.0936[AlF3] − 0.0017[AlF3]2 − 0.0023[AlF3][Al2O3]
.

(A.60)

.8. Further simplifications in the simulation model

In addition to assumptions and simplifications accounted for
n the article, some additional simplifications are made in the
imulation model. The reason for this is to simplify the analytical
xpression in the ODE’s used to simulate the dynamics of the
imulation model. The ODE’s will still describe a complex nonlin-
ar system, but comparing predictive models with the simulation
odels, and thus analyzing the performance of the novel pre-
ictive models will be clearer. From the expression for Ṫbath in
A.55), the terms Eu, Esc, ErAl and Erbath are omitted. Thus, in the
imulation model, the expression for Ṫbath is given by:

˙bath, sim =
Pel − Qbath−sl − Etc, liq

mbathcpbath, liq
. (A.61)

This neglects some essential physical effects in the process. This
is justified by the argument that the main purpose of this work
is to evaluate data driven models on a complex nonlinear system,
rather than simulating the dynamics of an aluminum electrolysis
cell as good as possible.

References

[1] E.-L. Hedrea, R.-E. Precup, R.-C. Roman, E.M. Petriu, Tensor product-based
model transformation approach to tower crane systems modeling, Asian J.
Control 23 (3) (2021) 1313–1323.

[2] V.-H.V. Quoc-Cuong Nguyen, M. Thomas, Optimal ARMAX model order
identification of dynamic systems, Lond. J. Eng. Res. 22 (2022) 1–22.

[3] S.L. Brunton, J.L. Proctor, J.N. Kutz, Discovering governing equations from
data by sparse identification of nonlinear dynamical systems, Proc. Natl.
Acad. Sci. 113 (15) (2016) 3932–3937.

[4] A. Naimi, J. Deng, A. Abdulrahman, V. Vajpayee, V. Becerra, N. Bausch, Dy-
namic neural network-based system identification of a pressurized water
reactor, in: 2020 8th International Conference on Control, Mechatronics
and Automation, ICCMA 2020, 2020, pp. 100–104.

[5] E.M. Rentería-Vargas, C.J. Zúñiga Aguilar, J.Y. Rumbo Morales, F.D.J.S.
Vázquez, M. De-La-Torre, J.A. Cervantes, E.S. Bustos, M. Calixto Rodríguez,
Neural network-based identification of a PSA process for production and
purification of bioethanol, IEEE Access 10 (2022) 27771–27782.

[6] D. Fooshee, A. Mood, E. Gutman, M. Tavakoli, G. Urban, F. Liu, N. Huynh,
D. Van Vranken, P. Baldi, Deep learning for chemical reaction prediction,
Mol. Syst. Des. Eng. 3 (2018) 442–452.

http://refhub.elsevier.com/S1568-4946(23)00007-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb1
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb2
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb3
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb4
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb5
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb6
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb6

E.T.B. Lundby, A. Rasheed, J.T. Gravdahl et al. Applied Soft Computing 134 (2023) 109989
[7] V.D. Papadopoulos, G.N. Beligiannis, D.G. Hela, Combining experimental
design and artificial neural networks for the determination of chlorinated
compounds in fish using matrix solid-phase dispersion, Appl. Soft Comput.
11 (8) (2011) 5155–5164.

[8] S.S. Blakseth, A. Rasheed, T. Kvamsdal, O. San, Deep neural network enabled
corrective source term approach to hybrid analysis and modeling, Neural
Netw. 146 (2022) 181–199.

[9] O. San, A. Rasheed, T. Kvamsdal, Hybrid analysis and modeling, eclecticism,
and multifidelity computing toward digital twin revolution, 2021, arXiv:
2103.14629.

[10] Y. Zhang, P. Tičo, A. Leonardis, K. Tang, A survey on neural network
interpretability, 2021, arXiv:2012.14261.

[11] S. Liu, D.C. Mocanu, M. Pechenizkiy, On improving deep learning gener-
alization with adaptive sparse connectivity, 2019, arXiv preprint arXiv:
1906.11626.

