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Abstract

This thesis presents the characterisation and constitutive modelling of the mech-
anical behaviour of a commercial additively manufactured polymer produced with
the stereolithography process. The first part of the characterisation procedure
consisted of an extensive experimental campaign carried out to provide exper-
imental data for use in the calibration and validation of a constitutive model.
The material was studied through tensile and compression tests on smooth and
notched axisymmetric specimens. The tests revealed the material to be practic-
ally isotropic and to have a strain-rate- and pressure-dependent yield stress. Test
specimens failed in tension with a brittle fracture mode, yet the surface logar-
ithmic strains measured with DIC before fracture exceeded 0.4 in all cases. After
testing, hardly any permanent deformations were observed which indicates that
the mechanical response is primarily viscoelastic. In addition to the tensile and
compression tests, tests were performed on more complex 3D-printed structures
to provide validation data for the constitutive model implemented as part of this
thesis. The first validation test series consisted of quasi-static and dynamic com-
pression tests of octet-strut lattice structures. The results from the quasi-static
tests showed the same strain-rate sensitivity as the tensile tests, while the dy-
namic tests exhibited an extremely brittle failure mode due to the high strain
rates. The second validation test series consisted of three-point bending tests of
notched beams with two different notch radii. These tests did not reveal anything
new about the mechanical behaviour of the material but provided experimental
data with more complex stress states than the tension and compression tests.

Based on the experimental results, a constitutive model was formulated and im-
plemented as a user-material in the finite element solver Abaqus/Explicit. The
model is hyper-viscoelastic and formulated for large strains using a multiplicat-
ive split of the deformation gradient. A stress-based fracture initiation model
with stochastic critical stress was employed to model the brittle fracture mode
observed in the experiments. The implemented constitutive model was verified
by investigating its behaviour in single-element simulations at various stress- and
strain states. The model was then calibrated to the experimental results from
the tension and compression tests by an inverse modelling approach. The model
was able to capture the stress-strain response from the experiments as well as
predict the fracture initiation. The validation tests were then simulated with the
calibrated material model.

iii



Simulations of the quasi-static octet-strut lattice structures agreed well with the
experimental results. Both the force-displacement curves and deformation modes
were captured by the model. Simulations of the dynamic lattice compression tests
revealed that the combination of a stress-based fracture criterion and the non-
linear viscoelasticity of the model was able to predict the same brittle behaviour
seen in the experiments. Simulations of the three-point bending tests captured
the experimental trends, but the force at yield was underestimated for both
specimen types which led to fracture occurring too late. Fracture propagation
was not accurately captured by the fracture model as the simulated crack paths
were heavily mesh dependent and did not match the experimental results.
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1 Introduction

1.1 Background and motivation

Additive manufacturing (AM), commonly referred to as 3D printing, is the pro-
cess of creating a physical object from a digital 3D model, typically by joining
together multiple thin layers of material. Though the technology has been around
since the 80s, it did not see widespread use until the last decade when several pat-
ents entered the public domain. This opened the way for commercial 3D printers
– popularising AM and pushing the technology further. Consequently, AM has
now become an important tool for both industrial and research applications. Out
of the different materials applicable to AM, polymers are the most widespread
due to their price and ease of handling. Other materials include metals, ceramics
and even concrete. In the industry, the main application of AM polymers is rapid
prototyping, though AM has also seen use in the manufacture of bespoke parts
with complex geometry that would be challenging to produce with traditional
methods. In research, one particular topic that has been made easier to study
due to AM is that of micro-architectured materials [1]. The precision offered by
state-of-the-art polymer 3D printers allows the production of tailor-made cellular
materials that offer mechanical properties – such as strength and stiffness – com-
parable to, or even surpassing, foams with similar densities. Such materials are
also relevant for industrial applications, as they allow for lightweight but strong
structures.

Of the polymer AM technologies, vat photo-polymerisation (VPP) lends itself
the most to the manufacture of complex geometries due to the high accuracy
and dimensional stability offered by 3D printers using said technology. VPP
encompasses multiple 3D printing techniques which all utilise ultraviolet (UV)
radiation to selectively cure photo-polymeric resins and as of 2020 holds the
largest market share among AM polymers [2]. Examples of VPP techniques are
stereolithography (SLA), digital light processing (DLP) and continuous liquid
interphase printing (CLIP). Of the aforementioned techniques, SLA is the most
popular as of 2021 [3] and a polymer produced with this method is the topic of
this thesis.

Parts produced with SLA have a smooth surface finish and can feature very
fine details due to the accuracy of the printing process. Mechanically the parts
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Chapter 1. Introduction

can be considered isotropic due to the presence of cross-links both between and
within the print layers. However, the print speed of SLA is relatively slow when
compared with other 3D printing technologies.

The principles of SLA 3D printing are illustrated in Figure 1.1. During a print,
a build platform is submerged in a resin tank until a gap corresponding to the
print layer thickness is left between the bottom of the resin tank and the build
platform. A UV laser then selectively cures the resin between the resin tank and
print platform by reflecting off a programmable scanning mirror. Once the layer
is cured, the print bed is elevated – creating a gap between the resin tank and
the previous layer, which again is cured by the laser. This process is repeated
until a full 3D object is formed.

Before printing, the 3D object needs to be drawn digitally using CAD or digital
sculpting software. The 3D model then needs to be divided into print layers and
translated into code understood by the 3D printer, which is done through an
appropriate slicing software. The slicing process also assigns support structures
to the 3D object to reduce the warping of overhangs in the print. After the
print, any excess uncured resin is washed away by cleaning the printed part in
an isopropyl alcohol (IPA) bath. The final part of the SLA 3D print process is
to cure the parts in a tempered UV chamber to further improve the mechanical
properties of the photopolymer. The entire SLA workflow is illustrated in Figure
1.2.

Polymers formed by SLA are thermosetting glassy polymers. Thermosetting poly-
mers, or thermosets, are polymers where long polymer chains are connected by
shorter cross-links. The interconnectivity of the polymer chains caused by the
cross-links makes thermosets stiffer and stronger than thermoplastics but at the
cost of lower ductility [4]. Perhaps the most defining trait of thermosets is that
they do not melt but instead burn, which is in contrast to thermoplastics that
can be melted and recycled. Glassy polymers are polymers with an amorphous
non-crystalline molecular structure that have a glass transition temperature, Tg,
higher than room temperature. Such polymers are in a glassy state in which
relative sliding between polymer chains is restricted. The restricted motions of
the polymer chains result in stiff, but brittle polymers.

When it comes to the application of SLA 3D printing to the production of func-
tional, load-carrying parts, the mechanical properties of the chosen material are
important. Knowing how to accurately predict the stiffness and strength of ma-
terials leads to both more efficient and safer structures. To gain knowledge of the
mechanical behaviour of a material, mechanical testing in a laboratory environ-
ment is necessary. Over the years, several researchers have reported experimental
results from mechanical testing of SLA resins. An early contribution to tensile

2



1.1. Background and motivation

Figure 1.1: A graphical representation of the principles of SLA 3D printing [5].

CAD Slicing Printing Post-processing

Wash Cure

Figure 1.2: The workflow of SLA 3D printing.
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Chapter 1. Introduction

testing of SLA specimens was provided by Cheah et al. [6] who found that the
ultimate tensile strength, Young’s modulus and failure strain were heavily de-
pendent on laser intensity and post-curing. Some years later, Hague et al. [7]
studied the effect of print orientation on the mechanical properties of SLA tensile
specimens and found that the anisotropy was negligible. Similar results were ob-
tained by Naik and Kiran [8] who also performed tests at different strain rates and
found a strong strain-rate sensitivity on the mechanical behaviour of a different
SLA resin. The above-mentioned results have been confirmed by several authors
for a wide range of SLA resins in recent years [9–12]. Although compressive and
tensile tests of SLA resins have been reported in the literature, they are seldom
performed on the same resin and the effect of pressure sensitivity is therefore
rarely studied.

In addition to understanding the mechanical response of a material, knowing
how to model it mathematically is equally important with the prevalence of the
finite element method (FEM) in today’s engineering problems. Modelling of
polymers is complex because large deformations and viscous behaviour typically
have to be accounted for. Haward and Thackray [13] pioneered the field by
formulating a one-dimensional constitutive model which divided the response
of a glassy polymer into two parts: (i) an inter-molecular resistance modelled
by energetic Hookean elasticity and viscous Eyring flow [14], and (ii) a network
resistance due to the orientation of polymer chains modelled with entropic rubber
elasticity. This model was later modified and extended to three dimensions by
Boyce et al. [15] and the underlying principles have since been used in several
published constitutive models [16–20].

Although the aforementioned models are applicable to glassy polymers, limited
research exists regarding the constitutive modelling of SLA polymers. Early work
was done by Wu et al. [21] who applied the model of Boyce et al. [15] to simulate
the uniaxial compression response of an SLA resin. The model was able to ad-
equately describe the observed strain-rate-dependent yield behaviour and strain
hardening of the studied resin. An anisotropic version of the same model was
later used by Zhang and To [22] to model another photo-polymeric resin, though
this was not manufactured with the SLA method. More recently, Wang et al. [23]
used an anisotropic elasto-plastic model to describe the slight anisotropy observed
in a quasi-brittle SLA resin with good results. Both studies [22] [23] applied an
anisotropic stress-based fracture criterion which agreed well with experiments.
However, the fracture models were only used in uniaxial tension and bending
problems. Ling et al. [24] applied an isotropic elasto-plastic model to simulate
the compression of SLA-manufactured lattice structures and were able to predict
the collapse load of the structures, but they did not include any fracture criterion.

4



1.2. Objectives

1.2 Objectives

The goal of this work is to improve our understanding of the mechanical behaviour
of additively manufactured SLA polymers and establish a material model able to
describe the most important aspects of the mechanical behaviour. The objectives
can be summarised as:

• Establish a comprehensive experimental database which can be used to
calibrate a suitable material model.

• Formulate a material model able to describe the most important aspects of
the experimentally observed mechanical behaviour of an SLA polymer.

• Calibrate the material model to the experimental data and perform a thor-
ough verification and validation study of the model.

1.3 Scope

This work is limited to the stereolithography process and a single commercial
SLA resin. The factors influencing a polymer’s mechanical behaviour are many,
and as such, some limitations need to be set. The experimental work is thus
limited to:

• Room temperature.

• Low to intermediate strain rates.

Additionally, the material modelling is limited to:

• Large-strain (nonlinear) viscoelasticity.

• Isothermal constitutive equations.

The following topics are out of scope, but some are touched upon:

• Small-strain (linear) viscoelasticity.

• Temperature effects.

• Micromechanisms behind fracture.

• Print layer thickness.

• Specimen cure duration.

• Polymer ageing.

• Hygroscopic effects.

5



Chapter 1. Introduction

1.4 Research strategy

The approach taken in this work follows a typical material characterisation pro-
cedure which can be summarised as:

• Carry out a thorough experimental campaign investigating the mechanical
properties of the material using axisymmetric specimens tested in tension
and compression. The effects of strain rate, triaxiality, stress-relaxation
and unloading are investigated.

• Carry out more complex tests on different specimen geometries to provide
additional experimental data for the validation of a constitutive model.

• Formulate and implement a constitutive model able to describe the mech-
anical behaviour observed in the material tests.

• Verify the implementation of the model and document the behaviour of the
model.

• Calibrate the constitutive model to the experimental data from the material
tests.

• Validate the constitutive model’s behaviour against experimental results
not used in the calibration of the model.

1.5 Outline of thesis

The thesis is structured as follows:

Chapter 1 provides the background and motivation behind this thesis and es-
tablishes the objectives and scope.

Chapter 2 covers the theoretical framework of material modelling at large
strains.

Chapter 3 presents the experiments carried out to characterise the material
studied in this work and also gives a brief overview of the chosen material.

Chapter 4 presents the experiments performed to provide additional experi-
mental data for the validation of the material model.

6



1.6. Contributions

Chapter 5 gives a presentation of the constitutive equations and the numerical
implementation of the material model developed as part of this work.

Chapter 6 presents a verification study of the implementation of the material
model. The behaviour of the model is evaluated for different stress states and
the effects of the different material parameters are studied.

Chapter 7 describes how the material model is calibrated to experimental data
and compares simulated and experimental results.

Chapter 8 presents simulations of the validation tests and how the simulated
results compare with the experimental results.

Chapter 9 rounds off the thesis by providing some concluding remarks and
suggestions for further work.

1.6 Contributions

Parts of this thesis have been presented at an international conference and a
journal article has been written and submitted for publication in a peer-reviewed
international journal.

Journal article:

R. L. Sælen, O. S. Hopperstad, A. H. Clausen. Mechanical behaviour and con-
stitutive modelling of an additively manufactured stereolithography polymer,
Submitted for journal publication

Conference contribution:

R. L. Sælen, O. S. Hopperstad, A. H. Clausen. Material modelling and mechanical
behaviour of an SLA additively manufactured polymer, In: ECCOMAS Congress
2022, Oslo, Norway 5th-9th June 2022
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2 Theory

2.1 Continuum mechanics

The field of material modelling at large strains is built on continuum mechanics.
This section provides an overview of the most important concepts from continuum
mechanics used in this thesis. For a more detailed description, see the textbooks
by Irgens [25] or Belytschko et al. [26].

2.1.1 Deformation
Consider an undeformed solid body at time t0 as shown in Figure 2.1. A material
point in this body is described by its position vector X. The domain of the body
is denoted Ω0 and is called the reference configuration. At a later point in time
t > t0 the body is deformed. A material point in this body has a position vector x
and the domain of the body is denoted Ω and is called the current configuration.
The displacement vector u is defined by the relation

x = X+ u (2.1)

X

x

u

x1 

x3 

x2 

Ω 

Ω0 

Figure 2.1: A solid body and its reference and current configuration.

The mapping of an infinitesimal line segment, dX, from the reference configura-
tion to the current configuration is performed as

9



Chapter 2. Theory

dx = F · dX, F =
∂x

∂X
(2.2)

where F is a second order tensor called the deformation gradient. An alternative
expression is obtained by inserting Eq. 2.1 into the expression above

F = I+
∂u

∂X
(2.3)

where ∂u
∂X is called the displacement gradient tensor.

The determinant of the deformation gradient, J = det(F) serves an important
purpose in that it relates the volume of a material point in the reference config-
uration to the volume of a material point in the current configuration, viz.

J =
dV

dV0
> 0 (2.4)

J is called the Jacobian determinant or simply the Jacobian. The equation above
can be used to express a relation between the area of a surface, dS0 with normal
vector n0 in the reference configuration and the same surface, dS, with normal
vector n in the current configuration as

dSn = JdS0F
−T · n0 (2.5)

The relation above is known as Nanson’s formula.

Through the polar decomposition theorem, the deformation gradient may be de-
composed into the product of two second-order tensors representing pure rotation
and pure stretching. The decomposition can be performed in two ways: by first
rotating, then stretching and vice versa. The two ways of decomposition are
illustrated in Figure 2.2. The deformation gradient is then expressed as

F = RU = VR (2.6)

where R is the rotation tensor and U and V are the right and left stretch tensors
respectively. The rotation tensor is orthogonal, i.e, RRT = I. The stretch
tensors are positive definite and symmetric which makes them easier to work
with than the generally non-symmetric deformation gradient. For rigid body

10



2.1. Continuum mechanics

motion, U = V = I and F = R. Similarly, pure stretch is obtained when R = I,
which gives F = U = V. Any symmetric tensor can be expressed in terms of its
eigenvalues and the dyadic product of its eigenvectors. This is called a spectral
decomposition of a tensor. The right and left stretch tensors can then be written
as

U =

3∑
i=1

λiNi ⊗Ni (2.7)

V =

3∑
i=1

λini ⊗ ni (2.8)

where λi are the eigenvalues, called principal stretches, and Ni and ni are the
corresponding eigenvectors of of U and V respectively. The eigenvectors are
related through

ni = R ·Ni (2.9)

Note that U and V have the same eigenvalues but different eigenvectors. This is
because V contains rotations, whereas U does not. As such, V is expressed on
the current configuration while U is expressed on the reference configuration.

The squares of the stretch tensors are called the Cauchy-Green deformation
tensors. The right Cauchy-Green deformation tensor is defined as

C = FTF = U2 =

3∑
i=1

λ2iNi ⊗Ni (2.10)

and the left Cauchy-Green deformation tensor is defined as

B = FFT = V2 =

3∑
i=1

λ2ini ⊗ ni (2.11)

The stretch tensors are obtained by taking the square root of their respective
Cauchy-Green deformation tensor. This requires the computation of eigenval-
ues, which is a costly operation. Because of this, the Cauchy-Green deformation
tensors are preferable to the stretch tensor in material models. Note that, equival-
ent to V and U, the basis vectors of B are expressed in the current configuration,
while the basis vectors of C are expressed in the reference configuration.
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Ω Ω0 

F

R V

U
R

Figure 2.2: Polar decomposition of the deformation of a solid body.

