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Abstract

Pyrrolopyrimidines have a vast pharmacological profile and are of significant importance in
many biologically active compounds. Acid catalyzed amination of such heterocycles is a well-
known strategy in synthesizing promising scaffolds in the field of medicinal chemistry.
Amination with anilines on 4-chloro-7H-pyrrolo[2,3-d]pyrimidine under acidic conditions have
been reported, however, no in-depth study of such reactions have been found. For this master
thesis, 4-chloro-7H-pyrrolo[2,3-d]pyrimidine and aniline were employed as a model reaction
with HCI as the catalyst to optimize conditions and observe the effects of different variables. A

secondary objective was to derive a better understanding of the reaction mechanism through

NMR analysis.
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The protonation site on 4-chloro-7H-pyrrolo[2,3-d]pyrimidine was investigated through ‘H-
NMR analysis. Although it seemed like the compound was protonated in acidic conditions, an

exact protonation site was not identified.

Continuing the research of a previous master student, the effect of acid amount was explored
with EtOH as the solvent. Acid amounts exceeding 0.1 equivalents had a significant positive
effect on conversion but lead to increased solvolysis of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine.
Interestingly, the solvolysis side product 4-ethoxy-7H-pyrrolo[2,3-d]pyrimidine reacted with
aniline in which EtOH was the leaving group, eventually forming the desired product.

The effect on conversion and side products in the model reaction were studied through reaction
variables such as solvent type, acid amount and temperature. The highest conversion in the
model reaction was achieved with H20 at 80 °C with only 0.1 eq. HCI. This procedure was
more sustainable and greener than those previously found in the literature and gave full

conversion after 6 hours without side products. Simple alcohols were also employed as solvents



but led to either solvolysis or low conversion compared to H20. Increasing the acid amount in
H20 did not result in a significant increase of hydrolysis of 4-chloro-7H-pyrrolo[2,3-

d]pyrimidine.

Following identification of a satisfactory procedure, a substrate scope study with different
anilines was conducted. It was hypothesized that the reaction could follow two pathways, where
either the 4-chloro-7H-pyrrolo[2,3-d]pyrimidine or nucleophilic amine was protonated based
on their pKa. Nevertheless, the SnAr reaction could proceed in both scenarios. Anilines with
weakly deactivating groups, such as halogens and alkyne, posed as great substrates in these
conditions followed by anilines with activating groups, such as ethers and alcohol, achieving
high initial conversion. The most suited substrates in these two categories gave 70-80%
conversion within 1 hour, and mediocre to high yields were obtained on a preparative scale (56-
94%). Anilines that did not suffer from steric effects and possessed pKa values in the range of
2.73-5.20 were most suited for acid catalyzed amination to 4-chloro-7H-pyrrolo[2,3-
d]pyrimidine in water. Anilines that fell outside of this pKa range or had bulky o-substituents
were generally not suitable substrates. Effects such as electron density and steric hindrance on
the conversion were observed by comparing similar aniline types. Amines with pKa above 5.20
were also employed, where benzylic amines were almost unreactive, however, one cyclic and
one primary amine gave satisfactory conversion rates which even exceeded one literature
procedure. Some substrates had difficulties dissolving in H20 and was one of the main

limitations in this procedure as well as steric hindrance in certain substrates.



Sammendrag

Pyrrolopyrimidiner har en omfattende farmakologisk profil og er av stor betydning i mange
biologisk aktive forbindelser. Syre-katalysert aminering av slike heterosykliske forbindelser er
en velkjent strategi innen syntese av lovende strukturer innen medisinsk kjemi. Aminering med
aniliner pa 4-kloro-7H-pyrrolo[2,3-d]pyrimidin under sure betingelser er tidligere blitt
rapportert, men en prinsipiell studie har ikke blitt funnet i litteraturen. | dette masterprosjektet
ble en modellreaksjon med 4-kloro-7H-pyrrolo[2,3-d]pyrimidin og anilin benyttet med HCI
som katalysator for & optimalisere betingelser og observere effekten av ulike variabler. Et

sekundzert mal var & oppna en bedre forstaelse av reaksjonsmekanismen gjennom NMR-studier.
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Protonering av 4-kloro-7H-pyrrolo[2,3-d]pyrimidin ble undersgkt ved hjelp av 'H-NMR. Selv
om forbindelsen ble protonert under sure forhold, ble ngyaktig protoneringsposisjon ikke

identifisert.

Basert pa arbeid utfert av en tidligere masterstudent, ble effekten av syremengde utforsket med
EtOH som lgsningsmiddel. Syremengde over 0.1 ekvivalenter hadde en signifikant effekt pa
omsetning og farte til gkt solvolyse av 4-kloro-7H-pyrrolo[2,3-d]pyrimidin. Et interessant funn
var at solvolyseproduktet 4-etoksy-7H-pyrrolo[2,3-d]pyrimidin reagerte med anilin, hvor EtOH

var utgdende gruppe, og dannet det gnskede produktet.

Effekten pa omsetning og sekundere reaksjoner i modellreaksjonen ble studert gjennom
variabler som lgsningsmiddeltype, syremengde og temperatur. Den hgyeste omsetningen, full
omsetning etter 6 timer, ble oppnadd med H20 ved 80 °C med bare 0.1 ekvivalenter HCI. Denne
utviklede metoden var mer berekraftig og grannere enn de som tidligere er funnet i litteraturen.

Sma alkoholer ble ogsa testet som lgsningsmidler, men solvolyse og lav omsetning ble



observert. @kende syremengde i H20 farte ikke til en betydelig gkning i hydrolyse av 4-kloro-
7H-pyrrolo[2,3-d]pyrimidin.

Etter en mer optimal metode var etablert, ble det gjort en studie pa ulike substrater i reaksjonen.
Det ble antatt at reaksjonen kunne fglge en av to veier, hvor enten 4-kloro-7H-pyrrolo[2,3-
d]pyrimidin eller nukleofilt amin ble protonert basert pa pKa-verdi. | begge tilfeller ble det
antatt at utgansstoffene ville reagere via SnAr. Aniliner med svakt deaktiverende grupper, som
halogener og alkyn, var gode substrater under disse betingelsene, etterfulgt av aniliner med
aktiverende grupper, som eter og alkohol, og oppnadde hgy initial omsetning. De best egnede
substratene 1 disse to kategoriene ga 70-80% omsetning innen 1 time, og tilfredsstillende
utbytter ble oppnadd pa en preparativ skala (56-94%). Aniliner som ikke ble pavirket av sterisk
hindring og som hadde pKe-verdi i omradet 2,73-5,20, var mest egnet for syre-katalysert
aminering til 4-kloro-7H-pyrrolo[2,3-d]pyrimidin i vann. Aniliner som la utenfor pKa-omradet
eller hadde steriske o-substituenter, var generelt ikke egnede substrater. Ved a sammenligne
lignende typer aniliner, ble effekter som elektrontetthet og sterisk hindring pa konverteringen
observert. Aminer med pKa over 5,20 ble ogsa brukt, der bensylliske aminer var nesten
ureaktive, men et syklisk amin og et primart amin ga tilfredsstillende omsetning som var hgyere
enn det som ble funnet i en litteraturprosedyre. Noen substrater var tungtlgselig i H2O som var

en av hovedbegrensningene i prosedyren i tillegg til sterisk hindring i enkelte substrater.

VI
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1 Introduction and Theory

1 Introduction and Theory

Heterocyclic compounds, such as fused pyrimidines are part of an interesting class of molecules
in the field of medicinal chemistry. This is due to their vast biological activity and potential
therapeutic applications.®:? Several fused heterocycles with the privileged pyrimidine scaffold,
such as purines, xanthines, pteridines, quinazolines, pyrrolopyrimidines, pyridopyrimidines,
furopyrimidines, thienopyrimidines and thiazolopyrimidines have been evaluated as anti-
Alzheimer3, antidepressant®, antibacterial> ©, anticancer’, antimalarial®, anti-HIV?®, anti-

inflammatory'? and anti-tuberculosis!! agents, etc.*

Our research group at NTNU has dedicated extensive efforts into this field, thereby establishing

a solid foundation for the background of this current thesis.” 1215

1.1 Previous work and current aim

The research group has been working with pyrrolopyrimidines for over 10 years, synthesizing
and evaluating several compounds towards treatment of various cancers and autoimmune
diseases. This includes inhibitors of the kinases epidermal growth factor receptor (EGFR)’ 16
7 and colony-stimulating factor 1 receptor (CSF1R)*® and the cytokine interleukin 17 (I1L-17)
secretion.'® Several series of disubstituted pyrrolo[2,3-d]pyrimidines have been synthesized

and assayed towards these applications, some examples are shown in Figure 1.1.

s N NS OH NS N OH
N N O N. /I//\ ( >
@ NH NH
( oH O
OH OH
I 1 n

EGFR-inhibitor CSF1R-inhibitor IL-17 inhibitor
lCSO =0.9nM |C50 =1.3nM lCSO =14 HM

NG

Figure 1.1: Disubstituted pyrrolo[2,3-d]pyrimidines I, Il and 111 synthesized by our research group that have shown high
activity as antagonists in EGFR, CSF1R and IL-17, respectively.1315 18

A more recent project in the group aims to investigate 4-aminosubstituted 7H-pyrrolo[2,3-
d]pyrimidines as low molecular weight inhibitors of human epidermal growth factor receptor 2

(HER2) in breast cancer. Overexpression of HER2 accounts for 25-30%?° 2° of all breast cancer



1 Introduction and Theory

cases and presents an attractive therapeutic target due to its activation mechanism via
heterodimerization rather than receptor-ligand binding.2t% Additionally, HER2 is
overexpressed in several other types of cancer.?* 2% The structures of Lapatinib?® and Neratinib?’
are illustrated in Figure 1.2, which are FDA-approved HER2 inhibitors and characterized by a

nitrogen-containing heterocycle and high molecular weight.

NH =
7] HN
_0 Cl
//S/ o N
(O /’N X
— |
N N~
Lapatinib Neratinib

Figure 1.2: Lapatinib and Neratinib as HER2 inhibitors.25 27

In previous work by Bathen,? three 4-amino-7H-pyrrolo[2,3-d]pyrimidines were synthesized
as potential HER2 inhibitors, of which some structures showed mediocre, but promising
inhibition. The amination of pyrrolopyrimidine was achieved through base and acid catalyzed
nucleophilic aromatic substitution (SnAr). Acid catalyzed SnAr was the most useful method of
the two since basic conditions gave low conversions. In the preferred method, however, the
water content had a crucial influence on the formation of side products. Generally acid
catalyzed amination is a well-known method, but there has yet to be found any principal studies
on amination of heterocycles with anilines.t: 24 29. 30 Therefore, the aim of this project is to
identify more optimal conditions for acid catalyzed amination of 7H-pyrrolo[2,3-d]pyrimidine.
A secondary aim is to derive a better understanding of the substrate scope and the mechanism.

The general structure of the main target compounds is presented in Figure 1.3.

H
o
N
I\NH
R—4—
=

Figure 1.3: Structure of target compounds of 4-amino 7H-pyrrolo[2,3-d]pyrimidine in this thesis.
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1.2 Pyrrolopyrimidines

1.2.1 Structure and biological activity

Pyrrolopyrimidines are nitrogen-containing heterocyclic compounds, made from the electron
deficient pyrimidine and the electron rich pyrrole (Figure 1.4). Hence, the pyrimidine can react
with nucleophiles while the pyrrole can react with electrophiles, making it a privileged building
block. Especially the pyrrolopyrimidine 4-chloro-7H-pyrrolo[2,3-d]-pyrimidine has several

reactive handles.3?

Figure 1.4: Numbered compounds of pyrrolo[2,3-d]pyrimidine, pyrimidine, and pyrrole.

Fused nitrogen-containing heterocycles has been a subject of extensive research, as these
compounds offer a promising scaffold in medicinal chemistry. This is due to their bioisoteric
relationship to purines which enhances their potential in various applications.? 32 33 These
heterocycles were first studied in 1776 when uric acid, a purine derivative, was isolated and
identified.3* Pyrrolopyrimidines gained significant attention in the 1950’s following the
isolation of 6-mercaptopurine®®, which exhibited antitumor activity, and toyocamycin®¢, an
antibiotic.> 3" Tubercidin and sangivamycin, which are nucleoside antibiotics, were also
discovered during the same timeframe and share the common structural element of 7H-
pyrrolo[2,3-d]pyrimidine.? 3 To date, pyrrolopyrimidines remain a key scaffold and constitute
a crucial class of nitrogen-containing heterocycles that play a significant role in medicinal

chemistry based on their diverse functions (Figure 1.5).
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e

Anticancer activity

Antibacterial

Anti-hyperglycemic

Figure 1.5: An outline of the pharmacological profile of pyrrolopyrimidine: Anticancer activity; Antiviral; Antiprotozoal;
Anti-inflammatory; Anti-hyperglycemic; Anti-hypertensive; Antibacterial.

Pyrrolopyrimidines have demonstrated the ability to inhibit critical enzymes involved in
signaling pathways as well as microtubule destabilization within the scope of anticancer
therapy. Central targets for anticancer therapy are tyrosine kinases, e.g. EGFR, due to their
significant role in cell proliferation and differentiation.3® Often, upregulation of these tyrosine
kinases results in an impaired apoptotic pathway, leading to extended cancer cell survival and
the promotion of aggressive tumor growth.?: 38 Finding therapeutic agents in EGFR-mediated
disease conditions is therefore of much interest. Fischer et al.>® explored novel benzannulated
4-benzylamino pyrrolopyrimidines as dual EGFR and vascular endothelial growth factor
receptor 2 (VEGFR2) inhibitors. VEGFR?2 is a principal driver of angiogenesis within tumors,
and is often found in solid tumors.*° In 2016, Han et al.*! synthesized 43 different 6-aryl-7H-
pyrrolo[2,3-d]pyrimidine-4-amines in an effort to develop EGFR inhibitors. Many of these
compounds showed high activity and one EGFR inhibitor showed even higher activity than the
FDA-approved drug Erlotinib (Figure 1.6).
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H
WN\ N C\N N No N
N/ \[( |
O N__~ Y
HN., OH
O\
EGFR inhibitor PDK1 inhibitor
(@]
~N
(@] H ’ 0
R
[
N__~ Y
NN
\ NH M p
C e N
S.
/7 N/ HN
I
HPK1 inhibitor Microtubule destabilator

Figure 1.6: Four compounds exhibiting anticancer activity: EGFR inhibitor}; PDK1 inhibitor*?; HKP1 inhibitor*3;
Microtubule destabilator#*.

3-Phosphinositide-dependent kinase 1 (PDK1) is a kinase that regulates the phosphoinostide-
3-kinase (PI3K or Akt) signaling pathway, which regulates cell metabolism, growth, and
proliferation.*® In several cancer types, this pathway is disrupted.*® O’Brien et al.*? synthesized
and evaluated 2-anilino-4-substituted pyrrolopyrimidines as PDK1 inhibitors. They reported an
increase in activity with C-4 substitutions of methoxy, exhibiting 1Cso value
of 1.2 uM (Figure 1.6).%

Another target for anticancer therapy is the hematopoietic progenitor kinase 1 (HPK1) which
is expressed in hematopoietic cells, the stem cells that give rise to other blood cells.#’
Dysregulation of HPK1 has been implicated in the pathogenesis of various diseases, including
cancer, consequently making it a promising therapeutic target. In a recent publication by Wu et

al.®3, 2,4-diaminopyrrolopyrimidines were synthesized and evaluated as potent inhibitors of
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HPKZ1, with one compound exhibiting an I1Cso value of 3.5 nM (Figure 1.6). The study also

provided valuable insights into the optimization and development of novel HPK1 inhibitors.

In addition to inhibiting several kinases, pyrrolopyrimidines can also destabilize microtubules.
Microtubules are key structural components of the cytoskeleton in cells which is important for
cell shape, cell signaling and segregation of chromosomes during cell mitosis.*® Defects in the
microtubule component may lead to faulty separation of the duplicated chromosomes into the
daughter cells, eventually leading to apoptosis or mutation and cancer.®® Destabilizing
microtubules can make them undergo disassembly.*® In cancer treatment, microtubule
destabilization is exploited as a therapeutic strategy to inhibit the proliferation of cancer cells,
as they are highly dependent on microtubules for successful cell division.*® In 2017, Gilson et
al.* identified new potent pyrrolopyrimidines as microtubule destabilizing agents. The most
potent compound was a trisubstituted pyrrolopyrimidine with a 4-amino group, 6-methyl and

N7-benzyl group (Figure 1.6).

Similarly, pyrrolopyrimidines exhibit biological activity in many different areas, such as
antibacterial®> 52, antiviral®?, anti-hypertensive®, anti-hyperglycemic®, anti-inflammatory®®

and antiprotozoal*3 %6,
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1.2.2 Pyrrolopyrimidine chemistry

As shown, pyrrolopyrimidines have a vast pharmacological profile and due to their immense

importance, several efforts have been made to establish synthetic pathways.

Zhang et al.>” proposed a synthesis of 4-chloro-7H-pyrrolo[2,3-d] in seven steps (Scheme 1.1).

MeQ AN e 9 HCONH2 N, OH
o NaOMe MeO OMe NaOMe QoS
MeOH MeOH, 60 °C, 1h N A S
MeO 0-5°Cto rt., 5h 92% OH
68%
POCIy N_ _Cl N._ _Cl
N,N-dimethylaniline M O3 s HC(OEt)5
N~ N N.__A__CHO
MeCN, 80 °C, 3h MeOH, CH,Cl, TSOH, EtOH
8506 cl -40 °C, 2h cl 40 °C, 2h
76% 90%
e N._NH, N. N
roS OEt NH,4OH M OEt HCI (aq.) M
N2 N__~ : N
OEt EtOH, 70 °C, 20 h OEt petrolium ether
cl 94% Cl 50°C, 4h Cl

91%
Scheme 1.1: Seven step synthesis of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine, overall yield 31%.57

In the fifth step, the aldehyde was protected as diethyl acetal to prevent aldehyde enolization.
The aldehyde could undergo direct cyclization under acidic conditions, which gave low
yields.5” Next, the protected compound was treated with ammonium hydroxide to give a
monosubstituted amine, and finally, the hydrolysis and cyclisation under acidic conditions led
to the desired product 4-chloro-7H-pyrrolo[2,3-d]pyrimidine in an overall yield of 31%.57

There have been examples of employing ethyl cyanoacetate as the starting material in several
synthetic methods towards 4-chloropyrrolopyrimidines with a 6-aryl group.t® 6. 58-60 For
example, Kaspersen et al.’® employed a five-step synthetic route to the 6-aryl-4-chloro-

pyrrolo[2,3-d]pyrimidine (X) (Scheme 1.2).
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Scheme 1.2: Five step synthesis of 6-aryl-4-chloro-pyrrolo[2,3-d]pyrimidine with ethyl cyanoacetate (1V) as the starting
material 16

Ethyl cyanoacetate (IV) can be reacted with HCI in ethanol to yield ethyl 3-ethoxy-3-
iminopropanoate hydrochloride (V), followed by free basing with potassium carbonate and
treatment with ammonium chloride in ethanol to give ethyl 3-amino-3-iminipropanoate
hydrochloride (V1). Compound V1 was then reacted with a a-bromoacetophenone (V11) to give
the pyrrolidine VIII. Finally, condensation of compound VIII to the 4-
hydroxypyrrolopyrimidine (1X) and chlorination of the latter gave the product X in an overall
yield of 42%.16.60

Another synthetic route was reported by Frolova et al.?! and Scott et al.%? in which a four-
component reaction gave the entire 7H-pyrrolo[2,3-d]pyrimidine scaffold (Scheme 1.3). The
starting materials were reacted with formamide and K2COs. Then, the formamide was
incorporated followed by ring closing of the pyrimidine portion permitted by gradually

increasing the temperature.5?
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Scheme 1.3: One pot synthesis of pyrrolo[2,3-d]pyrimidine with four components.5t: 62

A synthetic route to 4-chloro-7H-pyrrolo[2,3-d]pyrimidine was also suggested by Han®, who
combined previously reported syntheses for pyrrolo[2,3-d]pyrimidine (Scheme 1.4).647

However, this synthetic route was not tested.
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M ®  Halogenation M 8 H——Ry Mo % CHsCN, MW 100 °C
N~ — N\, o N
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Scheme 1.4: Synthetic route for the synthesis of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine suggested by Han® through
combining previously reported syntheses.®+7*

The pyrrolopyrimidine scaffold is not only found in diverse biological sources, ranging from
humans to bacteria, but it can also be isolated from them.3": 72 A four-step biosynthetic in vitro
method, involving four enzymatic steps, has been reported for the synthesis of compounds with

the pyrrolopyrimidine core.”
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1.2.3 pKa of pyrrolopyrimidines

Nitrogen containing heterocycles where the lone pair on the nitrogen is not part of the aromatic
n-system will react with protons and the pKa of the heterocycle will determine the equilibrium.”
There has yet to be found reported pKa values of pyrrolopyrimidines, however, similar
compounds have been evaluated which can help establish the pKa of pyrrolopyrimidine
(Figure 1.7).

