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A B S T R A C T

This paper presents an improved version of the solution method that won the inventory routing problem track
of the 12th DIMACS Implementation Challenge. The solution method is a branch-and-cut embedded matheuristic
where a matheuristic is called every time a new primal solution is found in a branch-and-cut method. The
matheuristic consists of a construction heuristic and an improvement heuristic. The construction heuristic uses
a giant tour method and a shifting assignments method to generate a set of promising routes which, in turn,
are combined into a feasible solution to the problem by solving a route-based mathematical program. The
improvement heuristic then solves a series of extended route-based mathematical programs where clusters of
customers may be inserted and/or removed from the routes of the initial feasible solution. We have, to the best
of our knowledge, gathered all detailed results from previously published methods for the inventory routing
problem and made this overview available online. Compared with these results, the proposed method found
the best-known solution for 741 out of 878 multi-vehicle inventory routing instances, where 247 of them are
strictly better than the previously best-known solutions. Furthermore, we prove optimality for 458 of these
solutions. The proposed method is also able to find the best-known solution for 116 out of 226 benchmark
instances for the split delivery vehicle routing problem, and improve three best-known solutions from the
CVRPlib for the capacitated vehicle routing problem.
1. Introduction

In this paper, we present an improved version of the solution
method that won the inventory routing problem (IRP) track of the 12th

DIMACS Implementation Challenge (DIMACS, 2022). The method was
first developed for the IRP, but we show that it can be generalized and
that it produces high-quality solutions also for the split delivery vehicle
routing problem (SDVRP) and that the improvement heuristic part of
the methodology finds new best-known solutions for instances of the
capacitated vehicle routing problem (CVRP).

The IRP arises within the business practice of vendor-managed
inventory, and the proposed algorithm is tailored to tackle the single-
depot multi-vehicle IRP version. In this problem, a single depot has
to manage the inventory of a set of customers so that each customer
can meet its demand for a single product over a set of discrete time
periods. A fleet of vehicles is used to deliver products to the customers.
The decision maker must simultaneously decide (1) when to visit each
customer, (2) how much to deliver to each customer with each vehicle,
and (3) how to route the available vehicles to minimize the sum of the
transportation cost and the inventory holding cost.

The CVRP and SDVRP both consist of a single depot that must
deliver a given demand to a set of customers in a single time period
using a fleet of vehicles. The only difference is that the CVRP limits each
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customer to be served by one vehicle, while the SDVRP allows multiple
visits to each customer. The SDVRP can be seen as a special case of
the IRP, where decision (2) and (3) must be made, but where decision
(1) is predetermined as there is only a single time period. Therefore,
we mainly focus on the IRP, which is the more general variant of the
problem.

Bell et al. (1983) were the first to describe the IRP when study-
ing it in the context of industrial gas distribution. The IRP has later
received much attention, and there have been numerous advances
in both exact and heuristic methods in the last two decades. The
exact methods can be categorized to belong within a branch-and-
cut (B&C) framework (Archetti et al., 2007; Solyalı and Süral, 2011;
Coelho and Laporte, 2014; Adulyasak et al., 2014; Avella et al., 2015,
2018; Manousakis et al., 2021; Guimarães et al., 2023; Skålnes et al.,
2022) or a branch-price-and-cut (BP&C) framework (Desaulniers et al.,
2016). Archetti et al. (2007) proposed a B&C method for the single-
vehicle IRP and showed the benefit of using the maximum level (ML)
inventory policy compared with the order-up-to level inventory policy.
They also published the first set of benchmark instances for the single-
vehicle IRP, consisting of 5 to 50 customers, and three and six time
periods.
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The B&C methods of Avella et al. (2018), Manousakis et al. (2021)
and Skålnes et al. (2022) are all based on two-index vehicle-flow for-
mulations. Avella et al. (2018) proposed a new set of valid inequalities,
the disjoint route (DR) inequalities, and implemented and tested two
subfamilies of these. Manousakis et al. (2021) extended a two-vehicle
flow formulation to a new two-commodity flow formulation inspired by
the flow formulation in Baldacci et al. (2004). Skålnes et al. (2022), on
the other hand, used a customer schedule reformulation, i.e., a Dantzig–
Wolfe reformulation of the polyhedron connecting delivered quantities
to customer visits, and adapted the capacity inequalities of Desaulniers
et al. (2016) to be used within the context of B&C. Guimarães et al.
(2023) proposed new mechanisms for feasibility and improvement of
IRP solutions that can be embedded within both exact methods and
heuristics. Archetti and Ljubić (2022) did a thorough comparison of the
strength of two- and three-index vehicle flow formulations, showing
that the optimal value of the linear relaxation is not improved by
using a three-index vehicle flow formulation. The smaller number of
variables and constraints in the two-index vehicle flow formulation is
then a clear advantage, and with the results of Avella et al. (2018),
Manousakis et al. (2021), and Skålnes et al. (2022) it is clear that a
two-index vehicle flow formulation seems to be better than a three-
index vehicle flow formulation in a B&C method. Even though the B&C
method based on the two-commodity flow formulation of Manousakis
et al. (2021) obtained better dual bounds than that of Avella et al.
(2018) at termination, it did not obtain better dual bounds at the root
node of the B&B tree. Thus, the formulation of Avella et al. (2018)
seems to be the stronger of the two. Another method that obtained
good dual bounds is the BP&C method of Desaulniers et al. (2016).
On average, this method has produced the best dual bounds, and it
outperformed the B&C methods on the four and five vehicle instances.

The heuristic methods for the IRP can mainly be divided into
matheuristics (Archetti et al., 2012; Adulyasak et al., 2014; Archetti
et al., 2017; Chitsaz et al., 2019; Diniz et al., 2020; Alvarez et al., 2020;
Archetti et al., 2021; Vadseth et al., 2021; Solyalı and Süral, 2022;
Achamrah et al., 2022; Vadseth et al., 2023) or metaheuristics (Alvarez
et al., 2018; Sakhri et al., 2022). Archetti et al. (2012) focused on the
single-vehicle IRP and proposed a hybrid heuristic that combines a tabu
search scheme with an improvement phase that solved mixed integer
linear programs (MILPs) to explore the neighborhood of the current
incumbent solution. They also proposed a set of large benchmark
instances consisting of 50, 100, and 200 customers and six time peri-
ods. Archetti et al. (2017) presented a matheuristic designed to tackle
the multi-vehicle IRP. Here, they extended the tabu search scheme
originally developed for the single-vehicle version and combined it
with two MILPs to produce an initial solution or improve the current
incumbent solution. Chitsaz et al. (2019) introduced a decomposition
matheuristic originally designed for the assembly routing problem and
demonstrated that it also works well for the IRP. Diniz et al. (2020)
proposed a matheuristic that used an iterated local search algorithm,
with a randomized variable neighborhood descent, to find the routes
in each time period. Then, the matheuristic moved on to solve a
network flow problem to determine the delivered quantities by using
an enhanced network simplex method. Alvarez et al. (2020) presented
a hybrid heuristic based on the combination of an iterated local search
metaheuristic and two mathematical programming components to solve
the IRP with perishable products. The authors also showed that the
method worked well on the standard IRP. Archetti et al. (2021) pro-
posed a kernel search matheuristic, that used information gathered by
a tabu search to create a sequence of MILPs, which produced high-
quality solutions. Vadseth et al. (2021) introduced a matheuristic that
iteratively solves a route-based MILP, where the set of routes is altered
between each iteration. The initial route set is created from a giant
tour using a split algorithm. This is currently the solution method
with the best average performance on the set of large benchmark
instances, which are the set of instances where heuristics outperform
2

exact methods.
Solyalı and Süral (2022) presented a matheuristic where three
different MILPs are solved sequentially. The first two are used to
construct a feasible solution, while the third one improves the solution
by finding the best feasible routes within different giant tours created
from the current solution. Achamrah et al. (2022) proposed a two-phase
matheuristic that combines mathematical programming with a genetic
algorithm and simulated annealing. The method was developed for the
IRP with transshipments, but the authors also tested it on the standard
IRP. Vadseth et al. (2023) developed a multi-start matheuristic for the
production routing problem (PRP) that uses one MILP to construct
solutions and another to improve them. The first MILP is modified
in each restart, and the method proved efficient for the IRP as well.
Metaheuristics for the IRP have been presented by Alvarez et al. (2018),
and Sakhri et al. (2022). The former introduced a simulated annealing
algorithm and an iterated local search algorithm (the same algorithm
used in Alvarez et al. (2020)) and were able to produce good solutions
for the IRP in a very short time. The latter proposed a memetic
algorithm based on a genetic algorithm and a variable neighborhood
search method.

The SDVRP was originally proposed by Dror and Trudeau (1989,
1990), as a relaxation of the CVRP. It was further shown by Archetti
et al. (2006a) that the theoretical potential savings made by this relax-
ation are as large as 50%. The problem has received significant atten-
tion in the literature, with several exact and heuristic solution methods
proposed. Like the IRP, exact methods for the SDVRP have mainly been
based on B&C, with contributions from Dror et al. (1994), Belenguer
et al. (2000), Archetti et al. (2014), Ozbaygin et al. (2018) and Mu-
nari and Savelsbergh (2022), while the only branch-and-price (B&P)
approach for the SDVRP is proposed by Archetti et al. (2011). The
results show that exact methods are able to solve benchmark instances
of up to 80 customers to optimality, with one 100-customer instance
solved by Archetti et al. (2014).

Due to the limited success of exact methods on larger instances,
a large number of heuristics have been proposed. Most approaches
are either local search-based metaheuristics such as (iterated) local
search (Derigs et al., 2010; Silva et al., 2015), tabu search (Archetti
et al., 2006b), and variable neighborhood search (Aleman et al., 2010),
or evolutionary algorithms such as scatter search (Campos et al., 2008),
genetic algorithms (Wilck and Cavalier, 2012), particle swarm algo-
rithms (Shi et al., 2018), and memetic algorithms (Boudia et al., 2007;
He and Hao, 2022). Only a few attempts have been made to develop
matheuristics for this problem (Chen et al., 2007; Archetti et al., 2008;
Jin et al., 2008), and none of them have produced any of the currently
best-known solutions to the well-established benchmark instances for
the SDVRP (He and Hao, 2022).

As seen in the above review of the literature, there are many
solution methods for the IRP and the SDVRP. Exact solution meth-
ods for both problems are dominated by B&C approaches, while the
best-performing heuristic approaches differ. For the IRP, matheuristics
have been prevalent in recent years, while for the SDVRP, the recent
approaches are mainly based on evolutionary algorithms, inspired by
those used for the CVRP. A possible explanation is that changes to an
IRP solution are seldom local, but may include changing the decisions
in many time periods. This makes the evaluation of a local search
operator very complex and time-consuming, which discourages the use
of local-search based methods for the IRP.

In this paper we present a general B&C embedded matheuristic to
solve the IRP and the SDVRP. Our main contributions are the following:

– We design a new matheuristic that extends the work of Vadseth
et al. (2021) and Vadseth et al. (2023).

– We formulate a new improvement MILP within the improvement
heuristic, allowing for clusters of customers to be removed from,
or inserted into, routes of a solution.

– We develop a new route generating heuristic as part of a con-

struction heuristic.
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– We propose tightened versions of the valid inequalities presented
by Coelho and Laporte (2014).

– We adapt the B&C method by Skålnes et al. (2022) to better
handle large instances.

– We create, to the best of our knowledge, an overview of all
known detailed results of methods that solve the multi-vehicle
benchmark instances of the IRP.

The proposed method has found the best-known solution for 741 of
the 878 multi-vehicle benchmark instances for the IRP, where 247 of
them are strictly better than the previously best-known solutions found
in the literature. Furthermore, 458 of the 741 solutions are proved to
be optimal. This clearly outperforms all other solution methods for the
IRP by a large margin and establishes the proposed method as state-
of-the-art. We have also demonstrated that the proposed matheuristic
is significantly better than the previous version, which won the IRP
track of the DIMACS Implementation Challenge. Furthermore, we have
collected, to the best of our knowledge, all published results from every
published paper on the standard IRP and made this overview easily
available online. We believe that this contribution is of great value to
anyone interested in doing further research on the IRP. In addition, the
proposed method produces results for the SDVRP that are competitive
with the state-of-the-art and finds the best-known solution for 116 out
f 226 benchmark instances, where 14 of them are strictly better than

the previously best-known solutions found in the literature. Finally,
the improvement heuristic is able to improve the best-known solution
for three of the ten large benchmark instances for the CVRP released
by Arnold et al. (2019).