The final class of deformation measures mentioned in this section are strain
tensors. These differ from the previous deformation tensors in that they should
vanish for rigid body motion. One commonly used strain tensor is the Green
strain tensor, which is defined as

E =
1

2
(C− I) (2.12)

and is expressed in the reference configuration. By rewriting the above equation,
using the relations F = I+ ∂u

∂X and C = FTF, the Green strain can be expressed
as

E =
1

2

(
∂u

∂X
+
( ∂u
∂X

)T
+
( ∂u
∂X

)T ∂u
∂X

)
(2.13)

For small displacement gradients, i.e., small strains, the last term in the above
expression vanishes and the infinitesimal strain tensor is retrieved, viz.

ε =
1

2

(
∂u

∂X
+
( ∂u
∂X

)T)
(2.14)

12



2.1. Continuum mechanics

It is apparent that the Green strain tensor, and consequently the infinitesimal
strain tensor, are expressed in the reference configuration. One strain tensor
expressed in the current configuration is the Hencky strain tensor defined as

εl = ln (V) =

3∑
i=1

ln (λi)ni ⊗ ni (2.15)

This is commonly referred to as the logarithmic or true strain tensor and is the
preferred strain measure in large strain finite element analyses due to its energy
conjugacy with the Cauchy stress, which will be discussed in a later section.

2.1.2 Deformation rates
In order to describe rate-sensitive material behaviour, the rate form of the above-
mentioned deformation and strain tensors needs to be established. The most basic
deformation rate is simply the time derivative of the deformation gradient, which
is expressed as

Ḟ =
∂v

∂X
=
∂v

∂x

∂x

∂X
= LF (2.16)

where L is called the velocity gradient. Like F, Ḟ and L are generally non-
symmetric tensors. The velocity gradient may be split into a symmetric and
anti-symmetric part, viz.

L =
1

2
(L+ LT) +

1

2
(L− LT) = D+W (2.17)

where D is the rate of deformation tensor and W is the spin tensor. In a material
point free of rotations, the rate of deformation tensor is the time derivative of
the Hencky strain tensor viz.

13
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ε̇l =
d

dt
ln (V) =

3∑
i=1

d

dt
ln (λi)ni ⊗ ni

=

3∑
i=1

λ̇iλ
−1
i ni ⊗ ni

=

3∑
i=1

dẋi
dXi

dXi

dxi
ni ⊗ ni

=

3∑
i=1

dvi
dxi

ni ⊗ ni = D

(2.18)

The above derivation is only possible when ṅi = 0, i.e., the principal axes do not
rotate. Otherwise, D is a measure of the rate of stretching in a material point
and is not strictly related to any strain measure. The spin tensor, W, can be
thought of as a measure of the rate of change of the principal axes of the rate
of deformation tensor. In the special case of rigid body rotation, the spin tensor
can be written entirely in terms of the entries in the angular velocity vector ω,
viz.

W =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , ω =

ω1

ω2

ω3

 (2.19)

The rate of deformation tensor can be expressed in terms of the rate of the Green
strain tensor by combining the two following equations, viz.

D =
1

2
(L+ LT) =

1

2
(ḞF−1 + F−TḞT) (2.20)

Ė =
1

2

d

dt
(FTF− I) =

1

2
(FTḞ+ ḞTF) (2.21)

such that

D = F−TĖF−1 (2.22)

or equivalently
Ė = FTDF (2.23)
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2.1. Continuum mechanics

Equation 2.22 is an example of a push-forward operation. The rate of the Green
strain tensor defined in the reference configuration is convected, or pushed for-
ward, to the current configuration. The opposite case is called a pull-back oper-
ation and is shown in Equation 2.23. The Green strain rate tensor and the rate
of deformation tensor evidently describe the same deformation process expressed
in the reference configuration and current configuration respectively.

2.1.3 Stress measures
When a solid body is exposed to external loading, internal forces arise in order
to satisfy force equilibrium at every material point. This is illustrated in Figure
2.3 where an internal force vector df is acting over the surface segment dS with a
normal vector n. The force vector is the resultant of a traction, t, on the surface
element dS, viz.

df = tdS (2.24)

The relationship between the traction vector and the mechanical stress in a ma-
terial point is given by Cauchy’s law as

t = σ · n (2.25)

where σ is the Cauchy or true stress tensor. As σ gives the relation between two
vectors, i.e., first-order tensors, it is a second-order tensor and can be written in
terms of its principal stresses, σi, and principal directions, ni as

σ =

3∑
i=1

σini ⊗ ni (2.26)

The above equation also makes use of the fact that σ is a symmetric tensor, which
will be shown later on. Unlike the different strain measures, for which there are
no "correct" choices, the Cauchy stress is considered the true stress tensor in
the sense that it represents the tractions experienced by a material point in the
current configuration. The Cauchy stress is thus the stress measure of choice
when studying the strength of materials and is the stress reported by most finite
element codes.

There are, however, other stress measures that are useful in material modelling.
Stress measures defined on the reference configuration are often required when
formulating models or balance laws. The first of the alternative stress measures

15



Chapter 2. Theory

F1 

F2 

F3 

(a)

df
n

dS

F1 

F2 

(b)

Figure 2.3: A body in the current configuration exposed to external forces
illustrating (a) global equilibrium and (b) local equilibrium between external
and internal forces.

mentioned in this section is the first Piola-Kirchhoff stress, P, which is defined
on the reference configuration as

t0 = P · n0 (2.27)

By considering that the resultant of a traction on a surface in the reference
configuration must be equal to the traction resultant on a surface in the current
configuration, a relation between the Cauchy stress and the first Piola-Kirchhoff
stress is obtained, viz.

t0dS0 = tdS

P · n0dS0 = σ · ndS
P = JσF−T

(2.28)

where Nanson’s formula was used in the last line. The first Piola-Kirchhoff stress
is non-symmetric and has a physical interpretation of relating forces in the current
configuration to a surface in the reference configuration.

Another common stress measure expressed in the reference configuration is the

16



2.1. Continuum mechanics

second Piola-Kirchhoff stress, S, which is defined as

t̂0 = S · n0 (2.29)

where t̂0 is a traction vector on the reference configuration defined by a pull-back
operation of a force vector on the current configuration, viz.

t̂0dS0 = F−1 · tdS (2.30)

By applying the same procedure as with the first Piola-Kirchhoff stress, the rela-
tion between the second Piola-Kirchhoff stress and the Cauchy stress is obtained
as

t̂0dS0 = F−1 · tdS
S · n0dS0 = F−1σ · ndS

S = JF−1σF−T

(2.31)

The second Piola-Kirchhoff stress tensor is symmetric, unlike the first, and relates
forces in the reference configuration to a surface in the same configuration. The
relation between the second and first Piola-Kirchoff stress is obtained by combin-
ing Eq. 2.28 and Eq. 2.31, viz.

P = FS (2.32)

The last stress measure considered herein is the Kirchhoff stress, which is simply
defined as

τ = Jσ (2.33)

and is convenient when dealing with volume integrals containing the Cauchy
stress over the reference configuration.

2.1.4 Balance laws
The mechanics of a solid body is governed by several balance laws. These are the
balance of mass, momentum and energy.
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The balance of mass simply states that the mass of the body in the current
configuration must be equal to the mass of the body in the reference configuration.
Mathematically, this is stated as

∫
V0

ρ0dV0 =

∫
V

ρdV (2.34)

A local form is obtained by inserting the definition of the Jacobian, viz.

ρ0 = Jρ (2.35)

The balance of linear momentum states that the sum of external forces on a
body equals the rate of change in total linear momentum. For a body subjected
to traction forces, t, on its surface, S, and body forces, b, over its volume V , the
balance law is expressed mathematically as

∫
S

tdS +

∫
V

bdV =
D

Dt

∫
V

ρvdV (2.36)

By inserting Cauchy’s law and applying the divergence theorem, the local form
of the balance equation is obtained, viz.

∇ · σ + b = ρv̇ (2.37)

where the divergence of an arbitrary second-order tensor, A, in the current con-
figuration is defined as

∇ ·A =
∂Aji

∂xj
(2.38)

The same procedure may be performed in the reference configuration expressed
in terms of the first Piola-Kirchhoff stress, P, and body forces b0. The local form
then reads

∇0 ·PT + b0 = ρ0v̇ (2.39)

where ρ0 is the mass density in the reference configuration and the divergence of
an arbitrary second-order tensor, A, second-order tensor in the reference config-
uration is defined as
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2.1. Continuum mechanics

∇0 ·A =
∂Aji

∂Xj
(2.40)

The balance of angular momentum on the current configuration is simply the
cross product between the linear momentum and the position vector, x, which
reads

∫
S

x× tdS +

∫
V

x× bdV =
D

Dt

∫
V

ρx× vdV (2.41)

By once again applying the divergence theorem and Cauchy’s law, the following
result is obtained after some algebraic manipulation

σ = σT (2.42)

i.e., the Cauchy stress tensor is symmetric. By performing the appropriate trans-
formations, the same result can also be expressed in terms of the first and second
Piola-Kirchhoff stress tensors as

PFT = FPT (2.43)

and

S = ST (2.44)

Energy balance is expressed through the first law of thermodynamics, which
states that the rate of change in energy in a system is equal to the sum of the
rate of applied heat and the rate of work done by external forces on the system.
Put simply, energy can neither be created nor vanish – it is always conserved.
The law is expressed in the reference configuration as

D

Dt

∫
V0

(ρ0u+
ρ0
2
v · v)dV0 =

∫
S0

−q0 · n0dS0 +

∫
V0

r0dV0

+

∫
S0

t0 · vdS0 +

∫
V0

b0 · vdV0
(2.45)

where u is the internal energy per unit mass, q0 is the heat flux through a
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Chapter 2. Theory

surface with normal vector n0 and r0 is an internal heat source. A local form of
the above balance equation may be achieved by rewriting the three terms. The
time derivative of the energy term is calculated as

D

Dt

∫
V0

(ρ0u+
ρ0
2
v · v)dV0 =

∫
V0

(ρ0u̇+ ρ0v · v̇)dV0 (2.46)

The rate of applied heat can be expressed as a volume integral by applying the
divergence theorem, viz.

∫
S0

−q0 · n0dS0 +

∫
V0

r0dV0 =

∫
V0

(−∇0 · q0 + r0)dV0 (2.47)

A similar exercise can also be performed on the rate of external work, viz.

∫
S0

t0 · vdS0 +

∫
V0

b0 · vdV0 =

∫
S0

(P · n0) · vdS0 +

∫
V0

b0 · vdV0

=

∫
V0

(
∇0 · (PT · v) + b0 · v

)
dV0

=

∫
V0

(
(∇0 ·PT) · v +P : Ḟ+ b0 · v

)
dV0

(2.48)

By grouping all the terms together again and recalling the balance of linear
momentum, the local form of the balance of energy is obtained, viz.

ρ0u̇ = P : Ḟ−∇0 · q0 + r0 (2.49)

In the case of no heat conduction or heat sources, the above equation reduces to

ρ0u̇ = P : Ḟ (2.50)

which shows that the first Piola-Kirchhoff stress is power conjugate to the time
derivative of the deformation gradient. Other energy conjugate stress and strain
tensor pairs are obtained by performing the appropriate transformations. These
calculations are demonstrated for the second Piola-Kirchhoff stress and Cauchy
stress below.
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First, the relation between the first and second Piola-Kirchhoff stress is inserted
into the expression for the internal power

P : Ḟ = FS : Ḟ (2.51)

Further tensor manipulations yield

FS : Ḟ = FikSkjḞij = SkjFikḞij = S : (FTḞ) (2.52)

As S is a symmetric tensor and because a tensor contraction between a symmetric
and anti-symmetric tensor vanishes, the above expression results in

S : (FTḞ) = S :

(
1

2
(ḞTF+ FTḞ)

)
= S : Ė (2.53)

Thus, the second Piola-Kirchhoff stress tensor is power conjugate with the time
derivative of the Green strain tensor. Finally, the rate of deformation measure
conjugate to the Cauchy stress tensor is obtained by inserting the relation between
the second Piola-Kirchhoff stress and Cauchy stress into the result above, viz.

JF−1σF−T : Ė = JF−1
ik σklF

−1
jl Ėij = JσklF

−1
ik ĖijF

−1
jl = Jσ : F−TĖF−1

(2.54)

By inserting the relation between D and Ė and dividing both sides of the equation
by J , we get the result

ρu̇ = σ : D (2.55)

which shows that the Cauchy stress tensor is power conjugate with the rate of
deformation tensor in the current configuration.

2.1.5 The second law of thermodynamics
When formulating constitutive models, care must be taken such that the second
law of thermodynamics is not violated. Put simply, the law states that the
entropy of a closed system never decreases. Mathematically it is stated as an
inequality in the reference configuration as
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D

Dt

∫
V0

ρ0sdV0 ≥
∫
V0

r0
θ
dV0 −

∫
S0

q0

θ
· n0dS0 (2.56)

where s is the entropy per unit mass and θ is the absolute temperature. The
above equation is commonly referred to as the global form of the Clausius-Duhem
inequality. By applying the divergence theorem to the heat flux term, the local
form of the Clausius-Duhem inequality is obtained as

ρ0ṡ ≥
r0
θ

−∇0 ·
(q0

θ

)
(2.57)

By combining Eqs. 2.57 and 2.49, the inequality may be written as

ρ0(ṡθ − u̇) +P : Ḟ− q0

θ
· ∇0θ ≥ 0 (2.58)

which is commonly referred to as the dissipation inequality. To simplify further
expressions, we introduce the Helmholtz free energy per unit mass which is defined
as

ψ = u− sθ (2.59)

The dissipation inequality may then be written as

−ρ0(ψ̇ + sθ̇) +P : Ḟ− q0

θ
· ∇0θ ≥ 0 (2.60)

By assuming that the Helmholtz free energy function has a form of

ψ = ψ(F, θ) (2.61)

its time derivative is expressed by the chain rule as

ψ̇ =
∂ψ

∂F
: Ḟ+

∂ψ

∂θ
θ̇ (2.62)

When inserted into the dissipation inequality, the following expression is obtained

−ρ0
(
s+

∂ψ

∂θ

)
θ̇ +

(
P− ρ0

∂ψ

∂F

)
: Ḟ− q0

θ
· ∇0θ ≥ 0 (2.63)
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2.2. Hyperelasticity

which must be satisfied for all thermodynamic processes. This is only possible if

P = ρ0
∂ψ

∂F
(2.64)

and

s = −∂ψ
∂θ

(2.65)

It is evident that the Helmholtz free energy acts as a potential function for both
the first Piola-Kirchhoff stress tensor and the entropy per unit mass.