~ "N N\ (\lN
N ! > \N)

pyridine quinolin pyrimidine
5.25 4.94 1.23
H H
[N> j NH N
C o
N /
imidazole pyrrole indole
7.1 -3.8 -3.5
H H H
Xx—N N\ N rN\ N
| | | ?
N A~ P N A~N
pyrrolo[3,2-c]pyridine pyrrolo[2,3-b]pyridine purine
8.26 4.59 25

Figure 1.7: Nitrogen containing heterocycles with corresponding pKa values (red): pyridine (5.25); quinoline (4.94);
pyrimidine (1.23); imidazole (7.1); pyrrole (-3.8); indole (-3.5); purine (2.5); pyrrolo[3,2-c]pyridine (8.26); pyrrolo[2,3-
b]pyridine (4.59).

Joris et al.” reported pKa values of a series of n-deficient nitrogen heteroaromatics, for instance
pyridine with a pKa of 5.25.74 The approximate same value, 5.2, was reported by Joule and
Mills”® for the same compound. Quinoline has a similar basicity to pyridine with pKa 4.9473,
while the diazine pyrimidine has a significantly lower pKa of 1.23-1.3.73 74 The destabilization
of the mono-cation formed is likely the explanation for the reduction in basicity, and can be

attributed to two factors, inductive withdrawal and mesomeric withdrawal.”?

Inductive withdrawal refers to the effect caused by the second nitrogen atom in the pyrimidine
ring, which reduces the stability of the positive charge on the protonated cation due to
polarization of the o-bond. Mesomeric withdrawal, on the other hand, refers to the

delocalization or distribution of electron density away from the protonated nitrogen atom based

10
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on the relevant resonance structures, further destabilizing the cation. Overall, these combined
effects of inductive and mesomeric withdrawal by the second nitrogen atom result in a less
stable protonated cation in the diazine, compared to the protonated cation in pyridine and

quinoline, hence the decrease in pKa.”

Imidazole, with pKa 7.17% 7, is more basic than pyrrole, pKa -3.87%. In imidazole, only one of
the two nitrogen’s lone pair is part of the aromatic system, while the other is not. This allows
imidazole to retain its aromaticity and conjugated m-system when protonated.” In contrast,
pyrrole contains only one nitrogen which lone pair is part of the aromatic n-system, which leads
to a break in the aromaticity when protonated on C-2.7 7677 Imidazole is a stronger base due
to the greater availability of the lone pair of electrons compared to pyrrole. This also accounts
the weak basicity of indoles, with pKa -3.5, as the lone pair on the nitrogen atom is part of the

aromatic -system.”3

The pKa values for pyrrolo[2,3-b]pyridine and pyrrolo[2,3-c]pyridine are 4.59 and 8.26,
respectively.” Considering inductive withdrawal and mesomeric withdrawal, the presence of
an extra nitrogen in pyrrolo[2,3-d]pyrimidine may result in a significantly lower pKa compared
to the two pyrrolopyridines. This assumption aligns with the difference in pKa values between
pyridine and pyrimidine, where the presence of one extra nitrogen led to a notable decrease in
pKa.

Purine, which has two more nitrogen atoms than the pyrrolopyridine structures, has a pKa of
2.5 and can be protonated at several positions.”> Comparing imidazole and pyrrole, it is
observed that having an extra nitrogen atom whose lone pair is part of the aromatic m-system
significantly lowers the pKa. This might also be the case when comparing purine and
pyrrolo[2,3-d]pyrimidine, suggesting that the pKa of pyrrolo[2,3-d]pyrimidine could be lower
than that of purine. However, to confirm the pKa value, more detailed analysis of the molecule

is needed.

11
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1.3 Anilines

Anilines are aromatic amines that are electron rich due to the free electron pair on nitrogen and
can therefore react with electrophiles. Aniline is usually found in dyes, perfumes, and
pesticides, and are often used as intermediates in pharmaceutical applications.” ® They can
additionally be found in biologically active products and medicine.?° In medicinal chemistry,
aniline derivates are widely used substituents®, and multiple research papers have reported on
their use in the synthesis and biological evaluation.t? 24 3041 81 Anijline derivates are also
incorporated in the FDA-approved drugs such as Lapatinib®®, Gefitinib®, Afatinib® and
Erlotinib?" 8 (Figure 1.8).

(NH /] o HN
//S//O O \N
o° \ /) =
N o Cl
Gefitinib
Lapatinib
L
o ~ o} N
N
N o B

Afatinib Erlotinib

Figure 1.8: Structure of Lapatinib, Gefitinib, Afatinib and Erlotinib with the aniline portion marked in blue.

1.3.1 pK,of anilines

Anilines, in comparison to aliphatic amines, typically exhibit a lower pKa value, primarily
attributed to the reduced electron density on the nitrogen atom resulting from the presence of a
phenyl ring.8% Aliphatic amines can typically have pKa-values between 9-118, while the pKa of
anilines can range from 0-58 87 depending on the substitution pattern. While there are many

experimental pKa-values of different anilines, several methods have been described for

12
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estimation of their pKa, utilizing Hammett constants (o), natural charge (Qn), proton transfer

enthalpy (AHprot), average local ionization energy (1) or electrostatic potential (\V).8

Among these, Hammett constants are considered to be most effective in characterizing the
substituent effect on pKa, while other parameters are comparatively less effective.®” Gross and
Seybold® have developed simple equations, each employing one of the mentioned parameters,
to predict pKa of anilines. For instance, when Hammett constants are employed, the equation

takes the form outlined in Equation 1.

pK_ = —3.03(£0.13) - o + 4.46(% 0.06) (Equation 1)

Equation 1 was used to estimate the pKavalues of seventeen of the anilines used in this thesis,
as shown in Table 1.1. Some values have not been previously reported experimentally but can
be estimated using Equation 1. Hammet constants were retrieved from Hansch et al..8
Experimental values were reported by either Gross and Seybold®” or Haynes et al.2°. Most of
the estimated values are gathered by using Equation 187, while some are taken from Tehan et al
8 (superscripted “a”, Table 1.1) where the ¢ constants did not apply, i.e. o-substituted anilines.
The pKa value of two anilines, N-methyl-4-fluoroaniline and 2,6-isopropylaniline, is not
reported. Neither were applicable in Equation 1 due to o-substitution and neither pKa values

were found in the literature.

13
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Table 1.1: Experimental and estimated pKa values for anilines in this thesis.86 87. 89

e o NHs — @/NHz
= =
Substituent Pia
Experimental Estimated

H (aniline) 4.58 4.46
2,3,4,5,6-pentafluoro -0.28 -0.492
2,6-dichloro 0.42 3.442
4-nitro-2-trifluoromethyl - 0.80
p-nitro 1.02 2.10
2,4,5-trichloro 1.09 2.022
2,4-dichloro 2.05 3.112
0-nitro 2.5 -
4-bromo-3-fluoro - 2.73
m-chloro 3.34 3.34
m-benzyloxy - 3.70
m-ethyne - 3.76
3,4-methylenedioxy - 4.10
p-fluoro 4.65 4.27
0-hydroxy 4.78 4.522
p-butyl - 4.95
p-ethoxy 5.20 5.19

a Estimated values retrieved from Tehan et al.8
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Anilines will have different pKa based on the solvent they are in. Rossini et al.*® have reported
estimated pKa values of aniline in MeCN, MeOH, DMSO and H:0, spanning from 3.82 to
10.56. The lowest pKa of 3.82 was reported in DMSO followed by 4.58 in H20. For the solvents
MeOH and MeCN, the reported pKa was 6.05 and 10.56, respectively.®® The values are

calculated using an empirical conversion method, which considers electrostatic effects, namely
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an electrostatic transformation method. This method is based on the known pKa of the organic

compound in one solvent, e.g. H20, and converts it to an estimated pKa in another solvent.®

1.3.2 Synthesis of anilines

There are several approaches available for synthesizing anilines, and three often used routes are

depicted in Scheme 1.5.80.91-93

Synthetic route B

y = | | HNRiR
X MX
Synthetic route A | Synthetic route C
Hz NO HNO;
X HNR;R; _ | NR:R; Pd-cat. = | 2 H,S0, @

Y—< Y < - —

Y= | Bunnett et al. X Kadam et al. X Hartwig et al. |
X=F, Cl,Br,|

R1, Ry = H, alkyl, aryl
Scheme 1.5: Three synthetic routes for synthesizing aniline. Synthetic route A: Halogenated aromatic substituted with an

amine via SnAr.%t Synthetic route B: Lithium amide substituted via aryn intermediate.®? Synthetic route C: Nitration of an
aromatic compound followed by reduction with Hz and Pd-catalyst.8% %

One of these routes, described by Bunnett et al.®*, involves amine-substitution on halogenated
aryls via SnAr (Synthetic route A, Scheme 1.5). However, this method requires high
temperatures and often gives low yields. For example, the reaction between chlorobenzene and
aqueous ammonia at 300°C only gave aniline in 30% yield.** Generally, primary and secondary
amines react faster than ammonia in this reaction.® Alternatively, aniline can be synthesized
via SNAr through an aryne intermediate using lithium amide (Synthetic route B, Scheme 1.5).%
A drawback with this route could be the formation of regioisomers. In a third synthetic route,

an aromatic compound is nitrated with concentrated HNO3 and H2SO4 followed by reduction

15
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with Hz and a Pd-catalyst (Synthetic route C, Scheme 1.5).8% % If the aromatic starting material

is electron rich, HNOs should be used alone as a nitrating agent as H2SOs may oxidize it.°

1.4 Amination on heterocycles

The amination of heterocycles is a key reaction in medicinal chemistry®*, as several potent drugs
are substituted with amino groups, as previously noted. Within this chapter, two common
methods are outlined, amination via SnAr and cross-coupling reaction, specifically Buchwald-

Hartwig amination.

1.4.1 Nucleophilic aromatic substitution

In nucleophilic aromatic substitution a nucleophile displaces a leaving group on an aromatic
ring.%! The reaction proceeds through an addition-elimination mechanism® %, involving the
formation of a negatively charged intermediate, the tetrahedral Meisenheimer complex
(Scheme 1.6).%% 97 After addition of the nucleophile, the carbon atom is assumed to have sp?
hybridization, disrupting the -system in the aryl. When the leaving group is eliminated, the =-

system along with the aromaticity is restored.

X X Nu X Nu X Nu Nu
O =0 - Q0[O
©

Scheme 1.6: Mechanism for SnAr through addition-elimination with the formation of the negatively charged Meisenheimer
complex. 9% 96,97

Generally, second order kinetics are observed and the first step is the rate-determining.%? %
Also, there are a great number of factors that can influence the reactivity of SNAr reactions®,
for instance the size of the leaving group and the nucleophile, interactions between leaving
group and nucleophile and solvent effects.®? % Electron deficient aromatic compounds facilitate
the reaction as this creates stronger electrophiles and electron withdrawing substituents will

stabilize the developing negative charge in the Meisenheimer complex.®*

Pyrimidine is an electron deficient aromatic and has six n-electrons delocalized across six

overlapping p-orbitals (Figure 1.9). The presence of two sp?-hybridized nitrogen atoms results
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in reduced n-electron density especially in the 2- and 4-position.®® On the other hand, the pyrrole
heterocycle of the pyrrolopyrimidine also possesses an aromatic system with six n-electrons,
but distributed over only five p-orbitals, rendering it more electron-rich compared to pyrimidine
(Figure 1.9).%° Consequently, pyrimidine would be a more favorable substrate in an SnAr

reaction than pyrrole, being more susceptible to nucleophilic attack.

SR,
Oy
= :

Figure 1.9: Aromatic structures of pyrimidine and pyrrole with p-orbitals (blue) orthogonal to the plane of the rings.
Electrons that are not orthogonal to the plane are represented as grey orbitals.

Solvent effects are also to be considered in reactivity of the SnAr reaction. The polarity of the
solvent is crucial for the reactivity, as higher polarity will stabilize the Meisenheimer
complex.’® Hydrogen bond donor and acceptor abilities of the solvent will also influence
reactivity, where it is generally observed that the higher degree of hydrogen bond acceptor
abilities will increase the reaction rate constant and decrease it when the solvent has high
hydrogen bond donor abilities.'% Dissolution of the starting materials also has a huge influence

on reactivity.%

The strength of the nucleophile is equally an important factor when determining the reactivity.
A nucleophile’s strength can be considered through its basicity, polarizability, and the presence
of unshared alpha electrons to the nucleophilic atom.% Polarizability is to consider in
nucleophilicity, as the more polarizable a molecule is, the better nucleophile it becomes. This
is because it reduces electrostatic repulsion between the nucleophile and the substrate, enabling
the reactants to approach each other easily.®* In addition, the presence of unshared electron
pair on the adjacent atom to the nucleophilic atom, also called the alpha effect, makes stronger

nucleophiles.%!

Typical leaving groups are halides, but alkoxy, nitro and sulfonyl groups can also act as leaving
groups.® %8 Considering the halides, the leaving group order is F > Cl ~ Br > | which is opposite
as usually observed for aliphatic halides in Sn2 reactions®" %6, and is often referred to as the

elemental effect.!%? This inverted order can be explained by the higher electronegativity of

17



1 Introduction and Theory

fluorine compared to the higher halogens, thus adding stability to the negative charge in the
Meisenheimer complex. The elemental effect is particularly noticeable for the smaller and
polarizable nucleophiles in protic solvents, such as amines. This phenomenon is thought to

establish the addition-elimination mechanism in the SnAr reaction.9: 102

Amination of heterocycles via SnAr can be carried out under basic and acidic conditions. A
mechanism for amination of pyrimidine has been proposed for both conditions.'®® Under

weakly basic conditions, the amine in excess, or a co-base can be added to capture acidic

/ base

CN
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protons from the byproduct HCI (Scheme 1.7).1%3
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Scheme 1.7: S~nAr mechanism in basic conditions with pyrimidine and aniline.1%

Amination in basic conditions, more specifically amination to 4-chloro-7H-pyrrolo[2,3-
d]pyrimidine, has been reported several times.?% 3063 One patent by Traxler et al.>° reported
aniline added in excess when synthesizing derivates of 7H-pyrrolo[2,3-d]pyrimidine. In a thesis
by Han®® and a paper by Han et al.*! the amination was carried out with three equivalents of
aniline in low to excellent yields (15-91%). A patent by Grotzfeld et al.?° described a method
to synthesize derivatives of 7H-pyrrolo[2,3-d]pyrimidine-4-amine with equimolar amounts of
the starting materials. Wu et al.** have reported base-mediated SnAr in the amination to
pyrrolopyrimidine, wherein equimolar amounts of the starting materials were employed with
either DIPEA or t-BuOK as a co-base, which are non-nucleophilic bases that capture protons
from the byproduct HCI. Bathen?® also carried out base mediated SnAr with three equivalents
of DIPEA. Unlike typical catalytic reactions, these bases are added in excess due to their
inability to regenerate throughout the reaction. As this reaction proceeds, HCI is formed, and

the base is consumed by the capture of HCI.

Under acid-mediated SnAr reactions, only catalytic amounts of the acid is needed as HCI is

generated throughout the reaction (Scheme 1.8).103
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Scheme 1.8: SNAr mechanism under acidic conditions with pyrimidine and aniline.%

There are several reports of acid catalyzed amination to 7H-pyrrolo[2,3-d]pyrimidines with
aniline. Particularly one method with isopropanol, 2-6 drops of concentrated HCI and three
equivalents of aniline is popular.t®: 248 This method gave low to excellent yields (16-96%)
with a large variety of anilines and amines. Bathen?® reported a method with ethanol as the
solvent and three drops concentrated HCI, giving full conversions after 3 h. Abou-Shehada et
al.!%4 employed Lewis acids in amination of pyridines, such as Zr(acac) and Zn(NOz)2 in 20
molar percentage. The highest conversions were achieved with Zr(acac), namely 81%, but this
was also the most expensive catalyst. When switching to the zinc-based catalyst, Zn(NOs3)z,
they developed a greener more sustainable methodology and achieved full conversion and
excellent yields with anilines and cyclic amines. Primary amines such as benzylamine,
however, did not react. It was also reported that heating of 4-chloropyridine in a polar protic
solvent, such as MeOH, EtOH and n-PrOH, led to solvolysis of the starting material due to the

nucleophilicity of these solvents.1%4

Although acid catalyzed amination of this sort is a well-known method, no fundamental studies
or optimization of such reactions have been found in the literature. Unpublished work by our
research group can give some valuable insights. Both polar protic and aprotic solvents have
been successfully employed, where the most polar solvents gave higher conversion in both
categories. Previous literature has reported the use of various alcohols as solvent, including
MeOH1%4, EtOH?8 30. 104 j-prQH24 30,81, 104 gnd n-BuOHC in similar reactions. One patent by

Traxler et al.® claims that these simple alcohols were inert solvents in this specific reaction,
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however, as mentioned, Abou-Shehada et al.!% observed solvolysis under the same reaction

conditions.

1.4.2 Buchwald-Hartwig amination

The Buchwald-Hartwig amination is a palladium catalyzed cross-coupling reaction between

aryl halides and amines in presence of a base (Scheme 1.9).

Pd cat.
Ligand R,
o X H Base N
R L + . B ——— | X R
1y _ RZ/ R3 Rl_| 3

Scheme 1.9: General cross coupling, Buchwald-Hartwig amination between a halogenated aromat and an amine with the use
of a Pd-catalyst and a base.

The first cross-coupling reaction between sp?-carbon and nitrogen was reported separately by
Goldberg% and Ullmann?% in the early 1900’s using copper as the metal catalyst.'%’ Palladium
was later employed as the catalyst by Masanori et al.»% for the aromatic amination. Stephen L.
Buchwald and John F. Hartwig independently published methods for cross-coupling of aryl
bromides and aminostannanes using palladium catalyst for the synthesis of arylamines in
1994.109. 110\While effective, these in situ-generated aminostannanes suffered from long reaction
times and the formation of side products, with additional issues concerning toxicity of organic
stannanes and waste disposal.?” Furthermore, this reaction was not suitable for primary amines
which was due to a competitive B-hydride elimination leading to the formation of reduced aryl

as the side product.'

