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A B S T R A C T

Various initiatives are in place worldwide to reduce the time from the occurrence of an out-of-hospital cardiac
arrest to the start of cardiopulmonary resuscitation (CPR) and defibrillation using an Automated External
Defibrillator (AED). In addition to optimizing the management of emergency medical services and other
professional emergency response resources, these include utilizing close-by volunteers using mobile phone
dispatching, and delivering AEDs using Unmanned Aerial Vehicles (UAVs), commonly known as drones.
The latter two examples have previously been studied separately, and it has been proved that the time
to administer CPR and AED delivery can be reduced. In this paper, the potential of joint planning and
dispatching of volunteers and AED delivering drones is investigated. Optimization models are used to determine
good locations for drones. These are then evaluated, together with new, adapted dispatch strategies for the
volunteers, using a simulation model. Results of a case study, with data for the county of Västra Götaland in
Sweden, show that drones can indeed help reduce the time to defibrillation, and, by adaptive dispatching, the
time to CPR can be reduced as well. Thus, it is shown that by joint planning of drones and volunteers, it may
be possible to improve the survival probability from out-of-hospital cardiac arrest.
1. Introduction

Each year, more than 350,000 people suffer from out-of-hospital
cardiac arrest (OHCA) in Europe, making it the third highest cause
of death overall (European Resuscitation Council, 2017). A cardiac
arrest is a sudden heart failure where the heart dramatically reduces
its pumping of blood and, therefore, stops the circulation of blood to
the body. The symptoms of cardiac arrest are unconsciousness, with
absent or abnormal breathing. Within minutes of cardiac arrest, the
patient risks permanent neurological deficiencies (brain damage) or
death if early treatment with cardiopulmonary resuscitation (CPR) and
defibrillation using an Automated External Defibrillator (AED) are not
initiated. In Sweden, and most of Europe, a person witnessing an
OHCA occurrence will typically call 112 to reach the public safety
answering point. This is operated by the company SOS Alarm AB in
Sweden, and an SOS operator will answer and conduct an interview
with the witness (in some regions, the call may be transferred to a
nurse in case of medical emergencies), establishing that it is a suspected
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OHCA. This triggers a set of different actions, which may differ a bit
depending on the region, but typically the closest available ambulance
will always be dispatched to the patient. Furthermore, fire services
or other first response units may be dispatched if they can reach the
patient quicker, volunteer responders may be alerted through the SMS
lifesavers initiative (more info on this below), and the SOS operator
may give instructions to the witness to start CPR, or use an AED if one
is available.

In AED, ‘‘automated’’ refers to the unit’s ability to analyze the
patient’s condition autonomously. With its electrodes attached to the
patient, the device determines whether a shock is warranted, and conse-
quently charge an internal capacitor ready to provide the defibrillation.
On a signal from the device, the bystander is instructed to clear away
from the patient and to press a button, which initiates a shock (Kerber
et al., 1992).
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During cardiac arrest, four types of arrhythmias are seen upon
attaching an AED, two of which are shockable. These are ventricu-
lar fibrillation and pulseless ventricular tachycardia (Jasmeet et al.).
The etiology of OHCA is most often cardiac related, about 70%, but
regardless of cause, it is vitally important that the patient receives
CPR as soon as possible. Additionally, for shockable rhythms, early
electrical defibrillation treatment increases the survival probabilities
considerably. The chances of surviving a cardiac arrest quickly diminish
with time, where after only three minutes of untreated, the probability
of survival of the patient has decreased by 50% (Waalewijn et al.,
2001). It is estimated that less than 10% of all patients suffering from
OHCA survive globally (Wong et al., 2019). However, many efforts
have been made to increase this number. In many industrialized cities,
AEDs can be found in public buildings and street corners. However,
these are often not used even when a person suffers from a cardiac
arrest nearby.

To combat this challenge, several academic and medical commu-
nities have launched initiatives in which volunteers are alerted when
an OHCA occurs in their immediate vicinity. The volunteers are asked
to find the patient and begin CPR or administer an early shock to the
patient’s heart by retrieving a nearby AED.

Another approach to increase the survival probability of OHCA is
to use an Unmanned Aerial Vehicle (UAV), also known as a drone,
to deliver the AED directly at the patient. In this way, bystanders or
volunteers can potentially give defibrillation sooner than having to find
a stationary AED themselves. In the event of an OHCA case, the drone
flies autonomously to the patient to provide the bystander with an
AED. Sometimes, the drone would have to fly to a nearby location, for
example, if the patient is inside a building. Then someone has to pick
up the AED from the street, potentially causing some CPR hands-off
time if only one bystander is present. Especially in rural areas, where
the response time of the Emergency Medical Services (EMS) is often
long, drones have a high potential to significantly decrease the time to
defibrillation (Claesson et al., 2016), which may significantly increase
the probability of survival of the patient (Van de Voorde et al., 2017).

Combining the use of drones and volunteers is a relatively new
approach to increase the effectiveness of response in cases of OHCA.
Drones ensure that volunteers do not waste time by first picking up a
stationary AED before heading to the patient, as the AED is delivered
directly. This causes the arrival time of the volunteers to the patient
to decrease. In single-bystander situations, volunteers provide help in
picking up the drone-delivered AED, which means that a bystander does
not have to leave the patient. The volunteers also have training in CPR
and use of defibrillators and thus provide comfort and better usage of
the drone-delivered AED.

This article aims to evaluate the potential of improving the emer-
gency response to OHCA patients through the combined use of drones
and volunteers dispatched by mobile phones, hereafter called volun-
teers. The evaluation is done by combining optimization models for
drone location and different volunteer dispatch strategies. These are
then tested in a simulation environment with the goal of providing
insight into which models and strategies are most efficient.

We study the combination of two Swedish initiatives, here called
SMS lifesavers and the Everdrone project. SMS lifesavers started as a
research project by Karolinska Institutet in Sweden, and is now run
by the company Heartrunner Sweden AB. In the event of an OHCA, a
Mobile Phone Positioning System (MPS) is used to locate the volunteers
within a predetermined distance from the patient and a notification
is automatically generated and sent to those volunteers. This is done
simultaneously with the dispatch of EMS to the patient. The volunteers
then respond whether they are available or not. Those available are
given one of two possible assignments: either to go directly to the
patient and perform CPR or to find a stationary AED and bring it to
the patient. The location of the patient and the AEDs are provided in
2

the instructions.
Everdrone is the company that operates the drones that are used to
deliver AEDs to OHCA cases around the Västra Götaland area in Swe-
den. Together with Karolinska Institutet, SOS Alarm (Swedish public
safety answering point) and Region Västra Götaland among others, they
have participated in a number of studies and trials, as well as real, live
deliveries of AEDs. In this paper, the Everdrone project refers to these
activities.