The remainder of the paper is organized as follows. Section 2 defines
the IRP and presents a mathematical formulation of the problem. The
proposed method and each of its components are described in detail in
Section 3, while our computational analyses for the IRP are reported
in Section 4. The computational results for the SDVRP and CVRP are
presented in Section 5. Lastly, our concluding remarks are presented in
Section 6.

2. Problem description and mathematical model

In this section, we provide a detailed description of the IRP and
present a mathematical formulation that both serves as a clear defini-
tion of the problem and forms the base of the B&C method presented in
Section 3.3. To limit the length of the manuscript, we do not provide a
full description of the SDVRP or the CVRP. Instead, we describe the
modifications of the presented model necessary to define the other
routing problems in the relevant sections.

The IRP version considered in this paper consists of a single depot,
denoted 0, that manages the inventories of a set of customers  𝐶 over
a set of discrete time periods  so that each customer 𝑖 ∈  𝐶 in each
time period 𝑡 ∈  can satisfy its demand 𝐷𝑖𝑡 of a single product. The
depot produces 𝑆𝑡 units of this product in time period 𝑡 and has to
deliver the necessary quantities to the customers. To accommodate the
deliveries, the depot must route a fleet of 𝑉 homogeneous vehicles,
each with a capacity to hold 𝑄 units of the product, such that the
sum of transportation costs and inventory holding costs is minimized.
Each customer and the depot 𝑖 ∈  𝐶 ∪ {0} have a lower and upper
inventory level, 𝐿𝑖 and 𝑈𝑖, respectively. The depot and each customer
𝑖 ∈  𝐶 ∪ {0} have an initial inventory level 𝐼𝑖 at the beginning of the
first time period. Let 𝐼𝑖𝑡 = max{𝐼𝑖 −

∑𝑡
𝑠=0 𝐷𝑖𝑠, 0} be the inventory that is

left from the initial inventory at customer 𝑖 ∈  𝐶 in time period 𝑡 ∈  .
This problem can be modeled on a graph 𝐺 = ( ,), where  =

 𝐶 ∪ {0} is the set of nodes and  = {(𝑖, 𝑗) ∈ { ×  } ∣ 𝑖 ≠ 𝑗} is
the set of arcs connecting the nodes in the graph. Let 𝐶𝑖𝑗 be the cost
of traversing arc (𝑖, 𝑗) and let 𝐶𝐻

𝑖 be the unit inventory holding cost of
node 𝑖 ∈  . Let 𝑥𝑖𝑗𝑡 be 1 if arc (𝑖, 𝑗) ∈  is traversed in time period
𝑡 ∈  , and 0 otherwise. Let 𝑠𝑖𝑡 be the inventory level at the depot or
3

a customer 𝑖 ∈  at the end of time period 𝑡 ∈  and let 𝛿𝑖𝑡 be 1
if customer 𝑖 ∈  𝐶 is visited in time period 𝑡 ∈  , and 0 otherwise.
Moreover, let 𝛿0𝑡 be the number of vehicles that leave the depot in time
period 𝑡 ∈  , and let 𝑞𝑖𝑡 be the delivered quantity to customer 𝑖 ∈  𝐶

in time period 𝑡 ∈  . Using this notation, we can formulate the IRP as
the following MILP:

min
∑

(𝑖,𝑗)∈

∑

𝑡∈
𝐶𝑖𝑗𝑥𝑖𝑗𝑡 +

∑

𝑖∈

∑

𝑡∈
𝐶𝐻
𝑖 𝑠𝑖𝑡, (1)

𝑠00 = 𝐼0, (2)

𝑠𝑖0 = 𝐼𝑖, 𝑖 ∈  𝐶 , (3)

𝑠0𝑡 = 𝑆𝑡 −
∑

𝑖∈ 𝐶

𝑞𝑖𝑡 + 𝑠0(𝑡−1), 𝑡 ∈  , (4)

𝑠𝑖𝑡 = 𝑞𝑖𝑡 −𝐷𝑖𝑡 + 𝑠𝑖(𝑡−1), 𝑖 ∈  𝐶 , 𝑡 ∈  , (5)

𝐿0 ≤ 𝑠0𝑡 ≤ 𝑈0, 𝑡 ∈  , (6)

𝐿𝑖 ≤ 𝑠𝑖𝑡 ≤ 𝑈𝑖, 𝑖 ∈  𝐶 , 𝑡 ∈  , (7)

𝑞𝑖𝑡 ≤ 𝑈𝑖 − 𝑠𝑖(𝑡−1), 𝑖 ∈  𝐶 , 𝑡 ∈  , (8)
∑

𝑖∈ 𝐶

𝑞𝑖𝑡 ≤ 𝑄𝛿0𝑡, 𝑡 ∈  , (9)

𝑞𝑖𝑡 ≤ min{𝑈𝑖 − 𝐼𝑖𝑡, 𝑄}𝛿𝑖𝑡, 𝑖 ∈  𝐶 , 𝑡 ∈  , (10)
∑

𝑗∈⧵{𝑖}

𝑥𝑖𝑗𝑡 = 𝛿𝑖𝑡, 𝑖 ∈  , 𝑡 ∈  , (11)

∑

𝑗∈⧵{𝑖}

𝑥𝑖𝑗𝑡 =
∑

𝑗∈⧵{𝑖}

𝑥𝑗𝑖𝑡, 𝑖 ∈  , 𝑡 ∈  , (12)

∑

(𝑖,𝑗)∈(∶)
𝑥𝑖𝑗𝑡 ≤

∑

𝑖∈
𝛿𝑖𝑡 − 𝛿𝑚𝑡,  ⊂  𝐶 , || ≥ 2, 𝑡 ∈  , 𝑚 ∈  . (13)

∑

(𝑖,𝑗)∈(∶⧵)

𝑄𝑥𝑖𝑗𝑡 ≥
∑

𝑖∈
𝑞𝑖𝑡,  ⊂  𝐶 , || ≥ 2, 𝑡 ∈  , (14)

𝑞𝑖𝑡 ≥ 0, 𝑖 ∈  𝐶 , 𝑡 ∈  , (15)

𝑖𝑡 ∈ {0, 1}, 𝑖 ∈  𝐶 , 𝑡 ∈  , (16)

0𝑡 ∈ {0, 1,… , 𝑉 }, 𝑡 ∈  , (17)

𝑖𝑗𝑡 ∈ {0, 1}, (𝑖, 𝑗) ∈ , 𝑡 ∈  , (18)

he sum of the transportation cost and the inventory holding cost
s minimized in objective function (1). The inventory balance at the
epot and at the customers are enforced by constraints (4) and (5),
espectively. Constraints (6) and (7) ensure that the inventory levels
t the depot and at the customers always stay between their lower
nd upper limits. The ML inventory policy is enforced by constraints
8), while constraints (9) state that the depot never delivers more than
he fleet capacity to the customers in a given time period. Constraints
10) ensure that a delivery to a given customer only can occur if
he customer is visited. Constraints (11) are the degree constraints,
nd correct flow of vehicles between nodes is ensured by constraints
12). Constraints (13) and (14) impose the standard and capacitated
ubtour elimination constraints, respectively, where ( ∶  ) = {(𝑖, 𝑗) ∶
∈  , 𝑗 ∈  ⧵ {𝑖}} denotes the set of arcs going from a node in set
to a node in set  . Note that constraints (13) are not necessary

or defining the problem, but preliminary testing indicated that they
nhance performance. Finally, constraints (15)–(18) define the variable
omains.

. The branch-and-cut embedded matheuristic

The branch-and-cut embedded matheuristic presented in this paper
ncludes a construction heuristic, an improvement heuristic, and a B&C
ethod. The solution method is illustrated in Fig. 1 and begins by con-

tructing a feasible solution using a construction heuristic followed by
n improvement heuristic. This solution is then used as an initial primal
olution for the B&C method. Whenever the B&C method encounters a
ew incumbent solution, it is fed to the improvement heuristic, and
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Fig. 1. An overview of the proposed solution method.
i
a

ny improved solution found by the improvement heuristic is passed
ack to the B&C method. This cycle between the B&C method and the
mprovement heuristic continues until optimality is proven or a time
imit is reached.

The rest of this section is organized as follows: In Sections 3.1–3.3
e present each part of the solution method designed for the IRP. First,

he construction heuristic is described in detail in Section 3.1, before
ection 3.2 introduces the improvement heuristic. The B&C method is
resented in Section 3.3. Finally, we describe the small modifications
eeded to apply the solution method to the SDVRP in Section 3.4.

.1. Construction heuristic

The construction heuristic is an extension of the construction heuris-
ic presented in Vadseth et al. (2021). The goal of the construction
euristic is to construct a (good) feasible solution to the IRP. This is
one by creating a small set of promising routes ̂ and then solving a

MILP to select a subset of these routes that form a feasible solution to
the IRP.

The route-based MILP is a Dantzig–Wolfe reformulation of the math-
ematical model given in Section 2, where each route 𝑟 ∈ ̂ corresponds
to an extreme point of the polytope defined by constraints (12), (13)
and the linear relaxation of (18), describing the set of Hamiltonian
cycles through a subset of the nodes including the depot. Note that this
formulation is equivalent to the formulation given in Section 2 if ̂
ncludes all feasible routes.

The parameter 𝐴𝑖𝑗𝑟 is 1 if route 𝑟 traverses the arc (𝑖, 𝑗) ∈ ,
nd 0 otherwise. Hence, the cost of route 𝑟 ∈ ̂ can be defined as
𝑇
𝑟 =

∑

(𝑖,𝑗)∈ 𝐶𝑖𝑗𝐴𝑖𝑗𝑟. Further, if route 𝑟 ∈ ̂ is used by a vehicle in
ime period 𝑡 ∈  then variable 𝜆𝑟𝑡 is 1, and 0 otherwise. In addition,
he quantity product loaded onboard a vehicle traversing arc (𝑖, 𝑗) ∈ 
n time period 𝑡 ∈  is denoted 𝑙𝑖𝑗𝑡. With this notation, the model can
e formulated as follows:

min
∑

𝑖∈

∑

𝑡∈
𝐶𝐻
𝑖 𝑠𝑖𝑡 +

∑

𝑟∈̂

∑

𝑡∈
𝐶𝑇
𝑟 𝜆𝑟𝑡 (19)

onstraints (2)–(8),
∑

𝑗∈
𝑙𝑗𝑖𝑡 − 𝑞𝑖𝑡 −

∑

𝑗∈
𝑙𝑖𝑗𝑡 = 0, 𝑖 ∈  𝐶 , 𝑡 ∈  , (20)

𝑖𝑗𝑡 −𝑄
∑

𝑟∈̂

𝐴𝑖𝑗𝑟𝜆𝑟𝑡 ≤ 0, (𝑖, 𝑗) ∈ , 𝑡 ∈  , (21)

∑

𝑟∈̂

∑

𝑗∈
𝐴𝑖𝑗𝑟𝜆𝑟𝑡 ≤ 1, 𝑖 ∈  𝐶 , 𝑡 ∈  , (22)

∑

𝑟∈̂

𝜆𝑟𝑡 ≤ 𝑉 , 𝑡 ∈  , (23)

𝜆𝑟𝑡 ∈ {0, 1}, 𝑟 ∈ ̂, 𝑡 ∈  , (24)

𝑞𝑖𝑡 ≥ 0, 𝑖 ∈  𝐶 , 𝑡 ∈  , (25)

𝑙𝑖𝑗𝑡 ≥ 0, (𝑖, 𝑗) ∈ , 𝑡 ∈  . (26)
4

The transportation and inventory holding costs are minimized in the
objective function (19). Constraints (20) are flow balance constraints.
Constraints (21) guarantee that the load on an arc does not exceed
the capacity of a vehicle. In addition, constraints (22) ensure that a
customer is not visited more than once in the same time period, while
constraints (23) limit the number of routes used in a solution to be
no more than the number of vehicles available. Finally, the variable
domains are defined by constraints (24)–(26).

