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A B S T R A C T

Replacing conventional cars and trucks with battery electric vehicles requires a rapid expansion of fast-charging
infrastructure. However, private sector charging infrastructure investments are delayed by unfavorable project
economics and uncertainty in future demand. Prior research has addressed the former using standard net
present value (NPV) methods, but neglected the latter. To address this gap, this paper introduces a real options
model of charging investments, which quantifies the option value of delaying investment under uncertainty.
We use this model to assess the implications of optionality in a representative case. Our analysis provides
indicative estimates of how investment timing is impacted by alternative policy options: grants, long-term
contracts, demand charge re-design, and Zero Emission Vehicle standards. We estimate that if grant subsidies
are informed by a traditional NPV analysis, firms would delay investing by more than 5 years. Perhaps
surprisingly, even low levels of risk incentivize long delays. We find that policies targeting optionality are
substantially more cost-effective than the traditionally used grants. Specifically, we calculate that long-term
contracts for differences can trigger immediate investments at a cost 68% lower than grants. A simpler but
relatively cost-effective alternative is to introduce a phase-out schedule for grants to discourage investment
delays.
. Introduction

Accelerating the adoption of Electric Vehicles (EVs) is a policy
riority for nations seeking to reach 1.5 ◦C or 2 ◦C climate targets.
ecarbonization scenarios for 1.5 ◦C and 2 ◦C envision zero-emission
ehicles accounting for 96% and 62% (median values) of all cars
n the road respectively (Dimanchev et al., 2022). However, con-
erns about charging among potential buyers are discouraging EV
urchases (YouGov, 2020). Some authors found charging station avail-
bility to be the strongest predictor of EV adoption (Sierzchula et al.,
014; Li et al., 2021; Sæther, 2022). Of particular importance are fast
hargers, which were shown to encourage EV adoption more strongly
han slow public chargers (Levinson and West, 2018; Wei et al., 2021;
æther, 2022). Fast charging is seen as necessary to meeting consumer
eeds (Nie and Ghamami, 2013; Funke et al., 2019) even though most
harging may take place overnight or at the workplace (Hardman
t al., 2018). Fast chargers are also of particular economic concern as

∗ Corresponding author at: Department of Electric Energy, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
E-mail address: emil.dimanchev@ntnu.no (E. Dimanchev).

1 Other researchers showed how policy cost-effectiveness varies with technology assumptions and demonstrated conditions under which a policy mix may be
onsidered most cost-effective (Ledna et al., 2022).

they account for most of the infrastructure spending estimated to be
necessary to support future EV adoption (Bauer et al., 2021).

Government incentives play a critical role in charging infrastructure
expansion because of network externalities (known colloquially as the
‘‘chicken-and-egg’’ problem), which lead to sub-optimal levels of pri-
vate sector investment (Li et al., 2017; Delacrétaz et al., 2021). Recent
empirical literature has quantified the impact of charging subsidies on
EV adoption (Münzel et al., 2019). Cole et al. (2021) showed that
subsidizing charging stations is a more cost-effective way of increasing
EV adoption than direct vehicle subsidies.1 However, it remains unclear
how subsidies should be designed to accelerate charging investments
while spending public funding most efficiently.

Previous research showed that fast charging stations face chal-
lenging economics, in large part due to high upfront costs and low
utilization, exacerbated by $/kW demand charges (Madina et al., 2016;
Flores et al., 2016; Lee and Clark, 2018; Muratori et al., 2019; Serradilla
et al., 2017; Jabbari and MacKenzie, 2017; Figenbaum, 2020). Several
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Model nomenclature

Economic parameters

𝜋𝑡 Profit flow over period 𝑡 ($)
𝑉𝑡 Total discounted future profit flows
𝐹𝑡 Value of real option ($)
𝑑𝑡 Charging demand in year 𝑡 (kWh)
𝑝𝑐 Cost to charge, hourly average ($/kWh)
𝑝𝑒 Price of electricity, hourly average

($/kWh)
𝐼 Investment cost ($)
𝑐𝑂&𝑀 Operation and maintenance cost ($)
𝑐𝑑𝑒𝑚𝑎𝑛𝑑−𝑐ℎ𝑎𝑟𝑔𝑒 Demand charge ($/kW)
𝑟 Discount rate, annual
𝜌 Social discount rate, annual
𝐿 Project lifetime (years)
𝑇 Decision period (years)

Stochasticity parameters

𝜇 Average annual change in demand, i.e. drift
𝜎 Standard deviation in annual demand

changes
𝑢 Possible monthly increase in demand
𝑑 Possible monthly decrease in demand
𝑝 Probability of a monthly increase in de-

mand
𝛥 Inverse of model periods per year (fraction)

Policy parameters

𝑠 Subsidy grant (fraction)
𝜋𝑐𝑓𝑑 Profit flow with contract-for-difference

(CfD)
𝑝𝑐𝑓𝑑 Payment received by investor from CfD
𝑝𝑠𝑡𝑟𝑖𝑘𝑒 CfD strike level

studies explored policy options to improve charging economics through
grants (Lee and Clark, 2018; Gnann et al., 2019; Baumgarte et al.,
2021), tax exemptions (Serradilla et al., 2017), and electricity rate
redesign (Fitzgerald and Nelder, 2019; Muratori et al., 2019). One of
the main limitations of the current literature is the use of static Net
Present Value (NPV) or similar methods that generally model charging
investment as a function of discounted future profit and investment
cost. Such methods model a ‘‘now-or-never’’ decision and implicitly
assume that investment occurs at the break-even point when total
revenues and costs are equal. In contrast, real options theory states that
investment is justified when total revenues equal not only conventional
costs but also the opportunity cost of investing now as opposed to later.
Opportunity costs exist in the presence of uncertainty, irreversibility
(complete or partial), and managerial flexibility as to when the in-
vestment is made (Dixit and Pindyck, 1994). These conditions make
the investment problem one of choosing when to exercise an option
(i.e. a right, but not an obligation) to invest. Optionality incentivizes
investors to wait beyond the time when the investment just breaks
even. Accordingly, research seeking to understand the impacts of gov-
ernment policy has applied real options methods to the analysis of
environmental policies (Wesseler and Zhao, 2019), including renewable
energy subsidies (Ritzenhofen and Spinler, 2016; Kitzing et al., 2017;
Kozlova, 2017; Bigerna et al., 2019; Penizzotto et al., 2019; Nagy et al.,
2023), and carbon pricing (Fuss et al., 2009; Torani et al., 2016; Ginbo
et al., 2021; Lamberts-Van Assche et al., 2022).
2