The outline of the paper is as follows. Section 2 contains a compre-
hensive literature review and positions this work in relation to previous
studies. The two models used to optimize the location of the drones are
presented in Section 3 followed by the volunteer dispatch strategies in
Section 4. The simulation used to evaluate the locations and dispatch
strategies is presented in Section 5 and data related to the area studied
in Section 6. The results of the location analysis and the simulation
study are discussed in Sections 7 and 8 respectively. The paper ends
with a discussion in Section 9 and conclusions in Section 10.

2. Previous literature and contributions

One of the first studies designed to assess the feasibility of drone
delivery of AEDs was conducted in Sweden in 2016 (Claesson et al.,
2016). The study used GPS locations of historical OHCA events in the
Stockholm area and estimated EMS response times to optimally locate
drones. By different weightings of objective functions, they generated
two separate solutions, each with ten drones. One solution focused
on the delivery of AEDs to the most populated urban areas, while
the other focused on rural areas with a long response time to EMS.
Their experiments indicated that the delivery of AED was feasible and
faster than the EMS, especially in rural areas. They also concluded
that delivery by landing the drone or by low altitude drop of the AED
was superior to a parachute drop. The same research team conducted
tests on actual flight times compared with calculated flight times and
EMS (Claesson et al., 2017). Both studies argued that the time to deliver
an AED decreased significantly when using drones.

As drones are battery-operated and have a limited service range,
a network of drones is required to provide adequate service to a
larger area. Questions arise regarding how many drones are needed to
fulfill the demand for AEDs and the optimal location of each drone’s
base. Claesson et al. (2016) used a GIS model to locate the drones. Sev-
eral other studies have tried other approaches. Pulver et al. (2016) used
GIS to simulate the travel times of EMS in Salt Lake County and used
a Maximum Coverage Location Problem (MCLP) model with response
time as the service standard. The model proposed the optimal locations
of the drones to maximize the coverage of OHCA demand. Later, Pulver
and Wei (2018) extended this work by explicitly integrating backup
coverage and continuously distributed demand.

The same concept was applied in North Carolina, where researchers
developed a mathematical model to locate candidate drone stations
based on existing infrastructure and assessed the expected increase in
survival probability that this would result in Bogle et al. (2019). Over
the estimated four-year lifespan of the drone, the study concluded that
the drones could double the survival rates and that an AED drone
network remained cost-effective.

A similar study was conducted in Toronto, where a mathematical
model was used to determine the optimal number and location of
drones. This was done to quantify the number of drones needed to
deliver an AED one, two or three minutes faster than the historical
median EMS response times (Boutilier et al., 2017).

A more recent study was performed by Schierbeck, Nord, et al.
(2021). They extended the work by Claesson et al. (2016), but this time
at a national level in Sweden. The model maximized the coverage of
OHCAs reached within 8 min.

In Sanfridsson et al. (2019), simulated OHCA cases on mannequins
were used to analyze the experience of bystanders. The main findings
were that bystanders perceived the delivery of the drone as positive

and helpful and reported that they felt relief upon drone arrival.
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One crucial drawback was that with only one bystander available,
significant hands-off time occurred when retrieving the AED-drone.
This emphasizes the importance of having at least two bystanders and
showcases the potential effect of having volunteers to retrieve the drone
instead.

A recent study further developed the optimization of drone location,
this time in Northern Ireland Mackle et al. (2020). This model, in
addition to the standard EMS response times, also included the response
times of lay volunteers who would bring publicly accessible AEDs. In
this study, OHCA cases, ambulance response times, and lay volunteers
response times were simulated, and the need to consider real cases with
locations and response times was expressed.

In EMS facility location problems, multiple researchers have ques-
tioned the use of traditional models such as the Maximum Cover-
age Location Problem (MCLP) (Church & ReVelle, 1976) and the 𝑝-
median (Hakimi, 1965) with linear objectives. The argument is that
these objectives do not properly differentiate between the consequences
of different response times. Therefore, Erkut et al. (2008) introduced
the Maximum Survivability Location Problem (MSLP), which considers
the locations by taking into account medical research on the rela-
tionship between response times and survival rates. The MSLP is an
extension of the 𝑝-median problem by incorporating a survival function
into the objective to emphasize the importance of short response times
in emergency response.

One of the first studies to develop a survivability function for OHCA
was by Larsen et al. (1993). They used multiple linear regression based
on data obtained from 1,667 OHCA cases in King County (Washington,
USA). Other studies include Valenzuela et al. (1997), Waalewijn (2001)
and De Maio et al. (2003). Matinrad et al. (2019) used the survival
function from Valenzuela et al. (1997) for optimizing the dispatch of
lay volunteers. However, to reflect the increased survival probabilities
since 1997 and Swedish conditions, the parameters of the regression
model were updated based on the extensive study population data
in Waalewijn (2001).

The first comprehensive volunteer-dispatching system in OHCA was
established in 2006 in Switzerland (Roman et al., 2013). Since then,
several other countries have implemented similar systems but with
slight variations. A study by Scquizzato et al. (2020) compared twelve
existing volunteer systems worldwide. Their calculations showed that
volunteers arrive before EMS in a median of 47% of the occasions,
performed CPR in a median of 24% of occasions, and attached an AED
in a median of 9% of occasions. The same study also performed a
pooled analysis of the results from Ringh et al. (2015), Pijls et al. (2016)
and Lee et al. (2019) to evaluate the acquired survival probability.
It showed that survival after hospital discharge or after 30 days is
14.4% in the volunteer group vs 9.4% in the control group. This result
indicates that the implementation of a volunteer response system can
significantly improve patient survival outcomes.

Valeriano et al. (2020) identified 25 existing systems in 23 differ-
ent countries, and Caputo et al. (2017) revealed that a mobile app
outperforms a text message system. The median arrival time of the
volunteers in the app-based system was 3.5 min compared to 5.6 min
in the SMS-based system.

The manner in which volunteers are dispatched varies greatly be-
tween the various systems. Most systems focus on the enhanced CPR
performance and therefore dispatch all volunteers directly to the pa-
tient. Only seven of the 25 systems identified by Valeriano et al. (2020)
assign roles to the volunteers. Some of the systems have incorporated a
feature in which the volunteers register their level of first-aid training.
In this way, in case of an OHCA, the CPR-trained volunteers are
dispatched directly, while others are dispatched to find an AED. Other
systems decide on the assignments of the volunteers based on their
location and time to respond to the notification.

