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Abstract

Modeling complex physical processes such as the extraction of aluminum is mainly done using pure physics-based
models derived from first principles. However, the accuracy of these models can often suffer due to a partial under-
standing of the process, uncertainty in the input parameters, and numerous modeling assumptions. More recently, with
the ever-increasing availability of data, there has been an explosion of interest in applying modern machine learning
methods because of their ability to learn complex mappings directly from data. Unfortunately, these models tend to
be black boxes, require an enormous amount of data, and do not utilize existing domain knowledge. In this work,
we develop a novel approach combining physics-based and data-driven modeling approaches while eliminating some
weaknesses. We use a data-driven model to correct a misspecified physics-based model of the Hall–Héroult process
in an aluminum electrolysis cell using a corrective source term added to the set of governing ordinary differential
equations. Our approach ensures that the existing knowledge is utilized to the maximum extent possible while relying
on the data-driven models only to model those aspects which the physics-based model does not represent well. We
compare this approach with an end-to-end learning approach and an ablated physics-based model, showing that the
proposed hybrid method is more accurate, consistent, and stable for long-term predictions.

Keywords: Aluminum electrolysis, Sparse neural network (NN)s, Data-driven modeling, Nonlinear dynamics,
Ordinary differential equations

1. Introduction

Many real-world phenomena can be modeled as differ-
ential equations, which allows us to predict the changes
in the state of the system over time. These equations
are often derived from first principles, and we refer to
the resulting models as physics-based models (PBM).
Through careful observation of physical phenomena,
we can develop theories to describe and understand the
underlying system. This understanding is condensed
into mathematical equations, which can be solved to
make predictions about the system.

In this work, we consider the case of aluminum elec-
trolysis using a Hall-Héroult cell. In the process in-
dustry, state-of-the-art models are typically PBMs. For
example, Gusberti et al. (2016) derive the model equa-
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1Equal contribution

tions of an electrolysis cell from a mass and energy bal-
ance and a complete control volume analysis. Einarsrud
et al. (2017) develop a multi-scale, multi-physics mod-
eling framework based on three coupled models that
predict the electromagnetic forces and metal pad pro-
file, the bubble dynamics around a single anode, and the
total cell bath flow, respectively. To reduce the com-
putational requirements of such models, Johansen et al.
(2022) propose a coarse-grained computational fluid dy-
namics (CFD) simulation that models the spatial disper-
sion rate of alumina.

PBMs have many inherent advantages. Due to their
sound foundations from first principles, they are intu-
itive and explainable, they work well in operating con-
ditions where the model assumptions are upheld, and
there are mature theories that can be used to analyze
their properties (e.g., stability and robustness to uncer-
tainties and noise). However, accurately modeling many
real-world systems comes at a high computational cost.
Assumptions must be made to reduce the complexity of
the model and minimize computational requirements.
This is often necessary when developing control sys-

Preprint submitted to Elsevier January 3, 2024



tems or computing probabilistic state estimates for the
system from noisy measurements (Pozna et al., 2010).
We may also fail to describe aspects of the observations
accurately. This can result in an incomplete, unfaithful,
or overly simplified representation of the original sys-
tem.

Data-driven modeling (DDM) is an alternative approach
that does not base itself on an understanding of physics
but instead attempts to approximate the underlying
function directly from measurement data. Over the
past decade, the rapid progress in machine learning has
created a massive demand for data, with a supply to
match. This has enabled the development of DDMs
for a wide range of tasks, including the modeling and
control of aluminum electrolysis processes. Meghlaoui
et al. (1998) use a neural network to classify the inter-
nal state of an electrolysis cell and use this for feed-
back control. Chermont et al. (2016) apply a single hid-
den layer NN with more than 200 neurons to simulate
the bath chemistry and temperature. de Souza et al.
(2019) combine clustering methods and Deep Neural
Network (DNN)s to create soft sensors of the bath tem-
perature, aluminum fluoride, and metal level in the alu-
minum electrolysis. Bhattacharyay et al. (2017) model
the effects of impurities in the carbon anode on the CO2
reactivity of the anodes. Lundby et al. (2023) mod-
els important states of the aluminum electrolysis using
DNNs, and studied the effect of sparsity promoting ℓ1
regularization on model generalizability, interpretabil-
ity, and stability. DDMs such as DNNs offer enormous
flexibility, and it is often possible to achieve remark-
able accuracy with relatively little computation, even
when the underlying physics of a system is not fully
understood. This reduces development costs and makes
DDMs very attractive from an economic standpoint.

The downside of using DDMs is that they do not per-
form well in operating conditions that are not well rep-
resented by the training data, known as poor general-
ization. Many classes of DDMs also require unreason-
ably large amounts of data to reach sufficient accuracy
and generalization. These drawbacks mean that when
DDMs are used in practice, there is a preference for
more transparent multivariate statistical models that can
yield more insight into industrial processes. For exam-
ple, Majid et al. (2011) use multivariate methods for
state estimation of an aluminum smelting process, and
Hedrea et al. (2021) propose the use of interpretable
tensor-product methods to model nonlinear systems.

Combining PBM and DDM can help mitigate the dis-
advantages of both, as illustrated in Figure 1. This ap-

proach is referred to as hybrid analysis and modeling
(HAM), although many other terms have been coined
in the literature, such as Informed Machine Learning
(von Rueden et al., 2023), Scientific Machine Learning
(Rackauckas and Nie, 2017), and Structured Learning
(Pineda et al., 2023). Interested readers are referred to
(Rai and Sahu, 2020; von Rueden et al., 2020; Arias
Chao et al., 2022; Bradley et al., 2022) for surveys of
this field; some of the main approaches are reviewed
below.

Structural methods are the most straightforward ap-
proach, where PBM is embedded into a differentiable
framework such as PyTorch (Paszke et al., 2019). For
example, Amos and Kolter (2017) insert a differentiable
convex optimization solver into a NN, and Belbute-
Peres et al. (2018) develop a differentiable physics sim-
ulator using a similar approach. Structural methods can
serve as a powerful inductive bias for machine learn-
ing (ML) problems and as a way to incorporate con-
straints. A challenge is that the embedded PBMs are of-
ten iterative, which greatly increases the computational
costs of training and inference. Other HAM approaches

PBMDDM

Big data

HAM

Figure 1: Hybrid analysis and modeling: working at the intersection
of PBM, DDM and Big data.

