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Abstract
The problem studied in this paper is inspired by one of the world’s largest produc-
ers of aluminium. The company produces alumina in South America that needs 
to be transported to aluminium production plants along the west coast of Norway. 
The problem is to determine the optimal shipping plan that satisfies the produc-
tion plants’ alumina demand at minimum cost while satisfying requirements on 
inventory levels. Both departure time from the loading ports and sailing times are 
subject to uncertainty. We present a combined optimization and simulation frame-
work for solving this maritime inventory routing problem under uncertainty. We 
solve the problem heuristically with an iterative solution approach that combines 
optimization with simulation: In phase 1 of our approach we solve a deterministic 
optimization model to generate a candidate solution. The performance of this solu-
tion is then evaluated in phase 2 by a simulation over a set of realizations of the 
uncertain parameters, resulting in an expected cost of uncertainty for this solution. 
The expected cost of uncertainty is then included in the phase 1 model and associ-
ated with the simulated solution, before the model is solved again. This process is 
repeated until no new solution is found. We apply this approach to a case based on 
real-world data. The results show that our approach finds solutions that perform con-
siderably better under uncertainty than solutions resulting from a purely determinis-
tic planning approach.
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1 Introduction

In maritime inventory routing problems (MIRPs), the routing and scheduling 
of ships is combined with inventory management at the loading and unloading 
ports (Agra et al. 2018). This problem is common in many vertically integrated 
companies that need to ship raw and intermediate materials to their downstream 
processing facilities, e.g., oil companies, chemical manufactures, liquified natural 
gas producers (Ronen 2002). With a single decision maker controlling both cargo 
and ships, MIRPs can be classified as industrial shipping problems (Christiansen 
et al. 2007).

Planning problems within maritime transportation can also be classified 
according to hierarchy levels (Christiansen et al. 2007): strategic planning is usu-
ally concerned with long-term decisions related to investing in transportation 
capacity and designing the transportation network. Typical examples are fleet size 
and mix problems (Pantuso et al. 2014) and liner shipping network design prob-
lems (Christiansen et al. 2020). On the tactical level, we find scheduling problems 
for industrial and tramp shipping (Christiansen and Fagerholt 2014). MIRPs usu-
ally belong to these problems. The tactical planning horizon often has a dura-
tion of 3–12 months. Operational planning problems have much shorter plan-
ning horizons and often address a wide variety of issues such as navigation and 
weather routing, speed selection, or the booking of single orders (Christiansen 
et al. 2007).

In this paper, we consider a tactical planning problem based on the shipping 
operations of one of the world’s largest aluminium producers. The producer needs 
to set up a shipment schedule for a planning horizon of 2–3 months to ensure 
that the aluminium production plants in Northern Europe are supplied with alu-
mina from ports in South America. The producer controls a heterogeneous fleet 
of ships that can transport different types of alumina from the loading ports to 
the unloading ports. The operations at the loading ports however, are beyond the 
control of the producer and the port can only guarantee a ship’s departure within 
a week of the specified departure date in the shipment schedule. In addition to the 
uncertainty in departure time, there is uncertainty in the sailing time. The goal 
of the tactical planning process is to find the shipment plan that minimizes the 
costs of supplying the primary aluminium plants with alumina whilst satisfying 
the plants’ demand for alumina. The resulting optimization problem can be for-
mulated as a MIRP where both the departure time and sailing time are uncertain.

MIRPs have been studied by the operations research community for decades. 
Numerous different applications have been studied: Christiansen and Nygreen 
(1998) and Christiansen (1999) for example, consider an application of shipping 
ammonia between production and consumption ports. Agra et  al. (2013) study 
the problem of short sea fuel oil distribution in the archipelago of Cape Verde. 
Shao et al. (2015), Al-Haidous et al. (2016), and Li and Schütz (2020) are recent 
examples of setting up annual delivery plans for liquified natural gas. The papers 
by Christiansen and Fagerholt (2009), Christiansen and Fagerholt (2014), and 
Papageorgiou et al. (2014) provide a good overview over MIRPs and the existing 
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literature. However, most of the literature reviewed in these papers considers 
deterministic problems despite various types of uncertainty affecting maritime 
transportation systems, for example uncertain sailing times due to changes in 
weather conditions.

Uncertainty, e.g. in travel times, has been considered in land-based vehicle rout-
ing and inventory routing problems for quite some time (see e.g., Laporte et  al. 
1992; Kleywegt et al. 2002; Kenyon and Morton 2003). In maritime inventory rout-
ing however, uncertainty has only recently started to attract the attention of the sci-
entific community. Different approaches to handling uncertainty can be found in the 
literature: For example, Agra et  al. (2012) who consider a robust vehicle routing 
problem with time windows and uncertain travel times and discuss its application 
to maritime transportation. Zhang et  al. (2015) solve a robust maritime inventory 
routing problem with time windows and uncertain travel times by formulating it 
as a two-stage stochastic programming problem. The authors then solve the prob-
lem using a two-phase solution approach considering a set of disruptions and their 
recovery strategies. Agra et al. (2015) study a short sea maritime inventory routing 
problem with uncertainty in sailing times and waiting times at port. They formulate 
their problem as a two-stage stochastic programming problem and solve it using a 
decomposition approach similar to the L-shaped method. Agra et al. (2018) solve a 
robust maritime inventory routing problem with uncertain sailing times. The authors 
formulate their problem using the robust optimization approach introduced by Bert-
simas and Sim (2004) to deal with the trade-off between the level of conservatism 
and the cost of robustness.

Simulation is another approach to dealing with uncertainty in maritime trans-
portation. Halvorsen-Weare et  al. (2013) solve a maritime inventory routing prob-
lem with the aim to create more robust routing and scheduling for LNG ships. They 
implement a simulation model with a recourse optimization procedure to evaluate 
solutions using a variation of policy strengthening strategies. Fischer et al. (2016) 
study the tactical fleet deployment problem in roll-on roll-off liner shipping. They 
use simulation to evaluate different strategies for handling disruptions in roll-on roll-
off liner shipping. Medbøen et  al. (2020) use an iterative approach that combines 
deterministic optimization with discrete-event simulation to solve a short sea liner 
network design problem with transshipment at sea.