One of the first studies to evaluate a quantitative model on volun-
teer management was performed by Falasca and Zobel (2012). They
3

proposed a multi-criteria optimization model for task assigning both
individual volunteers and groups in humanitarian organizations. Al-
though the model is general and applicable for several situations, it
lacks the specificity of assigning volunteers in OHCA cases. Matinrad
et al. (2019) developed another multi-criteria optimization model for
task assignment specifically in OHCA. Their model took the travel time
directly to the patient and via an AED for each volunteer as input pa-
rameters and then determined who should receive which assignments.
The model is, however, based on an assumption that all volunteers
are available and will accept the notification, and that their travel
times are predetermined and fixed. These assumptions are challenged
in Matinrad et al. (2021), where the dispatch model takes into account
that the volunteers may not follow their assignment, but instead do
something else. Recently, Paz et al. (2022) studied logistic coordination
in systems with controlled agents (ambulances) together with volun-
teers. They considered the spatial location and response propensity of
volunteers and showed in a simulation study that the proposed system
outperformed a system where information about volunteers was not
considered.

In relation to previous work, we present two new mathematical
extensions of general location models, specialized for the drone delivery
of AEDs in OHCA that assess the achieved survival probability, instead
of the response time, as the service standard. This is done using the
function by Matinrad et al. (2019), which contributes to the literature
by applying the function in a new situation of drones, volunteers and
EMS, and by evaluating its suitability in the multi-tier EMS system.

Most of the previous literature on drone location problems only
considers the EMS as the other existing response unit. The paper
by Mackle et al. (2020) also considers the effect of lay volunteers when
finding optimal drone locations, but uses simulated input data. The
authors express the need for historical data in future research, which
we provide, thus extending their work and contributing to the existing
literature.

We further expand the research on volunteer performance by de-
veloping new methods for dispatching volunteers and evaluating their
performance. This is done using a new simulation environment for
OHCA cases, extending current work by including simulated locations
of patients and volunteers, extended task compliance, and spatiotem-
poral entity relationships between drones, volunteers, AEDs, and EMS.
This allows the simulation to evaluate the synergetic effects of combin-
ing volunteers and AED-delivering drones, something no studies have
done before, to the best of our knowledge.

3. Drone location

We use two location problems for placing the drones, a Maximum
Coverage Location Problem (MCLP) and a Maximum Survivability Lo-
cation Problem (MSLP). Both problems are formulated as deterministic
integer linear models. We make the following assumptions

– The drone utilization rate is 100%, which means drones are unaf-
fected by weather conditions, battery life or other circumstances
reducing their operative ability.

– All OHCA cases are independent and do not occur simultane-
ously, which results in all nearby drones and volunteers being
considered available for each case evaluated.

– All additional time is included in the flight time of the drone,
and the AED can be used instantly by a bystander after the drone
arrives with it. A volunteer does not have to be on site.

– The survival probability is measured using the survivability func-
tion by Matinrad et al. (2019):

𝑆(𝑇𝐶 , 𝑇𝐷) = (1 + 𝑒−1.3614+0.3429𝑇𝐶+0.18633𝑇𝐷 )−1 (1)

where 𝑇𝐶 is the time to CPR and 𝑇𝐷 is the time in minutes to

defibrillation.
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We introduce  as the set of OHCA location nodes and  as the set
f candidate drone location nodes, where 𝑃 drones are to be located.
he number of OHCA cases in node 𝑗 is denoted 𝐷𝑗 .

The time a drone in node 𝑖 needs to reach node 𝑗 is denoted 𝑇𝐷
𝑖𝑗 ,

hile 𝑇𝐴𝐸𝐷
𝑗 and 𝑇 𝐶𝑃𝑅

𝑗 are the shortest times to an AED and a CPR
rrival at node 𝑗 by either EMS or volunteers, respectively. If the first
esponding volunteer carries an AED, the time to CPR equals the time
o AED.

The binary variable 𝑥𝑖𝑗 is 1 if a drone in node 𝑖 delivers an AED to
ode 𝑗, and 0 otherwise. The binary variable 𝑦𝑖 is 1 if a drone is located
n node 𝑖, and 0 otherwise.

To facilitate presentation, we introduce the set  of all pairs (𝑖, 𝑗)
f candidate drone location nodes 𝑖 and OHCA location nodes 𝑗 such
hat it is beneficial for a drone at node 𝑖 to deliver an AED at node 𝑗.
n the MSLP,  = {(𝑖, 𝑗) ∈  ×  |𝐷𝑖𝑗 ≤ 𝑅}, where 𝐷𝑖𝑗 is the distance
rom node 𝑖 to node 𝑗 and 𝑅 is the range of the drone expressed in this
istance. In the MCLP, in addition to 𝐷𝑖𝑗 ≤ 𝑅, (𝑖, 𝑗), the pair (𝑖, 𝑗) must
lso meet the criteria

𝑆(𝑇𝐴𝐸𝐷
𝑗 , 𝑇 𝐶𝑃𝑅

𝑗 ) < 𝐵
)

𝐴𝑁𝐷
(

𝑆(𝑇𝐷
𝑖𝑗 , 𝑇

𝐶𝑃𝑅
𝑗 ) ≥ 𝐵

)

here 𝐵 is the desired survival probability, termed the threshold value.
his criterion states that the survival probability must be below the
hreshold value when no drones are used, and above the threshold
alue if a drone is sent from a drone at node 𝑖.

Now we can formulate the constraints of the models.
∑

𝑖,𝑗)∈
𝑥𝑖𝑗 ≤ 𝑀𝑦𝑖 𝑖 ∈  (2)

∑

𝑖,𝑗)∈
𝑥𝑖𝑗 ≤ 1 𝑗 ∈  (3)

∑

𝑖∈
𝑦𝑖 ≤ 𝑃 (4)

𝑥𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈  (5)

𝑦𝑖 ∈ {0, 1} 𝑖 ∈  (6)

onstraints (2) ensure that only drones at bases are used while con-
traints (3) state that each OHCA location node can be covered at most
nce. Constraint (4) limits the number of bases, and constraints (5) and
6) define the variables.