To strengthen the linear relaxation of the model, we propose new
tightened versions of the three classes of valid inequalities presented
in Coelho and Laporte (2014). The original inequalities are based on
the fact that there has to be at least one visit to a customer in time
periods {𝑡1,… , 𝑡2} ∈  if the sum of the demands in time period 𝑡1 to
𝑡2 is greater than the maximum inventory limit:

∑

𝑟∈̂

𝑡2
∑

𝑡′=𝑡1

∑

𝑗∈
𝐴𝑖𝑗𝑟𝜆𝑟𝑡′ ≥

⎡

⎢

⎢

⎢

∑𝑡2
𝑡′=𝑡1

𝐷𝑖𝑡′ − 𝑈𝑖

𝑈𝑖

⎤

⎥

⎥

⎥

, 𝑖 ∈  𝐶 , 𝑡1, 𝑡2 ∈  , 𝑡2 ≥ 𝑡1.

(27)

The valid inequalities (27) can be further strengthened by replac-
ng the upper inventory limit 𝑈𝑖 with the actual inventory 𝑠𝑖(𝑡1−1)
nd instead of dividing by the upper inventory limit 𝑈𝑖, divide by

min{𝑄,𝑈𝑖,
∑𝑡2

𝑡′=𝑡1
𝐷𝑖𝑡′}. This gives three different classes of valid in-

equalities. However, they can be further strengthened by realizing that
deliveries are performed before consumption according to the problem
description of the standard IRP (Archetti et al., 2007) and constraints
(8) dictate that the maximum inventory held at a node at the beginning
of a time period 𝑡 is 𝑈𝑖 −𝐷𝑖(𝑡−1). This gives us two tightened classes of
valid inequalities (two of the classes presented in Coelho and Laporte
(2014) can in fact be merged into one):

∑

𝑟∈̂

𝑡2
∑

𝑡′=𝑡1

∑

𝑗∈
𝐴𝑖𝑗𝑟𝜆𝑟𝑡′

≥
⎡

⎢

⎢

⎢

∑𝑡2
𝑡′=𝑡1

𝐷𝑖𝑡′ − 𝑈𝑖 −𝐷𝑖(𝑡1−1)

min{𝑄,𝑈𝑖 −𝐷𝑖(𝑡1−1)}

⎤

⎥

⎥

⎥

, 𝑖 ∈  𝐶 , 𝑡1, 𝑡2 ∈  , 𝑡2 ≥ 𝑡1, (28)

∑

𝑟∈̂

𝑡2
∑

𝑡′=𝑡1

∑

𝑗∈
𝐴𝑖𝑗𝑟𝜆𝑟𝑡′

≥

∑𝑡2
𝑡′=𝑡1

𝐷𝑖𝑡′ − 𝑠𝑖(𝑡1−1)

min{𝑄,𝑈𝑖 −𝐷𝑖(𝑡1−1),
∑𝑡2

𝑡′=𝑡1
𝐷𝑖𝑡′}

, 𝑖 ∈  𝐶 , 𝑡1, 𝑡2 ∈  , 𝑡2 ≥ 𝑡1. (29)

In addition, if 𝑡1 = 1, we can replace 𝑈𝑖−𝐷𝑖(𝑡1−1) in the numerator of
valid inequalities (28) and 𝑠𝑖(𝑡1−1) in the numerator of valid inequalities
(29) with 𝐼𝑖 (the actual inventory held at the start of time period 𝑡1).

3.1.1. Route generation
Two methods are used, one of them new to the literature, to

̂
generate routes for the set . The first method, called the giant tour



Computers and Operations Research 159 (2023) 106353J. Skålnes et al.

i
a

i
t
t
c
F
e
t
f
a
p
t

3

i
a
s
p
o
t
o
i

i
s

1
1
1
1
1
1
1
1
2
2
2
2
2

r
ℎ
(
o
a
b
o
v
m
a
(

t
o
H
T

method, is taken from Vadseth et al. (2021). Here, we find the optimal
solution of a traveling salesman problem (giant tour) defined on the
graph 𝐺𝐶 = { 𝐶 ,𝐶}, where 𝐶 = {(𝑖, 𝑗) ∈  𝐶 × 𝐶

|𝑖 ≠ 𝑗} is the set
of arcs connecting every pair of customers. Each customer in the giant
tour is assigned a delivered quantity equal to a predefined percentage
𝑃 of its inventory capacity. The giant tour with these corresponding
delivered quantities is then converted to a capacitated vehicle routing
problem (CVRP) solution by applying the splitting algorithm of Vidal
(2016). The routes of the CVRP solutions are added to ̂. The allocation
of delivered quantities is repeated iteratively with a decreasing 𝑃 , so
that we generate both short and long routes. We refer to Vadseth et al.
(2021) for further details.

The second method, called the shifting assignment method, is out-
lined in Algorithm 1. Let 𝑞𝑖𝑡 and 𝑓𝑣𝑡 denote the quantity to deliver to
customer 𝑖, and the load onboard vehicle 𝑣, respectively, in time period
𝑡. Further, let 𝑣𝑖𝑡 store the index of the vehicle serving customer 𝑖 in
time period 𝑡, with an index of 0 indicating that the customer is not
served in that time period. We also introduce  = {1,… , 𝑉 } as the set
of vehicles. The algorithm first assigns values to 𝑞𝑖𝑡 on line 2, so that no
product is assigned until the initial inventory runs out and from then on
is assigned the customer’s demand in each time period that cannot be
covered by the initial inventory. Then, on lines 3–6, each 𝑞𝑖𝑡 is assigned
to the vehicle 𝑣𝑖𝑡 with the lowest load onboard 𝑓𝑣𝑡 (line 4), and the
vehicle load is updated (line 5).

Once the initial assignments are determined, the shifting assignment
part of Algorithm 1 shifts delivery quantities from time period 𝑡 to time
period 𝑡−1 on lines 8–21. It does this by iterating over each time period
given that at least one vehicle departs in the previous time period,
and each customer with a positive quantity 𝑞𝑖𝑡 (lines 8 and 9). If that
customer is not serviced in the previous time period, the quantity 𝑞𝑖𝑡 is
added to the vehicle with the largest load that can fit the quantity (lines
10–12). Otherwise, it is added to the vehicle already serving customer
𝑖 in the previous time period, given that this vehicle has sufficient
space (line 13). Lines 14–18 update the vehicle loads and the delivered
quantities. Finally, a CVRP instance is solved for each time period 𝑡
with delivery quantities 𝑞𝑖𝑡, 𝑖 ∈  𝐶 as input (line 23). Note that for
the CVRP instance in time period 𝑡, only customers with 𝑞𝑖𝑡 > 0 are
ncluded. The resulting routes from the solutions of the CVRP instances
re then added to ̂ (line 24).

As long as 𝑞𝑖𝑡 ≤ 𝑄, 𝑖 ∈  𝐶 , 𝑡 ∈  and 𝑓𝑣𝑡 ≤ 𝑄, 𝑣 ∈ , 𝑡 ∈  after the
nitial assignment phase, the shifting assignment method is guaranteed
o produce feasible CVRP instances. For readability, we have assumed
hat this is always the case in Algorithm 1. However, if this is not the
ase, Algorithm 1 will terminate, and no CVRP instances are solved.
or this work, we use the hybrid genetic algorithm presented in Vidal
t al. (2012) to solve the CVRP instances. More specifically, we use
he open-source implementation which is described in Vidal (2022). If
easible CVRP instances are created, we know that the resulting routes
nd 𝑞𝑖𝑡, 𝑖 ∈  𝐶 , 𝑡 ∈  make up a feasible solution to the original
roblem and can be used as an initial primal solution when solving
he route-based model.

.2. Improvement heuristic

The improvement heuristic consists of solving a MILP that aims to
mprove a feasible solution within a well-defined neighborhood, for

finite number of iterations. In each iteration, the MILP explores a
et of modifications of the routes of a feasible solution to the original
roblem. In the first iteration, the routes originate from the solution
btained by the construction heuristic, and for the remaining iterations,
he routes are taken from the solution of the previous iteration. An
utline of the improvement heuristic is given in Algorithm 2. The
mprovement MILP is presented in Section 3.2.1.

Algorithm 2 gets a feasible solution 𝑥 as input and sets this to the
ncumbent solution 𝑥𝑏𝑒𝑠𝑡 (lines 1 and 2). It then populates the route

̂

5

et  with the routes from this solution using the 𝑔𝑒𝑡𝑅𝑜𝑢𝑡𝑒𝑠() function p
Algorithm 1 The Shifting Assignment Method
1: *The initial assignment part*
2: 𝑞𝑖𝑡 = max{𝐷𝑖𝑡 − 𝐼𝑖𝑡, 0}, 𝑡 ∈  , 𝑖 ∈  𝐶

3: for 𝑖 ∈  𝐶 , 𝑡 ∈  do
4: 𝑣𝑖𝑡 = argmin𝑣∈{𝑓𝑣𝑡}
5: 𝑓𝑣𝑖𝑡 𝑡 = 𝑓𝑣𝑖𝑡 𝑡 + 𝑞𝑖𝑡
6: end for
7: *The shifting assignments part*
8: for 𝑡 ∈  ⧵ {1} : ∑𝑣∈ 𝑓𝑣(𝑡−1) ≠ 0 do
9: for 𝑖 ∈  𝐶 : 𝑞𝑖𝑡 > 0 do

10: if 𝑣𝑖(𝑡−1) = 0 then
11: 𝑣𝑖(𝑡−1) = argmax𝑣∈{𝑓𝑣(𝑡−1)|𝑓𝑣(𝑡−1) + 𝑞𝑖𝑡 ≤ 𝑄}
2: end if
3: if 𝑓𝑣𝑖(𝑡−1)(𝑡−1) + 𝑞𝑖𝑡 ≤ 𝑄 then
4: 𝑓𝑣𝑖(𝑡−1)(𝑡−1) = 𝑓𝑣𝑖(𝑡−1)(𝑡−1) + 𝑞𝑖𝑡
5: 𝑓𝑣𝑖𝑡 𝑡 = 𝑓𝑣𝑖𝑡 𝑡 − 𝑞𝑖𝑡
6: 𝑞𝑖(𝑡−1) = 𝑞𝑖(𝑡−1) + 𝑞𝑖𝑡
7: 𝑞𝑖𝑡 = 0
8: 𝑣𝑖𝑡 = 0
9: end if
0: end for
1: end for
2: *The CVRP part*
3: Solve | | CVRP instances with 𝑞 as input
4: Add all routes from the CVRP solutions to ̂

Algorithm 2 Improvement heuristic
1: Input: 𝑥
2: 𝑥𝑏𝑒𝑠𝑡 = 𝑥
3: ̂ = 𝑔𝑒𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑥𝑏𝑒𝑠𝑡)
4: for ℎ ∈ {1, 2} do
5: for 𝐼𝑇ℎ iterations do
6: if ℎ = 2 then
7: ̂ = ̂

⋃

𝑉 𝑅𝑃 (𝑥𝑏𝑒𝑠𝑡)
8: end if
9: 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑀𝐼𝐿𝑃 (̂)

10: if 𝑓 (𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡) < 𝑓 (𝑥𝑏𝑒𝑠𝑡) then
11: 𝑥𝑏𝑒𝑠𝑡 = 𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡

12: ̂ = 𝑔𝑒𝑡𝑅𝑜𝑢𝑡𝑒𝑠(𝑥𝑏𝑒𝑠𝑡)
13: else
14: Break
15: end if
16: end for
17: end for
18: return 𝑥𝑏𝑒𝑠𝑡

(line 3). The main part of the heuristic is described on lines 4–17,
where the algorithm iterates between solving the improvement MILP in
the function 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑀𝐼𝐿𝑃 (̂) and updating the route set ̂. The
oute set is updated in two different ways, controlled by the parameter
(line 4), with 𝐼𝑇ℎ setting an upper limit on the number of iterations

line 5). If ℎ = 1 the improvement MILP is solved using only the routes
f the solution from the previous iteration, while if ℎ = 2 we add
dditional routes obtained by calling the function 𝑉 𝑅𝑃 (𝑥) described
elow. Once the route set is populated, the MILP is solved (line 9) to
btain a new current solution. If this solution has a better objective
alue than 𝑥𝑏𝑒𝑠𝑡 (line 10), it is set as the new best solution and its routes
ake up the new route set. Otherwise, we either increase ℎ or stop the

lgorithm (line 14) if ℎ = 2. Finally, the best solution 𝑥𝑏𝑒𝑠𝑡 is returned
line 18).

