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a b s t r a c t 

The fast growth of e-commerce and omni/multi-channel retailing brings new challenges for efficient 

inventory management. One such challenge concerns service differentiation across channels when up- 

stream central warehouses satisfy both direct customer demand and replenishment orders from down- 

stream retailers. Motivated by industry collaboration, we address this issue by developing a combined 

stock method for control of one-warehouse-multiple-retailer inventory systems with direct customer de- 

mand at the central warehouse. The combined stock method, used for service differentiation at the cen- 

tral warehouse, may be described as a critical level policy. The computationally efficient heuristics we 

present are designed to deal with real-life one warehouse multiple retailer inventory systems character- 

ized by highly variable customer order-sizes, ( R, Q) policies at all stock points, and fill rate constraints. A 

numerical study, including real data from two different companies, illustrates that the heuristics perform 

well; offering near optimal solutions close to target fill rates, with significant opportunities to reduce 

total inventory costs compared to existing methods. 

© 2022 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

The motivation for this work stems from collaboration with 

 global inventory management software provider, and the fast 

rowth of e-commerce and omni/multi-channel retailing. An is- 

ue of increasing importance for many of the software provider’s 

lients is how to achieve efficient inventory control in large multi- 

chelon inventory distribution systems with customer demands 

oth at downstream retailer locations and at the upstream central 

arehouse. The company is therefore interested in finding efficient 

ethods for inventory control of such systems that is conceptually 

nd computationally simple enough to be implemented in prac- 

ice. More specifically, the methods should determine near optimal 

eorder points in systems with continuous review ( R, Q)-policies, 

omplete back-ordering, fill rate constraints and customer demand 

ith highly variable customer order-sizes. 

In this paper we address these issues by considering a one- 

arehouse-multiple-retailer ( owmr ) system where the central 
� Area: Supply Chain Management. This manuscript was processed by Associate 

ditor Archetti. 
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arehouse faces demand from two different channels, replenish- 

ent orders from the retailers and direct customer demand, typi- 

ally with very different service requirements. The end customers 

enerally expect high service levels, whereas the multi-echelon 

nventory literature shows that service to the retailers typically 

hould be relatively low in order to minimize the inventory costs 

or the entire system, see for example [1,2] and [3] . Service dif- 

erentiation across these two channels at the central warehouse is 

herefore important in finding efficient solutions. However, it also 

omplicates the analysis which may be one reason for the limited 

umber of papers on inventory control of these types of multi- 

chelon systems with direct upstream demand. 

One method to differentiate the service level observed both in 

he literature and in practice is to have a separate inventory (or 

eparate stock) reserved for handling the direct upstream demand 

t the central warehouse. This can be modelled within a traditional 

wmr framework by introducing a separate artificial retailer that 

erves the upstream demand, see, for example, [4] . This artificial 

etailer is assumed to replenish its stock from the central ware- 

ouse ( cw ) using an order-up-to S policy and since they are co- 

ocated the transportation time from the cw is negligible. We will 

enote heuristics based on this approach as separate stock heuris- 

ics. The approach is appealing in many ways as one can apply 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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stablished methods for owmr -systems. However, the performance 

f these separate stock heuristics deteriorates in systems with fill 

ate constraints and large variations in customer order-sizes. The 

roblem is that the need for safety stock and thereby order-up-to 

evel at the artificial retailer tend to be overestimated when it is 

reated as any other retailer. The reason is that the fill rate cal- 

ulation is based only on the inventory level at the artificial re- 

ailer. Our present work contributes to the literature by developing 

 new combined stock heuristic that considers the total amount of 

nventory currently available at the central warehouse, when deter- 

ining the critical reservation level S. The combined stock includes 

oth the stock reserved at the artificial retailer for the direct up- 

tream demand and the un-reserved general stock at the central 

arehouse. 

This new combined stock heuristic can, in principle, be used in 

onjunction with any method for determining the reorder points 

n traditional owmr systems. However, exact solutions procedures, 

or example, the method in [5] , are for computational reasons not 

 viable option for the real-life problems faced by the software 

rovider’s clients. To deal with these situations, an approximate 

ethod is required. Our present work focuses on integration of 

he combined stock heuristic with modified versions of the ap- 

roximation methods for inventory control of owmr systems in 

6] and [7] . The motivation for building on these approximation 

ethods is that they: (i) are general enough to be directly applied 

o the considered systems with continuous review, ( R, Q) policies 

nd customer demand with highly variable order-sizes, (ii) have 

hown to perform well, and (iii) are conceptually and computa- 

ionally simple enough to be implemented in practice. These meth- 

ds are also partly implemented in the software provider’s sys- 

em. The method in [6] assumes compound Poisson distributed 

emand, while [7] considers an adjusted normal demand approx- 

mation. Both methods use an induced backorder cost heuristic 

or decomposing the multi-echelon inventory system into N + 1 

ingle-echelon problems that is solved in a single pass. An added 

hallenge is that the combined stock heuristic requires a modi- 

ed approach for determining the induced backorder cost associ- 

ted with the direct customer demand. We suggest and evaluate 

wo such methods; one naïve and one iterative. The latter shows 

est performance and is used in the proposed bjm heuristic. The 

ormer is used for benchmarking purposes in the separate stock 

euristic, bm-s , and in the alternative combined stock heuristic, 

m-c . 

A numerical simulation study, including both real data from 

wo different companies and researcher generated examples, 

hows that the new bjm -heuristic performs very well. The fill rate 

argets of the direct customer demand are achieved with high ac- 

uracy. For the two test series based on real data, the average dif- 

erence between the achieved fill rates and the target fill rates are 

.8 percentage points (pp.) and 1.6 pp. respectively. For the re- 

earcher generated data, the average deviation is 0.07 pp. when us- 

ng the bjm -heuristic based on compound distributed demand and 

0.68 pp. when using bjm -heuristic based on the adjusted normal 

emand approximation. At the same time, the average inventory 

osts in the system are significantly reduced compared to the sep- 

rate stock benchmark, bm-s . For the test series based on real com- 

any data, the average reductions are 5.8 % and 9.7 %, with maxi- 

ums of 14.3 % and 27.7 %, respectively. For the researcher gener- 

ted problems, the reduction is on average 9.9 % with a maximum 

f 16.3 %. Optimization through simulation search also shows that 

he bjm solutions are near optimal. 

The remainder of this paper is organized as follows. 

ection 2 provides a brief literature review, followed by a model 

ormulation in Section 3 . Section 4 derives the proposed heuristics 

nd Section 5 presents the numerical study. Finally, Section 6 sum- 

arizes and concludes. 
2 
. Literature review 

Omni/multi-channel on-line/off-line retailing is a growing field 

n practice and in the research literature, e.g., [8–11] and [12] . 

uch of the literature, though, has focused on a sales and mar- 

eting perspective, particularly the literature on omni-channel net- 

orks, see [13] . Operational aspects, such as inventory control, 

hich is the focus of our present work, have so far not received 

he same amount of interest. Exceptions include [14] , which inves- 

igates the ordering decision for an off-line channel in an omni- 

hannel network under a newsvendor setting. The authors assume 

hat in case of a stock-out, the off-line customers will turn to the 

n-line channel. The on-line channel is assumed to have an abun- 

ance of stock, but there is an increased cost of serving customers 

hrough this channel. The reason is the high probability of cus- 

omer returns when customers cannot see, feel, or try on the prod- 

ct before purchasing it. In [15] , the authors extend the model 

rom their previous paper by allowing for Buy-Online-and-Pick- 

p-in-Store ( bops ), which is a solution where the off-line chan- 

el shares its inventory status with the public. This is an approach 

hat empirically has been shown to increase the profit through in- 

reased sales, see [16] . However, [9] shows that bops may either 

enefit or hurt the retailer depending on how large the store vis- 

ting costs and the on-line waiting costs are. 

In [17] and [18] the inventory decisions in a periodic setting 

or a system with one on-line and one off-line store are investi- 

ated. Excess stock at the latter can with additional costs be used 

o satisfy demand at the former, at the end of each period. This 

eans that these papers are related to the literature on lateral 

ransshipments, see [19] for a review, and to allocation of orders 

o fulfillment centers for on-line sales, e.g., [20] and [21] . Inven- 

ory transshipments are also considered in [22] focusing on as- 

essing product availability in an omni-channel retail network with 

roduct substitution. In [17] a single period newsvendor problem is 

onsidered, whereas [18] considers a series of such problems. The 

elated literature on inventory control in dual- and multi-channel 

ystems also typically considers either single-period problems, or 

 series thereof, see, for example, [23,24] and [25] . For a review 

f this literature, see [26] . Two exceptions are [27] and [28] which 

onsider a continuous review inventory problem with an on-line 

nd an off-line channel under the assumption of exponential lead 

imes and Poisson demand. The stylized lead time assumption al- 

ows the authors to solve the problem exactly by total enumera- 

ion, a cumbersome method for most real-life problems. All refer- 

nces above, except [23] , assume only two out-lets, which seems 

o be the most common assumption. One can easily argue that the 

two-out-lets-single-period” mold, typically used in the literature 

o far, is not sufficient for the companies studied in our present 

ork, or for any omni/multi-channel network with many retail- 

rs experiencing fixed shipping/ordering costs and selling products 

ver multiple periods. The reason is that for all of these inventory 

ystems, it is typically beneficial to order and/or ship in batches 

nd allow the inventory locations to replenish when they are run- 

ing low on stock rather than with the same fixed intervals. 