In this paper, we provide a continuous-time formulation for a maritime inventory 
routing problem with uncertainty in both departure time from the loading port and 
sailing time. We develop a heuristic solution approach based on the iterative solu-
tion framework proposed by Acar et al. (2009). We combine deterministic optimiza-
tion with simulation to find robust schedules specifying both ship type, departure 
time, and routes to the unloading ports as well as the unloading volumes at these 
ports. Note that it is possible to adapt the approach presented below to numerous dif-
ferent applications where the decision process can be split into two stages (similar to 
two-stage stochastic programming). Medbøen et al. (2020) for example, use a simi-
lar solution approach to solve a robust short sea feeder network design problem with 
transshipment, but the authors use a discrete-event simulation model to evaluate the 
performance of their solution instead of an optimization model. Still, to the best of 
our knowledge, our paper is the first paper to combine optimization and simulation 
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to solve a continuous-time MIRP. We also test our solution approach on problem 
instances based on real-world data from one of world’s largest aluminium produc-
ers and show that we can increase the robustness of the solution considerably within 
acceptable runtimes.

The rest or the paper is organized as follows. First, we provide a more formal 
problem description in Sect. 2. Our solution approach combining optimization and 
simulation is presented in Sect. 3. In Sect. 4, we present the deterministic optimi-
zation model used in our solution approach. We introduce a case study based on 
real-world data in Sect. 5 and present the computational results from applying our 
solution approach. We conclude in Sect. 6.

2  Problem description

2.1  Real‑world problem

The problem we consider in this paper is based on the shipping operations of one 
of the largest aluminium producers in the world. The producer produces alumina in 
South America and ships it from there to aluminium production plants across the 
world. In this paper we consider supplying the production plants located along the 

Fig. 1  Alumina supply and demand locations
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west coast of Norway from South America, see Fig. 1 for the supply and demand 
locations.

To ensure that production at the plants in Norway is not interrupted due to lack of 
alumina, the producer sets up a tactical shipping schedule that specifies the depar-
ture dates from the different loading ports as well the unloading dates and volumes 
for the different aluminium production plants. The planning horizon for this problem 
is approximately 2–3 months with an underlying time resolution of 1 day.

Despite specifying the departure day for all scheduled voyages in the tactical 
shipping plan, the loading port can only guarantee a departure within a week from 
the specified departure day. In addition, ships may have to reduce speed along their 
voyage from South America to Norway. These delays may cause one or more of 
the production plants to run out of alumina and production stops. As stopping the 
production of aluminium is very costly, the shipping schedule has to ensure that the 
production plants never run out of alumina, despite delays in the arrival of planned 
shipments.

2.2  Optimization problem

We consider this problem as MIRP with uncertain departure times and uncertain 
sailing times. A fleet of heterogeneous ships is to transport a product that may have 
different qualities from a set of loading ports to a set of customer ports. Each load-
ing port provides one or more product qualities. The total quantity picked up during 
the planning horizon at each loading port is limited by a minimum and maximum 
quantity. Inventory management at the loading ports is not part of the problem as 
we consider storage at the loading ports and availability of products as unrestricted. 
It is therefore always possible to fully load a ship. Each customer has a constant 
demand rate and upper and lower limits for the permissible storage level. Each cus-
tomer accepts only certain product qualities. Stock-outs at a customer, i.e. violating 
the lower storage limit, are to be avoided (if possible) and are subject to a penalty 
cost. All ports have one berth for loading or unloading a ship.

We only consider full shiploads from the loading ports, but do allow the ships to 
visit multiple customers during a voyage for unloading their cargo. The ships have 
different capacities and different costs and are chartered on a per voyage basis. We 
assume that the product owner does control the ships as the set of available ships is 
predefined through long-term agreements between the product owner and the ship 
owners. The long-term agreement also specifies the minimum and maximum num-
ber of voyages a ship has to carry out during the planning horizon. Note that select-
ing the set of available ships is not part of the problem discussed here.

Due to uncertainty in port admission time, departure times are uncertain and a 
ship leaves within a given time window from the planned departure date. In addi-
tion, the sailing time between the loading port and the first customer port is uncer-
tain. The objective is to find the tactical shipment schedule that respects the prod-
uct quantity requirements in all ports and minimizes the expected transportation 
costs over the planning horizon. The main decisions are which vessels to use, their 
planned departure times from the loading ports as well as their routes, i.e. which 
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customers to visit on each voyage and when, as well as the loading and unloading 
quantities in each port.

3  Solution approach

To handle the uncertainty in departure time and sailing time, we combine optimiza-
tion and simulation in a two-phase approach based on the hybrid optimization simu-
lation framework proposed by Acar et al. (2009). Note that the approach presented 
here is in theory capable of finding the optimal solution to the true stochastic prob-
lem, but that we implement it as a heuristic to maintain computational tractability. 
Please see Sect. 4.4 for additional details regarding our implementation

In the first phase, we solve a deterministic MIRP to find an initial shipping plan 
for supplying the unloading ports with alumina from the loading ports. In the second 
phase, we assume a set of possible realizations of the uncertain parameters and sim-
ulate the performance of the shipping plan for each realization to estimate the ship-
ping plan’s expected cost of uncertainty. We define the expected cost of uncertainty 
of a solution from phase 1 as the average of the additional costs this solution incurs 
during the simulations in phase 2. The simulation is carried out by re-optimizing the 
distribution of alumina to the unloading ports and calculating the increase in costs. 
The combined framework is illustrated in Fig. 2.

Deterministic MIRPs are usually difficult to solve and considering uncertainty 
in some of the parameters only adds to the complexity of the problem. Attempt-
ing to solve a two-stage stochastic programming formulation of the problem may 
therefore result in considerable challenges regarding computational tractabil-
ity. With the phase 2 optimization model, we can also easily reflect the level of 
flexibility the decision maker has once the uncertain parameters become known. 
This level of flexibility may range from no flexibility, i.e. having to sail the given 

Fig. 2  Overview of the combined of the optimization simulation approach
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routes and unload the given quantities, but at a delivery time that depends on 
the delay the ship has experienced, to having full flexibility, i.e. being allowed to 
change both the routes and delivery quantities at the unloading ports.

In phase 1 of our solution approach, we solve the deterministic version of our 
MIRP considering the entire transportation network, but assuming no delays. 
The resulting shipping plan specifies which of the available ships to charter, how 
much to load at the loading ports and when to depart for the unloading ports. The 
plan also determines which unloading ports the ship visits on its route as well as 
when and how much to unload at each of these ports.