In 1995, both Buchwald and Hartwig published an improved method for palladium-catalyzed
cross-coupling of aryl halides and amines without the use of tin.*1% 11 This methodology is now
commonly known as the Buchwald-Hartwig amination.'®” The Buchwald-Hartwig amination
proceeds through a catalytic cycle in which the catalyst Pd® is being regenerated in each

catalytic turn (Scheme 1.10).110. 111
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Scheme 1.10: The Buchwald-Hartwig amination cycle. 110 111

In the first step, the Pd'"-complex gets reduced to the unsaturated Pd°-complex which
subsequently undergoes oxidative addition with the aryl halide. The oxidative addition is
favored by electron donating Pd ligands that makes the metal electron rich, also called s-donor
effect, such as phosphines.’? Ligands that are good m-acceptors will slow down this step due
to decreased electron density on the metal from n-backbonding, but will ease the reduction
elimination.t*? After oxidative addition, coordination with the amine NHR2 will occur followed
by a base mediated deprotonation. In the last step, the reductive elimination takes place, the
opposite of oxidative addition. For this step to occur, the two groups, NR2 and Ar must be cis
to each other, and no reaction will occur if they are trans positioned. Reductive elimination is

favored by an electron deficient metal Pd, characterized by n-backbonding ligands.*?
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Over time, several generations of catalysts have been developed, each with its own set of
limitations and advantages. Three ligands that can be used in Buchwald-Hartwig cross coupling
are outlined in Figure 1.10, BINAP, XPhos and DPEPhos.1%’

O
iPr
PPh
OO 2 iPr PPh,  PPh,

BINAP XPhos DPEPhos

Figure 1.10: Examples of phosphine ligands used in Buchwald-Hartwig amination. BINAP as bidendate ligand, XPhos as
monodendate and sterically hindered one, and DPEPhos as a POP-ligand.1%

The use of biphosphines in the Pd-complex, such as BINAP, has enabled successful arylation
of primary amines.!*: 113 The bidendate coordination of both phosphorus to the metal center
hinders free rotation of the bonds and makes B-elimination a less favored side reaction.!!3
Sterically hindered ligands, such as the monodentate XPhos achieve the same result.
Diphosphine ligands with an oxygen atom between the two phosphorus atoms, or so-called
POP-ligands, can stabilize the catalyst by creating an additional coordination site.!** POP-
ligands, e.g. DPEPhos, are considered highly effective in coupling of aniline and aryl bromide

and can in some cases exceed the reactivity of BINAP.7

Phosphine ligands are one of the most employed in the Buchwald-Hartwig amination. Among
the bidentate phosphine ligands, a wider “bite angle” between the ligand and the metal is
generally favored and gives the highest reaction rate in this cross-coupling reaction.’'® The
backbone of the diphosphine ligand determines the chelation angle, which can be defined as
the bite angle (Figure 1.11).1® The cone angle on the other hand is a measure of the bulk of the
phosphine ligand (Figure 1.11). A bigger cone angle will accelerate the reductive elimination
step as steric strain is released, but as a consequence of the steric strain, the rate of oxidative

addition will decrease.!1?
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1 Introduction and Theory

/M\
PhyP PPh, @
Cr°
bite angle cone angle

Figure 1.11: Bite angle and cone angle explained.'!? 113

Anilines have previously been successfully employed in Buchwald-Hartwig
cross-coupling.X?”: 115 Zheng et al.*'® employed several anilines in a cross-coupling with aryl
ester phenyl benzoate, in some cases reaching excellent yields. Two 2,6-disubstituted anilines
were successfully employed in 89-93% vyield, and 2-isopropylaniline in 97% yield. Cross-
coupling between pyrrolopyrimidines and anilines has previously been reported in the
literature. O’Brien et al.*? synthesized six different 2 4-substituted 7H-pyrrolo[2,3-
d]pyrimidine employing different anilines in good yields, 72-87%, with the use of XPhos as the
ligand.
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2 Results and discussion

The objective of this study was to optimize the acid catalyzed amination of 4-chloro-7H-
pyrrolo[2,3-d]pyrimidine (1) by identifying more efficient and sustainable reaction conditions.
A model reaction involving 1 and aniline (2) was conducted to investigate the effects of solvent
type, acid amount and temperature on the reaction conversion. Once an optimal reaction
procedure was developed for the model reaction, a substrate scope study was conducted on
nineteen anilines (2-20), two chiral benzylic amines (21, 22), one cyclic amine (23) and one
primary amine (24) to validate the reaction conditions. The general reaction for all anilines in

this thesis is outlined in Scheme 2.1.

H
Y HCI (cat.) (N\ N
NN NH solvent | p
i X 2 temperature N A
N + | v
. NH
A
cl R |
“R

Scheme 2.1: General reaction and reaction conditions for acid catalyzed amination of 4-chloro-7H-
pyrrolo[2,3-d]pyrimidine (1).

The SNAr reaction can be hypothesized to proceed through one of two proposed pathways,
which are determined by the basicity of the starting materials (Scheme 2.2). In the first pathway,
the pyrrolopyrimidine 1 is protonated initially, as the weak nucleophilic has a lower pKa value.
This protonation makes 1 a stronger electrophile, enabling it to still react with the weaker
nucleophile via SnAr. In the second pathway, the nucleophilic amine is protonated before the
pyrrolopyrimidine 1, due to the amine being a better nucleophile with higher pKa. In this
pathway, the SnAr reaction can still proceed because the nucleophile is thought to react prior

to protonation, forcing the protonation equilibrium to the non-protonated form.

24



i

N

\

Cl

H+

! +\H+\\\ N

N
@w

Cl

Nuc*-H

2 Results and Discussion

N

N
ﬁ\
N A

Nuc

_H+

Scheme 2.2: Two suggested protonation pathways in the SNAr reaction between pyrrolopyrimidine 1 and a nucleophilic
amine. In the first pathway, the pyrrolopyrimidine 1 is protonated first, while in the second pathway, the amine is protonated
first. The SnAr reaction is still thought to proceed in both pathways.

To assess the reaction efficiency, test reactions were carried out at a 100 mg scale where

samples were collected at specific time intervals. In total, twenty-three substrates were tested.
Subsequently, eight anilines were employed in an upscaled reaction of 500 mg with the same

conditions. In addition, NMR was employed in an attempt to give insights to the reaction

mechanism. The ensuing section comprises the findings from the NMR study, the model

reaction, and the substrate scope.
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2 Results and Discussion

2.1 NMR-studies

NMR-studies were executed to investigate protonation sites on 1 to get a better understanding
of the mechanism in the acid catalyzed amination of pyrrolopyrimidine 1. Previous studies on
related compounds have provided mechanistic information. For instance, Guo et al.*®® proposed
a mechanism for the acid catalyzed amination to pyrimidine (Scheme 1.8, Section 1.4.1),
suggesting protonation occurs on N-1. As the lone pairs on N-1 and N-3 are not part of the
aromatic m-system in pyrrolopyrimidine 1, these sites could be protonated.” C-5 was also
thought to be a potential protonation site.r” "3 We hoped that by analyzing the chemical shifts
under various acidic conditions obtained from *H-NMR spectra'*¢ we could identify the specific
site of protonation on compound 1. Three suggested protonated structures are presented in
Scheme 2.3.

H

H : H H

(N\ N H* N H (N\ N rN\ N

I p f+\ I + | p
N~ N. N~ H o N~F
Cl Cl c H cl

Scheme 2.3: Pyrrolopyrimidine 1 and three suggested protonated structures.

Initially, compound 1 was dissolved in DMSO-ds and treated with 1 drop of concentrated HCI,
but negligible changes in A ppm were observed. Instead, an unidentified peak at 11.01 ppm
emerged as the water peak at 3.33 ppm disappeared. This unidentified peak was therefore
thought to belong to H3sO*, which aligned with previously reported chemical shifts for the same
species.!*” Due to the limited A ppm changes in DMSO-ds, the NMR-solvent was switched to
acetonitrile-ds, which gave significant changes in ppm when HCI was added. In total, 9 different
parallels were made with varied amounts of HCI to enable a comparative analysis of the H-2
protons.'*® The NMR-signals of H-2 are depicted with estimated amounts of HCI in Figure 2.1.
Since pH is a scale used in only aqueous solutions, the estimated quantities of HCI are reported
in equivalents. This estimation involved weighing a single drop of HCI (37%) and adding it to
a known volume of acetonitrile-ds, followed by further dilution. All samples were added

approximately 10+2 mg of compound 1.
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2 Results and Discussion

eq. HCI
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Figure 2.1: *H-NMR spectra (400 MHz, acetonitrile-ds) of starting material 1, displaying only H-2 with
estimated amounts of HCI in each sample.

When 0-0.05 eq. HCI was added, no significant changes in A ppm was observed, and the H-2
resonated at 8.56 ppm. The first notable change occurred when adding 0.10 eq. HCI, leaving a
slightly downshifted signal, A ppm = 0.01 ppm. Between 0.10 and 1.35 eq. HCI the changes are
small, all A ppm = 0.01. However, when adding 2.03 eq. HCI the signal of H-2 was shifted
downfield by 0.10 ppm. The biggest value of A ppm was observed when adding >5.00 eq. HCI
with A ppm = 0.38 ppm. Chemical shifts for all protons in pyrrolopyrimidine 1 are presented in
Table 2.1, displaying signals from the samples with 0 eg. HCI and 5 eq. HCI. The biggest
difference in A ppm was observed for the proton on N-7 (H-7) with a value of A ppm = 2.28
(Table 2.1).
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2 Results and Discussion

Table 2.1: Chemical shifts for all protons in compound 1 in two different conditions, 0 eq. and >5 eq. HCI, and the
corresponding A ppm.

& [ppm]
Proton A ppm
0 eq. HCI >5eq. HCI
H-2 8.56 8.93 0.37
H-5 6.60 7.01 0.41
H-6 7.47 7.88 0.41
H-7 10.20 12.48 2.28

With the similar A ppm observed for all C-H protons, namely H-2, H-5 and H-6, the position
of protonation on pyrrolopyrimidine 1 is inconclusive. However, this may indicate that the
compound can be protonated in more than one position. For example, when considering H* as
an electrophile, it is previously reported that C-5 is most susceptible for electrophilic attack.'’
By observing the change in splitting pattern of H-5 and H-6, it indicates that H-7 is being
exchanged more rapidly as the solution gets more acidic. In neutral solution of acetonitrile-ds,
the two signals appear as doublet of doublets and are both coupled to H-7. In acidic solution,
the two signals are observed as doublets and have no coupling with H-7. This indicates that H-

7 is being exchanged in the NMR time frame under acidic conditions (Figure 2.2).
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Figure 2.2: *H-NMR signals for H-5 and H-6 in neutral (dark red) and acidic (blue) conditions with compound 1 and
corresponding couplings (red arrows) for these protons.

To support this assumption, a decrease in the integral for H-7 was expected, however, this was
not observed and the integral for H-7 stayed consistent in the range of 0.22-0.25. Based on these

results, site of protonation could not be concluded.

2.2 Model reaction

The model reaction consisted of the starting materials 4-chloro-7H-pyrrolo[2,3-d]pyrimidine
(1) and aniline (2) that reacted via SnAr to form the product N-(4-phenyl)-7H-pyrrolo[2,3-
d]pyrimidine-4-amine (28). Conversion rate and side product profile have been studied through

testing variables such as solvent type, temperature, and acid amount.

The conversion rate and side product profile were determined from 'H-NMR and the reactions
were also analyzed through TLC. Samples were taken from the reaction mixture at specific time
intervals in all experiments. All samples were neutralized, extracted, and concentrated in vacuo

before NMR-analysis to achieve a more readable spectrum as the protonated products gave
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2 Results and Discussion

overlapping signals. When the specific solvent was not miscible in water, the samples were
neutralized with NaHCO3 and extracted with EtOAc before evaporative work-up. When the
solvent was miscible in water, however, an additional step of concentration in vacuo was done
before the neutralizing step to prevent the reaction components from mixing with the water
phase. Mostly, the aniline 2 was lost during evaporative work-up and the conversion was
therefore solely calculated from the H-2 on the starting material 1 and the product 28, having
signals at 8.56 ppm and 8.27 ppm respectively. Because of lacking tH-NMR signals from the

starting material 2, >97 % is used when indicating full conversion.

2.2.1 Initial experiments

Based on the experiments of previous master student Bathen?3, who employed a system with
EtOH as solvent at reflux temperature, different amounts of acid were initially tested in the
same system. Acid catalyzed amination to pyrrolopyrimidines via SnAr has previously only
been reported with dropwise amounts of HCI, as already stated. Therefore, specific amounts of
HCI were added to observe the effects thereof. The concentration of the reaction mixture was
increased from 0.10 mmol/mL as described by Bathen?® to 0.26 mmol/mL to enhance the
reaction rate.!® In total, six experiments were conducted with the model reaction in different
amounts of HCI, from 0 eq. to 5 eq. (Table 2.2). Samples were taken at 1 h, 2 h, 3h, 4 h and 6
h for all experiments. In addition to the expected product 28, a side product from alcoholysis,
4-ethoxy-7H-pyrrolo[2,3-d]pyrimidine (25), was observed. The side product was not isolated
but identified through comparing *H-NMR spectra of compound 28 from a previous project in

our research group.
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2 Results and Discussion

Table 2.2: Different amounts of HCI, 0-5 eq., in the model reaction of 7H-pyrrolo[2,3-d]pyrimidine (1) and aniline (2) led to
formation of the expected product N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (28) and the alcoholysis side product 4-
ethoxy-7H-pyrrolo[2,3-d]pyrimidine (25).

H
N H

N H f SN rN\ N
7S NH, HCI (0-5 eq.) N, L/ | p
| N~
N Y/ + +

EtOH, 80 °C NH o
: oL s
1 2 28 25

Molar percentage, 6 h [%]

Entry HCl [eq.] Conv. 1 h [%]

Product, 28 Side product, 25
1 0 0 69 0
2 0.1 ol >97 0
3 0.5 74 90 10
4 1.0 81 86 14
5 3.0 82 85 15
6 5.0 86 83 17

The conversion in the initial 1 h is reported to compare the initial rates of the experiments. To
illustrate the influence of acid amount on the rate of the side reaction, alcoholysis, the molar
percentages of both the desired product 28 and the side product 25 are reported after 6 h.

Without HCI, no conversion was observed within 1 h (Entry 1, Table 2.2). However, after 6 h,
a molar percentage of 69% of the desired product 28 was observed, mainly explained by HCI
being the byproduct of the reaction.1®® The initial conversion was significantly higher when
adding 0.1 eq. HCI, reaching 51% after 1 h (Entry 2, Table 2.2). In this experiment, the starting
materials were fully converted after 6 h and no side product 25 was observed. A significant
increase in conversion and formation of the side product was observed when adding more than
0.1 eqg. HCI. With 0.5 eqg. HCI, 74% conversion was observed after 1 h, and after 6 h the molar
percentages of the compounds 28 and 25 were 90% and 10%, respectively (Entry 3, Table 2.2).
Increased amounts of 25 was observed when adding 1 eq. HCI, reaching 14% after 6 h (Entry
4, Table 2.2). In this experiment, the conversion also increased, with 81% after 1 h. Comparable
results were observed when adding 3.0 eq. HCI (Entry 5, Table 2.2). The highest conversion
was observed when adding 5.0 eq. HCI (Entry 6, Table 2.2). Within 1 h, the conversion was
86% and after 6 h the molar percentages of 28 and 25 was 83% and 17%, respectively.
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2 Results and Discussion

The increased molar percentage of compound 25 can be attributed to aniline 2 being a weaker
nucleophile under acidic conditions due to protonation. In water, aniline 2 has a pKa of 4.58%
and for the conjugate acid of EtOH, the ethyl oxonium ion, the pKa is -2.3.1° Even though these
experiments are conducted in EtOH and not H20, aniline 2 will still protonate first under these

acidic conditions. Consequently, it is rendered a weaker nucleophile which allows alcoholysis
with EtOH as the nucleophile instead.

Alcoholysis was identified as the main competing side reaction, however, it was observed that
the side product 25 was reacting with aniline 2 to give the desired product 28. This observation
was made from *H-NMR analysis, and the molar percentage of compound 25 was highest at 2
h and decreased in the following 3-6 h. A 3D surface plot based on the experiments from Table

2.2 illustrates this trend (Figure 2.3). See Listing O.1 in Appendix O for details.
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Figure 2.3: 3D-plot of side product profile, 25 from alcoholysis with EtOH, in acid catalyzed amination to pyrrolopyrimidine
1. The plot consists of molar percentage of 25, equivalents of the catalyst HCI and reaction time.

A suggested mechanism is presented in Scheme 2.4 where EtOH attacks compound 1 via SnAr
with chlorine as the leaving group, followed by another SnAr where EtOH is the leaving group
and aniline 2 is the nucleophile.
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Scheme 2.4: Suggested mechanism of alcoholysis of the starting material 1, followed by SnAr between the side product 25
and aniline 2 with ethanol as the leaving group to form the desired product 28.

2.2.2 Effect of solvent type and temperature

Next, the effect of different solvent types was investigated in the model reaction. Five different
protic solvents have been employed, namely H20, MeOH, EtOH, i-PrOH and t-BuOH. All
reactions were run with 0.1 eq. HCI and observed by *H-NMR and TLC for 22 h. The reactions
were run at 60 °C due to the lower boiling point of MeOH (bp. 64 °C*?9). All calculated molar
percentage of 28 at different reaction times are outlined in Figure 2.4.
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Figure 2.4: Molar percentage of product 28 at different reaction times in different solvents: H20 (orange), MeOH (red),
EtOH (blue), i-PrOH (yellow), t-BuOH (green). All reactions were run at 60 °C.
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2 Results and Discussion

Employing H20 and EtOH lead to full conversion of 28 after 22 h. With MeHO the molar
percentage of 28 after 22 h was 95% due to solvolysis of the starting material, leading to a 5%
formation of 4-methoxy-7H-pyrrolo[2,3-d]pyrimidine (26). Although the starting materials

were not fully converted with i-PrOH and t-BuOH, no side product was observed.

Solvents such as alcohols have the potential to act as nucleophiles when the nucleophilicity of
the anilines are sufficiently reduced, due to factors such as hydrogen bonding with the solvent
or protonation of the aniline.!® Generally, within the initial 3-6 h, no side product from
solvolysis with MeOH were detected. The side product was being formed after 6 h, which can
be attributed to generation of HCI during the reaction, leading to protonation of the aniline and
eventually permitting solvolysis of the starting material 1. MeOH is a slightly stronger
nucleophile than EtOH?! and H20 is a weaker nucleophile compared to the two*?* 122, which
can explain why only solvolysis by MeOH was observed. Additionally, MeOH is a better
hydrogen bond donor than EtOH which is one factor that will decrease the reaction rate. 1%
There are also strong hydrogen bonding interactions between aniline and MeOH which further
reduces the reactivity of the aniline.1% 123 Solvolysis of 1 was not observed with i-PrOH or t-

BuOH, as they are weaker nucleophiles compared to the smaller alcohols due to steric effects.

The variation in the pKa of anilines in different solvents may explain why there was no
observation of hydrolysis in H20. Rossini et al.*® have provided calculated pKa-values of
aniline 2 in various solvents. In MeOH the pKa was reported 6.05 whereas in H20 it was 4.58.%
The protonation of aniline in MeOH occurs at a higher pH than in H20, which could imply that
the aniline behaves as a weaker nucleophile in the reaction with MeOH. Furthermore, due to
the lower pKa of aniline 2 in H20, the aniline retains its nucleophilicity for a longer time during
the reaction, which could explain the absence of the hydrolysis side product. The higher pKa of
aniline 2 in MeOH could explain the presence of alcoholysis. Likewise, the basicity of
pyrrolopyrimidine 1 will also vary in the different solvents. Further, hydrogen bonding in the

different alcohols®?* 1% and reactivity of the alcohols'?® can influence the reactivity.

The hydrogen bonding of the different solvents varies. H20 has the most hydrogen bonds per
molecule followed by methanol and then ethanol.*?* The number of branched methyl groups,
such as in i-PrOH and t-BuOH, decreases the intermolecular hydrogen bonding.!?®® The

presence of hydrogen bonds might help dissolution of the starting materials 1 and 2, which can
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2 Results and Discussion

explain the decreasing conversion as the alkyl portion of the solvent gets bigger. Also, the
density of the liquid solvents decreases with increased bulk of the alkyl portion.*?> Additionally,

HCI can also form hydrogen bonds with the solvents.

Another competing side reaction is the chlorination of the alcohols (Scheme 2.5).1%6 The
chlorination side product and the ether formed are generally low boiling compounds and would
not be detected with the analyses performed in these experiments. However, as HCI is being
consumed in this side reaction, the conversion to the desired product 28 may decrease as was

observed in the initial experiment in EtOH that was run without acid (Section 2.2.1).

3R-OH + HCl —= R-Cl+ ROR + 2H,0
R = Me, Et, ...

Scheme 2.5: Chlorination of alcohol derivates leads to the chlorinated product as well as ether and H20.1%

Upon comparing the polarity of the solvents employed, a clear trend emerged where the more
polar solvents resulted in higher conversion rates. This observation was consistent with the
theory that a greater polarity in the solvent enhances the stabilization of the Meisenheimer
complex.% In this thesis, only polar protic solvents were utilized. Previous experiments by our
research group using polar aprotic solvents gave moderate conversion rates, one of the solvents
tested was MeCN. The precipitation of the protonated product 28 in MeCN during the reaction
hindered effective stirring. One possible solution to the stirring difficulties would be to employ
a more diluted reaction mixture, although this would counteract the goal of developing a more
sustainable method. It is worth noting that also with employment of the aprotic solvents, higher
conversions were observed when increasing the polarity, which are attributed to the stabilizing

of the Meisenheimer complex.1%

The temperature effect was also investigated by comparing the model reaction at 80 °C and
60 °C (Figure 2.5).
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Figure 2.5: Temperature effect on the model reaction: 60 °C and 80 °C.