There is obviously a close connection between our present work 

nd the literature on analysis and inventory control of traditional 

wmr systems with demand only at the retailers. Efficient control 

f such systems under stochastic demand is a challenging prob- 

em that has received a lot of research attention over the years. For 

verviews, see, for example, [1,3,29] , and [30] . The latter describes 

nd reviews the literature based on the so called guaranteed ser- 

ice approach for tactical positioning of safety stocks in multi- 

tage supply chains. This approach is based on the assumption of 

 bounded demand or that external measures, e.g., overtime, can 

e used to handle excess demand to always meet the guaranteed 

ervice time in a cost efficient manner. This was deemed to not 



P. Berling, L. Johansson and J. Marklund Omega 114 (2023) 102745 

b

c

b

m

r

w

i

m

t

t

c

t

g

c  

e

a

c

i

e

c

d

b

w

h

t

o

t

s

p

h

t

w

p

p

m

t

e

t

o

i

w  

s

3

i

w

d

d

a

s

s

s

a

o

p

t

r

g

g

f

d

a

s

a

n

h

m

u

P

p

c

p

c

f

c

o

w

t

N

h

b

t

n

t

h

t  

t

i

s

s

e

f

w

t

i

t

l

t

m

p

[

t

w  

i  

b

p

i

i

r

t

p

b

i

c

p

v

t

s

c

s

c

w

e the case for the software provider’s clients, and the real cases 

onsidered in our present work. 

The literature on inventory control of owmr systems contains 

oth exact solution procedures and a wide range of approximation 

ethods subject to various assumptions and constraints. However, 

elatively few of these multi-echelon methods have found their 

ay into practical applications, the guaranteed service approach 

s a prominent exception. At least part of the explanation is that 

any are based on quite restrictive assumptions (e.g., identical re- 

ailers, specific demand distributions, no order quantities etc.) or 

hat they are computationally demanding. 

Our work is also related to the literature on critical level poli- 

ies in single-echelon systems with different demand classes. To 

he best of our knowledge, the critical level policy was first sug- 

ested and analyzed by Veinott [31] and early work in the field in- 

ludes [32,33] , and [34] . More recent work in that area include, for

xample, [35–37] and [38] . An overview of the literature on these 

nd other types of rationing policies is found in [39] . An approach, 

onceptually similar to ours is [40] where artificial retailers are 

ntroduced to differentiate the service and transform the single- 

chelon problem into a divergent multi-echelon problem with fcfs 

learing of backorders. Compared to our present work important 

ifferences are that [40] considers a single-echelon system with 

ase-stock ordering, whereas we consider a multi-channel net- 

ork with batch ordering at the retailers and the central ware- 

ouse. Furthermore, we focus on developing an efficient and easy- 

o-implement heuristic for real demand with variable customer 

rder-sizes, whereas [40] presents a method for an exact evalua- 

ion of the policy limited to Poisson demand. 

It is apparent that a fcfs clearing policy is not optimal in a 

ingle-echelon system with multiple demand classes. Instead, a 

riority clearing mechanism should be used where backorders for 

igh priority customers are cleared, and the stock reserved for 

hem are refilled, before tending to backorders from customers 

ith lower priority. However, invoking such a policy renders the 

roblem analytically intractable. As an approximation, [38] pro- 

oses a threshold clearing policy that shows good results. In a 

ulti-echelon system, the optimal clearing mechanism at the cen- 

ral warehouse is further complicated by the fact that all units will 

ventually satisfy end customer demands. Some of these end cus- 

omers might have a higher priority than the ones who place their 

rders directly at the warehouse. Finding an optimal clearing pol- 

cy is beyond the scope of our present work and in accordance 

ith [40] and [4] , we assume that backorders are cleared in a fcfs

equence. 

. Model formulation 

As mentioned above, we consider an omni/multi-channel owmr 

nventory system with end customer demand both at the central 

arehouse and at the N non-identical retailers. The end customer 

emand at the central warehouse is referred to as direct upstream 

emand. The model has been developed in close dialogue with the 

forementioned software provider to assure it offers a valid repre- 

entation of the reality their clients face. 

A majority of the software provider’s clients are aftermarket 

ervice providers. They typically stock many different SKU’s, both 

pare parts and consumables, for which the demand is often low 

nd lumpy (i.e., intermittent with large differences in customer 

rder-sizes) with large variance to mean rations for the demand 

er time unit. Also, for items with higher demand, variable cus- 

omer order-sizes is a common and challenging characteristic. The 

etailers (or dealers) are serving end customers in different geo- 

raphical regions which means that for practical reasons customers 

enerally cannot choose which retailer location to go to. Apart 

rom replenishing the retailers, the central warehouse may also 
3

irectly serve end customers in the region where it is located to 

void establishing a separate retail location there. The direct up- 

tream demand may also come from customers in regions far from 

ny of the retail locations, or from independent retailers, which do 

ot belong to the centralized owmr system. 

Motivated by these system characteristics, and particularly the 

ighly variable customer order-sizes, our main approach is to 

odel the customer demand (both at the retailers and the direct 

pstream demand at the warehouse) as independent compound 

oisson processes. Thus, for each location i the customer demand 

rocess is specified by the customer arrival rate λi , and the dis- 

rete stochastic order-size, O i . We also consider an alternative ap- 

roximation model with adjusted normal demand, defined in ac- 

ordance with [7] . This latter model is computationally attractive 

or high demand items and can approximate demand that is not 

ompound Poisson (e.g., with a variance to mean ratio less than 

ne). 

As mentioned above, for modeling purposes, and in accordance 

ith [4] , we assume that the direct upstream demand at the cen- 

ral warehouse is handled by an artificial retailer, denoted by index 

 + 1 , corresponding to a reservation stock at the central ware- 

ouse. As a result, the total stock at the central warehouse can 

e split in two parts; the reservation stock dedicated to serving 

he direct upstream demand, and the general warehouse stock, de- 

oted by index 0, that is used to replenish all retailers including 

he artificial retailer. 

The lead time from the outside supplier to the central ware- 

ouse, L 0 , and the transportation times from the central warehouse 

o the regular retailers, l i for i = 1 , . . . , N are assumed to be posi-

ive and constant. These are standard assumptions in the owmr 

nventory literature (see, for example [1,3] and [41] ). It is also con- 

istent with what is currently assumed in the software provider’s 

ystem and thereby with the real data we have evaluated. How- 

ver, it is undoubtedly so that in many real systems the lead time 

rom the outside supplier and/or the transportation times from the 

arehouse to the retailers may be subject to significant uncertain- 

ies. In these situations, our model can still be used after apply- 

ng standard approximation techniques for dealing with stochas- 

ic lead times in inventory systems, e.g., replacing the stochastic 

ead with its mean as in the famous metric model [42,43] , or 

o use the mean and variance of the lead time to determine the 

ean and variance of the lead time demand, and then fit an ap- 

ropriate distribution to this first two moments (see, for example, 

7] and [41] ). It should be noted that the transportation time from 

he central warehouse to the artificial retailer (which is integrated 

ith the warehouse), l N+1 , is zero. Moreover, the lead times ( L i ,

 = 1 , . . . , N, N + 1 ) for retailer replenishment orders are stochastic

ecause there may be shortages of general warehouse stock. 

The central warehouse and the N retailers are assumed to ap- 

ly continuous review installation stock ( R, nQ) policies to replen- 

sh their inventory. Thus, an order of size Q is placed when the 

nventory position (stock on hand + outstanding orders - backo- 

ders) falls to or below the reorder point R . This policy assump- 

ion is motivated by its wide-spread use among the software 

rovider’s clients. The inventory management system is transaction 

ased and can react immediately when transactions are recorded 

n accordance with a continuous review policy. From an analyti- 

al point of view, the continuous review assumption simplifies the 

olicy evaluations and may adequately approximate periodic re- 

iew systems with short review periods, for instance by increasing 

he mean replenishment lead-time by half of the review period, 

ee [41] . It should be noted that many of the software provider’s 

lients still prefer to place orders in the system at given time in- 

tances, typically once a day. For such short review periods the 

ontinuous review assumption (which is currently used in the soft- 

are provider’s system when determining the reorder points) has 
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roven to work well as an approximation. Similar to most of the 

iterature on stochastic owmr inventory systems, see [1,3] and ref- 

rences therein, our objective is to optimize the reorder points for 

iven order quantities. The latter may be determined using a de- 

erministic model, see, for example, [44] . This type of approach 

s motivated by the observation that using deterministic lot sizing 

ethods in a stochastic environment tend to have a small impact 

n the expected cost as long as the reorder points are adjusted 

ppropriately, see for example [45] and [46] . Moreover, in practice 

he choice of order quantities are often constrained by load carrier 

nd package sizes, rendering a limited number of alternative or- 

er quantities that can easily be evaluated by repeated use of our 

roposed heuristics. 

The artificial retailer is integrated with the central warehouse 

nd replenishes from the general warehouse stock according to a 

ontinuous review (S − 1 , S) policy (or equivalently an (R N+1 , 1) 

olicy), where the order-up-to level S can be interpreted as a criti- 

al reservation level for the combined stock at the central ware- 

ouse. All unsatisfied demand is backordered and satisfied in a 

cfs manner. This means there is no difference in priority between 

he retailer orders satisfied from the general warehouse stock (in- 

luding those placed by the artificial retailer). As mentioned above, 

he majority of the software provider’s clients are aftermarket ser- 

ice providers that sell spare-parts and consumables, which are 

ften difficult to substitute (due to warranty issues and limited 

vailability of white label alternatives for equipment specific parts). 

his means that their customers typically are willing to wait for 

he products to become available, in accordance with the full back- 

rdering assumption. 

For companies selling standard products the probability of lost 

ales or spill over to other products when there is a shortage might 

e significant. However, one can argue that if the fill rate is high 

 complete backorder model is still a good approximation as the 

robability of a shortage is low, see [47] . 

The considered costs are holding costs per unit and time unit 

t the central warehouse for the general stock, h 0 , and the reser- 

ation stock, h N+1 , and holding costs per unit and time unit at all

egular retailers, h i for i = 1 , . . . , N. In practice, typically h N+1 = h 0 
o this is what we assume in the analysis, although this assump- 

ion is by no means necessary. All retailers (including the artificial 

etailer) operate under fill rate constraints with specified fill rate 

argets, γ ∗
i 

for i = 1 , . . . , N, N + 1 . The fill rate is defined as the frac-

ion of demand that can be satisfied directly from stock on hand. 

e focus on (demand) fill rate constraints because this is what the 

oftware provider and its two clients that we have data from use. 

owever, it is straight forward to extend the analysis and the pro- 

osed heuristics to, for example, order-line fill rate constraints (i.e., 

he fraction of complete customer orders of a single item satisfied 

irectly from stock), or backorder costs per unit and time unit. 