To inform the design of charging station subsidies, it is necessary to
account for the full set of incentives driving firm behavior, including
optionality in investment timing. Investments in fast charging stations
may be influenced by optionality because investors face considerable
uncertainty, cannot fully reverse capital outlays, and in many cases
have the ability to delay investment. Uncertainties in future EV adop-
tion and charging demand mean investors may not recover upfront
costs (Nicholas and Hall, 2018; Lee and Clark, 2018), particularly in
rural areas (Figenbaum, 2020; Hiller, 2022). Capital expenses cannot
be fully reversed because EV adoption risk is market-wide, implying
low resale values for charging hardware in unfavorable scenarios.
Moreover, a substantial portion of capital expenses may be site-specific
(e.g. permitting, labor, electric grid upgrades) for which a resale market
does not exist. Investors can also likely delay investing in many cases.
While this may not be true in high demand areas due to competition
for scarce sites, investors may be able to delay decisions in areas
where charging demand is currently low. For example, rural areas in
the U.S. are generally characterized by low demand and slow demand
growth (Nicholas and Hall, 2018), causing concerns among planners
about unequal coverage (Massachusetts Department of Transportation,
2022). Investments can also be delayed if investors already have rights
to a site, which grants them an effective monopoly over building
a charging station there. This suggests that optionality is a relevant
consideration for charging investors. It can also be expected to drive
decisions because, while many firms do not use real options explicitly,
observed behavior has been found to reflect an implicit accounting of
optionality (Dixit and Pindyck, 1994; Fleten et al., 2016). Thus, an
understanding of optionality can help lawmakers design policies that
meet desired goals, including the acceleration of charging investments.
For this purpose we introduce a real options model for charging invest-
ments. Charging investment is also analyzed as a real option by Wohlan
et al. (2021), who investigate the choice between EV and hydrogen
charging infrastructure from the perspective of a central planner. Here,
we use real options to model when a firm would invest in an EV
charging station.

This work extends the literature in three main ways. First, this re-
search investigates the implications of optionality for policy design. We
assess policy advice informed by traditional static NPV approaches and
show how such methods underestimate the amount of subsidy required
to stimulate firms to invest rather than wait (conversely these methods
overestimate the effectiveness of a given subsidy). Second, our analysis
evaluates policy options that address optionality in different ways and
compares their cost-effectiveness. We model long-term contracts that
guarantee a certain revenue stream (Birkett and Nicolle, 2021), also
known as contracts for differences (CfDs), and we compare different
ways of designing such policies (one-sided and two-sided approaches).
Third, this paper explores the potential impact of reducing investment
risk. We do so by decomposing the total risk faced by investors into
policy risk and what we call ‘‘residual risk’’. We find that eliminating
policy risk would only have a limited impact on investment timing, as
even low levels of risk would incentivize firms to delay investment if
they have the option.

2. Methods

2.1. Binomial tree approach to modeling uncertainty

Investors in charging stations face uncertainty in future annual
charging demand. To model this uncertainty, we assume that an-
nual demand follows an upward bounded geometric Brownian motion
(GBM) stochastic process such that: 𝑑𝑙𝑛(𝑑𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑧, where 𝑑𝑡
epresents stochastic unbounded demand with drift 𝜇 and standard
eviation 𝜎. Demand is upward bounded such that 𝑑𝑡 = min

[

𝑑𝑚𝑎𝑥, 𝑑𝑡
]

,
where 𝑑𝑡 represents annual demand observed by the charging station
operator. The bound is meant to reflect the threat of competition from
new entrants in a reduced-form manner.
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To represent the GBM process, we generate a binomial tree using
the classical method introduced by Cox et al. (1979). We extend this
standard approach to account for the upward tendency in future charg-
ing demand by incorporating the approach described by Joshi (2007).
We define a finite decision-making horizon of 𝑇 time periods. To build
the binomial tree, we estimate the size of the possible upward and
downward jumps in demand in each time period 𝑡, which are denoted
𝑢 and 𝑑 respectively, as well as the probability of an upward jump 𝑝, as
shown below. Our tree structure is recombining since the product 𝑢𝑑 is
a constant.

𝑢 = 𝑒𝜇𝛥𝑡+𝜎
√

𝛥𝑡 (1)

𝑑 = 𝑒𝜇𝛥𝑡−𝜎
√

𝛥𝑡 (2)

𝑝 = (𝑒𝜇𝛥𝑡 − 𝑑)∕(𝑢 − 𝑑) (3)

where 𝛥 is a fraction, which reflects the number of time periods 𝑡 within
one year, and is used to adjust the annual drift 𝜇 and standard deviation
𝜎.

2.2. Real options model of charging investment

Our model represents the decision of an investor choosing when to
invest in a charging station. The investor solves the stochastic optimiza-
tion problem that maximizes the value of the real option to invest,
𝐹𝑡. This maximization problem is expressed by well-known Bellman
equation shown below.

𝐹𝑡(𝑑𝑡) = max
[

𝑉𝑡(𝑑𝑡) − 𝐼(1 − 𝑠) , 𝑒−𝑟𝛥𝑡 E
[

𝐹𝑡+1(𝑑𝑡+1)
]

]

, 𝑠 ∈ [0, 1] (4)

where 𝑉𝑡(𝑑𝑡) is the total discounted future profit from operating the
charging station for the entirety of its lifetime (described in detail
below), and 𝐼 is the investment cost, potentially adjusted by a grant
subsidy 𝑠 ∈ [0, 1] (which can interpreted as a tax credit or another
type of subsidy that covers part of the investment cost). Their difference
represents the value of investing now (i.e. the NPV of the investment).
The right side of the maximization represents the value of waiting, also
known as the continuation value, expressed as the discounted expected
value of the real option in the next time period 𝐹𝑡+1. The right side
of the maximization expression can be interpreted as the opportunity
cost of investing now. The maximization problem thus shows that it is
optimal to invest when total profits just exceed the sum of total costs
and the opportunity cost of investing. The annual discount rate 𝑟 is
adjusted by a time step fraction 𝛥 (set to 1/12, as we choose a monthly
time resolution for our binomial tree).

We solve this optimization problem using the well-known dynamic
programming algorithm (Trigeorgis, 1996, e.g.). The algorithm em-
ploys backward recursion: it begins at the last time step of the decision-
making horizon, denoted as 𝑇 , and iteratively moves toward the first
period. The option value of the last period is estimated as follows.