For the problem considered in this paper, the loading ports are mainly located 
in South America, whereas all unloading ports are located along the west coast 
of Norway. All ships therefore need to sail through the North Sea on their way 
to the unloading ports. This assumption is utilized to create an artificial transit 
point (a location in the North Sea) in our transportation network that all routes 
must travel through. We use this artificial transit point to split the voyage into 
two parts: before reaching the transit point, the voyage is subject to uncertainty in 
departure date and sailing time. From the transit point and to the delivery ports, 
sailing times are considered to be deterministic, as illustrated in Fig. 3.

We exploit this assumption in our solution approach as the uncertainty in the 
problem is then only related to activities before arriving at the transit point. Thus, 
we replace the uncertainty in departure time and sailing time with an uncertain 
arrival time at the transit point. Compared to the total travel times, the sailing 
times from the transit point to the unloading ports are short. In phase 2 of the 
approach, we therefore solve a MIRP with deterministic sailing times on a smaller 
network to determine routes, delivery dates and quantities as well as the addi-
tional costs due to the delays of the simulated solution from phase 1. Please note 
that the general solution approach also works without this simplification exploit-
ing the geographical properties of our case.

Fig. 3  Illustration of the modified transportation network
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The solution from solving phase 1 is simulated in phase 2. We first use Monte 
Carlo sampling to draw a set of realizations of arrival times at the transit point 
for all voyages scheduled in the phase 1 solution. For each of the realizations 
we then solve the phase 2 model that only considers the network after the tran-
sit point. With the phase 2 model, we re-optimize the distribution of alumina 
from the transit point to the unloading ports throughout the planning horizon. 
We allow full flexibility on our phase 2 model, i.e. based on the arrival times 
at the transit point, the phase 2 model can change the route of a ship, both the 
sequence of port visits and which ports are visited, as well as the unloading 
quantities at the ports. Once the phase 1 solution has been simulated for all real-
izations, we calculate the solution’s expected cost of uncertainty from the objec-
tive functions from phase 2.

The expected cost of uncertainty is then associated with the corresponding 
phase 1 solution and included in the phase 1 model. The phase 1 model is then 
optimized again to generate a new best solution. If this new best solution has 
not yet been simulated, we pass it on to phase 2 to estimate its expected cost 
of uncertainty. This process continues until the phase 1 model for the first time 
produces an already simulated solution as best solution. At this point, our solu-
tion approach terminates as we have found the best solution to our MIRP for 
handling uncertainty in departure times and sailing times. Note that the expected 
cost of uncertainty needs to be defined such that it is always non-negative for the 
approach to converge to the optimal solution. Allowing for a negative expected 
cost of uncertainty may cause the approach to terminate before the optimal solu-
tion has been found.

The approach never excludes a previously simulated solution from the solu-
tion space of the phase 1 model. Including the expected cost of uncertainty 
only affects the solution’s objective function value, making it less attractive. 
Iteratively solving the phase 1 model, simulating the solution and updating the 
cost of this solution will therefore eventually reproduce a previously simulated 
solution.

4  Mathematical model

In this section, we present the optimization models used in phase 1 and phase 2 
of our solution approach, solving the MIRP faced by a global aluminum producer. 
First, we introduce the notation used in both models in Sect. 4.1, before present-
ing the optimization models for phase 1 and phase 2 in Sects. 4.2 and 4.3 respec-
tively. Lastly, we discuss how to associate the expected cost of uncertainty with a 
given solution and include it in the phase 1 model, see Sect. 4.4.

We use a continuous time formulation where the ships’ voyages are defined 
on a network where each node represents a pair (i, m), where i indicates the port 
and m indicates the visit number to port i (see e.g., Al-Khayyal and Hwang 2007; 
Agra et al. 2014). Furthermore, since the producer only charters a ship for sailing 
from the loading ports to the unloading ports, the return voyage is not considered.
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4.1  Notation

We provide here the notation for the mathematical formulation of the deterministic 
MIRP solved in phase 1 of our solution approach. 

Sets

V Set of ships
K Set of ship classes.
P Set of ports
P
D Set of demand ports, PD ⊂ P

P
S Set of supply ports, PS ⊂ P

Mi Set of possible visits to port i, i ∈ P

Q Set of product qualities
S
A Set of nodes (i, m), where (i, m) is the mth visit to port i,∈ P,m ∈ Mi

S
A
v

Set of nodes (i, m) ship v can visit, SA
v
⊂ S

A

S
X
v

Set of sailing arcs (i, m, j, n) ship v can travel, where 
(i, m, j, n) means sailing from node (i, m) to node (j, n), 
i ∈ P,m ∈ Mi, j ∈ P

D
, n ∈ Mj

V
k Set of ships in class k, k ∈ K , Vk ⊂ V

Parameters

Aiq 1 if port i ∈ P can accept or produce quality q ∈ Q , 0 otherwise
CT
k

Cost per time period for using ship class k ∈ K

CP
ik

Fixed cost of visiting a port i ∈ P by ship class k ∈ K

Kk Capacity of ship class k ∈ K

Kv Capacity of ship v ∈ V (equal the class capacity Kk for all ships in 
class k, v ∈ V

k
⇒ Kv = Kk)

Li Maximum level of total product collected from port i ∈ P
S

L
i Minimum level of total product collected from port i ∈ P

S

LT
i

Maximum amount a ship in port i ∈ P can (un)load in one time unit

N Upper bound on the number of shipments

N Lower bound on the number of shipments
QO

vq
Quantity of product quality q ∈ Q loaded on ship v ∈ V at the 

beginning of the planning horizon
Ri Rate of consumption per day at port i ∈ P

D

Si Maximum stock level at port i ∈ P
D

S
i Minimum stock level at port i ∈ P

D

ST
i

Minimum stock level at port i ∈ P
D at the end of the time horizon

SO
i

Initial stock level at port i ∈ P
D

T Length of the time horizon
Tijv Time required to travel from port i ∈ P to port j ∈ P for ship v ∈ V

TO
iv

Travel time from initial position to port i ∈ P for ship v ∈ V
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Parameters

TS
iv

Setup time required in port i ∈ P for ship v ∈ V

U Upper bound on total number of demand ports a ship can visit

Decision variables

fimjnvq Amount of product quality q ∈ Q transported by ship v ∈ V from node 
(i,m) ∈ S