introduce inductive biases into the training method in-
stead of the model. For example, Raissi et al. (2018)
propose the physics-informed neural network (PINN),
where a NN acts as the solution to a partial differen-
tial equation (PDE) with specific boundary conditions.
Each term in the PDE can be computed via automatic
differentiation, allowing the specification of a loss func-
tion which can be introduced as a soft constraint for
models that are additionally trained on measurement
data. However, Krishnapriyan et al. (2021) show that
optimizing such complex cost functions is challenging.
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Sometimes the structure of the problem is unknown, but
a solution can be constructed from a finite library of
building block “primitives”. Methods that find a use-
ful combination of primitives are called search-based
methods, as surveyed by Boussaı̈d et al. (2017). The
family of methods that search for equations using a li-
brary of function primitives are known as equation dis-
covery methods (Vaddireddy et al., 2020; Raviprakash
et al., 2022). A notable work is SinDy, proposed by
Brunton et al. (2016), which uses compressed sensing
to obtain a sparse linear combination of functions. This
line of research has inspired work by Bakarji and Tar-
takovsky (2021); Champion et al. (2019) that search for
even sparser solutions. Udrescu et al. (2020) attempt to
speed up the search by looking for symmetries in the
data. Genetic programming or evolutionary approaches
such as (Hachicha et al., 2011) are also popular ap-
proaches to this problem; see Zhong et al. (2017) for
a more in-depth survey. However, equation discovery
methods have only been demonstrated for relatively low
dimensional examples and require significant computa-
tional time. Deep symbolic regression approaches pro-
posed by Kim et al. (2021) and Xu et al. (2021) treat
a NN itself as an expression tree, where the neurons
in each layer have different activation functions repre-
senting the library of allowed functions. While this
can quickly achieve good accuracy on higher dimen-
sional data, the resulting expression trees are very dense
and uninterpretable. A related concept, called physics-
guided neural network (PGNN), addresses this by in-
serting promising features (i.e. that appear in existing
PBMs) into the intermediate layers of a standard NN
(Pawar et al., 2021a,b; Robinson et al., 2022). These
additional features act as a store of prior knowledge
that the network can utilize while still modeling the un-
known physics as a black box and avoiding the over-
fitting that usually results from excessive feature engi-
neering.

A common issue among the HAM methods presented
above is that optimizing the models becomes signifi-
cantly more expensive and demanding than a simpler
DDM due to additional hyperparameters and the evalu-
ation of PBMs during training. To avoid this, estimating
or learning a correction to an existing PBM is possi-
ble. For example, Lundby et al. (2021) use compressed
sensing methods to recover the model error from sparse
measurements, which is used to improve state estimates
for a Hall-Héroult cell. Blakseth et al. (2022b) propose
the Corrective source term approach (CoSTA) approach,
where a DDM is trained to correct the error of an exist-
ing PBM, which can be pre-computed for more efficient

training. Blakseth et al. (2022b) show that this is suf-
ficient to correct for various types of model error and
apply CoSTA to simple one-dimensional heat transfer
problems. Blakseth et al. (2022a) extend the work to
2D heat transfer problems and propose a mechanism to
perform a “sanity check” of the CoSTA model. The ad-
ditive nature of the CoSTA makes it easy to apply to any
system where a PBM is available.

This work aims to study how an accurate model of a
Hall-Héroult cell can be developed from an existing, but
incorrect, PBM using a HAM approach. The incorrect
PBM is constructed by modifying the “true” model and
is corrected using the CoSTA method, where the correc-
tive source term is parameterized as a NN. The corrector
is trained on data sampled from the true system, and the
results are compared with a pure DDM approach using
a network with the same architecture. The contributions
of this work are:

• Extending CoSTA to multidimensional problems:
The previous works utilizing CoSTA were limited
to modeling a single state temperature in either one
or two-dimensional heat transfer.

• Successfully applying CoSTA to a system with ex-
ternal control inputs: None of the previous work
involved any control inputs. In the current work,
five inputs are used to excite the system.

• Investigating the predictive stability of CoSTA rel-
ative to end-to-end learning and showing that a hy-
brid approach can yield more trustworthy models.

• Demonstrating that CoSTA is applicable to a
system with complex coupling between different
states and inputs: the system considered here in-
volves eight states and five inputs which form a
set of eight ordinary equations which are highly
coupled. The previous works involving heat trans-
fer involved only one partial differential equation
hence the potential of CoSTA to coupled problems
was never evaluated earlier.

This paper is structured as follows. Section 2 presents
the relevant theory behind the aluminum extraction pro-
cess, NNs, and CoSTA. The data generation, training
process, and evaluation are detailed in Section 3. The
results are presented in Section 4, and the behavior of
the system and the models is discussed. The main find-
ings and future work are outlined in Section 5.
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2. Theory

In the following section, we describe the underlying
PBM for this system, the fundamentals of NNs, and the
CoSTA approach to HAM.

2.1. Physics-based model for aluminum extraction

Insulation

Carbon lining

Current bar collectorCurrent bar collector

Molten aluminium

Al2O3 + AlF3 + Na3 AlF6

x2 x3 x4

Carbon
anode Carbon

anode

Al2O3 feed u1

AlF3 feed u3

Line current u2

Tapped metal
flow rate u4

Anode-cathode
distance u5

Mass of side ledge x1

Mass of produced Al x5

Bath temperature x6

Side-ledge temperature x7

Side-wall temperature x8

Figure 2: Schematic of the Hall-Héroult cell. Adapted with permis-
sion from (Lundby et al., 2023).

An overview of the physical plant is shown in Figure 2.
A PBM of the plant can be derived from the mass/en-
ergy balance of the system. We omit this step and
present the model directly. The internal dynamics of
the aluminum electrolysis cell are described by a set of
ordinary differential equations (ODE), with the general
form:

ẋ = f(x,u), (1)

where x ∈ R8 is the state vector, u ∈ R5 are external in-
puts, and f (x,u) describes the nonlinear dynamics. Ta-
ble 1 shows the names of the internal states and external
inputs. The intrinsic properties of the Al2O3 + AlF3 +

Table 1: Table of states and inputs

Variable Physical meaning Unit Variable Physical meaning Unit
x1 mass side ledge kg x2 mass Al2O3 kg
x3 mass AlF3 kg x4 mass Na3 AlF6 kg
x5 mass metal kg x6 temperature bath ◦C
x7 temperature side ledge ◦C x8 temperature wall ◦C
u1 Al2O3 feed kg/s u2 Line current kA
u3 AlF3 feed kg/s u4 Metal tapping kg/s
u5 Anode-cathode distance cm

Na3 AlF6 mixture are determined by the mass ratios of
x2 (Al2O3) and x3 (AlF3), written as:

cx2 = x2/(x2 + x3 + x4)
cx3 = x3/(x2 + x3 + x4)

(2)

We then define the following quantities:

g1 = 991.2 + 112cx3 + 61c1.5
x3
− 3265.5c2.2

x3
(3a)

−
793cx2

−23cx2 cx3 − 17c2
x3
+ 9.36cx3 + 1

g2 = exp
(
2.496 −

2068.4
273 + x6

− 2.07cx2

)
(3b)

g3 = 0.531 + 3.06 · 10−18u3
1 − 2.51 · 10−12u2

1 (3c)

+ 6.96 · 10−7u1 −
14.37(cx2 − cx2,crit) − 0.431

735.3(cx2 − cx2,crit) + 1

g4 =
0.5517 + 3.8168 · 10−6u2

1 + 8.271 · 10−6u2
(3d)

g5 =
3.8168 · 10−6g3g4u2

g2(1 − g3)
(3e)

where g1 is the liquidus temperature Tliq, g2 is the elec-
trical conductivity κ, g3 is the bubble coverage , g4 is the
bubble thickness dbub and g5 is the bubble voltage drop
Ubub. The critical mass ratio cx2,crit is given in Table 2.