IP i – inventory position at location i ( i = 0 , 1 , . . . , N, N + 1 ) 

IL 0 – inventory level of the general stock at the central warehouse 

IL N+1 – inventory level of the reservation stock at the central warehouse 

(corresponding to the inventory level of the artificial retailer) 

IL cw – combined inventory level at the central warehouse, 

I L cw = I L 0 + I L N+1 

IL i – inventory level at retailer i ( i = 1 , . . . , N) 

γN+1 – fill rate for the direct upstream demand at the central warehouse 

γi – fill rate at retailer i ( i = 1 , . . . , N) 

γ ∗
N+1 – target fill rate for the direct upstream demand at the central 

warehouse 

γ ∗
i 

– target fill rate for the demand at retailer i ( i = 1 , . . . , N) 

μi – expected demand per time unit at retailer i ( i = 1 , . . . , N) 

μN+1 – expected direct upstream demand (i.e., at the artificial retailer) 

per time unit 

μ0 – expected total demand at the central warehouse per time unit, 

μ0 = 

∑ N+1 
i =1 μi 

O i – stochastic customer order-size at retailer i ( i = 1 , . . . , N, N + 1 ) 
s

4

f O i (d) – probability that O i = d ( d = 1 , · · · , d max ) 

R 0 – reorder point for the general stock at the central warehouse 

S – critical reservation level of the combined stock at the central 

warehouse (corresponding to the base-stock level at the artificial 

retailer) 

R cw – reorder point for the combined stock at the central warehouse, 

R cw = R 0 + S

Q 0 – order quantity for replenishments placed by the central 

warehouse with the outside supplier 

R i – reorder point at retailer i ( i = 1 , . . . , N) 

R – ( R 1 , R 2 ,..., R N ) 

Q i – order quantity at retailer i ( i = 1 , . . . , N) 

z + – max (z, 0) 

z − – max (−z, 0) 

The objective is to minimize the expected total holding cost per 

ime unit, T C, by optimizing R 0 , S and R i for i = 1 , . . . , N, subject

o fill rate constraints at the retailers, and for the direct upstream 

emand at the central warehouse 

in T C(R 0 , S, R ) = h 0 E[ IL + 
cw 

] + 

N ∑ 

i =1 

h i E[ IL + 
i 

] 

s.t. γN+1 (R 0 , S) ≥ γ ∗
N+1 (1) 

γi (R 0 , R i ) ≥ γ ∗
i ∀ i = 1 , . . . , N. 

his is a complex problem to solve as all the fill rates depend on 

he reorder point for the general warehouse stock, R 0 , as well as 

he local reorder point, R i , i = 1 , . . . , N and S, in a non-trivial man-

er. 

. Proposed heuristics 

As previously stated, the goal of our present work is to find an 

fficient heuristic for optimizing the critical reservation level S for 

he direct upstream demand at the central warehouse and the re- 

rder points R i , for i = 0 , 1 , . . . , N, in the considered system. Our

pproach can be divided in two main steps. The first step is to ob- 

ain the combined stock heuristic for optimizing the critical reser- 

ation level S. The objective is to find the smallest S that satisfies 

he fill rate requirements for the direct upstream demand at the 

arehouse, given a reorder point, R 0 , for the general warehouse 

tock. The second step is to integrate the combined stock heuris- 

ic in an efficient method for inventory control of the entire owmr 

ystem by optimizing the reorder points R 0 and R i , for i = 1 , . . . , N.

ere we have chosen to modify the approximation methods in 

6] and [7] because of the good performance they exhibit in ear- 

ier studies, and their flexibility and ability to deal with the reality 

aced by the software provider’s clients, including the two com- 

anies we have real data from. However, it should be noted that 

he combined stock heuristic may be used in conjunction with any 

ethod for regular owmr systems to control multi-channel dis- 

ribution systems with inventory reserved for direct upstream de- 

and. In coherence with the real demand data our main approach 

s a heuristic based on a modification of the method in [6] that 

ssumes compound Poisson demand. We also propose an alterna- 

ive heuristic by modifying the method in [7] which is based on 

 normal demand approximation. This method is computationally 

impler and represents a more general approximation method that 

an deal also with demand that is not compound Poisson. 

In the following, Section 4.1 presents the combined stock 

euristic for compound Poisson demand, and Section 4.2 shows 

ow this heuristic is modified to adjusted normal demand. 

ection 4.3 then explains how the approximation models in [6] and 

7] , jointly referred to as bm , are adapted and integrated with the 

ombined stock heuristics to arrive at the two versions of a com- 

lete heuristic bm-c and bjm . This section also defines the separate 

tock heuristic bm-s that is used for benchmarking purposes. 
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.1. The combined stock heuristic for compound Poisson distributed 

pstream demand 

The purpose of the combined stock heuristic is to determine 

he smallest critical reservation level S for the combined ware- 

ouse stock that satisfies the fill rate constraint for the direct up- 

tream demand, given the reorder point R 0 for the general ware- 

ouse stock. Our approach is based on approximating the prob- 

bility mass function (pmf) for the combined inventory level of 

he reservation stock and the general stock at the central ware- 

ouse, given S and R 0 . From a modeling perspective, we assume 

hat an artificial retailer with base-stock level S and zero trans- 

ortation time from the warehouse handles the direct customer 

emand at the warehouse. This means that as soon as a demand 

ccurs, the artificial retailer replenishes from the general ware- 

ouse stock, which also satisfies replenishment orders from the N

egular retailers in a fcfs manner. The combined stock policy pre- 

cribes that when a customer arrives and demands d units, it will 

e satisfied by the combined stock on hand at the central ware- 

ouse IL + 
cw 

, which is the sum of the stock on hand at the artificial

etailer ( ≤ S) and the available general warehouse stock. Thus, even 

f d > S the demand may be fully satisfied if d − S units are avail-

ble in the general warehouse stock. Recall that d is a realization of 

he stochastic demand size O N+1 . This is in contrast to the separate 

tock policy (see [4] ), which implies that the fill rate is calculated 

ased solely on the inventory level at the artificial retailer. Thus, in 

he separate stock approach, at most S demanded units are consid- 

red to be satisfied immediately from stock on hand even if there 

s general stock available at the central warehouse. 

The added challenge in using the combined stock policy is to 

etermine the probability distribution of the combined stock on 

and, IL + 
cw 

. The exact distribution is unknown but inherently com- 

lex, and for computational reasons most likely infeasible to use 

n the real systems we consider. Thus, we focus on obtaining an 

fficient approximation. 

First, note that the inventory level of the combined stock, IL cw 

, 

s equal to IL 0 + S when the inventory level of the general ware- 

ouse stock is positive, i.e., IL 0 > 0 . When IL 0 ≤ 0 , the combined

tock on hand IL + 
cw 

is equal to IL + 
N+1 

and all available inventory is 

eserved for the direct upstream demand. The probability distribu- 

ion of the combined stock on hand IL cw 

≥ 0 (for given R 0 and S)

ay then be determined as 

 (IL cw 

= j| R 0 , S) = 

{
P (IL 0 = j − S) if j > S 

P (IL 0 ≤ 0) P (I L N+1 = j| I L 0 ≤ 0) if 0 ≤ j ≤ S. 

(2) 

et D 0 (t) be the total demand at the central warehouse during t

ime units. Note that D 0 (t) incorporates the impact of retailer or- 

er quantities and customer order-sizes in the compound Poisson 

emand processes at the retailers. The probability distribution of 

 0 (t) can be determined, for example, using the methods in [6] . 

he probability distribution for IL 0 and P (IL 0 ≤ 0) (given R 0 and 

 0 ) can then be obtained as 

 (IL 0 = j) = 

1 

Q 0 

R 0 + Q 0 ∑ 

k = max (R 0 +1 , j) 

P (D 0 (L 0 ) = k − j) , 1 ≤ j ≤ R 0 + Q 0 

(3) 

nd 

 (IL 0 ≤ 0) = 1 −
R 0 + Q 0 ∑ 

j=1 

P (IL 0 = j) , (4) 

The probability distribution for IL N+1 is more difficult to deter- 

ine, as the replenishment lead time L N+1 is stochastic because 
5 
he general warehouse stock may be depleted. To arrive at an effi- 

ient approximation, first note that a delay occurs only when there 

s no general stock on hand, i.e., IL 0 ≤ 0 . Let ˆ L denote the expected 

ead time for units ordered by the artificial retailer that experi- 

nce a delivery delay (and thus a lead time greater than zero), be- 

ause there is no general warehouse stock available. Focusing only 

n these situations, i.e., when IL 0 ≤ 0 , and assuming (as an approx- 

mation similar to the metric approach [42,43] ) that the lead time 

s constant and equal to its mean, we have IL N+1 = S − D N+1 ( ̂ L ) ,

here D N+1 (t) denotes the stochastic demand at the artificial re- 

ailer during t time units derived from the compound Poisson Pro- 

ess. The pmf for the stock on hand at the artificial retailer is then 

 (I L N+1 = j| I L 0 ≤ 0) = P (D N+1 ( ̂ L ) = S − j) . (5) 

To estimate ˆ L , we assume that the lead time L N+1 follows a 

wo point distribution such that it is zero when there are items 

vailable in the general warehouse stock, and 

ˆ L when there is a 

elay. The probability that there is a delay is denoted by α. Fur- 

hermore, we assume that the mean lead time E[ L N+1 ] is equal to

he expected delay per unit delivered from the general warehouse 

tock, L̄ , determined using Little’s law, L = E[ IL −
0 

] /μ0 . Given these 

ssumptions, we have L̄ = α ˆ L + (1 − α) · 0 and thereby 

ˆ 
 = 

L̄ 

α
. (6) 

Note that for the situations we consider, L̄ is not necessarily the 

orrect average delay for the units delivered to a certain retailer. 

owever, it tends to be a robust approximation with good perfor- 

ance, particularly if partial deliveries are applied, see for example 

2] . 