MCLP maximizes the demand covered and can be formulated as
𝑀𝐶𝐿𝑃 = max

∑

(𝑖,𝑗)∈
𝐷𝑗𝑥𝑖𝑗 (7)

he objective of the MSLP is to maximize the total survival probability.
e introduce the change function

𝑆(𝑇𝐷
𝑖𝑗 , 𝑇

𝐴𝐸𝐷
𝑗 , 𝑇 𝐶𝑃𝑅

𝑗 )=

{

𝑆(𝑇 𝐶𝑃𝑅
𝑗 , 𝑇𝐷

𝑖𝑗 ) − 𝑆(𝑇 𝐶𝑃𝑅
𝑗 , 𝑇𝐴𝐸𝐷

𝑗 ) if 𝑇𝐷
𝑖𝑗 < 𝑇𝐴𝐸𝐷

𝑗

0 otherwise

(8)

nd formulate the objective function of MSLP as
𝑀𝑆𝐿𝑃 = max

∑

(𝑖,𝑗)∈
𝐷𝑗𝛥𝑆(𝑇𝐷

𝑖𝑗 , 𝑇
𝐴𝐸𝐷
𝑗 , 𝑇 𝐶𝑃𝑅

𝑗 )𝑥𝑖𝑗 (9)

ote that all objective function coefficients are calculated a priori and
sed as parameters in the model.

. Volunteer dispatch

Volunteers can significantly improve the survival probabilities for
n OHCA patient through an early start of high-quality CPR or by pro-
iding early defibrillation. With multiple volunteers, good coordination
f these is important to achieve an improved overall response. With
arious locations of stationary AEDs and volunteers and uncertainties
bout when volunteers respond and how they behave, the problem of
inding an overall good dispatch is rather complex.
4

.1. Current dispatch strategy

Today, the dispatch of OHCA volunteers in Sweden is made using
imple assignment patterns. Each active region has a specified pattern
hat controls the order in which accepting volunteers are given assign-
ents. The pattern in Västra Götaland, which is the case study area

n this work, is 00011, where 0 indicates that the volunteer should go
irectly to the patient and 1 indicates that the volunteer should pick
p an AED. This means that the first, second, and third volunteer to
ccept the notification is dispatched directly to the patient. The fourth
nd fifth are dispatched to the AED giving the shortest total Euclidian
ravel distance to the patient via the AED. The pattern then repeats
tself, so the sixth candidate is again dispatched directly, until either a
aximum number of volunteers have been notified or until there are
o more volunteers inside a predefined radius surrounding the patient.

.2. Individual dispatch strategy

The current dispatch strategy ignores any information on the po-
ition of the volunteers. Although the distance via an AED could be
uch greater than the distance directly to the patient for a volunteer,
given pattern might assign an AED to that person. Inspired by Slaa

2020), a method is introduced to exclude bad dispatches. This method
ispatches each volunteer individually based on his or her distance to
he patient and distance via an AED. If the distance via an AED is
ot longer than the direct distance to the patient plus a threshold, the
olunteer is sent via an AED. Otherwise, the volunteer is sent directly
o the patient. If a drone is available for the specific case, all volunteers
re instead sent directly to the patient.

. Simulation

To evaluate the drone locations and the dispatch strategies in a
tochastic setting, a two-part simulation environment is created. The
irst part is the OHCA case simulation, where all the random number
elections in the simulation occur. This part of the simulation consists
f five main agents: the patient, volunteers, AEDs, drones, and EMS. All
f these agents are simulated, and the results are stored for evaluation
n the second part of the simulation, called the dispatch simulation. The
urpose of the dispatch simulation is to find the outcomes of each case
iven the simulated OHCA case data, a dispatch strategy, and a drone
ocation solution. The outcomes calculated in the dispatch simulation
re the shortest time to CPR and AED.

The simulation environment is a grid system consisting of square
ones with information about the population and the expected EMS
esponse time in each zone. The first step of the simulation is to
enerate an OHCA incident with a patient. The patient’s zone is drawn
ased on the population of the zones, where higher population zones
ield a higher probability of OHCA occurrence. Finally, the exact
osition of the patient is drawn uniformly within that zone. Having
dentified the patient’s position, the relevant stationary AEDs are those
ithin a predefined radius around the patient. The availability of the
EDs is uncertain and is drawn from a binary probability distribution.
ll drones within the drone range of the patient are included in the
imulation. The availability of the drones is uncertain and is drawn
rom a binary distribution. The uncertainty in availability is due to poor
eather conditions, flight regulations, maintenance, and simultaneity

n OHCA cases. Each zone in the simulation also has an expected
eterministic EMS response time.

Given the position of the patient, the simulation draws the number
nd location of volunteers relative to the population in the surrounding
ones, where higher population zones have a greater chance of getting
volunteer. With a zone determined, the exact location of the volunteer

s uniformly drawn within that zone, but still within the predetermined
adius from the patient. The dispatcher sends notifications to each vol-
nteer in the vicinity of the patient. A volunteer then either accepts or
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Fig. 1. The county of Västra Götaland.

rejects the assignment. All accepting volunteers receive an assignment
either to go directly to the patient or via an AED. After the volunteer
gets an assignment, they either comply or choose to do the other task.
During the completion of the task, they may also fail to reach the AED
and/or the patient.

Thus, for each OHCA case, the response times for drones with AEDs,
volunteers with or without AEDs, and EMS are calculated. The time for
start of CPR is set as the minimum of all volunteer response times and
EMS response time. Only volunteers can use drone-delivered AEDs, so
first defibrillation time is when a volunteer carrying an AED arrives, or
when both a volunteer and a drone has arrived, or when EMS arrives.

6. Data

The area used for testing is the county of Västra Götaland in Sweden.
Västra Götaland is the second largest county in Sweden in terms of
population, with 1.7 million inhabitants, and has an area of 25,247
km2. It consists of large and medium sized cities, such as Gothenburg,
Borås, and Trollhättan, and rural areas. Fig. 1 shows a map of the
county.

6.1. Location model data

The data used in the location models are based on a grid system
representing the area of Västra Götaland that divides the area into
3897 rectangles, each with a longitudinal distance of 2175 m and a
latitudinal distance of 2450 m. The information within each zone was
aggregated into its center and is represented as a node in the math-
ematical models, both as an OHCA location node and as a potential
location for a drone. In the cases when the potential locations for a
drone are restricted, i.e. to a fire station or to controlled airspace, the
zones covering the fire stations and the zones with the center inside the
controlled airspace are considered as potential drone locations.