2.2 Hyperelasticity

A material in which the stress-strain relationship can be derived from a scalar-
valued potential function is called a hyperelastic material [25]. This section will
expand upon this and present how different stress tensors may be expressed as
partial derivatives of the Helmholtz free energy function. Note that for con-
venience, the Helmholtz free energy is defined per unit reference volume in this
section and not per unit mass as in the previous section. The term, ρ0, is thus
omitted from the equations below. As shown in the previous section, the first
Piola-Kirchhoff stress tensor must be expressed as the partial derivative of the
Helmholtz free energy with respect to the deformation gradient to satisfy the
dissipation inequality. If we repeat the derivation leading to this result, but ex-
press the stress power in terms of the second Piola-Kirchhoff stress tensor and
the Green strain rate tensor, the following result is obtained

S =
∂ψ

∂E
(2.66)

By employing the chain rule together with the definition of the Green strain
tensor, the above equation can be expressed in terms of the right Cauchy-Green
deformation tensor

S =
∂ψ

∂E
=
∂ψ

∂C
:
∂C

∂E
= 2

∂ψ

∂C
(2.67)

and by inserting the relation between the second Piola-Kirchhoff and Cauchy
stress tensors, an expression for the Cauchy stress tensor in terms of the derivative
of the Helmholtz free energy function is obtained
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σ =
2

J
F
∂ψ

∂C
FT (2.68)

To simplify equations and avoid tensor calculus, the Helmholtz free energy func-
tion is commonly expressed in terms of the invariants of C rather than the full
tensor itself. These invariants are expressed in terms of the principal stretches as

I1 = λ21 + λ22 + λ23 (2.69)

I2 = λ21λ
2
2 + λ22λ

2
3 + λ23λ

2
1 (2.70)

I3 = λ21λ
2
2λ

2
3 = J2 (2.71)

By the chain rule, the Cauchy stress tensor is now expressed as

σ =
2

J
F

(
∂ψ

∂I1

∂I1
∂C

+
∂ψ

∂I2

∂I2
∂C

+
∂ψ

∂I3

∂I3
∂C

)
FT (2.72)

The partial derivatives of the invariants read as

∂I1
∂C

= I (2.73)

∂I2
∂C

= I1I−C (2.74)

∂I3
∂C

= I3C
−1 (2.75)

which when inserted into Eq. 2.72 gives

σ =
2

J

(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
B− 2

J

∂ψ

∂I2
B2 +

∂ψ

∂J
I (2.76)

Hyperelastic models implemented in FEM solvers typically use a volumetric-
isochoric split of the deformation gradient for computational efficiency [27]. The
isochoric deformation gradient is defined as

F̄ = J−1/3F (2.77)
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2.2. Hyperelasticity

and as the name implies, det(F̄) = 1. The volumetric deformation gradient is
defined as

Fvol = J1/3I (2.78)

and the total deformation gradient is expressed as a multiplicative decomposition
of the isochoric and volumetric deformation gradients

F = FvolF̄ (2.79)

The isochoric right Cauchy-Green deformation tensor is defined as

C̄ = F̄TF̄ = J−2/3C (2.80)

and its first two invariants can be expressed as

Ī1 = J−2/3I1 (2.81)

Ī2 = J−4/3I2 (2.82)

The Cauchy stress from Eq. 2.76 can now be expressed in terms of the isochoric
invariants as

σ =
2

J

(
∂ψ

∂Ī1

∂Ī1
∂I1

+ J2/3Ī1
∂ψ

∂Ī2

∂Ī2
∂I2

)
B− 2

J

∂ψ

∂Ī2

∂Ī2
∂I2

B2

+

(
∂ψ

∂Ī1

∂Ī1
∂J

+
∂ψ

∂Ī2

∂Ī2
∂J

+
∂ψ

∂J

)
I

(2.83)

Inserting the derivatives of the isochoric invariants gives

σ =
2

J

(
∂ψ

∂Ī1
+
∂ψ

∂Ī2
Ī1

)
B̄− 2

J

∂ψ

∂Ī2
B̄2 +

(
∂ψ

∂J
− 2Ī1

3J

∂ψ

∂Ī1
− 4Ī2

3J

∂ψ

∂Ī2

)
I (2.84)

where B̄ is the isochoric left Cauchy-Green deformation tensor
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B̄ = J−2/3B (2.85)

For materials in which the Helmholtz free energy function is independent of Ī2,
we end up with the following simple expression for the Cauchy stress tensor

σ =
2

J

∂ψ

∂Ī1
B̄′ +

∂ψ

∂J
I (2.86)

where

B̄′ = B̄− tr(B̄)

3
I (2.87)

Equations 2.84 and 2.86 provide relatively simple expressions for the Cauchy
stress of a hyperelastic material, which will be useful later on.
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3 Material tests

This chapter presents the experimental campaign carried out for the purpose of
characterising the material behaviour. The effects of triaxiality, strain rate and
print orientation were studied through tensile and compression tests of axisym-
metric specimens.

3.1 Material and specimen preparation

The material studied in this work is the Formlabs Durable v2 stereolithographic
resin. According to the manufacturer, the Durable resin is suited for parts re-
quiring high impact strength and it has elastic properties similar to high density
polyethylene (HDPE) and polypropylene (PP). The resin consists of a propriet-
ary mixture of acrylated and methacrylated monomers and oligomers together
with a photoinitiator. When the photoinitiator is exposed to ultraviolet (UV)
radiation, it is split into free radicals and a solid polymer is formed through the
process of photopolymerisation. The monomers form long polymer chains and
the oligomers serve as crosslinking agents, which gives the material its strength.

The test specimens shown in Figures 3.1 and 3.2 were manufactured with a Form-
labs 3 SLA printer. The SLA process was described in detail in Chapter 1.1. To
limit the scope of the experimental study, all print parameters, except the print
orientation, were kept constant in the production of the test specimens. A layer
thickness of 50 µm was used for all specimens. After printing, the uncured resin
was washed away with isopropyl alcohol (IPA) by using the Formlabs Wash sta-
tion for 20 minutes. After the specimens were cleaned and dried, they were cured
in the Formlabs Cure station for four hours at a temperature of 60 °C and sub-
jected to 405 nm UV light. The manufacturer recommends a cure time of one
hour when using the Durable resin, as this yields the optimal trade-off between
mechanical performance and cure time. We, however, have chosen to cure the
specimens for four hours to minimise any potential curing between printing and
testing. When the curing was done, the specimens were immediately taken out
of the Form Cure and cooled at room temperature.
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Figure 3.1: Geometries of (a) a smooth specimen and specimens with notch
radii (b) 5.0mm, (c) 2.0mm, (d) 1.0mm and (e) 0.2mm. Dimensions in mm.
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Figure 3.2: Geometries of notched compression specimens with notch radii (a)
4.0mm, (b) 2.0mm and (c) 1.0mm. Dimensions in mm.
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3.2 Experimental programme

The experimental programme was divided into four test series studying the effects
of (i) print orientation, (ii) strain-rate sensitivity, (iii) unloading, and (iv) pressure
sensitivity. Unless otherwise specified, each test was repeated three times. The
print orientation series consists of monotonic tensile tests of smooth specimens
produced with different print orientations. Print orientations of 0◦, 45◦ and 90◦

were investigated, and the definition of the angles are shown in Figure 3.3. The
tests were performed with a cross-head velocity of 3mm/min, which results in a
nominal strain rate of ė = 6.25 · 10−3 s−1 in the parallel section of the specimens.

45°

90°

0°P
ri

nt
 d

ir
ec

ti
on

Figure 3.3: The different print orientations studied in the anisotropy test series.

The strain-rate series also consists of monotonic tensile tests of smooth specimens
but at three different nominal strain rates. Cross-head velocities of 0.3mm/min,
3mm/min and 30mm/min were used, yielding nominal strain rates in the parallel
section of 6.25 · 10−4 s−1, 6.25 · 10−3 s−1 and 6.25 · 10−2 s−1 respectively. All
specimens were printed with a 90◦ orientation. Two repeat tests were performed
for each cross-head velocity.

The unloading test series includes two test types: firstly, loading/unloading tests
performed at various strain rates and secondly, a single relaxation test. Again,
smooth specimens printed with a 90◦ orientation were applied. In the load-
ing/unloading tests, the specimens were loaded until a cross-head displacement
of 5mm was reached. The specimens were then fully unloaded followed by final
reloading until failure. These tests were performed with the same cross-head
velocities as the strain-rate test series. Only one test was performed for each
cross-head velocity due to the number of specimens at hand. The relaxation
test was performed as an arrested loading/unloading test. The procedure was
as follows: first, the specimen was loaded to a cross-head displacement of 4mm
and held in place for 10 minutes. The specimen was then loaded to a cross-head
displacement of 5mm, followed by unloading back to 4mm where it was again
held for 10 minutes. Finally, the specimen is fully unloaded. The relaxation test
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was performed with a cross-head velocity of 3mm/min.

In the pressure sensitivity test series, notched specimens with varying notch radii
were tested in monotonic tension and compression. The specimens tested in ten-
sion were printed with a 0◦ orientation, while the specimens tested in compression
were printed with a 45◦ orientation due to their more complex geometry. The
cross-head velocities applied to the different specimens were determined through
preliminary simulations to ensure that the logarithmic strain rate was approxim-
ately 5 · 10−3 s−1 at the onset of yielding. For the tensile specimens, these were
1.5 mm/min, 0.68 mm/min, 0.52 mm/min and 0.48 mm/min for the R5, R2, R1
and R0.2 specimens, respectively, while for the compression specimens velocities
of 1.0 mm/min, 0.75 mm/min and 0.50 mm/min were used for the R4, R2 and
R1 specimens, respectively. The R4 specimens were tested in both tension and
compression.

3.3 Experimental setup

All tests covered in this chapter were carried out on an Instron 5944 univer-
sal testing system with a 2 kN load cell. Hydraulic clamps were used to grip
the tensile specimens, while the compression test specimens were mounted with
3D-printed threads. The use of threads was made to reduce the risk of the spe-
cimens buckling during compression by making the boundary conditions more
rigid. The compression specimens also featured 3D-printed bolt heads between
the threads and notched region to aid with mounting and off-load the threads
during compression.

Two digital cameras mounted perpendicular to each other were used to monitor
the tests. The logging frequency was selected such that approximately 300 im-
ages were obtained from each test. These images were then used in digital image
correlation (DIC) and edge trace analyses, which are described in the next sec-
tion. In addition to digital cameras, the tests performed as part of the strain-rate
sensitivity and unloading tests series were monitored with a thermal camera to
measure the temperature evolution at the surface of the specimens. The side of
the specimens facing the thermal camera was painted black to aid with temper-
ature measurements. The sides facing the digital cameras were painted with a
black-and-white speckle pattern to facilitate DIC analyses. The setup is shown
in Figure 3.4.

Displacement control was used in the execution of all tests. The tensile tests were
loaded until failure, while the compression tests were loaded until the limit of the
load cell, 2 kN, was reached. Both test types were performed with a constant
cross-head velocity.
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Figure 3.4: Experimental tensile test setup showing a clamped specimen sur-
rounded by two cameras with ring-lighting and one thermal camera.

3.4 Processing of results

3.4.1 Calculation of stress and strain
As the tests presented in this chapter are performed to characterise the mechan-
ical behaviour of the studied material, the most important data obtained from the
tests are stress-strain curves. The procedure for calculating stresses and strains
is presented in this section.

The surface deformations of the smooth specimens were measured by performing
DIC analyses on the images captured with the digital cameras, using the finite
element-based DIC python package µDIC [28]. The longitudinal stretch ratio,
λl, was extracted from the longitudinal component of the right stretch tensor,
U =

√
FTF, calculated in the DIC analyses. To account for noise in the DIC

solution, the longitudinal stretch ratio was averaged over an element column
containing nels elements as

λl =

∑nels

e=1 λl,e
nels

(3.1)

The element column used in the calculation of the average stretch is shown in
Figure 3.5.

To obtain an accurate measure of the radial stretch ratio, both for the smooth
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Figure 3.5: A picture of a smooth tensile specimen showing the speckle pattern
together with the nodes of the finite element mesh used in the DIC analysis. The
element column used in the extraction of the stretch ratios is highlighted.

specimens and the notched specimens, the stretch ratio was calculated from an
edge trace routine in Python using the Sobel edge detection algorithm [29]. The
edge trace routine measures the current minimum diameter in the gauge area of
the specimens, from which the radial stretch ratio is calculated as

λr =
D

D0
(3.2)

where D is the current minimum diameter and D0 is the initial diameter. The
circumferential stretch ratio, λc, is equal to the radial stretch ratio due to the
axisymmetry of the specimens. This is readily seen in the expressions

λc =
2πD

2πD0
=

D

D0
= λr (3.3)

With the stretch ratios of the principal directions at hand, the corresponding
logarithmic strain components are calculated as

εi = ln(λi) (3.4)

Logarithmic strain rates, ε̇i, were then calculated through numerical differenti-
ation in Python.

The stress reported in this work is the net stress defined as

σ =
F

A
(3.5)
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where F is the measured force from the machine and A is the current minimum
cross-sectional area calculated as A = πλ2rD

2
0/4.

The stress and strain measures defined above express the Cauchy stress and
logarithmic strain experienced by the material in the gauge section of the smooth
specimens. In the notched specimens, however, the net stress expresses an average
stress over the minimum cross-sectional area, while the logarithmic strain is a
measure of the surface strains in the notch root. To avoid relating an average
stress measure to a local strain measure for the notched specimens, an average
strain measure is used instead. By assuming that a thin, cylindrical slice of
material in the notch root deforms homogeneously and with no change in volume,
i.e., λlλ

2
r = 1, an average logarithmic strain is defined as

ε̄l = −2ln(λr) (3.6)

This strain measured is hereby referred to as the isochoric logarithmic strain. The
assumption of isochoric deformation does not necessarily hold, but the defined
strain measure still serves as a measure of the average logarithmic strain through
the minimum cross-sectional area.

3.4.2 Temperature measurements
The surface temperature of the specimen monitored by the IR camera is obtained
by calculating the mean temperature of an area of interest (AOI). The AOI
is chosen such that the gauge area of the tensile specimen remains within the
area during the entire test. Figures 3.6 (a) and (b) show a typical AOI for a
smooth specimen in the undeformed and deformed configuration respectively.
The software FLIR Altair was used for reading the thermal images obtained by
the IR camera, as well as retrieving the mean temperature from the AOI.

(a) (b)

Figure 3.6: Area of interest for temperature retrieval shown for a specimen in
the reference configuration (a) and deformed configuration (b).
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3.5 Results

3.5.1 Anisotropy and general behaviour
The results from the anisotropy test series are shown in Figure 3.7 in terms of
net stress vs. logarithmic strain curves. Before turning attention to the effect of
print orientation, the overall stress-strain behaviour should be addressed. The
material exhibits an initial linear elastic response followed by inelastic flow. After
a short plateau following the onset of inelastic flow, rapid strain hardening due
to the alignment of the polymer chains is observed. The specimens fail suddenly
with a brittle fracture mode; yet, the logarithmic failure strain exceeds 0.4 in all
cases. Another noteworthy observation is that no strain localisation is observed
due to the amount of strain hardening taking place. Images from a test of a
specimen printed with a 90◦ orientation illustrating the large strains before the
brittle fracture mode are shown in Figure 3.8.
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Figure 3.7: Net stress vs. logarithmic strain curves from uniaxial tensile speci-
mens with different print orientations.

The lack of strain localisation can be explained by the Considère criterion which
states that a neck forms when the following equation is satisfied

dσ

dεl
= σ (3.7)

The net stress from a tensile test of a 90◦ orientation specimen is plotted against
its derivative with respect to the longitudinal logarithmic strain in Figure 3.9.
It is seen that the two curves cross twice, within a logarithmic strain interval of
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(a)

(b)

(c)

Figure 3.8: Images from the tensile test of a smooth specimen printed with a
90◦ orientation, from (a) before the test, (b) the final frame before fracture and
(c) the frame immediately after fracture.

approx. 0.1. This means that a neck is formed, but is quickly stabilised again due
to the strain hardening of the material. The stable neck will thus propagate to
the shoulders of the specimen such that the entire gauge area in principle forms
a stable neck, giving the appearance of no strain localisation.

As for the anisotropy of the material, a slight print orientation dependency is
observed for the flow stress, as can be seen in the zoomed-in box in Figure 3.3.
The 90◦ orientation specimens have an average flow stress that is approx. 1MPa
higher than for the other orientations, but otherwise the stress-strain response is
close to identical between the different print orientations. The material can thus
be considered isotropic – at least for all practical purposes. Surface longitudinal
logarithmic strain fields from DIC analyses are shown for one specimen per print
orientation in Figure 3.10. The fields are extracted from the point in the test
history where the cross-head displacement was 5mm. The results show that the
magnitude of the strains is similar for the different print orientations, but some
local inhomogeneities exist.
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Figure 3.9: Net stress vs. logarithmic strain from a tensile test of 90◦ orientation
specimen plotted together with its derivative with respect to the logarithmic
strain.

Another measure of the anisotropy is seen in Figure 3.11, where the ratio between
the minimum diameter measured with the two digital cameras, D1 and D2, is
plotted against the cross-head displacement for all the tests. With the exception
of two outlier tests, most of the data points lie within a 0.5% relative differ-
ence between the two cameras. This result both confirms the assumption of an
axisymmetric deformation made in the previous section and supports the claim
of isotropic material behaviour.

As polymers can exhibit a large change in volume, even during uniaxial tension
[30], volumetric strains, εv = ln(λlλ

2
r ), are reported in Figure 3.12. The material

at hand, however, appears to be inelastically incompressible as the calculated
volumetric stains are close to zero for all tests except two outliers.

3.5.2 Strain-rate dependence
The results of the monotonic tensile test at different cross-head velocities are
shown in terms of net stress vs logarithmic strain curves in Figure 3.13 (a), while
the corresponding logarithmic strain rates are plotted in Figure 3.13 (b). The
flow stress is observed to exhibit a strong strain-rate sensitivity, as increasing the
strain rate by a decade increases the flow stress by approx. 40%. A strain-rate
sensitivity is also observed for the initial elastic stiffness. A strain-rate-dependent
softening behaviour is also observed immediately after the onset of inelastic flow.
This is especially apparent in the force-displacement curves shown in Figure 3.14.
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(a) 90◦

(b) 45◦

(c) 0◦

0.30 0.350.25

Longitudinal log. strain,  𝜀 l 

Figure 3.10: Longitudinal logarithmic strain fields from DIC analyses of tensile
tests with print orientation (a) 90◦, (b) 45◦ and (c) 0◦. The fields are shown for
a cross-head displacement of 5mm.

