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Abstract
This paper uses an analytical framework to examine afirm’s investment and switching strategy
under uncertainty. The context is the possibility to launch and operate two distinct projects,
one at a time, with exposure to a stochastic exogenous price. We allow for multiple switches
between the two projects, along with abandonment options from each. These possibilities
fundamentally influence the operational strategy. We show that under some conditions, a
dichotomous waiting region may arise at the investment stage. In this case we have an
inaction region, for a range of prices in a certain bounded interval, where the firm does not
invest and waits to have more information about the price evolution. This region vanishes for
a high level of uncertainty. Additionally, the firm may operate with a negative instantaneous
profit. We prove that investment in this region is never optimal. Numerical examples enable
comparative statics, while extension to allow for time-to-build is included.
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1 Introduction

In this paper we study the investment strategy of a firm in two alternative projects (which we
also call alternative modes), under price uncertainty. The projects differ one from another in
terms of size and running payoff: one being more profitable when the market conditions are
favourable but leading to larger losses in times of crisis (the larger scale project), whereas
the other project, with smaller scale, leads to smaller profits and smaller losses.

Once the investment takes place, the firm may still switch from one project to the other.
Therefore, the firm may adjust itself to the conditions of the market. Moreover, we assume
that the firm may decide to exit the market, and this decision is possible in both projects.

In this setting, the firm needs to decide not only when the investment occurs, but also in
which project the firm will first invest. Once the firm is in the market, it may switch from one
project to the other, and, if the market conditions turn out to be unfavourable, the firm may
still decide whether to change project or to exit the market. Hence, we consider the whole
life of the firm, starting from the investment decision, the switching times and, finally, the
exit time. Both investment and exit are one time decisions, whereas the switching strategy
leads to a sequence of switching times.

The flexibility provided by the option to switch between the two projects is particularly
relevant when the firm has to face volatile markets or imminent social, economic or financial
crisis. In the 2008 crisis, many firms felt the need to adjust their production processes in
order to face declining markets and to avoid large losses. During the pandemic crisis caused
by SARS-COV-2, the ability of the firms to switch from one project to another gained even
more relevance, as companies were scrambling to mobilise responses. For instance, in China
many companies decided to reallocate employees to new and valuable activities instead of
considering the layoff strategy. After the peak of the crisis has passed, these companies
needed to readjust to the new situation, preparing for a faster recovery.

More recently, under pressure from investors and consumers, many Western companies
have started to unwind their investments, close stores and pause sales in Russia. Some, after
at first taking temporary measures, have revised their plans and decided to exit the country
completely. For example, British American Tobacco decided to exit its Russian business,
whereas PhilipMorris suspended planned investments and reducedmanufacturing inRussia.1

Taking into account the possible actions of the firm, the optimal strategy involves the
characterisation of the following sequential decisions:

(i) Investment decision: the firm decides in which project the initial investment takes place
and when it occurs;

(ii) Switching decisions: the firm chooses when to switch between the two alternative
projects;

(iii) Exit decision: the firm decides when and from which project the firm leaves the market.

In Fig. 1, we present a the state transition diagram, representing the firm’s possible
actions—investment, switchingbetweenprojects, and exiting themarket—including the costs
associated with each decision.

Besides characterising the optimal decisions along the life of the firm, we also provide
an extensive comparative static, which shows the influence of the parameters in the opti-
mal strategy. Additionally, we discuss the impact of the switching and exit options in the
investment decision.

Finally, we also consider the case that there is a time lag between the investment decision
and the time that the investment is active—the so-called time-to-build. When we consider

1 New York Times, 14 October 2022.

123



Mathematics and Financial Economics (2023) 17:573–614 575

Fig. 1 State transition diagram,
including the investment,
switching and exit decisions

time-to-build, it may happen that the firm starts production in the hysteresis region, and,
therefore, we are able to check the robustness of this region with changes in the parameter
values.

This paper is organised as follows: in Sect. 2, we discuss the related literature, and, in
particular, we position our paper. In Sect. 3, we introduce the investment model, solution for
which is then presented and discussed in Sect. 4. In Sect. 5, we study (illustrate numerically)
the effects of the parameters in the optimal strategies. In Sect. 6, we discuss the effect of the
time-to-build in the investment strategy. Finally, Sect. 7 concludes the paper.

2 Related work

The model presented in this paper relies on the real options framework, for which there
is a large and rapidly growing number of publications. The topic of sequential investment
decisions is of great interest in Real Options and agglomerates the contributions of many
researchers. We focus our attention in related literature regarding investment in alterna-
tive projects. One of the simplest models regarding investment in alternative projects was
addressed by Dixit [6], which is an adaptation of the single project case studied byMcDonald
and Siegel [16]. In Dixit [6], the choice of the project is irreversible and switching between
projects is not possible. According to Dixit [6], when the firm has the option to invest in one
of N alternative projects, each project should be evaluated separately, and then the project
with the highest option value is chosen. Thus, the author presents the following investment
rule: (i) when the initial price is small enough, the decision-maker will invest in the project
with the largest option value as soon as the price reaches the smallest threshold; (ii) when
the initial price is larger than the mentioned threshold, it is optimal to invest in the project
with large net present value. Hence the investment decision is a trigger strategy.

Later, Décamps et al. [4] showed that the investment rule proposed by Dixit [6] was not
completely correct. Using N = 2, the authors proved that the optimal investment rule may be
dichotomous, meaning that there is an inaction region between two disconnected investment
regions, where it is optimal to wait before making an investment. Additionally, for firms
that hold the option to switch from a smaller scale to a larger scale project, the existence of
such an inaction region can persist even if the uncertainty of the output price increases. This
result is interesting per se, as it suggests that larger volatility does not necessarily lead to the
adoption of larger projects when there is the option to increase the scale of operations. As
the authors note, this result does not hold true if switching between projects is not allowed.
The existence of this inaction region and its behaviour with respect to volatility is in contrast
with standard results from real options, which highlights its relevance.

Others have also studied similar investment problems. Nishihara and Ohyama [18]
extended the analysis of investment in mutually exclusive projects to the framework of com-
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petition. Bobtcheff and Villeneuve [3] studied investments in twomutually exclusive projects
with two sources of uncertainty. Siddiqui and Fleten [20] used themodel of Décamps et al. [4]
for analysing the investment decision in alternative technologies in the electricity industry.
Dias [5] described a set of real options models to evaluate investments in petroleum explo-
ration and production under market and technical uncertainties. The author presented, in
particular, a model concerning the selection of mutually exclusive alternatives under uncer-
tainty.

Our paper is a natural extension of Décamps et al. [4]. In contrast with Décamps et al. [4],
we allow for multiple switches between the two projects (the larger and smaller projects),
along with abandonment options from each. As we introduce more possibilities into our
model, it is relevant to address the following research questions:

RQ1 : How do multiple switching options and the possibility to exit the market affect the
investment region? In particular, are there situations where the investment strategy is
not a trigger strategy, i.e. where the inaction region is still present?

RQ2 : Under which conditions is the investment threshold monotonic with respect to the
underlying parameters?

The answers to these questions are quite interesting. In particular, with respect to RQ1, we
show that, as happens inDécamps et al. [4], a dichotomous investment region defined in terms
of the underlying uncertainty may be optimal. In this case, we have an inaction region, for a
range of prices in a certain bounded interval, where the firm does not invest and waits to have
more information on the price evolution. Our findings show that the inaction region exists for
small values of the volatility, but when one increases the volatility, the inaction region tends
to disappear, which does not occur in Décamps et al. [4]. Regarding the behaviour of the
investment strategy, related with RQ2, we show that monotony of the investment threshold
does not hold for all sets of parameters. Indeed, increasing the drift of the price process does
not necessarily imply a decrease of the investment threshold.

Embedded in the investment model we have a switching problem, since the firm may
decide to switch from one project to another. These models have been studied by different
authors. Duckworth and Zervos [9] characterised the optimal strategy when the exit option is
not available. Zervos et al. [22] presented a full characterisation of the optimal strategy for a
firm that is currently on the market and can choose between two production models or to exit
the market. In one of the modes, the firm decides to mothball production. An inaction region
is found by the authors although no economical characterisation is provided. Guerra et al. [10]
analysed the economical meaning of such region and found that it cannot be attained through
a continuous decrease of the price. The authors showed that firms producing in subsidised
markets may end up producing at a loss in such a region, due to the retraction of the support
scheme. Contrary to these authors, we assume that, in the smaller scale project, we may still
have a positive profit. Nevertheless, such a region (which we call the hysteresis region) may
exist, and, hence, this leads to the next research question, RQ3:

RQ3 : What are the optimal switching strategies and how do the parameters influence these
strategies? May the firm choose optimally to produce at a loss rather than to switch to
another mode?

Regarding the firm’s optimal switching strategy after investment, our findings are aligned
with the ones in Guerra et al. [10]. In our set up, we assume the existence of two alternative
projects where the firm is producing with a possible positive profit (and it is not necessarily
in a mothball state in one of the two projects). We fully characterise the situations where
the firm may decide to stay with the largest project even with a loss, waiting to have more
information before deciding if it leaves the market or if it switches to the smaller project.
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In particular, we show that when the drift term is negative and small and/or the volatility
is small, this region does not exist. Moreover, increasing the switching costs increases the
size of the hysteresis region, up to certain values, after which this region no longer exists.
Additionally, this region is never attained due to a continuous decrease of the revenue for a
firm already producing.

In many real problems, once the investment decision is taken, it will require a certain time
in order to actually start producing, in particular in large scale (infrastructure) construction
projects such as transportation infrastructure projects, power generating plant and aerospace
and pharmaceutical investments. There are several authors that have studied the impact of
time-to-build in different features of investment. We refer toMajd and Pindyck [15], Bar-Ilan
and Strange [1], Milne andWhalley [17], Bar-Ilan et al. [2], and Nunes and Pimentel [19] and
references therein regarding the effect of time-to-build. Since the market conditions evolve
during an investment lag, the profitability of the investment may also change. Hence, we
consider an extension to our model, by introducing time-to-build in the investment decision.
With this feature, we want to answer the following research question, RQ4:

RQ4: What is the impact of the time-to-build in the investment decision when one considers
two mutually exclusive projects? And how likely is it that the firm actually starts
production in the hysteresis region?

When compared with the main conclusions of Bar-Ilan and Strange [1], our results are
not completely aligned with those presented by the authors. In our case, we recover the
monotonicity of the investment threshold as a function of the volatility for small and large
values of times-to-build, contrary to the effect described inBar-Ilan and Strange [1], where an
increase of the uncertainty results in a non-monotonic investment threshold. Additionally, the
behaviour of the investment threshold with the volatility of the price may differ for different
investment lags and different abandonment costs. On the other hand, and similar to Bar-Ilan
and Strange [1], our results show that the effect of uncertainty becomes weaker when the
time lag increases.

We provide numerical insights, regarding the sojourn time in the hysteresis region and how
likely it is that the firm will end up producing with negative profits. Contrary to the original
model, in this extension the firmmay start producing in the hysteresis region. In that case our
results show that the expected sojourn time there decreases with increasing volatility but the
probability of resuming production (and switching to the other project) rather than exiting
the market increases. This result is not in line with the result in Guerra et al. [10], which can
be explained by the fact that, in our model, the profit is positive, whereas in the model of
Guerra et al. [10], there are only running costs once the firm enters into mothballing.

3 Model

We consider a monopolistic firm that has the opportunity to invest in one of two alternative
projects, whose price evolves stochastically over time. We denote by Pt the price at time t
and we assume that {Pt , t ≥ 0} is a geometric Brownian motion (gBm), with drift μ and
volatility σ > 0. We let r denote the risk rate, and we assume that r > μ.

The instantaneous profit of project i is given by:

πi (p) = αi p − βi , i = 1, 2, αi , βi ∈ R. (1)

123



578 Mathematics and Financial Economics (2023) 17:573–614

The coefficients βi can be interpreted as the instantaneous costs of production for project
i = 1, 2, and hence βi > 0. Moreover, the coefficients αi can be seen as the quantity
produced.
We assume the following ordering in the production parameters:

α1 > α2 ≥ 0, β1 > β2.

We note that although we assume that the profit is a linear function of the price, this assump-
tion is not very restrictive, as we can also consider isoelastic functions. In fact, since the
power of a gBm is still a gBM with different drift and diffusion parameters, the results can
be generalised for instantaneous profit functions as πi (p) = αi pγ − βi .