𝐹𝑇 (𝑑𝑇 ) = max
[

𝑉𝑇 (𝑑𝑇 ) − 𝐼𝑡(1 − 𝑠) , 0
]

(5)

here 𝑉𝑇 represents the total discounted future profit at the last stage
. Its calculation is expressed in the following equation. Note that
o expectation operator is used for calculating profits beyond the last
ecision-making period. In other words, we use standard approach of
ssuming that the uncertain variable (demand 𝑑𝑇 ) does not branch
urther than the last decision-making period 𝑇 .

𝑇 (𝑑𝑇 ) =
𝐿
∑

𝑖=1
𝑒−𝑟𝛥𝑖𝜋(𝑑𝑇 ) (6)

Here 𝜋(𝑑𝑇 ) denotes the investor’s profit flow during the last
ecision-making period, 𝑇 . Profit flow is based on charging demand
𝑡 and the margin obtained from buying electricity from the grid (for
n hourly average price 𝑝𝑒) and re-selling electricity to EV drivers (for
n hourly average price 𝑝𝑐). We further account for fixed operation
3

t

and maintenance (O&M) costs, denoted 𝑐𝑂&𝑀 , and the cost of demand
charges, 𝑐𝑑𝑒𝑚𝑎𝑛𝑑−𝑐ℎ𝑎𝑟𝑔𝑒. In this formulation the cost of demand charges
is independent of demand, or utilization. It is possible for peak power
to change with utilization. However, we assume it to be constant for
the utilization values we explore. Profit flow during any period 𝑡 is
alculated using the following equation.

(𝑑𝑡) = 𝑑𝑡(𝑝𝑐 − 𝑝𝑒) − 𝑐𝑂&𝑀 − 𝑐𝑑𝑒𝑚𝑎𝑛𝑑−𝑐ℎ𝑎𝑟𝑔𝑒 (7)

As shown by (7), our model represents a pay-as-you-go business
odel whereby consumers are charged per unit of electricity. There is

urrently a wide variation of payment systems including memberships
nd pay-by-the-minute charges (Hardman et al., 2018; LaMonaca and
yan, 2022). However, the pay-as-you-go business model is likely to
e most representative of future charging trends. It was found to be
referred by consumer groups and charging point operators in the
K (Chen et al., 2020) and is being adopted by an increasing number
f U.S. states (Benoit, 2019).

Our dynamic programming algorithm proceeds backward through
he binomial tree to estimate profits 𝑉𝑡(𝑑𝑡) at all points in time 𝑡 ∈
1 ∶ 𝑇 − 1] and scenario states (i.e. nodes on the binomial tree). 𝑉𝑡(𝑑𝑡)
epresents the discounted expected profits from all periods before the
nd of the lifetime of the asset. The equation below shows how this is
alculated. The first term on the right-hand side represents the profits
rom the first period after investment. The second term represents the
emaining expected profits until the end of the decision horizon at time
. The third term represents profits from any remaining periods until

he end of the charging station’s lifetime 𝐿.

𝑡(𝑑𝑡) = 𝑒−𝑟𝛥𝜋(𝑑𝑡) +
𝑇
∑

𝑖=𝑡+1
𝑒−𝑟𝛥𝑖 E

[

𝜋(𝑑𝑖)|𝑑𝑡
]

+
𝐿−1−(𝑇−𝑡)

∑

𝑗=1
𝑒−𝑟𝛥(𝑗+𝑇−𝑡) E

[

𝜋(𝑑𝑇 )|𝑑𝑡
]

(8)

To summarize, the dynamic programming algorithm goes backward
hrough the binomial tree starting from the last decision-making period.
or each node on the tree (i.e. state of demand at a given point in time)
he algorithm computes the corresponding profit value 𝑉𝑡(𝑑𝑡) using (6)
r (8) and option value 𝐹𝑡(𝑑𝑡) using (4). The algorithm also records the
ptimal investment decision at each node (recall that it is optimal to
nvest as soon as the value of investing immediately is greater or equal
o the value of waiting, as represented by Eq. (4)).

To simulate future investment decisions, we use a standard Monte
arlo algorithm. This algorithm simulates possible realizations of de-
and by making many random forward passes through the binomial

ree. With each pass through the tree, the procedure uses the results
rom the dynamic programming algorithm to record the investment
ecision (i.e. timing of investment) that an investor would make. After
any random passes, this process generates a probability distribution

f the timing of investment. When we refer to our real options model
n this paper, this includes both the dynamic programming and Monte
arlo algorithms.

.3. Modeling contracts for differences

We extend the real options model described above to allow for
ossible long-term contracts for charging stations similar to a recent
roposal by Birkett and Nicolle (2021). These contracts resemble con-
racts for differences (CfDs) commonly used to subsidize renewable
nergy and we will use this term to refer to the contracts we study
n this paper. CfDs for charging stations may be designed as contracts
etween a public agency and private investors that pay investors the
ifference between a specified level of revenue and actual revenues
btained by investors from charging station consumers. A version of

his policy has been implemented in the Netherlands (Birkett and
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𝑝

Table 1
Parameter assumptions.

Parameter Value

Charging points (number) 6
Charging capacity per point (kW) 350
Total capacity (MW) 2.1
Investment cost (DCFC hardware) per point ($) 128,000
Investment cost (othera) per station ($) 258,000
Total investment cost ($) 1,026,000
O&M cost ($) 97,268
Demand charge ($/kW-month) 8.62
Maximum power (MW) 1.060
Demand charge ($/year) 109,646
Electricity cost ($/kWh) 0.12
Price to charge ($/kWh) 0.30

a ‘‘other’’ includes: permitting, labor, grid interconnection, concrete pads, cables, and
other materials for site preparation.