3.5.3 Unloading
The loading-unloading tests show the same initial strain-rate dependent beha-
viour as the monotonic tensile tests, as can be seen from the net stress vs. logar-
ithmic strain curves in Figure 3.15 (a). The unloading and subsequent reloading
cause hysteresis in the material due to the viscoelastic material behaviour. Even
though the cross-head displacement before unloading is equal for the different
specimens, the logarithmic strain in the gauge area is not. This suggests that a
larger amount of deformation takes place in the shoulder and clamping area of
the specimen as the strain rate decreases.

Figure 3.15 (b) shows the change in surface temperature, as measured with the
IR camera, for the different strain rates. At the lowest strain rate, the measured
temperature increase was less than 1 °C. Because of the long duration of the
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Figure 3.11: Curves from the anisotropy test series showing the ratio between
the minimum cross-sectional diameter measured with camera 1 and camera 2
plotted against the cross-head displacement.
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Figure 3.12: Curves from the anisotropy test series showing volumetric strain
vs. logarithmic longitudinal strain curves.

test, this may simply be the change in ambient temperature or heating due to
the lighting. The two tests performed at higher strain rates show a trend of
initial thermoelastic cooling followed by heating due to viscous dissipation. In the
unloading phase, the temperature change due to thermoelasticity is reversed, and
a temperature increase is observed. In the subsequent reloading phase, the trend
of thermoelastic cooling followed by viscous heating is repeated. Overall, the
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Figure 3.13: (a) Net stress vs. logarithmic strain curves from uniaxial tensile
tests performed with three different cross-head velocities and (b) corresponding
logarithmic strain rates.
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Figure 3.14: Force vs. displacement curves from the strain-rate test series.
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self-heating at the studied strain rates is minor and no signs of thermal softening
are observed in the stress-strain curves. The effect of thermal softening could,
however, be significant for higher strain rates. According to the manufacturer,
the heat deflection temperature of the resin is 45 °C [31] which is relatively close to
room temperature. The increase in stress levels due to strain rate in combination
with the lower loading duration means that a larger amount of work will be
dissipated as heat in the material for higher rates, which might affect the strain
hardening response.
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Figure 3.15: (a) Net stress vs. logarithmic strain curves from uniaxial tensile
tests performed with three different cross-head velocities and (b) change in sur-
face temperature measured with an IR camera.

3.5.4 Relaxation
The last assessment of the viscoelastic properties of the material is obtained from
the results of the relaxation test. The stress-strain and stress-time curves from
the test are shown in Figure 3.16 (a) and Figure 3.16 (b) respectively. A strong
stress relaxation effect is observed during the loading phase, where the stress
magnitude is nearly halved after allowing the specimen to relax for 10 minutes.
In the unloading phase, the stress actually increases during the relaxation. In
both the loading and unloading phases, the stress seems to relax towards an
equilibrium stress of approx. 15MPa. The observed relaxation behaviour is the
same as reported by Bergström and Boyce [18] for elastomeric materials.
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Figure 3.16: Results from the relaxation test in terms of (a) net stress vs. log-
arithmic strain and (b) net stress vs time curve.

3.5.5 Pressure sensitivity
Net stress vs isochoric logarithmic strain curves from the notch tensile tests are
shown in Figure 3.17 (a). The results from the smooth 0◦ specimens tested in
the anisotropy series are included as a comparison between notched and smooth
specimens. An increase in stress level and a reduction in ductility are observed
as the notch radius decreases. The reduced ductility stems from the stress loc-
alisation at the notch root. Here, large stress levels leading to fracture occur at
relatively low cross-head displacements.

The net failure stress is plotted for each specimen type in Figure 3.17 (b). The
average failure stress and the spread decrease with the notch radius. Both ob-
servations can be explained by the localised deformation caused by the notches.
As the notch radius decreases, the strains and stresses become highly localised at
the surface of the notch root. When fracture occurs in the localised region, the
stress levels in the rest of the specimen are relatively low, which leads to a low
average stress, i.e., net stress. The reduced scatter indicates that the fracture
of the specimens is governed by a size effect. When compared with the notched
specimens, the smooth specimens feature a larger volume in which fracture can
occur because the stresses are distributed uniformly through the entire gauge
section. With larger volume comes an increased probability of the occurrence of
a critical defect which can trigger brittle fracture.

The results from the compression tests are shown in Figure 3.18 (a) in terms
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Figure 3.17: Results from notch tensile tests: (a) Net axial stress vs. isochoric
axial strain and (b) net axial failure stress for all specimens.

of absolute net stress vs absolute isochoric logarithmic strain. The logarithmic
strains are plotted until the point at which the edge trace routine is no longer
able to track the notch edges due to extensive deformations in the notch area.
The same trends as in the notch tensile tests are seen, in which the stress levels
rise with the sharpness of the notch radius. Figure 3.18 (b) shows a comparison
between tensile and compression tests of the R4 specimens. A clear pressure de-
pendency is observed where the net stress at yield is higher in compression than
in tension. Reduced strain hardening is seen in the compression tests compared
to the tensile tests. A possible explanation for this is that a slight eccentricity
between the upper and lower mounts, as seen in Figure 3.19, caused a shear de-
formation in the compression specimens at large strains, i.e., after yield. A shear
deformation mode leads to less extension of the polymer chains than a multiaxial
deformation mode, which will also result in less apparent strain hardening.
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Figure 3.18: Results from notch compression tests: (a) Net axial stress vs. iso-
choric axial strain for all compression tests and (b) net axial stress vs. isochoric
axial strain for the compression and tensile tests of the R4 specimen.

(a) (b)

Figure 3.19: Images from an R4 compression test showing (a) the undeformed
specimen and (b) the deformed specimen at the last frame of the test. Note the
slight eccentricity in (b).
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3.6 Summary

• The studied material exhibited a typical polymer stress-strain response.
The initial response was linear elastic, followed by inelastic flow and then
strain hardening due to the alignment of the polymer chains. Where the
material behaviour differed from most polymers, however, was in the brittle
fracture mode occurring after large inelastic strains.

• The print orientation had no significant effects on the mechanical behaviour
of the material. The material can thus be considered isotropic.

• The flow stress was found to be heavily strain-rate dependent, as increasing
the strain rate by a decade led to a 40% increase in the flow stress. A
strain-rate-dependent softening behaviour was observed immediately after
the onset of inelastic flow which manifests as a drop in the force levels in
the force-displacement curves and a reduction of the tangent modulus in
the stress-strain curves. The initial elastic stiffness was also found to be
strain-rate sensitive.

• Viscoelastic hysteresis was observed from loading/unloading tests. The
measured self-heating was relatively low, as the highest temperature in-
crease was only 4 °C for the highest strain rate tested.

• Significant stress relaxation was observed in an arrested loading/unloading
test. The stress seemed to relax towards an equilibrium stress, which inter-
estingly resulted in increased stress levels during the relaxation period in
the unloading phase.

• Notch tensile and compression tests revealed a pressure-sensitive flow stress.
The tests also showed that the scatter in the net failure stress decreased as
the notch radius decreased. This observation suggests that fracture initi-
ation is governed by a size effect, as the volume in which fracture initiates
is smaller the sharper the notch radius is.
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The tests presented in the previous chapter provide a comprehensive experimental
database for use in the calibration of a constitutive model. After a constitutive
model is calibrated, it should be validated against experimental results outside the
calibration data. For this purpose, several validation tests have been performed,
which feature more complex stress states than the material tests. This chapter
presents the experimental setup and results for the validation tests performed in
this work.

4.1 Lattice structure compression tests

Lattice structures are a class of architectured cellular solids with periodic micro-
structure. Lattice structures can be designed to provide strength- and stiffness-
to-weight ratios that surpass natural materials [32] and the production of such
structures has been made easier in the last decade thanks to additive manufac-
turing. One type of lattice structure that has been studied widely due to its
potential application in lightweight engineering structures is the so-called octet-
truss lattice structure [33, 34]. Due to its relevance for additive manufacturing,
as well as its complex geometry, the octet-truss lattice structure is chosen for
quasi-static and dynamic compression tests to validate the constitutive model
presented later in this work.

4.1.1 Experimental programme and setup
The unit cell of the studied octet-truss lattice structure and its dimensions are
shown in Figure 4.1. The relative density of the unit cell, i.e., the ratio of the
density of the cell to the density of the bulk material, is 0.235. The full lattice
structure is obtained by stacking the unit cells in a 4×4×4 cubic pattern, which
results in a lattice structure with dimensions 40mm×40mm×40mm. A CAD
model of the full lattice structure is shown in Figure 4.2.

45



Chapter 4. Validation tests
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Figure 4.1: Dimensions of the octet-truss unit cell.

Figure 4.2: CAD model of the octet-truss lattice structure.

Specimens for compression testing were printed with the Form 3 SLA printer
using the exact same print parameters and procedures as described in Chapter 3.1.

Quasi-static compression tests were carried out with cross-head velocities of
3mm/min, 30mm/min and 300mm/min, with three repeat tests for each ve-
locity. A cross-head velocity of 300mm/min is quite high and could arguably not
be considered quasi-static, but the test series is still referred to as quasi-static to
distinguish it from the dynamic test series. The quasi-static tests were conducted
in an Instron 5560 machine with a 10 kN load cell. The tests were monitored with
a single camera with a logging frequency chosen such that approx. 600 frames
were obtained for each cross-head velocity. Force and cross-head displacements
were logged from the machine and synchronised to the image acquisition fre-
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quency. The specimens were compressed between two hardened steel platens
until the maximum force of the load cell was reached, after which the specimens
were unloaded. The experimental setup is illustrated in Figure 4.3.

Digital camera

Steel platens Specimen

Cross-head velocity,

Figure 4.3: Drawing of the quasi-static compression test setup showing the steel
platens, specimen and digital camera.

Dynamic tests were carried out in a CEAST 9350 drop tower system as illustrated
in Figure 4.4. Three tests with an impact velocity of 5m/s and two tests with
an impact velocity of 4m/s were performed. All tests featured a total impactor
mass of 6.054 kg. The tests were monitored with a Phantom v161 high-speed
camera with a frame rate of 25 000 frames per second and the force-time history
was measured by a load cell with a frequency of 1MHz. The setup is similar
to the one used by Reyes and Børvik [35] but with a different striker and a flat
impactor nose.

The load cell of the drop tower is located above the impactor nose, which leads
to an underestimation of the force that is transferred to the test specimen. The
force experienced by the specimen, F , can be expressed in terms of the measured
force, P , and the mass above and below the load cell, m1 and m2 respectively.
Applying Newton’s second law to the system illustrated in Figure 4.5 gives

P −m1g = −m1a (4.1)

and

F − P −m2g = −m2a (4.2)
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where a is the acceleration of the striker and impactor and g =9.81m/s2 is the
gravitational acceleration. Combining the two above equations results in

F =

(
1 +

m2

m1

)
P (4.3)

The mass under the load cell in the tests performed is 0.818 kg and the mass
above the load cell is 5.236 kg which gives m2/m1 ≈ 0.156, i.e., the force exper-
ienced by the test specimen is 15.6% higher than the measured force. The drop
tower machine only logs the force-time history of a test. To obtain the impactor
displacement and velocity, the following integration scheme is used [35]

vn+1 = vn −
(
Fn+1 + Fn

2mp
− g

)
∆t, wn+1 = wn +

(
vn+1 + vn

2

)
∆t (4.4)

where v is the impactor velocity, w is the impactor displacement, ∆t is the time
increment and mp = 6.054 kg is the total impactor mass. Note that the sign of
the velocity and displacement is defined to be positive in the downward direction.
To verify the accuracy of the presented integration scheme, the displacement
of the impactor nose was also obtained by point tracking using the in-house
DIC software eCorr [36] and compared with the integrated displacement. A
comparison between the two aforementioned methods of extracting the impactor
displacement is shown in Figure 4.6 for one of the tests with an initial velocity
of 4m/s. It is seen that the displacement obtained from the integration scheme
closely matches the one obtained from DIC and, as such, is deemed suitable for
further use.
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Pin (×2) for additional
energy system

Tup lifter (cross head)
(Automatic tup recovery/
releasing system)

Flag (Impact and rebound 
velocity measuring system)

Photocell (Optical detector
for impact and rebound
velocity measuring system)

Specimen

Hydraulic damper (×2)

Impactor

Instrumented striker

Additional weights
(Optional)

Weighting system

High-speed camera

Figure 4.4: Drawing of the dynamic compression test setup showing the CEAST
9350 drop tower machine.
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Figure 4.5: Free body diagram of a test specimen impacted in the drop tower
machine.
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Figure 4.6: Comparison between the impactor displacement obtained from the
integration scheme and from DIC.

4.1.2 Results and discussion
The results from the quasi-static compression tests are shown in Figure 4.7 in
terms of force vs. displacement curves. The response follows a typical cellular
solid behaviour. The initial response is elastic until a peak force is reached.
Afterwards, the force levels drop and remain constant for a significant amount of
deformation in what is referred to as the plateau region of the force-displacement
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curve. The plateau lasts until the densification stage is reached – wherein the
struts make contact with each other which significantly increases the stiffness of
the structure. The strain-rate sensitive flow stress of the material is seen clearly
from the increase in force levels as the cross-head velocity is increased. Strain-
rate dependent softening is seen after the peak force is reached similar to what
was observed in the tensile tests from Figure 3.14.
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Figure 4.7: Force vs. displacement curves from quasi-static compression tests
of octet-truss lattice structures with different cross-head velocities.

Figure 4.8 (a) and (b) shows the amount of deformation the lattice structures
undergo during a compression test. Remarkably, most of the deformation is
recovered after the test due to the viscoelastic properties of the material, as can
be seen in Figure 4.9.

(a) (b)

Figure 4.8: Images captured by the digital camera from a compression test with
v = 3mm/min from (a) before the test started and (b) at the point of maximum
cross-head displacement.
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(a) (b) (c)

Figure 4.9: Images of an octet-truss lattice specimen after being compressed
with a cross-head velocity of v = 3mm/min taken (a) immediately after testing,
(b) 10 min after testing and (c) 60 min after testing.

The results from the dynamic compression tests are shown in Figure 4.10 in
terms of force vs. displacement curves. The peak force in the dynamic tests is
much higher than for the quasi-static tests, as is the force drop after the peak
force is reached. The first of the previous observations can be attributed to the
strain-rate sensitivity of the material, while the second observation stems from
the difference in deformation modes between the dynamic and quasi-static tests.
For ease of comparison, the force-displacement curve from a 5m/s impact test is
plotted together with the results from the quasi-static tests in Figure 4.11. The
comparison once again demonstrates the strain-rate dependency of the initial
elastic stiffness of the material, as the initial slopes of the dynamic tests are
higher than those of the quasi-static tests.

The deformation of the lattice structures at the point of peak force and max. dis-
placement for v0 = 4m/s and v0 = 5m/s is shown in Figure 4.12 and 4.13
respectively. The images show that the sharp force drop is caused by fractures
in the structure, which prevents the neat folding of the struts observed in the
quasi-static tests. The difference between an initial velocity of 4m/s and 5m/s
has a significant effect on the maximum impactor displacement and consequently
the amount of fracture occurring in the lattice structure. Even though the dif-
ference is only 1m/s, this is still a 25% increase in velocity which again results
in a 56.25% increase in kinetic energy. It follows that the work done by the
lattice structure on the impactor increases by the same ratio, which results in
significantly more deformation of the lattice structure.
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Figure 4.10: Force vs. displacement curves from dynamic compression tests of
octet-truss lattice structures with two different impactor initial velocities.
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Figure 4.11: Force vs. displacement curves comparing the quasi-static compres-
sion tests and dynamic compression tests with v0 = 5m/s.
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Figure 4.12: (a): Force vs. displacement curve from a dynamic compression
test with v0 = 4m/s and (b)-(c): the deformed shape of the lattice structure at
points in the deformation history indicated in the force vs. displacement curve.
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Figure 4.13: (a): Force vs. displacement curve from a dynamic compression
test with v0 = 5m/s and (b)-(c): the deformed shape of the lattice structure at
points in the deformation history indicated in the force vs. displacement curve.

55



Chapter 4. Validation tests

4.2 Three-point-bending tests

The lattice structure compression tests provide complex stress states valuable
for validation purposes but at the same time, a large part of the mechanical
response of such structures is governed by geometric effects like buckling. In
order to provide a more controlled validation of the material behaviour itself,
three-point bending tests on specimens with off-centre notches were carried out.
Such tests provide a mix of compressive and tensile stresses from bending in
addition to triaxial effects around the notch. The off-centre notch will also result
in slanted crack propagation due to the presence of shear stresses in the notch
root, which will provide valuable data for the validation of the fracture model.

4.2.1 Experimental programme and setup
Two specimen types were considered in this experimental programme; one with a
notch radius of 1.25mm and one with a notch radius of 2.5mm. These are referred
to as R1.25 and R2.50 specimens, respectively. The geometry and dimensions of
the specimens are shown in Figure 4.14.