A to node (j, n) ∈ S
A

limvq Amount of product quality q ∈ Q loaded or unloaded from ship v ∈ V at 
port i ∈ P during visit m ∈ Mi

sim Stock level at start of visit m ∈ Mi in port i ∈ P
D

tim Start time of visit m ∈ Mi in port i ∈ P

tO
imv

Time spent by ship v ∈ V operating during visit m ∈ Mi to port i ∈ P

tW
imv

Time spent by ship v ∈ V waiting during visit m ∈ Mi to port i ∈ P

wimv 1 if ship v ∈ V visits port i ∈ P for the m-th time, m ∈ Mi , 0 otherwise
ximjnv 1 if ship v ∈ V travels arc (i,m, j, n) ∈ S

X
v
 , 0 otherwise

xO
imv

1 if ship v ∈ V travels from initial position to node (i,m) ∈ S
A , 0 otherwise

yim 1 if a ship visits port i ∈ P for the m-th time, m ∈ Mi , 0 otherwise
zimv 1 if ship v ∈ V ends it route at (i,m) ∈ S

A , 0 otherwise
zv 1 if ship v ∈ V is used, 0 otherwise

4.2  Model for phase 1

In this section, we present the optimization model used in phase 1 of our solution 
approach.

4.2.1  Objective function

The objective of the model in phase 1 is to minimize the total costs of transporting 
the product.

The first line in Eq. (1) represents the time charter cost when sailing between the 
ports and from origin. The first term in the second line is the time charter cost occur-
ing during operation and waiting in a port, followed by the port fees.

(1)

min
�
k∈K

�
v∈Vk

CT
k
⋅

⎛
⎜⎜⎝

�
(i,m,j,n)∈SX

v

Tijv ⋅ ximjnv +
�

(i,m)∈SA
v

TO
iv
⋅ xO

imv

⎞⎟⎟⎠

+
�
k∈K

�
v∈Vk

⎛⎜⎜⎝
�

(i,m)∈SA
v

CT
k
⋅

�
tO
imv

+ tW
imv

�
+

�
(i,m)∈SA

v

CP
ik
⋅ wimv

⎞⎟⎟⎠
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4.2.2  Routing constraints

We use a continuous time formulation where the ship paths are defined on a network 
where each node represents a pair (i, m), where i indicates the port and m indicates the 
visit number to port i. Each ship must depart from its initial position, visit a series of 
demand and/or supply ports and end its voyage at an artificial end node. Split pickups 
are not allowed but each ship can split its delivery between a maximum of U demand 
ports. Since the producer only charters a ship for sailing from the loading ports to the 
unloading ports, the return voyage is not considered.

The producer has long term contracts with several shipping companies stating an 
interval for number of shipments. As a simplification, the contracts are accumulated, 
creating a lower and upper bound for the total number of shipments.

(2)
∑

(i,m)∈SA
v

xO
imv

= zv, v ∈ V

(3)
∑

(j,n)∈SA
v

xjnimv + xO
imv

= wimv, v ∈ V, (i,m) ∈ S
A
v

(4)
∑

(j,n)∈SA
v

ximjnv + zimv = wimv, v ∈ V, (i,m) ∈ S
A
v

(5)zimv = 0, v ∈ V, (i,m) ∈ S
A
v
∶ i ∈ P

S

(6)
�∑

q∈Q Q0
vq

Kv

�
≤ zv, v ∈ V

(7)
�
i∈PD

�
m∈MD

xO
imv

=

�∑
q∈Q QO

vq

Kv

�
, v ∈ V

(8)
∑
i∈PS

∑
m∈Mi

wimv ≤ zv, v ∈ V

(9)
∑
i∈PD

∑
m∈Mi

wimv ≤ Uzv, v ∈ V

(10)N ≤

∑
v∈V

zv ≤ N



 J. B. Nikolaisen et al.

1 3

27 Page 12 of 27

Equations (2) make sure each ship that is used departs from its initial position for 
travelling to another node (i, m). Conservation of flow is handled by Eqs. (3) and 
(4). Constraints (5) ensure that a ship cannot end its route in a supply node. Further, 
constraints (6) and (7) make sure that each ship containing an initial load is used and 
visits a demand port. Equations (8) and (9) control that only one supply port and a 
maximum of U demand ports are visited, respectively. Constraints (10) ensure that 
the total number of shipments are in the contracted interval [N,N] . Moreover, Eq. () 
make sure that a ship can only visit node (i, m) if the variable yim is one. Due to con-
straints (12) port i cannot be visited the mth time if it is not visited in m − 1 . Finally, 
we introduce the symmetry breaking constraints (13) for ship class k. It makes sure 
that if ship v + 1 in class k ∈ K is used, then ship v in the same class must also be 
used.

4.2.3  Loading and unloading constraints

The network is divided into loading ports and unloading ports that can accept one or 
more product qualities with no ports serving both purposes. Each loading port has a 
supply interval for the total quantity loaded over the time horizon.

(11)
∑
v∈V

wimv = yim, (i,m) ∈ S
A

(12)yi(m−1) ≥ yim, (i,m) ∈ SA ∶ m > 1

(13)zv ≥ zv+1, k ∈ K, v ∈ V
k ⧵ {|Vk |}

(14)
QO

vq
xO
imv

+ limvq =
∑

(j,n)∈SA
v

(
fimjnvq − fjnimvq

)
,

v ∈ V, q ∈ Q, (i,m) ∈ S
A
v
∶ i ∈ P

S

(15)
QO

vq
xO
imv

− limvq =
∑

(j,n)∈SA
v

(
fimjnvq − fjnimvq

)
,

v ∈ V, q ∈ Q, (i,m) ∈ S
A
v
∶ i ∈ P

D

(16)
∑
q∈Q

fimjnvq ≤ Kvximjnv, v ∈ V, (i,m, j, n) ∈ S
X
v

(17)
∑
q∈Q

limvq ≤ min{Kv, Si − S
i
}wimv, v ∈ V, (i,m) ∈ SA

v
∶ i ∈ PD

(18)
∑
q∈Q

limvq = Kvwimv, v ∈ V, (i,m) ∈ S
A
v
∶ i ∈ P

S
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Equations (14) and (15) represent the mass conservation for node (i, m) in load-
ing ports and unloading ports, respectively. Constraints (16) ensure that the flow of 
products between two nodes never exceeds the ship’s capacity. Further, constraints 
(17) ensure that quantity unloaded from ship v is never exceeding the ship’s capac-
ity or the storage capacity at the unloading port. Since split pickups are disallowed, 
Eq. (18) ensure that each ship leaving a supply port is fully loaded. Furthermore, 
constraints (19) make sure that no ship can load or unload a quality that is either not 
produced in the loading port or not accepted in an unloading port.