As Décamps et al. [4], we will use the terminology of large and small scale projects. Then,
we call project 1 the large scale project and project 2 the small scale project. Along the text,
and in order to keep explanation simpler, we may refer to the large scale project as mode 1
or project 1. In opposition, we may designate the smaller project by mode 2 or project 2. For
p < βi/αi , the profit is negative and, thus, it may be optimal to leave the market. Hence we
consider that the firm has the option to leave the market from both modes.

Since the firmmay produce in one of the two possible modes and can abandon the market,
we introduce the process: {Zt , t ≥ 0}, with Zt ∈ {1, 2, ex}, where Zt = i means that the
firm is operating in mode i , with i = 1, 2, and Zt = ex means that the firm has abandoned
the market. The state ex is absorbing. For instance, a realisation of the process such that
Zs = ex and Zt ∈ {1, 2}, for t > s, is not admissible as state ex is absorbing. A strategy for
the switching and exit decisions is then a realisation of the stochastic process {Zt , t ≥ 0}.
We let S denote the set of all admissible strategies for the switching and exit decisions.

Considering the transition between projects, we denote the time when the j th transition
from state a to state b occurs by T a,b

j , with a, b ∈ {1, 2}. Following Zervos et al. [22], these
times can be defined recursively by:

T a,b
1 = inf{t > 0 : Zt− = a, Zt = b} and T a,b

j+1 = inf{t > T a,b
j : Zt− = a, Zt = b},

(2)

with a ∈ {1, 2}, b ∈ {1, 2, ex}, and j ∈ N. The exit times are defined by

τ1 = inf{T 1,ex
j < ∞}, τ2 = inf{T 2,ex

j < ∞}, τ = inf{τ1, τ2}. (3)

Switching from one project to another one implies a cost payment and leaving the market
generates a cost or a salvage value. We let Ki denote the investment cost of the firm when it
enters the market in mode i , Ki j denote the transition cost from mode i to mode j , and Kx

represent the net divestment value, which can be positive or negative. For ease of terminology,
we also refer to this value as exit cost. We assume that r Kx − β2 < 0, so that exit from the
smaller scale project for small values of the price is always optimal. Since β1 > β2, exit from
the larger scale project may also be optimal.

Assuming that the firm can invest in the project at any time ζ ≥ 0, the investment problem
can be formalised as follows:

W (p) = sup
ζ>0, Z∈S

Ez,p

[∫ ∞

ζ

e−r t (π1(Pt )I{Zt=1} + π2(Pt )I{Zt=2}
)
dt − e−rζ (

K1I{Zζ =1} + K2I{Zζ =2}
)

−K12

∞∑
j=1

e−rT 12
j I{T 12

j <∞} − K21

∞∑
j=1

e−rT 21
j I{T 21

j <∞} − Kxe
−rτI{τ<∞}

⎤
⎦ , (4)
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where IA represents the indicator function,2 and Ez,p[. . .] is the expected value conditional
to the information that initial values are Z0 = z and P0 = p. This is a switching model
combined with discretionary stopping, in which we have to find the investment moment, the
optimal moments to switch between production modes, and the exit times as well.

Let

V (z, p) = sup
Z∈S

Ez,p

[∫ ∞

0
e−r t (π1(Pt )I{Zt=1} + π2(Pt )I{Zt=2}

)
dt

−K12

∞∑
j=1

e−rT 12
j I{T 12

j <∞} − K21

∞∑
j=1

e−rT 21
j I{T 21

j <∞} − Kxe
−rτI{τ<∞}

⎤
⎦ . (5)

Then, using the strong Markov property of the gBM, it follows that

W (p) = sup
ζ≥0

Ep
[
e−rζ u(Pζ )

]
, (6)

with

u(p) = max (V (1, p) − K1, V (2, p) − K2) . (7)

To simplify the notation, in the rest of the paper, we use v1(p) = V (1, p) and v2(p) =
V (2, p).

Thus, in order to solve the investment problem, we need to solve first (5), which corre-
sponds to the optimal switching strategy. Both problems will be discussed in the following
section.

4 Optimal strategy

As motivated in the previous section, we need to start by deriving the optimal switching
strategy before solving the investment problem.

4.1 Switching problem

In order to solve the switching problem defined in 5, we start by providing the corresponding
Hamilton-Jacobi-Bellman (HJB) equations. As we have two projects, we have two HJB
equations, and each HJB equation has three members. Whenever the firm is producing in
mode i , it has the following options: [1] it continues producing in that mode, [2] it switches
to the other production process, or [3] it exits the market. Therefore, the associated HJB
equations are coupled and are of the following form:

[1] [2] [3]
max {(Lv1)(p) − rv1(p) + π1(p), v2(p) − v1(p) − K12,−v1(p) − Kx } = 0, (8)

max {(Lv2)(p) − rv2(p) + π2(p), v1(p) − v2(p) − K21,−v2(p) − Kx } = 0, (9)

whereLvi = μxv′
i+ σ 2

2 x2v′′
i ,withv′

i andv′′
i being, respectively, thefirst and secondderivative

of vi , with i = 1, 2. To simplify the explanation,we number the different decisions (producing
in the same mode, switching to the other mode, and exit), using [1], [2] and [3], respectively.
The HJB equations naturally divide the space into several ‘action’ regions, depending on

2 That is equal to 1 if A holds true and 0 otherwise.

123



580 Mathematics and Financial Economics (2023) 17:573–614

Fig. 2 No-downgrading strategy: if the firm is in the small scale project and the current price increases above
P21, the firm switch to the large project. If the price goes below P2x , it leaves the market. If the firm is in the
large scale project, it leaves the market as soon as the price goes below P1x

where each of the parcels of the above equations is equal to zero. The theoretical framework
for this problem is presented in Zervos [21].

To find the solution to the HJB Eqs. (8) and (9), we start by noticing that the ordinary
differential equations that hold in region [1] (in both HJB equations) are Cauchy-Euler
equations, and their solutions are as follows:

Ei p
d1 + Ci p

d2 + αi

r − μ
p − βi

r
, (10)

where d1 < 0 and d2 > 1 solve the characteristic equation σ 2

2 d2 + (μ − σ 2

2 )d − r = 0, and
Ei and Ci are constants such that the smooth-pasting conditions hold. The value function
for region [3] is the value of exiting and, therefore, in this region the solution is trivial and
equal to −Kx . Finally, in region [2], the firm should optimally change from the large scale
project to the smaller scale project or vice versa. Thus, the value function for a firm that is
actually in project i , with a price that belongs to region [2], is given by vi = v j − Ki j , with
i, j = 1, 2 and i �= j .

Depending on the set of parameters chosen, we may have different optimal strategies.
Since we are considering that r Kx − βi < 0, leaving the market will be optimal for some
values of the price. Next, we present the two optimal strategies for a firm that is already
producing. The thresholds that appear in both strategies have the following meaning: Pix
represents the exit threshold from project i , meaning that if the firm is producing with project
i and the price is equal or below Pix , then it is optimal for the firm to exit the market; Pi j is
the switching threshold from project i to project j , meaning that if the firm is producing with
the large scale project and the price is lower or equal to P12 then it is optimal to switch to the
smaller scale project, and if the firm is producing in project 2 and the price is higher or equal
to P21 then it is optimal to switch to the other project. We use up-arrows and down-arrows to
highlight the regions in which switching is optimal. Finally, the threshold Ph appears only
in the second strategy depicted and limits an inaction region where the firm continues in
production although the instantaneous profit may be negative.

No-downgrading strategy: in this case, once the firm produces with the larger project, it
will never be optimal to switch to the smaller one. On the contrary, if the firm starts producing
in the smaller project, then it will be eventually optimal to switch to the larger scale one, for
large values of the price. In both cases, it can be optimal to exit the market for small values
of price. This strategy is depicted in Fig. 2, where in the horizontal axe we have the price at
the current time, Pt .

Hysteresis strategy: in contrast to the previous case, it may be optimal to switch from
project 1 to project 2, and the other way around. At a first glance, we would expect an
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Fig. 3 Downgrading without hysteresis (not optimal strategy)

Fig. 4 Hysteresis strategy: if the firm is in the large scale project, it will switch to the smaller one as soon as
the price goes below P12. If the firm is in the small scale project, it will exit the market if the price hits the
value P2x or will switch to the large project if it reaches the value P21

optimal strategy as the one depicted in Fig. 3. However, exit is an irreversible decision and
it can be shown that the strategy in Fig. 3 is not optimal. In fact, if a firm is producing, the
larger scale project and the price decreases, then it is optimal to switch to the other project,
as in this mode the firm is hedging against larger losses. In case the price is really low, the
firm is producing at a loss and therefore the option to exit becomes attractive. At this point,
it may not be optimal to exit the market nor to switch to the smaller scale project, since the
firm pays (or receives) exactly the same in case it leaves the market either out of project 1 or
project 2 (Kx ), and there is a cost for switching from the larger to the smaller project. Thus,
it is better for the firm to wait before deciding either to switch (in case the price increases) or
to exit (in case the price decreases even more), which leads to the existence of an hysteresis
region. We note that in Guerra et al. [10], the authors also find such a region, where in their
case the firm may be in operating state or in mothballing (where there are only costs and no
revenue).

In Fig. 4, we depict this strategy, where the hysteresis region corresponds to prices between
P1x and Ph .

We note that a firm will never enter the hysteresis region due to a continuous movement
of the revenue.

The optimality of the strategies depicted in Figs. 2 and 4 depends on the relationship
between the involved parameters. Next, we present a set of conditions that will be critical for
the optimality of each one of these two strategies. The same kind of conditions can be found
in Zervos et al. [22] and Guerra et al. [10].
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Set of Conditions 1 The following conditions hold true:

(i) β2 + r K12 < β1, (i i)π1(δ) − π2(δ) < 0, (i i i)K21 < K †
21, and (iv) K12 < K †

12

(11)

where

δ = (β1 − r Kx )(d2 − 1)

α1d2
, (12)

and K †
12 and K †

21 are defined in Appendix A.1.3.

As we will state in Proposition 1: (a) δ equals the exit threshold in the no-downgrading
strategy, and (b) under the previous conditions, the firm should adopt the hysteresis strategy.
All the conditions in the Set of Conditions 1 point to the fact that for certain initial prices it
is optimal to switch to project 2. Condition (i) states that the perpetual cost of staying in the
larger project is larger than switching to the smaller project and then staying in production
forever in such a project. Condition (ii)means that the instantaneous profit in the larger project
is smaller than in the smaller project at the exit threshold. Then, producing with prices near
δ is more profitable in project 2 than in project 1. Finally, in conditions (iii) and (iv), we can
interpret K †

21 and K †
12 as the fair prices for each one of the investments given the current

market conditions. Thus, switching to project 2 may be optimal only when it is cheap to
switch between project 1 and 2, and vice-versa.

In the next proposition, we present the conditions for each one of the switching strategies to
be optimal as well as the corresponding value functions v1 and v2. The proof of the optimality
of the functions v1 and v2 follows the lines of the proofs provided by Zervos et al. [22]. All
the parameters and thresholds are defined in Appendix A.

Proposition 1 Consider the switching problem (5). Then, if the Set Conditions 1 holds, the
firm should follow the hysteresis strategy, depicted in Fig.4, and the corresponding value
functions are:

v1(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−Kx p < P1x
Epd1 + Fpd2 + α1

r−μ
p − β1

r P1x ≤ p < Ph
Cpd1 + Dpd2 + α2

r−μ
p − β2

r − K12 Ph ≤ p < P12
Apd1 + α1

r−μ
p − β1

r P12 ≤ p

, (13)

v2(p) =

⎧⎪⎨
⎪⎩

−Kx p < P2x
Cpd1 + Dpd2 + α2

r−μ
p − β2

r P2x ≤ p < P21
Apd1 + α1

r−μ
p − β1

r − K21 P21 ≤ p

. (14)

If the Set of Conditions 1 does not hold, then the firm should follow the no -downgrading
strategy, depicted in Fig.2, and the value functions v1 and v2 are given by the following
equations:

v1(p) =
{

−Kx , p < P1x
Apd1 + α1

r−μ
p − β1

r , p ≥ P1x
, (15)

v2(p) =

⎧⎪⎨
⎪⎩

−Kx , p < P2x
Cpd1 + Dpd2 + α2

r−μ
p − β2

r , P2x ≤ p < P21
Apd1 + α1

r−μ
p − β1

r − K21, p ≥ P21

. (16)

Additionally, the exit thresholds are such that
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(a) P1x ≤ P2x (b) P1x > P2x

Fig. 5 Illustrations of the value functions vi , with i = 1, 2, for the switching problem, as a function of the
current price p in the horizontal axis, when the firm should implement the no- downgrading strategy. In both
figures, Pix is the exit threshold from project i and P21 is the threshold that triggers a switch from project 2
to project 1. Ki j is the switching cost from project i to project j

(a) P1x = δ;

(b) P1x ≤ P2x , if π1(δ) ≥ π2(δ) or
(
π1(δ) − π2(δ) < 0 and K21 ≥ K †

21

)

(c) P1x > P2x , if
(
π1(δ) − π2(δ) < 0 and K21 < K †

21

)

The parameters and thresholds for both strategies are provided in Appendix A.