The reaction proceeded faster in 80 °C than in 60 °C. After 1 h, the reaction in 80 °C had reached
67% conversion whereas the reaction in 60 °C reached 20%. This is explained by Arrhenius
equation (Equation 2), which implies that the rate of a reaction is dependent on activation

energy and temperature.t?’
E, .
k=A-eRT Equation 2

Considering Equation 2, decreasing the temperature will result in lower conversions and vice
versa. With Hz20 as the solvent, the reaction could be run at reflux temperature, 100 °C. This
was not tested as one goal was to develop a more sustainable procedure and increasing the
temperature by 20 °C requires a lot of energy on an industrial scale. There are also reports of
decomposition of pyrrolopyrimidines at temperatures exceeding 100 °C? and under similar
conditions.'?® The decomposition stems from a type of Dimroth rearrangement, as it comprises
cleavage between a ring nitrogen atom and an adjacent sp? carbon (Scheme 2.6).12° Water
attacks as the nitrogen is protonated leading to a ring-opening reaction followed by nucleophilic
attack of the amine moiety on C-4 with H20 as the leaving group, making a ring-closing
reaction (path a, Scheme 2.6). Another alternative is tautomerization followed by nucleophilic
attack and dehydration (path b, Scheme 2.6). The rearranged side product has a free amine

group and a new pyrrole ring.
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Scheme 2.6: One type of Dimroth rearrangement of 4-amino substituted pyrrolopyrimidine 1 with cleavage between a
nitrogen atom and the adjacent sp? carbon.?® 12° Path a: Nucleophilic attack by nitrogen with H20 as the leaving group. Path
b: tautomerization to aldehyde followed by nucleophilic attack by nitrogen and dehydration.

2.2.3 Effect of acid amount in water

Several procedures of acid catalyzed amination on 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (1)
described in the literature employs dropwise amounts of HCI.1% 242881 Hence, it was interesting
to study the effect of acid amount in the model reaction. All reactions were carried out in H20,
as the effect of acid in EtOH was already established in the initial experiments (Section 2.2.1)
and H20 was considered the most suitable solvent. One side product from hydrolysis, 7H-
pyrrolo[2,3-d]pyrimidin-4-ol (27), was identified by comparing *H-NMR spectra with the
commercially available compound. A proposed mechanism of the hydrolysis is presented in

Scheme 2.7 based on the mechanism provided by Guo et al..*%®

H H H,0 H
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Scheme 2.7: Proposed mechanism for the hydrolysis of compound 1, starting with the protonated pyrrolopyrimidine (1-H*)
leading to the formation of the side product 7H-pyrrolo[2,3-d]pyrimidin-4-ol 27.

Six experiments with different amounts of HCI were conducted for 22 h at 80 °C (Table 2.3).
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Table 2.3: Different amounts of HCI in the model reaction with H20. Molar percentage of product 28 at 20 minutes and 22 h
are displayed as well as molar percentage of the side product 27 at 22 h.

H
( NH, HCI (0-1 eq.) (/ Y, (N\ N
oo : ey
H,0, 80°C NH
@ oH
1 28 27

Molar percentage [%]

Entry HCI [eq.]
28 (20 min) 28 (22 h) 27 (22 h)
1 0 1 90 0
2 0.1 23 > 97 0
3 0.2 31 > 97 1
4 0.5 48 > 97 2
5 0.8 58 > 97 1
6 1 54 97 3

The molar percentage of 28 was only 1% after 20 minutes when adding 0 eq. HCI (Entry 1,
Table 2.3), but reached 90% conversion after 22 h. This was the lowest conversion observed
but proves that the reaction also proceeds without acid. Since HCI is the byproduct of the
reaction!®®, as previously noted (Chapter 1.4.1, Scheme 1.6), it leads to an increasing activation
of the pyrrolopyrimidine 1 allowing the reaction to proceed. When adding 0.1-0.8 eqg. HCI
(Entry 2-5, Table 2.3) the molar percentage of 28 after 20 minutes was increasingly higher, and
full conversion to the desired product was reached after 22 h. This suggests that the
pyrrolopyrimidine 1 can be activated towards SnAr with only small amounts of HCI which will
kick-start the reaction. However, a marginal decrease in conversion was observed upon addition
of 1 eq. HCI (Entry 6, Table 2.3). This result deviates from the expected trend and could
possibly be attributed to saturation of the reaction system. As HCI is generated during the
reaction!®®, the resulting lowering of pH may lead to protonation of the aniline, rendering it as
a less effective nucleophile as explained in the suggested pathway in Scheme 2.2. Also, when
increasing the acidity of the reaction, higher molar percentages of the side product 27 was
observed. With H20 as the solvent, a maximum of 3% side product 27 was observed by 'H-

NMR (Entry 6, Table 2.3). Adding more than 1 eq. HCl is likely to increase the conversion to
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2 Results and Discussion

the side product 27, as already observed for alcoholysis to 25 in EtOH (Section 2.2.1), however
hydrolysis seems to be a much slower reaction than alcoholysis under these conditions.

Solubility of the starting materials was another important consideration. Outlined in Figure 2.6

are all calculated molar percentages of 28 at different reaction times from 1-6 h based on the
experiments in Table 2.3.
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Figure 2.6: Plot of molar percentage of compound 28 against reaction time in different amounts of HCI added: 1 eq. (blue);
0.8 eq. (green); 0.5 eq. (purple); 0.2 eq. (orange); 0.1 (yellow); 0 eq. (black).

For reactions with 1 eqg. and 0.8 eq. HCI, the substrates were completely dissolved when the
reaction temperature reached 80 °C. In contrast, when adding 0.1-0.5 eg. HCI the initial
conversion was lower due to incomplete dissolution of the starting materials. Comparably high
conversions were achieved after some time, from 2 h to 3 h (Figure 2.6), when the reaction
mixtures were fully dissolved. This was not the case for the reaction with 0 eq. HCI, which
reached full dissolution between 9-22 h. These results suggest that higher amounts of acid
results in faster solvation and hence higher conversion rates initially, whereas lower acid
amounts require more time for complete dissolution but ultimately achieves similar conversion
levels. Therefore, further test reactions were carried out in 0.1 eq. HCI.
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The reaction mixture, consisting of the starting materials 1 and 2 and the product 28, can capture
acid through protonation, giving the reaction mixture a buffer capacity. When adding 0.1 eq.
HCI to H20 in this procedure, the calculated pH value of the reaction mixture without
considering the starting materials would be 1.87. The buffer capacity of the system was
demonstrated by measuring the pH of the reaction with 0.1 eq. HCI. At the starting time of the
reaction, the pH was measured 4.72. After 3 h, the pH had decreased to 2.23, and after 22 h the
pH had further decreased to 1.97.

The utilization of H20 and a small quantity of HCI in this procedure represents a more
environmentally sustainable approach compared to previous reports that employ various
alcohols as solvents along with dropwise additions of HCI and up to three equivalents of aniline.
The current procedure has enhanced sustainability, as evidenced by comparable reaction times

and conversions.

The model reaction was conducted on a 500 mg scale, which gave an excellent yield of 91%
(see details in Section 2.4 later). This successful reaction served as the basis for subsequent
reactions in a substrate scope study, where it was a variety of substrates were used to observe

potential strengths and limitations of the method.
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2.3 Substrate scope

The substrate scope study consisted of nineteen different anilines, two benzylic amines, one
aliphatic amine and one cyclic amine. The test reactions were run with Hz0 as the solvent at
80 °C with 0.1 eg. HCI, at a 100 mg scale with equimolar amounts of the starting materials.
Molar percentages and conversions have been calculated from *H-NMR. For the desired
products, H-2 resonated in the range 8.15-8.29 ppm which integral were compared with that of
H-2 on the starting material 1 at 8.56 ppm. Some substrates gave extremely poor to no yields,
in which isolation and elucidation of the compounds were not possible. Molar percentages of
these compounds have been calculated based on the chemical shifts observed in the H-2 range
of 8.15-8.29, which did not correspond to any identified side products.

2.3.1 Aniline scope

By examining both electron-rich and electron-deficient anilines, the aim was to identify the
essential characteristics required for anilines to successfully execute a nucleophilic attack on 1
under acidic conditions. The test reactions were all sampled at specific intervals, namely 1 h,
3h,6h,9h,and 22 h. Performing a work-up was essential for the identification and elucidation
of the final product structures, however, due to the comprehensive sampling, the yields were

not expected to be excellent.

Table 2.4 provides an overview of all experiments, primarily sorted by pKa-values and
substituent effects. Outlined are the substitution pattern of the aniline (R), followed by the initial
conversion achieved after 1 h. The total reaction time and the molar percentage of the desired
product at that specific time are also reported. Furthermore, one side product 27 from hydrolysis
was observed during these experiments, and its molar percentages at the total reaction time is

reported.
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Table 2.4: Test reactions at 100 mg scale with 19 different anilines. The conversion after 1 h is outlined for each reaction, as
well as the time the reaction was stopped or reached full conversion and molar percentages of the desired product and the
side product 27 at that specific time. Yields are also included.

N, H
N T N N
7S N o NH2 HCI (0.1 eq.) N, s 7S N
/) + - T /
NF | X H,0, 80°C «NH NF
cl R | OH
1 2-20 X, 2846 27
_ Side )
Conv.1 Reaction Product Yield Product
Entry R ) product 27
h [%] time [h] [%] @ [%] no.
[%] @

1 H 67 6 > 97 0 91°b 28
2 2,3,4,5,6-F 0 22 3 15 0 40
3 0-CF3, p-NO2 0 22 0 15 0 31
4 0-NO2 0 22 5 17 traces 30
5 p-NO2 18 9 > 97 2 88" 29
6 2,6-i-Pr 0 22 0 17 0 45
7 2,6-Cl 0 22 0 17 0 44
8 2,4,5-Cl 0 22 15 12 traces 34
9 2,4-Cl 19 22 94 3 37 33
10 m-Cl 80 6 > 97 0 68 32
11 3-F, 4-Br 84 3 > 97 0 57 46
12 m-ethyne 81 6 > 97 0 59 38
13 p-F 75 6 > 97 0 56 35
14 N-Me, p-F 16 22 94 1 54 36
15 m-OBn 86 6 > 97 0 58 42
16 p-OEt 76 9 > 97 0 94 b 43
17 3,4-methylenedioxy 74 22 97 3 58 41
18 0-OH 46 22 94 2 59 39
19 p-butyl 66 9 > 97 0 48 37

2 Calculated molar percentages at “Reaction time”

b Yield achieved on a 500 mg scale reaction (see Section 2.4 later)
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The model reaction with aniline 2 gave 67% conversion to the desired product 28 after 1 h
(Entry 1, Table 2.4). This reaction was fully converted within 6 h and gave no side products.
The yield of 91% was achieved from a 500 mg scale reaction, as already mentioned. Due to the
absence of any substitutions on the aniline 2, this test reaction can be considered as the reference

reaction in this aniline scope study.

Among the electron deficient anilines investigated, 2,3,4,5,6-pentafluoroaniline (14) exhibited
the lowest pKa value of -0.28. In the initial 1 h of the reaction, no desired product was observed,
and 3% of the desired product was detected after 22 h (Entry 2, Table 2.4). The primary
explanation for the low conversion is the electron deficiency, however, steric effects may also

contribute to some degree as both o-positions are occupied by fluorine atoms.

Similar trends were observed with other electron deficient anilines, such as 4-nitro-2-
(trifluoromethylaniline (5), 2-nitroaniline (4) and 4-nitroaniline (3) (Entries 3-5, Table 2.4).
Aniline 4 and 5 exhibited no reactivity within 1 h, and the conversion was only 0-5% after
22 h. Aniline 3 however, showed a slight increase in conversion, reaching 18% within 1 h.
Aniline 4 has an experimental pKa value of 2.5 whilst aniline 3 has an experimental pKa of 1.02.
One could expect that aniline 4 would achieve higher conversion than aniline 3 considering its
pKa is closer to aniline 2. However, this is not the case and suggests that steric effects can
significantly limit this reaction. When bulky substituents are further removed from the reaction
center, the reactivity increases.**° Thus, the large NO2 group on aniline 4 or the CFs group on
aniline 5, both in o-position, may block the nucleophilic nitrogen from attacking, leading to a
decreased reactivity compared to aniline 3 that has a p-NOz2 group. The molar percentages of

the desired products are reported at specific reaction times in Figure 2.8.
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Figure 2.7: Comparison of the nitroanilines 3, 4 and 5, with molar percentages of the desired products N-(4-nitrophenyl)-7H-
pyrrolo[2,3-d]pyrimidin-4-amine (29, yellow), N-(2-nitrophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (30, blue) and N-(4-
nitro-2-(trifluoromethyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (31, orange), respectively, at different reaction times.

The consequences of steric hindrance were also observed for 2,6-dichloroaniline (18) and 2,6-
diisopropylaniline (19) as they did not react (Entries 6 and 7, Table 2.4). With both o-positions
occupied, the conversion to the desired products decreased significantly, which is explained by
the slower reaction rates of sterically hindered nucleophiles.'3!

For the experiments that reached the lowest conversions in this aniline scope study, i.e. anilines
that were very electron deficient or sterically hindered anilines (Entries 2-4, 6 and 7, Table 2.4),
significant molar percentages of the hydrolysis side product 27 were observed, 15-17%. No
amounts of the side product 27 was observed in the first 9 h of the reactions, implying that
hydrolysis of compound 1 competes slowly with the desired amination due to the very weak
nucleophilicity of H20.13 Under acidic conditions, these electron deficient anilines failed to
react effectively as nucleophiles, which can be attributed to increased activation energy needed
due to the decreased electron density on the nucleophilic nitrogen.**3 To improve the conversion
rates, alternative strategies can be considered, for instance increasing the acidity of the reaction
by adding more acid could enhance the electrophilicity of pyrrolopyrimidine 1. Employing an
organic solvent, such as an alcohol, could also improve the conversion, considering the

solubility issues encountered with H20.
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In addition to the dichloroaniline 18, three chloro-substituted anilines were tested, 2,4,5-
trichloroaniline (8), 2,4-dichloroaniline (7) and 3-chloroaniline (6) (Entries 8-10, Table 2.4).
Aniline 6 was the least electron deficient aniline of the three and reached 80% conversion after
1 hand full conversion after 6 h to the desired product. The initial conversion after 1 h decreased
drastically with aniline 7 which reached 19% after 1 h, but 94% conversion was observed after
22 hto the desired product. The most electron deficient trichloroaniline 8 was unreactive within
1 h and reached 15% conversion to the product. The decreasing reactivity can be explained by
the decreased electron density on nitrogen by the increasing amount of chlorine substituents
(Figure 2.9).
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Figure 2.8: Comparison of three chloro-substituted anilines, 6, 7 and 8, with molar percentages of the desired products N-(3-
chlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (32, orange), N-(2,4-dichlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-
amine (33, grey) and N-(2,4,5-trichlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (34, blue), respectively, at different

reaction times.

The trichloroaniline 8, with pKa 1.09, demonstrated higher reactivity compared to the 2-
nitroaniline 4 (pKa 2.5) and the trifluoromethylaniline 5 (pKa 0.80) even though its pKa value
falls in between the two latter. This can be attributed to the stronger electron-withdrawing
ability of the nitro group in both aniline 4 and 5 compared to the chlorine substituent on 8, as
well as steric effects associated with the larger size of the nitro- and trifluoromethyl group
compared to chlorine. Aniline 5 possesses two strong electron-withdrawing substituents, NO2

and CFs, with the o-trifluoromethyl group potentially hindering the nucleophilic attack.

Including 3-chloroaniline 6, some of the highest conversions were obtained with weakly

deactivated anilines, such as 4-bromo-3-fluoro-aniline (21), 4-fluoro-aniline (9), and 3-ethyne-
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aniline (12). When aniline 21 was employed, 84% conversion to the desired product was
achieved after 1 h and the reaction completed within 3 h (Entry 11, Table 2.4). Aniline 9 and
12 gave molar percentages of 75-81% within 1 h and reached full conversion to the desired
products after 6-9 h (Entries 12 and 13, Table 2.4). These anilines were originally thought to be
less reactive than aniline in the model reaction as electron withdrawing groups reduce the
electron density on the nucleophilic nitrogen, creating weaker nucleophiles.*3® However, that
was not the case here. Aniline 6, 9, 12 and 21 are slightly deactivated with substituents such as
halogens and alkyne and have estimated pKa values in the range of 2.73-4.27 whereas aniline 2
has pKa 4.58 (Section 1.3.1, Table 1.1). Rate of protonation of weakly deactivated anilines in
this pKa range is slower compared to anilines with higher pKa, which can allow higher
conversions. Additionally, the free electron pair is sufficiently available to still react with the
starting material 1 compared to the very electron poor anilines. These observations align with

the suggested pathway as presented in Scheme 2.2 (Section 2).

N-Methyl-4-fluoroaniline (10), structurally similar to the 4-fluoroaniline 9, gave low initial
conversion to the desired product at 16% after 1 h and reached 94% after 22 h (Entry 14, Table
2.4). Despite being sterically hindered by a methyl group on the nitrogen atom, it still exhibited
high conversion as opposed to other sterically hindered anilines in this scope study. This
observation may be attributed to the electron density on the nucleophilic nitrogen, as aniline 10
has only one weakly deactivating fluorine in the p-position, and no strong withdrawing groups
such as NO2 or CFs. The N-methylated fluoroaniline 10 and the non-methylated fluoroaniline
9 are compared in terms of molar percentages to the desired products 35 and 36 and reaction
time in Figure 2.10. The difference in conversion rates may be attributed to the nucleophilicity
and the availability of the lone pair on the nucleophilic nitrogen. Considering solubility, the N-
methyl group will make dissolution of aniline 10 a slower process compared to aniline 9 that

has a hydrogen in the same position.
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Figure 2.9: Comparison of fluoroaniline 9 and 10, molar percentages of the desired products 35 (orange) and 36 (blue)
respectively, is plotted against reaction time.

High conversions were also achieved with the electron rich anilines as expected, employing 3-
benzyloxyaniline (15) and 4-ethoxyaniline (17) (Entries 15 and 16, Table 2.4). After 1 h, 76-
86% conversion was observed, and full conversion was reached within 6-9 h. There was no
observation of the side product 27. Electron donating substituents increases the electron density
on the aniline nitrogen, making them better nucleophiles.3® Also, 2-aminophenol (13) and 3,4-
methyleneduoxyaniline (15) gave high conversion after 22 h, and 94-97 % was observed
(Entries 17 and 18, Table 2.4). A molar percentage of 2-3% of the hydrolysis product 27 were
observed when employing aniline 13 and 15, which was expected due to the reaction taking
more than 9 h to complete. 4-Butyl-aniline (11) gave comparable high conversions to the
desired product and reached full conversion after 9 h despite the aniline being weakly activated
(Entry 19, Table 2.4).

The electron rich anilines without steric hindrance in this scope study had pKa values in the
range of 3.70-5.20 (Section 1.3.1, Table 1.1). Aminophenol 13 has a pKa of 4.78 which would
make it a good candidate for acid catalyzed amination considering its pKa lies in between 3.70-
5.20. However, with an alcohol substituent in o-position, steric effects could account for the
reaction not reaching full conversion within 9 h. The OH-group can impact the nucleophilicity
in blocking the free electron pair on the nitrogen atom and making the nucleophilic site too big
to fit the attack on C-4 in the pyrrolopyrimidine 1. This may be contributing to the 3% molar
percentage of the hydrolysis side product 27. In the reactions with the electron rich anilines

(Entries 15-19, Table 2.4), the side product 27 was only observed if the reactions had not
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reached full conversion at the 9 h mark, indicating again that hydrolysis is a slow competing

reaction.

In this substrate scope, anilines with pKa between 2.73-5.20 gave the highest conversions. The
reaction is thought to follow one of two pathways based on the pKa of the nucleophile (see
Scheme 2.2, Section 2). When assuming the deactivated anilines have pKa value below that of
pyrrolopyrimidine, the latter will protonate first (Scheme 2.8). When pyrrolopyrimidine 1 is
protonated, it is rendered a stronger electrophile due to the positive charge allowing the
deactivated anilines to react effectively even though they are considered weaker nucleophiles

due to the decreased electron density on the nitrogen atom.

H
N
H NN By
NN o NH M V2 s ar N A7
Nlr/ Y/ O/ N~ / + | > NH
> R -2H"+CI- N
cl < Hr | <
1 R

Scheme 2.8: One suggested pathway of the acid catalyzed amination of pyrrolopyrimidin 1, where 1 is rather protonated than
the aniline.

In the case of the electron rich anilines, if assuming they have a higher pKa value than
pyrrolopyrimidine, they are protonated before pyrrolopyrimidine 1 (Scheme 2.9). In contrast to
the electron poor anilines, the electron rich ones are stronger nucleophiles due to the electron
donating substituents that makes the electron density on nitrogen increase. The high
conversions of the electron rich anilines can therefore be attributed to the stronger
nucleophilicity. Even though they are assumed protonated before pyrrolopyrimidine 1 in the
reaction time frame, the unprotonated portion of the substrate will react, pushing the

equilibrium of protonation towards the unprotonated form.