Nicolle, 2021). In our model, we denote the investor’s profit under a
CfD policy with 𝜋𝑐𝑓𝑑 (𝑑𝑡), which is estimated as follows.
𝑐𝑓𝑑 (𝑑𝑡) = 𝜋(𝑑𝑡) + 𝑝𝑐𝑓𝑑 (𝑑𝑡) (9)

𝑐𝑓𝑑 (𝑑𝑡) =

{

max
[

0, 𝑝𝑠𝑡𝑟𝑖𝑘𝑒 − 𝜋(𝑑𝑡)
]

, if one-sided
𝑝𝑠𝑡𝑟𝑖𝑘𝑒 − 𝜋(𝑑𝑡), if two-sided

(10)

where 𝑝𝑐𝑓𝑑 (𝑑𝑡) represents the payment the investor may receive, which
is the difference between a pre-determined strike level of profit 𝑝𝑠𝑡𝑟𝑖𝑘𝑒

and actual profit 𝜋(𝑑𝑡). We note that this CfD formulation is based not
on revenues but short-run profit (revenues after O&M costs and demand
charges). In practice, it would be preferable for policy makers to base
CfDs on revenues to avoid distorting firms’ incentives to minimize
costs and for practical reasons (revenues are more easily observable).
However, since costs are exogenous in our model, our formulation
can be considered equivalent to a CfD based on revenues. We choose
the profit-based formulation to keep the model simpler and facilitate
transparency. We further note CfDs can be expected to lower financing
costs by virtue of mitigating investor’s risk exposure. We represent this
by assuming investors use a risk free discount rate of 2% when this
policy is in effect.

CfDs can be designed as one-sided, compensating investors if 𝜋(𝑑𝑡)
falls below the strike level, but allowing investors to keep any revenues
that may exceed the strike level. Alternatively, CfD’s can be two-sided,
in which case investors both receive compensation in the case of a
revenue shortfall and pay back any excess revenues on top of the strike
level. We model this by constraining 𝑝𝑐𝑓𝑑 to be nonnegative in the one-
sided cases as shown in (10). Note that a two-sided CfD is equivalent
to a long-term contract with a fixed payoff.

Finally, the following expression is used to estimate the govern-
ment’s cost under the CfD policy, where 𝜌 is the social discount rate.

𝐶𝑐𝑓𝑑 =
𝐿
∑

𝑡=1
𝑒−𝜌𝛥𝑡 E

[

𝑝𝑐𝑓𝑑 (𝑑𝑡)
]

(11)

2.4. Data

We compile data for a fast charging station representative of likely
near-future projects. The charging station design is based on the ‘‘Ul-
timate Capability’’ case developed by Francfort et al. (2017). The
charging station is assumed to include six 350 kW charging points (for
a total theoretical capacity of 2.1 MW) with a lifetime of 10 years. The
decision-making horizon is also chosen to be 10 years and our binomial
tree discretizes this period using monthly time steps.

Demand for charging is calculated as the product of utilization (in
%) and the station capacity (2.1 MW). We assume utilization in the
first period to equal 5%, which is typical for fast charging stations
in the U.S. Lee and Clark (2018), Fitzgerald and Nelder (2019) and
4

PwC (2021). Therefore, average hourly demand in the first period is
105 kWh. After the first period, utilization (and therefore demand)
is uncertain and branches off according to our binomial tree. Recall
that we do not allow demand to exceed a maximum level (denoted
𝑑𝑚𝑎𝑥). We choose this level to correspond to a utilization of 30%,
representative of a mature market for fast charging (Fitzgerald and
Nelder, 2019; Jabbari and MacKenzie, 2017). Therefore average hourly
demand does not exceed 630 kWh.

Table 1 displays our cost parameters. O&M costs cover the site
lease, site maintenance, communications, and equipment warranty and
are sourced from Francfort et al. (2017). Demand charges are based
on an average rate across U.S. utilities of $8.62/kW charged every
month (Kettles and Raustad, 2017). Demand charge costs are then cal-
culated using a maximum power of 1.060 MW (Francfort et al., 2017).
For investment costs, we combine data from two different sources.
For the largest component, Direct Current Fast Charging hardware,
we use data from Nelder and Rogers (2019) to account for the recent
decline in hardware costs. As a result our assumed cost is also more
in line with other recent research (LaMonaca and Ryan, 2022). All
remaining investment costs are sourced from Francfort et al. (2017)
and include: permitting, grid interconnection, concrete pads, cables,
and other materials for site preparation, and labor costs.

The charging station investor derives revenues from selling elec-
tricity to EV drivers at a charging price, 𝑝𝑐 , for which we assume
a value of $0.3/kWh. This is consistent with rates charged at the
time of writing by Tesla (Benoit, 2019) and EVGO (EVGO, 2022).
Our assumed EV charging cost is also comparable to rates in the UK
of £0.3–0.4/kWh (Chen et al., 2020). There are exceptions however:
for example, fast charging at Ionity stations costs 79/kWh (Ionity,
2020), or approximately $0.88/kWh.2 We test the sensitivity of our
results to assuming this higher price to charge in Section 3.1. The
electricity price the charging station operator pays for electricity, 𝑝𝑒,
is $0.12/kWh (Francfort et al., 2017). This is similar to the US average
transportation sector electricity price of $0.119/kWh (EIA, 2022).

To parameterize the discount rate used by the investor, we use a
Capital Asset Pricing Model (CAPM) approach. We assume a standard
risk free rate 𝑅𝑓 of 2% and a market risk premium 𝑅𝑚 of 5%. For
the 𝛽 of a fast charging station investment, we average values of three
publicly traded charging station operators (CNBC, 2022a,b,c), resulting
in a relatively high 𝛽 of 3. Using the CAPM model, the investor’s
discount rate is given by: 𝑟 = 𝑅𝑓 + 𝛽𝑅𝑚. This results in an overall risk-
adjusted discount rate of 17%. For the purposes of calculating CfD costs
born by the government, we use a social discount rate 𝜌 = 𝑅𝑓 .

2.4.1. Cases
To explore uncertainty in future demand, we develop two cases.

First, our ‘‘Base Case’’ uses longitudinal monthly data on charging
per point collected from Level 2 public charging stations in the area
of Amsterdam and covering a period of seven years from 2015 to
2021 (G4+MRA-E, 2022). We derive annual values in charging per
point by averaging across months. On average charging demand grew
by 9% per year. To estimate the drift and volatility parameters used in
the binomial tree, we compute the average and standard deviation for
the annual changes in the natural logs, which leads to a drift 𝜇 of 9%
and a standard deviation 𝜎 of approximately 11%.

In the second case, denoted ‘‘EV Mandate’’, we assume that gov-
ernments act to reduce policy risks. Here we define policy risk as that
which stems from uncertainty in future EV adoption. Policy makers
may wish to place priority on such risks, because they may be con-
sidered under their control (also known as endogenous risks) and thus
can be reduced. We distinguish policy risk from all other risks, for
which we use the term ‘‘residual risk’’. Such risk can be described as
exogenous to policy makers as they cannot be reduced but are merely
transferred from one party to another (the CfD policies we study de-risk

2 This conversion uses an exchange rate of 0.9/$.
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the investment for the investor but imply risk for the policy maker).
For EV charging investments, residual risk may refer to changes in
driving demand, EV technology (energy consumption and battery sizes
in particular), or consumer behavior.