Using Västra Götaland ambulance call data for 2019, the number
of suspected OHCA cases per year, as well as estimated EMS response
times, was calculated for each zone. The number of OHCA cases in a
zone becomes the demand 𝐷𝑗 in the model. The EMS response time to
a zone was calculated as the median response time of the ambulance to
priority 1 emergencies (the most urgent type) within the zone during
2019. For zones that had no ambulance call during 2019, the time was
set as a smoothed value based on the neighboring zone’s response times.

Response times for volunteers were found using data from the area
provided by Heartrunner, from 15,089 volunteer alerts sent out for a
total of 796 OHCA cases from February 2019 to February 2020. The
data was preprocessed and linear regression was used to obtain the
5

expected volunteer response time, for CPR and via AED respectively,
as a function of the population in the zone. A logistic regression was
then used to obtain the probability that at least one volunteer would
reach the patient. The final CPR and AED times for each zone were
calculated as the probability weighed times of the volunteer response
and the EMS response.

To obtain the expected arrival time of the drone, the total travel
time was calculated using

𝑇𝐷
𝑖𝑗 = 𝑇 𝑇𝑂 +

𝐷𝑖𝑗

𝑆
+ 𝑇 𝐿 (10)

where 𝑇𝐷
𝑖𝑗 is the expected travel time from node 𝑖 to node 𝑗, 𝑇 𝑇𝑂 is

the take-off time, 𝐷𝑖𝑗 the distance from 𝑖 to 𝑗, 𝑆 the flight speed of the
drone and 𝑇 𝐿 the drop-off time.

The specifications were provided or approximated based on the
experiences from the ongoing Everdrone project. The take-off time of
the drone, which includes getting approval to fly by the ATC and
all other pre-flight activities, was set to 2 min. Drop-off time, which
includes selecting exactly where to drop the AED and winching it down,
was set to 1.5 min. The flight speed was set to 65 km/h based on the
specs of the drone DJI M600 Pro. The range of the drone was set to 6 km
as it is capable of flying 12 km on one charge. The distances between
the nodes were calculated using Euclidean distance.

6.2. Simulation model data

The geography used in the simulation environment is a grid system
with smaller squares compared with the grid system used for the
location problems and partitions Västra Götaland into 36,924 zones.
The grid system consists of two types of zones, large squares with
dimensions 1000 m by 1000 m and small squares with dimensions
250 m by 250 m. This gives a more fine-grained description of the
region suitable for the simulation since it is easier to get a good
representation of the population density. The EMS and drone response
times are calculated in the same way as in the location models, but
drone availability is set to 80% based on experience from the Everdrone
project. The Defibrillator Register in Sweden provided the positions of
all 3170 AEDs in the area. All AEDs have an availability of 70% based
on data from Heartrunner.

The number of responding volunteers was based on the population
surrounding the patient within a 2 km radius, the same radius used to
alert volunteers in the SMS-lifesaver project. The volunteer data was
placed in five buckets based on the surrounding population, where
more volunteers typically responded in zones with a large surrounding
population. In the simulation, the number of responding volunteers
was then sampled from the corresponding bucket. Fig. 2 shows the
distribution of the number of volunteers by the surrounding population.
The buckets are color-coded and for each simulated OHCA case, the
surrounding population is calculated and then the number of volun-
teers is sampled from the corresponding bucket. The answer time for
volunteers, i.e. the time from alert until they reply, was sampled from
the 9256 times recorded in the historical data. The probability of
answering the notification was set to 61.34% based on the data, and
the probability of accepting (given an answer) to 46.24%.

Volunteers do not always follow the instructions given, some abort
the mission, and others do the opposite of what they are told, e.g., travel
directly to a patient even though they are told to find an AED first.
Based on 2495 responses to a survey completed by volunteers who had
responded to an alert, the conditional probabilities of different actions
are calculated and presented in Table 1. A direct dispatch to a patient is
denoted 𝐷 and a dispatch via an AED is denoted 𝐴. �̄� and �̄� are actions
started by the volunteer, while 𝑃 ∗ and 𝐴∗ is a successful arrival to the
patient and the AED respectively, while −𝐴∗ is a failed arrival at the
AED. Finally, 𝐴+ denotes an available AED and 𝐴− an unavailable.

The two dispatch strategies presented in Section 4 are used. The
current Västra Götaland dispatch of 00011 is called ‘‘Current VGR’’.
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Fig. 2. The distribution of the number of volunteers by the surrounding population.
The buckets are color-coded.

Table 1
Volunteer probabilities given dispatch and
sequence of events.
Name Probability

P(�̄�|𝐷) 0.70
P(�̄�|𝐴) 0.36
P(�̄�|𝐷) 0.07
P(�̄�|𝐴) 0.39
P(𝑃 ∗

|�̄�) 0.51
P(𝐴∗

|�̄�) 0.75
P(𝑃 ∗

|𝐴∗&𝐴+) 0.56
P(𝑃 ∗

|𝐴∗&𝐴−) 0.36
P(𝑃 ∗

| − 𝐴∗) 0.24

The second is the Individual Dispatch strategy using the direct distance
and the distance via AED as the metric for assigning a task. To choose
the threshold, all values from 50 to 1000 m with increments of 50 m
were tested. Fig. 3 shows the results and we concluded that 500 m is a
good threshold.

To determine the necessary number of replications in the simulation
runs, the algorithm by Hoad et al. (2008) was used. The number
of replications 𝑛 is increased until a predetermined precision criteria
is met. This precision criteria is the one-sided confidence interval,
defined as a percentage of the cumulative mean. If 𝑑𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 is the user-
determined precision criteria and 𝑑𝑛 is the observed precision after 𝑛
replications, the algorithm states that 𝑛 should be increased until 𝑑𝑛
converges to 𝑑𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 . 𝑑𝑛 is calculated according to Eq. (11), where �̄�𝑛
is the cumulative mean with 𝑛 replications, 𝑡𝑛−1,𝛼∕2 is the student 𝑡-
distribution quantile with 𝑛 − 1 degrees of freedom and significance
level of 𝛼/2, while 𝑠𝑛 is the sample standard deviation.

𝑑𝑛 =
100𝑡𝑛−1,𝛼∕2𝑠𝑛∕

√

𝑛

�̄�𝑛
(11)

We use resulting survivability values as the dependent variable from
which the precision criteria is set. Using a significance level of 5%
and precision criteria of 5%, it was found that 5395 replications are
necessary to satisfy the precision criteria for evaluation purposes. In
evaluating the drone location and the dispatch strategies, 10,000 OHCA
cases were used.