H
N
SN NN o s NN SwAr N A’
N'%v\/) - L R NH
R cl B - 2H* + CI- |\
cl X
1 R

Scheme 2.9: A second suggested pathway of the acid catalyzed amination of pyrrolopyrimidin 1, where the aniline is rather
protonated than pyrrolopyrimidine 1.
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Anilines with pKa values below the optimal range of 2.73-5.20, generally reacted poorly. No
anilines with pKa higher than 5.20 were tested. The reactivity was affected by steric effects and
solubility. As steric effects increased, the conversion decreased significantly. This was
especially observed for the electron deficient anilines, and the o-substitution of the electron rich
anilines did not affect the reactivity as much. Since the reaction is conducted in H20, some
reaction mixtures also had difficulty in achieving complete dissolution, and some anilines
precipitated during the reaction. This had especially an impact on the initial reaction rates, and
the accuracy of conversion values after 1 h may be compromised. Additionally, sampling from
a heterogeneous reaction mixture could introduce inaccurate values, although no
inconsistencies have been observed, such as negative changes in molar percentages of starting
materials, products, or side products. Several test reactions could have been carried out in
different solvents to investigate how solubility was affecting the reaction rates. Some of the
substrates that did not react could have achieved higher conversion in organic solvents, such as
small alcohols (Section 2.2.2), as this would provide a homogenous reaction mixture which

eventually could facilitate the reaction.%!

2.3.2 Amine scope

In an amine scope study, the reactivity of four amines was observed in the optimized reaction
system with H20. Two benzylic amines, 1-phenylethane-1-amine (21) and 2,2,2-trifluoro-1-
phenylethane-1-amine (22), were chosen as substrates based on their pKa-values. Amine 21
have a pKa of 9.45%* and amine 22 was expected to have a lower pKa due to the electron
withdrawing CFs-group although no pKa-value was found for the compound. One cyclic amine,
morpholine (23), and one primary, cyclohexanemethylamine (24) was also included in the
scope as they have been successfully employed in a literature method.* In addition to the scope
study, the conversion of these two amines were compared through three different methods, of
which one was a literature method.!* This section comprises the results from the amine scope

study and the comparison of the different methods.

Outlined in Table 2.5 are experiments with the four different amines, 21-24, in the optimized

procedure with H20.
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Table 2.5: Test reactions with four different amines (21-24). The conversion after 1 h is reported as well as total reaction
time and molar percentages of product and side products after 22 h.

H N\ H
N N ﬁ
N A/ o+ Nuc

H,0, 80 °C Nuc
Cl
1 21-24 47-50
Molar percentage, 22 h [%]
Entry Nuc Conv. 1 h [%]
Product  Side product
NH,
1 ©)\ 0 13 0
NH,
2 Ej)\CF3 0 6 172
H
N
3 [ ] 46 61 0
o

For the reaction with 1-phenylethylamine (21), the conversion was 13% after 22 h (Entry 1,
Table 2.5). This amine has an experimental pKa of 9.45'%*, which may lead to protonation of
the amine in acidic conditions, hence the low conversion. It was anticipated that 2,2,2-
trifluorophenylethylamine (22) would give higher conversion compared to 22, due to the
expectedly lower pKa attributed to the electron withdrawing CFs-group. This was not the case,
as amination with 23 only led to 6% conversion after 22 h (Entry 2, Table 2.5). Additionally,
three unknown side products were observed in the reaction with 23. The unexpected low
conversions may be due to incomplete dissolution in H20. Also, benzylic amines have been
employed in acid catalyzed amination to pyrimidine previously, but no reaction was
observed.1%4 In one procedure, acetonitrile was employed as the solvent with a zinc-based Lewis
acid catalyst, and it was hypothesized that binding of the benzylic amine to the catalyst hindered
the reaction.'%* Although zinc was not employed under these experiments, it might suggest that
benzylic amines are not very reactive in acid catalyzed amination. This can be supported by

Jesumoroti et al.'* where benzylic amines gave low yields (34-48%).
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Morpholine (23) gave 46% conversion to the desired product in 1 h and 61% conversion was
achieved after 22 h (Entry 3, Table 2.5). Despite low conversion, no side product from
hydrolysis was observed. When employing the primary amine 24, 7% conversion to the desired
product was achieved after 1 h and 24% conversion was observed after 22 h (Entry 4, Table
2.5). The cyclic amine 23 gave higher conversion than the primary amine 24, which can be
explained by their pKa values and their molecular structures. As the primary amine 24 has a
higher pKa of 10.49%%, it will be protonated at an earlier stage compared to the cyclic amine 23
with pKa 8.49%%, Furthermore, cyclic amines tend to be more nucleophilic than acyclic ones.'%
In this case, the alkyl groups of amine 23 are pinned back and locked in position, giving it a

beneficial steric effect which can facilitate the nucleophilic attack.%*

Next, the cyclic amine 23 and the primary amine 24 were employed in a literature procedure to
compare conversion rates to the developed method with H20. These two amines were chosen
as Jesumoroti et al.*' have reported excellent yields when employing them. In total, three
different methods were tested. Hereby called method A is the optimized procedure developed
in this thesis, with H20 in a 0.26 mmol/mL concentration with 1 eg. amine and 0.1 eq. HCI.
The two test reactions with amine 23 and 24 under these conditions are already reported in
Table 2.5 (Entry 3 and 4, Table 2.5), but are reported again in Table 2.6 (Entry 1 and 4, Table
2.6) to ease the comparison between the different methods. In the procedure from Jesumoroti
et al.l!, called method B, i-PrOH is employed as the solvent in a 1.04 mmol/mL concentration
with 3 eq. amine and 3 drops of HCI per 5 mL solvent. One experiment was conducted with a
method similar to method A, employing H20 with an increased concentration of the starting
materials, 0.52 mmol/mL, with 3 eq. amine and 0.1 eq. HCI, hereby called method A*. The
results from the different methods are presented in Table 2.6.
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Table 2.6: Morpholine (23) and cyclohexylamine (24) employed in different methods. Conversion after 1 h is reported as
well as total reaction time and conversion to the desired products at that time. Method A: H20 (0.26 mmol/mL), 1 eq. amine,
0.1 eg. HCI. Method A*: H20 (0.52 mmol/mL), 3 eqg. amine, 0.1 eq. HCI. Method B: i-PrOH (1.04 mmol/mL), 3 eq. amine, 3

drops HCI per 5 mL.

H N H
N N
oS N HCI (cat.) Mo
N/ + Nuc N A
H,O or i-PrOH, 80 °C

cl Nuc
1 23-24 49-50
Entry Nuc Method Conv. 1 h [%] Reaction time [h] Conv. [%]
N
1 A 46 22 61
[
N
2 B 70 6 >97
[
N
3 [ j A* 85 6 >97
@)
4 @NHZ A 7 22 24
5 gNHZ B 16 22 93

Morpholine (24) was employed in three different experiments. In method A with 1 eg. amine,
46% conversion to the desired product was observed after 1 h (Entry 1, Table 2.6). In method
B, 85% conversion was observed after 1 h (Entry 2, Table 2.6). This conversion was
significantly higher compared to method A and can be attributed to the difference in
concentration of reaction mixtures.'*® One additional experiment with method A* was
conducted, which resulted in 85% conversion after 1 h (Entry 3, Table 2.6) and exceeded what
was observed for both preceding experiments. Employing an excess amount amine will give an
increased buffer capacity in the reaction system and a higher amount of the amine can remain
unprotonated due to the excess amounts. This means that Method A has a lower buffer capacity

than method B and A* because the amine is added in equimolar amounts. Molar percentages
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of the desired product are plotted against reaction time for these three experiments in Figure
2.11.
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Figure 2.10: Comparison of the three different methods, Method A (orange), A* (green) and B (yellow), on conversion to
compound 49 from morpholine 24.

Solvent polarity will, as mentioned, stabilize the Meisenheimer complex!®, and the increased
concentration of the amine increases both reaction rate'?” (Section 2.2.2, Equation 2) and buffer
capacity of the reaction system. Morpholine 24, with a pKa 8.49'%, can act as a buffer in the
reaction system, capturing the generated HCI as observed in the model reaction (Section 2.2.3).
With only 1 eg. of amine 24 in method A, the amine captures HCI, but has lower buffer capacity
compared to when it is added in excess. The reduced buffer capacity renders the amine
protonated and unreactive at an earlier stage in the reaction time frame compared to method B
and method A* in which 3 eq. amine is employed. This might explain why the conversion in
method A plateaus at 61% conversion (Figure 2.11). In method B, the concentration of the
starting materials is 1.04 mmol/mL, and in method A* it is 0.52 mmol/mL. Considering the two
experiments employ the same equivalents of amine, H20 is a more suitable solvent than i-PrOH
in this reaction. These results emphasize the positive effects of increased solvent polarity and
increased reaction concentration.

Two reactions were conducted with the primary amine cyclohexanemethylamine (24) using
method A and method B (Entry 4-5, Table 2.6). After 1 h, 7% conversion was observed and
24% was achieved after 22 h with method A (Entry 4, Table 2.6). With method B, a slightly
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higher conversion, 17%, was observed after 1 h, and the reaction reached 93% conversion after
22 h (Entry 4, Table 2.6). The amine 24 has a predicted pKa 10.49, and the difference in
conversion can again be explained by the concentration of the starting materials and the buffer
capacity of the reaction systems. Incomplete dissolution of the starting materials in H20 could
also have influenced the conversion, as precipitate was observed in the reaction mixture
throughout the whole reaction time. Molar percentages of product 50 from two experiments

with method A and B are plotted against reaction time in Figure 2.12.
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Figure 2.11: Employing the primary amine 24 in Method A and B, molar percentage of the desired product 50 is plotted
against reaction time.

The results from the different methods might suggest that the benzylic amines could be more
reactive in a more concentrated reaction mixture. Employing organic solvents with the benzylic
amines could also enhance conversion. The comparisons of the three different methods might
also give insights on possible strategies to tackle reactivity-challenges related to acid catalyzed
amination of pyrrolopyrimidines.
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2.3.3 Substrate comparison

The results from the substrate scope study are outlined in Figure 2.13, where the initial
conversion after 1 h is plotted against pKa-values in the optimized reaction conditions. A trend
line of moving average is also displayed. The 2-nitroaniline 4, 2-trifluoromethyl nitroaniline 5,
o-hydroxy aniline 13 and dichloroaniline 19 gave low conversions due to steric effects and are
marked as red triangles in the plot. These values in red are not included in the moving average
line as they were defined as outliers when compared to the other values. The unsubstituted

aniline 2 is marked in green for reference.
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Figure 2.12: Initial conversion is plotted against reaction time for the test reactions, and moving average line is of 19 amines,
thereof 18 anilines and 1 primary amine. o-Substituted anilines (red) are shown but not included in the moving average and
aniline 2 (green) is also marked for reference.

Considering the substrates marked as black dots, anilines with pKa below 2.5 gave the lowest
initial conversions. The highest initial conversions were observed for anilines within the pKa
range of 2.73-5.20. No anilines with pKa above this range were tested in the substrate scope
study. However, four amines, the benzylic amines 21 and 22, the cyclic amine 23 and the
primary amine 24 were tested, but the initial conversions were not as high as observed for the

anilines. This may emphasize the suitability of anilines in acid catalyzed amination of 1 under
these conditions.

The pKa values for the N-methylated fluoroaniline 10, the diisopropylaniline 19, and the

benzylic trifluoroamine 22 were not available in the existing literature, and no established
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equations were found for their estimation, consequently, they are not included in this plot.
Aniline 10 may have a slightly higher pKa value than the non-methylated 4-fluoroaniline 9
based on that N-methylaniline demonstrates a slightly higher pKa compared to aniline 2. Aniline
9 has a reported pKa value of 4.65 and aniline 10 would therefore be expected to fall within an
intermediate range on the plot but not aligning with the experimental findings as the initial
conversion was only 16%. Experimental data for the aniline 20 is omitted due to the challenges
associated with estimating its pKa value using Equation 1 (Section 1.3.1), primarily attributable
to the presence of o-substitution. Moreover, the pKa value for the benzylic amine 22 has not
been reported in the literature. A commercial website! offering the compound suggests a
predicted pKa value of 6.15+10; however, given the absence of a peer reviewed source, this

prediction is not considered in the present plot.

In addition to the pKa values, there are other factors to consider when interpreting this plot,
such as the solubility of the starting materials. The different rates of dissolution of the different
substrates inevitably impacted the initial conversion and employing an alcoholic solvent could
be beneficial. Nevertheless, while quantifying and comparing all substrates in one manner was
challenging, this plot effectively displays the reactivity of each aniline and some amines when
employed in this specific procedure, giving insights to which substrates are suitable for acid-

catalyzed amination of compound 1 in H20, and which are not.

2.4 Amination on 500 mg scale

Following the substrate scope, eight anilines were employed on a 500 mg scale to verify if the
optimized procedure was suited on a larger scale. Some of the best anilines from the scope
study were chosen for these experiments. All syntheses were run with the optimal conditions
found in the model reaction. The aniline was added in slight excess, 1.1 eq., to ease the product
purification. The aminated pyrrolopyrimidine products were polar and certain structures had
long retention time. The Rr value of the anilines differed more from the products compared to

pyrrolopyrimidine 1, and by adding 0.1 eq. more aniline, mixed fractions were avoided.

1 https://www.chembk.com/en/chem/2,2,2-Trifluor-1-phenylethanamin
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2 Results and Discussion

Presented in Table 2.7 are experiments with the different anilines on 500 mg scale with
corresponding yields and product number. The yield of five compounds had previously been

reported and are also presented with respective authors and reaction scale.

Table 2.7: Anilines characterized by R-group employed in 500 mg scale under acidic conditions to yield desired products.

H
H No N
Nap-N NH 1
7S N 2 HCI (0.1 eq.) N_ A/
N/ + | .
X H,0, 80 °C NH
R X
Cl |
R
Entry R-group Yield [%] Lit. yield [%] Product nr.
1 H 91 842 28
2 H 70 " "
3 p-NO:2 88 31° 29
4 m-Cl 81 952 32
5 p-butyl 56 - 37
6 m-ethyne 85 - 38
7 3,4-methylenedioxy 85 15°¢ 41
8 p-OEt 91 20° 43
9 4-Br, 3-F 72 - 46

3 Kurup et al.?* (300 mg scale)
b Jesumoroti et al.** (200 mg scale)

° Nozal et al.** (unknown scale)

Aniline 2 was employed in two experiments on 500 mg scale which resulted in 91% and 70%
yield (Entries 1 and 2, Table 2.7). The neutralization of the reaction mixture was the only
methodic difference between the two syntheses. In the experiment that gave the highest yield
(Entry 1, Table 2.7), a saturated aqueous solution of K2COs was used to neutralize the reaction
mixture, which had a pH of 11 and gave 687 mg crude product. In the experiment that gave the
lower yield (Entry 2, Table 2.7), a saturated aqueous solution of NaHCOs3 with pH of 8-9 was
used instead. This gave a crude product weight of 543 mg, which was significantly lower
compared to the first crude weight. The solution of NaHCOs3 with pH 8 may not be basic enough

to deprotonate all the product 28 to its neutral form, whereas the solution of K2COs can

57



2 Results and Discussion

deprotonate it more easily. The highest yield for compound 28 found in the literature was
84%.%4

Both the nitroaniline 3 and chloroaniline 6 gave good yields on 500 mg scale, 88% and 81%
respectively (Entries 3 and 4, Table 2.7). The two anilines employed, 3 and 6, have lower pKa
than aniline 2, and neutralizing with NaHCO3 may be sufficient potentially explaining why
such high yields were obtained. Both products, 29 and 32 have been synthesized before in 31%?*!
and 95%?2 vyield, respectively. The lowest yield of 56% was achieved when employing
butylaniline 11 (Entry 5, Table 2.7). This value was in the same range as for the test reaction,
which gave 48% yield (Table 2.3, Section 2.3.1). Even though the yield in the test reaction was
lower compared to other similar anilines, 52% yield on the preparative scale was lower than
expected. The butylaniline 11 has a higher pKa than aniline 2 and neutralization with NaHCO3
might not suffice in this experiment. Instead, K2COz3 could be employed. During work-up and
purification, no side product was observed, and all steps were carefully monitored to make sure
no product was lost. The weight of the crude product was 751 mg, while only 488 mg of the
purified product was isolated with flash chromatography, indicating that the product stuck to

the silica gel in the column.

Satisfactory  yields were achieved when employing the ethyneaniline 12,
methylenedioxyaniline 15 and ethoxyaniline 17, ranging from 85-91% (Entries 6-9, Table 2.7).
The methylenedioxy pyrrolopyrimidine 41 and the ethoxy pyrrolopyrimidine 43 had both been
synthesized by Nozal et al.'¥” in 15% and 20% vyield, respectively. The dihalogen aniline 20
was expected to give a high yield considering this aniline gave the second highest conversions
in the substrate scope. However, aniline 20 resulted in 72% yield of the desired compound 46
(Entry 10, Table 2.7). The crude product weighed 884 mg, which was reasonable, indicating
that NaHCO3s might suffice in the neutralization process as aniline 20 possess a lower pKa than
aniline 2. In the purification step, 165 mg was lost which may be attributed to it being stuck on
the column due to the crystalline structure of the purified product. Additionally, the product
had very long retention time and was distributed in 56 fractions. A more suitable purification

method could be recrystallization.

This optimized procedure with H20 generally gave high conversions on the 500 mg scale
reactions. However, some unexpected low yields might imply that each work-up needs fine

tuning. Switching the neutralizing agent from NaHCO3 to K2COs or using recrystallization as
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2 Results and Discussion

the purification step instead of flash chromatography are two solutions that can maximize these
yields. Despite the limitations and potential for improvement in this procedure, several yields
obtained in the 500 mg scale reactions exceed those found in the literature. This highlights the
efficiency of the optimized method. Two values from the literature were comparable to yields
achieved in this project, compound 28 and 32 (Entries 1 and 4, Table 2.7). However, the
procedure provided by Jesumoroti et al.!! is not as sustainable and green compared to this

procedure with H20 since i-PrOH is employed as the solvent and more acid is added.
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3 Structure elucidation

Some of the compounds synthesized in this thesis have not been synthesized before, and 1D
and 2D NMR-spectroscopy as well as HRMS analysis were used to elucidate these structures.
Regarding the compounds that had already been reported in the literature, comparing signals
from H-NMR and *C-NMR spectra was done to confirm the structures. IR-analysis was

performed to characterize vibrational modes.

3.1 Pyrrolopyrimidines

There has previously been reported NMR data for 4-amino-6-aryl substituted
pyrrolopyrimidines in DMSO-ds.%° These data were used in the elucidation of the new
compounds synthesized in this thesis. HMBC couplings typical for pyrrolopyrimidines® are

shown in Figure 3.1.

R N'“>
/

=

Figure 3.1: Pyrrolopyrimidine moiety with typical HMBC couplings.5°

For all NMR samples, DMSO-ds was used as the solvent. Mostly, proton H-5 and H-6 appeared
as doublets in tH-NMR spectrum, but occasionally they appeared as doublet of doublets due to

coupling with H-7 on the nitrogen.

Seven of the isolated aniline-products had not been previously reported. Kurup et al.?* have
previously synthesized N-phenyl-7H-pyrrolo[2,3-d]-pyrimidine-4-amine (28). Chemical shifts
for N-(4-nitrophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (29), N-(3-chlorophenyl)-7H-
pyrrolo[2,3-d]pyrimidin-4-amine (32) and N-(4-fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-
amine (35) were retrieved from Jesumoroti et al.'!, and 2-((7H-pyrrolo[2,3-d]pyrimidin-4-
yl)amino)phenol (39), N-(4-ethoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (43) and N-
(benzo[d][1,3]dioxol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (41) have previously been
synthesized by Nozal et al..*¥
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3 Structure Elucidation

Regarding the amine-products, the spectroscopic data for 4-(7H-pyrrolo[2,3-d]pyrimidin-4-
yl)morpholine (49) and N-(cyclohexylmethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (50) have

been provided by Jesumoroti et al..*

Some products, such as N-(2-nitrophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (30), N-(4-
nitro-2-(trifluoromethyl)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (31), N-(2,4,5-
trichlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (34), N-(perfluorophenyl)-7H-
pyrrolo[2,3-d]pyrimidin-4-amine (40), N-(2,6-dichlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-
amine (44), N-(2,6-diisopropylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (45), N-(1-
phenylethyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (46) and N-(2,2,2-trifluoro-1-phenylethyl)-
7H-pyrrolo[2,3-d]pyrimidin-4-amine (47) were not isolated (see Section 2.3).
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3 Structure Elucidation

3.1.1 Elucidation of compound 33

The structure of compound 33 with assigned shifts from *H-NMR and 3C-NMR, and the
correlation between them are shown in Table 3.1. All spectral data for this compound can be
found in Appendix E.