The probability α may be estimated in different ways. We pro- 

ose to set 1 − α equal to the ready rate for the general stock at 

he central warehouse, RR 0 , which by definition is the probability 

hat IL 0 > 0 . Note that this corresponds to the proportion of time 

hat at least some part of an upstream demand order is satisfied 

ithout a delay. This give us the following estimation of ˆ L , 

ˆ 
 = 

L̄ 

(1 − RR 0 ) 
. (7) 

nother possibility to estimate the probability 1 − α is to use the 

ll rate at the general warehouse stock for demands from the arti- 

cial retailer. This alternative has been evaluated numerically, but 

he performance of this estimation is inferior when it comes to ful- 

llment of the fill rate targets of the upstream demand. The ready 

ate is also simpler to calculate for more variable demand patterns, 

ompared to the fill rate. Because the ready rate is greater than or 

qual to the fill rate, using the former gives us a larger estimate for 
ˆ 
 , suggesting that a larger lead time variability is incorporated into 

he estimate of the combined stock on hand at the central ware- 

ouse. Note that, if the demand at the central warehouse is Poisson 

istributed, the fill rate and ready rate coincide and L̄ is the correct 

xpected lead time, see for example [41] pp. 79, 203. The fill rate 

or the direct upstream demand is easily obtained from (8) once 

he distribution of the combined stock on hand P (IL cw 

= j| R 0 , S)
 j ≥ 0 is determined. 

N+1 (R 0 , S) = 

∑ d max 

d=1 

∑ R 0 + S+ Q 0 
j=1 

min ( j, d) f O N+1 
(d) P (IL cw 

= j| R 0 , S) ∑ d max 

d=1 
d f O N+1 

(d) 

(8) 

The objective function in (1) stipulates that the reservation level 

should be set as low as possible while still fulfilling the target fill 

ate, γ ∗
N+1 

, for the direct demand. It is straightforward to determine 

he smallest S that satisfies the target fill rate by increasing S from 

ero until γN+1 (R 0 , S) ≥ γ ∗
N+1 

. 
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.2. The combined stock heuristic for adjusted normal demand 

The combined stock heuristic for adjusted normal demand of- 

ers a computationally simpler alternative to determine S. It may 

lso be used in situations where demand is not compound Pois- 

on (e.g., the variance to mean ratio of the demand per time unit 

s less than one). The method is based on assuming that the lead 

ime demand is normally distributed and accounts for the variable 

ustomer order-sizes by an undershoot adjustment of the reserva- 

ion level S. 

As before, IL cw 

equals IL 0 + S when IL 0 > 0 , and it equals IL N+1 

hen IL 0 ≤ 0 . Under the assumption of normally distributed lead 

ime demand, the fill rate for the direct upstream demand is equal 

o the ready rate, RR cw 

, i.e., the probability of positive stock on 

and, see for example [41] pp. 79, 82. This means 

N+1 (R 0 , S) = RR cw 

= P (IL cw 

> 0) 

= P (IL 0 > 0) + P (IL 0 ≤ 0) · P (I L N+1 > 0 | I L 0 ≤ 0 ) 

= 1 − P (IL 0 ≤ 0) · P (I L N+1 ≤ 0 | I L 0 ≤ 0 ) . (9) 

Consequently, it remains to determine the probability P (IL 0 ≤
) · P (I L N+1 ≤ 0 | I L 0 ≤ 0 ) , γN+1 then follows from (9) . Using the

ame lead-time approximation as before, i.e., that the lead time is 

onstant and equal to ˆ L when IL 0 ≤ 0 , it is straight forward to cal-

ulate P (I L N+1 ≤ 0 | I L 0 ≤ 0 ) under the normal demand assumption 

isregarding the customer order-sizes using (10) . 

 (IL N+1 ≤ 0 | IL 0 ≤ 0 ) = 1 − RR N+1 ( ̃  R N+1 | IL 0 ≤ 0 ) 

= σ ′ 
N+1 

(
G 

(
˜ R N+1 − μ′ 

N+1 

σ ′ 
N+1 

)
− G 

(
˜ R N+1 + 1 − μ′ 

N+1 

σ ′ 
N+1 

))
, 

(10) 

here, ˜ R N+1 is the reorder point, μ′ 
N+1 

= μN+1 ̂
 L , σ ′ 

N+1 
= σN+1 

√ 

ˆ L 

nd G is the general loss function given a normally distributed 

ead-time demand and that all orders are triggered at the reorder 

oint, (see, e.g., [41] pp. 76-77, 82). 

However, in contrast to a truly normally distributed demand, 

he variable customer order-sizes will lead to a stochastic under- 

hoot of the set reorder point R N+1 = S − 1 . That is, the realized re-

rder point, i.e., the inventory position when the order is triggered, 

ill for some orders be ˜ R N+1 = R N+1 − u rather than R N+1 and this 

ust be accounted for when determining P (I L N+1 ≤ 0 | I L 0 ≤ 0 ) and 

he reservation level S. To exemplify, let us consider two situations 

hen a customer arrives and requests 3 units when: (i) IL 0 = 1 ,

.e., IL cw 

= S + 1 , and (ii) IL 0 < 0 , i.e., IL cw 

= IL N+1 . In (i), IL cw 

=
 + S − 3 = S − 2 and IL 0 = −2 after the demand has occurred. In

his scenario, IL 0 ≤ 0 and IP N+1 will drop to S − 2 before a replen-

shment order is triggered, i.e., there is an undershoot of one unit 

 u = 1 ) of the set reorder point S − 1 . In (ii), IP N+1 drops from S to

 − 3 before a replenishment order is triggered, corresponding to 

n undershoot of 2 units. 

To account for the undershoot caused by the variable customer 

rder-sizes when calculating the fill rate under the normal de- 

and approximation we determine the distribution of the real- 

zed reorder points, or equivalently the undershoot when IL 0 ≤
 just after the customer demand has been satisfied. To obtain 

he probability of an undershoot of u units in these scenarios, 

 (U = u | IL 0 ≤ 0 ) , we first sum the probabilities of the customer

emand sizes, O N+1 , that will cause an undershoot of u units, i.e., 

 (O N+1 = IL 0 + u + 1) for IL 0 > 0 before the demand occurs, and

 (O N+1 = u + 1) otherwise (see examples (i) and (ii) above). This

um is then divided with the probability that a customer demand 

esults in IL 0 ≤ 0 . The resulting expression is 

 (U = u ) = 

∑ R 0 + Q 0 
j=0 

P (IL + 
0 

= j) P (O N+1 = j + 1 + u ) ∑ u max 

u =0 

∑ R 0 + Q 0 
j=0 

P (IL + 
0 

= j) P (O N+1 = j + 1 + u ) 
, (11) 
6 
here u max is equal to the largest undershoot, which is equal to 

 max − 1 . 

Combining (10) and (11) , we attain the following expression for 

he fill rate of the direct upstream demand when accounting for 

he undershoot 

N+1 (R 0 , S) = 1 − P (IL 0 ≤ 0) · P (I L N+1 ≤ 0 | I L 0 ≤ 0 ) 

= 1 − P (IL 0 ≤ 0) 
u max ∑ 

u =0 

P (U = u ) 

× (1 − RR N+1 (S − 1 − u | IL 0 ≤ 0 )) , (12) 

ince the realized reorder point with an undershoot of u units is 

 − 1 − u and an alternative interpretation of (12) is 

N+1 (R 0 , S) = P (IL 0 > 0) + P (IL 0 ≤ 0) 
u max ∑ 

u =0 

P (U = u ) F R (S − 1 − u ) , 

(13) 

here F R (S − 1 − u ) is the demand fill rate for the reorder point

 − 1 − u when demand is N 

(
μN+1 ̂

 L , σN+1 

√ 

ˆ L 

)
distributed. Note 

hat under the normal demand approximation the fill rate is 1 for 

L 0 > 0 . Using (12) or (13) S may be adjusted to satisfy the fill rate

onstraint for the upstream demand, γ ∗
N+1 . 

.3. The OWMR multi-channel heuristics BJM , BM-C and BM-S 

As explained above, the owmr multi-channel heuristics bjm and 

m-c are obtained by using the new combined stock heuristics to- 

ether with modified versions of the bm methods for control of 

raditional owmr systems in [6,7] . The bm methods can be de- 

cribed in terms of a five step procedure where the details of the 

teps are different depending on the demand assumption. In the 

ollowing, we will augment and modify this procedure to define 

nd explain the details of the bjm and bm-c heuristics as well as 

he separate stock heuristic bm-s . The latter fits within the first 

ve steps, while bjm and bm-c requires an augmented sixth step. 

efore going through the procedure, we first note that applying 

he bm approach to our omni/multi-channel system entails decom- 

osing the multi-echelon problem into N + 2 coordinated single- 

chelon problems that are computationally easy to solve. The de- 

omposition is achieved by introducing an induced backorder cost, 

, at the central warehouse, that captures how the retailers are 

ffected by the reorder point R 0 at the central warehouse. 

Step 1: Following the bm approach, the induced backorder cost for 

the warehouse, β , is estimated as a demand weighted av- 

erage of the induced backorder costs associated with the 

retailers. In our case this includes both the N regular retail- 

ers (with induced backorder costs βi for i = 1 , . . . , N) and 

the artificial retailer (with induced backorder cost βN+1 ) 

according to 

β = 

μN+1 

μ0 

βN+1 + 

N ∑ 

i =1 

μi 

μ0 

βi . (14) 

For the regular retailers ( i = 1 , . . . , N), βi is determined ac- 

cording to the bm methods. Thus, by using the same tables 

and closed form expressions, after estimating a backorder 

cost p i for each regular retailer that corresponds to its tar- 

get fill rate, γ ∗
i 

as 

p i = 

γ ∗
i 

1 − γ ∗
i 

h i . (15) 

Note that (15) is a correct expression for continuous de- 

mand, i.e., the smallest reorder point satisfying the fill rate 

constraint is the one that minimizes the expected cost if 
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and only if the backorder cost per unit and time is p i . 

For discrete demand (15) is an approximation because a 

larger range of backorder costs may render the same re- 

order point as when a fill rate constraint is used, see, e.g., 

[41] pp. 86-87 for details. 