In the EV Mandate case, future EV adoption is known with certainty.
This may represent policies such as Zero Emission Vehicle (ZEV) stan-
dards, which have been implemented for example in the U.S., Canada
and China (Axsen et al., 2022). This case is modeled in a reduced-form
manner as an illustration of how reducing risk impacts charging station
economics. To represent the uncertainty facing the investor in the EV
Mandate case, we first estimate policy risk and then deduct it from the
amount of risk captured by our Base Case, which we assume captures
both policy and residual risks. To estimate policy risk, we compile
market analyst scenarios3 for the total number of EVs in the U.S. in
2030 (BloombergNEF, 2021; IEA, 2021; EPRI, 2021; EIA, 2021). We
estimate EV growth rates from 2020 to 2030 and isolate the highest
and lowest such projections. The highest annual growth rate is found
in the EPRI ‘‘50 × 30 E+’’ scenario equal to 60%, which we denote
𝑔ℎ𝑖𝑔ℎ. The lowest is found in the EIA Annual Energy Outlook of 10%
and is here denoted 𝑔𝑙𝑜𝑤. We assume that this range captures 95% of
a normal uncertainty distribution and use the corresponding Z-score of
the 97.5 percentile, 𝑧.975, to estimate the standard deviation implied by
EV adoption uncertainty, 𝜎𝐸𝑉 , as shown below.

𝜇𝐸𝑉 = ln
(

1 +
𝑔ℎ𝑖𝑔ℎ + 𝑔𝑙𝑜𝑤

2

)

(12)

𝜎𝐸𝑉 =
ln
(

1 + 𝑔ℎ𝑖𝑔ℎ
)

− 𝜇𝐸𝑉

𝑧.975
(13)

This results in a 𝜎𝐸𝑉 of 9%. Assuming independence between policy
risk and residual risk, the following standard approach can be used
to estimate residual risk 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =

√

𝜎2 − 𝜎𝐸𝑉 2, which after rounding
equals 7%. The EV Mandate case uses this standard deviation for the
generation of the binomial tree, along with the previously calculated
drift 𝜇 of 9%. This approach is relatively sensitive to our choice
of Z-score and therefore serves only an illustrative purpose. Another
limitation of this method is that it implicitly assumes that EV adoption
equals the mandated amount, while in practice ZEV standards could
be overachieved or underachieved (the latter in the case of Alternative
Compliance Payment features).

3. Results and discussion

3.1. Investment timing without subsidies

We first use our real options model to simulate optimal timing
of investment in a fast charging station. Fig. 1 shows the estimated
timing within the decision-making horizon as a Cumulative Distribution
Function (CDF) of outcomes generated by our Monte Carlo algorithm.
The results show that, in the Base Case, investment is only 45% likely
to occur within 10 years; in other words, demand does not rise high
enough to trigger investment in 55% of model runs. This result can be
explained by two different aspects of EV charging station economics.
First, at low demand levels (recall that the utilization in the first period
is 5%), revenues are insufficient to cover the investment cost, resulting
in a negative NPV of −$0.9 million in the Base Case. Second, the
optionality inherent in the investment decision incentivizes waiting
past the time when revenues just equal investment cost.

We test the sensitivity of the above result to the price to charge by
assuming a higher price of $0.88/kWh (instead of our main assumption

3 The scenarios include: the International Energy Agency (IEA) STEPS and
SDS scenarios, The Energy Information Administration (EIA) Reference case,
the Bloomberg New Energy Finance (BNEF) Economic Transition and Net Zero
scenarios, and the Electric Power Research Institute (EPRI) Reference, 50 × 30
and 50 × 30 E+ scenarios.
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Fig. 1. Timing of investment in a fast charging station without subsidies. Lines
represent Cumulative Distribution Functions (CDFs) of simulated investment outcomes.
The decision-making horizon was chosen to equal ten years.

of $0.3/kWh, as discussed above), while keeping all other assumptions
unchanged. This results in a positive NPV in the first period of $2.7 mil-
lion (as revenues are substantially higher). Nevertheless, the investor
is still incentivized to wait and our model estimates that a firm would
likely delay investment by at least 1 year.

Fig. 1 also shows that the EV Mandate case has a relatively limited
impact on the investment timing. This is due to two countervailing
effects, which were described by Sarkar (2000). On the one hand,
reducing demand volatility lowers the threshold value of demand that
justifies investment in a charging station. On the other hand, lower
volatility decreases the probability that a given threshold value is
reached by a given point in time. To further understand the impact of
the EV Mandate case, we explore the relative contribution of the level
of risk in Section 3.2.

3.2. Effects of optionality on investment timing

To isolate the impact of optionality, here we run our model with
a grant subsidy of a magnitude sufficient for the investment to break
even in the first period based on static NPV, where discounted profits
break even with the investment cost (we call this a ‘‘break-even grant’’).
We estimate that this requires a grant equal to 86% of the investment
cost in the Base Case. The magnitude of this value is relatively high
because this grant must help cover not only investment costs but also
the substantial site lease costs and demand charges. Fig. 2 shows the
resulting distribution of investment timing, illustrated using CDFs. Each
circle shows the point at which investment becomes likely, for which
we use the median timing (the point at which each CDF line crosses
the 50% horizontal line). We estimate that an investor would delay
optimal investment by 5.6 years on average in the Base Case even after
receiving a break-even grant (blue line in either panel of Fig. 2). This
contrasts with what would be expected when using a traditional static
NPV method. Static NPV suggests that firms would invest immediately
if given a grant sufficient to break even. This difference indicates the
effect of optionality on the investor’s optimal decision. The magni-
tude of this effect suggests that static NPV methods may substantially
overestimate the effectiveness of a given subsidy.