The full PBM can now be written as a set of 8 ODEs:

ẋ1 =
k1(g1 − x7)

x1k0
− k2(x6 − g1) (4a)

ẋ2 = u1 − k3u2 (4b)
ẋ3 = u3 − k4u1 (4c)

ẋ4 = −
k1(g1 − x7)

x1k0
+ k2(x6 − g1) + k5u1 (4d)

ẋ5 = k6u2 − u4 (4e)

ẋ6 =
α

x2 + x3 + x4

[
u2g5 +

u2
2u5

2620g2
− k7(x6 − g1)2 (4f)

+ k8
(x6 − g1)(g1 − x7)

k0x1
− k9

x6 − x7

k10 + k11k0x1

]
ẋ7 =

β

x1

[k9(g1 − x7)
k15k0x1

− k12(x6 − g1)(g1 − x7) (4g)

+
k13(g1 − x7)2

k0x1
−

x7 − x8

k14 + k15k0x1

]
ẋ8 = k17k9

(
x7 − x8

k14 + k15k0 · x1
−

x8 − k16

k14 + k18

)
(4h)

The constants (k0, .., k18, α, β) in Equation (4) are
described and given numerical values in Table 2.

The model presented in Equation (4) makes some sim-
plifications compared to the actual process of aluminum
electrolysis. Firstly, only the heat transfer through the
side walls is modeled, assuming that heat flow through
the top and bottom of the plant is negligible in com-
parison. The model may thus overestimate the internal
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temperatures, and the required power input through the
line current u2 may be slightly lower than in practice.
Secondly, the spatial variations of the state variables are
not considered. Instead, only the average values of the
states are computed, such as the side ledge temperature,
or cumulative values like the mass of the side ledge x1.
Routine operations such as the alumina feeding and an-
ode replacement disturb the local thermal balance and
cause local thermal imbalances (Cheung et al., 2015).
Modeling these local variations would require knowl-
edge of the mass transfer inside the cell due to the flow
patterns and velocity fields in the bath, current distribu-
tion, etc. These phenomena (corresponding to the or-
ange ellipse of Figure 3) are challenging to model and
measure and are therefore omitted to reduce complexity.
Lundby et al. (2023) present a more detailed derivation
of the model.

Resolved physics Modeled physics Observed physics

Full physics

Figure 3: PBMs are limited by what we can observe and what we can
compute. In other words, it is not always possible to observe the full
physics of a system, the observations can be modeled with additional
assumptions, and the model must be simplified and discretized to per-
form computations (i.e., “resolved”). Adapted with permission from
(Blakseth et al., 2022a)
.

2.2. Data-driven modeling using neural networks

Resolved physics Modeled physics Observed physics

Full physics

Figure 4: DDMs trained on the data will implicitly capture the com-
plete physics of this process, assuming that the data is a realization
of the underlying data-generating process. Adapted with permission
from (Blakseth et al., 2022a)
.

Table 2: Constants in the simulator

Constant Physical meaning Numeric value
k0 1/(ρslAsl) 2 · 10−5

k1 2kslAsl/∆fusHcry 7.5 · 10−4

k2 hbath-slAsl/∆fusHcry 0.18
k3 0.002

MAl2O3 ·CE

z·F 1.7 · 10−7

k4 CNa2O
4MAlF3
3MNa2O

0.036

k5 CNa2O
2Mcry

3MNa2O
0.03

k6 0.002 MAl ·CE
z·F 4.43 · 10−8

k7 k2 · cpcry, liq 338
k8 k1 · cpcry, liq 1.41
k9 Asl 17.92
k10 1/hbath-sl 0.00083
k11 1/(2ksl) 0.2
k12 k2 · cpcry, s 237.5
k13 k1 · cpcry, s 0.99
k14 xwall/(2kwall) 0.0077
k15 1/(2ksl) 0.2
k16 T0 35
k17 1/(mwall cp,wall) 5.8 · 10−7

k18 1/hwall−0 0.04
α 1/cpbath, liq 5.66 · 10−4

β 1/cpcry, sol 7.58 · 10−4

cx2,crit 0.022

Instead of making assumptions and fitting our theories
to the data, DDMs can learn to approximate the under-
lying process directly from data. Figure 4 shows this
conceptually. In this work, we model Equation (4) us-
ing a NN. A NN can be seen as a general function ap-
proximator. We denote the trainable parameters of the
model as θ ∈ Rp and denote the network as

y = f̂(z; θ), (5)

where z ∈ Rd, y ∈ Rs are the inputs and outputs to the
model respectively. The network is composed of sev-
eral layers. The jth layer operates on the output of the
previous layer and produces its own output, which we
call Z j ∈ RL j . A fully connected layer can be seen as an
affine transformation composed with a nonlinear activa-
tion function σ : Rn 7→ Rn

Z j = σ(W jZ j−1 + b j), (6)

where W j ∈ RL j×L j−1 is called the weight or connection
matrix, and b j ∈ RL j is the bias vector of layer j. We
denote the rows of W j as w j+1

i , and the individual bias
terms as b j

i . The nonlinear activation function σ can, for
example, be the sigmoid function, hyperbolic tangent
function (tanh), or the binary step function, to men-
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tion a few. All of these operate element-wise over Z j,
but there exist functions that operate on groups on ele-
ments, e.g., the maxout activation function. Recently,
the most popular activation function is ReLU due to its
computational simplicity, representational sparsity, and
non-vanishing gradients. The ReLU activation function
is given by:

σ(z) = max{0, z}. (7)

From the previous section, it can be seen that NNs are
dense models with many parameters. The largest net-
works in use today often have more parameters than the
amount of available data to train them on. For exam-
ple, the widely publicized GPT-3 model has 175 billion
parameters (Brown et al., 2020). Because of this, avoid-
ing overfitting and getting deep learning models to gen-
eralize is a vital topic in deep learning, and methods
that accomplish this are generically referred to as regu-
larization (Goodfellow et al., 2016). Examples of such
methods include weight decay (Krogh and Hertz, 1991),
dropout (Srivastava et al., 2014), and batch normaliza-
tion (Ioffe and Szegedy, 2015), all of which are essen-
tial tools in ensuring a low generalization error for these
models. In recent years, more and more research has
shifted towards sparse architectures with significantly
fewer non-zero trainable parameters than their dense
counterparts (Hoefler et al., 2021). There are many rea-
sons for this. Firstly, sparser networks are much cheaper
to store and evaluate, making it easy to deploy them on
low-cost hardware (Sandler et al., 2018). Secondly, re-
cent work shows a tantalizing hint that sparse models
may generalize better than their dense counterparts. In
their seminal work, Frankle and Carbin (2019) show
with high probability that randomly initialized dense
NNs contain subnetworks that can improve generaliza-
tion compared to the dense networks.

Many regularization methods can be expressed as a
penalty function R(w) that operates on the parameters θ
of the network. The total loss function C(zi, yi, θ) used
for training the network can then be written as

C(zi, yi, θ) = L(yi, f̂(zi; θ)) + λR(w), (8)

where the set D = {(zi, yi)}Ni=1 is the training dataset,
L(·, ·) is the loss function and λ ∈ R+ serves to trade-off
L(·, ·) and R(·).