[12] S.S. Blakseth, A. Rasheed, T. Kvamsdal, O. San, Combining physics-based
and data-driven techniques for reliable hybrid analysis and modeling
using the corrective source term approach, Appl. Soft Comput. 128 (2022)
109533, http://dx.doi.org/10.1016/j.asoc.2022.109533.

[13] H. Robinson, E. Lundby, A. Rasheed, J.T. Gravdahl, A novel corrective-source
term approach to modeling unknown physics in aluminum extraction
process, 2022, http://dx.doi.org/10.48550/ARXIV.2209.10861.

[14] E.T.B. Lundby, A. Rasheed, I.J. Halvorsen, J.T. Gravdahl, A novel hybrid
analysis and modeling approach applied to aluminum electrolysis process,
J. Process Control 105 (2021) 62–77.

[15] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, J. Comput. Phys. 378
(2019) 686–707.

[16] S. Pawar, O. San, B. Aksoylu, A. Rasheed, T. Kvamsdal, Physics guided
machine learning using simplified theories, Phys. Fluids 33 (1) (2021)
011701.

[17] M.C. Mozer, P. Smolensky, Skeletonization: A technique for trimming the
fat from a network via relevance assessment, in: D. Touretzky (Ed.),
Advances in Neural Information Processing Systems, 1, Morgan-Kaufmann,
1988.

[18] H. Zhou, C. Ibrahim, W.X. Zheng, W. Pan, Sparse Bayesian deep learning
for dynamic system identification, Automatica 144 (2022) 110489.

[19] M. Schoukens, P. Mattson, T. Wigren, J.-P. Noel, Cascaded tanks benchmark
combining soft and hard nonlinearities, in: Workshop on Nonlinear System
Identification Benchmarks, 2016, pp. 20–23.

[20] T. Wigren, M. Schoukens, Coupled Electric Drives Data Set and Reference
Models, Department of Information Technology, Uppsala Universitet, 2017.

[21] K. Grotheim, H. Kvande, Introduction To Aluminium Electrolysis-
Understanding the Hall-Heroult Process, Aluminium-Verlag, Dusseldorf,
Germany, 1993.

[22] V. Gusberti, D.S. Severo, B.J. Welch, M. Skyllas-Kazacos, Modeling the mass
and energy balance of different aluminium smelting cell technologies, in:
Light Metals 2012, Springer, 2012, pp. 929–934.

[23] K.E. Einarsrud, I. Eick, W. Bai, Y. Feng, J. Hua, P.J. Witt, Towards a
coupled multi-scale, multi-physics simulation framework for aluminium
electrolysis, Appl. Math. Model. 44 (2017) 3–24.

[24] P. Mandin, R. Wüthrich, H. Roustan, Industrial aluminium production: the
Hall-Heroult process modelling, ECS Trans. 19 (26) (2009) 1.
26
[25] P.R. Chermont, F.M. Soares, R.C. De Oliveira, Simulations on the bath chem-
istry variables using neural networks, in: TMS Light Metals, 2016-January,
2016.

[26] A.M.F. de Souza, F.M. Soares, M.A.G. de Castro, N.F. Nagem, A.H.d.J.
Bitencourt, C.d.M. Affonso, R.C.L. de Oliveira, Soft sensors in the primary
aluminum production process based on neural networks using clustering
methods, Sensors 19 (23) (2019).

[27] D. Bhattacharyay, D. Kocaefe, Y. Kocaefe, B. Morais, An artificial neural
network model for predicting the CO2 reactivity of carbon anodes used
in the primary aluminum production, Neural Comput. Appl. 28 (3) (2017)
553–563.

[28] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[29] J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable

neural networks, 2018, arXiv preprint arXiv:1803.03635.
[30] M. Zhu, S. Gupta, To prune, or not to prune: exploring the efficacy of

pruning for model compression, 2017.
[31] X. Zeng, D.S. Yeung, Hidden neuron pruning of multilayer perceptrons

using a quantified sensitivity measure, Neurocomputing 69 (7–9) (2006)
825–837.

[32] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, A. Peste, Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural
networks, 2021, arXiv preprint arXiv:2102.00554.

[33] B.K. Natarajan, Sparse approximate solutions to linear systems, SIAM J.
Comput. 24 (2) (1995) 227–234.