The results presented in Proposition 1 have to be interpreted as follows: given that the
current price is p, and that the firm is producing in mode i ∈ {1, 2}, then its value is given
by vi (p). The expression for vi depends solely on the Set Conditions 1 being satisfied (and
in that case the hysteresis strategy is the strategy that should be followed by the firm) or not
(and, hence, the firm should implement the no-downgrading strategy).

We note that in the no-downgrading strategy, v1 represents a standard exit problem,
whereas for the derivation of the value function v2, one takes into account that the firm,
while in project 2, has two options: the option to exit and the option to switch to the other
project. This implies that the value function in the continuation region is composed of three
terms: one corresponding to the exit option, another to the switching option and, finally, the
value of producing in mode 2. In the hysteresis strategy, the value functions v1 and v2 are
more evolved, as there are more options (and regions) available for the firm to choose.

In Figs. 5 and 6 we provide an illustration of the value functions provided in Proposition
1. Figure5 illustrates the case where it is never optimal to switch frommode 1 to mode 2. The
main difference between both panels is the relationship between the two exit thresholds. In
panel (a) P1x ≤ P2x and, consequently, v1 dominates v2. Thus, for any value of K12 > K †

12,
switching from 1 to 2 will never be optimal. When the firm is in mode 2, as long as the
difference between v1 and v2 is smaller than the switching cost K21, the firm will keep on
producing in mode 2. Then, at P21, v1(P21) − v2(P21) = K21, and thus the firm switches to
mode 1.

In the panel (b) we have that P1x > P2x and, consequently, the dominance of v1 over
v2 does not occur. But switching from mode 1 to mode 2, even when v2 is larger than v1,
does not overpay the switching cost K12, and, for this reason, the no-downgrading strategy
is optimal. As in panel (a), when the firm is in production mode 2 and the process hits the
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Fig. 6 Illustration of the value functions vi , with i = 1, 2, for the switching problem, as a function of the
current price p in the horizontal axis, when the firm should implement the hysteresis strategy. Pix is the exit
threshold from project i , Pi j is the switching threshold from project i to project j and Ph is the hysteresis
threshold. Ki j is the switching cost from project i to project j

value P21, switching to the mode 1 is optimal because the additional gain pays the switching
cost K21.

In Fig. 6, we present an illustration of the value functions v1 and v2 in which the hysteresis
strategy is optimal. When the value of producing in project 2 is larger than the value of
producing in project 1, the firmmay want to switch to the smaller scale project. This decision
may happen at the levels of price Ph and P12 because at those points v2(Ph) − v1(Ph) =
v2(P12) − v1(P12) = K12. For values of p ∈ (Ph, P12), we have that v2(p) − v1(p) > K12,
which means that the additional gain from producing in project 2 compensates the switching
cost.

When the price is less than Ph , switching from project 1 to project 2 is not optimal, as
the profit from the smaller project does not compensate the switching cost. So the firm keeps
producing in the hysteresis region, where the profit will be negative, waiting to decide if it
should leave in case the price continues decreasing or if should switch to project 2, in case
the price increases.

We finalise this section noticing that the exit option has a determinant effect on the exis-
tence of the hysteresis region. Duckworth and Zervos [9] and Ly Vath and Pham [14] showed
that such region does not exist when the exit option is absent from the model.

4.2 Investment problem

With the solution to the switching problem (5), we are now in position to solve the investment
problem (6). We start by assuming that the following set of conditions holds true:

Set of Conditions 2 (i) K1 > −Kx and K2 > −Kx

(ii) K1 < K2 + K21 and K2 < K1 + K12

Condition (i) means that it is never optimal for the firm to invest and exit at the same time,
and Condition (ii) means that it is more costly to enter in the market with project 1 (resp.,
2) and to switch immediately to the project 2 (resp., 1) than to enter directly with project 2
(resp., 1).

Upon investment, the firm will pay the investment cost K1 or K2, depending in which
project the firm invests, and from that point on it will receive the value obtained from the
optimal switching strategy. We call the sum of these two values the investment reward, which
is given in Proposition 2.
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The structure of the function u is important in order to guess the shape of the waiting
and investment regions. In the following proposition, we define the function u in light of the
value functions v1 and v2. Its proof is provided in B.1.

Proposition 2 The investment reward, hereby denoted by u, is given by:

• If K1 ≥ K2, then

u(p) =
{

v2(p) − K2, p < z

v1(p) − K1, p ≥ z
, (17)

where

– z ∈ (P1x , P21), if the no-downgrading strategy is optimal.
– z ∈ (P12, P21), if the hysteresis strategy is optimal.

• If K1 < K2 and P1x > P2x , then

u(p) =

⎧⎪⎨
⎪⎩

v1(p) − K1, p < z1
v2(p) − K2, z1 ≤ p < z2
v1(p) − K1, p ≥ z2

, (18)

where

– z1 ∈ (P2x , P1x ) and z2 ∈ (P1x , P21), if the no-downgrading strategy is optimal.
– z1 ∈ (P2x , Ph) and z2 ∈ (P12, P21) z ∈ (P12, P21), if the hysteresis strategy is optimal.

• Otherwise

u(p) = v1(p) − K1, (19)

where v1 and v2 are given by (15) and (16), in the no-downgrading case, and by (13) and
(14), in the hysteresis case.

Proposition 2 shows that the investment reward is highly dependent on both the investment
cost and the structure of the optimal switching strategy. One can conclude that for large
values of the price p, the perpetual value of investment in project 1 is larger than in project 2,
regardless of the investment cost in each project. For small values of the price p, the perpetual
value of investment is not straightforward, since we can find situations where v2(p) − K2

dominates v1(p) − K1, and vice-versa.
The properties of the investment reward u will impact significantly on the shape of the

investment region, and in the values of the investment value, as W is such that the following
equation holds:

max {(LW )(p) − rW (p),−W (p) − u(p)} = 0. (20)

Based on the shape of u, one can guess that investment in the smaller project may be optimal
for small values of the price p. Thus one expects the following strategies:

Connected investment region: The firm waits for larger prices and then invests in the
more profitable project, which is project 1. In this case, the value function for the investment
problem (6), hereby denoted by W1, is as follows:

W1(p) =
{
B2 pd2 , p < γ3

v1(p) − K1, p > γ3
. (21)
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Fig. 7 Illustration of the value functions for the investment problem in the connected case, W1, as a function
of the current price p in the horizontal axis. We also include the thresholds: Pix is the exit threshold from
project i , Ph is the hysteresis threshold and Pi j is the switching threshold from project i to project j . vi − Ki
is the value in case we invest in project i , with i = 1, 2

In Fig. 7 we illustrate the behaviour ofW1 as a function of the price p, including the relevant
thresholds for the switching problem.

For p > z1, the value of the firm producing in mode 1 is larger than its value in mode
2, and therefore the investment will occur in this mode. The investment threshold, γ3, is the
value of p for which the value of investment in mode 1 is equal to the value of waiting. Thus,
for values larger than this threshold, the value of investment is larger than the option to differ.
We note that, in the case depicted in Fig. 7, there is no complete dominance of v1(p) − K1

over v2(p) − K2. However, if v1(p) − K1 dominates v2(p) − K2, which happens when
K1 < K2 and P1x ≤ P2x , the optimal strategy is a threshold one, and the value function
is still given by W1 as in (21). A threshold investment decision in alternative projects was
already presented by Dixit [6].

Non-connected investment region: The firm invests for moderate values of the price (p ∈
(γ1, γ2)), and in that case it invests in the project 2. But when the price is around z1, a point
of intersection between the two curves, then it may be optimal to wait for larger values of
the price (p ∈ (γ3,∞)) and then invest in the project 1. Therefore, in this case, the value
function for the investment problem (4.2) denoted by W2 and is given by:

W2(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1 pd2 , p < γ1

v2 − K2, γ1 < p < γ2

A2 pd1 + B2 pd2 , γ2 < p < γ3

v1 − K1, p ≥ γ3

. (22)

In Fig. 8 we plotW2. One can observe that, for values of p < z1, the value being in project 2 is
larger than in project 1. Therefore, as z1 > γ1, γ1 triggers the investment in project 2. Finally
for values of p larger than γ3, the value of investment in the large scale project is larger than
the value of investment in the small scale project. Thus, γ3 triggers investment in project
1. One may notice that investment in project 1 occurs for values of p ∈ (P12, P21), which
means that investment in the hysteresis region is never optimal, as we state in Proposition 3.
Finally, we note that in this case the optimal strategy is not a threshold type. A disconnected
investment region was also found in Décamps et al. [4]. Mathematically, the inaction region
found between the two investment regions is explained by the fact that u has an upward kink.
Investing in such region is never optimal because there is always a solution to the equation
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Fig. 8 Illustration of the value functions for the investment problem in the non-connected case, W2, as a
function of the current price p in the horizontal axis. We also include the thresholds: Pix is the exit threshold
from project i , Ph is the hysteresis threshold and Pi j is the switching threshold from project i to project j .
vi − Ki is the value in case we invest in project i , with i = 1, 2

rs(p) − (Ls)(p) = 0 that is larger than u and pastes conveniently u. The same phenomenon
is described by Décamps et al. [4].

In Figs. 7 and 8 we consider that v1(p) − K1 crosses v2(p) − K2 only once. However,
as one can see in Proposition 2, we may have situations where v1(p) − K1 crosses twice
v2(p) − K2. Even in this case, the optimal strategy is given by W1 or W2, depending on the
set parameters.

In the next proposition, we show that the hysteresis region is never reached through
investment. The proof can be found in Appendix B.2.

Proposition 3 Investment in the hysteresis region is never optimal.

An immediate consequence of this proposition is the fact that a firm never exits from the
larger scale project. In fact, it is always optimal to switch to project 2. Once in project 2, the
firm produces while it waits to decide whether to exit the market (in case the price decreases)
or to switch to the larger project (in case the price increases).

Finally, in the next proposition we present the conditions for W1 or W2 to be the solution
of the investment problem (6), which depend mainly on the relationship between costs and
prices.

Proposition 4 Let W be the value function associated with the investment problem (6). Then
the following happens:

• If K1 ≥ K2 or (K1 < K2 and P1x > P2x ) then

(a) W (p) = W2(p), if K2 < K+
2 and K1 > K−

1 .
The optimal strategy is as follows: if p ∈ (γ3,∞), then it is optimal to invest immediately
in project 1, the larger project, where γ3 ∈ (P12, P21); if p ∈ (γ1, γ2), then it is optimal
to invest immediately in project 2, the smaller project, where γ1 ∈ (P2x , P21) and γ2 ∈
(γ1, γ3); otherwise, the firm waits.

(b) W (p) = W1(p), if K2 ≥ K+
2 or K1 ≤ K−

1 .
The optimal strategy is as follows: if p ∈ (γ3,∞), then it is optimal to invest in project
1, where γ3 ∈ (max(P1x , P12),∞); otherwise the firm waits.

• If K1 < K2 and P1x ≤ P2x , then W (p) = W1(p).
The optimal strategy is as follows: if p ∈ (γ3,∞), then it is optimal to invest in project
1, where γ3 ∈ (P1x ,∞); otherwise the firm waits.