The standard choice of loss function L(·, ·) for regres-
sion tasks is the mean squared error (MSE):

L(zi, yi) = (zi − yi)2. (9)

In the training process, the total cost function C(·, ·) is
minimized to find optimal values of the parameters:

θ∗ = argmin
θ

 1
N

N∑
i=1

C(zi, yi, θ)

 . (10)

For NNs, this optimization problem is typically solved
using stochastic gradient descent (SGD). This is pre-
ferred over higher-order methods due to the memory re-
quired to compute or approximate higher-order deriva-
tives for many parameters θ. Training iterations are per-
formed for randomly sampled subsets of the full dataset,
known as minibatches. This further reduces computa-
tional and memory requirements and allows the train-
ing process to be run in parallel more easily. Wilson
and Martinez (2003) demonstrated that minibatch meth-
ods might also improve the generalization error of NNs.
When all examples in D have been processed once, it
is said that a training epoch has been completed. Train-
ing is continued for multiple epochs until some stopping
criterion is met. Refer to Goodfellow et al. (2016) for a
more in-depth presentation of deep-learning fundamen-
tals.

The most straightforward way to penalize non-sparse θ
is the ℓ0 norm, often referred to as the sparsity norm:

Rℓ0 (w) = ||w||0 =
∑

i

1 wi , 0,
0 wi = 0.

(11)

It is clear that ℓ0(θ) returns the number of nonzero
parameters. It has been shown that adding this reg-
ularization term can yield unique solutions for over-
determined linear systems, which is the basis of com-
pressed sensing (Boche et al., 2015). However, ℓ0(θ) is
non-differentiable, making it unsuitable for gradient de-
scent optimization. In fact, Natarajan (1995) show that
this optimization problem is NP-hard (Natarajan, 1995).
Instead, we can utilize the ℓ1 norm, which is a convex
relaxation of the ℓ0 norm and is given by:

Rℓ1 (w) = ||w||1 =
∑

i

|wi|. (12)

The ℓ1 norm sometimes does not reduce the weights
to zero, but rather to very small magnitudes. In this
case, we can apply a threshold to the weights and set
all weights below this threshold to zero. This method
is known as magnitude pruning and is the simplest of a
family of pruning methods (Hoefler et al., 2021). De-
spite the simplicity of this method, it can reduce the
computation complexity of a NN while maintaining the
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performance of the model (Gale et al., 2013).

2.3. Corrective source term approach (CoSTA)

CoSTA

L̃x̂ = f σ+

PBM DDM

Figure 5: CoSTA combines PBM and DDM into a unified model by
adding a NN-generated corrective source term to the governing equa-
tion of the PBM.

In this section we outline the CoSTA approach, illus-
trated in Figure 5. Consider the following general prob-
lem:

Lx = f(x,u) (13)

whereL is a differential operator, x is the unknown state
of the system that we wish to compute, and f(·, ·) is a
source term that depends on the state x and external in-
puts u(t).

Assume now that we have a PBM designed to predict x,
and let x̃ denote the PBM’s prediction of the true solu-
tion x. If x̃ , x, there is some error in the PBM, and
this error must stem from at least one of the following
misspecifications in the model:

1. Incorrect f in Equation (13), replaced by f̃.
2. Incorrect L in Equation (13), replaced by L̃ .
3. A combination of the above.
4. Discretization of L , replaced by LD2.

Note that case 4 is also mathematically equivalent to
misspecifying L . For example, ∂

∂t could be approxi-
mated using a finite forward difference. We can write
this using the difference operator ∆h, such that h is the
time step and 1

h∆h f (t) = ( f (t + h) − f (t))/h. We can
therefore limit our discussion to Cases 1 and 2 without
loss of generality.

Suppose now that the PBM-predicted solution x̃ is given
as the solution of the following system:

L̃ x̃ = f̃ (14)

This formulation encompasses both Case 1 (L̃ = L and
f̃ , f), Case 2 ( L̃ , L and f̃ = f), and combinations

2Derived using, for example, finite differences. This is necessary
when Equation (13) lacks analytical solutions, which is almost always
the case.

thereof (for L̃ , L and f̃ , f). Furthermore, suppose
we modify the system above by adding a source term
σ̂ to Equation (14), and let the solution of the modified
system be denoted ˆ̃x. Then, the modified system reads

L̃ ˆ̃x = f̃ + σ̂ (15)

and the following theorem holds.

Theorem. Let ˆ̃x be a solution of Equations (15), and
let x be a solution of Equations (13). Then, for both
operators L̃ , L and both functions f, f̃, such that ˆ̃x and
x are uniquely defined, there exists a function σ such
that ˆ̃x = x.

Proof : Define the residual σ of the PBM’s governing
equation (14) as3

σ = L̃x − f̃. (16)

If we set σ̂ = σ in Equation (15), we then obtain

L̃ ˆ̃x = f̃ + σ̂ (17)

= f̃ + L̃x − f̃ (18)

= L̃x (19)

=⇒ ˆ̃x = x + c (20)

where c is a function of independent variables. We can
eliminate c by setting appropriate boundary conditions.
■
The theorem shows that we can always find a correc-
tive source term σ̂ that compensates for any error in
the PBM’s governing equation (14) such that the solu-
tion ˆ̃x of the modified governing equation (15) is equal
to the true solution x. This observation is the princi-
pal theoretical justification of CoSTA. As illustrated by
Figure 6, the CoSTA approach should be applicable to
many physical problems that can be described using dif-
ferential equations.

3Instead of defining the residual in terms of the approximate solu-
tion (e.g., as is done in truncation error analysis (LeVeque, 2002, chap-
ter 8)), we define σ by inserting the true solution into Equation (13).
Our proof is simpler and fits well with systems where state measure-
ments are more readily available than the true governing equations.
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Resolved physics Modeled physics Observed physics

Full physics

Resolved physics

Figure 6: CoSTA maximizes the utilization of existing PBMs while
correcting for the unknown using DDM. The PBM represents the re-
solved physics, a set of differential equations describing the system’s
state with unmodeled errors.
The data-driven corrective source terms capture all the
unaccounted physics and unintentional numerical dis-
cretization errors.Adapted with permission from (Blak-
seth et al., 2022a).

3. Method and experimental setup

This section explains how data is generated, how mod-
eling errors are induced in the PBM, the modeling ap-
proaches applied and compared in the case study, and
the performance metrics used to evaluate the models
used in the case study.

3.1. Data generation and preprocessing

The dynamical system data is generated by integrat-
ing the set of non-linear ODE’s in Eq.(4) representing
the system dynamics using the fourth-order numerical
integrator Runge-Kutta 4 (RK4) with a fixed timestep
∆T = 10s. One time-series simulation starts at an ini-
tial time t0 with a set of initial conditions x(t0), and last
until a final time T = 5000×∆T . For the slow dynamics
of the aluminum process, a sampling time of 10s turns
out to be sufficiently fast with negligible integration er-
rors. Higher sampling frequencies would lead to unnec-
essary high computational time and large amounts of
simulation data. The initial conditions for each trajec-
tory were uniformly sampled from the ranges shown in
Table 3. Each simulation generates a set of trajectories
with 8 states and 5 inputs. The training set consists of
40 simulated trajectories, and 100 simulated trajectories
are used as the test set. This relatively large number of
test cases was chosen to allow us to explore the statistics
of how each model performs.