7. Location results

The optimization models are implemented in Python 3.7 using
Gurobi 9.0.3 as the optimization solver. The implemented models are
run on a 64-bit Apple Macbook Pro with the following specifications:
Intel Core i5 (5th generation) with 2.7 GHz Dual-core processor and
8 GB installed RAM memory.

The Maximum Coverage Location Problem (MCLP) and the Maxi-
mum Survivability Location Problem (MSLP) are first tested without the
6

simulation. The first parameter to calibrate is the number of drones, 𝑃 .
The results of running MSLP with varying number of drones are shown
in Fig. 4.

The marginal improvement of one extra drone is diminishing and,
based on this, 20 drones are selected as the base case parameter. It is
considered a reasonable balance between covering a high part of the
demand, yet not requiring an unreasonably high number of drones.

The second parameter to determine is the survivability threshold,
i.e. the lowest survival probability a patient should have for it to be
considered covered. Selecting the right threshold value can be tricky.
By selecting a low value, most cases will already be covered by the
existing EMS system, so no additional drone assistance is considered
needed. However, with a high threshold, even with the use of drones,
the desired survival probability cannot be reached, and the case can
never be considered covered.

Fig. 5 shows how many of the input data cases that can potentially
get help from drones for given survivability thresholds. From this, 0.02
was chosen as the threshold value. Here, the number of cases that can
be pushed above the threshold by using drones is the largest. Note that
this value is not a realistic desired survival probability. This is further
discussed later.

MCLP and MSLP are tested with no restrictions on where the drones
can be located. In addition, MCLP is tested with two different restric-
tions on where the drones can be located, at fire stations and within
controlled airspace. The only difference when solving the controlled
airspace MCLP and the original MCLP is that the candidate grid zones
in the original MCLP are reduced to those within controlled airspace
and outside of restricted airspace, as provided by Luftfartsverket Swe-
den (Luftfartsverket, 2021). When the drones can be located only at
fire stations, the actual location of the fire stations within the region
is used. The reason for testing this is to see how more restrictive and
possibly realistic locations will affect the results. The solutions from the
four models are shown in Fig. 6.

All solutions focus the locations around the larger cities, and the
drones overlap considerably more in the MSLP solution compared with
the MCLP solutions. The total population within the area covered by
the MCLP solution is 1.12 million out of 1.7 million. Thus, by locating
20 drones, more than 65 percent of the population in Västra Götaland
can be covered. For the other solutions, the coverage is 1.02 million
and 1.06 million for the MSLP and the MCLP restricted to fire stations,
respectively. The solution of the MCLP restricted to controlled airspace
covers 537,000 of a total possible population of 583,000 within the
controlled airspace. Interestingly, each of the controlled airspaces gets
at least one drone, but the main cluster is in the Gothenburg area.

Of the drones located by MCLP restricted to fire stations, 15 of
the locations are very similar to those suggested by the MSLP. This
reflects the fact that fire stations are strategically located to meet high
demand and indicates that the drone locations suggested by the MSLP
are realistic.

New response times to the historical OHCA cases can be estimated
for the locations from the four models. With only the dispatch of
volunteers and EMS, the average ‘‘time to CPR’’ of the historical cases
was 11 min and 11 s, and the average ‘‘time to AED’’ was 15 min and
59 s. Only the ‘‘time to AED’’ is affected by the additional dispatch
of drones. The average ‘‘time to AED’’ achieved with the additional
dispatch of drones for the various models are listed in Table 2.

According to these response times, the best performing model is
the MSLP which reduces the average ‘‘time to AED’’ to 10 min and
7 s. Interestingly, the location at fire stations also results in a lower
average ‘‘time to AED’’ than the MCLP. But, as mentioned, restricting
the locations to fire stations results in most of the locations being very
similar to those of the MSLP. Thus, the performance in most cases
should also be similar. Location within controlled airspace results in
a slower response than the other methods, which is expected as much
fewer cases can be reached. However, the drones help reduce the time
to AED by almost four minutes on average, compared to not having any
drones.
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Fig. 3. Individual dispatch with varying AED threshold values tested on 10,000 simulated OHCA cases with no drones included. Note that the 𝑦-axis does not start at zero.

Fig. 4. MSLP model objective value with varying number of drones.

Fig. 5. OHCA cases that are already covered by EMS and volunteers, those that can be covered by drone, and those that cannot be covered by a drone for different survivability
thresholds.
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Fig. 6. Solutions from four different location models. Blue circles represent the range of the drone from its base.
Table 2
The average times for AED delivery for all drone
location methods.

Time to AED (mm:ss)

Volunteers & EMS only 15:59
MCLP 10:30
MSLP 10:07
Fire stations 10:24
Controlled Airspace 12:09

8. Simulation results

The simulation model is implemented in Python 3.7. The imple-
mented model runs on a 64-bit Apple Macbook Pro with the following
specifications: Intel Core i5 (5th generation) with 2.7 GHz Dual-core
processor and 8 GB installed RAM memory.

The run time of the simulation can be divided into two parts. The
first part is the OHCA case simulation, where the cases are generated.
8

The second part is the dispatch simulation, where the outcome of each
case is simulated. The runtime of the two parts was 20 s and 5 s for
1000 unique cases respectively.

8.1. Survivability results

The optimal locations from the four different location models are
tested with both volunteer dispatch strategies in a total of 10,000
unique, simulated incidents. For each test, the incidents and stochastic
outcomes remain the same. The results from these tests are presented
under the Base case columns in Table 3. The table shows the survivabil-
ity results of the combinations of dispatch strategy and location. The
columns contain the dispatch strategies; No volunteers [Only EMS], the
current strategy used in Västra Götaland [Current VGR] and the Indi-
vidual Dispatch strategy [Individual Dispatch]. The rows show the case
without drones [No Drones], MCLP restricted to controlled airspace
[Controlled Airspace], unrestricted MCLP [MCLP], MCLP restricted to
fire stations [Fire Stations] and unrestricted MSLP [MSLP]. Each cell
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Table 3
The survivability results using the drone location solutions from the rows and dispatch strategies in the
columns on the same simulated data. Cells marked 𝑁∕𝐴 represent invalid cells where drones cannot be used
as no volunteers are present to utilize them. The left columns are without bystander initiated CPR and the
right with bystander initiated CPR included in 63% of the cases.