123



588 Mathematics and Financial Economics (2023) 17:573–614

Table 1 Values for the diffusion parameters, interest rate and exit cost used along the numerical examples

μ = 0 σ = 0.2 r = 5% Kx = −1 α1 = β1 = 1 α2 = β2 = 0.5 K12 = 0.1 K21 = 0.3

(a) (b)

Fig. 9 Numerical illustration of the verification of HJB equations (8)–(9), as a function of the price, p, in the
horizontal axis, which depends on the thresholds (Pix is the exit threshold from project i , Ph is the hysteresis
threshold and Pi j is the switching threshold from project i to project j)

The bounds K−
1 and K+

2 are such that K−
1 does not depend on K1 and K+

2 does not depend
on K1 and K2. The constants A2 and B2, the thresholds γ1, γ2 and γ , and the bounds K−

1
and K+

2 are defined in Appendix A.2.

5 Results and sensitivity analysis

In this section, we assess the impact of the parameters in the optimal decisions, analysing (i)
the behaviour of the triggers associated with the investment and switching decisions, and (ii)
which strategy (no-downgrading or hysteresis) the firm should adopt. We also show how our
set-up, namely the existence of multiple switching opportunities and the exit option, impacts
the investment strategy. In the model of Décamps et al. [4], one of the projects generates a
higher output flow and, thus, switching from that project to the other is never optimal. In our
case, depending on the parameters, multiple switches may happen, notably in the hysteresis
strategy, depicted in Fig. 3. Therefore, at the end of this section, we will be able to answer
the RQ1-RQ3.

Due to the mathematical complexity of the expressions for the triggers presented in the
above subsections, this analysis will be presented numerically only. The parameters for the
base case are the ones presented in Table 1. In the subsequent Tables, the values in bold
correspond to this base case.

5.1 The effects of the parameters in the switching strategy

Before we move to the comparative statics, in Fig. 9 we show the numerical verification
of the HJB Eqs. (8)–(9) for the baseline parameters. In Fig. 9, panel (a) (resp., panel (b)), we
have three different lines: the solid, dashed and dash-dotted lines that represent, respectively,
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Table 2 Thresholds and bounds for the switching strategy with changing μ, the rest of the parameters are as
in Table 1

μ P1x Ph P12 P2x P21 K †
21 K †

12 Strategy

−0.250 0.973 1.019 1.712 0.001 ND

−0.150 0.931 0.965 1.565 0.014 ND

−0.030 0.729 0.694 1.397 2.625 0.037 ND

−0.010 0.619 0.706 0.771 0.575 1.389 9.725 0.161 Hyst

0.000 0.536 0.598 0.761 0.498 1.372 21.547 0.318 Hyst

0.010 0.440 0.483 0.750 0.409 1.355 59.330 0.613 Hyst

0.025 0.274 0.296 0.735 0.256 1.330 1.588 Hyst

0.030 0.215 0.232 0.729 0.202 1.322 2.167 Hyst

the first, second and third term of the HJB Eq. (8) (resp., (9)). The HJB equation is satisfied
if (i) all the terms are not positive; and (ii) only one term of the HJB equation is equal to
zero. As we have already discussed, these terms are related with the production, switching
and abandonment regions respectively. Thus, such regions can be identified observing the
range of prices that make each one of the terms of the HJB equation equals to zero. For
instance, the solid line in panel (a) is equal to zero when the current price p is such that
p ∈ (P1x , Ph) ∪ (P12,+∞), which means that such a region is the continuation region for a
firm that is currently in project 1. Additionally, these plots guarantee that for the parameters
in Table 1, the solution we provide verifies the HJB equations (8) and (9). This verification
give us the guarantee that the thresholds for the baseline case are correct. The same kind
of verification has been performed for all different sets of values of the parameters that we
present in the following subsections.

5.1.1 Comparative statics with respect to� and �

Next, we study the impact of μ and σ on the relevant thresholds, as well as the optimal
strategy.

Table 2 presents the behaviour of the thresholds with changing μ, while keeping other
parameters constant, and equal to the values of the base case presented in Table 1. The
last column of the table indicates the optimal strategy that the firm should follow, with ND
denoting the no-downgrading strategy and Hyst denoting the hysteresis strategy. We have
included in Table 2 all the thresholds (note that Ph and P12 are not applicable for the ND
case and the missing values for the bounds K †

21 and K †
12 are irrelevant). The base case, for

which μ = 0, corresponds to the line with bold values.
The information regarding K †

12 and K †
21 allows us to split the situations in which the

no-downgrading strategy and hysteresis strategy are optimal. In fact, whenever K21 ≥ K †
21

or K12 ≥ K †
12, the no-downgrading strategy is optimal. In this case, the cost of switching

between projects is too expensive and therefore the exit decision is preferable when compared
with switching to the smaller project. On the contrary, in case K21 < K †

21 and K12 < K †
12,

switching from mode 1 to mode 2 is a feasible option as the associated costs are sufficiently
low. In Table 2, β2 + r K12 < β1 and π1(δ)−π2(δ) < 0, thus we start by checking condition
iii) in the set of conditions 1 (where only K †

21 has to be computed). In case condition iii) fails,
then we check condition iv).
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Table 3 Thresholds and bounds for the switching strategy with changing σ , the rest of the parameters are as
in Table 1

σ P1x Ph P12 P2x P21 K †
21 K †

12 Strategy

0.025 0.970 0.982 1.094 0.033 ≈ 0 ND

0.050 0.897 0.891 1.135 0.545 0.005 ND

0.090 0.791 0.762 1.207 2.541 0.084 ND

0.100 0.765 0.834 0.839 0.732 1.225 3.290 0.106 Hyst

0.200 0.536 0.598 0.761 0.498 1.372 21.547 0.318 Hyst

0.250 0.451 0.511 0.730 0.414 1.442 48.797 0.405 Hyst

0.500 0.209 0.257 0.619 0.181 1.791 0.646 Hyst

Table 2 suggests that increasing the drift lowers the exit thresholds in both projects, which
means that if the expectations about the price of the product increase, then the firm is more
willing to stay in the market. Moreover, the switching thresholds, P12 and P21, decrease with
μ. Then, the firm stays in production in the current project for smaller values of the price
before deciding to switch. We also observe from the results of Table 2 that both K †

21 and K †
12

increase with μ, and therefore the set of Conditions 1 becomes less feasible. This means that
for small (and negative) values of μ, the firm should optimally follow the no-downgrading
strategy since it becomes non-profitable to change from the larger project to the smaller one,
being preferable to exit if the price decreases. On the contrary, when μ is large enough, the
firm is less willing to exit the market since it expects to attain large prices in the future. Thus,
both switching from mode 1 to mode 2 and waiting in the hysteresis region may be optimal
decisions. Finally, we remark that the amplitude of the hysteresis region decreases with μ.
Since the firm expects larger future prices, the hysteresis region becomes almost useless.

Regarding the influence of the volatility parameter, the numerical results are presented in
Table 3. We can observe that the firm should follow the hysteresis strategy when the uncer-
tainty is large. This happens because both K †

21 and K
†
12 increasewithσ , and, consequently, the

set of Conditions 1 is verified. Larger uncertainty means that the firm may wish to wait (with
eventually negative profits), in the expectation that the future expected profits will increase
and cover the losses accumulated during a hysteresis period. We can observe that the exit
threshold decreases with the volatility in both projects. And also, as the market becomes less
predictable, the firm is more willing to switch, i.e. it accommodates to the uncertainty using
the switching option.

Beforewe finish this section,we note that in all the scenarios presented, a firmproducing in
the hysteresis region is producing at a loss since its instantaneous profit is negative. Indeed,
one can easily verify that π1(Ph) = α1Ph − β1 varies between (−0.768,−0.294) (resp.,
(−0.743,−0.166)), for μ ∈ (−0.01, 0.03) (resp., σ ∈ (0.1, 0.5)). It is also interesting to
note that when either μ or σ increase, the instantaneous loss of the firm producing in the
hysteresis region increases.

The analysis developed so far allows us to answer RQ3. In fact, both the hysteresis and no-
downgrading strategies can be optimal depending on the parameters chosen. The hysteresis
strategy becomes optimal when μ and σ increase. Additionally, our findings regarding the
behaviour of the optimal thresholds with μ and σ are similar to the ones obtained in Guerra
et al. [10]. Finally, one can also observe that the firm can produce optimally at a loss if the it
has the expectation that such losses will be recovered with an increase of prices.
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Table 4 Thresholds for the
optimal strategy with changing
K12, the rest of the parameters
are as in Table 1

K12 P1x Ph P12 P2x P21 Strategy

0.001 0.502 0.506 0.785 0.498 1.338 Hyst

0.050 0.525 0.565 0.773 0.498 1.355 Hyst

0.100 0.536 0.598 0.761 0.498 1.372 Hyst

0.315 0.563 0.716 0.718 0.500 1.430 Hyst

0.318 0.564 0.717 0.718 0.500 1.431 Hyst

0.318 0.564 0.500 1.431 ND

10.000 0.564 0.500 1.431 ND

Table 5 Thresholds for the
optimal strategy with changing
K21, the rest of the parameters
are as in Table 1

K21 P1x Ph P12 P2x P21 Strategy

0.300 0.536 0.598 0.761 0.498 1.372 Hyst

1.000 0.545 0.609 0.700 0.507 1.615 Hyst

1.300 0.548 0.613 0.685 0.509 1.701 Hyst

1.400 0.564 0.510 1.742 ND

5.000 0.564 0.531 2.558 ND

5.1.2 Comparative statics with respect to the switching costs K21 and K12

We analyse the influence of the switching costs in the optimal decision. The numerical results
are presented in Table 4 (for K12) and Table 5 (for K21).

Observing Tables 3 and 4, we can conclude that changing either K12 or K21 leads to the
same type of behaviour in the optimal strategy and thresholds. The exit thresholds in both
projects increase when the switching costs increase, meaning that the firm is more likely to
exit the market as the switching costs are larger. As soon as the no-downgrading strategy is
optimal, one can observe that (i) K12 does not affect the optimal strategy because it is never
optimal to switch to project 2, and (ii) K21 does not affect P1x only.

The hysteresis threshold, Ph , and the size of the hysteresis region increase with the switch-
ing costs, meaning that the firm stays more time in such a region as the cost of switching
is larger. Also, as the cost increases, the threshold P21 increases and P12 decreases, which
means that switching becomes less attractive

5.2 The effect of the parameters in the investment strategy

In this section, we illustrate with numerical examples the results derived in the previous
section. It is important to note that when we change μ and σ , we also change the solution
of the underlying switching problem (5). We will only choose costs that satisfy the Set
of Conditions 2, reducing ourselves to the types of solutions: W1 and W2, as described in
Proposition 4.

5.2.1 Comparative statics with respect to �

In this section, we analyse the effect of the volatility in the investment strategy. In order
to facilitate the numerical analysis in this case, we slightly change the baseline parameters.
Now we consider that α2 = 0.6, K12 = 0.25, K21 = 0.5, and the remaining parameters are
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Table 6 Thresholds andbounds for the optimal investment strategieswith changingσ , the rest of the parameters
are as in section 5.2.1

σ K−
1 K+

2 γ1 γ2 z2 γ3 Strategy Inv

0.10 1.540 4.596 1.195 1.438 1.458 1.476 Hyst W2

0.15 1.732 4.030 1.323 1.495 1.527 1.556 Hyst W2

0.20 1.839 3.540 1.461 1.549 1.594 1.634 Hyst W2

0.24 1.892 3.197 1.578 1.593 1.649 1.696 Hyst W2

0.25 1.902 3.118 1.662 1.715 Hyst W1

0.30 1.942 2.761 1.730 1.856 Hyst W1
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Fig. 10 The bounds for the optimal investment strategieswith changingσ , as in Table 6. In a, K−
1 is represented

and K+
2 is represented in b

as in Table 1. The investment costs are set as: K1 = 1.9 and K2 = 1.5. Since the values for
the switching thresholds for this sensitivity analysis are not in Sect. 5.1, we present them in
Appendix C.2.

The numerical results are presented in Table 6. In order to help in the explanation of the
results, we also present Fig. 10, where we plot the behaviour of the bounds K−

1 and K+
2 ,

which play a major role in the decision regarding in which project the investment takes place,
as a function of the volatility. If K1 ≤ K−

1 or K2 ≥ K+
2 , then the investment should take

place in the larger scale project, if the initial price is greater than γ3. On the other hand, if
K2 ∈ (K−

2 , K+
2 ) and K1 ∈ (K−

1 , K+
1 ), investment in the small scale project may be optimal.

We note that K1 and K2 are fixed, K
+
1 = K2 + K21, and K−

2 = −Kx do not depend on σ ,
whereas the bound K−

1 and K+
2 depend on the volatility.