Table 3.1: NMR signals for compound 33, *H-NMR (400 MHz, DMSO-ds) and 3C-NMR (101 MHz, DMSO-ds), as well as
COSY and HMBC couplings.

1 7
N.s
AN

N
2
i 6
SN/9/
4 5
16

15 NH

14 12
clIinNZi2cl

Position H [ppm] multiplet integral 3C [ppm] COSY HMBC

1 - - - - - -

2 8.15 S 1 1511 - 4,8
3 - - - - - -

4 - - - 151.7 - -

5 6.60 dd 1 99.0 6 4,6,9
6 7.22 dd 1 122.9 5 4,5,9
7 11.76 bs 1 - - 56,9
8 - - - 154.5 - -

9 - - - 103.3 - -
10 9.10 S 1 - - -
11 - - - 136.2 - -
12 - - - 130.5 - -
13 7.70 d 1 129.7 15 12,14
14 - - - 129.8 - -
15 7.45 dd 1 127.9 13,16 11,12
16 7.75 d 1 129.4 15 11,12

The signal at 8.15 ppm was assigned H-2, which was confirmed by long range coupling
(HMBC) to C-4 and C-8. This correlation also accounted for assignment of chemical shifts for
C-2 and C-4, which resonated at similar shifts. Proton H-6 was expected to resonate at a higher
shift than H-5 due to the deshielding effect of the nitrogen N-7.1%8 Hence, the signal at 7.22
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3 Structure Elucidation

ppm was assigned H-6, and 6.60 ppm was assigned H-5, confirmed by HMBC signals. These
two signals appear as doublet of doublets rather than a doublet, which is caused by long range
coupling with H-7 resonating at 11.76 ppm. Assignment of C-8 and C-9 was accomplished by

observation of long-range coupling to H-2 and the pyrrolo protons H-6 and H-5, respectively.

Assignment of shifts in the aniline moiety of the compound was accomplished by analyzing
'H-H coupling constants typical for o, m and p-coupling (Figure 3.2). H-15 and H-16 are
positioned p to each other, and they are correlated with a coupling constant of 8.7 Hz, which is
expected for protons in p-position.’*® Similarly, H-15 couple with H-13 with a coupling

constant of 2.4 Hz, typical for protons in m-position to each other.

H
o
8.7 Hz Y/,
N
[HOY
H NH
Cl Cl

2.4 Hz H

Figure 3.2: COSY coupling (red) between aromatic protons in the amine moiety of compound 32.
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3 Structure Elucidation

3.1.2 Elucidation of compound 36

The structure of compound 36 with assigned shifts from *H-NMR and *C-NMR, and the
correlation between them are shown in Table 3.2. All spectral data for this compound can be

found in Appendix H.

Table 3.2: NMR signals for compound 36, *H-NMR (400 MHz, DMSO-ds) and 3C-NMR (101 MHz, DMSO-ds), as well as
COSY and HMBC couplings.

1 7
H
2WN\8 N
6
SNW):\/)
4 5
13 10
1/4©/N\
12 11
F 15 13

14

Position 'H [ppm] multiplet integral 3C[ppm] COSY HMBC

1 - - - - - -

2 8.27 S 1 151.3 151.3 4,8

3 - - - - - -

4 - - - 156.5 - -

5 4.66 d 1 100.8 6 6,8,9

6 6.99 d 1 121.5 5 58

7 11.61 bs 1 - - 9

8 - - - 151.8 - -

9 - - - 103.3 - -

10 - - - - - -

11 3.50 S 3 39.4 - 4,12

12 - - - 142.5 - -
13/13° 7.43 m 2 130.6 - 12, 14/14°, 15
1414 7.34 m 2 117.0 - 12, 13/13’, 15,

15 - - - 161.3 - -

Assignment of shift in the heterocycle was done as previously described. Long-range
correlation was not observed between H-11 and C-5 or C-6, however, a signal which
corresponded with long-range coupling to C-9 was observed. The methyl group on N-10 was

assigned shift 39.4 ppm for C-11 and 3.50 ppm for H-11 due to the expected low shifts. For
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3 Structure Elucidation

proton H-13/13" and H-14/14’, the shifts were assigned based on the splitting patterns of the
two multiplets in the 3C-NMR spectrum due to the presence of the fluorine atom. C-14/14°
was expected to have a significantly higher coupling constant than C-13/13’, which was the
case as 2Jcr = 22.7 Hz and 3Jcr = 8.4 Hz. Therefore, it was concluded that H-13/13” resonated
at 7.43 ppm and H14/14’ resonated at 7.34 ppm.
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3 Structure Elucidation

3.1.3 Elucidation of compound 37

The structure of compound 37 with assigned shifts from *H-NMR and 3C-NMR, and the
correlation between them are shown in Table 3.3. All spectral data for this compound can be
found in Appendix I.

Table 3.3: NMR signals for compound 37, *H-NMR (400 MHz, DMSO-ds) and 3C-NMR (151 MHz, DMSO-ds), as well as
COSY and HMBC couplings.

gJ

NH 10
18 16
17 15 13 .

Position 'H [ppm] multiplet integral *3C [ppm] COSY HMBC

1 - - - - - -

2 8.24 S 1 151.3 - 8

3 - - - - - -

4 - - - 151.3 - -

5 6.75 dd 1 99.0 6, 7 6,4,9

6 7.20 dd 1 122.4 57 54,9

7 11.70 bs 1 - 6 59

8 - - - 154.1 - -

9 - - - 104.0 - -

10 9.20 S 1 - - 8,9,12/12

11 - - - 138.5 - -
12/12 7.75 d 2 121.0 13/13° 14,13 /13
13/13 7.14 d 2 128.6 12/12’ 11,12/12°,15

14 - - - 136.5 - -

15 2.54 t 2 34.8 16 13/13°, 14, 16, 17

16 1.55 p 2 33.8 15, 16 14, 15,17, 18

17 1.31 h 2 22.2 16, 18 15,18

18 0.90 t 3 14.3 17 16, 17

Assignment of shifts for the pyrrolopyrimidine was done as previously described. Protons in

the aromatic ring H-12/12 and H-13/13” were assigned shifts based on the deshielding effect
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3 Structure Elucidation

of N-10 compared to that of the butyl chain on C-14,%3 concluding that H-12/12’ resonate at
7.75 ppm and H-13/13" at 7.14 ppm. This was confirmed by long-range coupling between C-
12/12 and H-10. For the alkyl chain, shifts were assigned based on splitting pattern and the
expected decrease in chemical shift away from the aromatic ring.
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3 Structure Elucidation

3.1.4 Elucidation of compound 38

The structure of compound 38 with assigned shifts from *H-NMR and 3C-NMR, and the
correlation between them are shown in Table 3.4. All spectral data for this compound can be
found in Appendix J.

Table 3.4: NMR signals for compound 38, *H-NMR (400 MHz, DMSO-ds) and 3C-NMR (101 MHz, DMSO-ds), as well as
COSY and HMBC couplings.

13
17| |

18

Position *H [ppm] multiplet integral *3C [ppm] COSY HMBC

1 - - - - - -
2 8.32 S 1 150.9 - 8

3 - - - - - -

4 - - - 151.4 - -

5 6.82 d 1 99.2 6 4,6,9

6 7.28 d 1 122.9 5 4,5

7 11.81 bs 1 - - 6,9

8 - - - 153.7 - -

9 - - - 104.3 - -

10 9.40 bs 1 - - 6,8,9

11 - - - 141.2 - -

12 8.16 t 1 123.1 14,16 11, 14,15, 17
13 - - - 122.2 - -

14 7.11 dt 1 125.5 12,15 12,15, 16, 17
15 7.34 t 1 129.6 14,16 11,13

16 7.91 ddd 1 120.9 12 11,14

17 - - - 84.3 - -

18 4.15 S 1 80.7 - 13
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3 Structure Elucidation

Assignment of signals in the pyrrolopyrimidine was done as previously described. The ethyne
portion of the compound had the lowest shifts with C-17 resonating at 84.3 ppm and C-18 at
80.7 ppm with H-18 at 4.15 ppm. Long range coupling from HMBC was used to determine H-
15 and H-16, where H-15 had a three-bond correlation with C-13 and H-16 had a three-bond
correlation with C-14. From COSY, a correlation between H-15 and H-14 was observed and
H-14 was assigned the shift 7.11 ppm. H-12 was assigned due to a lack of COSY signals to H-
15.
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3 Structure Elucidation

3.1.5 Elucidation of compound 42

The structure of compound 42 with assigned shifts from *H-NMR and 3C-NMR, and the
correlation between them are shown in Table 3.5. All spectral data for this compound can be
found in Appendix L.

The NMR spectra of compound 42 had overlapping signals which made them difficult to
distinguish, especially long-range correlations. The pyrrolopyrimidine heterocycle was
assigned shifts as previously described. However, H-6 shift, 7.19-7.28 ppm, was overlapping
with signals from H-15 but was assigned due to correlation with C-4, C-5, and C-9. H-15 was
assigned shift within the same multiplet of 7.19-7.28 ppm based on long-range correlation with
C-11, C-12, and C-13. Proton H-5 and H-6 appeared as a doublet of doublets due to coupling
with H-7. The signal at 6.80 ppm had coupling constants of 8.2 Hz and 2.6 Hz indicating that
it is an aromatic proton with adjacent protons in o- and m-position, hence it belonged to H-16.
This was confirmed by long-range coupling to C-12 and C-14 as well as one weak signal

indicating a four-bond-correlation with C-13.
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3 Structure Elucidation

Table 3.5: NMR signals for compound 42, *H-NMR (400 MHz, DMSO-ds) and 3C-NMR (101 MHz, DMSO-ds), as well as

COSY and HMBC couplings.

1 7
> N H
e
N _~5
4 5
16
15 NH 10
11
14 12
13
O 17
18
19 19
20 20
21
Position H [ppm] multiplet integral 3C [ppm] COSY HMBC
1 - - - - - -
2 8.31 S 1 151.2 - 4,8
3 - - - - - -
4 - - - 151.3 - -
5 6.82 dd 1 99.2 6,7 4,6,9
6 7.19-7.28 m 1 122.7 57 4,5,9
7 11.78 bs 1 - 5,6 -
8 - - 153.4 - -
9 - - - 104.3 - -
10 9.28 bs 1 - - 8,9, 12,16
11 - - - 142.2 - -
12 7.80 m 1 107.4 14 11,13
13 - - - 159.1 - -
14 6.68 dd 1 108.5 12,15 12,13, 16
15 7.19-7.28 m 1 129.7 14 11,12, 13
16 7.44-7.52 m 1 113.1 16 14
17 5.12 S 1 69.7 - 13,18,19/19
18 - - - 137.6 - -
19/19° 7.44-7.52 m 2 128.2 in.2 21
20/20° 7.34-7.48 m 2 128.9 in.2 18
21 7.29-7.38 m 1 128.3 in.2 19/19°

& Inconclusive
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3 Structure Elucidation

3.1.6 Elucidation of compound 46

The structure of compound 46 with assigned shifts from *H-NMR and 3C-NMR, and the
correlation between them are shown in Table 3.6. All spectral data for this compound can be

found in Appendix N.

Table 3.6: NMR signals for compound 46, *H-NMR (400 MHz, DMSO-ds) and **C-NMR (101 MHz, DMSO-ds), as well as
COSY and HMBC couplings.

2 ﬁ&l\g H7
o R NH
Brol4N, 12
=
Position 'H[ppm] multiplet integral *3C [ppm] COSY HMBC
1 - - - - - -
2 8.37 S 1 150.5 - 4,8,9
3 - - - - - -
4 - - - 152.9 - -
5 6.82 dd 1 98.6 6,7 6,8,9
6 7.31 dd 1 122.9 57 58,9
7 11.89 bs 1 - 56 -
8 - - - 151.0 - -
9 - - - 104.1 - -
10 9.61 S 1 - - 4,9,12,16
11 - - - 141.9 - -
12 8.27 m 1 107.5 15,16 11, 13,14,16
13 - - - 158.0 - -
14 - - - 98.6 - -
15 7.58 - 7.68 m 1 132.8 12 11, 12, 13,14
16 7.58 - 7.68 m 1 116.9 12 11,12,13,14

Chemical shifts in the pyrrolopyrimidine portion of the compound were assigned as previously

described. Next, the typical coupling constants between C and F nuclei was used to assign 13C
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3 Structure Elucidation

shifts in the phenyl portion. The large coupling constant tJcr = 241 Hz was used to determine
C-13 and H-13. C-12 was assigned shift 107.5 ppm based on the coupling constant of 2Jcr =
27.5 Hz, and the same was done for C-11 (3Jcr = 10.6 Hz). C-14 also had a coupling constant
equal to C-12 with 2JcF = 21.3 Hz, but resonated at a lower frequency which was expected due
to Br being the neighboring nucleus.3® Some signals were overlapping, for instance H-15 and
H-16, and coupling between H-10 and H-12 and H-16 through HMBC was crucial for

determining the structure.
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4 Conclusion

In this master project, the effects of solvent type, acid amount and temperature were
investigated in the acid catalyzed amination to 4-chloro-7H-pyrrolo[2,3-d]pyrimidine. One aim
was to develop a green and sustainable method that led to high conversions and no side
products. A substrate scope study consisting of twenty-three substrates, thereof nineteen
anilines, were conducted with the best conditions found. A secondary aim was to derive a better

understanding of the reaction mechanism.

'H-NMR was utilized to investigate the protonation site on 4-chloro-7H-pyrrolo[2,3-
d]pyrimidine. The greatest value of A ppm was observed for H-7, and an alternative splitting
pattern emerged for H-5 and H-6 suggesting that the H-7 proton is exchanged under acidic
conditions. Other A ppm did not provide definitive clues regarding the protonation site as these
values were approximately the same, indicating that the compound could potentially be

protonated at several positions.

In the model reaction, solvolysis was a significant drawback when employing EtOH as the
solvent. Increasing amounts of HCI led to an increased amount of the side product 4-ethoxy-
7H-pyrrolo[2,3-d]pyrimidine from alcoholysis. Other protic solvents were tested with the
observed trend based on conversion H20 > MeOH ~ EtOH > i-PrOH > t-BuOH. Increasing
acid amounts in H20 did not significantly increase formation of the hydrolysis side product 7H-
pyrrolo[2,3-d]pyrimidin-4-ol, nor did it alter the conversion rate significantly. Small
differences were observed when employing different amounts of HCI, primarily attributed to
the dissolution rate of the starting materials. Higher temperature gave increased conversion
rates, but the reactions were run at a maximum temperature of 80 °C to prevent Dimroth
rearrangement. The highest conversion without formation of side products was achieved with

H20 as the solvent and 0.1 eq. HCI at 80 °C and was further used in the substrate scope study.

Anilines with pKa in the range of 2.73-5.20 gave moderate to high conversions. Weakly
deactivated anilines and activated anilines were the most suitable substrates and achieved up to
86% conversion within 1 h. Sterically hindered anilines, gave low conversions even though
they possessed pKa-values in the optimum range. High electron deficiency and bulky o-
substituents were two of the main limitations in this procedure. Dissolution of the starting

materials were also a drawback.

74



4 Conclusion

Benzylic amines proved to be almost unreactive. However, morpholine and
cyclohexanemethylamine were well-suited substrates despite their high pKa-values.
Comparison of three different methods showed the positive effect of reaction concentration on
conversion. With equal amounts of the starting materials H20 proved to be a more suitable

solvent compared to i-PrOH even with lower concentration of the reaction mixture.

Two anilines that gave high conversion in the scope study, such as the 4-bromo-4-fluoroaniline
and the 4-butylaniline, were not isolated in satisfactory yields on the preparative scale. One
suggestion to fine-tune the work-up was to neutralize the reaction mixture with K2COs3 instead
of NaHCOs due to the difference in pKa of the desired products. Switching the neutralizing
agent gave an approximate 20% difference in yield when synthesizing N-phenyl-7H-

pyrrolo[2,3-d]pyrimidin-4-amine.

The developed method presented in this thesis is greener, more sustainable, and, in some cases,
more effective compared to methods found in existing literature for aminating 4-chloro-7H-
pyrrolo[2,3-d]pyrimidine under acidic conditions. This research also gives valuable insights to
further optimization work and synthesis of potential biologically active compounds with the

pyrrolopyrimidine scaffold.
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5 Future work

Many substrates were well suited in the acid catalyzed amination to 4-chloro-7H-pyrrolo[2,3-
d]pyrimidine in H20 with minimal amounts of HCI. It is possible to explore the reaction further
with a broader range of substrates, including different functional groups to assess the
applicability of the substrates. Further, this amination reaction could be enhanced in the sense
of conversion rates and yields. Some conversions were very low, and exploring more variables
such as solvents, different acid catalysts and reaction temperatures could be interesting. Two
pathways were suggested, where one of the starting materials, the pyrrolopyrimidine or the
nucleophile, was protonated based on their pKa preceding the SnAr reaction. Through
experimental and theoretical analyses, this reaction mechanism could be confirmed and

validated.

It could also be interesting to expand the reaction scope by applying the developed procedure
to other related heterocyclic systems. If conducting this reaction scope expansion, however, it

is important to consider the hydrophilicity of the starting materials as the solvent is H20.

Even though this developed procedure is greener, the purification method could be further
optimized as flash chromatography is not a green method. One possible alternative could be to
run the reaction with 1 eq. of both starting materials and let it reach full conversion. Then, after
neutralizing with an aqueous solution of appropriate pH (e.g. NaHCOs and K2COs3) and
filtration, washing the precipitate. The washing step could for example be done with H20 and

pentane, as the products do not seem to dissolve significantly.
The future work for this research may involve exploring further improvements for the amination

reaction, as mentioned. However, the most significant future work may be the application of

these results in developing new and potential biologically active compounds.
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6.1 General information

All commercial chemicals and solvents were purchased from Sigma Aldrich or VWR
chemicals. No further purification of solvents or reagents was performed, but all solvents except
H20 were stored over molecular sieves (4 A) for a minimum of 24 h. Oil baths were used to
control reaction temperatures and magnets were used for even heating and stirring of the

reaction mixtures.

Thin-layer chromatography (TLC) was employed to monitor the progress of the reactions.
Silica plates (Silica gel 60 F254) from Merck were visualized under UV light (254 nm). For
flash chromatography silica gel 40-63 pm from VWR chemicals was used, and the eluent
system was optimized for each crude product being purified. In cases where the crude product
was applied in its dry form, it was first immobilized on Celite® (545, 0.002-0.1 mm) from
Merck.

H-NMR spectroscopy was also used to monitor the progress of the reactions, using a Bruker
Avance I11 HD Spectrometer operating at 400 MHz. 13C-NMR spectroscopy was performed on
the same spectrometer at a frequency of 101 MHz. All chemical shifts are reported in ppm
(parts per million). In this project, only DMSO-ds was used as the solvent, and the reference
signals in TH-NMR (2.50 ppm) and *C-NMR (39.52 ppm) were utilized. Accurate mass
determination was performed on a "Synapt G2-S" Q-TOF instrument from Water TM. Samples
were ionized by the use of an ESI probe. No chromatographic separation was used previous to
the mass analysis. Calculated exact mass and spectra processing was done by Waters TM
Software Masslynx V4.1 SCN871. Infrared spectroscopy (IR) was conducted using an ALPHA
FTIR Spectrometer, and the IR spectra were processed using OPUS software. Melting point
analyses were performed using the Stuart automatic melting point apparatus SMP40 or the
manual apparatus Stuart SMP3. Measuring pH of the reaction mixtures in H20 was done with
the JENWAY 3510 pH meter, and the pH of two basic solutions was measured with MQuant®
pH strips from Sigma-Aldrich.
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6.2 Synthetic procedures

6.2.1 100 mg scale reaction

The 7H-pyrrolo[2,3-d]pyrimidines 28-45 were synthesized on a 100 mg scale via acid catalyzed
SnAr of 4-chloro-7H-pyrrolo[2,3-d]pyrimidine (1, 100 mg, 0.65 mmol, 1 eq.) with the
appropriate amines (2-24, 1 eq.). The starting materials were dissolved in H20 (5 mL) and
added HCI (0.61 M, 0.1 eq.). The reaction mixtures were stirred for 22 h at 80 °C. After cooling
to room temperature, the reaction mixtures were suspended in aqueous sat. NaHCOs (2 mL)
and vacuum filtered. The residue was air dried overnight to give the crude product which was

then immobilized on celite. The crude products were purified using flash chromatography.