Table 3: Initial conditions for system variables. For x2 and x3, con-
centrations cx2 and cx3 are given.

Variable Initial condition interval
x1 [2060, 4460]
cx2 [0.02, 0.05]
cx3 [0.09, 0.13]
x4 [11500, 16000]
x5 [9550, 10600]
x6 [940, 990]
x7 [790, 850]
x8 [555, 610]
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Figure 7: Training and test set trajectories of the system states. Only
10 random sample test trajectories are shown here to clarify the fig-
ures.

Figure 7 shows the complete training and test sets. The
training set trajectories are blue, while the test set trajec-
tories are orange. The figures show that the training set’s
range covers the test set’s range, indicating that models

8



are evaluated on interpolation cases in the test set.

3.1.1. Estimation of the regression variable ẋ
The ODEs in Equation (4) are time-invariant. This
means that at time k + 1, ẋk+1 in general only depends
on the current state and input (xk,uk) at time k. In other
words, the system has the Markov property. The time
derivatives at time k are estimated as the forward differ-
ence:

ẋk =
xk+1 − xk

h
, (21)

where h is the time step. In this work, we use h = 10s.
This numerical derivative induces a discretization error.
However, since the dynamics of the aluminum electrol-
ysis are slow, this error is considered negligible. In a
pure DDM approach, the datasets are listed in pairs as
follows

DDDM = {((xk,uk) , ẋk)}N1 , (22)

with N training pairs. In other words, the DDM aims
to map (xk,uk) to ẋk. For the corrective source term
model presented in Equation (15), the target variable is
the error of the PBM model:

DCoSTA = {(xk, yk,CoSTA)} = {(xk,uk), (ẋk − ˆ̇xk,PBM)}N1 .
(23)

3.1.2. Input signal generation
While machine learning models are excellent for func-
tion approximation and interpolating data, they nat-
urally only sometimes extrapolate correctly and are
highly dependent on the quality and variety of the train-
ing data. Due to this, the training data must adequately
cover the intended operational space of the system, i.e.,
the region of the state space where the system typically
operates. Furthermore, the data should capture the dif-
ferent nonlinear trends of the system. For systems with-
out exogenous inputs, variation can only be induced by
simulating the system with different initial conditions
x(t0). For systems with exogenous inputs, the initial con-
ditions are generated similarly. Moreover, the input vec-
tor u will excite the system dynamics. The aluminum
process has a feedback controller that ensures safe and
prescribed operation. However, operational data from a
controlled, stable process is generally characterized by
a low degree of variation which is insufficient for effec-
tive system identification. A well-known convergence
criterion for identifying linear time-invariant systems is
persistency of excitation (PE). A signal x(tk) is PE of or-
der L if all sub-sequences [x(tk), . . . , x(tk + L)] span the
space of all possible sub-sequences of length L that the
system is capable of generating. While the PE criterion
is not directly applicable to nonlinear systems, sufficient

coverage of the dynamics is required for successful sys-
tem identification (Ljung, 1998; Nelles, 2020). To this
end, we add random perturbations to the control inputs
to push the system out of its standard operating condi-
tions. In general, each control input i is given by:

ui = Deterministic term + Random term. (24)

The control inputs u1, u3 and u4 are impulses. The
random term is zero for these control inputs when the
deterministic term is zero. The deterministic term is a
proportional controller. The control inputs u2 and u5 are
always nonzero. These control inputs have constant de-
terministic and random terms that change periodically.
The random term stays constant for a certain period
∆Trand before changing to a new randomly determined
constant. Different objectives must be considered when
choosing the period ∆Trand.

On the one hand, it is desirable to choose a large period
∆Trand so that the system can stabilize and evolve under
the given conditions to reveal the system dynamics un-
der the given conditions. On the other hand, the systems
must be tested under many different operational condi-
tions. By empirically testing different periods ∆Trand,
and seeing how the dynamics evolve in simulation, it
turns out that setting ∆Trand = 30∆T is a fair compro-
mise between the two. In this study, we generate the
random disturbances using the Amplitude-modulated
Pseudo-Random Binary Signal (APRBS) method (Win-
ter and Breitsamter, 2018).

Table 4: Equations used to control the aluminum process

Input Deterministic term Random term interval ∆Trand

u1 3 · 104(0.023 − cx2 ) [−2.0, 2.0] ∆T
u2 1.4 · 104 [−7 · 103, 7 · 103] 30 · ∆T
u3 1.3 · 104(0.105 − cx3 ) [−0.5, 0.5] ∆T
u4 2(x5 − 104) [−2.0, 2.0] ∆T
u5 0.05 [−0.015, 0.015] 30 · ∆T

Table 4 gives the numerical values of the determinis-
tic term of the control input, the interval of values for
the random terms, and the duration ∆Trand of how long
the random term is constant before either becoming zero
(u1, u3, u4) or changing to a new randomly chosen value
(u2, u5).

3.2. Modeling approaches

The case study compares three different modeling ap-
proaches, namely a PBM approach using an ablated
PBM, the hybrid modeling approach CoSTA - combin-
ing the ablated PBM with a DNN, and a purely DDM
approach - modeling the entire set of ODEs with DNNs.
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Comparing the CoSTA approach with a PBM and a
DDM approach will reveal the effect of the CoSTA ap-
proach.

3.2.1. Ablated PBM
As previously discussed, we are interested in modeling
scenarios where the PBM does not capture the full un-
derlying physics of the system. For this case study, the
PBM is described by Equation (4), with modifications to
induce modeling errors so that the PBM deviates from
the simulation model. That is, Equation (3a) describing
the liquidus temperature g1 was ignored, and g1 was set
to a constant.

g1,PBM = 968◦C. (25)

The resulting model, which ignores the dynamics of
the liquidus temperature, is referred to as the ablated
PBM. This variable was chosen because the model is
particularly sensitive to errors in g1. Inspecting Equa-
tion (4) shows that the ablated PBM will incorrectly pre-
dict the evolution of [x1, x4, x6, x7, x8]. As we will see
later in Section 4 and Figure 10, this can lead to errors
of roughly 5°C in g1, and 500kg in the side ledge mass
x1 (a relative error of 10%). The PBM used in the case
study is a set of ODEs on the general form:

ˆ̇xk = fPBM(xk, uk), (26)

where ˆ̇xk is the PBM estimate of the time derivative at
timestep k, fPBM(·, ·) is the ablated PBM, and xk and uk

are state variables and control inputs at timestep k.

3.2.2. DDM
The DDM approach models the time derivative of the
state, and has the following form:

ˆ̇xk = fDDM(xk, uk). (27)

In the case study, the DDM fDDM(·, ·) is a DNN. The
DNN is trained on the training setD in Equation (22).