The function 𝑉 𝑅𝑃 (𝑥) takes a feasible solution 𝑥 as input and solves
hree CVRP instances for each time period 𝑡 ∈  , where the demand
f each customer is set equal to its delivered quantity in time period 𝑡.
owever, the vehicle capacity 𝑄 is set differently in the three instances.
he motivation for this is that quantities can be shifted between time
eriods in the IRP, and better routing decisions can be obtained by
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Fig. 2. A route consisting of the depot and nodes 𝑎, 𝑑 and 𝑒 is changed to a route consisting of the depot and nodes 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 using cluster insertion. The cost of the route
s then changed from 𝐶0𝑎 + 𝐶𝑎𝑑 + 𝐶𝑑𝑒 + 𝐶𝑒0 to 𝐶0𝑎 + 𝐶𝑎𝑏 + 𝐶𝑏𝑐 + 𝐶𝑐𝑑 + 𝐶𝑑𝑒 + 𝐶𝑒0.
aking small adjustments. By varying the vehicle capacity 𝑄, we mimic
he effect of shifting quantities between time periods and are hopefully
ble to find better routes. The capacity is adjusted by multiplying 𝑄
ith 0.97, 1.03, and 1.06 in the three CVRP instances, respectively.
he number of vehicles used in the solution of such a CVRP instance
ight decrease or increase compared with the corresponding time
eriod of the current IRP solution, depending on whether the adjusted
ehicle capacity 𝑄𝑛𝑒𝑤 is greater or smaller than the actual vehicle
apacity, respectively. This can be interpreted as a temporary expansion
f the search space neighborhood, where we might find routes that the
mprovement MILP otherwise would not be able to encounter. Even
hough the aim of this procedure is to avoid getting stuck in a local
ptimum, we do not consider it disruptive enough to truly represent a
iversification mechanism.

.2.1. The improvement MILP
The improvement MILP is a modified version of the route-based

odel presented in Section 3.1, where the routes in ̂ can be modified
y inserting or removing customers. All alterations of the original
outes, even in cases where multiple changes are made simultaneously,
re evaluated correctly in the objective function, i.e., an improved
olution of the improvement MILP is also an improved solution of the
riginal problem.

To present the improvement MILP, we introduce some additional
otation. We let the set 𝑟 denote the customers visited on route 𝑟 ∈ ̂,
hile  𝑟 =  𝐶 ⧵𝑟 is the complement set. To add customers to routes
e introduce a set of clusters , where a cluster 𝑐 ∈  is a subset of

the customers, 𝑐 ⊆  𝐶 . The subset 𝑟 of clusters associated with route
𝑟 is defined as 𝑟 = {𝑐 ∈ |𝑐 ∩𝑟 = ∅}. We also introduce the variable
𝑐𝑟𝑡 that is 1 if cluster 𝑐 ∈ 𝑟 is inserted into route 𝑟 ∈ ̂ in time period
∈  , and 0 otherwise. A cluster is always inserted into the least cost
osition on the route, 𝑝∗𝑟 (𝑐), calculated as:

𝑝∗𝑟 (𝑐) = arg min
𝑝∈{1,…,|𝑟|+1}

{𝐶𝑆𝑃 (𝑖𝑟(𝑝−1), 𝑐, 𝑖𝑟(𝑝))−𝐶𝑖𝑟(𝑝−1),𝑖𝑟(𝑝)}, 𝑟 ∈ ̂, 𝑐 ∈ 𝑟,

(30)

where the function 𝑖𝑟(𝑝) gives the node placed in position 𝑝 in route
𝑟, and 𝐶𝑆𝑃 (𝑖𝑠𝑡𝑎𝑟𝑡, 𝑐, 𝑖𝑒𝑛𝑑 ) returns the cost of the shortest path starting in
node 𝑖𝑠𝑡𝑎𝑟𝑡 ∈  , traveling through all customers in cluster 𝑐 ∈  and
ending in node 𝑖𝑒𝑛𝑑 ∈  . Please note that the depot has both position 0
(the first position) and position |𝑟|+1 (the last position) in all routes
𝑟 ∈ ̂. The cost of adding cluster 𝑐 ∈ 𝑟 to route 𝑟 ∈ ̂, 𝐶𝐼

𝑐𝑟, is calculated
as:

𝐶𝐼
𝑐𝑟 = 𝐶𝑆𝑃 (𝑖𝑟(𝑝∗𝑟 (𝑐) − 1), 𝑐, 𝑖𝑟(𝑝∗𝑟 (𝑐))) − 𝐶𝑖𝑟(𝑝∗𝑟 (𝑐)−1),𝑖𝑟(𝑝∗𝑟 (𝑐)), 𝑟 ∈ ̂, 𝑐 ∈ 𝑟.

(31)

Fig. 2 shows an example where cluster 𝑐 = {𝑏, 𝑐} (red ellipse) is
inserted into the route 0 → 𝑎 → 𝑑 → 𝑒 → 0 (dotted arrows). The
cheapest position to insert cluster 𝑐 is 𝑝𝑟(𝑐) = 2 which is between node
𝑎 and 𝑑. In addition, the shortest route starting in node 𝑎, visiting
6

all nodes in 𝑐, and ending in node 𝑑 is 𝑎 → 𝑏 → 𝑐 → 𝑑 with cost
𝐶𝑆𝑃 (𝑎, 𝑐, 𝑑) = 𝐶𝑎𝑏+𝐶𝑏𝑐+𝐶𝑐𝑑 . The new route is marked with solid arrows.

In this work, a 𝑘-means algorithm (Ahmed et al., 2020), with a 𝑘-
value = ⌊| 𝐶

|∕2⌋ dictating the number of clusters, has been used to
produce clusters with cardinality greater than 1. All clusters 𝑐 produced
by the algorithm are placed in the set 𝑘, given that the size of 𝑐 is in the
range [2,… , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒]. We set the parameter 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 = 3, which
is the largest cluster size we want to include in the model. We can then
set  =

{
⋃

𝑖∈𝐶 {𝑖}
⋃

𝑘}.
Removing customers from a route is modeled by introducing vari-

ables 𝑤𝜙
𝑝𝑟𝑡 which is 1 if exactly 𝜙 ∈ 𝛷 consecutive customers are

removed from route 𝑟 ∈ ̂ starting from position 𝑝 ∈ 𝜙
𝑟 in time period

𝑡 ∈  , and 0 otherwise. We introduce the parameter 𝑀 as the maximum
number of consecutive customers that can be removed and hence define
the set 𝛷 = {1,… ,𝑀}. The set 𝜙

𝑟 contains all positions 𝑝 in route 𝑟
from where 𝜙 consecutive customers can be removed. For each route
𝑟 ∈ ̂ in time period 𝑡 ∈  we let the variable 𝑢𝑖𝑟𝑡 be 1 if node 𝑖 ∈ 𝑟 is
removed from route 𝑟, and 0 otherwise. The cost reduction of removing
𝜙 customers from route 𝑟 starting at position 𝑝 is calculated as:

𝐶𝑅
𝜙𝑝𝑟 =

𝑝+𝜙
∑

𝑝′=𝑝
𝐶𝑖𝑟(𝑝′−1),𝑖𝑟(𝑝′) − 𝐶𝑖𝑟(𝑝−1),𝑖𝑟(𝑝+𝜙), 𝑟 ∈ ̂, 𝜙 ∈ 𝛷, 𝑝 ∈ 𝜙

𝑟 . (32)

Fig. 3 shows the cost calculations of a route in the improvement
MILP if a cluster consisting of a single customer (𝑒) is added to a route
and a sequence of three consecutive customers (𝜙 = 3) starting from
position 𝑝 = 1 are removed from the same route. The original route
0 → 𝑎 → 𝑏 → 𝑐 → 𝑑 → 0 is marked with dotted arrows. The new route
is marked with solid arrows.

To formulate the improvement MILP, we must also define the
variable 𝑞𝑖𝑟𝑡 which denotes the quantity delivered by route 𝑟 to node 𝑖
in time period 𝑡. The improvement MILP can be formulated as follows:

min
∑

𝑖∈𝐶

∑

𝑡∈
𝐶𝐻
𝑖 𝑠𝑖𝑡 +

∑

𝑟∈̂

∑

𝑡∈
𝐶𝑇
𝑟 𝜆𝑟𝑡 −

∑

𝑟∈̂

∑

𝜙∈𝛷

∑

𝑝∈𝑃𝜙
𝑟

∑

𝑡∈
𝐶𝑅
𝜙𝑝𝑟𝑤

𝜙
𝑝𝑟𝑡

+
∑

𝑟∈̂

∑

𝑐∈𝑟

∑

𝑡∈
𝐶𝐼
𝑐𝑟𝑧𝑐𝑟𝑡 (33)

Constraints (2)–(8),

𝑞𝑖𝑡 =
∑

𝑟∈̂

𝑞𝑖𝑟𝑡, 𝑖 ∈ 𝑟, 𝑡 ∈  , (34)

𝑞𝑖𝑟𝑡 − min(𝑄,𝑈𝑖)(1 − 𝑢𝑖𝑟𝑡) ≤ 0, 𝑟 ∈ ̂, 𝑖 ∈ 𝑟, 𝑡 ∈  , (35)

𝑞𝑖𝑟𝑡 − min(𝑄,𝑈𝑖)
∑

𝑐∈𝑟∶𝑖∈𝑐
𝑧𝑐𝑟𝑡 ≤ 0, 𝑟 ∈ ̂, 𝑖 ∈  𝑟, 𝑡 ∈  , (36)

∑

𝑖∈𝐶

𝑞𝑖𝑟𝑡 ≤ 𝑄𝜆𝑟𝑡, 𝑟 ∈ ̂, 𝑡 ∈  , (37)

∑

𝑟∈̂∶𝑖∈𝑟

(𝜆𝑟𝑡 − 𝑢𝑖𝑟𝑡)

+
∑ ∑

𝑧𝑐𝑟𝑡 ≤ 1, 𝑖 ∈  𝐶 , 𝑡 ∈  , (38)

𝑟∈̂∶𝑖∈ 𝑟

𝑐∈𝑟
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Fig. 3. A route consisting of the depot and nodes 𝑎, 𝑏, 𝑐 and 𝑑 is changed to a route consisting of the depot and nodes 𝑑 and 𝑒 using a single insertion and multiple removals in
row. The cost of the route is then changed from 𝐶0𝑎 + 𝐶𝑎𝑏 + 𝐶𝑏𝑐 + 𝐶𝑐𝑑 + 𝐶𝑑0 to 𝐶0𝑑 + 𝐶𝑑𝑒 + 𝐶𝑒0.
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∑

𝑐∈𝐶𝑟∶𝑖∈𝑐
𝑧𝑐𝑟𝑡 ≤ 𝜆𝑟𝑡, 𝑟 ∈ ̂, 𝑖 ∈  𝑟, 𝑡 ∈  , (39)

𝑖𝑟𝑡 ≤ 𝜆𝑟𝑡, 𝑟 ∈ ̂, 𝑖 ∈ 𝑟, 𝑡 ∈  , (40)
𝑝+𝜙−1
∑

𝑝′=𝑝
𝑢𝑖𝑟(𝑝′)𝑟𝑡 ≥ 𝜙𝑤𝜙

𝑝𝑟𝑡, 𝜙 ∈ 𝛷, 𝑟 ∈ ̂, 𝑝 ∈ 𝜙
𝑟 , 𝑡 ∈  , (41)