35 25 15

7.5
R1.25

5

(a)
35 25

R2.50

15

7.55

(b)

Figure 4.14: Geometries of (a) the R1.25 bending specimen and (b) the R2.50
bending specimen. Dimensions in mm.

The tests were carried out on an Instron 5944 universal testing system with a
2 kN load cell and a specialised three-point bending rig. The rig consists of a
V-shaped punch and two supports. The punch has an internal angle of 60◦ and a
tip radius of 2.5mm and the supports have circular tips with a radius of 2.5mm.
The centre distance between the supports was 50mm. The setup is visualised in
Figure 4.15 with a photo of the experimental setup and a drawing of the setup
with dimensions. The tests were performed with displacement control with a
constant cross-head velocity of 3mm/min. A digital camera with a frame rate of
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4.2. Three-point-bending tests

2Hz was used to monitor the tests. The specimens were painted with a black-
and-white speckle pattern to allow for DIC analyses of the images captured by
the camera.

(a)

R2.5

R2.5
60°

50
(b)

Figure 4.15: (a) Experimental setup of the three-point bending tests and (b)
drawing with dimensions in mm.

4.2.2 Results and discussion
Force vs. displacement curves from the three-point bending tests are shown in
Figure 4.16 (a). The general behaviour is similar for both specimen types where
an initial elastic response is followed by yielding and subsequent fracture. The
same trend as in the notch tension tests is observed, where the specimen with the
sharper notch radius exhibits lower ductility and higher force levels. Additionally,
the scatter in both the force and displacement at failure is lower in the R1.25
specimen than in the R2.50 specimen, as seen in Figure 4.16 (b). The explanation
for this behaviour is the same as for the tension tests, namely that the strains
are more localised in the sharpest notched specimen which results in less scatter
in the fracture stress.

Field maps of the maximum principal strains from DIC analyses are shown in
Figure 4.17 for both specimen types. The DIC analyses were performed in eCorr
[36] with a mesh imported from Abaqus CAE. The images are taken from the
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point in time corresponding to a cross-head displacement of 5mm. The results
show that the strain magnitude is larger in the R1.25 specimen than in the
R2.50 specimen, due to the strain localisation induced by the sharper notch.
This observation that the R1.25 specimens experience larger strains for the same
cross-head displacement as the R2.50 specimens means that the stresses around
the notch are also higher in the R1.25 specimens which again explains why these
specimens failed at a lower cross-head displacement than the R2.50 specimens.

Pictures of an R1.25 and R2.50 specimen after fracture are shown in Figure 4.18.
Only two specimens are shown, but the fracture patterns were similar in repeat
tests. The fracture initiates in the centre of the notches and initially propagates
normal to the notch surface before slanting towards the direction of the punch
due to shear stresses changing the direction of the major principal stress. The
crack changes direction again when approaching the top surface of the specimens
as the cross-sectional height becomes so small that the shear stresses become
negligible.
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Figure 4.16: (a) Force vs. displacement curves from the three-point bending
tests with off-centred notched specimens and (b) force at failure and displacement
at failure from the three-point bending tests with off-centred notched specimens.
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(a)

(b)

Figure 4.17: Results from DIC analyses of the three-point bending specimens
showing field maps of the maximum principal strain from (a) the R1.25 specimen
and (b) the R2.50 specimen. The cross-head displacement was 5mm for both
specimens.
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(a)

(b)

Figure 4.18: Fracture path in (a) an R1.25 specimen and (b) and R2.50 spe-
cimen.

4.3 Summary

• Compression tests of octet truss-lattice structures and three-point bending
tests on notched beams were performed to obtain experimental data which
can be used to validate a constitutive model.

• Quasi-static lattice compression tests exhibited a typical cellular material
behaviour and showed the same strain-rate sensitivity as the material tests.
The deformation mode was a neat compaction of the structure where the
struts buckled and folded together.

• Dynamic lattice compression tests exhibited a very brittle behaviour com-
pared with the quasi-static tests. The strain-rate sensitivity of the material
in combination with high strain rates caused the struts to fracture before
buckling, which changed the deformation mode.

• The two notched three-point bending specimens exhibited quite similar
force-displacement curves, but the R1.25 specimens failed at lower cross-
head displacement and at slightly higher force at failure than the R2.50
specimens. These results match the findings from the notch tension test
series in the previous chapter.
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5 Constitutive model: Formulation

This chapter presents the constitutive model developed during this work. First,
an overview of the model is given, followed by a detailed description of the model’s
constitutive relations and numerical implementation.

5.1 Overview

The experimental results from the material tests presented in Chapter 3 were
used as a reference for determining the necessary components of the constitutive
model. The model should be able to describe an initial elastic response followed
by rate- and pressure-dependent inelastic flow behaviour. Thinking in terms
of rheological models, this can be modelled as an elastic spring in series with
a non-linear viscoelastic dashpot. As the elastic strains constitute about 10%
of the total strains, a hyperelastic formulation should be used to ensure energy
conservation in a closed deformation cycle [26]. The strain-hardening response
can be modelled by including an elastic spring in parallel with the viscoelastic
network [13]. The parallel spring will also act as a rate-independent equilib-
rium stress, which allows the model to describe the stress-relaxation behaviour
observed from the experimental results.

By combining the aforementioned components, we end up with the rheological
model shown in Figure 5.1. Both Part A and Part B are governed by the total
deformation gradient, viz.

F = FA = FB (5.1)
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Fi  B

Fe  B
F 

A B

Figure 5.1: Rheological model.

The deformation gradient of Part B is multiplicatively decomposed into an elastic
part, Fe

B, and an inelastic part, Fi
B, by the use of an intermediate configuration,

viz.

FB = Fe
BF

i
B (5.2)

Figure 5.2 illustrates the kinematics of Part B. A material point is mapped from
the reference configuration, Ω0, to the current configuration, Ω, by the total
deformation gradient, FB. We then imagine that the material point in the cur-
rent configuration is elastically unloaded to an intermediate configuration, Ω̃, by
the inverse of the elastic part of the deformation gradient of Part B, (Fe

B)
−1.

The mapping from the reference configuration to the intermediate configuration
is consequently performed by the inelastic part of the deformation gradient of
Part B, Fi

B.

The Helmholtz free energy function per unit volume of the model is additively
composed as

ψ = ψA + ψB (5.3)

which also results in an additive decomposition of the Cauchy stress tensor

σ = σA + σB (5.4)
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Figure 5.2: The kinematics of Part B.

5.2 Part A

Part A describes the strain hardening of the material due to the alignment of the
polymer chains. For this, the well-known Arruda-Boyce eight-chain hyperelastic
model [37] is used. The Helmholtz free energy is given as

ψA = θµλ2L

[
λ̄c
λL
β + ln

(
β

sinh(β)

)]
(5.5)

where θ is the absolute temperature, µ is the initial shear modulus and λL is the
locking stretch. The effective chain stretch is defined as

λ̄c =
√
Ī1/3 (5.6)

where Ī1 = tr(B̄) is the first invariant of the isochoric left Cauchy-Green deform-
ation tensor. The isochoric left Cauchy-Green deformation tensor is defined as
B̄ = J−2/3FFT, where J = det(F) is the Jacobian determinant. The parameter
β is defined as β = L−1(λ̄c/λL), where the Langevin function is

L(x) = coth(x)− 1/x (5.7)

The expression for the Cauchy stress is then obtained from Eq. 2.86 as
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σA =
2

J

∂ψA

∂Ī1
B̄′ +

∂ψA

∂J
I (5.8)

The first partial derivative is evaluated as

∂ψA

∂Ī1
=
∂ψA

∂λ̄c

∂λ̄c
∂Ī1

+
∂ψA

∂β

∂β

∂λ̄c

∂λ̄c
∂Ī1

(5.9)

We then evaluate the partial derivative ∂ψA/∂β:

∂ψA

∂β
= θµλ2L

[
λ̄c
λL

+
sinh(β)

β

(
sinh(β)− β cosh(β)

sinh2(β)

)]

= θµλ2L

[
λ̄c
λL

− coth(β) +
1

β

] (5.10)

Inserting the relation coth(β)− 1/β = L(β) = λ̄c/λL gives

∂ψA

∂β
= θµλ2L

[
λ̄c
λL

− λ̄c
λL

]
= 0 (5.11)

which means that only the first term of Eq. 5.9 is non-zero. The remainder of
the equation is evaluated as

∂ψA

∂Ī1
= θµλLβ

1

6λ̄c
(5.12)

From here on, the temperature dependence of the model will not be considered, as
the effect of temperature on the mechanical behaviour of the SLA resin studied in
this work is out of scope. An isothermal shear modulus is introduced and defined
as µA = θµ. Since the Helmholtz free energy function has no dependence on the
Jacobian determinant, the Cauchy stress can now be written as

σA =
µAλL
3λ̄cJ

L−1

(
λ̄c
λL

)
B̄′ (5.13)
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5.3 Part B

Part B describes the non-linear viscoelastic behaviour of the material and consists
of a hyperelastic spring in series with a viscous dashpot. The Helmholtz free
energy of the hyperelastic spring is given by the neo-Hookean potential as [27]

ψB =
µB

2
(ĪeB,1 − 3) +

κ

2
(Je

B − 1)2 (5.14)

where µB is the shear modulus of Part B, κ is the bulk modulus, ĪeB,1 = tr(B̄e
B)

is the first invariant of the isochoric elastic left Cauchy-Green deformation tensor
and Je

B = det(Fe
B) is the elastic Jacobian determinant.

The Cauchy stress is derived from the energy function as

σB =
2

JB

∂ψB

∂ĪeB,1

B̄e′

B +
∂ψB

∂Je
B

I (5.15)

which is straightforward to evaluate as

σB =
µB

JB
B̄e′

B + κ(Je
B − 1)I (5.16)

The total velocity gradient is defined as

LB = ḞB(FB)
−1 = Le

B + Fe
BL̃

i
B(F

e
B)

−1 = Le
B + Li

B (5.17)

where L̃i
B = Ḟi

B(F
i
B)

−1 is the inelastic velocity gradient defined on the intermedi-
ate configuration and Le

B = Ḟe
B(F

e
B)

−1 is the elastic velocity gradient defined on
the current configuration. The inelastic velocity gradient on the current config-
uration, Li

B, is obtained through a push-forward operation on L̃i
B with the elastic

deformation gradient.

The elastic and inelastic velocity gradients of Part B are further decomposed into
symmetric and antisymmetric parts – those being the rate of deformation tensor,
DB, and spin tensor, WB, respectively. The expressions for the decomposition
are

Le
B = De

B +We
B (5.18)
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Li
B = Di

B +Wi
B (5.19)

Both the inelastic rate of deformation tensor and inelastic spin tensor need to be
prescribed to achieve a unique solution. Due to isotropic material behaviour, the
inelastic spin tensor can be prescribed to be equal to the zero tensor [38, 39], viz.

Wi
B = 0 (5.20)

The inelastic rate of deformation tensor, on the other hand, is prescribed by a
flow rule on the form

Di
B = γ̇BN

i
B (5.21)

where γ̇B is an effective inelastic strain rate and Ni
B is the direction of inelastic

flow tensor calculated from an inelastic potential function as

Ni
B =

∂g

∂σB
(5.22)

The potential function, g, is taken as the equivalent von Mises stress, viz.

g =

√
3

2
σ′
B : σ′

B = σvm,B (5.23)

The resulting direction of inelastic flow is thus

Ni
B =

3

2

σ′
B

σvm,B

(5.24)

From Eqs. 5.21 and 5.24, it is apparent that the trace of the inelastic rate of
deformation tensor is zero. Consequently, no increase in volume due to inelastic
deformations will occur. This can be seen from the expression for the rate of
change of the inelastic Jacobian determinant [25]

J̇ i
B = J i

Btr(D
i
B) = 0 (5.25)

which also means that the elastic Jacobian determinant is the same as the total
Jacobian determinant, viz.
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J i
B = 1 → Je

B = J (5.26)

The inelastic rate of deformation tensor is not fully prescribed yet, as a con-
stitutive relation is still needed for the effective inelastic strain rate. For this
purpose, a non-linear viscoelastic power law is used. The expression reads

γ̇B = γ̇0

(
σvm,B

τ̄

)m

(5.27)

where γ̇0 > 0 is a reference strain rate, m is a material constant and τ̄ is the effect-
ive shear strength. The effective shear strength is taken to depend on hydrostatic
stress as

τ̄ = τ − ασH,B > 0 (5.28)

where σH,B = tr(σB)/3 and α is a pressure sensitivity parameter. Strain softening
is captured through the phenomenological evolution of the shear shear strength,
τ , proposed by Boyce et al. [15]

τ̇ = h

(
1− τ

τss

)
γ̇B (5.29)

where h is a softening parameter and τss is the saturation value of τ . The initial
value of τ is the parameter τ0 > τss.

To satisfy the second order of thermodynamics, the inelastic dissipation of the
presented model must be non-negative. The dissipation inequality in the current
configuration is stated as [26]

D = σB : Di
B ≥ 0 (5.30)

Inserting the flow rule from Eq. 5.21 and Eq. 5.24 into the equation above gives

D = γ̇B
3

2

σB : σ′
B

σvm,B

= σvm,Bγ̇B ≥ 0 (5.31)

which shows that the dissipation inequality is always satisfied since both the
equivalent von Mises stress and the effective inelastic strain rate are non-negative
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by definition.

The material parameters of the constitutive model are summarised in Table 5.1
and the governing equations are summarised in Box 5.1.

Table 5.1: Hyper-viscoelastic material parameters.

Parameter Unit Description
µA MPa Shear modulus Part A
µB MPa Shear modulus Part B
λL - Locking stretch
κ MPa Bulk modulus
γ̇0 s−1 Reference strain rate
m - Strain-rate sensitivity parameter
h MPa Softening modulus
τ0 MPa Initial shear strength
τss MPa Saturated shear strength
α - Pressure sensitivity parameter

Box 5.1: Governing equations of the hyper-viscoelastic model.

σA =
µAλL
3λ̄cJ

L−1

(
λ̄c
λL

)
B̄′ Cauchy stress – Part A

σB =
µB

JB
B̄e′

B + κ(Je
B − 1)I Cauchy stress – Part B

Di
B = γ̇B

3

2

σ′
B

σvm,B
Inelastic flow rule

γ̇B = γ̇0

(σvm,B

τ̄

)m
Effective inelastic strain rate

τ̄ = τ − ασH,B Pressure sensitive shear strength

τ̇ = h

(
1− τ

τss

)
γ̇B Softening evolution
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5.4 Fracture initiation model

The size-dependent scatter in fracture stress observed in the experiments is cap-
tured by a stress-based fracture criterion together with a stochastic critical stress.
The approach is adapted from the model proposed by Holmström et al [40]. Frac-
ture occurs when an equivalent stress, σ̄, reaches a critical stress level, σ̄c. The
equivalent stress is defined as

σ̄ =

√√√√ 3∑
I=1

⟨σI⟩2 (5.32)

where ⟨·⟩ is the positive Macaulay bracket and the principal stresses of the Cauchy
stress tensor, σI , are ordered as σ1 ≥ σ2 ≥ σ3. An equivalent strain measure,
ε̄, is defined to be power conjugate with the equivalent stress. Equivalence in
mechanical power gives

σ̄ ˙̄ε = σ : D → ε̄ =

∫ t

0

1

σ̄
σ : Ddt (5.33)

where D is the total rate of deformation tensor, D = (L + LT)/2, and L is the
total velocity gradient, L = ḞF−1.

When fracture is modelled by the way of element erosion, the energy release
associated with fracture is dependent on the size of the eroded elements. To
reduce the mesh dependency, a regularisation parameter, Gf , is introduced to
ensure that the energy dissipated by an element is independent of the element
size. The procedure is illustrated in Figure 5.3 where Gf is seen to represent
the shaded area of the curve, i.e., the energy dissipated at fracture. When the
critical equivalent stress is reached, linear strain softening takes place until the
equivalent failure strain, ε̄u, is reached. An expression for ε̄u is obtained by
equating the fracture energy of the crack surface with the dissipated strain energy
of the element [41]

GfAel =
1

2
σ̄c(ε̄u − ε̄c)Vel (5.34)

where Ael is the area of the crack surface, Vel is the volume of the element and
ε̄c is the equivalent strain corresponding to the critical stress σ̄c. By assuming
cubic elements with a characteristic size hel, the equivalent failure strain is found
as
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Figure 5.3: Equivalent stress vs equivalent strain curve showing how Gf is
related to the dissipated energy at fracture.