In Fig. 10, one can see that K−
1 increases,with the volatility, to K2+K21, and K

+
2 decreases

to −Kx . Since K1 < K2 + K21 = limσ↗∞ K−
1 (σ ), and K2 > −Kx = limσ↗∞ K+

2 (σ ),
investment in project 2 is never optimal, if one considers σ ↗ +∞. We note that the
parameter K1 does not impact on the value of the thresholds K−

1 and K+
2 , and K2 does not

influence the value of the threshold K+
2 .

However, it can still happen that investment in the small scale project is optimal, even
for large values of volatility, depending on the investment cost. For instance, if one assumes
K1 = 1.99 instead of K1 = 1.9, which is the value considered for our illustration, the optimal
strategy will be W2 (and not W1, as in our case).
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The results of Table 6 confirm that the strategy W2 is more likely to be optimal for small
values of volatility. In this case the firm is willing to invest in project 2 for low values of the
revenue (p ∈ (γ1, γ2)). If the volatility increases, then the firm is sceptical about investing,
and, therefore, waits for large values of revenue. In this case, only investment in project 1
is optimal. This is highlighted by the fact that the size of the region (γ1, γ2) is decreasing
with σ . In our illustration, one can see that investing in project 2 is no longer optimal for
values of volatility larger than 0.24, which happens because K1 becomes smaller than K−

1 .
Additionally, γ3 increases with σ , which confirms the usual effect of increasing volatility
increases the investment trigger.

These results can be compared with the ones from Dixit [6] and Décamps et al. [4]. Dixit
[6] noticed that larger uncertainty in the price process leads to a threshold investment strategy,
meaning that it is never optimal to invest in the smaller scale project. The firm can only invest
in the smaller project if the initial price is larger than the investment threshold γ3. Décamps
et al. [4], showed that the optimal investment region may be dichotomous. Additionally, the
authors found that the existence of the inaction region persists when the volatility of the price
process increases, if switching from the smaller to the larger project is allowed. This means
that investing in the smaller project may be optimal for high values of volatility. However, the
behaviour described by the later authors is no longer verifiedwhenwe consider the possibility
of multiple switches between the two projects and the existence of an abandonment option.
Some authors, such as Kwon [13] and Hagspiel et al. [11]) found that the optimal investment
time can be affected by the fact, upon investment, the firm acquires an option to exit. Then
one may ask about the influence of the exit option in the optimal investment strategy when
the volatility increases. In Fig. 11, we can see that the results of Décamps et al. [4] for a
model with a single switch are no longer verified when we consider the exit option. This
allows us to conclude that the existence of an exit option makes the investment in the smaller
project not optimal for large values of volatility. We can then answer RQ1 by stating that
an inaction region where it is not optimal to invest may exist, i.e. the optimal investment
strategy may be dichotomous. This happens mainly when the volatility is small. When the
volatility increases, investment in project 2 is no longer optimal because firms prefer to leave
the market if prices decrease.

5.2.2 Comparative statics with respect to�

In this section, we consider the parameters in Table 1, and use the investment costs K1 = 1.3
and K2 = 1.05. To facilitate the analysis, we will use a range of values for μ also considered
in Table 2. The results are shown in Table 7. The line filled in bold corresponds to the base
case. As explained before, the value of the bounds K−

1 and K+
2 for each specificμ are relevant

to decide the optimal investment rule that the firm should follow. We recall that the strategy
W2 is optimal when K1 > K−

1 and K2 < K+
2 ; otherwise, the firm should follow W1 and

invest in the large scale project as soon as the initial price becomes larger than the threshold
γ3.

We can conclude that when we increase the drift, the firm prefers to invest directly in
project 1 instead of investing in project 2. This is because, as μ increases, the firm expects
to attain large values of profit sooner, and, consequently, it is more profitable to produce in
the larger project. Furthermore, switching between the two projects is then optimal for larger
values of the drift (and, in that case, the firm follows the hysteresis strategy); whereas, for
small and negative values, the firm stays producing with the large scale project, in the the
no-downgrading strategy until it eventually exits the market.
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Fig. 11 Comparison between the values of the bound K−
1 for the (optimal) “hysteresis strategy" and the (not

optimal) “no-downgrading strategy" with changing σ , considering the other parameters as in Table 6

Table 7 Thresholds for the optimal investment strategies with changingμ. The investment costs are K1 = 1.3
and K2 = 1.05

μ K−
1 K+

2 γ1 γ2 γ3 γ3 − max(P1x , P12) Strategy Inv

−0.250 1.235 1.218 1.381 1.510 1.584 0.610 ND W2

−0.150 1.303 1.190 1.450 0.519 ND W1

−0.100 1.338 1.141 1.418 0.532 ND W1

−0.030 0.734 1.464 0.735 ND W1

0.000 − 0.063 1.533 0.772 Hyst W1

0.010 1.545 0.795 Hyst W1

0.025 1.534 0.800 Hyst W1

0.030 1.521 0.791 Hyst W1

The most unexpected result shown in Table 7 is the non-monotonic behaviour of the
investment threshold γ3 in project 1. We note that it starts to decrease with μ, then increases,
and then decreases again. Such a non-monotonic behaviour is also present in the distance
between the investment threshold and the exit/switching thresholds (P1x and P12). Since this
behaviour is unexpected, we provide a numerical verification of the HJB equations for the
levels of μ where the inversion of the behaviour happens, in Appendix C.1. This ensures that
the numerical solution to the optimal stopping problems is correct.

This behaviour is justified by the existence of two effects: on the one hand, the firm is
willing to enter themarket for smaller initial prices because it expects to attain larger values of
profits sooner. But, on the other hand, the existence of the exit option restricts the admissible
range of initial prices for which is optimal to invest. For a possible explanation for these
effects, we analyse the equations that lead to the investment and the exit thresholds and how
they depend on μ. We consider the following two equations:

(d2 − d1)Aγ
d1
3 + (d2 − 1)

α1

r − μ
γ3 − d2

(
β1

r
+ K1

)
= 0 (23)
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Table 8 Thresholds for the optimal investment strategies with changing μ for the small value of σ = 0.03,
the rest of parameters are set as in a Table 7

μ K−
1 K+

2 γ1 γ2 z2 γ3 Strategy Inv

−0.0050 1.000 5.200 0.973 1.349 1.354 1.359 Hyst W2

−0.0025 1.000 5.381 0.975 1.323 1.329 1.334 Hyst W2

0.0000 1.000 5.537 0.977 1.298 1.304 1.309 Hyst W2

0.0025 1.000 5.648 0.976 1.273 1.279 1.284 Hyst W2

0.0050 1.000 5.710 0.971 1.249 1.255 1.261 Hyst W2

0.0100 1.000 5.746 0.957 1.207 1.213 1.219 Hyst W2

(d2 − d1)AP
d1
1x + (d2 − 1)

α1

r − μ
P1x − d2

(
β1

r
− Kx

)
= 0, (24)

where the first equation is derived in Appendix (A.2.2) and the second one is obtained from
(31)–(32), for the no-downgrading strategy3. By a simple inspection of (23) and (24) one
may think that the behaviour of γ3 is the same as P1x , as the equations are quite similar.
However, whereas P1x can be found explicit (see Eq. (12)) and one can prove analytically
that it is decreasing with μ, γ3 can only be found implicitly by solving (23). This means that
γ3 depends on A and P1x , and both depend onμ. From the previous equations, we can obtain
an implicit equation for γ3:

γ3 =
⎛
⎝ (d2 − 1) α1

r−μ
γ3 − d2

(
β1
r + K1

)

(d2 − 1) α1
r−μ

P1x − d2
(

β1
r − Kx

)
⎞
⎠

1
d1

P1x ,

which is a highly non-linear equation in μ (because d1, d2 and P1x depend on μ), and shows
that the variation of γ3 depends on the relative position of γ3 and P1x .

The results from Table 7 shows that, for our set of parameters, the strategy W1 is almost
always optimal. Then, we also consider values for the parameters such that the optimal
strategy is W2. In this case, the firm invests in the smaller scale project if p ∈ (γ1, γ2) and
invests in the large scale if p > γ3. Those results are displayed in Table 8. As the optimal
switching strategy is the hysteresis one, the firm will never exit the market from the large
scale project. As a consequence, γ3, the investment threshold in project 1 becomesmonotonic
and decreasing, as it is usual in standard investment problems, whereas γ1, the investment
threshold that is closer to the exit threshold, becomes non-monotonic. This analysis answers
RQ2 and makes clear the impact of the exit option: the firm is generally willing to invest
for smaller initial prices, when μ increases; however, this may change when the investment
threshold is too close to the exit threshold. Otherwise, a sudden decrease in the profit would
lead to an exit decision, which would not be optimal because there are fixed costs involved.

5.2.3 Comparative statics with respect to the exit cost Kx

The role of the exit option in the investment decision has been studied in real options models
with different features (see for instanceDuckworth and Zervos [8], Kwon [13], Hagspiel et al.
[11]). In this section, we also analyse the impact of the exit option in the investment strategy.

3 For the hysteresis strategy, the reasoning would be similar, but using the appropriate equations.

123



596 Mathematics and Financial Economics (2023) 17:573–614

Table 9 Thresholds for the optimal investment and switching strategies with changing exit cost Kx

Kx P1x Ph P2x K−
1 K+

2 γ1 γ2 γ3 Strat Inv

−1.0 0.518 0.600 0.455 1.839 3.540 1.461 1.549 1.634 Hyst W2

0.0 0.481 0.550 0.417 1.891 3.253 1.535 1.549 1.634 Hyst W2

0.2 0.473 0.541 0.409 1.899 3.199 1.548 1.549 1.634 Hyst W2

0.4 0.466 0.531 0.401 1.907 3.146 1.641 Hyst W1

1.0 0.442 0.501 0.378 1.926 2.995 1.663 Hyst W1

In fact, the exit option becomes less valuable when the exit cost increases. If Kx ≥ β2/r
then leaving the market is not optimal. For this purpose, we analyse the behaviour of the
investment thresholds by increasing the value of the exit cost Kx .

We consider the parameters as in Sect. 5.2.1, fixing σ = 0.2. The investment and switching
thresholds are summarised in Table 9. We note that the quantities P12, z2 and P21 do not
change with Kx . Their values are: P12 = 0.889, z2 = 1.594 and P21 = 1.857. We can
conclude that investing in project 2 is not optimal when the abandonment cost is large. Thus,
the strategy W2 is optimal only for small values of Kx .

We find that increasing the exit cost increases the investment threshold. On the one hand,
when investment in project 2 is optimal then γ1 increases, but the remaining thresholds γ2
and γ3 do not change. This means that the size of the investment region in project 2 decreases.
The timing to invest in mode 1 remains unchanged. On the other hand, when investment in
mode 2 is never optimal, then γ3 increases Kx . This means that investment in the production
mode 1 is postponed.

So far, we have seen that investment never occurs in the hysteresis region. Then, in the next
section, we will analyse the possibility of being producing in the hysteresis region when we
consider the time-to-build feature. We assume that investment is not instantaneous, meaning
that investment will only be effective after a certain lag period, also known as time-to-build.
This analysis will give us insights to answer RQ4.

6 Extension: investment with time-to-build

In this section, we assume that the firm invests in the market, but it only starts producing n
units of time after the investment. Thus, if investment takes place at time τ , it will only be
effective at time τ + n, when production will start. Hence, we include a time-to-build feature
in the problem and we study how this will impact the investment strategy, notably in terms
of the relevance of the hysteresis region found in the optimal switching strategy.

In this case, the investment problem can be written as follows:

W̃n(p) = sup
τ≥0

Ep

[
max

(
e−r(τ+n)v1(Pτ+n) − e−rτ K1, e

−r(τ+n)v2(Pτ+n) − e−rτ K2

)]

(25)

where we use the notation W̃n to emphasise the dependence of the decision on the time-to-
build, which we assume to be known and equal to n. Using the strong Markov property and
the law of iterated expectations, one can rewrite (25) as

W̃n(p) = sup
τ≥0

Ep
[
e−rτun(Pτ )

]
(26)
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(a) (b)

Fig. 12 a Plot of u, u0.5 and u5 for the baseline case, as a function of the price, p, in the horizontal axis.
Pix is the exit threshold from project i , Ph is the hysteresis threshold and Pi j is the switching threshold from
project i to project j , with i �= j = 1, 2. b Zoom of the figure for small values of revenue

where

un(p) = Ep
[
max

(
e−rnv1(Pn) − K1, e

−rnv2(Pn) − K2
)]

. (27)

The function un represents the perpetual value of the firm after investment, assuming that
after investment the firm acts optimally according with the switching strategy. This perpetual
value is itself an expected value, as the revenue at the moment that the firm starts operation
is a random variable (Pτ+n is not known at time τ ).