∑

𝑐∈𝑟∶𝑝∗𝑟 (𝑐)=𝑝
𝑧𝑐𝑟𝑡

+
∑

𝜙∈𝛷

𝑝
∑

𝑝′=𝑝−𝜙+1
𝑤𝜙

𝑝′𝑟𝑡 ≤ 1, 𝑟 ∈ ̂, 𝑝 ∈ 1,… , |𝑟| + 1, 𝑡 ∈  , (42)

∑

𝑟∈̂

𝜆𝑟𝑡 ≤ 𝑉 , 𝑡 ∈  , (43)

𝑟𝑡 ∈ {0, 1}, 𝑟 ∈ ̂, 𝑡 ∈  , (44)

𝑖𝑟𝑡 ∈ {0, 1}, 𝑟 ∈ ̂, 𝑖 ∈ 𝑟, 𝑡 ∈  , (45)

𝑐𝑟𝑡 ∈ {0, 1}, 𝑟 ∈ ̂, 𝑐 ∈ , 𝑡 ∈  , (46)
𝜙
𝑝𝑟𝑡 ∈ {0, 1}, 𝜙 ∈ 𝛷, 𝑟 ∈ ̂, 𝑝 ∈ 𝜙

𝑟 , 𝑡 ∈  , (47)

𝑖𝑟𝑡 ≥ 0, 𝑖 ∈  𝐶 , 𝑟 ∈ ̂, 𝑡 ∈  . (48)

The objective function (33) minimizes the sum of the transporta-
ion and inventory holding costs over the entire planning horizon.
onstraints (34) link the old 𝑞𝑖𝑡 variable with the new 𝑞𝑖𝑟𝑡 variable.
onstraints (35) and (36) state that a customer can only be served if

t is visited, while constraints (37) ensure that the vehicle capacity is
espected. The fact that a customer can only be served at most once
er time period is guaranteed by constraints (38). Constraints (39) and
40) enforce that a customer cannot be added to or removed from an
nused route. Constraints (41) specify that all 𝑢𝑖𝑟𝑡 variables in sequence
starting at position 𝑝 are set to 1, if 𝑤𝜙

𝑝𝑟𝑡 is 1, and constraints (42) state
hat for each position 𝑝 in route 𝑟, at most one cluster can be inserted or
t most one sequence including this position can be set to 1. Constraints
43) ensure that the fleet capacity is respected. Constraints (44)–(48)
efine the variable domains.

To ensure that the possible route modifications are evaluated cor-
ectly in the objective function, we must enforce some limitations on
hich modifications that can be allowed. This is achieved by adding

he following constraints:

𝑖𝑟(𝑝∗𝑟 (𝑐)−1)𝑟𝑡 + 𝑢𝑖𝑟(𝑝∗𝑟 (𝑐))𝑟𝑡 ≤ 2(1 − 𝑧𝑐𝑟𝑡), 𝑟 ∈ ̂, 𝑐 ∈ 𝑟, 𝑡 ∈  , (49)

𝑖𝑟(𝑝−1)𝑟𝑡 + 𝑢𝑖𝑟(𝑝+𝜙)𝑟𝑡 ≤ 2(1 −𝑤𝜙
𝑝𝑟𝑡), 𝜙 ∈ 𝛷, 𝑟 ∈ ̂, 𝑝 ∈ 𝜙

𝑟 , 𝑡 ∈  . (50)

Constraints (49) make sure that if cluster 𝑐 is added to route 𝑟 then
he customers in positions 𝑝∗𝑟 (𝑐) − 1 and 𝑝∗𝑟 (𝑐) must be included in the
oute. Constraints (50) state that if a sequence of nodes is removed from
he route, then the node preceding and succeeding the sequence cannot
e removed. Please note that the improvement MILP assumes that the
riangle inequality holds. Note that the 1’s in constraints (35), (42),
49), and (50) can be replaced by 𝜆𝑟𝑡, thus tightening the constraints.
owever, preliminary testing showed that this had no significant effect
7

hen solving the MILP. c
.3. Branch-and-cut method

In this section, we present the B&C method used in our computa-
ional experiments. A B&C method is an extension of the well-known
ranch-and-bound (B&B) algorithm, where cutting planes or valid in-
qualities may be added to the linear relaxation of the model at every
ode of the B&B tree that does not satisfy the integer requirements. We
se the customer schedule (CS) formulation presented by Skålnes et al.
2022), which was shown to generally perform better than the formu-
ation defined by (1)–(18) in a B&C setting. Furthermore, Archetti and
jubić (2022) showed that there are no advantages of using disaggre-
ated formulations, i.e., formulations with a vehicle index, compared
o aggregated formulations such as those presented in this paper.

The CS formulation is a Dantzig–Wolfe reformulation of the poly-
edron defined by the linear relaxation of constraints (3), (5), (7),
8), (10), (15) and (16), which connects the customer visits to the
elivered quantities. For each customer 𝑖 ∈  𝐶 , we define the set of
ustomer schedules 𝛺𝑖, i.e., the set of extreme points in the polyhedron
entioned. For each customer 𝑖 ∈  𝐶 and corresponding customer

chedule 𝜔 ∈ 𝛺𝑖, let the use of customer schedule 𝜔 for customer 𝑖 be
enoted 𝑦𝑖𝜔, let 𝐵𝑖𝑡𝜔 be 1 if customer 𝑖 is visited in time period 𝑡 ∈  by
sing customer schedule 𝜔, and 0 otherwise, let 𝑄𝑖𝑡𝜔 be the delivered
uantity to customer 𝑖 in time period 𝑡 ∈  by using customer schedule
, and let 𝑆𝑖𝑡𝜔 be the inventory level at customer 𝑖 in time period 𝑡 ∈ 

f customer schedule 𝜔 is used. Using the notation defined above, we
ormulate the IRP as the following MILP:

in
∑

(𝑖,𝑗)∈

∑

𝑡∈
𝐶𝑖𝑗𝑥𝑖𝑗𝑡 +

∑

𝑖∈𝐶

∑

𝑡∈

∑

𝜔∈𝛺𝑖

𝐶𝐻
𝑖 𝑆𝑖𝑡𝜔𝑦𝑖𝜔 +

∑

𝑡∈
𝐶𝐻
0 𝑠0𝑡 (51)

onstraints (2), (4), (6), (9), (11)–(18),

𝑖𝑡 =
∑

𝜔∈𝛺𝑖

𝑄𝑖𝑡𝜔𝑦𝑖𝜔, 𝑡 ∈  , 𝑖 ∈  𝐶 , (52)

𝑖𝑡 =
∑

𝜔∈𝛺𝑖

𝐵𝑖𝑡𝜔𝑦𝑖𝜔, 𝑡 ∈  , 𝑖 ∈  𝐶 , (53)

∑

𝜔∈𝛺𝑖

𝑦𝑖𝜔 = 1, 𝑖 ∈  𝐶 , (54)

𝑦𝑖𝜔 ≥ 0, 𝑖 ∈  𝐶 , 𝜔 ∈ 𝛺𝑖. (55)

The objective function (51) minimizes the sum of the transportation
ost, the inventory holding cost at the customers, and the inventory
olding cost at the depot. Note that we can omit constraints (3), (5),
7) and (8), because they are implicitly handled within the customer
chedules. Constraints (52) and (53) link the original decision variables
or delivered quantities and customer visits to convex combinations of
ustomer schedules. Constraints (54) make sure we only use a convex
ombination of customer schedules and constraints (55) define the
on-negativity requirements for the customer schedule variables.

In addition, we propose an alternative formulation of the customer
chedule. We observe that we can significantly reduce the number of

ustomer schedules by substituting the equality sign of constraints (53)



Computers and Operations Research 159 (2023) 106353J. Skålnes et al.

𝛿

𝑄
e
u
r
t
n
t
c
i
t
i
t
c
s
u
o
t
t
t
t
a
i
w
o

(
d
t
c
i
p

t
i
a
w

v
a
(
t
a
m
t
l
l
o
i
t
T

a
f
a
r
f

𝑞

𝑠

𝛿

a
f
f

(

g
f
f
t
u
a
i

(
a
d
e
C
a
i
m
c

r
s
a
m
c

with a ≥ sign:

𝑖𝑡 ≥
∑

𝜔∈𝛺𝑖

𝐵𝑖𝑡𝜔𝑦𝑖𝜔, 𝑖 ∈  𝐶 , 𝑡 ∈  . (56)

Then we no longer need to enumerate customer schedules that visit
a customer 𝑖 ∈  𝐶 without delivering anything, e.g., 𝐵𝑖𝑡𝜔 = 1 and

𝑖𝑡𝜔 = 0. In constraints (53), we need these customer schedules to
xpress all feasible solutions due to the equality sign. However, by
sing the updated version, we get the same dual bound of the linear
elaxation, but with the cost of weaker branching decisions. Note that
he up-branch on whether we visit a customer or not will have little to
o effect on the convex combination of customer schedules. Preliminary
esting indicated that the B&C method at termination, with the updated
onstraints (56), obtained higher average dual bounds for the large
nstances, but at the cost of slightly worse average dual bounds for
he small instances. The large instances are closer to realistically sized
nstances, and therefore we value the performance on these more than
hat of the small instances. Also, note that the new version of the
ustomer schedule formulation requires the triangle inequality to be
atisfied to be a valid formulation for the IRP. This is handled by
pdating the cost matrix by finding the shortest path between all pairs
f nodes so that the triangle inequality is guaranteed to be satisfied. For
he instances where the triangle inequality was not originally satisfied,
he solution is post-processed so that routes are updated according to
he original cost matrix, i.e., the zero-delivery visits that violate the
riangle inequality are inserted into the routes, so that the solution
dheres to the original cost matrix. If this leads to an infeasible solution,
.e., more than one visit to the same customer in the same period,
e remove the zero-delivery visits and re-calculate the cost with the
riginal cost matrix.

The B&C method is based on the linear relaxation of (51), (2),
4), (6), (9), (11), (12), (15)–(18), (52), (54), (55) and (56), while
ynamically adding the subtour elimination constraints (13) and (14),
he capacity inequalities of Desaulniers et al. (2016) (adapted to a B&C
ontext by Skålnes et al. (2022)), and the Disjoint Route (DR) inequal-
ties of Avella et al. (2018). The customer schedules are enumerated a
riori.

The integer feasible solution from the improvement heuristic is used
o warm-start the B&C method. After solving the linear relaxation, we
teratively separate and add violated subtour elimination constraints
nd valid inequalities in the same manner as Skålnes et al. (2022)
here the following separation order is used:

(i) SECs (13)
(ii) CSECs (14)

(iii) Capacity inequalities (Skålnes et al., 2022)
(iv) Simple DR inequalities (Avella et al., 2018)
(v) ℎ-DR inequalities (Avella et al., 2018)

Due to the computational complexity of the latter three classes of
alid inequalities, we only separate these in the root node. The SECs
nd the CSECs are separated at every node of the B&B tree. After stage
ii), we only move on to separate the next class of valid inequalities if
he dual bound improvement from the previous iteration falls below

given threshold. All separation problems are solved in the same
anner as in Skålnes et al. (2022), but with a minor modification of

he separation algorithm for the ℎ-DR inequalities to better handle the
arge instances. The default setting of this algorithm accounts for route
engths of ℎ = 8, which means we may have to enumerate all routes
f length 8 and less to verify that the separated valid inequality is
n fact valid. From preliminary testing, this route enumeration seems
o become too costly if the potential number of routes exceeds 1012.
herefore, we use ℎ = 7 for | 𝐶

| ≥ 35, ℎ = 6 for | 𝐶
| ≥ 50, and ℎ = 5

𝐶

8

for | | ≥ 200. u
3.4. Modifications of the B&C embedded matheuristic to solve the SDVRP

In this section, we demonstrate how the B&C embedded matheuris-
tic can be modified to solve the SDVRP, which is a special case of the
IRP where there is only a single time period, but where each customer
can be visited multiple times.