6.2.2 500 mg scale reaction with NaHCO3

Eight compounds were additionally synthesized on a 500 mg scale with the same reaction
conditions as above. 4-Chloro-7H-pyrrolo[2,3-d]pyrimidine (1, 500 mg, 3.26 mmol, 1. eq) and
the appropriate anilines (1.1 eg.) were mixed with H20 (25 mL) and HCI (0.61 M, 0.1 eq.). The
reaction mixtures were stirred at 80 °C for 12-22 h. After cooling to room temperature, the
reaction mixtures were suspended in sat. NaHCOs (ag. 10 mL) and vacuum filtered. The filtrate
was extracted with EtOAc until no product was observed from TLC in the water phase. The
combined organic phases were dried with brine (2 x 20 mL) and anhydrous Na2SOa followed
by filtration and concentration in vacuo. The residue from the filtrate and precipitate were
combined and dried in vacuo to give the crude product, which was then immobilized with celite

and purified using flash chromoatography.

6.2.3 500 mg scale reaction with KoCO3

One compound was synthesized on a 500 mg scale with the same reaction conditions and
procedure as described in 6.2.2. The only difference being the neutralization of the reaction

mixture was done with sat. K2COs (ag., 10 mL) instead of sat. NaHCOs3 (aq.).
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6.2.4 N-Phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine (28)

v H Compound 28 was synthesized on 500 mg scale with NaHCOs as the
>N . : : i

ﬁ\p neutralizing agent, as described in Section 6.2.2. The crude (543 mg) was
=

N purified using flash chromatography (EtOAc/n-pentane, 2:1 — 100% EtOAc,
©/NH Rt = 0.21 in EtOAc/n-pentane, 2:1). This yielded 481 mg (2.29 mmol, 71%)
of compound 27 as a white powder. The same product was also synthesized

on a 500 mg scale with K2COs as the neutralizing agent as described in Section 6.2.3, which
gave 687 mg of crude product. After purifying using flash chromatography (EtOAc/n-pentane,
2:1 — 100% EtOAc, Rr = 0.21 in EtOAc/n-pentane, 2:1), 626 mg (2.98 mmol, 91%) of the
product was isolated, mp. 240 — 243 °C (lit. 241 °C)* 24 1H NMR (400 MHz, DMSO-ds) &
11.74 (s, 1H), 9.28 (s, 1H), 8.27 (s, 1H), 7.93 — 7.85 (m, 2H), 7.38 — 7.28 (m, 2H), 7.23 (dd, J
=3.5,2.3 Hz, 1H), 7.01 (i, J = 7.3, 1.2 Hz, 1H), 6.78 (dd, J = 3.5, 1.8 Hz, 1H).13C NMR (101
MHz, DMSO-ds) 6 153.5, 150.9, 150.7, 140.4, 128.4 (2C), 122.1, 122.0, 120.2 (2C), 103.7,
98.8, 31.2, 26.9, 26.8. HRMS (ES+, m/z): detected 211.0986, calcd. for C12H11N4 [M+H]*:
211.0984 (Appendix A). The spectroscopic data correspond to those previously found in the

literature. 11 24

6.2.5 N-(4-Nitrophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (29)

N H Compound 29 was synthesized on a 500 mg scale as described in

Nl(ﬁ)v\/) Section 6.2.2. The crude product (816 mg) was purified using flash
chromatography (EtOAc/n-pentane, 2:1 — MeOH/EtOAc, 1:10, Rf =

/©/NH 0.27 in EtOAc/n-pentane, 2:1). This yielded 732 mg (2.87 mmol, 88%)
OaN of compound 29 as a yellow powder, mp. 335-337 °C (lit. 331 °C)*,
IH NMR (400 MHz, DMSO-ds) § 11.99 (s, 1H), 9.99 (s, 1H), 8.44 (s, 1H), 8.25 (s, 4H), 7.37
(dd, J = 3.5, 2.3 Hz, 1H), 6.89 (dd, J = 3.5, 1.9 Hz, 1H).2*C NMR (101 MHz, DMSO-ds) &
152.9,151.9, 150.8, 147.7,141.1, 125.4, 124.0, 119.1, 105.2, 99.2. HRMS (ES+, m/z): detected
256.0839, calcd. for Ci2H10NsO2 [M+H]T: 256.0834 (Appendix B). The spectroscopic data
correspond to those previously found in the literature.!!
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6.2.6 N-(3-Chlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (32)

\ H Compound 32 was synthesized on a 100 mg scale as described in Section
N

W\Q\/\/) 6.2.1. The crude product (109 mg) was purified using flash chromatography
=

N (EtOAc/n-pentane, 4:1, Rf = 0.27). This yielded 104 mg (0.43 mmol, 64%) of

NH compound 32. The same compound was also synthesized on a 500 mg scale
©/ as described in Section 6.2.2. The crude product (704 mg) was purified using
cl flash chromatography EtOAc/n-pentane, 4:1, Rf = 0.27). This yielded 659 mg
(2.69 mmol, 81%) of compound 32 as a white powder, mp. 226-227 °C (lit. 227 °C)*!, *H NMR
(400 MHz, DMSO-ds) 6 11.85 (s, 1H), 9.46 (s, 1H), 8.35 (s, 1H), 8.22 (t, J = 2.1 Hz, 1H), 7.81
(dd, J = 8.2, 2.4 Hz, 1H), 7.35 (t, J = 8.1 Hz, 1H), 7.28 (d, J = 3.4 Hz, 1H), 7.03 (dd, J = 7.8,
2.4 Hz, 1H), 6.82 (d, J = 3.4 Hz, 1H). *C NMR (101 MHz, DMSO-de) & 153.6, 151.5, 151.1,
142.6, 133.3, 130.5, 123.1, 121.8, 119.6, 118.6, 104.4, 99.1 (Appendix C). The spectroscopic

data correspond to those previously found in the literature.*

6.2.7 N-(2,4-Dichlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (33)
H
WN\ N Compound 33 was synthesized on a 100 mg scale as described in Section
N

A~ 6.2.1. The crude product (114 mg mg) was immobilized on celite and

NH purified using flash chromatography (EtOAc/n-pentane, 4:1, Rt = 0.23).
C|/©:C| This yielded 74 mg (0.27 mmol, 37%) of compound 33 as a white
powder, the melting point was not measured, *H NMR (400 MHz, DMSO-de) § 11.76 (s, 1H),
9.10 (s, 1H), 8.15 (s, 1H), 7.75 (d, J = 8.7 Hz, 1H), 7.70 (d, J = 2.4 Hz, 1H), 7.45 (dd, J = 8.6,
2.4 Hz, 1H), 7.22 (dd, J = 3.5, 2.3 Hz, 1H), 6.60 (dd, J = 3.5, 2.0 Hz, 1H).*C NMR (101 MHz,
DMSO-ds) 6 153.6, 151.5, 151.1, 142.6, 133.3, 130.5, 123.1, 121.8, 119.6, 118.6, 104.4, 99.1
(Appendix D).

6.2.8 N-(2,4,5-Trichlorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (34)

H Compound 34 was synthesized on a 100 mg scale as described in Section
Wﬁ/j/\/) 6.2.1. The crude product (150 mg) was immobilized on celite and purified

N
ol N using flash chromatography (EtOAc/n-pentane, 4:1, Rf = 0.28). This
:@i yielded 7 mg of the product in an impure mixture. *H NMR (400 MHz,
cl cl DMSO-ds) 6 11.84 (s, 1H), 9.16 (s, 1H), 8.21 (s, 1H), 8.15 (s, 1H), 7.95
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(s, 1H), 7.27 (dd, J = 3.6, 2.3 Hz, 1H), 6.69 (s, 1H). (Appendix E). Insufficient material was

obtained for a 13C-NMR spectrum.

6.2.9 N-(4-Fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (35)

H Compound 35 was synthesized on a 100 mg scale as described in Section

I\EJ/\/) 6.2.1. The crude product (119 mg) was immobilized on celite and purified

NH using flash chromatography (EtOAc/n-pentane, 4:1, Rr = 0.17). This

/©/ yielded 90 mg (0.39 mmol, 56%) of compound 33 as a white powder, mp.

F 251-253°C (lit. 253 °C)™L, 'H NMR (400 MHz, DMSO-ds) 5 11.76 (s, 1H),
9.34 (s, 1H), 8.27 (s, 1H), 7.92 — 7.86 (m, 2H), 7.23 (d, J = 3.5 Hz, 1H), 7.20 — 7.13 (m, 2H),
6.76 (d, J = 3.4 Hz, 1H).3C NMR (101 MHz, DMSO-ds) & 159.2, 156.8, 154.0, 151.3, 151.2,
137.2, 137.2, 122.6, 122.5, 122.4, 115.6, 115.3, 104.0, 99.2. HRMS (ES+, m/z): detected

229.0892, calcd. for CizHioNaF [M+H]: 229.0889 (Appendix F). The spectroscopic data
correspond to those previously found in the literature.!!

6.2.10 N-(4-Fluorophenyl)-N-methyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine
(36)

N H Compound 36 was synthesized on a 100 mg scale as described in Section
Nﬁw;/\/) 6.2.1. The crude product (102 mg) was immobilized on celite and purified
using flash chromatography (EtOAc/n-pentane, 4:1, Rt = 0.1). This
/©/N\ yielded 80 mg (0.33 mmol, 54%) of compound 36 as a white powder, mp.
F 250-252 °C, *H NMR (400 MHz, DMSO-ds) § 11.61 (s, 1H), 8.27 (s, 1H),
7.48 —7.28 (m, 3H), 6.90 (d, J = 3.5 Hz, 1H), 4.66 (d, J = 3.5 Hz, 1H), 3.50 (s, 3H). 1*C NMR
(101 MHz, DMSO-ds) 6 162.5, 160.1, 156.4, 151.8, 151.2, 142.6, 142.5, 130.7, 130.6, 121.5,
117.0, 116.7, 103.3, 100.8, 39.4. HRMS (ES+, m/z): detected 243.1051, calcd. for C13H12N4F
[M+H]*: 243.1046 (Appendix G).

6.2.11 N-(4-Butylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (37)

N H Compound 37 was synthesized on a 100 mg scale as described in

Nlrﬁ;i/) Section 6.2.1. The crude product (93 mg) was immobilized on
celite and purified using flash chromatography (EtOAc/n-pentane,

NH
\/\/©/ 4:1,Ri=0.17). This yielded 79 mg (0.30 mmol, 48%) of compound
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37 as a white powder. Compound 37 was also synthesized on a 500 mg scale as described in
section 6.2.2. The crude product (751 mg) was purified using flash chromatography (EtOAc/n-
pentane, 4:1, Rt = 0.17 in EtOAc/n-pentane, 4:1). This yielded 488 mg (1.83 mmol, 56%) of
compound 37 as a white powder, mp. 195-197, *H NMR (400 MHz, DMSO-ds) 6 11.71 (s, 1H),
9.21 (s, 1H), 8.25 (s, 1H), 7.80 — 7.72 (m, 2H), 7.21 (dd, J = 3.5, 2.2 Hz, 1H), 7.18 — 7.11 (m,
2H), 6.76 (dd, J = 3.5, 1.8 Hz, 1H), 2.55 (t, J = 7.7 Hz, 2H), 1.62 — 1.50 (m, 2H), 1.39 — 1.25
(m, 2H), 0.91 (t, J = 7.3 Hz, 3H). 3C NMR (101 MHz, DMSO-ds) 5 154.1, 151.3, 151.3, 138.4,
136.5, 128.7, 122.4, 121.0, 104.0, 99.3, 34.7, 33.8, 22.2, 14.3. HRMS (ES+, m/z): detected

267.1614, calcd. for C1sH1oN4 [M+H]™: 267.1610 (Appendix H).

6.2.12 N-(3-Ethynylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (38)

N H Compound 38 was synthesized on a 100 mg scale as described in Section
NW\%I/) 6.2.1. The crude product (120 mg) was immobilized on celite and purified
using flash chromatography (EtOAc/n-pentane, 4:1, R = 0.23). This yielded

" 91 mg (0.39 mmol, 59%) of compound 38 as a white powder. Compound 38

was also synthesized on a 500 mg scale as described in section 6.2.2. The

‘ ‘ crude product (1042 mg) contained some water but was purified using flash
chromatography (EtOAc/n-pentane, 4:1, Rf = 0.23). This yielded 627 mg (2.77 mmol, 83%) of
compound 38 as a white powder, mp. 228-230 °C, 'H NMR (400 MHz, DMSO-ds) & 9.40 (s,
1H), 8.32 (s, 1H), 8.16 (t, J = 2.0 Hz, 1H), 7.91 (ddd, J = 8.4, 2.4, 1.0 Hz, 1H), 7.34 (t, J = 7.9
Hz, 1H), 7.26 (d, J = 3.5 Hz, 1H), 7.11 (dt, J = 7.6, 1.3 Hz, 1H), 6.80 (d, J = 3.5 Hz, 1H), 4.15
(s, 1H). 3C NMR (101 MHz, DMSO-ds) & 153.7, 151.4, 151.1, 141.2, 129.4, 125.5, 123.2,
122.9, 122.2, 121.0, 104.3, 99.2, 84.3, 80.7. HRMS (ES+, m/z): detected 235.0987, calcd. for

C14H11N4F [M+H]*: 235.0984 (Appendix I).

6.2.13 2-((7H-Pyrrolo[2,3-d]pyrimidin-4-yl)amino)phenol (39)

N H Compound 39 was synthesized on a 100 mg scale as described in Section
'\TW/JV\/) 6.2.1. The crude product (115 mg) was immobilized on celite and purified

NH using flash chromatography (EtOAc/n-pentane, 4:1, Rr = 0.21). This yielded
@ 88 mg (0.33 mmol, 59%) of compound 39 as a light-yellow powder, mp. 232-
OH 234 °C (lit. 233-235 °C).%37 'H NMR (400 MHz, DMSO-ds) & 11.81 (s, 1H),

10.60 (s, 1H), 8.89 (s, 1H), 8.21 (s, 1H), 7.56 (dd, J = 7.9, 1.7 Hz, 1H), 7.21 (dd, J = 3.5, 2.2
Hz, 1H), 7.02 (td, J= 7.3, 1.7 Hz, 1H), 6.92 (dd, J =8.1, 1.6 Hz, 1H), 6.84 (td, J = 7.5, 1.6 Hz,
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1H), 6.70 (dd, J = 3.5, 1.6 Hz, 1H). 13C NMR (101 MHz, DMSO-ds) § 154.3, 151.1, 150.7,
150.1, 128.3, 125.5, 124.8, 122.7, 119.6, 117.9, 103.6, 99.5, 40.7. HRMS (ES+, m/z): detected
227.0937, calcd. for Ci2H11N4O [M+H]*: 227.0933 (Appendix J). The spectroscopic data

correspond to those previously found in the literature.3

6.2.14 N-(Benzo[d][1,3]dioxol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine
(41)

N H Compound 41 was synthesized on a 100 mg scale as described in

N'(g/\/) Section 6.2.1. The crude product (126 mg) was immobilized on celite

. N and purified using flash chromatography (EtOAc/n-pentane, 4:1 — 100
< D/ % EtOAc, Rr = 0.20 in EtOAc/n-pentane, 4:1). This yielded 101 mg
© (0.40 mmol, 58%) of compound 41 as a light red powder. Compound
41 was also synthesized on a 500 mg scale as described in section 6.2.2. The crude product (728
mg) was purified using flash chromatography (EtOAc/n-pentane, 4:1 — 100% EtOH —
MeOH/EtOAc 1:10, Rt = 0.20 in EtOAc/n-pentane, 4:1). This yielded 701 mg (2.77 mmol,
85%) of compound 41 as a light red powder, mp. 282 °C (decomp.) (lit. 282-283 °C)%,
IH NMR (400 MHz, DMSO-dg) & 11.71 (s, 1H), 9.18 (s, 1H), 8.23 (s, 1H), 7.59 (d, J = 2.2 Hz,
1H), 7.20 (ddd, J = 6.1, 3.0, 1.6 Hz, 2H), 6.89 (d, J = 8.4 Hz, 1H), 6.71 (dd, J = 3.5, 1.9 Hz,
1H), 6.00 (s, 2H). 13C NMR (101 MHz, DMSO-ds) 5 154.1, 151.3, 151.2, 147.4, 142.8, 135.2,
122.4,113.8, 108.3, 103.8, 103.5, 101.3, 99.2. HRMS (ES+, m/z): detected 255.0887, calcd.
for C13H11N4O2 [M+H]*: 255.0882 (Appendix K). The spectroscopic data correspond to those

previously found in the literature.*¥’

6.2.15 N-(3-(Benzyloxy)phenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (42)
H
WN\ N Compound 42 was synthesized on a 100 mg scale as described in
N

A~ Section 6.2.1. The crude product (144 mg) was immobilized on celite
NH and purified using flash chromatography (EtOAc/n-pentane, 4:1, Rt

©/ = 0.25). This yielded 127 mg (0.40 mmol, 58%) of compound 42 as
@o a light brown powder, mp. 194-196 °C, *H NMR (400 MHz, DMSO-
de) 6 11.77 (s, 1H), 9.27 (s, 1H), 8.30 (s, 1H), 7.79 (t, J = 2.3 Hz, 1H), 7.52 — 7.44 (m, 3H),
7.47 —7.33 (m, 3H), 7.37 — 7.29 (m, 1H), 7.27 — 7.19 (m, 2H), 6.81 (dd, J = 3.5, 1.9 Hz, 1H),
6.67 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 5.11 (s, 2H).1*C NMR (101 MHz, DMSO-ds) & 159.1,

153.9,151.3,151.2,142.2, 137.7,129.6, 128.9, 128.3, 128.2, 122.7, 113.1, 108.5, 107.4, 104.3,
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99.2, 69.6. HRMS (ES+, m/z): detected 317.1407, calcd. for C1oH17N4O [M+H]*: 317.1402
(Appendix L).

6.2.16 N-(4-Ethoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (43)

N
NE/I/) Section 6.2.2. The crude product (790 mg) was immobilized on celite
and purified using flash chromatography (EtOAc/n-pentane, 2:1, Rt

H Compound 43 was synthesized on a 500 mg scale as described in

QNH = 0.16). This yielded 781 mg (3.07 mmol, 94%) of compound 43 as
o awhite powder, mp. 240-242 °C (lit. 241-242 °C)?* 137 1H NMR (400
MHz, DMSO-ds) 5 11.66 (s, 1H), 9.13 (s, 1H), 8.20 (s, 1H), 7.70 (d, J = 9.0 Hz, 2H), 7.18 (d,
J=3.5Hz, 1H), 6.91 (d, J = 9.0 Hz, 1H), 6.67 (d, J = 3.4 Hz, 1H), 4.00 (g, J = 6.9 Hz, 2H),
1.32 (t, J = 6.9 Hz, 3H),3C NMR (101 MHz, DMSO-ds) & 154.5, 154.3, 151.4, 151.2, 133.7,
122.9, 122.2, 114.7, 103.7, 99.2, 63.6, 15.2. HRMS (ES+, m/z): detected 255.1249, calcd. for
C14H1sN4O [M+H]*: 255.1246 (Appendix M). The spectroscopic shifts from *H-NMR and 3C-

NMR correspond to those previously found in the literature.?* 13

6.2.17 N-(4-Bromo-3-fluorophenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine
(46)

N H Compound 46 was synthesized on a 100 mg scale as described in Section
N

| .2.1. The crude product mg) was immobilized on celite an
N(\/eleh de product (135 mg) immobilized lite and

=
purified using flash chromatography (EtOAc/n-pentane, 4:1, Rs = 0.27).