As we have seen in Sect. 5, the value functions v1 and v2 have different branches, repre-
senting the value of the firm operating in mode 1 and 2 for different values of the revenue.
Therefore, in the computation of the expected value (27), one needs to take into account
the probability that after n periods of time, the revenue will be in one of the branches that
define the value functions v1 and v2. This means, in particular, that the investment strategy
defined in (26) is unable to identify in which production mode the firm should optimally
invest. Also, as a result of the expectation operator, the function u is smooth enough so that
the investment strategy is a threshold strategy. For notation purposes, we let ζn denote the
investment threshold when the time-to-build is equal to n. Although we will present a more
detailed analysis in Sect. 6.1, we can already answer the first part of RQ4, by saying that the
existence of time-to-build in the model results in investment strategies that are connected
and, consequently, there is no inaction region in the optimal solution.

In Fig. 12, one can see that the function un is getting smoother as n increases. Addition-
ally, un > u for small values of revenue, but for large values of revenue un < u. This
is explained by the fact that when Pτ is small there is a strictly positive probability that
the revenue increases during the n periods of time, which increases the expected value of
max

(
e−rnv1(Pn) − K1, e−rnv2(Pn) − K2

)
. A similar argument can be used when Pτ is

large.
We can also observe in Fig. 12 that the investment threshold decreases when the time-

to-build increases. This result seems to be contrary to the standard results in real options
because, when we increase the time-to-build, we increase the uncertainty and, consequently,
one could expect a larger investment threshold. However, the effect of the time-to-build on

123



598 Mathematics and Financial Economics (2023) 17:573–614

Table 10 Approximate values for thresholds ζn , and the probability of attaining the hysteresis region after n
periods of time, for different values of the drift μ. The remaining parameters are as in Table 1

n μ = −0.01 μ = 0 μ = 0.01

ζn Prob ζn Prob ζn Prob

0.5 1.501 8.557 × 10−8 1.519 3.421 × 10−11 1.535 3.502 × 10−16

1 1.493 0.150 × 10−3 1.508 2.803 × 10−6 1.510 8.912 × 10−8

3 1.349 0.030 1.418 0.006 1.423 0.002

the investment threshold is not so straightforward because, as explained above, the expected
value of the investment increases, at least for small values of price. Additionally, in our case,
the firm can invest in one of the two projects: it invests in project 1 for large values of revenue
and in project 2 for smaller values of revenue. Thus, as the perpetual value of investment
in this case takes into account the probability of having either larger or smaller revenues in
τ + n, the threshold decreases with n. A similar behaviour was already reported by Bar-Ilan
and Strange [1]. The authors of the previous paper consider the option to invest in a single
project followed by an exit option and find a similar reasoning for the investment threshold
behaviour. This result is potentiated by the exit option, since it bounds the possible losses,
which makes uncertainty less harmful for the firm. The opposite behaviour of the investment
threshold is also described when authors do not consider the exit option (see, for instance,
Proposition 3 in Nunes and Pimentel [19]).

6.1 Sojourn in the hysteresis region

When we consider the time-to-build, it may happen that the firm starts production in the
hysteresis region, in case it exists. As stated in Proposition 3, we proved that investment in
the hysteresis region is never optimal. Moreover, from Fig.4, it is clear that the hysteresis
region is never attained due to a continuous decrease of the revenue. Hence, we present
a numerical study concerning the investment threshold and the probability of entering the
hysteresis region at the moment that production begins, as a function of the time-to-build,
the drift and the volatility of the price process.

We consider the values of the parameters in Table 1 and, consequently, the Set of Condi-
tions 1 holds true, meaning that the hysteresis region exists. For this section, the numerical
examples were computed using theMonte-Carlo simulations for Eq. (27). Thus, although the
thresholds can slightly change from simulation to simulation, they allow us to confidently
describe their qualitative behaviour in the sensitivity analysis.

Based on Table 10, we can conclude that the investment threshold increases withμ. In this
case, the investment threshold increases because the firmwants to ensure that invests in mode
1. This result is opposite to the one found by Nunes and Pimentel [19], where the threshold
decreases with μ. This is because in the latter paper the authors consider a single project. We
can also observe that the probability that the firm starts producing in the hysteresis region
increases with the time-to-build and decreases with μ.

A similar analysis can be done varying the volatility (see Table 11). We can see that the
investment threshold is monotonically increasing with the volatility for all values of n. Some
authors, like Bar-Ilan and Strange [1] and Nunes and Pimentel [19], found that the monotony
of the investment threshold with changing the volatility depends on the size of the time-to-
build n. Such a behaviour was not found in our simulations. Our numerical findings suggest
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Table 11 Approximate values for thresholds ζn , and the probability of attaining the hysteresis region after n
periods of time, for different values of σ . The remaining parameters are as in Table 1

n σ = 0.1 σ = 0.2 σ = 0.25

ζn Prob ζn Prob ζn Prob

0.5 1.298 2.479×10−10 1.519 3.421 × 10−11 1.625 5.336 × 10−11

1 1.290 7.989 × 10−6 1.508 2.803 × 10−6 1.614 3.487 × 10−6

3 1.247 0.010 1.418 0.006 1.486 0.007

that the investment threshold increases with the uncertainty, and this holds for all time lags
that we have considered (ranging from 0.5 up to 3). Therefore, the firm invests in a larger
threshold in order to avoid the negative losses. On the other hand, and similarly to Bar-Ilan
and Strange [1], we see that uncertainty has a smaller effect on the investment thresholds
when the size of the investment lags increase. Moreover, we can easily see that changing
the volatility does not result in a significant change in the probability that the firm starts
producing in the hysteresis region.

These results answer the second part of RQ4 by showing that the probability of investing
in the hysteresis region is small, especially for small values of n. Nevertheless, this event
may happen, particularly when the drift of the price is negative and the volatility is small,
and, consequently, the hysteresis region should be taken into account in the analysis of the
investment strategy. Moreover, it is also relevant to assess: (i) the probability that the firm
will resume production at a positive profit, and (ii) the (expected) sojourn time in this region.

In order to study these two points, we consider the parameters as the ones set in Table 1,
and assume that the current value of the price process, p, is one of the following values:

p1 = P1x + 0.15h, p2 = P1x + 0.5h, p3 = P1x + 0.85h, h = Ph − P1x
2

. (28)

Thus, p1 is a point close to the exit threshold, p2 is half-way in the hysteresis region, and p3
is close to the threshold Ph , where the firm leaves the hysteresis region and start producing
with a larger revenue in project 2. In order to study (i), we note that since the revenue follows
a geometric Brownian motion, such probability has the following expression

Pri = Pr
{
τP1x > τPh |P0 = pi

} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
pi
P1x

)1− 2μ
σ2 −1

(
Ph
P1x

)1− 2μ
σ2 −1

, σ 2

2 − μ > 0

1−
(

pi
P1x

)1− 2μ
σ2

1−
(

Ph
P1x

)1− 2μ
σ2

, σ 2

2 − μ < 0

, (29)

for i = 1, 2, 3, where τP1x is the exit time (from project 1) and τPh is the time at which the
firm leaves the hysteresis region, and switches to project 2. To analyse point (ii), we use the
following expression for the expected time that the firm stays in the hysteresis region:

Esti = E[min{τP1x , τPh }] =
⎧⎨
⎩

1
σ2
2 −μ

[
log pi

P1x
− log P1x

Ph
Pri

]
, σ 2

2 − μ > 0

∞, σ 2

2 − μ < 0
. (30)

The expressions for these quantities can be found, for instance, in Section of 15.3.6 Karlin
and Taylor [12].
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Table 12 Impact of the sojourn
in hysteresis as a function of μ

when σ = 0.20

μ Pr1 Pr2 Pr3 Est1 Est2 Est3

−0.010 0.146 0.492 0.846 0.056 0.107 0.053

0.000 0.150 0.500 0.850 0.039 0.075 0.037

0.010 0.153 0.506 0.853 0.029 0.055 0.028

Table 13 Impact of the sojourn in hysteresis as a function of σ when μ = 0.01

σ P1x Ph Pr1 Pr2 Pr3 Est1 Est2 Est3

0.200 0.440 0.483 0.153 0.506 0.853 0.029 0.055 0.028

0.300 0.310 0.352 0.152 0.504 0.852 0.024 0.045 0.022

0.500 0.167 0.204 0.151 0.502 0.851 0.021 0.039 0.010

In Table 12, we study (i) and (ii) as functions of the diffusion parameter μ. We can
see that all the probabilities of leaving the hysteresis region by resuming production in
mode 2 increase with μ. On the contrary, the expected sojourn time in the hysteresis region
decreases because the size of the hysteresis region is also decreasing. Furthermore, for fixed
μ, Pr1 < Pr2 < Pr3 and Est1 > Est2 > Est3. Since we are considering values of the
process closer to the threshold Ph , it becomes more likely to leave the hysteresis region by
hitting this bound than by exiting the market. Additionally, the expected sojourn time in
hysteresis decreases when the price p gets closer to Ph . These results are not surprising,
because as we increase the drift, it is more likely that the revenue increases, and, therefore,
the firm will leave the hysteresis region earlier and will start producing in project 2.

In Table 13, we analyse (i) and (ii) as functions of the volatility. We also add information
regarding the thresholds P1x , Ph , which allows us to understand the results better. As we
saw in Sect. 5.1.1, the two thresholds and the size of the hysteresis region decrease with the
volatility. The probabilities that the firm leaves the hysteresis region by switching to project 2
slightly decrease with the volatility. Additionally, the expected time in this region decreases.
This suggests that the firm takes a decision of leaving the hysteresis region sooner with
increasing volatility. Looking at the probabilities, it is likely that the firm leaves this region
by abandoning the market, which is an interesting result, especially in view of the decreasing
thresholds.

7 Conclusions

In this paper, we study the investment problem of a firm that, upon investment, may switch
between two projects, one being larger than the other. In both alternative projects there is
the option to exit. Following the usual approach, we address the problem in a backward way,
solving first the switching problem and then the investment problem. Finally, we analyse the
impact of the time-to-build in our model. Allowing for multiple switches and exit from both
projects raised the research questions RQ1-RQ4, defined in Sect. 2. In a nutshell, the most
relevant conclusions of the paper are in fact the answers to these questions.

Regarding RQ1, we found that, similarly to Décamps et al. [4], for some values of the
parameters, the investment region may be disconnected, meaning that there is an interval of
small values of the price (γ1, γ2), where the firm invests in the smaller scale project, and for
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large values of the price (p > γ3), it invests in the large scale project. However, for prices in
the set (0, γ1) ∪ (γ2, γ3), the firm does not invest and waits to have more information. But,
contrary to Décamps et al. [4], this inaction region vanishes for large values of the volatility
and, in these cases, we have a trigger investment strategy. Our analysis shows that this is
mainly due to the exit option that is not included in the model of Décamps et al. [4].

RQ2 concerns the behaviour of the investment threshold with the uncertainty parameters.
We show that the exit option influences the behaviour of the smallest investment threshold
(γ1 or γ3, depending on the choice of parameters), which is non-monotonic with the drift of
the price process. On the other hand, the three investment thresholds are increasing with the
volatility.

RQ3 addresses the optimality of the switching strategy. We show that there are only two
optimal switching strategies, the no-downgrading and the hysteresis strategies, being optimal
one or the other depending on the parameters.When the hysteresis strategy is optimal, the firm
may decide to produce at a loss rather than exit or switching project. This inaction region,
which we name as hysteresis region, serves as buffer for more irreversible or expensive
actions. This region is never attained through a continuous movement of the price, but it can
be reached in projects that start producing after a given time lag.