4.2.4  Time constraints

Each ship has a fixed setup time in a given port and a variable (un)loading time, 
determined by the fixed (un)loading rate. Furthermore, all ports have one berth 
available for (un)loading.

(19)limvq ≤ AiqKvwimv, v ∈ V, (i,m) ∈ S
A
v
, q ∈ Q

(20)

∑
q∈Q limvq

LT
i

+ TS
iv
wimv ≤ tO

imv
, v ∈ V, (i,m) ∈ SA

v

(21)tW
imv

+ tO
imv

≤ Twimv, v ∈ V, (i,m) ∈ S
A
v

(22)ti,m−1 +
∑
v∈V

to
i,m−1,v

≤ tim, (i,m) ∈ S
A ∶ m > 1

(23)
∑
v∈V

(
TO
iv
xO
imv

+ tW
imv

)
≤ tim, (i,m) ∈ S

A

(24)
(T − TO

iv
)xO

imv
+ tW

imv
≤ T − tim

(i,m) ∈ SA ∶ i ∈ PD
, v ∈ V ∶

∑
q∈Q

QO
vq
> 0

(25)tim +
∑
v∈V

tO
imv

≤ T , (i,m) ∈ S
A

(26)
tim +

∑
v∈V

(
tO
imv

+ tW
jnv

+ (Tijv + T) ⋅ ximjnv

)
≤ tjn + T ,

(i,m), (j, n) ∈ S
A
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Constraints (20) make sure that the operational time in a port is greater than the 
setup time in a port in addition to the time needed to (un)load the ship. Further, con-
straints (21) ensure that the operational and waiting time for ship v in port i are zero, 
if ship v is in use. Due to constraints (22), only one ship is allowed to be at port i at 
the same time. Constraints (23) assign the start time of ship v in the first node to be 
at least the travel time from ship v’s initial position to the first port. Constraints (24) 
make sure that ships that are in transit at the beginning of the horizon leave the ori-
gin at time zero. Constraints (25) ensure that the start time of visits and operational 
time for the visit is always within the time horizon. The last time constraints given 
by (26)–(27) connect the start time at node (i, m) to the start time in (j, n) given that 
ship v travels directly to (j, n).

4.2.5  Inventory constraints

Because the product is bought “free on board”, inventory management at the loading 
ports is not considered. However, inventory management is considered in each of the 
unloading ports. Since the cost associated with a stop in production is high, stock-outs 
(i.e. inventory levels falling below the minimum stock level) are not allowed. The con-
sumption rate is treated as constant and known through the period.

Equations (28) set the initial stock levels. Further, the stock levels in the beginning 
of the mth visit are related to the previous visit, see Eqs. (29). Constraints (30) make 

(27)
tim +

∑
v∈V

(
tO
imv

+ tW
jnv

+ (Tijv − T) ⋅ ximjnv

)
≥ tjn − T ,

(i,m), (j, n) ∈ S
A

(28)sO
i
− si1 = Riti1, i ∈ P

D

(29)
si(m−1) +

∑
q∈Q

∑
v∈V

li,m−1,vq − sim = Ri

(
tim − ti,m−1

)
,

i ∈ PD
,m ∈ Mi ⧵ {1}

(30)sim +
∑
q∈Q

∑
v∈V

limvq −
∑
v∈V

Rit
O
imv

≤ Si, i ∈ PD
,m ∈ Mi

(31)sim ≥ S
i
, i ∈ P

D
,m ∈ Mi

(32)s
iMi

+
∑
q∈Q

∑
v∈V

l
i,Mi,vq

− Ri

(
T − t

iMi

)
≥ ST

i
, i ∈ PD

(33)L
i
≤

∑
q∈Q

∑
v∈V

∑
m∈Mi

limvq ≤ Li, i ∈ PS
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sure that the inventory capacity in unloading port i is not exceeded. Constraints (31) 
and (32) impose a lower inventory bound in unloading port i for the inventory level 
at the beginning of visit m and at the end of the time horizon, respectively. Lower 
bound S

i
 can be interpreted as the port’s safety stock. The purpose of this safety 

stock is to ensure operations at the facility in case of unforeseen disruptions in deliv-
eries. The lower bound at the end of the planning horizon ST

i
 also acts as safety 

stock, but additionally ensures that there are no end-of-horizon effects regarding 
deliveries late during the planning horizon. Lastly, constraints (33) ensure that the 
total volume supplied from supply port i is within the given interval [L

i
,Li].

4.2.6  Valid inequalities

We use three valid inequalities to strengthen the mathematical formulation in this arti-
cle. The first two are similar to Agra et al. (2017) while the third is inspired by Agra 
et al. (2013).

4.2.6.1 Minimum visits and  minimum operational time in  each port Let 
NDi = max{T ⋅ Ri − S0

i
+ S

i
, 0}, i ∈ P

D be the net demand for each unloading port 
over the total planning horizon. The minimum number of visits in port i ∈ P

D is then 
given by M

i
=
⌈ NDi

max{Kk}

⌉
 and the minimum operational time in port i ∈ P

D is given by 

TO
i
=

NDi

LT
i

+M
i
⋅ TF

i
 . For the loading ports, the minimum number of visits is given as 

M
i
=
⌈ L

i

max{Kk}

⌉
 while the minimum operational time is calculated as TO

i
=

L
i

LT
i

+M
i
⋅ TF

i
 , 

where L
i
 is the lower bound on the supplied quantity for port i ∈ P

S.
Constraints (34) ensure the minimum visits in port i ∈ P while constraint (35) 

determines minimum operational time in port i ∈ P.

4.2.6.2 Upper limit on time visited variables for each visit The last valid inequalities 
imposes an upper bound on the time variables for visiting the unloading ports by 
utilizing the storage capacity as well as the consumption rate. Let TMAX

im
 be the last 

possible time for visit m ∈ Mi to port i ∈ P
D . TMAX

im
 is defined as follows:

This gives the following inequality constraints:

(34)yim = 1, i ∈ P,m ≤ M
i

(35)
∑

m∈Mi

∑
v∈V

tO
imv

≥ TO
i
, i ∈ P

TMAX
im

= min

{
T ,

S0
i
+ (m − 1) ⋅ Si − S

i

Ri

− TF
i

}
, (i,m) ∈ SA ∶ i ∈ PD

(36)tim ≤ TMAX
im

, (i,m) ∈ S
A ∶ i ∈ P

D
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Experience during the initial testing of these valid inequalities indicated that using 
both types of valid inequalities results in runtime reductions in the range 3–30% 
depending on problem instance. The effect of using these valid inequalities individu-
ally is difficult to predict, as using either type of valid inequality resulted in a reduc-
tion in runtime for one instance and an increase in runtime for the other.