The induced backorder cost βN+1 associated with the ar- 

tificial retailer requires a different approach as the trans- 

portation time, l N+1 , is 0 and the available tables and ex- 

pressions in [2] are only valid for positive transportation 

times. We therefore suggest and evaluate two new meth- 

ods, one naïve and one iterative. 

The naïve method used in the bm-c and bm-s heuristics, 

sets βN+1 equal to the backorder cost per time unit for 

the direct demand, p N+1 , estimated from (15) . The cost per 

time unit for a delay at the central warehouse cannot ex- 

ceed the backorder cost per time unit at the retailer, so 

p N+1 may be seen as an upper bound for βN+1 . Thus, the 

naïve approximation βN+1 = p N+1 tends to overestimate 

the correct value for βN+1 . This may lead to a value of R 0 
that is too high and too much general warehouse stock. 

The iterative method, used in the bjm heuristic, attempts 

to find a better estimate of βN+1 by applying a modified 

version of iterative procedure in [48] . More precisely, start- 

ing with the naïve estimate βN+1 = p N+1 , the procedure 

is adapted to search for a lower estimate of βN+1 while 

βi for i = 1 , . . . , N are fixed at the values determined ac- 

cording to the bm methods. Further details regarding the 

iterative search procedure are provided in Appendix B . The 

numerical study in Section 5 shows that the bjm heuris- 

tic outperforms the bm-c heuristic. As the only difference 

between these heuristics is how βN+1 is estimated, this il- 

lustrates that the iterative approach (which requires a bit 

more computational work) indeed provides improved esti- 

mates of βN+1 . 

Step 2: The distribution of the lead time demand at the cen- 

tral warehouse, D 0 (L 0 ) , is determined according to the bm 

methods by treating the artificial retailer as any other re- 

tailer. 

Step 3: A near optimal reorder point for the general warehouse 

stock, R 0 , is obtained in the same way as in the bm meth-

ods. That is, by minimizing the expected holding and in- 

duced backorder costs per time unit at the central ware- 

house 

min 

R 0 

˜ C 0 (R 0 ) = 

(h 0 + β) 

Q 0 

R 0 + Q 0 ∑ 

y = R 0 +1 

E D 0 (L 0 ) 

[
( y − D 0 (L 0 ) ) 

+ ]
− βQ 

(
R 0 + 

Q 0 + 1 

2 

− μ0 

)
. (16) 

It is easy to show that ˜ C 0 (R 0 ) is convex in R 0 and that the

optimal reorder point R ∗
0 

that minimizes (16) can be found 

through a simple search using the optimality condition 

R 

∗
0 = max 

{
R 0 : ˜ C 0 (R 0 ) − ˜ C 0 (R 0 − 1) ≤ 0 

}
. (17) 

Step 4: Determination of the lead time demand at each regular re- 

tailer i , D i ( ̄L i (R 0 )) ( i = 1 , . . . , N), where L̄ i (R 0 ) denotes the

average lead time estimated using a metric type approxi- 

mation in accordance with the bm methods. In [7] alterna- 

tive methods incorporating estimates of the lead time vari- 

ance are considered, but the performance was not neces- 

sarily improved by applying these more complicated meth- 

ods. 

In the separate stock heuristic bm-s , the artificial retailer is 

treated as a regular retailer. Its reorder point S − 1 is thus 

determined in Step 5 below. 
7 
In the bjm and bm-c heuristics, the lead time demand 

is based on a two point distribution as described in 

Sections 4.1 and 4.2 , and the reorder point for the artifi- 

cial retailer is determined using the new combined stock 

heuristics in Step 6 below. 

Step 5: A near optimal reorder point at each retailer, R i for i = 

1 , . . . , N, is determined in the same way as in the bm 

methods by solving the fill rate constrained single-echelon 

problem (18) . For bm-s the reorder point for the artifi- 

cial retailer R N+1 (and thereby the critical reservation level 

S N+1 = R N+1 + 1 ) is also determined by solving (18) for i =
N + 1 . 

min 

R i 
C i (R i ) = h i E 

[
(IL i ) 

+ ] = 

h i 

Q i 

R i + Q i ∑ 

y = R i +1 

E D i ( ̄L i ) 

[ (
y − D i ( ̄L i ) 

)+ ] 
s.t. γi ( ̄L i (R 0 ) , R i ) ≥ γ ∗

i (18) 

Note that for a given R 0 the reorder points can be opti- 

mized independently for each retailer. 

Step 6: For the bjm and bm-c heuristics using the combined stock 

policy, the critical reservation level S is determined us- 

ing the combined stock heuristics for compound Poisson 

demand (in Section 4.1 ) or adjusted normal demand (in 

Section 4.2 ). Note that this sixth step does not apply for 

the separate stock heuristic bm-s or the original bm meth- 

ods. 

We end this section by summarizing the different heuristics, 

hat sets them apart and how they use the six step procedure. 

bjm is defined by the full six step procedure. It uses the iterative 

method for estimating the induced backorder cost βN+1 in 

Step 1 and the combined stock heuristics for controlling the 

direct upstream demand in Step 6. 

bm-c is also defined by the full six step procedure. It uses the 

naïve method for estimating the induced backorder cost 

βN+1 in Step 1 and the combined stock heuristics for con- 

trolling the direct upstream demand in Step 6. 

bm-s is a separate stock heuristic defined by Step 1–5. It uses 

the naïve method for estimating the induced backorder cost 

βN+1 in Step 1, but treats the artificial retailer as a regular 

retailer and use Step 4 to determine S and not the combined 

stock heuristics. 

. Numerical study 

In this section, we present results from a numerical study de- 

igned to evaluate the performances of the proposed heuristics, 

m-s , bm-c and bjm , defined in Section 4 above. 

The study encompasses four test series. 

Test series 1 and 2 consist of 20 problems each, based on real 

data from two different companies. 

Test series 3 consists of a complete factorial problem set of 128 

researcher generated problems with compound Poisson de- 

mand. 

Test series 4 is used for evaluating the alternative adjusted nor- 

mal demand approximation of the bjm heuristic and consists 

of 32 problems taken from Test series 3. 

The performances of the heuristics are evaluated using discrete 

vent simulation models built in the ExtendSim software from 

magine That Inc. For each test problem, simulation models are 

sed for determining the fill rates and total inventory costs asso- 

iated with the policies attained with the different heuristics. All 

imulations are based on independent and stationary compound 

oisson demand processes. The standard deviation of all fill rates 

stimated from simulation are below one percentage point (pp.). 
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Table 1 

Parameter ranges for Test series 1 and 2, the central warehouse is denoted CW. 

Test series 1 Test series 2 

Min Max Min Max 

Number of retailers 2 6 4 8 

Target fill rate for direct upstream demand 87.8 % 95.9 % 50.0 % 99.9 % 

Target fill rate for regular retailers 80.0 % 95.9 % 0.0 % 99.9 % 

Fraction of direct upstream demand 14.9 % 90.8 % 0.3 % 35.4 % 

Mean demand per day 0.01 4.15 0.00091 7.75 

Variance to mean ratio of the demand per day 0.85 139.19 0.99 67.44 

Order quantity for the cw 2 247 6 158 

Order quantities for the retailers 1 37 1 92 

Lead time to cw 11 73 9 9 

Transportation time from cw to retailers 5 20 7 8 

Holding costs per unit and day at the cw 1 1 0.1 0.1 

Holding costs per unit and day at the retailers 1 1 0.1 0.1 
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Fig. 1. Customer order-sizes for the direct customer demand at the central ware- 

house in Test series 1. 

Fig. 2. Customer order-sizes for the direct customer demand at the central ware- 

house in Test series 2. 
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.1. Numerical study based on company data – Test series 1 and 2 

Test series 1 and 2 are based on real data from two different 

ompanies, which are both clients of the software provider. Each 

est series consists of 20 problems associated with different items 

old by the two companies. Test series 1 is based on data from a 

rilling tools company and Test series 2 on data from an electron- 

cs equipment company. The items have been chosen by the soft- 

are provider to reflect the product ranges of the two companies. 

ther selection criteria were that the item demands should be sta- 

ionary without trends, seasonality or correlations across retailers 

r over time. The format of the demand data we received were dif- 

erent for Test series 1 and 2. In case of the former, the software

ompany performed the data analysis (because of a non-disclosure 

greement with their client), and we received the empirical distri- 

utions of the customer order-sizes, together with the mean and 

tandard deviation for the demand per day for the direct customer 

emand at the central warehouse, and all regular retailers. Based 

n this information, we fitted compound Poisson distributions with 

he empirical order-size distributions to the mean and standard de- 

iation of the demand per day. These stationary and independent 

emand processes were then used in the simulations and in the 

nalytical heuristics for determining the reorder levels. For Test se- 

ies 2, we received more detailed demand data in the form of in- 

ividual customer orders per day for each retailer, and the direct 

pstream demand, over a 3 year period. Analysis of the weekly de- 

and show no significant correlation across retailers or over time. 

orrelation and autocorrelation coefficients are close to zero ([1 st 

uartile, median, 3 rd quartile] are [ −0 . 0405 , 0 . 0433 , 0 . 117] for the

orrelation coefficients, and [ −0 . 0359 , −0 . 0065 , 0 . 1137] for the lag

 autocorrelation coefficients, and similar for higher time lags). 

hus, confirming that the model assumption of independent and 

tationary demand across retailers and time are justified for the 

tudied items. The customer order-size data was analyzed in the 

istribution fitting software Stat::Fit bundled with the simulation 

oftware ExtendSim. All standardized discrete distributions were 

ejected by the goodness of fit tests (chi-square and Kolmogorov- 

mirnov tests on a 5% significance level). Therefore, as in Test se- 

ies 1, the customer order-sizes are described by empirical distri- 

utions based on relative frequencies. Using these empirical distri- 

utions, we fitted compound Poisson processes to the mean and 

ariance of the demand per day. These processes were then used 

n the analytical calculations and simulations,in the same way as 

n Test series 1. 