Finally, in RQ4, the impact of the time-to-build in the investment model is discussed. By
adding the possibility of time-to-build, we are able to understand the role of the hysteresis
region better, as this region cannot be attained by a continuous change in the price process after
the investment takes place. We show that it is more likely that the firm will start production in
the hysteresis region for large values of time-to-build, negative values of the drift and small
values of the volatility of the price process. We also observed that the expected sojourn time
in the hysteresis region decreases with the drift and with the volatility. In this analysis, we
obtained some interesting results concerning the investment thresholds. Namely, we show
that the investment threshold is increasing with the drift and the volatility. These results are
different from the ones presented in Bar-Ilan and Strange [1]. Since there are many features
that are different between our model and the one presented in Bar-Ilan and Strange [1], we
relegate further analysis for future work. We highlight that, in the aforementioned paper,
the authors consider a single project and the investment cost is spent when the construction
process (time-to-build) is finished (and not when the investment decision is made). This is a
fundamental difference between the twomodels because the projects becomemore expensive
when the time-to-build increases, if the firm has to spend the investment cost immediately
after the investment decision.
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A Parameters and thresholds

In this appendix, we present the smooth pasting conditions for the optimisation problems (5)
and (6), which allows to derive the constant terms and the thresholds.

A.1 Switching problem (5)

As discussed in Sect. 5, according to the relationship between the parameters, there are two
optimal strategies. A technical analysis of a similar switching problem can be seen in Zervos
et al. [22].

A.1.1 No-downgrading strategy

For the no-downgrading strategy, the smooth-fit conditions applied to the thresholds P1x , P2x
and P21 are

0 = APd1
1x + α1

r − μ
P1x − β1

r
+ Kx (31)

0 = d1AP
d1
1x + α1

r − μ
P1x (32)

0 = CPd1
2x + DPd2

2x + α2

r − μ
P2x − β2

r
+ Kx (33)

0 = Cd1P
d1
2x + Dd2P

d2
2x + α2

r − μ
P2x (34)

0 = (C − A)Pd1
21 + DPd2

21 + α2 − α1

r − μ
P21 − β2 − β1

r
+ K21 (35)

0 = (C − A)d1P
d1
21 + Dd2P

d2
21 + α2 − α1

r − μ
P21 (36)

Solving equations (31)–(32) allow us to get

A = − α1

d1(r − μ)
P1−d1
1x (37)

P1x = d2 − 1

α1d2
(β1 − r Kx ) = δ. (38)

Computing Eq. (34), minus d1 multiplied by Eq. (33), leads to:

D = − d1P
−d2
2x

(d2 − d1)r

[−d2α2

d2 − 1
P2x + (β2 − r Kx )

]
. (39)

Performing (34) minus d2 multiplied by (33)

C = − d2P
−d1
2x

(d2 − d1)r

[
d1α2

d1 − 1
P2x + (−β2 + r Kx )

]
. (40)

Calculating [(36)−d1(35) ]

D = − d1P
−d2
21

(d2 − d1)r

[
d2(α1 − α2)

d2 − 1
P21 + (β2 − β1 − r K21)

]
. (41)
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Similarly, Eq. (36) and Eq. (35) multiplied d1 can be simplified allowing us to get

C − A = − d2P
−d1
21

(d2 − d1)r

[
−d1(α1 − α2)

d1 − 1
P21 − (β2 − β1 − r K21)

]
. (42)

Taking into account that the parameter D is given by the expressions (39),(41) and C by
the expressions (37),(40), (42), we can find expressions for boundary points P21 and P2x . In
fact, P21 > P2x satisfy the system of equations

G1(P21, P2x ) := P−d1
21

[
(α2 − α1)(1 − d2)

r − μ
P21 + d2

(
β2 − β1

r
− K21

)]

− A(d1 − d2) − P−d1
2x

[
α2(1 − d2)

r − μ
P2x + d2

(
β2

r
− Kx

)]
= 0 (43)

G2(P21, P2x ) := P−d2
2x

[
α2(1 − d1)

r − μ
P2,ex + d1

(
β2

r
− Kx

)]

− P−d2
21

[
(α2 − α1)(1 − d1)

r − μ
P21 + d1

(
β2 − β1

r
− K21

)]
= 0. (44)

A.1.2 Hysteresis strategy

Applying the smooth-fit conditions to the thresholds P2x , P1x , Ph, P12 and P21 we get the
following system of equations:

0 = EPd1
1x + FPd2

1x + α1

r − μ
P1x − β1

r
+ Kx (45)

0 = d1EPd1
1x + d2FPd2

1x + α1

r − μ
P1x (46)

0 = (E − C)Pd1
h + (F − D)Pd2

h + α1 − α2

r − μ
Ph − β1 − β2

r
+ K12 (47)

0 = d1(E − C)Pd1
h + d2(F − D)Pd2

h + α1 − α2

r − μ
Ph (48)

0 = (C − A)Pd1
12 + DPd2

12 + α2 − α1

r − μ
P12 − β2 − β1

r
− K12 (49)

0 = d1(C − A)Pd1
12 + d2DPd2

12 + α2 − α1

r − μ
P12 (50)

0 = CPd1
2x + DPd2

2x + α2

r − μ
P2x − β2

r
+ Kx (51)

0 = d1CPd1
2x + d2DPd2

2x + α2

r − μ
P2x (52)

0 = (C − A)Pd1
21 + DPd2

21 + α2 − α1

r − μ
P21 − β2 − β1

r
+ K21 (53)

0 = d1(C − A)Pd1
21 + d2DPd2

21 + α2 − α1

r − μ
P21 (54)

Taking into account the relationships:

r = −σ 2

2
d1d2, μ = σ 2

2
(1 − d1 − d2) and r − μ = −σ 2

2
(1 − d1)(1 − d2)
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we can obtain

r(d2 − 1)

d2(r − μ)
= d1

d1 − 1

r(d1 − 1)

d1(r − μ)
= d2

d2 − 1
.

Computing d1 (49) − (50) we get

D = − d1P
−d2
12

(d1 − d2)r

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − r K12)

]
. (55)

Simplifying the Eqs. (50) and d2 multiplied by (49), we obtain

C − A = − d2P
−d1
12

(d2 − d1)r

[
d1(α2 − α1)

d1 − 1
P12 + (β1 − β2 − r K12)

]
. (56)

Analysing Eqs. (53), (54), we get

D = − d1P
−d2
21

(d1 − d2)r

[
d2(α2 − α1)

d2 − 1
P21 + (β1 − β2 + r K21)

]
(57)

C − A = − d2P
−d1
21

(d2 − d1)r

[
d1(α2 − α1)

d1 − 1
P21 + (β1 − β2 + r K21)

]
. (58)

Since we have two expressions for D and to C − A, we are able to define the equations that
allow us to compute the thresholds P21 and P12

P−d1
21

[
d1(α2 − α1)

d1 − 1
P21 + (β1 − β2 + r K21)

]

− P−d1
12

[
d1(α2 − α1)

d1 − 1
P12 + (β1 − β2 − r K12)

]
= 0

P−d2
21

[
d2(α2 − α1)

d2 − 1
P21 + (β1 − β2 + r K21)

]

− P−d2
12

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − r K12)

]
= 0.

Taking into account Eqs. (45), (46) as well as (45) and (46), we obtain

F = − d1P
−d2
1x

(d1 − d2)r

[
d2α1

d2 − 1
P1x + (−β1 + r Kx )

]
(59)

F − D = − d1P
−d2
h

(d1 − d2)r

[
d2(α1 − α2)

d2 − 1
Ph + (−β1 + β2 + r K12)

]
(60)

Combining Eqs. (59)–(60) with (55)

0 = P−d2
1x

[
d2α1

d2 − 1
P1x + (−β1 + r Kx )

]
− P−d2

h

[
d2(α1 − α2)

d2 − 1
Ph + (−β1 + β2 + r K12)

]

− P−d2
12

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − r K12)

]
(61)

A different expression for D can be obtained solving the equations (51) and (52):

D = − d1P
−d2
2x

(d1 − d2)r

[
d2α2

d2 − 1
P2x + (−β2 + r Kx )

]
. (62)
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Combining (62) using (55) multiplied by −1, we get

P−d2
2x

[
d2α2

d2 − 1
P2x + (−β2 + r Kx )

]
− P−d2

12

[
d2(α2 − α1)

d2 − 1
P12 + (β1 − β2 − r K12)

]
= 0.

(63)

Solving Eqs. (45), (46), and (51), (52), we obtain

E = − d2P
−d1
1x

(d2 − d1)r

[
d1α1

d1 − 1
P1x + (−β1 + r Kx )

]
(64)

C = − d2P
−d1
2x

(d2 − d1)r

[
d1α2

d1 − 1
P2x + (−β2 + r Kx )

]
(65)

From (47) and (48), we can compute

E − C = − d2P
−d1
h

(d2 − d1)r

[
d1(α1 − α2)

d1 − 1
Ph + (−β1 + β2 + r K12)

]
. (66)

Therefore,

P−d1
1x

[
d1α1

d1 − 1
P1x + (−β1 + r Kx )

]
− P−d1

2x

[
d1α2

d1 − 1
P2x + (−β2 + r Kx )

]

− P−d1
h

[
d1(α1 − α2)

d1 − 1
Ph + (−β1 + β2 + r K12)

]
= 0 (67)

Equations (61)–(63)–(67) allow us to recover thresholds P1x , P2x and Ph .

A.1.3 Constants K†
12 and K

†
21

Looking at the definition of the functions G1 and G2 defined in (43) and (44), we know that
these functions depend on K21. To highlight such a dependence, we write G1(P21, P2x ) ≡
G1(P21, P2x ; K21) and G2(P21, P2x ) ≡ G2(P21, P2x ; K21). Then, we proceed as Zervos et
al. [22], to find the bounds K †

12 and K †
21.

The K †
21 is such that there is a unique solution (x, y, k) = (x, y, K †

21), with y > x , to the
system of equations

G1(x, y, k) = 0, G2(x, y, k) = 0, G1(δ, y, k) = 0, (68)

where δ is defined in (38). The bound for K12 is

K †
12 = −K21 + x̂d2

r

[
P−d
21

(
(α1 − α2)d2

d2 − 1
P21 − (β1 − β2 + r K21)

)

− x̂−d
(

(α1 − α2)d2
d2 − 1

x̂ − (β1 − β2 + r K21)

)]
, (69)

where x̂ ∈ [P2x , P21] is a solution to:

(α2 − α1)x

[
d1

d1 − 1
− d2

d2 − 1

]
+ xd1 P−d1

21

[
(α1 − α2)d1

d1 − 1
P21 − (β1 − β2 + r K21)

]

− xd2 P−d2
21

[
(α1 − α2)d2

d2 − 1
P21 − (β1 − β2 + r K21)

]
= 0. (70)

Note that K †
21 is independent of K12 and K21, but K

†
12 depends on K21.
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A.2 Investment problem (6)

In this section, we will present the smooth-pasting conditions to find the parameters and
thresholds associated to the Investment Problem defined in Eq. (6).

A.2.1 K+
2 ≥ K2 and K1 ≥ K−

1

We start by noticing that the function W2 can be written as

u(p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1 pd2 p ∈ [0, γ1)
Cpd1 + Dpd2 + α2

r−μ
p − β2

r − K2 p ∈ [γ1, γ2]
A1 pd1 + B2 pd2 p ∈ (γ2, γ3)

Apd1 + α1
r−μ

p − β1
r − K1 p ∈ [γ3,+∞).

(71)

Using the smooth-fit conditions, the parameters B1, A1 and A2, and the thresholds γ1, γ2 and
γ3 satisfy the following equations:

0 = (B1 − D)γ
d2
1 − Cγ

d1
1 − α2

r − μ
γ1 + β2

r
+ K2

0 = (B1 − D)d2γ
d2
1 − Cd1γ

d1
1 − α2

r − μ
γ1

0 = (C − A1)γ
d1
2 + (D − B2)γ

d2
2 + α2

r − μ
γ2 − β2

r
− K2

0 = (C − A1)d1γ
d1
2 + (D − B2)d2γ

d2
2 + α2

r − μ
γ2

0 = (A − A1)γ
d1
3 − B2γ

d2
3 + α1

r − μ
γ3 − β1

r
− K1

0 = (A − A1)d1γ
d1
3 − B2d2γ

d2
3 + α1

r − μ
γ3

Solving these equations we can get the following expressions:

B1 = D + d1γ
−d2
1

(d1 − d2)r

[
d2α2

(d2 − 1)
γ1 − (β2 + r K2)

]

B2 = D + d1γ
−d2
2

(d1 − d2)r

[
d2α2

(d2 − 1)
γ2 − (β2 + r K2)

]

= d1γ
−d2
3

(d1 − d2)r

[
d2α1

(d2 − 1)
γ3 − (β1 + r K1)

]

A1 = C − d2γ
−d1
2

(d1 − d2)r

[
d1α2

(d1 − 1)
γ2 − (β2 + r K2)

]

= A − d2γ
−d1
3

(d1 − d2)r

[
d1α1

(d1 − 1)
γ3 − (β1 + r K1)

]
.