ε̄u = ε̄c +
2Gf

σ̄chel
(5.35)

Thus, the softening is dependent on the characteristic element size such that
energy dissipated by fracture is independent of element size as long as the mesh
remains regular. In addition to regularising the fracture, the softening behaviour
improves the robustness of the material model as convergence issues can occur
when an element is immediately eroded after having its critical stress reached.
It is emphasised that the fracture energy parameter, Gf , is not related to the
material behaviour and is strictly a numerical parameter. The value of Gf must
be chosen such that the fracture is brittle enough to describe the experimentally
observed brittle fracture without causing convergence issues. To prevent spurious
element erosion due to stress waves, the equivalent stress needs to be equal or
greater than the critical stress during a critical time interval, ∆tc. Unless stated
otherwise, a value of 10−4 s is used for the critical time interval in all simulations
carried out in this work.

In the softening stage, the stress tensor in the constitutive equations is replaced
by an effective stress tensor defined as

σeff =
σ

(1− δ)
(5.36)

where δ is a damage variable defined as
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δ =

0 for ε̄ < ε̄c

1− ε̄u − ε̄

ε̄u − ε̄c
for ε̄ ≥ ε̄c

(5.37)

An element is eroded when the damage variable reaches a critical value of δ = 0.9.
This value is chosen to provide elements with some residual stiffness before being
eroded to mitigate element distortion prior to erosion.

Stochastic fracture is introduced by making the critical equivalent stress, σ̄c,
follow a left-truncated normal distribution. The probability density function of
σ̄c is given as

f(σ̄c) =
1

σ̄c,std
√
2π

exp

[
− 1

2

(
σ̄c − σ̄c,mean

σ̄c,std

)2
]

(5.38)

and is made left-truncated through the definition [40]

fLT(σ̄c) =


0 for σ̄c < σ̄c,min

f(σ̄c)∫∞
σ̄c,min

f(σ̄c)dσ̄c
for σ̄c ≥ σ̄c,min

(5.39)

The stochastic failure stress is distributed to the material points of a finite element
model through an assignment mesh, as proposed by Knoll [42]. The assignment
mesh has the shape of a rectangular cuboid and covers the entire finite element
model. A random critical stress according to the distribution in Eq. 5.39 is
assigned to each element in the assignment mesh. Each integration point in the
finite element model that lies inside an element of the assignment mesh is then
assigned the critical stress value of the assignment element. It is apparent that the
element size of the assignment mesh controls the length scale of σ̄c. Figure 5.4 (a)
shows the critical stress distribution in a finite element model of a tensile test
assigned with an assignment element size twice as large as the finite element
size in the gauge area. Figure 5.4 (b) shows a histogram of the fracture stresses
together with the nominal distribution used as input to generate the stochastic
fracture stress values.

The parameters used in the fracture model are summarised in Table 5.3.
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Figure 5.4: (a) Critical stress distribution in the gauge area of a FE model of a
smooth tensile specimen and (b) a comparison between the nominal distribution
and the realised distribution in the FE model with a normalised histogram.

Table 5.3: Fracture model parameters.

Parameter Unit Description
σ̄c,mean MPa Mean value of the stochastic failure stress
σ̄c,std MPa Standard deviation of the stochastic failure stress
σ̄c,min MPa Minimum value of the stochastic failure stress
Gf N/mm Fracture energy release parameter
∆tc s Critical time interval

5.5 Numerical implementation

The constitutive model is implemented in Abaqus/Explicit. A quasi-implicit
numerical integration scheme inspired by Johnsen et al. [43] was used to integrate
the flow rule in Eq. 5.21. Inserting the relation between the inelastic deformation
gradient and the inelastic rate of deformation tensor into the equation gives

Ḟi
B = γ̇B(F

e
B)

−1Ni
BF

e
BF

i
B (5.40)

which can be solved with a backward Euler approximation as
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Fi
B,n+1 = Fi

B,n + (γ̇B(F
e
B)

−1Ni
BF)

∣∣
n+1

∆tn+1 (5.41)

The above equation may be rearranged and solved iteratively as

(Fi,I
B,n+1)

−1 = (I− γ̇IB,n+1∆tn+1F
−1
n+1N

i,I−1
B,n+1Fn+1)(F

i
B,n)

−1 (5.42)

where the superscript I signifies the Ith iteration. Note that in order to avoid
equation solving, the direction of inelastic flow, Ni

B, lags one iteration behind
the other iterative variables. With the inverse inelastic deformation gradient at
hand, the elastic part is calculated as

Fe,I
B,n+1 = Fn+1

(
Fi,I

B,n+1

)−1

(5.43)

which is used in the calculation of the Cauchy stress tensor σI
B,n+1.

The effective inelastic strain rate of the next iteration is calculated using the
secant method

γ̇I+1
B,n+1 = γ̇IB,n+1 −

γ̇IB,n+1 − γ̇I−1
B,n+1

rIn+1 − rI−1
n+1

rIn+1 (5.44)

where rIn+1 is a residual function defined as

rIn+1 = γ̇IB,n+1 − γ̇0

(
σI
vm,B,n+1

τ̄ In+1

)m

(5.45)

To start the iteration, values for γ̇0B,n+1 and γ̇1B,n+1 are needed. For the first
time step, γ̇1B,1 is taken to be close to zero while γ̇0B,1 = 0. For the remaining

time steps, the initial guesses are γ̇0B,n+1 = γ̇B,n and γ̇1B,n+1 = γ̇0

(
σ0
vm,B,n+1

τ̄0
n+1

)m

[44]. Iterations are performed until the absolute value of the residual defined in
Eq. 5.45 is less than a defined tolerance.

The evolution of the effective shear strength is solved fully implicitly with the
backward Euler method as
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τ I+1
n+1 =

τn + hγ̇I+1
B,n+1∆tn+1

1 +
h

τss
γ̇I+1
B,n+1∆tn+1

(5.46)

When the material routine has converged and the Cauchy stress tensor for the
current time step has been obtained, the damage variable, δn+1, is calculated in
accordance with Eq. 5.37. The stress tensor returned to Abaqus/Explicit at the
end of the VUMAT has to be oriented in the reference configuration such that the
FE solver can calculate the appropriate objective stress rate. The hyperelastic
relations in the presented material model are calculated using the left Cauchy-
Green deformation tensor, and the stress tensors are thus oriented in the current
configuration. The irrotational Cauchy stress tensor returned to Abaqus at the
end of the material routine is

σ̂n+1 = (Rn+1)
Tσeff,n+1Rn+1(1− δn+1) (5.47)

where Rn+1 is the rotation tensor calculated as Rn+1 = Fn+1U
−1
n+1. The right

stretch tensor at the current time step, Un+1, is provided by the Abaqus VUMAT
interface.

As the time evolution of the inelastic deformation gradient in Eq. 5.40 is in-
tegrated with a first-order approximation, situations may arise where the strain
increment provided by the Abaqus VUMAT interface, ∆ε, is too large for con-
vergence to be achieved. A sub-stepping scheme is introduced to improve the
robustness of the model for these cases. The number of sub-steps performed,
Nsub, is determined by the following expression

Nsub = max

{
nint

[
∆εeq
∆εcr

]
, 1

}
(5.48)

where nint[·] is the nearest-integer function, ∆εeq is the equivalent deviatoric

strain increment calculated as ∆εeq =
√

2
3∆ε′ : ∆ε′, ∆ε′ is the deviatoric part

of the strain increment tensor and ∆εcr is a critical strain increment. The crit-
ical strain increment is calculated based on the initial shear strength and shear
modulus of Part B as

∆εcr = χ
τ0
µB

(5.49)
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where χ is a numerical parameter that determines the magnitude of the critical
strain increment. Unless otherwise stated, a value of 10−4 is used for χ for the
remainder of this work.

During sub-stepping, the current total deformation gradient, Fn+1, in the above
expressions is replaced with the total deformation gradient evaluated at time tn+θ

defined as

Fn+θ = θFn+1 + (1− θ)Fn (5.50)

where

θ =
q

Nsub
for q ∈ [0, Nsub] (5.51)

Normal-distributed variables in accordance with Eq. 5.39 were generated with
the Marsaglia polar method [45] and the left truncation was enforced by rejection
sampling.

5.6 Summary

• A constitutive model consisting of a hyper-viscoelastic model together with
a stochastic fracture initiation model was presented.

• The hyper-viscoelastic model is divided into two parts acting in parallel.
Part A consists of a hyperelastic eight-chain spring, which describes the
orientational strain hardening of the material. Part B consists of a hy-
perelastic neo-Hookean spring in series with a nonlinear viscous dashpot.
Part B describes the initial elastic behaviour as well as the strain-rate- and
pressure-dependent inelastic flow behaviour.

• The stochastic fracture initiation model is a modified version of the model
presented by Holmström et al. [40]. The model utilises an assignment mesh
to allocate a stochastic critical stress value to each element in the finite
element mesh. When a defined equivalent stress reaches the critical stress
in an element, the element is eroded according to the "crack band model"
[41].

• The numerical implementation of the model closely follows the work of
Johnsen et al. [43].
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6 Constitutive model: Verification

The presented constitutive model is complex and it is not immediately obvious
how the different components and material parameters interact. To get a better
understanding of the effects of the different material parameters as well as the
general behaviour of the model, verification simulations in Abaqus/Explicit at
different stress states and strain rates have been carried out.

6.1 Simulation procedures

6.1.1 Single-element simulations
The first part of the model verification is performed by prescribing the deforma-
tion of single elements. A C3D8R element with dimensions 1×1×1 mm3 was used
for all simulations. Appropriate boundary conditions were applied to achieve the
desired stress states and the prescribed deformation was achieved by prescribing
nodal velocities. Mass scaling was used to reduce the computational time of the
simulations. The element used in the uniaxial tension simulations is shown as an
example in Figure 6.1.

Figure 6.1: Finite element with boundary conditions corresponding to uniaxial
tension and compression.
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The stress states considered in the single-element simulations are: uniaxial ten-
sion, uniaxial compression, simple shear, hydrostatic tension and hydrostatic
compression. The deformation state for each stress state as well as the cor-
responding deformation gradient are as follows.

Uniaxial tension/compression

𝜆𝐿0 

𝑥

𝑦 

Figure 6.2: 2D sketch of an element experiencing uniaxial tension/compression.

A state of uniaxial stress is achieved by applying a displacement in the x-direction,
while the element is allowed to contract elastically and inelastically in the y- and
z-directions. This leads to the deformation gradient

Funiax. =

λ 0 0
0 λt 0
0 0 λt

 (6.1)

where the transverse stretch ratio, λt, is expressed in terms of the inelastic stretch
ratio, λi, as

λt = λ−ν(λi)(ν−0.5) (6.2)

If we assume small elastic deformations, i.e. λi ≈ λ, the transverse stretch ratio
becomes

λt ≈
1√
λ

(6.3)

A value of λ > 1 gives uniaxial tension, while a value of λ < 1 gives uniaxial
compression.
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6.1. Simulation procedures

Simple shear

θ 

𝑥

𝑦 

Figure 6.3: 2D sketch of an element experiencing simple shear.

A state of simple shear is achieved by displacing the top face in the x-direction
while the element is prevented from contracting in the y- and z-directions –
leading to no change in volume. The deformation gradient is thus

Fshear =

1 γ 0
0 1 0
0 0 1

 (6.4)

where γ = tan(θ).

Hydrostatic tension/compression

𝜆𝐿0 

𝜆𝐿0 

𝑥

𝑦 

Figure 6.4: 2D sketch of an element experiencing uniaxial tension/compression.

A state of pure hydrostatic stress is achieved by applying the same displacement
in all three directions. The resulting deformation gradient is then
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Fhydrostatic =

λ 0 0
0 λ 0
0 0 λ

 (6.5)

A value of λ > 1 gives hydrostatic tension, while a value of λ < 1 gives hydrostatic
compression.

6.1.2 Multi-element simulations
In addition to single-element simulations, simulations of cubes containing mul-
tiple elements were also performed as part of the material model verification. The
multi-element models were primarily used to investigate the effects of the assign-
ment mesh element size in the fracture initiation model. In addition, a multi-
element simulation was performed to verify the model’s stability for complex
stress states. Boundary conditions were applied similarly to the single-element
simulations. All multi-element analyses were mass-scaled and 10% of the ana-
lysis time was spent ramping up the prescribed nodal velocities. The FE-meshes
considered are shown in Figure 6.5.

(a) (b) (c)

Figure 6.5: FE-models of 1 × 1 × 1 mm3 cubes used in the material model
verification simulations discretised with element sizes of (a) 0.2mm, (b) 0.1mm
and (c) 0.05mm.

6.2 Behaviour of the hyper-viscoelastic model

The first part of the model verification consists of an overview of the model’s
behaviour for the stress states described above. The material parameters used
in the verification simulations are found in Table 6.1 and were chosen to provide
results similar to the experimental results.
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6.2. Behaviour of the hyper-viscoelastic model

Table 6.1: Material parameters used in the verification simulations.

Part A µA λL
[MPa] [-]

5 1.2
Part B µB κ γ̇0 m τ0 τss h α

[MPa] [MPa] [s−1] [-] [MPa] [MPa] [MPa] [-]
200 2000 10−3 6 15 10 100 0.1

6.2.1 Uniaxial tension
Figure 6.6 shows the results from a uniaxial-tension simulation of a single ele-
ment at a nominal strain rate of 10−3 s−1. The results are shown in terms of
Cauchy stress vs. logarithmic strain and effective inelastic strain rate vs. logar-
ithmic strain. Figure 6.7 (a) shows how the Cauchy stress is further divided into
contributions of Part A and Part B, while Figure 6.7 (b) shows how the total log-
arithmic strain is decomposed into elastic and inelastic parts. The logarithmic
strain tensors on the current configuration are calculated from the left stretch
tensors as

εeB = ln
(
Ve

B

)
(6.6)

εiB = ln
(
VB

)
− ln

(
Ve

B

)
(6.7)

where

Ve
B =

√
Fe

B(F
e
B)

T (6.8)

VB =
√
FB(FB)

T (6.9)

The definition of the logarithmic strain tensors ensures an additive decomposition
of the total logarithmic strain tensor, ε = ln

(
VB

)
, viz.

ε = εeB + εiB (6.10)
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Figure 6.6: Cauchy stress and effective inelastic strain rate plotted against
logarithmic strain from a uniaxial tension single element simulation at a nominal
strain rate of 10−3 s−1.

The initial stress-strain response is linear elastic. As the von Mises equivalent
stress of Part B approaches the value of the effective shear strength, τ̄ , the ef-
fective inelastic strain rate, γ̇B, increases rapidly and the total strain transitions
from being pure elastic to being primarily inelastic. Figure 6.7 (a) shows how the
onset of inelastic flow causes the stress from Part B to decrease. The reduction in
the stress from Part B has two contributions, which can be seen when arranging
Eq. 5.27

σvm,B = τ̄

(
γ̇B
γ̇0

)1/m

(6.11)

The first contribution is the reduction of the effective shear strength from the
combined effects of strain softening and pressure sensitivity. The second con-
tribution comes from the relation between the effective inelastic strain rate and
the kinematics of the problem. In uniaxial tension, the longitudinal part of the
inelastic rate of deformation tensor is equal to the effective inelastic strain rate,
according to Eq. 5.21 as

Di
B,11 = γ̇B (6.12)

During inelastic flow, the total rate of deformation tensor is approximately equal
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6.2. Behaviour of the hyper-viscoelastic model

to the inelastic rate of deformation tensor, i.e., DB ≈ Di
B. The longitudinal

component of the total rate of deformation tensor for an element displaced with
speed v and with current longitudinal length l is given as

DB,11 =
∂v1
∂x1

=
v

l
(6.13)

which finally results in

γ̇B ≈ v

l
(6.14)

i.e, the effective inelastic strain rate is approximately equal to the logarithmic
strain rate. As the speed, v, remains constant while the length of the element in-
creases, the logarithmic strain rate, and consequently the effective inelastic strain
rate, will decrease. Since the von Mises stress of Part B needs to satisfy Eq. 6.11,
it will decrease proportionally to the effective shear strength and effective in-
elastic strain rate. This, in turn, will lead to a reduction of the deviatoric part
of the stress from Part B, which is exactly what is observed in Figure 6.7 (a).
The total stress from Part B, however, starts to increase again for large strains
and follows a shape similar to the eight-chain spring of Part A. Figure 6.7 (c)
shows that the increase in stress is caused by the hydrostatic Part B stress. This
behaviour stems from the interaction between the transverse stresses of Part A
and Part B.