To understand the factors driving investment timing, we vary the
level of risk (standard deviation in future demand growth) in the left
panel in Fig. 2 and the expected demand growth in the right panel.
As shown in the left panel, the average timing to invest is relatively
unaffected by changes in the level of risk. On the other hand, the right
panel shows that the timing to invest is sensitive to the level of demand
drift 𝜇 in our model (equal to 9% in the Base Case). This is because, in
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Fig. 2. Timing of investment including a break-even grant for different levels of risk (left) and expected demand growth (right). Assumes the investor receives a grant sufficient
for the investment to break even on an NPV basis in the first period. Circles show the point at which investment becomes likely. Lines show Cumulative Distribution Functions
(CDFs) of simulated investment outcomes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
the early periods, total profit grows faster than the investor’s discount
rate – in other words, investing now forfeits the option to invest later
when discounted profits would be higher – which incentivizes waiting
even when the investor knows the future with certainty. This dynamic
has already been described in the real options literature (Dixit and
Pindyck, 1994), and is robust to our assumption of a finite project
lifetime. Appendix provides an analytical explanation of this effect.

Next, we isolate the impact of risk on investment timing by con-
trolling for the impact of demand growth. For this purpose we assume
no growth on average (equating the drift term 𝜇 to zero), and we vary
the volatility in future demand growth 𝜎. As shown by the red line in
Fig. 3, investment occurs immediately if investors know the future with
certainty (recall these results assume investors receive a break-even
grant). In this case, optionality is eliminated and optimal investment
can be determined using static NPV. However, Fig. 3 also shows that
the presence of risk leads to substantial delays in optimal investment.
Assuming the Base Case level of volatility of 11% results in a likely
investment in year 4 (as shown by the blue line and circle). Reducing
risk, as in the EV Mandate case, only accelerates investment to 3.4 years
(purple line and circle). This limited sensitivity to the level of risk
is once again caused by the two countervailing impacts of demand
volatility discussed above: namely, lower uncertainty decreases the
threshold value of demand that justifies investment but also decreases
the likelihood that this demand level is reached. Under a volatility
of 1%, investment does not become likely for 5.3 years (red circle);
this result illustrates that the latter of the two countervailing forces
mentioned in the previous sentence dominates at low levels of risk. This
context-dependent relationship between risk and investment timing is
broadly similar to results in previous work (Sarkar, 2000).

Overall, we find that both risk and expected demand growth incen-
tivize delaying investment. Demand growth dominates the incentive
to delay (as shown by the left panel in Fig. 2), but risk plays a role
when we control for the influence of demand growth (as shown by
Fig. 3). The magnitude of delay caused by risk is roughly 4 years in the
Base Case. This exceeds the additional delay caused by demand growth,
which is 1.6 years (difference between the blue circles in Figs. 2 and
3).

3.3. Implications of optionality for subsidy size

Here we assess the size of grant subsidy necessary to stimulate
immediate investment. To do so, we quantify the relationship between
the option value and the NPV relative to the size of a subsidy grant
6

Fig. 3. Impact of risk on investment timing (without demand growth). Assumes the
investor receives a grant sufficient for the investment to break even on an NPV basis
in the first period. Circles show the point at which investment becomes likely. Lines
show Cumulative Distribution Functions (CDFs) of simulated investment outcomes. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

by running our dynamic programming algorithm iteratively (Fig. 4).
NPV can be interpreted as the value of investing immediately, and the
option value represents the value of waiting. In line with our previous
estimate, the NPV line (in orange) crosses the zero-level for a grant
equal to 86% of the investment cost, which we showed in the previous
section. Investing is not optimal however as the value of waiting far
exceeds the value of investment (as shown by the blue line relative
to the orange). As the subsidy is increased, the value of immediate
investment converges with the value of waiting. Real options theory
holds that investment becomes optimal when the NPV equals the value
of waiting (at the intersection of the blue and orange lines).

The results in Fig. 4 suggest that immediate investment will occur if
the investor receives a grant equal to 160% of the investment cost. This
shows that static NPV methods substantially underestimate the level
of grant subsidy needed to accelerate investment. The size of subsidy
needed to trigger immediate investment is approximately twice as large
as that suggested by a static NPV approach.
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Fig. 4. Option value relative to level of grant subsidy. Results represent the Base Case.
In the EV Mandate case, the option values are only slightly different and the intersection
point is the same. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

3.4. Impacts of a demand charge re-design on charging investment

Given the adverse effect of demand charges on EV infrastructure
economics, it has been recommended that demand charges be adjusted
according to utilization (Fitzgerald and Nelder, 2019). A simple ap-
proach is for utilities to recover costs through volumetric, $/kWh,
tariffs (Fitzgerald and Nelder, 2018). Accordingly, here we test the
impact of replacing the traditional, $/kW, demand charge with a
volumetric tariff. We set the level of the tariff so that the utility would
recover the same amount of revenue at a charging station utilization
of 30% (this increases the price of electricity in our model from
$0.12/kWh to $0.14/kWh). At lower levels of utilization, this tariff
constitutes an effective subsidy from the utility to the charging station
owner. While utility cost recovery is out of the scope of this paper,
we note that utilities may justify such subsidies if EVs provide grid
benefits through smart charging or vehicle-to-grid services (though
such grid services may not to be performed at fast charging stations).
Alternatively governments may compensate utilities for insufficient cost
recovery, or utilities may adjust volumetric tariffs as load changes.

The NPV of the project in the first period is still negative, equal
to −$0.5 million. This is relative to −$0.9 million without the policy,
which shows the large economic impact of demand charges. This policy
is approximately equivalent to a grant equal to 39% of the project’s
investment cost.

We find that investment becomes likely after 7.2 years under this
alternative demand charge policy. This is in contrast to our result in
Fig. 1, which showed that investment does not become likely before
year 10. However, investment is still only 70% likely to occur within
the ten-year decision-making horizon. We conclude that demand charge
re-design has a limited impact on accelerating investment. Within the
context of our model, this result is not surprising as this policy does
not directly address the optionality that characterizes the investment
decision.

3.5. Impacts of contracts for differences on charging investment

Long-term contracts address optionality in investment timing, but
we find that the extent to which they stimulate investment depends
on their design. Two-sided CfDs guarantee a fixed revenue stream
because, regardless of market demand, the investor receives the strike
level stipulated in the contract. To evaluate this policy, we numerically
estimate the strike level necessary for the project’s NPV to break even in
the first period, which equals approximately $4500/month in our Base
7

Table 2
Timing of investment for selected policy options.

Policy option Investment timing
(years until investment
is more than 50% likely)

Probability of investing
within 10 years

No policy 10+ 45%
Granta 5.6 98%
One-sided CfDa 6.6 100%
Two-sided CfDa 0 100%

aAll subsidies are calibrated to provide enough financial support for the project to
break even on an NPV basis in the first period.