3.2.3. CoSTA
The case study aims to develop a DDM to correct the
ablated PBM using measurement data sampled from the
true model. The resulting hybrid model CoSTA pre-
sented on a general form in Equation (15) consists of
the PBM in Equation (26) and a DDM that is meant to
correct the misspecified PBM. The CoSTA in this case
study used to model the set of ODEs in Equation (4) is
given by:

ˆ̇xk = fCoSTA(xk, uk) = fPBM(xk, uk)+fcorr(xk, uk). (28)

fcorr is a DNN that aims to correct the errors in the PBM.
The parameters of the corrective source term fcorr are
learned through training, using the manipulated training
set in Equation (23).

3.3. DNN Training

The PBM in CoSTA will typically reduce the complex-
ity of the learning problem compared to the learning
problem of a pure DDM approach. In light of this, it
is interesting to see the effects of sparsity promoting ℓ1
regularization, which is known to lead to sparser models
and better generalization with less available data, while
maintaining model accuracy. The case study includes
two versions of the DNN in the CoSTA, namely:

• Dense fcorr

• Sparse fcorr

where fcorr is the corrective source term in Equa-
tion (28). In order to compare the results with a purely
DDM approach, the same two versions of complexity
are used in the DDM approach in Equation (27), that is:

• Dense fDDM

• Sparse fDDM

The architecture of all networks, both in CoSTA and the
DDM approach, was [13, 20, 20, 20, 20, 8] (13 inputs, 8
outputs, 4 hidden layers with 20 neurons each). The
ReLU activation function was used for all layers except
the output layer, which had no activation function. The
same architecture was used for all networks for a fairer
comparison. The models were trained on the training
set using the total-loss function shown in Equation (8),
where the loss function L(·, ·) is the MSE as shown in
Equation (9).

The ADAM optimizer, a popular SGD method with
adaptive learning rates proposed by Kingma and Ba
(2017), was used with the following default parameters:
Initial learning rate η = 10−3, Gradient forgetting fac-
tor β1 = 0.9, and Gradient second-moment forgetting
factor β2 = 0.999. The dense networks were trained
with λ = 0, and sparse networks with λ = 10−4. All
models were trained for 100 epochs (an epoch is defined
as one full pass over the dataset). This value was cho-
sen empirically during initial training attempts by in-
specting training loss curves and selecting a rough aver-
age of optimal training times. An alternative would be
early stopping, where training is terminated when per-
formance on an additional validation dataset begins to
drop. However, Sjöberg and Ljung (1995) and Bishop
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(1995) showed that early stopping could have an addi-
tional regularizing effect by constraining the parameter
space. Therefore, early stopping was not used to main-
tain similar training conditions over all experiments.

3.4. Performance metrics
This work focuses on long-term forecast error as a per-
formance measure. Starting with the initial condition
x(t0), the next states in the trajectory are estimated it-
eratively {x̂(t1), ..., x̂(tn)}. The predicted trajectory
is called a rolling forecast. The model estimates the
time derivatives of the states dx̂i/dt based on the current
state x(ti) and control inputs u(ti) and initial conditions
x0 = x(t0), or the estimate of the current state variables
x̂(ti) if t > t0:

dx̂(ti)
dt
=

f̂(x̂(ti), u(ti)), if ti > t0
f̂(x0(ti), u(ti)), if ti = t0

(29)

Then, the next state estimate x(ti+1) is calculated as

x̂(ti+1) = x̂(ti) +
d x̂(ti)

dt
· ∆T. (30)

3.4.1. Model accuracy measure
The rolling forecast can be computed for each of the
states xi for one set of test trajectories Stest. How-
ever, presenting the rolling forecast of multiple test sets
would render the interpretation difficult. By introducing
a measure called Average Normalized Rolling Forecast
Mean Squared Error (AN-RFMSE) that compresses the
information about model performance, the models can
be evaluated quickly on many test trajectories. The AN-
RFMSE is a scalar defined as:

AN-RFMSE =
1
p

p∑
i=1

1
n

n∑
j=1

(
x̂i(t j) − xi(t j)

std(xi)

)2

, (31)

where x̂i(t j) is the model estimate of the simulated state
variable xi at time step t j, std(xi) is the standard devi-
ation of variable xi from the training set Strain, p = 8
is the number of state variables, and n is the number
of time steps the normalized rolling forecast MSE is
averaged over. Hence, for every model f̂ j and every
test set time series Stest(i), there is a corresponding AN-
RFMSE.

3.4.2. Model stability measure
When performing a rolling forecast, the predicted state
may reach a region of the state space where the model is
unstable. This may arise because there is no data in that
region of the state space or because the true model is

unstable. At this point, the predicted trajectory will di-
verge, and the error will grow exponentially. This phe-
nomenon is referred to as a blow-up. The open loop
instability of the model can be quantified by counting
the number of blow-ups that occur within a finite time
horizon. In this work, a blow-up is defined using the
following criterion:

max
j<n

 1
p

p∑
i=1


∣∣∣x̂i(t j) − xi(t j)

∣∣∣
std(xi)

 > 3 (32)

where p = 8 is again the number of state variables and n
is the number of time steps to consider. In other words,
a blow-up is said to occur when the mean absolute er-
ror for all states and timesteps exceeds three standard
deviations of the test set. Although this estimate is con-
servative, the number of blow-ups is not underestimated
due to the exponential growth of the error.

4. Results and discussion

As described in Section 3.1, the test set consists of
100 simulated trajectories, each with a length of 5000
timesteps, with a timestep of ∆T = 10sec. Each model
is used to perform a rolling forecast given the initial
conditions and input signal of each test trajectory. The
experiments were repeated 10 times with different ran-
dom initializations of the trainable parameters to in-
crease the statistical significance of the results. The 4
model types evaluated in the case study that consists of
DNNs are the dense and sparse DNN model structures
in the CoSTA(”CoSTA dense” and ”CoSTA sparse” in
Figure 8 and Figure 9), and dense and sparse DNN
model structures in the DDM approach (”DDM dense”
and ”DDM sparse” in Figure 8 and Figure 9). These
model structures are described in Section 3.3. The ab-
lated PBM for the CoSTA method has no trainable pa-
rameters, and remained the same in all experiments.

Figure 8 shows violin plots of the AN-RFMSE values
defined in Equation (31) for all model types. The AN-
RFMSE violin plots are shown at three different pre-
diction horizons to demonstrate the models’ short-term,
medium-term, and long-term performance. The AN-
RFMSE values included in constructing a single vio-
lin plot for a given horizon and model type are based
on the forecasts of the test-set trajectories up until the
given forecasting horizon, and blow-ups are omitted as
outliers. A possible issue here is that excluding these
AN-RFMSE values favors the models that have many
blow-ups. However, the results also show high blow-up
rates correlate with high AN-RFMSE. Figure 9 shows
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Figure 8: Violin-plot of the AN-RFMSE for all model types for 100
different initial conditions and inputs signals. The width of the bar
reflects the distribution of the data points, and the error bars repre-
sent the range of the data. The error is shown at three different cut-
offs to compare the short, medium, and long-term performance. We
trained 10 different instances for each model type for statistical signifi-
cance. The results show that CoSTA improves the predictive accuracy
over the whole trajectory. Introducing sparse regularization appears
to improve performance for DDM. However, it only appears to affect
CoSTA models in the long term, where sparse CoSTA models appear
to have less variance.

the frequency of blow-ups for each model type, based
on the blow-up measure defined in Equation (32).