Base case Bystander initiated CPR

Drone
Dispatch Only EMS Current VGR Individual

Dispatch Only EMS Current VGR Individual
Dispatch

No Drones 0.10% 2.20% 2.91% 7.38% 9.60% 11.5%
Controlled
Airspace 𝑁∕𝐴 3.82% 4.40% 𝑁∕𝐴 13.3% 14.6%

MCLP 𝑁∕𝐴 4.94% 5.45% 𝑁∕𝐴 15.8% 16.7%
Fire Stations 𝑁∕𝐴 5.39% 5.88% 𝑁∕𝐴 16.5% 17.4%

MSLP 𝑁∕𝐴 5.62% 6.14% 𝑁∕𝐴 16.7% 17.7%
contains the average survival probability and 𝑁∕𝐴 represent infeasible
ombinations.

An initial assessment suggests that including drones and volunteers
ould potentially increase the probability of survival. The solutions
rom the location models are sorted in ascending order. Among the
ispatch strategies, the Individual Dispatch is better than the current
ethod for all drone locations (and if there are no drones).

The survivability results of the base case in Table 3 are notably
ow, considering the Swedish average OHCA survival probability of
1% (Svenska Hjärt-Lungräddningsregistret, 2020). There are several
xplanations for this. As previously described, the effects of bystanders
re intentionally disregarded in the simulations as a way to exclusively
ocus on the volunteer effects. Since the evaluation is based on a
urvivability function that only uses the response time to CPR and AED,
ystanders needed to be excluded for there to be any reason to dispatch
olunteers directly to the patient. This causes the resulting survival
robability values to be considerably lower than realistic, as the time
o CPR assumes no bystanders.

In the simulation performed by Slaa (2020), it was assumed that a
ystander initiated CPR after 30 s in 63% of OHCA incidents. To test
he results of this assumption, each of the 10,000 simulated incidents
ad a 63% chance of having a ‘‘time to CPR’’ of 30 s. The recalculated
esults of these tests are shown in Table 3 under Bystander initiated
PR, which gives more realistic values.

Including bystanders has a major impact on the survival probabil-
ty values since it drastically reduces one of the input values in the
urvivability function. Although these results show increased survival
robabilities across all cells, the figures are still low. Especially the
alues under ‘‘Bystander initiated CPR’’ and ‘‘Only EMS and ’’Current
GR/No Drones’’ were expected to be around the national average of
1% since they include EMS and/or volunteers, similar to the current
onditions in VGR. One possible explanation is the deterministic use of
edian EMS response times. If the response times were drawn from a
istribution, the shorter response times would have a larger positive
mpact on the survival probability than the longer response times’
egative impact. This is due to the convex shape of the survivability
unction.

Although there is a large difference in the resulting survival proba-
ilities when including the bystander effect, the sequential dominance
etween the strategies remains the same. With this in mind, the original
redicted values, without the bystander effect, are still valid when used
or comparative purposes.

.2. Controlled airspace

As drones are required to fly inside controlled airspace today,
he location of drones in controlled airspace is the most foreseeable
olution. Thus, it is interesting to evaluate the performance of this
olution compared with not having drones. For this comparison, the
ndividual dispatch strategy is used as it is simple, yet it already has
roved a good performance. The results show an increase from 2.91%
o 4.40% when including drones. However, the value 4.40% is the
9

average survival probability of all 10,000 cases. Only 2706 of these
cases had a successfully arriving drone.

Fig. 7 shows the absolute survival probability changes for cases
receiving a drone. The green bars represent the number of cases with
a positive change in survival probability, making up most of the cases.
The yellow bar is the number of cases with no improvement, even if a
drone was available. Many of these cases do not improve as there are
no volunteers available to use the drone-delivered AED. The red bars
illustrate incidents where the survival probability actually decreases
with the use of drones. When simulating the compliance of volunteers,
some volunteers will arrive if they are dispatched to an AED, but fail to
arrive if given a direct dispatch instead, due to the stochastic setting.
With drones included, the dispatch of some volunteers might change,
resulting in them failing to arrive, potentially reducing the survival
probability.

8.3. Fire stations

The next drone location solution is where drones can only be
located at an existing fire station. Since this includes all fire stations
in the entire county of Västra Götaland, the solution ignores current
aviation restrictions. However, the possible drone locations are more
constrained than the MCLP and MSLP as there are fewer candidate
locations. It should be considered a proposal for a future solution if
the aviation restrictions are liberalized for emergency drone usage. It
therefore also serves as a proof of concept, suggesting what might be
accomplished if the restrictions are alleviated.

The average survival probability using the Individual Dispatch
shows an increase from 4.40% when using the controlled airspace
locations to 5.88% when using the fire station drone locations. Thus,
expanding the possible locations of drones has a considerable effect on
increasing the potential survival probability. Furthermore, this drone
location solution is also capable of serving considerably more cases.
Of the 10,000 simulated cases, the fire station solution was able to
dispatch a drone to the patient in 5232 cases, compared with only
2706 for the controlled airspace solution. Simply put, the possible
benefits that can be obtained by alleviating the emergency drone flight
restrictions are substantial.

8.4. Sensitivity analysis

Having presented the main results, it is interesting to study whether
these results are sensitive to changes in the parameters. Note that the
sensitivity analysis is based on the base case, i.e. without bystander
initiated CPR.

8.4.1. Varying number and availability of drones
Allowing more drones is intuitively expected to produce better

results, as there are more drones to cover the patients. However, having
more drones would also increase costs, so it is interesting to study
the marginal improvement to find an appropriate balance between
survival probability and cost. Fig. 8 shows how the probability of

survival increases with an increasing number of drones. It is apparent
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Fig. 7. Number of cases receiving drones within intervals of absolute change in survival probability compared when no drones were available.
Fig. 8. Survival probability results when increasing the number of drones using the MSLP for drone location and the individual dispatch strategy.
how the total survival probability increases but with a diminishing
factor. In other words, the incremental gain of each additional drone
decreases. Unlike the analysis in Fig. 4, the number of drones is
evaluated in a stochastic setting, where drones may be unavailable
and only the volunteers can use the drone-delivered AED. However,
the effects of changing the number of drones in the deterministic
models resemble the change in the stochastic data. Another interesting
consequence when increasing the number of drones is how the demand
coverage changes. Quite intuitively, having more drones available leads
to drones covering the previously uncovered areas. This results in an
increase in the total demand covered, as shown in Fig. 9.

Another interesting aspect to study is how the performance of the
drones varies with their availability. As previously described, the avail-
ability of the nearby drones is assumed to be known at the time of de-
termining volunteer assignments. Therefore, the availability of drones
directly affects not only the time to AED, but also the assignments given
to the volunteers.