Case. As expected, this level incentivizes immediate investment. While
investors have the option of not accepting the contract, our numerical
model shows that it is optimal to choose the contract in the first period,
at the strike level where NPV just breaks even. This can be explained
by the fact that the NPV is very low in the first period (as discussed
previously). It is worth mentioning, though outside of our scope, that
for projects with positive NPVs investors may choose not to take a two-
sided CfD that only offers break-even NPV, in expectation of revenues
exceeding that level (Décamps et al., 2006).

One-sided CfDs guarantee a revenue stream equal to the strike level
but also allow investors to keep any additional earnings. The investor
avoids downside risk but retains upside potential, which improves the
project’s economics on the basis of NPV relative to a two-sided CfD.
Accordingly, we estimate that a strike level of only $3300/month is
sufficient for the project’s NPV to break even in the first period (as
opposed to $4500/month with two-sided CfDs). Thus, one-sided CfDs
may be expected to strongly encourage investment. Contrary to this
intuition, we find that one-sided CfDs provide a weaker investment
incentive compared to two-sided contracts because the former does not
sufficiently address the investor’s optionality. Our model simulates that
investment is not likely to occur for 6.6 years assuming a one-sided
CfD with the estimated break-even strike level. If we instead used a
strike level of $4500/month, investment is not likely for 6.4 years. The
reason for these results is that, with a one-sided CfD, the expected profit
from investing in the project initially grows faster than the investor’s
discount rate. It is notable that investment delay under a one-sided CfDs
is greater than under a break-even grant (Table 2). This is driven by
the assumed discount rate of 2% with the CfD relative to the higher
discount rate used for the grant subsidy (17%). We further test the
sensitivity of this result to the drift parameter 𝜇 (demand growth). If
we set this parameter to zero, our model estimates that investment still
only becomes likely in year 4.2 (which can be explained by the fact
that the investor’s profits still grow on average under a one-sided CfD).

3.6. Cost-effectiveness of alternative policy design options

Previous sections explored how investment timing varied across
different subsidies that offer a certain amount of financial support
(enough to allow the investment to break even in the first period).
On the other side of the coin, this section evaluates how financial
support (or government cost) varies across policies that all trigger
investment in the first period. For each policy type, we estimate optimal
subsidy levels, which we define as the least amount of public spending
necessary to trigger immediate investment. We do this by running our
real options model iteratively and gradually increasing subsidy support
until investment is triggered in the first period.

In Fig. 5, we first display the required size of a traditional grant to
trigger immediate investment. This is equivalent to the result shown in
Fig. 4. Next, we test a declining grant, which is linearly phased out
over 5 or 10 years. The results show that a declining grant phased
out over 10 years costs 32% less than traditional grants in the Base
Case. This result reflects the fact that this policy partly addresses the
investor’s optionality in timing as it decreases the attractiveness of
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Fig. 5. Costs of subsidies that trigger immediate investment.

waiting. Grants declining over 5 years reduce costs by 39% relative to
traditional grants. This shows that the marginal savings from shorten-
ing the phase-out schedule from 10 to 5 years is relatively small. The
cost-effectiveness of declining grants is relatively unchanged in the EV
Mandate case (equivalent to savings of 34% and 41% relative to the
standard grant respectively for the 10-year and 5-year phase outs).

A two-sided CfD reduces policy costs by 68% relative to traditional
grants in the Base Case (Fig. 5). This cost reduction is equivalent in
the EV Mandate case, as expected, because the contract makes the
project independent of future uncertainty. The cost savings are partly
driven by differences in the investor’s discount rate under grants (17%)
and under the CfD (recall that a risk free rate of 2% is assumed for
both the investor and the government). If we instead assumed a 17%
discount rate for the investor, our model estimates CfD savings of 11%.
This small magnitude can be explained by the fact that the investor’s
discount rate is now far larger than the government’s (equal to 2%).4
Therefore, CfD cost savings are dependent on the extent to which such
contracts decrease an investor’s discount rate. More specifically, our
model estimates that for two-sided CfDs to yield savings larger than
the ones achieved by the 10-year declining grant (32%) requires that
they reduce the investor’s discount rate to approximately 12.5% (from
17%). So far, we have excluded one-sided CfDs from this analysis,
but we note that they are less cost-effective than grants according to
our model, since the former provides a stronger incentive to delay
investment as discussed in the previous section. As a result, one-sided
CfDs require a greater amount of financial support to trigger immediate
investment. Our model estimates one-sided CfDs to cost 75% more
than an equivalent grant that triggers immediate investment, a result
which is also strongly driven by the previously discussed differences in
discount rates.

4. Conclusions and policy implications

Significant public resources are being dedicated to stimulating pri-
vate sector investment in EV charging infrastructure. In the U.S., firms
can access grants made available by the recently passed Infrastructure
Investment and Jobs Act and Inflation Reduction Act (National Con-
ference of State Legislatures, 2022). The question this paper addresses
is how state and local governments can make the most of such public
funding to accelerate investment in fast charging stations for EVs. To
do so, we provide the first analysis of charging subsidy design that

4 We confirm this by observing that applying the same 17% rate to both the
investor and the government results in a cost-saving of roughly 45%, which is
in line with results we showed previously in Fig. 4.
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considers optionality in investment timing. Our analysis is relevant to
cases where firms have the option to delay investing. This is particularly
likely to be the case in low-demand rural regions. Our analysis can
therefore help public agencies understand and stimulate investment
decisions in areas that may otherwise be under-served, reducing in-
equalities in vehicle electrification and more effectively alleviating
range anxiety concerns.

Current policy in the U.S. and beyond focuses primarily on the
use of grants to subsidize charging stations. This paper shows that
the effectiveness of this policy is strongly dependent on the analytical
framework used to inform its design. We test a version of this policy
that would be recommended by the traditional static NPV approach:
namely, a grant large enough to allow the project to break even.
Our real options model shows that an investor offered such a grant
would nevertheless wait to invest until demand is higher. The median
investment delay estimated by our case study is 5.6 years (assuming a
ten-year planning horizon). To accelerate investment and trigger imme-
diate investment, grants must be large enough to cover the opportunity
cost of investment (equivalently, the value of waiting), and our model
estimates this to require a grant roughly twice as large as that suggested
by a static NPV approach.