The parameter ranges for the two test series are summarized 

n Table 1 where the time unit is days and the costs are in USD.

able 1 shows that the mean customer demand across the items 

s relatively low in both test series, although there are large differ- 

nces between items. At the same time, the customer order-sizes 

re typically highly variable. This is further illustrated in Figs. 1 
8 
nd 2 which show the mean, and the variance to mean ratio, for 

he customer order-sizes of the direct customer demand at the 

entral warehouse. We can see that many items have highly vari- 

ble customer order-sizes, but also that the samples include items 
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Fig. 3. Fill rates and fill rate differentiation at the central warehouse for bjm (in 

percent) in for the 20 problems in Test series 1. 

Fig. 4. Fill rates and fill rate differentiation at the central warehouse for bjm (in 

percent) in for the 20 problems in Test series 2. 
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Table 2 

Average, minimum and maximum demand 

weighted average deviation from target fill rates at 

the regular retailers for bjm (in percentage points). 

Min Avg Max 

Test series 1 −0.36 1.67 5.32 

Test series 2 −0.47 0.92 5.59 

Fig. 5. Relative reduction of total inventory costs for bjm compared to bm-s (in per- 

cent) for Test series 1. 
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ith Poisson demand where the demand size is equal to one. The 

emands at the retailers show a similar structure. 

When looking at Table 1 it is worth pointing out that the min- 

mum target fill rate of 0 % for the regular retailers in Test series 2

imply indicates that an item should not be stocked at one or more 

ocations. This occurs only in two instances where one single re- 

ailer has this target for two separate items. The second lowest tar- 

et is just above 42 %. Furthermore, the minimum and maximum 

alues of the mean demand per day along with the variance to 

ean ratio is taken over all customer demands, i.e., across all re- 

ailers and the direct upstream demand at the central warehouse. 

For each item in the two test series, we use the bjm , bm-c 

nd bm-s heuristics, to determine the reorder point for the gen- 

ral warehouse stock, R 0 , the critical reservation level for the di- 

ect upstream demand, S, and the reorder points at the retailers, 

 i , i = 1 , . . . , N. Discrete event simulation models in the ExtendSim

oftware are then used for evaluating the fill rates and average 

nventory costs associated with each solution. The separate stock 

euristic bm-s is used as a baseline solution. 

From Figure 3 and 4 we can see that bjm renders solutions that 

ccurately satisfies the target fill rates for the direct upstream de- 
9

ands for all items. Furthermore, the service at the central ware- 

ouse, is differentiated with a distinctly higher service given to 

he direct upstream demand than to the retailers. For two items 

item 14 and item 18) in Test series 2, the fill rate target for the

irect upstream demand at the central warehouse is only 50 %. 

t the same time, there are high fill rate targets for the demand 

t the regular retailers (80–92.5 % for item 14 and 50–97.7 % for 

tem 18). This explains the small service differentiation between 

he two channels for these items in Figure 4 . The average devia- 

ion from target fill rate across all items in Test series 1 is 1.8 pp.

nd in Test series 2, 1.6 pp. The corresponding values for bm-s are 

.6 pp. for Test series 1 and 5.5 pp. for Test series 2. 

The ability for the bjm solutions to achieve the service require- 

ents at the regular retailers is measured as the demand weighted 

verage deviation from the given fill rate targets. Table 2 shows the 

verage, minimum and maximum of these deviations for the two 

est series. We can conclude that in both Test series 1 and 2, the 

arget fill rates for the regular retailers are satisfied on average. 

he corresponding values for bm-c are very similar to the ones for 

jm . The ability for the original bm methods to satisfy the fill rate 

argets at the retailers in traditional owmr systems has previously 

een evaluated in [6] , showing similar results. 

It is noteworthy that the bjm heuristic accurately achieves the 

arget fill rates even though it is based on metric type approxi- 

ations where the stochastic lead-times are approximated by their 

stimated means. This underestimates the lead-time variability and 

uggests a risk of choosing reorder levels that are too low. An ex- 

lanation for why no such tendency can be seen in the numeri- 

al examples is that it is counteracted by choosing discrete reorder 

evels to satisfy the fill rate constraints, which typically renders fill 

ates slightly above target. This integer effect increases when de- 

and is low, and a unit increase of the reorder level has a large 

mpact on the resulting fill rate. 

Figures 5 and 6 show that bjm offers significant savings in 

xpected total inventory costs compared to the separate stock 
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Fig. 6. Relative reduction of total inventory costs for bjm compared to bm-s (in per- 

cent) for Test series 2. 

Fig. 7. Reservation level and reorder point for the total warehouse inventory for 

bjm and bm-s for Test series 1. 
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Fig. 8. Reservation level and reorder point for the total warehouse inventory for 

bjm and bm-s for Test series 2. 
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ethod bm-s . On average, bjm reduces the inventory costs by 5.8 % 

or Test series 1 and 9.7 % for Test series 2. At most, the reductions

re 14.3 % and 27.7 %, respectively. 

To investigate the structural differences between the combined 

tock solutions and the separate stock solutions, Figs. 7 and 8 show 

he critical reservation level S and the combined reorder point at 

he central warehouse R cw 

= R 0 + S obtained by bjm and bm-s , re-

pectively. 

Compared to bm-s , bjm renders a lower (or equal) reorder point 

or the general stock at the central warehouse, R 0 . To compensate 

or the lower R 0 , the critical reservation level, S, is generally higher 

or bjm to achieve the target fill rate. This leads to a larger ser- 

ice differentiation between the direct upstream demand and the 

egular retailers. At the same time, Figures 7 and 8 show that the 

eorder points for the combined stock at the central warehouse, 

 cw 

= R 0 + S, for bjm is lower than or equal to bm-s , which ex-

lains why bjm requires less inventory. Although not shown in the 

gures, R cw 

, for bjm is also lower than or equal to R cw 

for bm-c . 

To further investigate the bjm method’s ability to determine the 

eservation level at the central warehouse, a simulation search has 

een carried out to find the value of S (for the given R 0 ) that

enders the lowest total inventory costs. For 12 of the 20 items 
10 
n Test series 1, bjm finds the best S, and for the remaining items, 

is one unit too high. Consequently, all solutions provided by bjm 

atisfy the service constraint. For Test series 2, bjm finds the best S

or 17 of the 20 items. For one item, bjm renders an S value with

 fill rate 1.4 pp. below target. For the remaining two items, S is 

ne unit too high with a fill rate 1.3 pp. and 1.9 pp. above target,

espectively. Thus, for all but one of the 40 problems based on real 

ata, the fill rate targets for the direct upstream demand are sat- 

sfied. For the problems where the provided solutions render fill 

ates above target, only the smallest possible adjustment of S with 

ne unit is required to find the best value. 

.2. Parameter settings for Test series 3 and 4 

For the researcher generated problems in Test series 3 and 4, 

he inventory system consists of a central warehouse with direct 

pstream demand and four identical retailers. The regular retail- 

rs are identical only for reasons of exposition. It is not needed 

rom a modeling perspective, as shown by the fact that completely 

on-identical retailers are considered in Test series 1 and 2. The 

ustomer demand in both Test series 3 and 4 are modeled as inde- 

endent compound Poisson processes, where the customer order- 

izes, O i , at retailer i = 1 , . . . , N and at the central warehouse (the

rtificial retailer) i = N + 1 follows logarithmic distributions 

f O i (d) = − αd 
i 

ln (1 − αi ) d 
i = 1 , . . . , N, N + 1 d = 1 , 2 , 3 , . . . , (19) 

here 0 < αi < 1 . 

Test series 3 includes all combinations of high and low val- 

es for the seven parameters, the proportion of upstream demand, 

N+1 /μ0 , the coefficient of variation of the customer demand, ρ , 

he order quantity at the central warehouse, Q 0 , and at the reg- 

lar retailers, Q i , the central warehouse lead-time, L 0 , the trans- 

ortation time to the regular retailers, l i , and the target fill rate 
∗

i 
= γ ∗

N+1 
, as specified in Table 3 . Test series 4, used for evaluating

he adjusted normal demand heuristic, consists of the 32 problems 

n Test series 3 with the variance to mean ratio ρ = 5 and the tar-

et fill rate γ ∗
i 

= 95 % . A specification of all problem instances in

est series 3 and 4 is found in Table A.1 in Appendix A . 

.3. Results for Test series 3 – the compound Poisson demand 

euristics 

Table 4 summarizes the average, minimum and maximum de- 

iation from the target fill rates of the direct upstream demand for 
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Table 3 

Parameters used for Test series 3 and 4. 

Parameter Low value High value 

μN+1 /μ0 20 % 40 % 

ρ 5 20 

Q 0 20 40 

Q i 5 10 

L 0 20 40 

l i 2 4 

γ ∗
i 

95 % 99 % 
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Table 5 

Average, minimum and maximum relative reduction in total inventory costs for bjm 

and bm-c compared to bm-s (in percent). 

bjm bm-c 

Min Avg Max Min Avg Max 

ar 

demand 

20 % 2.57 9.03 13.68 3.93 6.83 9.43 

40 % 5.33 10.79 16.27 3.72 7.53 15.87 

ρ 5 2.57 10.37 15.34 3.72 5.83 8.54 

20 6.15 9.44 16.27 6.57 8.53 15.87 

Q 0 20 2.57 9.93 16.27 3.78 7.33 15.87 

40 5.38 9.89 15.34 3.72 7.04 9.43 

Q i 5 4.53 10.13 15.34 5.18 7.54 9.43 

10 2.57 9.68 16.27 3.72 6.82 15.87 

L 0 20 2.57 9.43 16.27 3.77 7.32 15.87 

40 5.19 10.39 15.34 3.72 7.04 9.43 

l i 2 2.57 9.61 15.34 3.72 7.11 9.43 

4 2.57 10.20 16.27 3.77 7.25 15.87 

γ ∗
i 

95 % 2.57 8.47 16.27 3.72 6.52 15.87 

99 % 7.51 11.35 15.34 5.72 7.85 13.63 

Total 2.57 9.91 16.27 3.72 7.18 15.87 
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jm , bm-c and bm-s . Overall, we can see that bjm and bm-c which

re based on the proposed combined stock heuristic perform much 

etter than the separate stock heuristic bm-s , with smaller average 

eviations from target. Moreover, bjm has a smaller average devia- 

ion from target compared to bm-c , while still meeting the service 

equirements on average. The average deviation across all problems 

s 0.07 pp. for bjm , which is a clear improvement compared to bm- 

 with a total average deviation of close to 2 pp. Table 4 also shows

hat the maximum deviations for bjm are within one pp. from the 

arget fill rates. 