Let 𝐶 = {(𝑖, 𝑗) ∈  𝐶 ×  𝐶
|𝑖 ≠ 𝑗} be the set of arcs connecting

every pair of customers. A known property of the SDVRP is that there
exists an optimal solution where no two routes can have more than
one split customer in common, as long as the triangle inequality is
fulfilled (Desaulniers, 2010). From this, it further follows that an arc
(𝑖, 𝑗) ∈ 𝐶 between any pair of customers can appear at most once in
n optimal solution. Thus, we can use the IRP model from Section 2 to
ormulate a relaxation of the SDVRP. We have  = {1} in the SDVRP
nd therefore omit the 𝑡-index in the previously presented notation. A
elaxation of the SDVRP can now be defined by (1)–(14) and with the
ollowing variable domains:

𝑖 = 𝐷𝑖, 𝑖 ∈  𝐶 , (57)

𝑖 = 0, 𝑖 ∈  , (58)

𝑖 ∈ {0, 1,… , 𝑉 }, 𝑖 ∈  , (59)

𝑥𝑖𝑗 ∈ {0, 1}, (𝑖, 𝑗) ∈ 𝐶 , (60)

𝑥0𝑗 , 𝑥𝑗0 ∈ {0, 1,… , 𝑉 }, 𝑗 ∈  𝐶 . (61)

Since the customers can be visited several times, the capacitated
subtour elimination constraints (14) may allow transshipments at some
nodes, i.e., vehicles can swap loads at nodes they have in common,
which is not feasible in the SDVRP. We, therefore, add cutting planes
dynamically to the formulation every time the B&C method encounters
such an infeasible solution. In this way, we ensure a correct formulation
of the SDVRP.

Let  be the set of all feasible solutions defined by (2)–(14) and
(57)–(61), and let  ⊂  be the set of feasible solutions for the SDVRP.
Furthermore, let 𝑇

𝑘 = {(𝑖, 𝑗) ∈  | 𝑥𝑘𝑖𝑗 ≥ 1} be the set of arcs in
feasible solution 𝑥𝑘 for a solution 𝑘 ∈  ⧵  . We can then add

easibility cuts (62), as proposed by Archetti et al. (2014), to the relaxed
ormulation:

∑

𝑖,𝑗)∈⧵𝑇
𝑘

𝑥𝑖𝑗 ≥ 1, 𝑘 ∈  ⧵  . (62)

Similar to the aforementioned paper, we use a mathematical pro-
ram to determine whether a solution to the relaxed SDVRP is feasible
or the full problem or not. However, we use a three-index vehicle flow
ormulation, equivalent to that of Coelho and Laporte (2014), where
he arcs of a potentially feasible solution are allocated to vehicles,
nlike the route-based procedure in Archetti et al. (2014). If this
llocation problem is feasible, we have a feasible solution to the SDVRP,
f not, we cut it off by adding the corresponding feasibility cut (62).

The B&C method is based on the model defined by (1)–(12) and
57)–(61), where the subtour elimination constraints (13) and (14)
re added dynamically at every node of the B&B tree. In addition, we
ynamically add the special case of the capacity inequalities (Skålnes
t al., 2022), namely the rounded capacity inequalities for the
VRP (Laporte and Nobert, 1983) in the root node. The DR–inequalities
re redundant for the SDVRP, so these are omitted. Whenever an
nfeasible solution is encountered, verified by a three-index vehicle flow
odel, we cut off the solution by adding the corresponding feasibility

ut (62).
For the construction heuristic, the route-based MILP is significantly

educed as well. In addition, we must allow for multiple visits to the
ame customer. Please see Appendix A (Section C) for further details
nd a complete mathematical model. For the route generation, the first
ethod (the giant tour method) must be slightly changed. Since the

ustomers do not have an upper limit for inventory, we must instead

se their demand as a starting point. The second method (the shifting
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assignment method), is reduced to a simple CVRP for the SDVRP and
is hence not applicable to this problem variant.

For the improvement heuristic, it follows that the improvement
MILP is reduced since the SDVRP is a single-period problem. Please see
Appendix A (Section D) for more details and a complete mathematical
model. The function 𝑉 𝑅𝑃 (𝑥) must be updated to account for solutions
where one or several customers are visited by multiple vehicles. This is
achieved by splitting the relevant customer nodes into multiple nodes,
to create a feasible CVRP instance. For instance, if a customer is visited
by three different routes, it is split into three separate nodes. Their
demand in the CVRP instance is equal to the demand that was delivered
to them in the current SDVRP solution.

4. Computational study for the IRP

The proposed B&C embedded matheuristic has been tested on
known benchmark instances from the literature, and the results have
been compared with all methods we are aware of, where detailed
computational results are publicly available. Moreover, we have an-
alyzed each of the new features of the improvement heuristic and
evaluated their effect on the overall solution. First, we describe the
benchmark instances in Section 4.1, before we discuss parameter set-
tings. The different components of the B&C embedded matheuristic
are analyzed in Section 4.2, and the computational results for the
benchmark instances are presented in Section 4.3. Further, we test the
B&C embedded matheuristic on the DIMACS instances and compare
the results with those of the DIMACS Implementation Challenge in
Section 4.4. All computational experiments were run on a single thread
on a 12 core Intel E5-2670v3 processor clocked at 2.3 GHz and 64 GB
RAM. The algorithm is coded in C++ and the commercial solver Gurobi
9.5.1 has been used. Detailed solution files are publicly available at
http://axiomresearchproject.com/

4.1. Benchmark instances, solution methods and parameter settings

Two sets of benchmark instances exist for the IRP with the ML
inventory policy. The first set was proposed by Archetti et al. (2007)
and consists of small single-vehicle instances with high or low inventory
costs, multiples of five, 5𝑘, number of customers where 𝑘 = [1, 2,… , 10]
and 𝑘 = [1, 2,… , 6] for three and six time periods, respectively. Each
configuration has five versions, giving us a total of 160 instances.
The second set was proposed by Archetti et al. (2012) and consists
of large single-vehicle instances with six time periods, high or low
inventory costs, and 50, 100, or 200 customers. Each configuration has
ten versions, giving us a total of 60 instances. Both sets were made
for the single-vehicle IRP, but were extended to up to five vehicles
by Coelho et al. (2012). This gives us 878 multi-vehicle instances in
total (two of the five-vehicle instances are infeasible).

For the DIMACS Implementation Challenge, specific instance files
were made for the multi-vehicle instances, i.e., for two, three, four, and
five vehicles. However, they have slightly different vehicle capacities
from what has normally been used in the literature. Coelho et al.
(2012) determined the capacity of each vehicle by taking the vehicle
capacity of a single-vehicle instance, dividing it by the number of
vehicles available, and then rounding it to the nearest integer. For the
DIMACS Implementation Challenge, the vehicle capacities have been
floored to the nearest integer instead. This gives, for some instances, a
smaller solution space. In addition, the DIMACS instances include 160
new instances consisting of 5𝑘 customers and six time periods, where
𝑘 = [7, 8, 9, 10]. Another difference is that the solutions to the DIMACS
instances are reported without the inventory holding costs of the initial
9

inventory in time period 𝑡 = 0.
4.1.1. State-of-the-art solution methods
As shown in the introduction, many solution methods exist for the

IRP with an ML inventory policy. We have, to the best of our knowl-
edge, compared our results with all solution methods with publicly
available results. A detailed overview of the methods included in this
study can be found in Table 1, where we list the reference to the paper
(Reference), the abbreviation we use (Abbreviation), and the type of
solution method (Sol), processor (CPU), number of threads (# Threads),
and commercial solver (solver) used. Finally, we report their Passmark
score (Passmark). Note that the code for the B&C-method of Coelho
and Laporte (2014) was re-used by Desaulniers et al. (2016) and we
have reported these results. Sakhri et al. (2022) did not provide detailed
results.

4.1.2. Parameter settings
The parameter settings in this work are a result of preliminary

testing, and little effort has been put into parameter tuning. We used the
same parameter settings as Vadseth et al. (2021) for the construction
heuristic when relevant. The route-based MILP has a time limit of
1.5| 𝐶

| seconds. For the improvement heuristic, 𝐼𝑇1 = 4, 𝐼𝑇2 = 5,
𝑘-value = | 𝐶

|∕2, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑖𝑧𝑒 = 3 and 𝑀 = 3. The improvement MILP
has a time limit of 4| 𝐶

| seconds. The B&C method has a time limit
f 600 s in the root node for the original instances and 200 s for the
IMACS instances. The entire B&C embedded matheuristic algorithm
as a time limit of 7,200 s for the original instances. For the DIMACS
nstances, the time limit is set according to the rules of the DIMACS
mplementation Challenge: 2000

Passmark score 1800 s. Please note that the
time consumption of the route generation process of the construction
heuristic is insignificant compared with the total time consumption
and that the CVRP-solver terminates after 2000 iterations without
improvements.

4.2. Analysis of the branch-and-cut embedded matheuristic

In this section, we analyze the different components of the B&C
embedded matheuristic, mainly focusing on the matheuristic and the
interaction between the matheuristic and the B&C method. To examine
the impact of these features, we test various configurations on a subset
consisting of 20% of the benchmark instances, i.e., version 1 of the
small instances and versions 1 and 2 of the large instances. Here, we
only present the conclusions, and we refer to Appendix A (Section A)
for more extensive and detailed analyses.

First, we investigate whether our proposed improvements of the
matheuristic, i.e., the construction and improvement heuristic, lead to
better final solutions compared with the base version of the matheuris-
tic with none of the proposed improvements. The base version only uses
the giant tour route generation in the construction heuristic and single
customer insertions and removals in the improvement heuristic. Here,
our analyses show that adding the shifting assignment route generation
method improves the solutions by 13.6% on average compared with
the base version. This also highlights the importance of the starting
solution, as the matheuristic is dependent on a good starting solution
due to the limited number of iterations it can perform. Further, we
found that including cluster insertions and removals of clusters with
cardinality two and three improved the solutions on average by 11.1%
compared with the base version. When combining both these compo-
nents, i.e., both the shifting assignment method in the construction
heuristic and the cluster insertions and removals in the improvement
heuristic, the matheuristic found solutions that on average are 14.8%
better than the base version. This indicates that our proposed improve-
ments are crucial for the good results obtained by the B&C embedded
matheuristic. We refer to Table 11 in Appendix A for more details.

Now that we have established that it is preferable to include in-
sertions and removals of clusters of cardinality two and three, we
examined how often these route modifications are performed. We find

http://axiomresearchproject.com/
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Table 1
Benchmark solution methods. We present the solution approach, CPU, number of threads, MILP solver and Passmark score.
Note: Sol: Solution approach, E: Exact, H: Heuristic/Metaheuristic, M: Matheuristic, Def: Default, Passmark: Passmark score.
Reference Abbreviation Sol CPU #Threads Solver Passmark