This paper finds that several policy design changes can improve
the effectiveness of charging subsidies in the presence of optionality.
A recently proposed option is for governments to provide long-term
contracts that provide investors with guaranteed revenue streams (Bir-
kett and Nicolle, 2021). This could involve the extension of the type
of public–private partnerships public agencies are currently consider-
ing (Massachusetts Department of Transportation, 2022). Our results
show that a two-sided CfD is substantially more cost-effective than
providing the grant needed to trigger investment (this depends on the
extent to which CfDs lower the investor’s discount rate). Two-sided
CfDs are the most cost-effective option of the policies we analyze.
Counter-intuitively, they also provide a more effective investment in-
centive than one-sided CfDs in the presence of optionality. However, a
disadvantage of CfDs is that they transfer risk from the investor to the
contract’s counter-party (public agencies in our context). Such contracts
also entail higher policy complexity and administrative burden.

A simple policy alternative is the introduction of a phase-out sched-
ule for grant subsidies. We find that this would provide a substantial
improvement in cost-effectiveness (compared to the standard grant) by
decreasing the value of delaying investment. Our results show that the
length of the phase-out schedule is inversely proportional to its cost-
effectiveness. However, short phase-out schedules may be impractical
if they do not allow enough time for firms to take advantage of the
subsidy. Additionally, our results show that the marginal gain in cost-
effectiveness from a 10-year to a 5-year phase-out is relatively small.
This suggests that grants with a 10-year phase-out schedule may be a
pragmatic way to cost-effectively accelerate charging investments. The
choice of a subsidy schedule depends on additional factors, formalized
by Langer and Lemoine (2022), including how subsidy recipients’ will-
ingness to invest changes over time (which determines the ability of the
government to intertemporally price discriminate), and on technology
improvements. We do not capture changes in investor preferences or
technology improvements, but we note that these two factors influ-
ence the optimal subsidy schedule in opposite directions (Langer and
Lemoine, 2022).

This work also shows that, perhaps surprisingly, reducing (but not
eliminating) investment risk has relatively little impact on investment
timing. Specifically, our EV Mandate tests the impact of mitigating the
EV adoption risk that firms face by implementing a regulation such
as a ZEV standard. The limited impact of the EV Mandate case on
investment timing suggests that effective de-risking would require that
governments take on residual (i.e. non-policy) risks as well. However,
ZEV mandates can still play an important role in charging infrastructure
policy. Such a policy could substantially reduce EV adoption uncer-
tainty. This may decrease investors’ financing costs (e.g. by allowing
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𝑇

access to lower-interest loans), which our case study did not explore.
Additionally, if a public agency takes on risk from private firms by
signing long-term contracts such as CfDs, ZEV mandates would serve
to reduce the financial risk the public agency would face. Finally,
the limited impact of these standards in our analysis is due to our
experimental design’s focus on measuring the effect of risk. Specifically,
we only represent ZEV standards as a reduction in the uncertainty in
future EV adoption. Thus, the analysis assumes that the standard is
equivalent to the mode of the EV adoption distribution. But if such
policies increase EV adoption they would by extension have a positive
effect on charging investments.

A limitation of this work is that we assume investors have the
option to delay investment, which is most likely to be the case in
relatively sparsely-populated and low-income areas. This may not be
the case for projects in areas where investors compete for a scarce
locations that confer an advantage to early movers. However, such
areas may not require government subsidies in the first place. Our
quantitative results should be seen as indicative, as our analysis does
not capture the full range of project characteristics, but only a single
representative case. We also exclude uncertainty in the availability of
subsidies. Past research showed that the risk of subsidy withdrawal
accelerates investment (Nagy et al., 2021, e.g.). Including this risk
would lead firms to invest sooner than what is suggested by our
quantitative results. We also omit two factors that could lead to higher
charging station revenues. First, we do not consider revenue sources
other than the re-sale of electricity. In practice, charging station costs
may be recovered through cross-subsidization from vehicle sales (for
closed networks) or through the operation of co-located convenience
stores. Second, we omit any possibilities for charging station owners
to vary the operation of the station in response to fluctuations in
electricity prices (e.g. through the use of a battery). Future work could
also consider how subsidies will impact aggregate charging capacity.
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Appendix. The role of expected demand growth in investment
timing

Here we show analytically how demand growth incentivizes invest-
ment delay even in a deterministic setting without risk. Our investor’s
problem is to choose investment timing 𝑇 that maximizes the value of
the real option. The value of the investment at time 𝑇 then is:

𝐹𝑇 =
(

𝑉𝑇 − 𝐼
)

𝑒−𝑟𝑇 (14)

In our model 𝑉𝑇 is a function of discounted future revenues from
selling electricity minus discounted O&M costs and demand charges. To
simplify this exposition, we reformulate our notation into a functionally
equivalent version where, at time 𝑇 , 𝑅𝑇 represents the total stream of
discounted revenues from selling electricity and 𝐶𝑇 represents the total
stream of discounted O&M costs and demand charges. Note that costs
are assumed constant so that 𝐶𝑇 = 𝐶0 and 𝐼𝑇 = 𝐼0 so we use 𝐶 and
𝐼 respectively for simplicity. We further note that 𝑅𝑇 is equal to the
revenues in the first period, 𝑅0, times expected future growth, or 𝑅0𝑒𝜇𝑇 .
The previous equation is then converted to:

𝐹𝑇 =
(

𝑅0𝑒
𝜇𝑇 − 𝐶 − 𝐼

)

𝑒−𝑟𝑇 (15)

Maximizing this expression with respect to 𝑇 yields an optimal
timing to invest 𝑇 ∗ as follows:
𝑑𝐹𝑇
𝑑𝑇

= 𝑟(𝐶 + 𝐼)𝑒−𝑟𝑇 − (𝑟 − 𝜇)𝑅0𝑒
−(𝑟−𝜇)𝑇 = 0 (16)

∗ = max

{

1
𝜇
ln
[

𝑟(𝐶 + 𝐼)
(𝑟 − 𝜇)𝑅0

]

, 0

}

(17)

This shows it will be optimal to delay investment (i.e. 𝑇 ∗ > 0) when
the ratio of (𝐶 + 𝐼)∕𝑅0 is not close to zero. The condition necessary for
the investment to occur immediately can be found by setting 𝑇 ∗ = 0 in
(16), resulting in 𝑅∗

0 = 𝑟(𝐶+𝐼)
𝑟−𝜇 .

The derivation in (16)–(17) is a close analogue to the example
showed by Dixit and Pindyck (1994, ch.5), with the addition of non-
capital costs 𝐶 in our case. Our numerical model also features the
maximum demand term 𝑑𝑚𝑎𝑥, which brings the timing to invest forward
in time by effectively decreasing expected demand growth.
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