NH
/©/ This yielded 111 mg (0.36 mmol, 57 %) of compound 46 as white
Br

crystals. Compound 46 was also synthesized on a 500 mg scale as
- described in section 6.2.2. The crude product (884 mg) was purified
using flash chromatography (EtOAc/n-pentane, 4:1, Rt = 0.27). This yielded 719 mg (2.34
mmol, 72 %) of compound 46 as white crystals, mp. 308-309 °C, *H NMR (400 MHz, DMSO-
de) 6 11.88 (s, 1H), 9.61 (s, 1H), 8.37 (s, 1H), 8.26 (dd, J = 12.2, 2.4 Hz, 1H), 7.67 — 7.56 (m,
2H), 7.30 (dd, J = 3.6, 2.0 Hz, 1H), 6.82 (dd, J = 3.5, 1.5 Hz, 1H). 3C NMR (101 MHz, DMSO-
de) & 159.2, 156.8, 152.9, 151.0, 150.5, 142.0, 141.9, 132.8, 122.9, 116.9, 116.9, 107.6, 107.3,
104.1, 98.7, 98.6, 98.5. HRMS (ES+, m/z): detected 307.0000, calcd. for C12HoN4FBr [M+H]*:

307.9995 (Appendix N).
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A Spectroscopic data — Compound 28
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Figure A.1: 'H-NMR of compound 28.
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Figure A.2:
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Figure A.3: IR spectrum of compound 28.
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B Spectroscopic data — Compound 29

o (wdd) 13

\n

\n

S'6

S0l

SIr §Cl

"o S0 S0 1 ST SE S SS9
HN 2
i
/v N
f
-
HN N
zLo uonnjosay [eNBIA 67
9€999 oz |esyoads 8z
89/C¢ az|g palinboy /g
HL snajonN 92
'GESL- Aousnbaig 1semo Gz
8'CL08 YIpIM [enoads vz
Aousnbaiy
€L'oov J8}9Wo.108ds €7

L€:1G:/110L-20-€20¢
L€:1G:/110L-20-€20C
6807

00056
0000'L
L'ecLL

8

(dS Z S0-a-H-499 LS00
084 Vd) 86£0° 8609117

ar
ocbhz
€'86¢C
OSNa

10eds

nsiwu
Hawo uidsolg Jesn.g

PYL'Y-92L-LSH

Pl /L [7-92ZL-LSH

Jiwu [wsuuey [Aupoiwu
[eiepiwu [sewn|op [

anjep

Sse|] ¢¢

81eQ UONEDIIPON

¥4

aleq uonisinboy g

awi] uonisinboy
Aouanbaiq
uoljeinjesald
UIpIM 8sind
Aejag uonexejoy
ules 1aA1909y
SUedg Jo 1IaquinN

aqold
jJuawiadxy
@ouanbag as|ng
alnjeladwa)
JUaA|0S

Joyiny
Juswinusu|

SIS

JETVYe)

uiblo
Juswwo)

SML

sweN 9|14 eleq
lalaweled

6L

8l
LL
oL
gl
145

€l
L
L
oL

6

N M T OO N

=Pvol

=60"

=001

=660

=80

PYT'¥-9CI-1SH

'H-NMR spectrum of compound 29.

Figure B.1

107



(0] (wdd) 13

zyo 0 o 0C 0¢ OF OS5 09 0L 08 06 000 OIT ocr o0¢r Oovl O0SI 091 OLI
| | | . | | | | | | | | | | | | | |
HN
Z N M A
J g i%i%i%%i;%%gi AN
HN-y
LE0 uonnjosay |eubia 62
9€£559 9zIS |es)0ads 8z
89/¢C¢€ 8z|g painbay /g
oglL SNsIoNN 92
°'8G61L- Adusnbal{ }1samo Gz
§'8E0VC YIPIM el10ads 2
Aouenbal4
2900l lalowou3oads €7
sse|d ¢¢
€G:1¢:8L10L-20-€¢0¢ djeq UohEedlIPON Lg
€G:12:8L10L-20-€20¢ a1eQ uonisinboy 0g
LE9E’L awi| uonisinboy 6l
Aouaenbaly
uoljeiniesald 8L
00056 YIPIM 8sInd /L
0000°C Keja@ uonexejgy 9L
8'60¢ uleg JaAI8d3Yy gL
ZLS suedg Jo laquwinN 7L
(dS Z g0-a-H-4949
- ——T
1S00v 088 Vd) 86£07 8609112 aqoud €1 cocol—F= N KA Regeateatn
a wawedx3 gl LCovoPooo ©° < SIRY B R aunu
’ Lwunaoibivo s o —_ N —No -
ochdbz aouanbag asind || ~N 200 O P L — DN AN N — O W S ) 0 0 O
— W = oo _NoNN3o
c 867 aimeladwal QL M M M m v m m m M
OSWad wan0s 6 T RZRZR%R: AR AR
oyiny g QOQOOPOOOO
10ads juawniisu| /£
9Us 9
nsiwu BsumQ g
Hqwo uidsolg Jaxnig uibuo v
juswwo) ¢
PYZ¥-92L-LSH 9L ¢

Pl /Z [¥7-92L-LSH [1wu [wsuuey
JAUQOPiwu [elepiwu [sawnjop |

anjep

sweN o|if eleq |
l8}aweled

APPENDIX B

PYTY-9CI-ISH

Figure B.2: 3C-NMR spectrum of compound 29.
108



APPENDIX B

1,98V

500

6.°€8S
9.°929

S0°/89
65°9¢L

89181
¢1'sv8
0T'S68

1000
I

G8°¢V0T
¢1'80TT

——— €6'6.TT
__— Tv'8vet
TS'96ZT

69°0SET

TCTLVT

1500
1

——— 81’8997
SL'TC9T

2000
I

2500
1

3000
I

3500
I

0€'6€8¢

EV'96EE

00T S6

06 68 08 S. 0L 99
[96] @2ueniwsuel |

Figure B.3: IR spectrum of compound 29.

109

3000 2500 2000 1500 1000 500

3500

Wavenumber cm-1



APPENDIX B

Z0 GN OTH ZT1D B/U ®/U  8°9%0T S 0T 0°¢ S0 7€80°96¢C 6€80°96¢C
eTnwIog (%) Fuo) UITON ITd-T a4a Wad equ  SSBW ‘OTED SSen

0°0§ 0°g 0°S JunWTXeR
G 1- HUMWTUTH

00¢T 00TT 000T 006 008 00L 009 00S oor 00¢ 00¢ 00T
ZjW bbb Lo Lo b e L L ]

-ycp CET8C06 A ] ' , o A T
vL99se S0957T2L yep57e89 ossz 0/ ﬁNL.wmm g 2756-50T
925251y S956°€0T

9980°L5¢

%

6£80'952 -00t

G00+809°€
+S3ISWHOL'T
(601:90T) WD :(00°0'00°0'0°000SEV) 2NV (0€0°T) 60T 25TzAIOIH
9-0:0 8-0:N O000T-T:H 09-0:0
:pasn suawalg
(ssew yoeas 10} SYNsaI 1S8S0J0 05 01 dn) SHWI| UIYIM SHNS3I T YIM palenjens (a)ejnwiio) €8T
SUO| U983 UBAT ‘sselA 01d010SIoUoIN

€ = 114-1 lo} pasn syead adojos! Jo JaquinN

1O :uonoipaid Juswa|3

0°0S = Xew ‘G'T-=ulw :39a / INdd 0'G = doueIajoL
sisAjeuy ssel ajbuig

| abed yoday uonisodwo) jeyuawalg]

MS spectrum of compound 29.

Figure B.4

110



C Spectroscopic data — Compound 32
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Figure C.2: 13C-NMR spectrum of compound 32.
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Figure C.3: IR spectrum of compound 32.
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Figure D.2: 13C-NMR spectrum of compound 33.
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Figure D.3: COSY spectrum of compound 33.
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Figure D.4: HSQC spectrum of compound 33.
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Figure D.5: HMBC spectrum of compound 33.
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Figure D.6: IR spectrum of compound 33.
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Figure E.1: *H-NMR spectrum of compound 34.
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F Spectroscopic data — Compound 35
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Figure F.1: 'H-NMR spectrum of compound 35.
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Figure F.2: 13C-NMR spectrum of compound 35.
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Figure F.3: IR spectrum of compound 35.
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Figure F.4: MS spectrum of compound 35.

124



G Spectroscopic data — Compound 36
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'H-NMR spectrum of compound 36.

Figure G.1
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APPENDIX G

Figure G.2: 3C-NMR spectrum of compound 36.
126



APPENDIX G

et

(LorL9¥}
(reoL “veoL)
(821 ‘reol}

(HL 'HL}

(G ¢8r "G 28}
O 2L 0118}

(€1L'00F "1 00K}

9 10-12160-£0-£20C
H-ZS04160-£0-€40¢
[ FA Al

00056
6616'1
L'6¥

3

(dS 7 So-0-H-4ad LS00¥
0dd Vd) 8650 8600117

ASOD
JbdddbAsoD
0862
OSHAa

Jads

nsiuu
HqWo wdsog 1ayng

195 FGHOFL ISH

195 fir 5dOFL-ISH
AW Jusuuey AugQpiwu
FEIEPIUL [SOUM|OA |

anep

uoiNjosoY 1Erbi] 62
oas [|Ipads ge
aag pannbiy 1g
SNAINN 9¢
fouanbal Jsomo G
i, [e1pads ¢
Aouonbal 4
1gpwaIpads ¢
SSBID 22
ajeq UOREPON LE
B uopsinbay 0¢
BUN| UOINSINbIY 61
fouanbai 4
uoeImesald gl
P asing 21
Aejeq uonexejoy 91
e 10M899Y G1
SUBIS JO Jaquiny L

2qoid €1
weumedq g1
asuanbog asingd L1
aimerndwa) gL
WANOS 6
10y
JBwInIsu|
ang

19URD
ubuQ
1L e
oWl

N MW N D @

eueNopElR] |
1vjpurIed

(mdd) 13

AR
0Zl
¢TI
01T
£ 0T
001
€6
06
€8
081
L
0L
9
09
Y
0%
S
0
e
0°¢
§T
0°¢
S

(wdd) 7y
€€ S¥  §¢  §9  ¢L ¢8 ¢6 SO

&+

By 9-HOFI-1SH

¥

Figure G.3: COSY spectrum of compound 36.

127



APPENDIX G

e

(6961 "89°+)
(#20L “FeoL)
(952 ‘¥eol}

(O£1L "HI}

6L "1115)
(€'19102 'V S617)

(29001 ‘€L 00V}

SO ES LE160-E0-€£20C
65-£0- L€ 160-£0-£202
SELC0

00056
00002
F60¢
4

(dS Z S0-0-H-Jaa LS00
Offl Vd} 86€0 8609117

aauaa-sosH

¢ zdsisdiepaobsy
0862

osnda

pads

nsiuu
Hquo udsog 13y

1259 HOrL-ISH

195 /G /9 dOrFL-LSH
AUl pwrsuuey FAUQQ WU
fE1EPIUL FSOUINIOA,

anep

uornjosay Bt 62
aag [ensads gg
aa15 pannbay Ig
SMOPNN 92
Aouanbal ] somo] 6Z
NP [ensads ¥2
Asuanbal
19pwonds £2
SSBID &2
I UOIRMIPON LE
aje( uomsEnb 07
aun) uopsnbiv g1
Asuanbaiy
uoneimesald g1
P asind 21
Aep( uoexeRy 91
uen lonNsdaY Gl
SUBDS JO 1aqUINN 1

aqold €1
moumady g1
asuanbag asing |1
ameradwa) gL
WONOS 6

BLIT v
Jueungsy
ag

19URD
ufuQ
JIBWILIOD)
omL

N Mo WD ®

sweNop Beq |
19pwRIeq

(wdd) 75
01- 00 0T 0T 0¢ O0F 0§ 09 0L 08

061
081+
OLTH
091+
05T

B C9-HOFI-1SH

Figure G.4: HSQC spectrum of compound 36.
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Figure G.5: HMBC spectrum of compound 36.
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Figure G.6: IR spectrum of compound 36.
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Figure H.1: 'H-NMR spectrum of compound 37.
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Figure H.2: 3C-NMR spectrum of compound 37.
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Figure H.3: COSY spectrum of compound 37.
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Figure H.4: HSQC spectrum of compound 37.
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Figure H.5: HMBC spectrum of compound 37.
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Figure H.6: IR spectrum of compound 37.
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Figure 1.1: 'H-NMR spectrum of compound 38.
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Figure 1.2: 1*C-NMR spectrum of compound 38.
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Figure 1.3: COSY spectrum of compound 38.
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Figure 1.4: HSQC spectrum of compound 38.
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Figure 1.5: HMBC spectrum of compound 38.
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Figure 1.6: IR spectrum of compound 38.
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Figure 1.7: MS spectrum of compound 38.
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J Spectroscopic data — Compound 39
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Figure J.1: 'H-NMR spectrum of compound 39.
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Figure J.2: 13C-NMR spectrum of compound 39.
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Figure J.5: HMBC spectrum of compound 39.
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Figure J.6: IR spectrum of compound 39.
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Figure J.7: MS spectrum of compound 39.
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Figure K.1

K Spectroscopic data — Compound 41
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Figure K.2: 33C-NMR spectrum of compound 41.
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Figure K.3: COSY spectrum of compound 41.
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Figure K.4: HSQC spectrum of compound 41.
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Figure K.5: HMBC spectrum of compound 41.
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Figure K.6: IR spectrum of compound 41.

500

1000

1500

2000

2500

3000

3500

Wavenumber cm-1



APPENDIX K

BN ¢N ¢TH 91D 0F*0 <¢29°S ¢ GGEl G 1T € V- T°1- 8680°GG¢C

O PN TTH €10 09°66 %00°0 L°6FET G 0T 0°¢ G0 Z880°GGZ  L880°GGT
eTnwIod (%) Juod  WION IId-T 24d Wdd equ  SSBW "OTeD SSep
0°0§ 0°9 0°6G TWNUTXeR
G 1- TWNWTUTA
008T 009T 00vT 002T 000T 008 009 00v 00z
zZ/w _...._...._...._...._...._...._...._...._...._....._...._...._L....A_...._..a.._...._;..<.._<..A._._.. 0
B1VCVEBEE0Z 789 g1 079 959 T 9ES (
ge60'L2e |
9160'95¢
%
1880'SSZ 00t
900+306'2
+S3 SN H4OL T
(96:€6) WD (00°0'00°0'0°000SE 1Y) ZAV (280°'T) 96 86T2AIbaY
T-0'eN 0S-0'0 GS0:N O000T-T‘H 09-0:D
pasn suawa|3
(ssew yoea J0j Sy Nsal 1S9s0|9 G 01 dn) S| UIYNIM SYNSal Z YIm palenjens (a)einwiioy /9¢
SUO| U0J193|3 UBAT ‘sselN 21d010SIoUOIN
€ = 1|4-1 Jo} pasn syead adojos! Jo JaquinN
1O :uonoipaid Juswa|3
0°0G = Xew ‘G T-=ulw :3dA / INdd 0’9 = 9dueIs|0L
sisAjeuy ssep a|bulg
| obed Joday uonisodwos jejuswalgy

MS spectrum of compound 41.

Figure K.7

159



(wdd) 74
00 G0 0T §T 0Z g2 0€ G€ 0% G¥ 0§ G5 09 §9 0 G/ 08 §8 06 §6 00T G0T 0TT §'TT 02T §¢T

oy

/ Z N

|
AN /z¥

=902
EF 90T
90T
= 501
F 00T
= 10T
=680

ZT0  uonnjosayienbia 62

9€G59 azig)[endads gz
89/¢¢€ azigIpalinboy 2z
HT SN8JONN 92

#'GEGT- Aouanbaigisamo Gz
82108 upIAeReds v
Aouanbai4
€T°007 J1910Wo09dS £2
Sse|0 ¢z
60:€0:8TLET-E0-20Z  S1RQUONRIYIPON TZ
60:€0:8TLET-€0-202  @requuUONIsInbay 0z
6807  dwipuomsinbay 6T
Aousnbai4
uoneinyesaid 8T
00056 yipiauesind LT
0000'T Aeja@uonexejay 9T
6'¢8 ureq]IsnIsday GT
8  SUBdE)OLIBQWINN T

L Spectroscopic data — Compound 42

(dS1Z150-Q-H-HaEMTS00Y (wdd) 14
089vd)I86€0 8609TTZ 8qoid €1 G0 LO0T'LST'L0CLGCL0OELSELOV LS L0S LGS L09L
OH w—\_mE_\_wﬂxm NH L L L L L L L L L L L L
ogbz  sousnbaglesind TT 2 E m 2
0862 ainjesadwsal 0T L L L
OoSsna UBAI0S 6
loyiny 8
108ds juawnnsu| /
NS 9
nsiwu BLumQ g
Hawsyuidsolgeynig ubuo ¥
juswwo) ¢
Py € L-89vT-TSH apL ¢
PL/E)/L-897T-TSH e e
A /wsuueg)/Augo AU NNSNNSNSNNNSNNNNNSNNSNNNNNNAN
/erepiw]/Sawn|onl/ swenN9|gered T NRONNNNNWWWRARRMRAEDMDRADRADIMDDDDOOOG
NAEAPRPOUOOPRLROODORPRFPWWOUIOIOUINO0OOWOWOO
anjeA lalsweled
pye’/-d9vT-TSH

'H-NMR spectrum of compound 42.
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Figure L.2: 3C-NMR spectrum of compound 42.
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Figure L.5: HMBCspectrum of compound 42.
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Figure L.6: IR spectrum of compound 42.
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Figure L.7: MS spectrum of compound 42.
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Figure M.2: 3 C-NMR spectrum of compound 43.
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Figure M.3: IR spectrum of compound 43.
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Figure M.4: MS spectrum of compound 43.
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N Spectroscopic data — Compound 46
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'H-NMR spectrum of compound 46.

Figure N.1
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Figure N.2: 13C-NMR spectrum of compound 46.
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Figure N.3
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Figure N.7: MS spectrum of compound 46
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O Python code for surface plot

Listing O.1: Python code for modelling the 3D surface plot of the formation of side product in different
acid amounts in Section 2.2.1 (https://github.com/TrymSaether/MH_3DSurfacePlot)

# Import required libraries

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt

from scipy import interpolate

# Define the number of array splits for the 'biprod' column
n=6

# Read the CSV file and select relevant columns

# Replace missing values with zero

df = pd.read csv('rx data.csv', delimiter=';', decimal=',",
usecols=["'molfrak. Pp', 'biprod', 'HCl (eqg.) EtOH']).replace(n
p.nan, 0)

# Split the 'biprod' column into 'n' equally sized arrays

# Transform the 1list of arrays into a NumPy array for future
operations bp = np.array([np.array split(df['biprod'].to numpy(),
n)l)

# Define HC1 equivalents and reaction time arrays

eq = np.array ([0, 0.1, 0.5, 1, 3, 51)

t = np.array([0, 1, 2, 3, 4, 61)

# Create a 2D grid of HCl equivalents and reaction times

T, EQ = np.meshgrid(t, eq)

# Define new, more detailed arrays for HCl equivalents and reaction
times

tnew = np.linspace (0, 6, 100)

eqnew = np.linspace(0, 5, 100)

# Create a 2D grid of the new HCl equivalents and reaction times
tnew, eqgnew = np.meshgrid(tnew, eqnew)

# Perform cubic interpolation of 'biprod' onto the new grid

znew = interpolate.griddata ((T.flatten (), EQ.flatten()),
bp.flatten (), (tnew, egnew), method='cubic')

# Set the font style for the plot

plt.rcParams|["font.family"] = "Times New Roman" # Define the color
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style for the 3D surface plot

c style = 'plasma'

# Create a new figure with 3D subplot

fig, ax = plt.subplots(subplot kw={"projection": "3d"})

# Generate the 3D surface plot

hs plott = ax.plot surface(tnew, eqnew, 100*znew, cmap=c_ style,
edgecolor='k', linewidth=0.25, alpha=1, antialiased=True,
shade=True)

# Add a color bar to the figure

cbar = fig.colorbar (hs plott, shrink=0.5, aspect=8, pad=0,
ticks=np.linspace (0, 30, 5, endpoint=True))

# Set ticks and label for the color bar

cbar.set ticks(np.linspace(0, 30, 5, endpoint=True))
cbar.set label('S')

# Set labels for the x, y, and z axes

ax.set xlabel ('Reaction time (h)")

ax.set ylabel ('HC1 (eqg.)"')

ax.set zlabel ('Side product (26, %)'")

# Set the 1limit for the z axis

ax.set zlim (0, 40)

# Set the initial viewing angle

ax.view init (20, -120) # Turn off the grid

ax.grid(False)

# Adjust the padding around the plot

plt.tight layout () # Display the plot

plt.show ()

# Save the figure as a high-resolution PNG file

fig.savefig('surfaceplot MH.png', dpi=400, bbox inches='tight')
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