These results show that, on average, all DDM and
CoSTA models have a lower AN-RFMSE than the ab-
lated PBM in the short and medium term. However, all
DDM and CoSTA models experience some blow-ups in
the long term, which the PBM model does not. The
dense DDM fared the worst, with 27.3% of long-term
forecasts blowing up. The sparse DDM marginally im-
proves on the AN-RFMSE, but we found that the blow-
up rate was significantly reduced in the long term com-
pared to the dense DDM. Both dense and sparse CoSTA
models were significantly more accurate than the DDM
models. The sparse CoSTA had similar accuracy to the
dense CoSTA models in the short and medium term.
However, the sparse CoSTA model had no blow-ups in
the short and medium term and had half the blow-up rate
of the Sparse DDM in the long term. These experiments
demonstrate that CoSTA can reliably correct misspeci-
fied PBMs and significantly improves predictive stabil-
ity compared to end-to-end learning. The base PBM
does not exhibit any blow-up issues, suggesting that the
blow-ups can be attributed to the NNs used in this work.
If long-term forecasts are required (> 3000 timesteps),
we recommend combining the CoSTA approach with a
sanity check mechanism to detect potential blow-ups.

Figure 8 and Figure 9 summarize the main results of the
case study as they include forecasts of all test-set trajec-
tories. To illustrate and elaborate on the effect of the re-
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200

DDM dense DDM sparse CoSTA dense CoSTA sparse

Figure 9: Bar chart of the number of times model estimates blow up
and diverges. The plot contains 100 different initial conditions and in-
put signals for all model types. The number of blow-ups was counted
at three different cutoffs to compare the short, medium, and long-term
performance. We trained 10 different instances for each model type
for statistical significance. It can be seen that CoSTA increases the
predictive stability in the long term, i.e., the number of blow-ups for
CoSTA models is far less than the number of blow-ups for DDM.
However, PBM does not suffer from significantly fewer blow-ups than
CoSTA.

sults when forecasting without feedback from measure-
ments, we have included plots of forecasts of a single,
representative test trajectory. Figure 10 shows the mean
predictions for each model type for the representative
test trajectory, along with a 99.7% confidence interval
to show the spread of the predictions from the 10 in-
stances of each model type. Only the DDM and CoSTA
models trained with ℓ1 regularization are shown for clar-
ity. Before discussing the differences between the mod-
els, we will describe the system’s dynamics and how the
incorrect PBM behaves in comparison. First, note that
all variables are non-negative, reflecting different physi-
cal quantities in the system, i.e., mass, temperature, and
current. Inspecting Equation (4), we see that the states
x2, x3, and x5 are linearly dependent on u1, u2, u3, and
u4. We refer to these as the linear states, and the rest as
the nonlinear states.

Liquidus temperature g1:. Figure 10i shows the true
liquidus temperature g1 (in black) and the constant PBM
estimate of the liquidus temperature (in red dotted line).
The liquidus temperature g1, which is the temperature at
which the bath solidifies, is determined by the chemical
composition of the bath. That is, g1 is determined by the
mass ratios between x2, x3, and x4. The fact that PBM
assumes g1 to be constant induces modeling errors for
the PBM.

Mass of side ledge x1:. Figure 10a shows the mass of
frozen cryolite (Na3 Al F6), or side ledge. The solidifi-
cation rate ẋ1 is proportional to the heat transfer Qliq-sl

through the side ledge (Qliq-sl ∼
(

g1−x7
x1

)
) minus the heat
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transfer Qbath-liq between the side ledge and the bath
(Qbath-liq ∼ (x6 − g1)). The solidification rate ẋ1 is de-
pendent on the value of g1, and therefore the PBM incor-
rectly predicts the mass rate ẋ1. In Figure 10a, we see
that the PBM modeling error for x1 starts to increase
after approximately one hour as the true liquidus tem-
perature g1 drifts away from the constant PBM estimate
of g1. Figure 10i shows that the PBM overestimates g1.
Therefore, the PBM also overestimates the heat trans-
fer out of the side ledge, leading to a higher estimate of
frozen cryolite and side ledge mass. However, this mod-
eling error is limited by the effect that an increased side
ledge mass (and therefore increased side ledge thick-
ness) leads to better isolation. Thus, the PBM estimate
of the heat transfer through the side ledge Qliq-sl is in-
versely proportional to the x1 estimate, and the mod-
eling error of x1 reaches a steady state for a constant
modeling error in g1. In addition to modeling errors due
to errors in the g1 estimate, modeling errors of x6 and x7
propagate to ẋ1.

Both the mean of DDM and the mean of CoSTA mod-
els appear to predict the response of x1 correctly. The
variance of both model classes grows over time, with
the DDM models growing roughly twice as fast as the
CoSTA models. Furthermore, CoSTA and DDM show
some cases where the error bound becomes significantly
large, indicating that one or more models blow up. For
the DDM models, these cases appear more frequently,
and the errors are more significant than for the CoSTA
models. Figures 10f and 10g show that these error peaks
often coincide with the peaks in the bath temperature x6
and the side ledge temperature x7.

Mass of alumina x2:. Figure 10b shows the mass of alu-
minum in the bath. Equation (4) shows that ẋ2 (mass
rate of Al2O3) is proportional to u1 (Al2O3 feed), and
negatively proportional to u2. Figure 10b shows that
this yields a saw-tooth response that rises as u1 spikes
and decays with a rate determined by u2. This state has
no dependence on g1 nor on other states that depend on
g1. Therefore the PBM (and CoSTA) predict this state
with no error. On the other hand, the spread of the DDM
models grows over time, with the mean error eventually
becoming significant.

Mass of aluminum fluoride x3:. The x3 state (mass of
Al F3) acts as an accumulator, rising when Al F3 is
added to the process (u3 spikes), and falling when Al2O3
is added to the process (u1 spikes). The latter is caused
by impurities (Na2 O) in the Alumina (Al2 O3) reacting
with Al F3, generating cryolite (Na3 Al F6). As shown in
Figure 10c, the latter effect is relatively small. Despite

this, the DDM appears to model these decreases cor-
rectly. However, the DDM models become less and less
accurate as time passes. The PBM and CoSTA model
x3 with no error.

Mass of molten cryolite x4:. This state represents the
mass of molten cryolite in the bath, where ẋ4 = k5u1 −

ẋ1. The first term represents additional cryolite gener-
ated by reactions between impurities in the added alu-
mina (u1) and AlF3 (x3). The second term describes how
the cryolite can freeze (x1) on the side ledge, which can
melt again as the side-ledge temperature x7 increases.
As seen in Figure 10d, the response of x4, therefore,
mirrors that of x1, with relatively small upturns when
alumina is added (u1). Inspecting Figure 10a, we see
that the models behave similarly. Incorrectly estimating
x4 causes some issues. The mass ratio cx2 (see Equa-
tion (2)) is important in terms of determining the cell
voltage Ucell. A forecasting error of x4 will propagate
as a forecasting error of cx2 , leading to inaccurate esti-
mates of the cell voltage Ucell.