Archetti et al. (2007) A-BC E Pentium IV 2.8 GHz Def Cplex 9.0 236
Archetti et al. (2012) AR-M1 M Intel Dual Core 1.86 GHz Def Cplex 10.1 –
Coelho and Laporte (2014) CL-BC E Core i7-2600 3.4 GHz 1 Cplex 12.2 1742
Adulyasak et al. (2014) AD-BC E Intel Xeon 2.67 GHz 8 Cplex 12.3 5658
Adulyasak et al. (2014) AD-M M 2.10 GHz Duo CPU PC Def Cplex 12.3 –
Desaulniers et al. (2016) D-BPC E Core i7-2600 3.4 GHz 1 Cplex 12.2 1742
Archetti et al. (2017) AR-M2 M Xeon W3680, 3.33 GHz 8 Cplex 12.5 6913
Avella et al. (2018) AV-BC E Core i7-2620, 2.70 GHz 1 Xpress 7.6 1462
Alvarez et al. (2018) AL-SA H Core i7-2600 3.4 GHz 1 – 1742
Alvarez et al. (2018) AL-ILS H Core i7-2600 3.4 GHz 1 – 1742
Chitsaz et al. (2019) C-M M Xeon X5650 2.67 GHz 1 Cplex 12.6 1300
Guimarães et al. (2023) G-BC E Xeon E5-2630 v2 2.60 GHz 6 Gurobi 8.1 7490
Manousakis et al. (2021) M-BC E Intel Core i7-7700 CPU 3.60 GHz 8 Gurobi 8.1 8652
Alvarez et al. (2020) AL-M M Xeon X5650 2.67 GHz 1 Cplex 12.8 1300
Diniz et al. (2020) D-M M Intel Core i7-8700K 3.7 GHz 1 LEMON 2759
Vadseth et al. (2021) V-M1 M Xeon Gold 6144 3.5 GHz 1 Gurobi 9.0 2523
Archetti et al. (2021) AR-M3 M Xeon E5-1620 v3 3.50 GHz 1 Cplex 12.10 2022
Skålnes et al. (2022) SK-BC E Intel E5-2670v3 2.3 GHz 1 Gurobi 9.0.2 1691
Achamrah (2022) AC-M M Quad-core Intel Core i7 3.3 GHz Def CPLEX 12.9 –
Solyalı and Süral (2022) S-M M Xeon X5650 2.67 GHz 1 CPLEX 12.7 1300
Vadseth et al. (2023) V-M2 M Xeon Gold 6144 3.5 GHz 1 Gurobi 9.1 2523
This paper E Intel E5-2670v3 2.3 GHz 1 Gurobi 9.5.1 1691
that for the small instances, clusters of cardinality one, two, and three
are inserted on average 5.57, 0.55, and 0.19 times per instance, respec-
tively. The corresponding number of removals are, on average, 4.16,
1.01, and 0.11 times per instance, respectively. For the large instances,
we find that clusters of cardinality one, two and three are inserted
on average 16.49, 1.04, and 0.24 times per instance, respectively, and
they are removed on average 16.42, 3.48, and 0.55 times per instances,
respectively. Not surprisingly, we can observe that the single-customer
insertions and removals are the route modifications most frequently
used by the improvement MILP. Please note that there could still be
several modifications of a given route in these instances, but that
each removal and insertion consisted, for the most part, of a single
customer. An interesting observation is that the average number of
cluster insertions and removals of cardinality two and three increases
with the size of the instances, which might indicate that it is more
crucial to include these features for large instances than for small
instances. This is indeed natural since it is less likely to insert or remove
several consecutive customers to improve the solution when there are
few customers involved. We refer to Table 12 in Appendix A for more
details.

Another important aspect of the B&C embedded matheuristic is
how effective the loop between the B&C method and the improvement
heuristic is. Every time the B&C embedded matheuristic is run, the
improvement heuristic is called at least once, but on the benchmark
instances, it was never called more than four times. In total, the B&C
method was able to improve the warm-start solution provided by
the improvement heuristic 157 and 53 times, for the small and large
instances, respectively. Each such improvement induced a new call to
the improvement heuristic which in turn improved these solutions in
total 61 and 31 times for the small and the large instances, respectively.
Finally, this resulted in that 54 and 28 instances were improved by
a successive call to the improvement heuristic from within the B&C
method, for the small and large benchmark instances respectively.
Focusing on the number of iterations of the loop between the im-
provement heuristic and the B&C method, we found that the largest
improvement from one iteration to the next occurs in the second
iteration. This is indeed expected, as each improvement is one step
closer to the optimal solution. We refer to Table 13 in Appendix A for
more details.

Lastly, we found that the B&C method alone obtained the best
average dual bounds. This indicates that the good primal bound from
the matheuristic that potentially could be used to prune the B&B tree
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or perform variable fixing did not make up for the lost time running the
matheuristic, which otherwise could be used to process more nodes of
the B&B tree. We refer to Table 14 in Appendix A for more details.

4.3. Computational results on the benchmark instances

In this section, we present the computational results for the B&C
embedded matheuristic on the 878 multi-vehicle benchmark instances
ranging from two to five vehicles. In the overview displayed in Table 1
we see that the CPU Passmark score varies greatly across the various
published methods. In addition, different software has been used in the
various methods. Therefore, we find it hard to give a fair comparison
of computational times between the various methods and have chosen
to focus on solution quality for the computational study of this work.
For the sake of readability, we only include the state-of-the-art (SOTA)
solution methods in the presented tables, and we define this to be
a method that has found a unique best-known solution (BKS) on at
least one benchmark instance. Only 7 of the 22 methods included in
this study qualify as SOTA methods according to this definition, and
those are the matheuristics of Chitsaz et al. (2019) (C-M), Diniz et al.
(2020) (D-M), Solyalı and Süral (2022) (S-M), Vadseth et al. (2021)
(V-M1), and Vadseth et al. (2023) (V-M2), as well as the B&C methods
of Guimarães et al. (2023) (G-BC) and Manousakis et al. (2021) (M-BC).
A comparison with all published results can be found in the provided
excel sheets. In addition, we would like to point out that Archetti et al.
(2021) obtained high-quality solutions in a reasonable computational
time, even though they have no unique BKSs. Also, we would like
to highlight the simulated annealing method and the iterated local
search algorithm of Alvarez et al. (2018), that found good solutions
in an impressively short time, using less than 30 seconds for the small
instances and less than 60 seconds for the large instances.

Table 2 reports the number of BKSs and unique BKSs (in paren-
theses) for each of the SOTA methods. We see from Table 2 that our
B&C embedded matheuristic finds more BKSs and unique BKSs than the
other methods, especially on the large instances. The only subset where
we do not have the most BKSs are the small two-vehicle instances,
where we have 13 less than the B&C method of Guimarães et al. (2023).
We can also observe that the exact methods found many more BKSs on
the small instances than the matheuristics, which is not surprising given
that many of these instances are solved to optimality.

Apart from the number of BKSs, it is also interesting to investigate

the overall quality of the solutions. We measure this by the average

https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
https://www.passmark.com
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Table 2
Overview of the number of BKSs (unique BKSs).
Set V C-M D-M S-M G-BC M-BC V-M1 V-M2 This paper # inst.

Small

2 19 (0) 118 (0) 38 (0) 160 (5) 146 (0) 72 (0) – 148 (0) 160
3 23 (5) 83 (3) 46 (3) 124 (4) 126 (6) 56 (3) – 131 (5) 160
4 13 (5) 47 (3) 34 (4) 88 (1) 115 (16) 33 (1) – 125 (14) 160
5 16 (4) 40 (0) 27 (0) 73 (0) 122 (15) 31 (1) – 131 (23) 158

Sum Small 71 (14) 288 (6) 145 (7) 445 (10) 509 (37) 192 (5) – 534 (42) 638

Large

2 0 (0) – 3 (3) 6 (5) 9 (8) 1 (1) 1 (1) 41 (41) 60
3 0 (0) – 10 (10) 0 (0) 1 (1) 1 (1) 0 (0) 48 (48) 60
4 0 (0) – 0 (0) 0 (0) 1 (0) 0 (0) 2 (2) 58 (57) 60
5 0 (0) – 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 59 (59) 60

Sum Large 0 (0) – 13 (13) 6 (5) 11 (9) 2 (2) 4 (4) 206 (205) 240

Total Sum 71 (14) 288 (6) 158 (20) 451 (15) 520 (46) 194 (7) 4 (4) 741 (247) 878
Table 3
Overview of average primal gaps (%).
Set | 𝐶

| C-M D-M S-M G-BC M-BC V-M1 V-M2 This paper

Small 5–50 3.04 0.47 0.51 0.38 0.06 1.16 – 0.05

Large

50 3.53 – 1.53 3.60 1.18 0.98 1.30 0.07
100 2.91 – 1.44 17.25 1.75 1.09 1.29 0.03
200 2.42 – 1.43 29.47 – 1.36 1.40 0.00

Average Large 2.95 – 1.47 16.77 1.47 1.14 1.33 0.04
e

primal gap. Table 3 reports the average primal gaps, where the primal
gap is defined as: Primal gap = (UB𝑖 − UBbest)∕UBbest, where UB𝑖 is
the upper bound obtained by method 𝑖 and UBbest is the BKS across all
methods listed in Table 1. The primal gaps are aggregated per number
of customers separated between the sets of small and large instances.
Here, our method obtains the best average primal gap for all instances
with more than 30 customers. Compared with the other methods the
average primal gaps are especially good for the large instances, which
indicates that our solutions are also good for the instances where our
method does not find the BKS.

So far we have focused on the upper bound obtained by our method,
but since it is exact, it is also interesting to see how good lower bounds
it obtains. Therefore, we calculate the deviation from the best-known
lower bound (dev. BLB) for each method on each instance, defined as:
dev. BLB = (LBbest−LB𝑖)∕LBbest, where LB𝑖 is the lower bound obtained
by method 𝑖 and LBbest is the best-known lower bound across all meth-
ods listed in Table 1. Table 4 reports the average dev. BLB aggregated
per number of customers and divided between the sets of small and
large instances. In this table, we include all exact methods that have
solved the multi-vehicle IRP and made their results publicly available,
i.e., the BP&C method of Desaulniers et al. (2016) (D-BPC), the B&C
methods of Coelho and Laporte (2014) (CL-BC), of Avella et al. (2018)
(A-BC), of Guimarães et al. (2023) (G-BC) and of Manousakis et al.
(2021) (M-BC). The detailed dual bounds were not available for the
B&C method of Adulyasak et al. (2014). Here it is clear that Desaulniers
et al. (2016) outperformed the other methods on the set of small
instances. The B&C method which obtains the best average dev. BLB
across the small instances is that of Manousakis et al. (2021), but our
method is better on the small three-period instances of 35–50 customers.
This is likely because the time spent in the improvement heuristic of the
B&C embedded matheuristic has a small impact on the dual bound for
the three-period instances. For the six-period instances, the time spent
to obtain good primal bounds in the improvement heuristic leaves less
time allocated to exploring the B&B tree, ultimately resulting in weaker
dual bounds than the B&C method of Manousakis et al. (2021). The big
difference in Passmark score between these methods might also play an
important role, which makes the comparison harder.

Shifting the focus to the number of optimal solutions, as reported
in Table 5, we see that all three B&C methods find a similar number of
optimal solutions. In total, 480 instances are solved to proven optimality
by at least one method, and the G-BC, M-BC, and the B&C of this
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Table 4
Overview of the average deviations from the best-known lower bounds (%) for each
xact method.
Set | 𝐶

| CL-BC D-BPC A-BC G-BC M-BC This paper

Small 5–50 3.82 0.26 1.15 2.95 0.59 0.60

Large

50 – – – 13.19 0.28 0.40
100 – – – 5.89 0.11 0.32
200 – – – 9.14 – 0.00

Average Large – – – 9.41 0.19 0.24

Average all 3.82 0.26 1.15 4.72 0.51 0.50

Table 5
Overview of the number of optimal solutions found.

Set V C-M D-M S-M G-BC M-BC V-M1 This paper

Small

2 28 114 51 149 142 71 145
3 21 85 44 120 114 50 116
4 12 44 36 86 92 32 99
5 12 41 30 69 100 29 98

Sum Small 73 284 161 424 448 182 458

paper found four, two, and one optimal solutions, respectively, that
no other method is able to prove optimality for. However, here the
inconsistencies of the results in the literature become apparent. Using
an optimality gap tolerance of 10−4, as most commercial solvers use
by default, we see that the methods of both Chitsaz et al. (2019)
and Solyalı and Süral (2022) find more optimal solutions than BKSs.
This is due to the fact that for 20 of the instances across all previously
published results of our overview, the best lower bound entry is higher
than the best upper bound entry. In some cases, it seems like there is an
error in the reported lower bound, but in others in the reported upper
bound. However, the only way to be sure would be to use a feasibility
checker that guarantees that every solution is evaluated the exact same
way. For the inconsistent instances where a solution is found feasible,
we know that the lower bound must be wrong, and if not, that the upper
bound must be wrong. This demonstrates the potential benefit of using
a benchmark set where there is a feasibility checker available. This is
also a motivation for why we recommend researchers to publish their
solution files including routing decisions and corresponding delivered
quantities.
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Table 6
Average computational times in seconds on the 307 instances terminated by G-BC,
M-BC, and the B&C embedded matheuristic before the two-hour time limit.