The average, minimum and maximum relative reduction in total 

nventory costs for bjm and bm-c compared to the baseline model 

m-s are presented in Table 5 . It shows that the average savings 

re 9.91 % for bjm and 7.18 % for bm-c . At most, the savings are

6.27 % for bjm . 

Comparing bm-c with bm-s (which both use the same naïve 

-etsimate) illustrates the value of using the combined stock ap- 

roach instead of the separate stock approach. Looking at the val- 

es for bm-c in Table 5 , we can see that the largest increase in

verage savings appear when increasing the variance to mean ra- 

io of the demand per time unit, ρ , the target fill rate γ ∗
i 

, the

raction of direct upstream demand, μN+1 /μ0 and when decreas- 

ng the order quantity at the retailers, Q i . The explanation is that 

hese values lead to more general stock being kept at the central 

arehouse which increases the importance of explicitly consider- 

ng the availability of this general stock when determining S. With 

 higher ρ-value also follows a more variable demand, which fur- 

her increases the value of considering the combined stock. This 

esults in the largest increase of the average savings, from 5.83 % 

o 8.53 % when ρ increases from 5 to 20. 

When comparing bjm with bm-c , we can observe larger savings 

f using the iterative method for determining βN+1 for high target 

ll rates and when the direct up-stream demand is a larger frac- 

ion of the total demand. The benefit of using a more correct esti- 

ate of βN+1 naturally increase with the weight that is put on this 
Table 4 

Average, minimum and maximum deviation from the fill rate targ

bjm bm

Min Avg Max Mi

μN+1 /μ0 20 % −0.54 0.17 0.98 −0

40 % −0.77 −0.03 0.88 −0

ρ 5 −0.77 0.08 0.98 -0.

20 −0.54 0.05 0.85 −0

Q 0 20 −0.77 0.10 0.97 −0

40 −0.77 0.04 0.98 −0

Q i 5 −0.77 0.08 0.98 −0

10 −0.77 0.06 0.96 −0

L 0 20 −0.50 0.14 0.98 −0

40 −0.77 −0.01 0.85 −0

l i 2 −0.77 0.09 0.96 −0

4 −0.77 0.05 0.98 −0

γ ∗
i 

95 % −0.77 0.20 0.98 −0

99 % −0.54 −0.07 0.27 −0

Total −0.77 0.07 0.98 −0

11
alue when determining β in Step 1 . The larger savings observed 

or higher service targets is linked to an increased overestimation 

f the induced backorder cost by the naïve approach. This is due 

o a large increase in p N+1 , see (15) , whereas βi is fairly insensitive

o γ ∗
i 

, see [2] . Larger savings of using bjm can also be observed for

mall values of ρ and to a slightly lesser extent for high values of 

 i . These shifts in parameter values result in lower βi values. This 

eans that overestimating βN+1 , which the naïve method tends to 

o, has a larger impact on β . In addition, a lower σN+1 resulting 

rom a lower ρ suggests a lower βN+1 (see, [2] ). This suggests that 

p N+1 more distinctly overestimates the true βN+1 , which is verified 

y the numerical study. 

Figure 9 shows the combined reorder point, R cw 

= R 0 + S, at the

entral warehouse obtained by the bm-s , bm-c and bjm heuristics 

roken down into its components, R 0 and S. Comparing bm-c with 

m-s in Fig. 9 , we can see that the combined stock method reduced

n bm-c , reduces the reservation level S at the central warehouse, 

s expected. The bjm heuristic (with the iterative method for deter- 

ining βN+1 ) typically reduces the value of R 0 , and to compensate 

or the lower general stock, the value of S needs to be increased in 

rder to satisfy the fill rate target of the direct upstream demand. 

his suggests a larger service differentiation at the warehouse. At 

he same time, we can see from Fig. 9 that the combined reorder 

oint, R cw 

= R 0 + S, is lower for bjm than for bm-c and bm-s . This

xplains why the bjm solutions require less inventory. 

The ability of the combined stock heuristic to find the lowest S

hat satisfies the fill rate target has been evaluated by simulation 
ets for the direct upstream demand (in percentage points). 

-c bm-s 

n Avg Max Min Avg Max 

.38 0.27 1.16 0.73 2.00 3.79 

.07 0.36 1.33 −0.05 1,91 3.50 

08 0.49 1.33 0.80 1.90 3.79 

.38 0.14 0.89 −0.05 2.01 3.71 

.22 0.35 1.33 -0.05 1.94 3.79 

.38 0.29 1.19 0.73 1.97 3.63 

.38 0.27 1.21 0.74 2.07 3.79 

.33 0.36 1.33 −0.05 1.84 3.36 

.38 0.37 1.33 −0.05 1.98 3.79 

.33 0.27 0.93 0.73 1.93 3.69 

.33 0.32 1.31 0.75 1.98 3.69 

.38 0.32 1.33 −0.05 1.93 3.79 

.29 0.51 1.33 0.43 3.07 3.79 

.38 0.13 0.47 −0.05 0.84 0.96 

.38 0.32 1.33 −0.05 1.96 3.79 
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Fig. 9. Average reorder point for the general stock, R 0 , reservation level, S, and R cw = R 0 + S at the central warehouse. 
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Fig. 10. Relative difference in total inventory costs between bjm and the optimal solu- 

tions found by simulation search (in percent) for 16 problems from Test series 3. The 

problem instances are specified in Table A.1 in Appendix A . 

s

t

t

i  
earch. In 103 of the 128 test problems, bjm finds the best value of 

(for the given R 0 ). For 11 problems, S can be reduced by one unit

nd still achieve the fill rate target. In 9 of the problems, the values

f S need to be increased by one unit to fulfill the target service. In

he remaining 5 problem instances an increase of S with 2 units is 

equired. Consequently, in 89 % of the instances, the solution pro- 

ided by bjm achieves the target fill rate (overshooting S in 7 % of 

he instances), and the value of S never needs to be adjusted by 

ore than two units. 

The fill rate for the general warehouse stock, serving both direct 

ustomer demand and the retailers’ replenishments, is on average 

0 % for the bjm heuristic. This can be compared to bm-s (and bm- 

 ), where this fill rate is 88 %. Consequently, the bjm heuristic is 

chieving a larger service differentiation at the central warehouse 

etween the direct upstream demand and the replenishment or- 

ers from the retailers. 

To further investigate the quality of the bjm solutions with re- 

pect to R 0 , S and R i ( i = 1 , . . . , N), 16 of the problems in Test se-

ies 3 have been optimized using simulation. For these problems, 

ll parameters except γ ∗
i 

, Q i and l i are alternating between the low 

nd high values. A complete list of the chosen examples is found in 

able A.1 in Appendix A . Simulation search has been used to find 

he optimal R 0 , S and R i values. Note that for a given R 0 , bjm deter-

ines R i , i = 1 , . . . , N, in the same way as in the bm methods, and

he quality of these solutions are known to be good from previous 

ork. 

For one problem (no 43), the bjm method renders a fill rate for 

he direct upstream demand 0.68 pp below target. The reservation 

evel S has in this case been increased by one unit to obtain a fea-
 e

12 
ible solution when comparing it to the total inventory costs of 

he optimal solution. The relative difference in inventory costs be- 

ween bjm and the optimal solutions for the 16 examples are found 

n Figure 10 . The deviation ranges from 0 % to 6.98 % with an av-

rage value of 2.00 %. The largest deviation occurs for test problem 
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umber 1, where R 0 for the optimal solution is one unit higher 

han the bjm solution. The larger R 0 leads to one unit lower S and 

 i ( i = 1 , . . . , N) in the optimal solution compared to the bjm solu-

ion. An adjustment of the reorder point at the retailers has a large 

mpact on the total inventory costs, since they are identical and a 

eduction of R i leads to a reduction of the inventory at all four lo- 

ations. The second largest difference in total inventory costs for 

jm compared to the optimal is 3.56 %. 

For bjm , the deviation from the target fill rate for the direct up- 

tream demand is on average 0.36 pp. For the optimal solutions, 

his deviation is on average 0.25 pp. For the retailer fill rates, the 

orresponding results are 0.25 pp. for bjm and 0.00 pp. for the op- 

imal solutions. The lowest achieved fill rate for the bjm solution 

s 0.27 pp. below the target for the direct upstream demand and 

.15 pp. below target for the retailers. Thus, this study indicates 

hat the bjm solutions are of good quality and close to the optimal 

alues of R 0 , S and R i , i = 1 , . . . , N. 

To conclude, bjm outperforms bm-s as well as bm-c with so- 

utions that lead to fill rates closer to targets and lower total 

nventory costs for the system. This is achieved through a larger 

ervice differentiation at the central warehouse. 

.4. Results for Test series 4 – The adjusted normal demand heuristic 

The objective with Test series 4 is to investigate the perfor- 

ance of the bjm heuristic for adjusted normal demand when it 

s used as an approximation of the compound Poisson demand 

odel. Test series 4 encompass the 32 examples in Test series 3 
ig. 11. Deviation from target fill rate for the direct upstream demand at the warehouse (i

ormal demand case compared to the compound Poisson demand case (in percent) for th

13 
ith the target fill rate 95 % and lower variance to mean ra- 

io, ρ = 5 . Note that this means that we are testing the heuris-

ic on quite challenging problems where the probability of neg- 

tive demand in the normal distribution is rather high, and a 

ormal demand approximation may be questioned. Nevertheless, 

he results show that the adjusted normal demand heuristic ren- 

ers good solutions. In four examples it provides the same base- 

tock level, S as the compound Poisson heuristic. In one exam- 

le, S is two units below, and in the remaining examples, it is 

ust one unit below the S attained with the compound Poisson 

euristic. 