4.2.7  Non‑negativity and binary restrictions

Constraints (37)–(40) make sure that the loading, quantity and time variables are 
non-negative. Lastly, all binary routing variables are defined as binary in constraints 
(41)–(44).

4.3  Model for phase 2

The optimization model for phase 2 is essentially a simplified version of the phase 
1 model presented above. The main simplifications result from the fact that the 
planned ship departures are known from the phase 1 solution. Combined with a 
realization for the uncertain parameters, i.e. departure times from the loading ports 
and sailing times, we calculate the arrival time at the transit point for all ships. 
The resulting MIRP then only focuses on distributing the product from the fully 
laden ships at the transit point to the unloading ports such that the total costs are 
minimized.

The most important change in the phase 2 model is that we need to include a 
shortfall variable in inventory constraints (31) as we may not be able to guaran-
tee feasibility of this constraint for all possible realizations of delays. The shortfall 

(37)fimjnvq ≥ 0, v ∈ V, (i,m, j, n) ∈ S
X
v
, q ∈ Q

(38)limvq ≥ 0, v ∈ V, (i,m) ∈ S
A
v
, q ∈ Q

(39)tim ≥ 0, (i,m) ∈ S
A

(40)tW
imv

, tO
imv

≥ 0, (i,m) ∈ S
A
, v ∈ V

(41)ximjnv ∈ {0, 1}, v ∈ V, (i,m, j, n) ∈ S
X
v

(42)xO
imv

,wimv, zimv ∈ {0, 1}, v ∈ V, (i,m) ∈ S
A
v

(43)yim ∈ {0, 1}, (i,m) ∈ S
A

(44)zv ∈ {0, 1}, v ∈ V



1 3

Solving a maritime inventory routing problem under uncertainty… Page 17 of 27 27

variable is also included in the objective function with an associated penalty cost 
that is sufficiently large to discourage stock-outs.

The desired level of flexibility in the phase 2 model controls which variables are 
fixed when solving the problem. If no flexibility is allowed, variables w and x are 
fixed in phase 2 to their values in the phase 1 solution. The phase 2 model then only 
determines the timing of unloading operations and the associated costs. With full 
flexibility, none of the variables are fixed and the phase 2 model can choose freely 
which ports each ship should visit and how much to unload there.

It is also possible to introduce limited flexibility, e.g. restricting the deviation in 
number of port visits between phase 1 and phase 2 solutions. Let MA

i
 be the actual 

number of visits to an unloading port in the phase 1 solution and ΔV  be the num-
ber of visits the phase 2 solution is allowed to deviate from MA

i
 . We can then easily 

implement limited flexibility in phase 2 by adding constraint (45):

If ΔV = 1 , each port can be visited at most once more and once less than in the phase 
1 solution. As this flexibility increases, the expected cost of uncertainty decreases. 
However, increasing flexibility also increases runtime in phase 2 as the problems 
become harder to solve. Based on some initial testing to assess the trade-off between 
solution quality and runtime, we use ΔV = 2 to limit flexibility in phase 2.

4.4  Heuristic implementation of the solution approach

Similar to Acar et  al. (2009) and Medbøen et  al. (2020), our solution framework 
iterates between generating potential solutions in phase 1 and evaluating their per-
formance under uncertainty in phase 2. Each simulated solution is then associated 
with an expected cost of uncertainty to each potential solution. Below, we describe 
how we use the proposed solution approach as a heuristic for finding solutions to 
our problem. We also show how feedback from phase 2 is included in the phase 1 
model.

4.4.1  Identifying unique solutions

We use a continuous-time formulation for our MIRP in phase 1 of our solution 
approach. Achieving convergence of the continuous variables tim can be challenging 
as associating the expected cost of uncertainty to a given solution may just cause a 
marginal change in departure time. We therefore discretize the planning horizon into 
intervals � ∈ T  with a duration ΔT  . We then consider two departures as identical if 
their departures are planned during the same time interval. Consequently, a solution 
is identical, if the routing of the ships is identical and all departures are planned in 
the same time intervals. The downside of this discretization is that it might prevent 
us from finding the true optimal solution to the original problem, even if we simu-
late over all possible realizations of the uncertain parameters. Our solution approach 
therefore serves as a heuristic for finding solutions.

(45)max
{
MA

i
− ΔV , 0

}
≤

∑
m∈Mi

yim ≤ min
{
MA

i
+ ΔV , |Mi|

}
, i ∈ P

D
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Note that the solution method is sensitive to the duration of the time intervals ΔT . 
Choosing a large ΔT helps the method converge faster as fewer solutions need to be 
simulated. However, we also run the risk of overlooking good solutions as they may 
be considered identical to an already simulated solution. The choice of ΔT thus rep-
resents a trade-off. If ΔT is too large, certain areas of the solution space will go unex-
plored and there is the risk of missing good solutions. However, if ΔT is too small, 
the framework will not converge because too many similar solutions are evaluated. 
Initial testing for our case indicates that ΔT = 3 provides an acceptable trade-off.

Our discretization might also be useful in a discrete-time formulation as the dura-
tion ΔT  can be longer than the duration of the discrete time period. In addition, we 
avoid the additional binary variables of the discrete-time formulation.

4.4.2  Modifying the phase 1 model

We show here how to extend the phase 1 model in order to associate the expected 
cost of uncertainty with a given solution. We first introduce the additional notation 
before presenting the additional constraints.

4.4.3  Additional notation

Sets

H Set of phase 1 solutions found in previous iterations
T Set of time intervals

Parameters

ΔC� Expected cost of uncertainty for solution � ∈ H

MA
i�

Actual number of visits to in loading port i ∈ P
S in phase 1 solution � ∈ H

Γim�� 1 if node (i,m) ∈ S
A ∶ i ∈ P

S is served in time interval � in phase 1 solution � ∈ H , 0 
otherwise

Wimk� 1 if ship class k ∈ K is used to serve node (i,m) ∈ S
A ∶ i ∈ P

S in phase 1 solution 
� ∈ H , 0 otherwise

Zv� 1 if ship v is used in stage 1 solution � ∈ H , 0 otherwise
ΔT Duration of each time interval

Decision variables

�� 1 if solution is identical to phase 1 solution � ∈ H , 0 otherwise
�im� 1 if node (i,m) ∈ S

A ∶ i ∈ P
S is visited in time interval � ∈ T  , 0 otherwise
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4.5  Model extensions

In order to discretize the time intervals for visits in loading ports constraints (46)–(48) 
are implemented. They ensure that the binary variable �im� is set to 1 if the port is vis-
ited during the time interval.