Mass of produced metal x5:. This linear state also has a
saw-tooth characteristic, growing at a rate proportional
to the line current (u2) and falling when metal is tapped
(u4 spikes). Looking at Figure 10e, the DDM models
have similar error dynamics to the other linear states,
while the PBM and CoSTA models have virtually no
error.

Temperature in the bath x6:. There are several possible
sources of PBM modeling errors of the bath temperature
x6. As discussed earlier, since the PBM overestimates
the side ledge thickness due to a modeling error of g1.
It follows that the PBM overestimates the thermal in-
sulation of the side ledge, leading to an overestimation
of the bath temperature and an underestimation of the
heat transfer out of the bath. In Figure 10f, we see this
overestimate of x6 provided by the PBM after approx-
imately one hour, simultaneously as the PBM starts to
overestimate the side ledge mass x1.

Furthermore, the change in bath temperature ẋ6 is de-
termined by the energy balance in the bath. The en-
ergy balance in the bath consists of several components,
namely the electrochemical power Pel which adds en-
ergy to the system, the heat transfer from the bath to
the side ledge Qbath-sl which transports energy out of
the bath, and the energy Etc,liq required to break inter-
particle forces in the frozen cryolite liquidus tempera-
ture. The electrochemical power Pel = Ucell · u2 is the
product of the cell voltage Ucell and the line current u2.
The cell voltage is given by Ucell =

(
g5 +

u2u5
2620g2

)
, where
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g5 is the bubble voltage drop, and u2u5
2620g2

is the voltage
drop due to electrical resistance in the bath. The bub-
ble voltage drop g5 increases exponentially as the mass
ratio of alumina - cx2 approaches the critical mass ra-
tio of alumina cx2,crit ∼ 2. This process upset is known
as an anode effect. This can explain the peaks in the
x6 predictions, which are most present for the DDM
models. As shown in Figure 10f, the peaks of the er-
ror band for the DDM coincide with overestimates of x4
(see Figure 10d), indicating that the DDM incorrectly
predicts anode effects in these cases. Moreover, the volt-
age drop due to electrical resistance is given by u2u5

2620g2
,

where u2 is the line current, u5 is the Anode-Cathode
Distance (ACD), 2620[m2] is the total surface of the an-
odes and g2 is the electrical conductivity. Within rea-
sonable operational conditions, 1

g2
can be approximated

as a function that increases linearly with the increas-
ing mass ratio of alumina cx2 . The modeling error in
x4 can therefore propagate to x6. After approximately
eight hours, the error bound of CoSTA models shows
that at least one of the CoSTA models calculates an in-
stantaneous overestimate of x6, followed by an immedi-
ate underestimate of x6. A possible explanation is that
the CoSTA model first erroneously predicts the anode
effect. The underestimate of x6 that instantaneously fol-
lows can be caused by an underestimate of cx2 that is
lower than cx2,crit which leads to negative Pel values in
the model.

Temperature in the side ledge x7:. The change of tem-
perature in the side ledge ẋ7 is determined by the heat
balance in the side ledge. This includes the heat transfer
from the bath to the side ledge Qliq-sl, the heat transfer
from the side ledge to the side wall Qsl-wall, and the en-
ergy Etc,sol required to heat frozen side ledge to liquidus
temperature from side ledge temperature. The change
in the side ledge temperature depends on the side ledge
thickness x1, the bath temperature x6, the side ledge
temperature x7, the wall temperature x8 and the liquidus
temperature g1. As argued above, for the PBM mod-
eling errors in x1, x6, x7, x8, and g1 will propagate as
modeling errors in the side ledge temperature change ẋ7.
For the DDM and CoSTA models, the error in x7 shown
in Figure 10g mainly grows as the error in x6 spikes,
presumably caused by erroneously predicted anode ef-
fects, as explained above.

Temperature in the wall x8:. Figure 10h shows that The
temperature of the side wall x8 changes according to the
heat transfer from the side ledge to the wall Qsl-wall, and
the heat transfer from the wall to the ambient Qwall−0.
Changes in the wall temperature ẋ8 depend on the side

ledge temperature x7, the wall temperature x8, and the
side ledge thickness x1. PBM modeling errors of these
states at time k propagate as modeling errors in the side
wall temperature x8 in the next time step, k + 1. Hence,
with correct inputs, the PBM will always model the cor-
rect ẋ8 since the PBM model of ẋ8 is equal to the simu-
lator.
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Figure 10: Rolling forecast of a representative test trajectory. 10
CoSTA models with sparse corrective NNs, 10 DDMs consisting of
sparse NN models, as well as a PBM, are predicting the test set tra-
jectories given the initial conditions and the input vector at any given
time.

5. Conclusions and future work

In this work, we presented a recently developed ap-
proach in modeling called the Corrective Source Term
Approach (CoSTA). CoSTA belongs to a family of
hybrid analysis and modeling (HAM) tools where
physical-based models (PBM) and data-driven mod-
els (DDM) are combined to exploit the best of both
approaches while eliminating their weaknesses. The
method was applied to model an aluminum extraction
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process governed by complex physics. First, a ground
truth dataset was generated using a detailed high-fidelity
simulator. Then, an ablated model was created by set-
ting an internal variable of the simulator to a constant.
Finally, the ablated model was supplemented with a cor-
rective source term modeled using a NN that compen-
sated for the ignored physics. The main conclusions
from the study are as follows:

• CoSTA, in all the scenarios investigated, could cor-
rect for the ignored physics and was consistently
more accurate in predicting all eight states of the
process than the PBM and DDM over a reasonably
long time horizon.

• Both end-to-end learning and CoSTA captured the
complex coupling between states and inputs.

• CoSTA consistently yields more stable predictions
when compared to pure DDM, despite the numer-
ous input signals being very sparse and discontin-
uous.

• Regularizing the networks using ℓ1 weight decay
was effective in improving model stability in both
DDM and CoSTA.

One significant benefit of the CoSTA method is that it
can utilize domain knowledge, only relying on black-
box DDMs to model unknown or poorly understood
physics. A limitation of this work is the assumption
that full-state measurements are available, which only
sometimes holds in practice. In the case of unobservable
variables and noisy measurements, the full state trajec-
tories can be estimated using a PBM, e.g., by solving
a moving horizon estimate problem. Then a corrective
source term can be trained to correct the PBM, given
the estimated trajectories. If hidden states exist, ob-
taining enough information to reconstruct the system’s
dynamics is still possible by augmenting the measure-
ments with additional information, i.e., lookback states
from previous time steps. Takens’ Theorem gives an up-
per bound on the number of necessary lookback states
(Takens, 1981).

Although it remains to be investigated in future work, it
can be expected that much simpler models will be suf-
ficient for modeling the corrective source terms. The
properties of these source terms can then be analyzed to
achieve additional insight into the system. Even when
it is not possible to interpret the source terms, it should
still be possible to place bounds on their outputs using
domain knowledge. These bounds can then serve as an
inbuilt sanity check mechanism in the system. For ex-
ample, since the amount of energy put into the system

is known, the source terms for the energy equation will
be bounded, so any NN-generated source term violating
this bound can be confidently rejected, making the mod-
els more suitable for safety-critical applications like the
one considered here. Another topic worth investigating
is the robustness of the method to noise.
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