Table 4 shows how varying the availability of drones affects the de-
mand served and the survival probabilities. It is clear that the marginal
10
gain of increasing the availability diminishes. For example, increasing
the availability from 10% to 20% increases the demand served from
1336 to 2294 and the survival probability from 3.66% to 4.20%. On
the other hand, increasing the availability from 90% to 100%, increases
the demand served from 5518 to 5784 and the survival probability from
6.37% to 6.59%.

9. Discussion

There are many practical obstacles to overcome before launching
any type of drone service, even if systems for managing unmanned
aerial vehicles are emerging, including the European U-space. The case
studied in this paper is based on the successful trials in Västra Götaland,
described in Schierbeck, Hollenberg, et al. (2021), where the drones
are allowed only to fly beyond visual line of sight in the controlled
airspace around the airport Säve. As more U-space services become
available, it will become possible to operate drones over larger areas,
e.g. the whole of Västra Götaland county, as tested in our paper. But
more freedom and flexibility to operate drone services also means more
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Fig. 9. Demand covered when increasing the number of drones using the MSLP for drone location and the individual dispatch strategy.
Table 4
Sensitivity analysis on varying the drone availability.
Drone availability Demand served Survival probability

10% 1336 3.66%
20% 2294 4.20%
30% 2999 4.64%
40% 3603 5.04%
50% 4091 5.38%
60% 4479 5.63%
70% 4860 5.86%
80% 5191 6.17%
90% 5518 6.37%
100% 5784 6.59%

difficult decisions, e.g. regarding how many drone stations to build,
how many drones that should be allocated to each station, and where
the stations should be located. Choosing where to locate drones and
which demand to cover are political questions that are not answered
directly in this paper, but it is of course a trade-off between costs and
the benefits of the service. Hopefully, decision support tools like the
models we present here, can help make informed decisions.

The aim with this paper is to illustrate how the performance of
a multi-tier EMS system including volunteers and drones can be im-
proved by selecting good locations and dispatch strategies. Placing
seven drones in neighboring zones in the Gothenburg area, as the MSLP
suggests, might not be a realistic implementation. However, compared
with spreading them out, as suggested by the MCLP, it is estimated that
the overall average survival probability will be better. This is due to the
weighting of the large population in this area and the sensitivity of the
survivability function to short response times, which are achievable in
the cities.

The survivability function is a topic of discussion itself. It inputs
the time to CPR and the time to AED. With the assumptions made
here, ignoring the initiation of CPR by a bystander, the function fails
to estimate realistic values of survival probability. However, when
including the bystander initiated CPR, the additional benefit of arriving
volunteers is not reflected by the function. Ideally, a survivability
function that inputs additional parameters might be used, having a
‘‘time to bystander CPR’’, ‘‘time to arrival of first volunteer’’, ‘‘time
to first defibrillation’’ and ‘‘time to EMS arrival’’. In this way, realistic
values could be produced while also reflecting the benefit of volunteers.
11
However, reliable data for the start (and quality) of bystander CPR is
today very challenging to obtain. When evaluating the volunteer data,
it was observed that some volunteers carried their own personal AED.
Using this information when dispatching could potentially provide
additional dispatch improvements as these would then not be sent via
an AED. With an increasing number of volunteers carrying personal
AEDs, the impact would increase. All dispatch strategies are static in the
sense that the dispatch is predetermined when a volunteer answers the
notification, and the method is not updated with additional information
when such is revealed. A dynamic dispatch instead could make a
decision on an assignment at the moment a volunteer answers, based
on the currently available information. Consider the situation where
two volunteers already have arrived directly to the patient; then the
remaining volunteers should be told to find an AED.

The simulation includes some simplifying assumptions and does not
differentiate volunteers, apart from their positions. If data exists, it
may be possible to include properties such as age, medical proficiency,
speed, whether they would bring a personal AED, and their previous
dispatch history. This could increase the accuracy of the simulation.
The EMS arrival time is derived directly from historical data, greatly
simplifying the arrival time. In reality, the EMS arrival time varies
greatly as the closest responding EMS unit is not always at its base.
The availability of each drone is drawn independently from a binary
distribution. However, this simplification does not include weather
conditions or real-time flight restrictions caused by other air traffic.
Another limitation is that we do not include is real-time case depen-
dency. In reality, if a drone is busy with a case, it must be rendered
unavailable for other cases until it returns to the base and is refitted
with an AED and fully charged.

In practice, the realism of a simulation could be improved in-
definitely. However, increasing the complexity might not change the
overall results by much. In the historical data, only 66 out of 2561
(2.6%) volunteers stated that they had a personal AED when dispatched
to an OHCA. The data also showed that the number of incidents that
occurred simultaneously was close to zero in the region. Therefore, we
can assume that the inclusion of these possibilities will not affect the
overall outcome of all simulated cases by much. Some properties, such
as the quality of CPR, cannot be modeled using available data. For
the purpose of comparing the performance of the drone location and
dispatch strategies, the proposed simulation model is sufficient.
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Finally, the data used to calculate the probabilities in the simulation
study are gathered from different registers and might therefore be sub-
ject to reporting and selection bias. We have not extensively validated
register data vs. source data.

10. Conclusion

In this work, the potential of improving emergency response to
OHCA patients using a multi-tiered response, including volunteers and
drones, is investigated. The volunteers can perform CPR or bring an
AED and perform defibrillation, while the drones can transport the AED
faster than the volunteers. Using historical data on volunteer responses
in the Swedish county of Västra Götaland as input to four different
location models, optimal drone locations were produced. These were
evaluated, together with two different volunteer dispatch strategies,
using simulation.

The results show that the survival probabilities of OHCA patients in-
crease significantly when using volunteers, especially when volunteers
are combined with drones. When including 20 drones to a system of
volunteers, the AED response time was reduced by 4 min 22 s and the
CPR response was reduced by 28 s on average when tested on 10,000
simulated cases.

The main contribution of this work is the proof of concept analysis
of a combined dispatch of drones and volunteers. Although it has
previously been established that volunteers and drones independently
can help decrease the time to start of AED (and CPR) in OHCA cases,
it is shown here that by carefully combining and managing these
resources, an even better outcome may be achieved.

As already mentioned in the discussion, there are many avenues
for future research, including using stochastic multi-objective location
models to get better drone locations, taking individual volunteer qual-
ities (like travel speed, compliance probability, and expected quality
of care) into account both in dispatching and in the simulation, uti-
lizing dynamic dispatch models that are updated based on the latest
available information, and developing better response time models for
volunteers, drones and EMS.
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