Further, we need to check if a solution has been simulated before. Constraints 
(49)–(50) ensure that variable �� is set to 1 if the solution has been simulated during 
an earlier iteration.

The Big M-parameter in the constraints above is defined as:

(46)tim ≥ (� − 1) ⋅ ΔT ⋅ �im� , i ∈ P
S
,m ∈ Mi, � ∈ T

(47)tim − �ΔT ≤ (T − �ΔT)(1 − �im�), i ∈ P
S
,m ∈ Mi, � ∈ T

(48)
∑
�∈T

�im� = 1, i ∈ P
S
, � ∈ H,m ∈ 1,… ,MA

i�

(49)

∑
i∈PS

MA
i�
+1∑

m=1

(∑
k∈K

2Wimk� ⋅

∑
v∈Vk

wimv −Wimk� −
∑
v∈Vk

wimv

)

+
∑
v∈V

(
2Zv� ⋅ zv − Zv� − zv

)

+
∑
i∈PS

MA
i�
+1∑

m=1

∑
�∈T

(
2Γim�� ⋅ �im� − Γim�� − �im�

)
≥ M ⋅ (�� − 1),

� ∈ H

(50)

∑
i∈PS

MA
i�
+1∑

m=1

(∑
k∈K

2Wimk� ⋅

∑
v∈Vk

wimv −Wimk� −
∑
v∈Vk

wimv

)

+
∑
v∈V

(
2Zv� ⋅ zv − Zv� − zv

)

+
∑
i∈PS

MA
i�
+1∑

m=1

∑
�∈T

(
2Γim�� ⋅ �im� − Γim�� − �im�

)
≤ �� − 1,

� ∈ H

(51)M = 2 ⋅min

{∑
i∈PS

Mi,N

}
+ N
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In addition, we need to update the objective function Eq. (1) with the expected cost 
of uncertainty. Therefore, the new objective function is defined by Eq. (52).

The last sum in the updated objective function (52) is the expected cost of uncer-
tainty for a solution that has already been simulated.

5  Computational study

In this section, we present the results of applying our approach to problem instances 
based on real-world data. The solution approach is implemented in Python version 
3.7.2. The optimization models are implemented in Mosel and solved using FICO 
Xpress version 8.5.10. The stopping criterion for Xpress is set to an optimality gap 
of 1% . For our optimization-simulation approach we allow a runtime of 12 h. All 
calculations are carried out on a computer with two 2.4 GHz Intel Xeon Gold 5115 
CPUs and 96 GB RAM.

5.1  Problem instances and input data

The problem instances are based on real-world data and chosen to mimic the tacti-
cal planning problem faced by one of the world’s largest producers of primary alu-
minium. To ensure that the production plants do not run out of alumina, shipments 
of alumina are planned up to 6 months ahead. Vessel class and shipment date are 
determined approx. 4 weeks ahead of departure. The deterministic model in phase 1 
describes the current process of setting up the shipment schedule. The simulations 
in phase 2 of our solution approach represent the process of short term re-planning 
of shipments that has to be carried out in case of delays. By including this step in the 
initial planning process, we try to find more robust routes that require re-planning 
less often.

In order to test the solution framework, we introduce two problem instances, 
Small and Large, that differ in length of the planning horizon and the number of 
available ships. Only one product quality is considered. The main properties of the 
problem instances are summarized in Table 1.

We consider two sources of uncertainty in our case study. Firstly, departure times 
from the loading port deviate from the scheduled departure time by as much as 7 

(52)

min
�
k∈K

�
v∈Vk

CT
k
⋅

⎛
⎜⎜⎝

�
(i,m,j,n)∈SX

v

Tijv ⋅ ximjnv +
�

(i,m)∈SA
v

TO
iv
⋅ xO

imv

⎞
⎟⎟⎠

+
�
k∈K

�
v∈Vk

⎛
⎜⎜⎝

�
(i,m)∈SA

v
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k
⋅

�
tO
imv

+ tW
imv

�
+

�
(i,m)∈SA

v

CP
ik
⋅ wimv

⎞
⎟⎟⎠

+
�
�∈H

ΔC� ⋅ ��
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days. We assume a uniform distribution for the departure delay. Secondly, the sail-
ing times vary due to the weather. We model the sailing in a simple way where the 
weather can be good, neutral or bad with equal probabilities, resulting in a sailing 
times of 85%, 100% and 115% of the deterministic sailing time, respectively. All real-
izations of uncertain parameters used in the simulation are drawn from their respec-
tive distributions by means of Monte Carlo sampling.

The costs used in our calculations for vessels, voyages as well as inventory are 
based on real-world costs from the case company, but can unfortunately not be 
disclosed due to reasons of confidentiality. Results are therefore discussed relative 
to each other. The penalty cost for violating the minimum inventory levels at the 
unloading ports has been set at a sufficiently high level to represent the cost of a rush 
order from the nearest loading port. In addition to the transportation and raw mate-
rial cost, the cost of this rush order reflects that the alumina may have to be procured 
above market price and includes a risk premium as rush orders may not always be 
possible in the real world.

5.2  Performance of the solution approach

The convergence speed of our solution approach depends mainly on three factors: 
First, the time it takes to solve the phase 1 problem, secondly the time spent on 
phase 2 to simulate the solution from phase 1, and third, the number of required 
iterations before the solution approach terminates. We use different approaches for 
these three factors in our attempts to reduce runtime. We address the first issue with 
valid inequalities defined in Sect. 4.2. They reduce the solution time for the phase 
1 model by up to 30% for the large problem instance. The phase 2 model is much 
simpler than the phase 1 model and solves approximately 10 times faster. Further 
reduction in runtime of phase 2 is achieved by running the simulations in parallel.

We reduce the number of required iterations by extracting and storing up to the 
20 best solutions during the phase 1 solution process. We then simulate all of them 
using 50 scenarios in phase 2. Extracting multiple solutions reduces the runtime in 
phase 1 by approximately 25%. However, the time spent in phase 2 increases drasti-
cally as more solutions have to be simulated.