Figure 11 shows the deviation from the target fill rate for the 

irect upstream demand together with the relative difference in to- 

al inventory costs compared to the bjm heuristic with compound 

oisson demand. The fill rate deviation is on average −0.68 pp. 

ith a maximum of −1.67 pp., and the average relative difference 

n total inventory costs is −1.32 %. Since the adjusted normal de- 

and heuristic tends to slightly underestimate the fill rate, the dif- 

erence in total inventory costs is negative. 

Finally, we note that for the problems in Test series 3 where 

= 20 and γ ∗
N+1 = 95 % (not part of Test series 4), the probability

f negative demand in the normal distribution is very high, and as 

xpected the performance of the adjusted normal demand approx- 

mation therefore deteriorates. For these problems, the reservation 

evel S is on average 6.7 units lower than for the bjm heuristic with 

ompound Poisson demand, with an average fill rate deviation of 

2.44 pp., and the relative difference in total inventory costs is 

2.95 %. 
n percentage points) and relative difference in total inventory costs for the adjusted 

e 48 problems in Test series 4. 
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. Summary and conclusions 

In this paper we have presented a combined stock approach for 

nventory control in real life owmr distribution systems with di- 

ect customer demand at the central warehouse. Our work is mo- 

ivated by collaboration with an inventory management software 

rovider, and the fast growth of omni/multi-channel retailing. The 

eal systems operated by the software provider’s clients are charac- 

erized by highly variable customer order-sizes, continuous review 

 R, Q) policies, fill rate constraints, and direct customer demand 

t the central warehouse. The combined stock policy we propose 

epresents a critical level policy at the central warehouse, which 

nables service differentiation between retailer replenishment or- 

ers and the direct customer demand at the central warehouse. 

ur technical contributions include derivations of two combined 

tock heuristics for determining the critical reservation level at the 

entral warehouse; one for compound Poisson demand and one for 

djusted Normal demand. We also show how these heuristics can 

e integrated with modified versions of the methods for control 

f traditional owmr systems in [6,7] . The resulting bjm heuristics 

re computationally and conceptually simple enough to be used in 

ractice, which has been an important goal for our research. 

The numerical study, including both real data from two of the 

oftware provider’s clients and researcher generated examples, il- 

ustrates that the proposed heuristics render near optimal solu- 

ions close to target fill rates. They also offer significant oppor- 

unities to reduce total inventory costs compared to the existing 

eparate stock alternative. From the researcher generated exam- 

les, we can conclude that the inventory costs for the bjm solu- 

ions are on average only 2 % higher than for the optimal solutions 

ound by simulation search. Moreover, the average deviation from 

arget fill rates for the direct upstream demand is merely 0.07 pp. 

or the compound Poisson heuristic, and −0.68 pp. for the simpler 
Table A.1 

Problem instances for Test series 3 and 4. Bold font mark

by simulation search for the compound Poisson demand

Examples μN+1 

μ0 
ρ Q 0 Q i L 0 l i E

1 , 65 20 % 5 20 5 20 2 3

2, 66 20 % 5 20 5 20 4 3

3 , 67 20 % 5 20 5 40 2 3

4, 68 20 % 5 20 5 40 4 3

5, 69 20 % 5 20 10 20 2 3

6, 70 20 % 5 20 10 20 4 3

7, 71 20 % 5 20 10 40 2 3

8, 72 20 % 5 20 10 40 4 4

9 , 73 20 % 5 40 5 20 2 4

10, 74 20 % 5 40 5 20 4 4

11 , 75 20 % 5 40 5 40 2 4

12, 76 20 % 5 40 5 40 4 4

13, 77 20 % 5 40 10 20 2 4

14, 78 20 % 5 40 10 20 4 4

15, 79 20 % 5 40 10 40 2 4

16, 80 20 % 5 40 10 40 4 4

17 , 81 20 % 20 20 5 20 2 4

18, 82 20 % 20 20 5 20 4 5

19 , 83 20 % 20 20 5 40 2 5

20, 84 20 % 20 20 5 40 4 5

21, 85 20 % 20 20 10 20 2 5

22, 86 20 % 20 20 10 20 4 5

23, 87 20 % 20 20 10 40 2 5

24, 88 20 % 20 20 10 40 4 5

25 , 89 20 % 20 40 5 20 2 5

26, 90 20 % 20 40 5 20 4 5

27 , 91 20 % 20 40 5 40 2 5

28, 92 20 % 20 40 5 40 4 6

29, 93 20 % 20 40 10 20 2 6

30, 94 20 % 20 40 10 20 4 6

31, 95 20 % 20 40 10 40 2 6

32, 96 20 % 20 40 10 40 4 6

14 
djusted normal approximation. Compared to the separate stock 

enchmark, bjm reduces the inventory costs by 9.9 % on average 

nd with at most 16.3 %. For the two test series with real data, the

nventory costs are reduced by 5.8 % and 9.7 % on average, and at 

ost by 27.7 %. 
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ppendix A. Test series 3 and 4 

All problem instances consider an inventory system with one 

entral warehouse, four identical retailers and direct upstream de- 

and at the central warehouse. The sum of all customer demand 

er time unit is μ0 = 

∑ N+1 
i =1 μi = 1 . The holding costs at all loca- 

ions are h 0 = h N+1 = h i = 1 for i = 1 , . . . , N. The target fill rates at

ll locations are γ ∗
i 

= γ ∗
N+1 

= 95 % for i = 1 , . . . , N for examples 1

o 64 and 99 % for examples 65 to 128. All other parameters are 

et according to Table A.1 . 

Test series 3 includes all 128 problem instances in Table A.1 , 

hereas Test series 4 only includes the 32 problem instances 

ith γ ∗
i 

= 95 % and ρ = 5 . The example numbers are the same 

n both test series. Problem instances marked with bold font in 

able A.1 are optimized by simulation search, see Section 5.3 . 
s the problem instances that have been optimized 

 case. 

xamples μN+1 

μ0 
ρ Q 0 Q i L 0 l i 

3 , 97 40 % 5 20 5 20 2 

4, 98 40 % 5 20 5 20 4 

5 , 99 40 % 5 20 5 40 2 

6, 100 40 % 5 20 5 40 4 

7, 101 40 % 5 20 10 20 2 

8, 102 40 % 5 20 10 20 4 

9, 103 40 % 5 20 10 40 2 

0, 104 40 % 5 20 10 40 4 

1 , 105 40 % 5 40 5 20 2 

2, 106 40 % 5 40 5 20 4 

3 , 107 40 % 5 40 5 40 2 

4, 108 40 % 5 40 5 40 4 

5, 109 40 % 5 40 10 20 2 

6, 110 40 % 5 40 10 20 4 

7, 111 40 % 5 40 10 40 2 

8, 112 40 % 5 40 10 40 4 

9 , 113 40 % 20 20 5 20 2 

0, 114 40 % 20 20 5 20 4 

1 , 115 40 % 20 20 5 40 2 

2, 116 40 % 20 20 5 40 4 

3, 117 40 % 20 20 10 20 2 

4, 118 40 % 20 20 10 20 4 

5, 119 40 % 20 20 10 40 2 

6, 120 40 % 20 20 10 40 4 

7 , 121 40 % 20 40 5 20 2 

8, 122 40 % 20 40 5 20 4 

9 , 123 40 % 20 40 5 40 2 

0, 124 40 % 20 40 5 40 4 

1, 125 40 % 20 40 10 20 2 

2, 126 40 % 20 40 10 20 4 

3, 127 40 % 20 40 10 40 2 

4, 128 40 % 20 40 10 40 4 
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ppendix B. Iterative procedure to find βN+1 

Andersson et al. [48] show that under the assumption of nor- 

ally distributed lead time demand and a constant lead time equal 

o the expected value L̄ , the induced backorder cost for retailer i 

an be computed as 

i ( ̄L ) = (h i + p i ) 
σ 2 

i 

μi Q i 

( 

Φ

( 

R 

∗
i 
+ Q i − μi ̄L 

σi 

√ 

L̄ 

) 

− Φ

( 

R 

∗
i 
− μi ̄L 

σi 

√ 

L̄ 

) ) 

, 

(B.1) 

here p i is the backorder cost per unit and time unit at retailer 

 and R ∗
i 

is the reorder point that minimizes the expected retailer 

osts given the assumptions above. They also show that an iterative 

rocedure with guaranteed convergence to equilibrium solutions 

an be applied to determine the optimal set of induced backorder 

osts β∗
i 

( i = 1 , . . . , N) that coordinates the system. The method is

ime consuming to use for systems with many retailers. However, 

e use it only for finding an improved estimate of βN+1 , which is 

 fast application described by the following procedure: 

Step 1 Set βN+1 = p N+1 and determine βi , i = 1 , . . . , N, accord-

ng to the closed form estimates in the bm methods. 

Step 2 Calculate the induced backorder cost β as the weighted 

verage of all βi , i = 1 , . . . , N + 1 , using (14) . 

Step 3 Determine the reorder point R 0 that minimizes (16) for 

he current β value. 

Step 4 Estimate L̄ with the metric type approximation used in 

he bm methods and determine R ∗
N+1 

from (B.2) . The latter is a suf-

cient optimality condition for R N+1 to minimize the holding and 

ackorder costs for a continuous review single-echelon ( R, Q) sys- 

em with lead time L̄ and normal demand (see [48] for details). 

ote, R N+1 = S − 1 , Q N+1 = 1 , and G (v ) = ϕ(v ) − v (1 − Φ(v )) is the

oss function. 

N+1 

√ 

L̄ 

( 

G 

( 

R N+1 − μN+1 ̄L 

σN+1 

√ 

L̄ 

) 

− G 

( 

R N+1 − μN+1 ̄L + 1 

σN+1 

√ 

L̄ 

) ) 

= 

h N+1 

h N+1 + p N+1 

(B.2) 

Step 5 Update the value for βN+1 using (B.1) . If βN+1 remains 

nchanged, or if it becomes larger than p N+1 , the procedure stops. 

therwise proceed to Step 6 for another iteration. Convergence is 

uaranteed as long as p N+1 ≥ h N+1 [see 48 ]. 
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