[34] G.F. Montufar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear
regions of deep neural networks, in: Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, K.Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems, 27, Curran Associates, Inc., 2014.

[35] R. Pascanu, G. Montufar, Y. Bengio, On the number of response regions of
deep feed forward networks with piece-wise linear activations, ICLR, 2014.

[36] T. Serra, C. Tjandraatmadja, S. Ramalingam, Bounding and Counting Linear
Regions of deep neural networks, 2017, CoRR arXiv:1711.02114.

[37] W. Gale, T. Totemeier (Eds.), 14 - General physical properties, in: Smithells
Metals Reference Book, Eighth Edition, Butterworth-Heinemann, Oxford,
2004, 14–1–14–45.

[38] I. Dincer, C. Zamfirescu, Chapter 1 - Fundamentals of thermodynamics,
in: I. Dincer, C. Zamfirescu (Eds.), Advanced Power Generation Systems,
Elsevier, Boston, 2014, pp. 1–53.

[39] S. Skogestad, Chemical and Energy Process Engineering, CRC Press, 2008.
[40] A dynamic model for the energy balance of an electrolysis cell, Chem. Eng.

Res. Des. 74 (8) (1996) 913–933.
[41] T. Drengstig, On process model representation and AlF3 dynamics of

aluminum electrolysis cells (Ph.D. thesis), Norwegian Univ. of Science and
Tech.(NUST), 1997.

[42] S.W. Jessen, Mathematical modeling of a Hall Héroult aluminium reduction
cell, (Master’s thesis), Technical University of Denmark, DTU, DK-2800 Kgs.
Lyngby, Denmark, 2008.

[43] T.M. Hyde, B.J. Welch, The gas under anodes in aluminium smelting cells.
Part I: Measuring and modelling bubble resistance under horizontally
oriented electrodes, Light Metals-Warrendale (1997) 333–340.

[44] A. Solheim, S. Rolseth, E. Skybakmoen, L. Støen, Å. Sterten, T. Støre,
Liquidus temperature and alumina solubility in the system Na3 AlF 6-
AlF 3-LiF-CaF 2-MgF 2, in: Essential Readings in Light Metals: Aluminum
Reduction Technology, Volume 2, John Wiley & Sons, 2013, pp. 73–82.

http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb7
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb8
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb8
http://arxiv.org/abs/2103.14629
http://arxiv.org/abs/2103.14629
http://arxiv.org/abs/2103.14629
http://arxiv.org/abs/2012.14261
http://arxiv.org/abs/1906.11626
http://arxiv.org/abs/1906.11626
http://arxiv.org/abs/1906.11626
http://dx.doi.org/10.1016/j.asoc.2022.109533
http://dx.doi.org/10.48550/ARXIV.2209.10861
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb14
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb15
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb16
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb17
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb18
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb19
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb19
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb19
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb19
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb19
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb20
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb21
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb22
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb23
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb24
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb25
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb26
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb27
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb28
http://arxiv.org/abs/1803.03635
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb30
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb31
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb31
http://arxiv.org/abs/2102.00554
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb33
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb34
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb35
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb35
http://arxiv.org/abs/1711.02114
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb37
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb38
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb39
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb40
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb40
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb40
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb41
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb42
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb43
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44
http://refhub.elsevier.com/S1568-4946(23)00007-8/sb44

	Sparse deep neural networks for modeling aluminum electrolysis dynamics
	Introduction
	Theory
	Deep neural networks (DNN)
	Sparse neural networks and regularization
	Region bounds for PWA neural networks
	Simulation model

	Method and experimental setup
	Training with sparsity promoting regularization
	Experimental setup and data generation
	Performance metrics

	Results and discussion
	Interpretability perspective
	Model output hat f1
	Model output hat f2
	Model output hat f3
	Model output hat f4
	Model output hat f5
	Model output hat f6
	Model output hat f7
	Model output hat f8

	Generalizability perspective
	Comparison of sparse and dense rolling forecast
	Impact of the training data quantity and prediction horizon

	Training stability perspective

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix. Simulation model
	Heat capacity
	Energy and mass balance
	Heat transfer
	Electrochemical power
	Mass rates
	Temperature derivatives
	Liquidus temperature
	Further simplifications in the simulation model

	References