We further reduce the runtime of our approach by reducing the number of simu-
lations used for each solution. Instead of simulating the phase 1 solution in a sin-
gle step with 50 scenarios, we use a two-step simulation procedure where we first 
simulate all solutions with 10 scenarios to get a rough estimate on the expected 
cost of uncertainty. Once the approach has terminated, we evaluate up to the best 

Table 1  Properties of the problem instances

Instance Planning horizon Loading ports Unloading 
ports

Ship classes Ships

Small 45 days 3 5 3 18
Large 60 days 3 5 3 24
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10 solution using 50 scenarios to provide a better estimate for the expected cost of 
uncertainty.

The impact of the different measures on the overall runtime is illustrated in Fig. 4. 
In particular, extracting multiple solutions and two-step simulation reduce the run- 
time by more than 30% . The increase in phase 1 runtime for the single solution, two-
step simulation setup is due to the approach requiring more iterations to converge to 
a previously simulated solution.

5.3  Solution quality

The results from our optimization-simulation solution approach reported in this sec-
tion are all obtained using the two-step simulation procedure, i.e. by first evaluating 
a solution’s expected cost of uncertainty using 10 realizations and then simulating 
the 10 best solutions over 50 realizations. The time interval ΔT  for distinguishing 
unique phase 1 solutions is set to ΔT = 3.

To evaluate the quality of the solution found using our solution approach, we first 
find the optimal solution to the deterministic problem instances (Small and Large). 
The objective function values of these solutions serve as our benchmarks and all 
other costs are presented relative to them. The expected costs of uncertainty for the 
deterministic solutions are then evaluated over the same 50 realizations used in the 
final evaluation of our solution approach.

The costs of the deterministic solutions and the solutions found by our solution 
approach are presented in Fig. 5 for the Small problem instance and in Fig. 6 for the 
Large problem instance. When comparing the different solutions, we first note that 

Fig. 4  Runtime of our solution approach for the small problem instance
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the deterministic solutions incur considerably higher expected costs of uncertainty 
than the solutions found by our optimization-simulation approach, especially for the 
Small problem instance. In the Small problem instance, the expected cost of uncer-
tainty is 10.41% for the deterministic solution and only 0.04% for the solution found 

Fig. 5  Costs for the small problem instance. Expected cost of uncertainty evaluated using 50 scenarios

Fig. 6  Costs for the large problem instance. Expected cost of uncertainty evaluated using 50 scenarios
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by our solution approach. The phase 1 solution our approach produces however, is 
1.51% more expensive.

For the Large problem instance, the difference in the phase 1 cost between the 
deterministic solution and the solution found by our approach is even smaller at 
0.29%. And similar to the Small problem instance, we see that the cost of uncer-
tainty is substantially larger for the deterministic solution than for the solution from 
the optimization-simulation approach.

The expected cost of uncertainty for the deterministic solutions to both the Small 
and the Large instance are dominated by the penalty cost for violating the mini-
mum inventory requirements. In case of the Small instance, the deterministic solu-
tion incurs this penalty cost 6 times, whereas the deterministic solution to the Large 
instance incurs this penalty cost 14 times. The best solutions found by our approach 
do not incur this penalty at all.

The results above show that our solutions are more robust with respect to delays 
in departure and sailing time, while being less than approx. 1.5% more expensive 
than the deterministic solution. We have also calculated the wait-and-see solutions 
(see e.g., Birge and Louveaux 2011) for both the Small and the Large problem 
instance and our solutions are within 0.3% of these. Hence, our approach is able to 
find solutions that are close to the optimal solutions of the two-stage stochastic pro-
gramming version of the problems.

The results also emphasize the importance of finding and analyzing “sub-opti-
mal” solutions. Different solutions can perform quite differently under uncertainty 
despite having almost equal deterministic objective functions values. The focus 
practitioners often have on finding the cheapest solution can therefore result in the 
opposite of the intended outcome due to the consequences of the delays.

Given that the underlying problem is of a tactical nature and will at most be 
solved once a week, the runtime of approximately 1.5 h for our solution approach is 
also considered acceptable.

6  Concluding remarks

In this paper, we combine optimization and simulation to solve a maritime inven-
tory routing problem with uncertainty in departure time from the loading ports and 
sailing time. We use this solution approach as heuristic and iterate between solv-
ing a deterministic optimization problem in phase 1 to generate candidate solutions 
and simulating the performance of these solutions in phase 2. We apply our solu-
tion approach to problem instances based on real-world data from one of the world’s 
largest aluminium producers and show that we find solutions that perform consider-
ably better under uncertainty than the solution based on the deterministic optimiza-
tion model alone. More importantly, solutions found by the optimization-simulation 
approach are only marginally more expensive in the deterministic phase 1 model 
than the deterministic solution.

In addition, our solution approach evaluates multiple solutions and provides an 
estimate on these solutions perform under uncertainty. For many companies, this is 
often more desirable than determining a single optimal solution that the company 
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might not be able to implement due to necessary abstractions and simplifications 
made during the modeling process. Having different solutions with similar objec-
tives function values available thus provides an additional flexibility that is difficult 
to measure in terms of objective function value. The results also highlight the ben-
efit of explicitly considering uncertainty during the planning process.

The true problem might best be described as a two-stage (or even multi-stage) 
stochastic programming problem. Unfortunately, we cannot solve that problem due 
to its size and computational complexity. Formulating and solving the stochastic 
programming problem is subject to future research.

The solution approach is intended to solve a tactical planning problem without 
strict requirements on runtime. Still, runtime can be considered as the main chal-
lenge that should be addressed. Several approaches can be considered to reduce the 
runtime (or increase the problem size our approach is capable of solving): First, 
solving the deterministic phase 1 model requires a lot of time. The use of heuristics 
might help speed up the process of solving this problem and thus reduce the overall 
runtime. Second, the largest part of the runtime is spent on simulations in phase 2. 
Reducing the number of simulations will also reduce the overall runtime. This might 
be achieved by (1) identifying poor solutions quickly to avoid spending too much on 
them and (2) generating solutions that will perform well under uncertainty in phase 
1. How to make these approaches work will be addressed in future research.

The solution approach presented in this paper is general in nature and can also be 
applied problems other than maritime inventory routing problems. Similar to sto-
chastic programming, it is particularly suitable for problems where decisions can be 
split in a deterministic first stage and a second stage where decisions depend on the 
realization of some uncertain parameters.
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