The deviatoric and hydrostatic parts of the stress tensors during uniaxial tension
are

σ′
A = σA =


σA 0 0

0 −σA
2

0

0 0 −σA
2

 (6.15)

σ′
B =


σ′
B 0 0

0 −σ
′
B

2
0

0 0 −σ
′
B

2

 (6.16)

σB,H =

σB,H 0 0

0 σB,H 0

0 0 σB,H

 (6.17)
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Figure 6.7: Results from a uniaxial tension single element simulation show-
ing: (a) The decomposition of the total Cauchy stress in the loading direction
into contributions from Part A and Part B, (b) the decomposition of the total
logarithmic strain component in the loading direction into elastic and inelastic
parts vs. time and the effective inelastic strain rate, (c) the decomposition of
the Part B Cauchy stress in the loading direction into deviatoric and hydrostatic
parts, (d) the total Cauchy stress in the loading direction and the volume ratio
plotted against the longitudinal logarithmic strain.
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To satisfy the boundary conditions of no transverse stresses, the following ex-
pression must hold

−σA
2

− σ′
B

2
+ σB,H = 0 (6.18)

which reveals that the hydrostatic stress of Part B is proportional to the stress of
Part A. Consequently, the volume ratio, J , will be subject to the same propor-
tionality, as can be seen when inserting the expression for the hydrostatic stress
of Part B into the equation above

J = 1 +
1

2κ
(σA + σ′

B) (6.19)

which is observed in Figure 6.7 (d).

Figure 6.8 shows the results from uniaxial tension single element simulations at
different nominal strain rates, ė. The strain rate sensitivity of the constitutive
model is clearly seen in the flow stress, which increases with the strain rate.
As the evolution of the strain-softening is dependent on the effective inelastic
strain rate in accordance with Eq. 5.29, the magnitude of the strain-softening
increases with the strain rate. It is worth noting that the stress-strain curves for
the different strain rates converge when the strain approaches the locking strain.
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Figure 6.8: Cauchy stress vs. logarithmic strain curves from single element
uniaxial tension simulations at different nominal strain rates.
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6.2.2 Uniaxial compression
The analysis from the previous section is now repeated for an element subjected to
uniaxial compression with a nominal strain rate of 10−3 s−1. Figure 6.9 compares
the stress-strain curves for uniaxial tension and uniaxial compression. The curves
differ in two ways. Firstly, the yield stress is higher in compression than in tension
because of the pressure sensitivity of the model. Secondly, the strain hardening
is more rapid in tension than in compression. The difference in the hardening
rate comes from the fact that the magnitude of the logarithmic strain required
to reach the locking stretch, λL, is lower in tension than in compression. This
result will now be analysed.

If the elastic compressibility of the material is neglected, the deformation gradient
for an element subjected to uniaxial tension or uniaxial compression is as follows

F =


λ 0 0

0
1√
λ

0

0 0
1√
λ

 (6.20)

which gives an effective chain stretch of

λ̄c =

√√√√λ2 +
2

λ
3

(6.21)

The stretch ratios that satisfy the equation λ̄c = λL = 1.2 are then found nu-
merically with the Newton-Raphson scheme. For tension, i.e. λ > 1, the stretch
ratio at locking is λ = 1.79 which is equivalent to a logarithmic strain magnitude
of

|ε11| = | lnλ| = 0.58 (6.22)

For compression, i.e. λ < 1, the stretch ratio at locking is λ = 0.49 which is
equivalent to a logarithmic strain of

|ε11| = | lnλ| = 0.71 (6.23)

Thus, the material "locks" quicker in tension than in compression as observed in
Figure 6.9.
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Figure 6.9: Comparison between the results from a uniaxial tension simulation
and uniaxial compression simulation of a single element in terms of absolute
Cauchy stress vs. absolute logarithmic strain curves.

The stress vs. strain curve from the compression simulation is plotted together
with effective inelastic strain rate vs. strain in Figure 6.10. The effective inelastic
strain rate is seen to increase with applied strain, which is the opposite of what
is observed in uniaxial tension. However, the reason for this behaviour is still
the same as for uniaxial tension. As the element is compressed, the length of the
element in the loading direction is reduced, which causes the logarithmic strain
to increase. According to Eq. 6.14, the effective inelastic strain rate will then also
increase.
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Figure 6.10: Cauchy stress and effective inelastic strain rate plotted against
logarithmic strain from a uniaxial compression single element simulation at a
nominal strain rate of 10−3 s−1.

More results from the uniaxial compression simulation are shown in Figure 6.11
in terms of the same type of plots as presented for the tension simulations. The
observed trends follow those observed for the uniaxial tension simulation with
the exception of the deviatoric part of the Part B stress. The increasing effective
inelastic strain rate during compression counteracts the strain-softening of the
viscous dashpot, which results in a flatter stress vs. strain curve for the Part B
deviatoric stress.
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Figure 6.11: Results from a uniaxial compression single element simulation
showing: (a) The decomposition of the total Cauchy stress in the loading dir-
ection into contributions from Part A and Part B, (b) the decomposition of the
total logarithmic strain component in the loading direction into elastic and in-
elastic parts vs. time and the effective inelastic strain rate, (c) the decomposition
of the Part B Cauchy stress in the loading direction into deviatoric and hydro-
static parts, (d) the total Cauchy stress in the loading direction and the volume
ratio plotted against the longitudinal logarithmic strain.
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6.2.3 Simple shear
Results from the simulation of a single element subjected to a simple shear de-
formation are shown in Figures 6.12, 6.13 and 6.14. The top face of the element
is given a velocity of 2 · 10−3 mm/s, which results in a nominal tensorial shear
strain rate of 10−3 s−1. Unlike for the uniaxial stress states, the effective inelastic
strain rate remains approximately constant throughout the analysis for the case
of simple shear deformation. Otherwise, the general behaviour is similar.
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Figure 6.12: Cauchy stress and effective inelastic strain rate plotted against
logarithmic strain from a simple shear single element simulation.

Figure 6.13 shows the components of the Cauchy stress tensor and the total
logarithmic strain tensor. The graphs illustrate how the simple shear deformation
mode results in a pure shear stress state and pure shear strains only for small
strains. For large strains, non-linear geometric effects cause the diagonal terms of
the stress and strain tensors to become non-zero. This can be shown by analysing
the deformation gradient in Eq. 6.4. The left Cauchy-Green deformation tensor
for simple shear is

B =

1 + γ2 γ 0
γ 1 0
0 0 1

 (6.24)

and the deviatoric part is
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B′ =

2/3γ2 γ 0
γ −1/3γ2 0
0 0 −1/3γ2

 (6.25)

If we neglect the elastic-inelastic split of the deformation gradient and assume
the Cauchy stress tensor is expressed on the form

σ = µB′ (6.26)

the stress tensor for simple shear is

σ = µ

2/3γ2 γ 0
γ −1/3γ2 0
0 0 −1/3γ2

 (6.27)

The result σ11 = −2σ22 = −2σ33 from the above equation is seen in Fig-
ure 6.13 (a) in the elastic region of approx. ε12 < 0.03. When the inelastic
flow starts, there is a slight redistribution of the diagonal elements of the Cauchy
stress tensor, but Eq. 6.27 is still approximately satisfied. Note that for small
deformations, the Cauchy stress tensor is reduced to only contain shear stresses,
which is in line with linear elasticity theory, viz.

σ = µ

0 γ 0
γ 0 0
0 0 0

 for γ ≪ 1 (6.28)

The total logarithmic strain tensor is calculated as

ε =
1

2
ln(B) (6.29)

This calculation is tricky to perform algebraically, but it can be done easily
numerically. If we take γ = 0.5, the resulting logarithmic strain tensor is

ε =

0.06 0.24 0
0.24 −0.06 0
0 0 0

 (6.30)

i.e., ε11 = −ε22 and ε33 = 0. This result is seen in Figure 6.13 (b). Similar to
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the Cauchy stress tensor, the logarithmic strain tensor is reduced to contain only
shear strains for small deformations, viz.

ε =

 0 γ/2 0
γ/2 0 0
0 0 0

 for γ ≪ 1 (6.31)
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Figure 6.13: Results from a simple shear single element simulation showing:
(a) The components of the Cauchy stress tensors vs. logarithmic shear strain
and (b) the components of the logarithmic strain tensor vs. time.

For the sake of completeness, additional results are presented in Figure 6.14 as
for the previous two stress states. The main difference between the simple shear
simulation and the uniaxial stress simulation is that there is no hydrostatic stress
in simple shear due to the geometrically imposed constant volume.
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Figure 6.14: Results from a simple shear single element simulation showing: (a)
The decomposition of the total Cauchy stress in the loading direction into contri-
butions from Part A and Part B, (b) the decomposition of the total logarithmic
strain component in the loading direction into elastic and inelastic parts vs. time
and the effective inelastic strain rate, (c) the decomposition of the Part B Cauchy
stress in the loading direction into deviatoric and hydrostatic parts, (d) the total
Cauchy stress in the loading direction and the volume ratio plotted against the
logarithmic shear strain.
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6.2.4 Hydrostatic tension and compression
Figure 6.15 shows the results from the hydrostatic tension and compression sim-
ulations. As deviatoric stresses drive the inelastic flow of the material model,
no inelastic flow occurs during a pure hydrostatic stress state. The stress-strain
response, in this case, is governed entirely by the hydrostatic stress of Part B,
i.e.,

σ = κ(J − 1)I (6.32)

The slight nonlinearity in the hydrostatic stress vs. volumetric strain response
is a result of plotting the logarithmic volumetric strain while the constitutive
relation is formulated in terms of the volume ratio, J .
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Figure 6.15: Absolute hydrostatic Cauchy stress vs. absolute logarithmic volu-
metric strain curves from single element simulations of hydrostatic tension and
compression.

6.2.5 Multi-element torsion-tension simulation
To test the robustness of the implementation of the constitutive model, analyses
with more than one element should be performed. In the single-element simula-
tions studied so far, the nodal displacements have been prescribed, which may
suppress any potential bugs in the VUMAT that could manifest if the nodes were
free to move. To check if this is the case, the multi-element cube with an element
size 0.1mm shown in Chapter 6.1.2 was subjected to a combined tension and tor-
sion deformation. The deformation was achieved by fixing the bottom-face nodes
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and prescribing the motion of the top-face nodes with an MPC beam constraint
connected to a master node which was given a velocity of 0.01mm/s in the ver-
tical direction and an angular velocity of 3.14·10−2 rad/s about the vertical axis.
The simulation time was 50 s. The deformed shape of the model throughout the
analysis is shown in Figure 6.16. Force vs. displacement and torque vs. rotation
curves are shown in Figure 6.17. No instabilities are observed in either the de-
formed shapes or in the response curves, which indicates that the implementation
of the model is robust enough for use in multi-element simulations with complex
stress states.

(a) (b) (c)

Figure 6.16: The tension-torsion FE mesh at simulation time (a) 0 s, (b) 25 s
and (c) 50 s.
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Figure 6.17: Response curves from the torsion-tension simulation showing (a)
force vs. displacement and (b) torque vs. rotation.
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6.2.6 Parametric study
With the general behaviour of the constitutive model thoroughly investigated,
attention is now turned towards the effects of the different material parameters
on the stress-strain response. Single-element simulations were carried out where
one material parameter was varied while the other parameters were assigned the
values in Table 6.1. The results from the single-element simulations studying the
effects of the hyper-viscoelastic material parameters are shown in Figure 6.18,
6.19, 6.20 and 6.21. The main findings are summarised as:

• The shear modulus of Part A, µA, determines the slope of the Part A
stress. The effect is most noticeable during inelastic flow when the stress
from Part B is no longer increasing.

• The locking stretch, λL, determines the vertical asymptote of the stress-
strain curve. It also has a slight effect on the slope of the Part A stress, in
accordance with Eq. 5.13.

• The shear modulus of Part B, µB, determines the slope of the initial
elastic region of the stress-strain curve.

• The initial shear strength, τ0, determines the flow stress of the material.
When the saturated shear strength remains unchanged, the stress-strain
curves for the different values of τ0 converge rather quickly after the inelastic
flow occurs.

• The saturated shear strength, τss, determines the drop in stress after
yield due to strain softening.

• The softening modulus, h, determines the rate of the strain softening.

• The strain-rate sensitivity parameter, m, determines both the strain-
rate sensitivity of the flow stress as well as the shape of the stress-strain
curve in the transition from pure elasticity to inelastic flow. The last point
is seen clearly in Figure 6.20 (b).

• The pressure sensitivity parameter, α, determines the difference in
flow stress between uniaxial tension and uniaxial compression. Unlike most
pressure-sensitive plasticity models, the pressure sensitivity parameter in
the implemented model affects the flow stress in tension.
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Figure 6.18: Stress vs. strain curves from uniaxial tension single element simu-
lations at a nominal strain rate of 10−2 s−1. The effects of µA, λL and µB on the
stress-strain response are shown in (a), (b) and (c) respectively.
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Figure 6.19: Stress vs. strain curves from uniaxial tension single element sim-
ulations at a nominal strain rate of 10−2 s−1. The effects of τ0, τss and h on the
stress-strain response are shown in (a), (b) and (c) respectively.
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Figure 6.20: Stress vs. strain curves from uniaxial tension single element simu-
lations showing how the parameterm affects the stress-strain response at different
nominal strain rates.
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(b) α = 0.1
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Figure 6.21: Stress vs. strain curves comparing uniaxial tension and uniaxial
compression single element simulations for different values of the parameter α.
All analyses were performed with a nominal strain rate of 10−2 s−1.
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6.3 Behaviour of the fracture initiation model

The second part of the verification of the constitutive model concerns the fracture
initiation part of the model. A similar investigation as for the hyper-viscoelastic
part is conducted.

6.3.1 Fracture energy release
Figure 6.22 shows how the softening stage of the fracture is affected by the energy
release parameter, Gf , and the finite element size, hel. The results were obtained
from uniaxial tension single-element simulations using the hyper-viscoelastic para-
meters from before. A constant critical stress of 40MPa was used for all these
simulations.

Figure 6.22 (a) shows the results from simulations with constant element size
and varying values of Gf . A reduction of the slope of the stress-strain curve in
the softening stage, and conversely an increase in dissipated fracture energy, is
observed as Gf is increased. The sharp drop in stress level near the end of the
softening stage, seen most clearly for Gf = 2.00N/mm, is due to the erosion of
the element as the damage parameter, δ, reaches the critical value of 0.9. An
interesting result is obtained for Gf = 5.00N/mm, where the stress increases
after reaching the critical stress value. Evidently, there exists a value for Gf

which causes the softening to be unable to keep up with the strain-hardening of
the eight-chain model.

Figure 6.22 (b) shows the results from simulations with a constant of Gf but
varying element sizes. As expected from the model, the specific fracture energy,
i.e., the area under the stress-strain curve in the softening stage, increases as the
element size is reduced.

For uniaxial tension, a criterion for the value of Gf to ensure stress-softening can
be derived as follows. Let σ and ε be the axial Cauchy stress and axial logarithmic
strain, respectively. Stress-softening requires that

dσ

dε
< 0 (6.33)

Inserting the relation between the Cauchy stress and the effective Cauchy stress
from Eq. 5.36 into the above equation gives

dσ

dε
=

dσeff
dε

(1− δ)− σeff
dδ

dε
< 0 (6.34)
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where

dδ

dε
=

1

ε̄u − ε̄c
(6.35)

in accordance with Eq. 5.37. Inserting Eq. 5.35 and Eq. 6.35 into Eq. 6.34 and
evaluating the last equation for δ = 0, σeff = σ̄c gives

dσ

dε

∣∣∣∣∣
δ=0, σeff=σ̄c

=
1

ε̄u − ε̄c

[
dσeff
dε

2Gf

σ̄chel
− σ̄c

]
< 0 (6.36)

which when solved for Gf results in

Gf <
σ̄2
chel
2

(
dσeff
dε

)−1

(6.37)

The above result shows that the slope of the effective stress-strain curve constrains
the magnitude of Gf required to achieve the desired stress-softening behaviour.
As the critical value of Gf is also affected by the element size and the value of the
critical stress, a small value should be assigned to Gf to ensure softening after
the critical stress is reached.
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Figure 6.22: Stress vs. strain curves from uniaxial tension single-element sim-
ulations for (a) different values of Gf but constant element size and (b) varying
element size and constant Gf .
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6.3.2 Critical stress
Figure 6.23 shows how the value of the critical stress, σ̄c, affects the stress-strain
response in uniaxial tension, simple shear and hydrostatic tension. A determin-
istic critical stress is achieved by setting σ̄c,std = 0MPa and σ̄c,mean = σ̄c in the
material input card. All simulations were run with a Gf of 0.5N/mm. As expec-
ted, the critical stress determines the stress level at which fracture occurs. For
uniaxial tension and simple shear, the stress decreases linearly after the critical
stress is reached until δ = 0.9. The rate of the softening changes with the value
of the critical stress such that the dissipated energy remains constant.