The threshold γ1 is a solution to the following equation:

φ(γ1, K2) := C(d1 − d2)γ
d1
1 + (1 − d2)

α2

r − μ
γ1 + d2

(
β2

r
+ K2

)
= 0
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and the thresholds γ2 and γ3 are a solution to the system of equations

D(d1 − d2)r + d1γ
−d2
2

[
d2α2

(d2 − 1)
γ2 − (β2 + r K2)

]

− d1γ
−d2
3

[
d2α1

(d2 − 1)
γ3 − (β1 + r K1)

]
= 0

(C − A)(d1 − d2)r − d2γ
−d1
2

[
d1α2

(d1 − 1)
γ2 − (β2 + r K2)

]

+ d2γ
−d1
3

[
d1α1

(d1 − 1)
γ3 − (β1 + r K1)

]
= 0.

A.2.2 K+
2 < K2 or K1 < K−

1

Since z2 < γ3 < P2,1, using the smooth-pasting conditions, we get the following expressions

B2γ
d2 = Aγ d1 + α1

r − μ
γ − β1

r
− K1

d2B2γ
d2 = d1Aγ d1 + α1

r − μ
γ

We conclude, that

B1 = − d1γ −d2

(d2 − d1)r

[
d2α1

(d2 − 1)
γ − (β1 + r K1)

]
(72)

and γ3 satisfies the equation

(d2 − d1)Aγ
d1
3 + (d2 − 1)

α1

r − μ
γ3 − d2

(
β1

r
+ K1

)
= 0. (73)

A.2.3 The bounds K+
1 , K−

1 , K+
2 and K−

2

Let us assume that the value function is given byW2. Then, for values of revenue p ∈ (γ1, γ2)

the firm invests in the project 2. It is straightforward that the investment is not optimal if
v∗
2(p)−K2 < 0. Thus, γ1 > p̂, where v∗

2( p̂)−K2 = 0. Furthermore, since K2 > −Kx , it is
not optimal to invest in project 2 for values of p ≤ P2x . On the other hand, since γ1 triggers
the investment in project 2, γ1 < z2, where is defined in Proposition 2. Additionally, since
K2 + K21 > K1, it will be never optimal to invest in project 2 for values of revenue larger
than P21. Thus γ1 < P21.

Let K−
2 and K+

2 be respectively the upper and lower bounds for K2. Thus, K
+
2 is obtained

as solution to the equation

K+
2 = max{K2 : φ(γ1, K2) = 0, γ1 ∈ [P2x , P21]}, (74)

and K−
2 is obtained as solution to the equation

K−
2 = min{K2 : φ(γ1, K2) = 0, γ1 ∈ [P2x , P21]}, (75)

where φ is defined in Sect.A.2.1. These two equations have to be solved in K2 because all
the remaining parameters are fixed. The parameter K−

2 can be explicitly computed because
the pair (γ1, K2) = (P2x ,−Kx ) solves the equation φ(γ1, K2) = 0. Since we are imposing
that K2 > −Kx , then K−

2 = −Kx .
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Fix now K2 ∈ (K−
2 , K+

2 ), then γ1 can be obtained following Sect. A.2.1. Considering the
structure of W2, one has that 0 < γ1 < γ2 < γ3. Thus, following the same line of reasoning,
one can obtain K−

1 and K+
1 fixing γ2 = γ1 and γ2 = γ3 and solving the system of equations

obtained at the end of Sect.A.2.1, in K1.
Considering γ2 = γ3 = γ , we get

D(d1 − d2)r + d1γ
−d2

[
d2α2

(d2 − 1)
γ − (β2 + r K2)

]

− d1γ
−d2

[
d2α1

(d2 − 1)
γ − (β1 + r K1)

]
= 0

(C − A)(d1 − d2)r − d2γ
−d1

[
d1α2

(d1 − 1)
γ − (β2 + r K2)

]

+ d2γ
−d1

[
d1α1

(d1 − 1)
γ − (β1 + r K1)

]
= 0.

One can easily see that (γ, K1) = (P21, K2 + K21) solves the system of equations. As we
are imposing the condition K1 < K2 + K21, this implies that K+

1 = K2 + K21.
Fix now γ2 = γ1. Then, the lower bound can be found solving the system

D(d1 − d2)r + d1γ
−d2
1

[
d2α2

(d2 − 1)
γ1 − (β2 + r K2)

]

− d1γ
−d2
3

[
d2α1

(d2 − 1)
γ3 − (β1 + r K1)

]
= 0

(C − A)(d1 − d2)r − d2γ
−d1
1

[
d1α2

(d1 − 1)
γ1 − (β2 + r K2)

]

+ d2γ
−d1
3

[
d1α1

(d1 − 1)
γ3 − (β1 + r K1)

]
= 0,

in γ3 and K1.

B Proofs

B.1 Proof of Proposition 2

Westart by derivingu∗ = max(v1(p)−K1, v2(p)−K2),withv1 andv2 defined inProposition
1.

Let us assume, without loss of generality, that K1 = 0 and K2 = 0. Then, it is straight-
forward that

v1(p) = v2(p) ⇔ p ∈ (0, P2x ) ∪ (P12, P21). (76)

For x ∈ (P2x , P1x ), it is also trivial that v2(p) > v1(p). Taking into account that

v2(P1x ) > v1(P1x ) = −Kx and v2(Ph) > v1(Ph) = v2(Ph) − K12, (77)

and the monotony of v2 and v1 we can conclude that v2(p) > v1(p) for p ∈ (P1x , Ph).
Finally, for p ∈ (Ph, P12), v2(p) > v1(p) = v2(p) − K12.

In fact, due to the continuity of v1 and v2, we can conclude that there is a unique point z2 ∈
(P12, P21) such that v1(z2) = v2(z2). Additionally, from the convexity of v2 in (P12, P21)
we get that v2(p) > v1(p) for p < z2 and v2(p) < v1(p) for p > z2.
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Given the continuity of v1 − K1 in K1, we know that z2(K1) is increasing and

limK1→K2+K21 z2(K1) = P21. (78)

Additionally, when we consider 0 < K1 < K12 then v1(p) − K1 < v2(p) for p ∈ (0, z2)
and v1(p) − K1 > v2(p) when p > z2. One can easily check that the analysis made is still
true when we start by considering K1 = K2 > 0.

To finalise this part of the proof, one need to check what happens when we decrease K1

taking into account that K2 < K1 + K12.
Let us consider the limit case K2 = K1 +K12. In this case, v2(p)−K2 < v1(p)−K1 for

p ∈ (0, P2x ). Additionally, v2(p)−K2 < v1(p)−K1 for p ∈ (P2x , z1)with z1 ∈ (P2x , Ph),
v2(p)−K2 > v1(p)−K1 for p ∈ (z1, Ph), v2(p)−K2 = v1(p)−K1 for p ∈ (Ph, P12) and
v2(p) − K2 < v1(p) − K1 when p > P12. Therefore, in light of the continuity of v2 − K2

in k2„ we get the result when we consider K1 < K2 < K1 + K12.

B.2 Proof of Proposition 3

Let us assume the following scenario: the set of initial parameters is such that the optimal
switching strategy is the hysteresis strategy and the value function is in Proposition 1 and
there is z1 > P1x such that the investment threshold γ is such that γ ∈ (P1x , Ph). From
standard real options analysis (see for instance Dixit and Pindyck [7]) we know that the
smooth paste condition are given by{

B0γ
d2 = Eγ d1 + Fγ d2 + α1

r−μ
γ − β1

r − K1

d2B0γ
d2−1 = Ed1γ d1−1 + Fd2γ d2−1 + α1

r−μ

. (79)

One may notice that, by definition of the threshold P1x , the pair (γ, B0) = (P1x , 0) is a
solution to the system (79) for K1 = −Kx . Given the analysis made for the switching
problem, it is known that there is a unique solution (P2x , P1x , Ph, P12, P21) such that P2x <

P1x < Ph < P12 < P21. Therefore, fixing E and F as defined (45) and (46), the arguments
above allow us to conclude that{

0 = Eγ d1 + Fγ d2 + α1
r−μ

γ − β1
r + Kx

0 = Ed1γ d1−1 + Fd2γ d2−1 + α1
r−μ

.

has a unique solution, P1x , for 0 < γ < Ph .
To get our conclusions, we analyse a perturbed version of system (79), considering K1 =

−Kx + ε. Multiplying the first equation of system (79) by d2 and the second one by γ , the
system can be reduced to a single equation

m(γ ) := (d2 − d1)Eγ d1 + (d2 − 1)
α1

r − μ
γ − β1

r
d2 + Kxd2 − εd2

These equations have two solutions. To prove this statement, we may notice that

lim
γ→0+ m(γ ) = lim

γ→+∞m(γ ) = +∞ and m′′(γ ) = (d2 − d1)d1(d1 − 1)Eγ d1−2 > 0.

Additionally, choosing ε = 0, we know from Proposition 1 that there is at least one solution
to that equation, which is P1x . Additionally, if there is a second one is greater than Ph . This
can be proved noticing that

m(Ph) = (d2 − d1)EPd1
h + (d2 − 1)

α1

r − μ
Ph − β1

r
d2 + Kxd2 − εd2
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= (d2 − d1)EPd1
h + (d2 − 1)

α2

r − μ
Ph +

(
Kx − β2

r
− K12

)
d2 − εd2

the second equality following in light of the smooth paste conditions presented in Appendix
A.1.2. Given the expression for E presented in Appendix A.1.2, we get the following

m(Ph) = −
(

Ph
P2x

)d1 [
(d2 − 1)

α2

r − μ
Ph +

(
Kx − β2

r

)
d2

]
+ (d2 − 1)

α2

r − μ
Ph

+
(
Kx − β2

r
− K12

)
d2 − εd2

=
(
1 −

(
Ph
P2x

)d1
)

︸ ︷︷ ︸
>0

[
(d2 − 1)

α2

r − μ
Ph +

(
Kx − β2

r

)
d2

]
︸ ︷︷ ︸

<0

− (ε + K12) d2 < 0

The sign of the second term follows from the fact that E > 0 because it is the value of an
option.

Due to the continuity of m(γ ; ε) ≡ m(γ ) on ε, for any ε > 0 there are two solutions, one
that is smaller than P1x and a second one that is greater than Ph . Both hypotheses contradict
the possibility of investment in the hysteresis region.

C Additional figures and tables

C.1 Numerical Verification of the HJB equations in Sect. 5.2.2

In Table 6, we illustrate the behaviour of the optimal investment strategy with changing μ.
We find that γ3 is not monotonic withμ. To verify that the behaviour is not a consequence of a
numerical error, we present the numerical verification of the HJB equations for the following
values of μ: μ = −0.030 and μ = 0.025 (these are the values of μ where the monotony of
γ3 changes). For each value of μ, we present three plots since we have to compute the value
functions v1, v2 and W . As the HJB equations are written as the maximum between three
terms for the switching problem and two terms for the investment problem, all these terms
must be non-positive and at least one of them must be equal to zero. Figure13 shows the
verification plots for μ = −0.03 and Fig. 14 shows the verification plots for μ = 0.025.
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C.2 Switching parameters of Sect. 5.2.1

In Table 14, we present the switching thresholds regarding the set of parameters used in
Sect. 5.2.1. For the reader convenience, we provide here the parameters considered: μ = 0,
r = 0.05, α1 = 1, β1 = 1, α2 = 0.6, β2 = 0.5, Kx = −1, K12 = 0.25, K21 = 0.5.

Table 14 Switching thresholds
for the illustration in Sect. 5.2.1

σ P1x Ph P12 P2x P21 Strategy

0.1000 0.7198 0.7782 1.0017 0.6536 1.6142 Hyst

0.1500 0.6107 0.6841 0.9400 0.5451 1.7371 Hyst

0.2000 0.5183 0.5999 0.8894 0.4550 1.8566 Hyst

0.2400 0.4556 0.5407 0.8546 0.3947 1.9514 Hyst

0.2500 0.4413 0.5270 0.8465 0.3811 1.9752 Hyst

0.3000 0.3775 0.4649 0.8091 0.3208 2.0942 Hyst
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