Set V C-M D-M S-M G-BC M-BC V-M1 This paper

Small

2 55 61 11 327 229 18 639
3 29 37 15 425 502 14 814
4 17 26 23 618 274 9 259
5 16 33 80 702 287 10 245

Average 35 44 25 466 316 14 552

Table 6 reports the average computational times for the 307 small
instances where G-BC, M-BC and the B&C embedded matheuristic all
terminated before the two-hour time limit. We believe this gives a fairer
comparison of the computational time than including all instances, as
that would skew the averages towards the time limit and perhaps cancel
out some of the variations between the methods. Here we see that
the matheuristics are considerably faster than the three B&C methods
and that the B&C methods of Guimarães et al. (2023) and Manousakis
et al. (2021) are faster than the B&C embedded matheuristic. However,
adjusting the times with the Passmark score, we may multiply the
average times of G-BC and M-BC by 7490∕1691 ≈ 4.42 and 8652∕1691 ≈
5.11, respectively. This leads to average computational times for the
small instances of 2064 and 1616 s for G-BC and M-BC, respectively.
This is most likely an overestimate since the benefit of multi-thread
computing is small in the root node, but increases when getting many
nodes in the B&B tree. In addition, we have used Gurobi 9.5.1 while
G-BC and M-BC have used Gurobi 8.1, which also impacts the results.
On average, 2.76%, 13.73%, and 83.51% of the time is spent in the
construction heuristic, the improvement heuristic, and the B&C method
respectively. See Table 15 for more details.

An interesting observation from Table 6 is that our method has
shorter computational times on the four- and five-vehicle instances than
the two- and three-vehicle instances compared with the two other B&C
methods. The main reason for this seems to be that there are more
six-period instances solved to optimality for two and three vehicles
than for four and five. Our preliminary testing indicated that the
B&C method struggles to completely close the optimality gap when
using the new customer schedule formulation on the small six-period
instances. The dual bounds are good, but the method spends more
time closing the last 0.𝜀% of the optimality gap for the small six-period
instances than if the B&C method was based on the customer schedule
formulation of Skålnes et al. (2022). However, the benefit of the new
customer schedule formulation is that the B&C method obtains strong
dual bounds on the large instances, as seen in Table 4.

4.4. Computational results on the DIMACS instances

We have tested the B&C embedded matheuristic on the DIMACS in-
stances and compared our results with all methods that were used in the
DIMACS Implementation Challenge. This includes MrOptimal, which
is an earlier version of the method presented in this paper. We have
followed the rules as stated in the DIMACS Implementation Challenge,
and all solutions have been checked by the provided feasibility checker.
Table 7 reports the number of BKSs and unique BKSs. We can see from
the table that our proposed method finds the second most BKSs for the
set of small instances and the highest number for the large instances.
Table 8 reports the primal gap, in the same manner as in Section 4.3,
and it is clear that the proposed method has the best average primal
bounds for both sets of instances. The results in Table 7 and Table 8
demonstrate that the method presented in this paper is a significant
improvement of 𝑀𝑟𝑂𝑝𝑡𝑖𝑚𝑎𝑙. It is also worth noting that 𝑀𝑟𝑂𝑝𝑡𝑖𝑚𝑎𝑙 has
lost several BKSs on the large instances to the version presented in this
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paper, which is why it now has fewer BKSs than the 2𝐹𝐻𝐵𝐶 method.
Table 7
Overview of the BKSs (unique BKSs) on the DIMACS instances.

Set | 𝐶
| plaisir TSMHA IRPUC 2FHBC MrOptimal This paper # inst.

Small 5–50 265 (0) 429 (42) 496 (26) 587 (65) 508 (31) 573 (75) 798

Large

50 0 (0) 8 (7) 8 (7) 9 (8) 15 (11) 45 (42) 80
100 0 (0) 0 (0) 2 (2) 2 (2) 19 (18) 58 (57) 80
200 0 (0) 0 (0) 0 (0) 0 (0) 27 (27) 53 (53) 80

Sum Large 0 (0) 8 (7) 10 (9) 11 (10) 61 (56) 156 (152) 240

Sum all 265 (0) 437 (49) 506 (35) 598 (75) 569 (87) 729 (227) 1038

Table 8
Overview of average primal gaps (%) on the DIMACS instances.

Set | 𝐶
| plaisir TSMHA IRPUC 2FHBC MrOptimal This paper

Small 5–50 3.48 0.17 0.30 0.13 0.20 0.12

Large

50 8.98 0.55 1.16 0.69 0.35 0.14
100 23.92 1.08 1.64 1.21 0.26 0.10
200 35.04 2.83 2.47 2.10 0.13 0.06

Average Large 22.65 1.49 1.76 1.33 0.25 0.10

Average all 7.91 0.48 0.64 0.40 0.21 0.12

5. Computational study for other routing problems

In this section, we demonstrate that the B&C embedded matheuristic
can be efficiently used on other routing problems to achieve high-
quality solutions by solving the SDVRP. In addition, we demonstrate
the potential of the improvement heuristic by running it on best-known
solutions from the CVRP literature. The tests have been performed
using the same computational settings as for the IRP.

5.1. Computational results on the split delivery vehicle routing problem

There exists several sets of benchmark instances for the SDVRP, that
we have tested our method on. One set is the benchmark instances
proposed by Belenguer et al. (2000), which consists of 25 instances
with 22–101 nodes with either a non-rounded or rounded cost matrix,
leading to a total of 50 distinct instances. Further, we have tested on
the set of instances proposed by Archetti and Speranza (2008), which
consists of 42 instances with 50–199 customers organized in six different
groups. Here, the cost matrix is non-rounded. Lastly, we performed
computational tests on the 21 instances with 8−288 customers proposed
by Chen et al. (2007). The distance matrix is non-rounded, and the
customers are concentrically distributed around the depot. It is common
practice in the literature to solve these instances with both an unlimited
fleet and with the requirement of using exactly 𝐾 = ⌈(

∑

𝑖∈𝐶 𝐷𝑖∕𝑄)⌉
vehicles. This gives us a total of 226 instances.

We have compared our results with the state-of-the-art heuristics
of Silva et al. (2015) (S–H) and He and Hao (2022) (H–H), and the
exact methods of Archetti et al. (2011) (A–BP), Archetti et al. (2014)
(A–BC), Ozbaygin et al. (2018) (O–BC), and Munari and Savelsbergh
(2022) (MS–BC). All parameters are kept the same as for the IRP, except
that the improvement MILP has a time limit of 300 s in each iteration.

Table 9 reports for each method, the number of BKSs, unique BKSs
and the number of solved instances, respectively. The instances are
divided into four subsets depending on whether the instances are solved
with a rounded (R) or non-rounded (NR) cost matrix, and whether the
vehicle fleet is limited (L) or unlimited (UL). Here we see that the
memetic algorithm of He and Hao (2022) clearly obtains the most BKSs
and unique BKSs. However, our method finds the second most BKSs
and unique BKSs even though it is not specifically tailored to solve
the SDVRP. In fact, on the instances with rounded cost matrix and
limited vehicle fleet, our method obtains the most BKSs and unique
BKSs, which demonstrates that the B&C embedded matheuristic works
well also for the SDVRP, and can even compete with the state-of-the-art
method on a subset of the instances.
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Table 9
The number of best-known solutions (unique best-known solution) out of the number of solved instances in each instance set.
Cost Fleet A–BP A–BC O–BC MS–BC S–H H–H This paper

NR UL 2(0)/39 0(0)/0 0(0)/0 27(0)/56 43(2)/88 83(35)/88 39(3)/88
NR L 0(0)/0 24(0)/41 20(0)/28 23(0)/37 44(5)/88 81(36)/88 38(2)/88
R UL 0(0)/0 0(0)/0 0(0)/0 12(1)/25 13(0)/25 21(4)/25 17(3)/25
R L 0(0)/0 11(0)/16 8(0)/11 11(0)/14 14(1)/25 16(0)/25 22(6)/25

Sum 2(0)/39 35(0)/57 28(0)/39 73(1)/132 114(8)/226 201(75)/226 116(14)/226
Table 10
Average primal gap (%) from best-known solution.

Cost Fleet A–BP A–BC O–BC MS–BC S–H H–H This paper

NR UL 1.94 – – 2.35 0.05 0.00 0.09
NR L – 1.24 0.10 0.40 0.06 0.00 0.10
R UL – – – 2.54 0.11 0.02 0.08
R L – 0.65 0.06 0.82 0.09 0.07 0.03

Average 1.94 1.07 0.09 1.68 0.07 0.01 0.08

Moreover, we report the average primal gap in % for each of the
ethods in Table 10. This gives a good indication of the quality of the

olutions of each method. Although a method does not find the BKS, it
ight not be far off. Here, we see that our method is, on average, 0.08%
orse than the BKSs, making it one of the top three methods in terms of
verage primal gaps, and it actually obtains the lowest average primal
ap for the subset of instances with rounded cost and limited fleet. We
elieve this demonstrates the potential the B&C embedded matheuristic
as to find good quality solutions to a wider range of routing problems
ther than the IRP.

.2. Computational results on the capacitated vehicle routing problem

To demonstrate the versatility of the new improvement MILP, we
ave tested it on the CVRP. Similar to the SDVRP, the new improvement
ILP can be adapted to the CVRP by assuming that it is a single-

eriod IRP with no initial inventories and inventory capacities equal
o zero. The mathematical model is given in Appendix E. The new
mprovement MILP has been tested on the ten very large benchmark
nstances released by Arnold et al. (2019). The new improvement
ILP was warm-started with the current best-known solution from
VRPLib (Uchoa et al., 2017) to see if it could improve the solution. A
ime limit of 10 000 s was used, and the new improvement MILP was
ble to improve three of the best-known solutions. These were Brussels2

(345, 481 → 345, 468), Flanders1 (7, 240, 124 → 7, 240, 118), and Flanders2
4, 373, 320 → 4, 373, 245). These results indicate that the proposed
mprovement MILP complements existing neighborhood structures, as
t is able to improve on instances where other state-of-the-art methods
ave reached a local optimum.

. Concluding remarks

In this paper, we have presented a generalized and improved version
f the solution method that won the IRP track of the 12th DIMACS
mplementation Challenge. We have proposed a new method for gener-
ting initial routes, a new generalized improvement MILP, and updated
he mathematical formulation used in the B&C method to account for
arger instances. Our computational analyses show that these enhance-
ents significantly improved the method. Further, the B&C embedded
atheuristic is general and can be used to solve several different types

f routing problems. For the IRP, it outperformed all published solution
ethods in terms of solution quality. The B&C embedded matheuristic

ound the best-known solution for 741 out of 878 multi-vehicle bench-
ark instances where 247 of them are strictly better than the previously

est-known solutions found in the literature. Further, 458 of the 741
solutions are proven optimal. Thus, the method clearly establishes itself
as state-of-the-art. In addition, the computational results show that
13
the proposed method is a significant improvement of the version that
won the DIMACS Implementation Challenge. For the SDVRP, the B&C
embedded matheuristic produced competitive results compared with
the state-of-the-art methods and found the best-known solution for
116 out of 226 well-established benchmark instances. Lastly, the new
improvement heuristic was able to improve the best-known solution
for three out of ten large benchmark instances for the CVRP released
by Arnold et al. (2019).

To the best of our knowledge, we have gathered all published results
from every published paper that solves the multi-vehicle benchmark
instances of the IRP and made the most complete overview of IRP solu-
tions ever created. We have made this overview easily available online,
and we believe this contribution is of great value to anyone interested
in doing further research on the IRP. However, our overview indicates
that there are several inconsistencies across the results reported in
the literature. This might be the result of numerical inaccuracies or
varying interpretations of the instances. One possible explanation for
some of the inconsistencies might be that some works have omitted
constraints (8) and hence solved a relaxed version of the IRP as it
is described in Archetti et al. (2007). Another reason might be that
the triangle inequality does not hold for all instances, and adding
valid inequalities which assume that it does (in reality making them
invalid), might cut off the optimal solution. However, it is difficult
for us to assess what is the true reason behind these inconsistencies.
Prior to the DIMACS Implementation Challenge, an open-source feasi-
bility checker (https://github.com/sbeyer/dimacs-irp-verifier) for the
DIMACS instances was made publicly available for DIMACS instances,
which is a great resource to reduce the type of errors found in several
published articles. Hence, we encourage the research community to use
the DIMACS instances moving forward since they have an open-source
feasibility checker publicly available. We have provided our solutions
for both the DIMACS instances and the original ones.
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