In hydrostatic tension, the softening behaviour appears a bit odd. For σ̄c =
40MPa and σ̄c = 50MPa, the slope of the stress-strain curves decreases imme-
diately after the critical stress is reached, but not enough to cause the desired
softening behaviour. For σ̄c = 80MPa, on the other hand, the stress level is
reduced immediately after fracture, but not as rapidly and linearly as in the
cases of uniaxial tension and simple shear. The peculiar behaviour in hydrostatic
tension can be explained by the equations of the fracture model. Let the stress
and strain components in the different coordinate directions be denoted σ and ε
respectively. By assuming small strains, the stress tensor is given by the material
model as

σ = 3κεI (6.38)

which gives an equivalent stress of

σ̄ =
√
3σ (6.39)

and an equivalent strain of

ε̄ =
√
3ε (6.40)

Inserting the above equations into Eq. 6.34 and doing the appropriate calculations
result in the following inequality which must be satisfied to ensure softening after
the critical stress is reached in hydrostatic tension

dσ

dε

∣∣∣∣∣
δ=0, σeff=σ̄c

= 3κ− σ̄2
chel
2Gf

< 0 (6.41)

Solving for σ̄c gives
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σ̄c >

√
6κGf

hel
(6.42)

If we insert Gf = 0.5N/mm, κ = 2000MPa and hel = 1mm3 into the inequality
above, we get the condition σ̄c > 77.45MPa which explains why only the simu-
lation performed with σ̄c = 80MPa produces stress softening immediately after
fracture.
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Figure 6.23: Stress vs. strain curves from single-element simulations with vary-
ing values for the critical stress, σ̄c for (a) uniaxial tension, (b) simple shear and
(c) hydrostatic tension.
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6.3. Behaviour of the fracture initiation model

6.3.3 Assignment mesh
The last part of the fracture model verification concerns the assignment mesh.
As Holmström [46] already performed a thorough investigation of the assignment
mesh in his PhD thesis, this section is kept brief.

Table 6.2: Fracture parameters used in multi-element verification simulations.

σ̄c,mean σ̄c,std σ̄c,min Gf

[MPa] [MPa] [MPa] [N/mm]
100 20 40 0.5

The interrelation between the assignment mesh element size, hσ̄c
, and the FE

mesh element size, hel, is demonstrated in Figure 6.24 and Figure 6.25 for multi-
element cube models. Figure 6.24 shows how the distribution of the critical
stresses remains unchanged when the assignment mesh is kept constant and the
FE mesh is refined. Figure 6.25 shows how the element size of the assignment
mesh alters the physical length scale of the critical stress distribution when the
FE mesh is kept constant and the assignment mesh is refined. The fracture
parameters used in the simulations are shown in Table 6.2.

The effect of the element sizes of the FE mesh and assignment mesh is further
studied by simulating the models shown in Figures 6.24 and 6.25 in uniaxial
tension. The results from repeat simulations with different realisations of the
distribution of the critical stress are shown in Figure 6.26 in terms of the net
fracture stress defined as Fmax/A where Fmax is the force at failure and A is the
cross-sectional area of the model. As can be seen from the results, the stochastic
critical stress produces a scatter in the net fracture stress in repeat simulations.
Figure 6.26 (a) shows that the mean net fracture stress is reduced when hσ̄c is
kept constant and hel is reduced, while Figure 6.26 (b) shows that the scatter in
the net fracture stress increases when hel is kept constant and hσ̄c

is increased.

The results from the simulations presented here are not conclusive enough to give
any recommendations for an optimal ratio between the element sizes of the FE
mesh and the assignment mesh but show that the size of the assignment mesh
elements can affect both the mean fracture stress and the scatter of the fracture
stress. In a sense, hσ̄c

can be treated as a parameter of the fracture initiation
model to be determined from calibration to help achieve experimentally observed
results.
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Figure 6.24: Distributed critical stress in models with a constant assignment
mesh and varying FE mesh.

Figure 6.25: Distributed critical stress in models with varying assignment mesh
and a constant FE mesh.
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Figure 6.26: Net fracture stress from repeat simulations of multi-element cubes
with varying assignment mesh element size and FE mesh element size.

6.4 Summary

• The implementation of the constitutive model has been verified through
single-element simulations at different stress states and strain rates. All
results could be explained by the constitutive relations, which indicates
that the model has been implemented properly.

• A multi-element simulation with complex loading was performed to assess
the robustness of the implementation. No instabilities were observed in the
simulation.

• The effects of the material parameters on the stress-strain response were
studied in a parameter study.

• A brief investigation of the assignment mesh was conducted. For a more
thorough study, the reader is referred to Petter Holmström’s PhD thesis [46].
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7 Constitutive model: Calibration

Now that the constitutive model has been properly verified, the material para-
meters should be calibrated to real experimental results. This chapter describes
the calibration procedure employed in this work and shows a comparison between
numerical and experimental results.

7.1 Calibration procedure

The calibration of the constitutive model was done by inverse modelling. The
procedure consists of simulating the material tests presented in Chapter 3 and
comparing the numerical results with the experimental results. The material
parameters were then manually tweaked until a satisfactory agreement between
the simulations and the experiments was obtained. Axisymmetric FE models were
used in the initial calibration of the hyper-viscoelastic parameters for computa-
tional efficiency. After the material parameters were determined, the material
tests were simulated again with 3D FE models. The same 3D models were used
in the calibration of the fracture parameters. The axisymmetric models featured
meshes and boundary conditions similar to their 3D counterparts. As such, only
the 3D models are described in the following section.

7.2 Finite element models

The test specimens were modelled with reduced-integration C3D8R elements and
"combined" hourglass control in Abaqus. Due to symmetry, only one-eighth of the
specimens were modelled. A characteristic element size of 0.1mm was employed
in the gauge area of the smooth specimen and in the notch area of the notched spe-
cimens. To achieve proper strain localisation behaviour in the notched specimens,
it was necessary to include the clamping region of the specimens. Symmetry was
enforced through appropriate boundary conditions on the symmetry planes. A
prescribed velocity matching the experimental machine cross-head velocity was
applied to the end of the clamping region. The threaded region of the R4 notched
compression specimen was modelled when simulating the specimen in tension to
achieve the correct initial elastic stiffness. For the compression simulations, the
threaded region was omitted and prescribed displacements were applied directly
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to the end of the nut region. The hexagonal nuts were idealised as cylinders
in the simulations. 10% of the analysis time was spent ramping the velocity to
avoid oscillations. All the simulations in this chapter were mass scaled to achieve
reasonable computation times when applying the experimental cross-head velo-
cities. The kinetic energy was checked for each simulation and was found to be
negligible compared to the external work. The FE models of the test specimens
are shown in Figures 7.1 and 7.2.

(a) Smooth (b) R5

(c) R2 (d) R1

(e) R0.2

Figure 7.1: Finite element models of the tensile specimens.
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7.2. Finite element models

(a) R4 - Tension (b) R4 - Compression

(c) R2 (d) R1

Figure 7.2: Finite element models of the compression specimens.

The net stress and logarithmic strain components were extracted analogously to
the experiments as described in Chapter 3. The current radius, r, of the spe-
cimens was extracted by tracking the displacement of a node at the specimen
surface, as illustrated in Figure 7.3. The resultant reaction force, F , was calcu-
lated by summing the nodal reaction forces in the longitudinal direction. The
net stress is then calculated as

σ =
F

πr2
(7.1)

For the smooth specimens, the longitudinal logarithmic strain component, εl,
was taken as the average longitudinal logarithmic strain at the integration points
of four surface elements, as shown in Figure 7.4. For the notched specimens,
the isochoric logarithmic strain described in Chapter 3 is employed. The strain
measure is calculated from the current radius, r, and reference radius, r0 as

ε̄l = −2 ln(r/r0) (7.2)
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𝑟0 𝑟 

Figure 7.3: The undeformed and deformed cross-section of the FE model of the
smooth specimen showing the initial and current radius, r0 and r, respectively.

Figure 7.4: The gauge area of the FE mesh of the smooth specimen. The longit-
udinal logarithmic strain component is extracted from the highlighted elements.

7.3 Hyper-viscoelastic parameters

The results of the calibration of the hyper-viscoelastic parameters are shown in
Figures 7.5, 7.6, 7.7 and 7.8 in terms of stress-strain curves and the corresponding
material parameters are shown in Table 7.1. In the case of monotonic tension,
shown in Figure 7.5 (a), the strain-rate dependent inelastic flow is well described
by the model. The strain hardening also agrees with the experiments, though the
simulated response curves start to deviate from the experimental ones at large
strains. The strain-rate sensitivity is also well captured in the simulations of the
loading/unloading tests, as seen in Figure 7.5 (b), but the simulated unloading
and subsequent reloading do not reproduce the experimentally observed hyster-
esis. The relaxation behaviour of the model, as seen in Figure 7.6, replicates the
experimental trends where the stress relaxes downwards in the loading phase and
upwards in the unloading phase. However, the magnitude of the stress relaxation
is underestimated by the model. More accurate relaxation and unloading results
could most likely be achieved by expanding the constitutive model to take mul-
tiple relaxation times into account, i.e., adding more dashpots, like in the models
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7.3. Hyper-viscoelastic parameters

by Bergström and Bischoff [47] or van Breemen et al. [48].

Figure 7.7 compares results from the simulations of the notch tensile tests with the
experimental data. The pressure dependency of the model is able to adequately
describe the net stress at yield for all the notch radii, where the largest deviation
is seen in the sharpest notched specimen.
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Figure 7.5: Comparison between numerical and experimental stress-strain
curves from tensile tests on smooth specimens at different strain rates with (a)
monotonic loading and (b) loading/unloading.

Figure 7.8 (a) shows a comparison between the experimental and numerical res-
ults for the compression tests. The yield stress is well predicted for these tests
as well, but the strain hardening is overestimated in the simulation of the R4
specimen. This could be a result of the threefold symmetry used in the FE
model. In the experiments, the specimens started to experience some small shear
deformations due to an eccentricity between the mounts, while the simulated
specimens experienced a pure compressive triaxial deformation throughout the
entire analysis. The effective chain stretch would thus be overestimated in the
simulations, which again would lead to an overestimation of the strain harden-
ing. This effect is studied in more detail in Chapter 7.5.2. Figure 7.8 (b) shows
how simulations of the R4 specimens in tension and compression compared with
the experimental results. Once again, the yield stress is well described, while a
deviation is observed in the strain hardening. In this case, the discrepancy stems
from the model itself.
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Figure 7.6: Comparison between numerical and experimental stress-strain curve
from the simulation of the relaxation test.
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Figure 7.7: Comparison between numerical and experimental stress-strain
curves from notch tensile tests.
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Figure 7.8: Comparison between numerical and experimental stress-strain
curves from (a) notch compression tests and (b) compression and tensile tests
on R4 compression specimens.

Table 7.1: Calibrated hyper-viscoelastic parameters.

Part A µA λL
[MPa] [-]

6.3 1.22
Part B µB κ γ̇0 m τ0 τss h α

[MPa] [MPa] [s−1] [-] [MPa] [MPa] [MPa] [-]
262 2500 10−4 6.7 15.3 13 300 0.1

7.4 Fracture parameters

The calibrated fracture model parameters are compiled in Table 7.2. The mean
critical stress was taken as the largest principal stress value observed in a simu-
lated R0.2 specimen at a force level corresponding to the experimental force at
fracture. The standard deviation of the fracture stress was determined through
a trial-and-error approach. An assignment element size of 0.2mm, i.e., twice the
finite element size, was used in all numerical simulations. The chosen assignment
element size provided a scatter in the net failure stress similar to the experimental
results while keeping the fracture mode relatively brittle. The results from simu-
lations of the notch tensile tests with the calibrated fracture model are shown in
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Figure 7.9. Six repeat simulations with different realisations of the distribution
of the critical stress were performed for each test type. Fracture in the simulated
tests in Figure 7.9 (a) is indicated by a solid circle. The model captures the
experimental trends where both the average net failure stress and the scatter of
the failure stress are reduced as the notch radius is decreased. The scatter in the
failure stress of the smooth specimen, however, is underestimated.

A comparison between the experimental and simulated fracture modes for the
different tensile specimens is shown in Figures 7.10, 7.11, 7.12, 7.13 and 7.14.
Note that the results from the FE model have been mirrored for the purpose of
visualisation in the aforementioned figures. It is observed that the fracture mode
is well described by the model. A clear mesh dependency is seen in the results
from the simulation of the R5 specimen, where the crack follows the pattern of
the mesh – giving the appearance of a cup and cone fracture.

Even though the numerical results from the R0.2 specimen look similar to the
experimental results in Figure 7.14, the simulated crack velocity is magnitudes
slower than the experimental one. This can be seen by looking at the force
vs. displacement curves in Figure 7.15 (a). Figure 7.15 (b)-(e) show the deformed
FE model throughout the fracture process. Fracture is seen to initiate in the
surface elements before propagating slowly towards the centre of the specimen.
The slow fracture propagation comes from the highly localised stresses in the
R0.2 specimen and the stochastic fracture stress distribution. Due to the sharp
notch, the principal stresses in the surface elements are much higher than in
the internal elements. When surface elements are eroded, the reduction in cross-
sectional area will cause an increase in stress levels for the next elements in line to
be eroded. However, the fracture stress still needs to be exceeded for fracture to
occur in these elements. With the stochastic fracture stress distribution, it is not
guaranteed that the fracture stress of an internal element is equal to or lower than
that of a surface element. In fact, Figure 7.16 shows how the fracture stresses
of most internal elements along the symmetry plane in the radial direction are
larger than that of the surface element. In this case, the fracture will propagate
slowly until the increase in stress levels from the reduction in cross-sectional area
becomes great enough for a brittle fracture to occur. This corresponds to point
(d) on the force-displacement curve in Figure 7.15 (a).

Table 7.2: Calibrated fracture parameters.

σ̄c,mean σ̄c,std σ̄c,min Gf

[MPa] [MPa] [MPa] [N/mm]
130 22 40 0.5
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Figure 7.9: Numerical results from repeat simulations of fracture in smooth
and notched tensile specimens showing (a) net stress vs. isochoric axial strain
and (b) net failure stresses for each specimen geometry.

(a) (b)

Figure 7.10: Comparison between the fracture mode in (a) a tensile test of
a smooth 90◦ specimen and (b) the corresponding simulation with the fracture
model.
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(a) (b)

Figure 7.11: Comparison between the fracture mode in (a) a tensile test of an
R5 specimen and (b) the corresponding simulation with the fracture model.

(a) (b)

Figure 7.12: Comparison between the fracture mode in (a) a tensile test of an
R2 specimen and (b) the corresponding simulation with the fracture model.
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(a) (b)

Figure 7.13: Comparison between the fracture mode in (a) a tensile test of an
R1 specimen and (b) the corresponding simulation with the fracture model.

(a) (b)

Figure 7.14: Comparison between the fracture mode in (a) a tensile test of an
R0.2 specimen and (b) the corresponding simulation with the fracture model.
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Figure 7.15: (a): Comparison between the experimental and simulated force
vs. displacement curve from an R0.2 notch tensile test and (b)-(e): the deformed
FE model at force and displacement levels indicated in (a).

Figure 7.16: Fracture stress distribution in a longitudinal cross-section of an
R0.2 FE model.
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7.5 Numerical investigations

7.5.1 The effects of symmetric boundary conditions
For the sake of computational efficiency, only one-eighth of the material test spe-
cimens were modelled. This is not expected to influence the general stress-strain
behaviour in any major way, as the experimental deformation modes were sym-
metric. However, it could affect the fracture initiation since the simulated volume
is only one-eighth of the physical volume of the test specimens which would re-
duce the likelihood of encountering low critical stresses. This effect is expected to
be most noticeable in the smooth specimens, due to their relatively large gauge
area. To check the effects of modelling the tensile tests with symmetric bound-
ary conditions, additional simulations of the full smooth tensile specimens were
performed with different realisations of the distribution of the critical stresses.
The mesh of the full smooth specimen is shown in Figure 7.17.

Figure 7.17: FE mesh of the full smooth tensile specimen.

The results from the simulations are shown in Figure 7.18 (a) and (b) in terms
of net stress vs. isochoric logarithmic strain curves and a plot of the net failure
stresses respectively. As expected, the stress-strain curves from the simulations
of the full tensile specimen are identical to the results from the simulations per-
formed with symmetric boundary conditions before fracture. One of the full-
specimen simulations produced a noticeably lower net failure stress than any of
the simulations with symmetry. To study whether this is an effect of the lar-
ger volume of the FE model or simply a fluke, additional simulations should
be performed to draw any meaningful conclusions. However, due to time and
computational constraints, this investigation will not be pursued any further.

121



Chapter 7. Constitutive model: Calibration

0.0 0.1 0.2 0.3 0.4 0.5

Isochoric log. strain ε̄l [-]

0

10

20

30

40

50

60

70

80

N
et

st
re

ss
σ

[M
P

a]

Simulation

Experiment

Smooth

Smooth - No sym.

(a)

Sym. No sym.

Test type

30

40

50

60

70

80

N
et

fa
il
u

re
st

re
ss
σ

c
[M

P
a
]

(b)

Figure 7.18: Results from simulations of a smooth tensile test modelled with
and without symmetry showing (a) stress vs. strain curves and (b) net failure
stresses from repeat simulations.

7.5.2 The effect of mount-eccentricity in the notch com-
pression tests

In Chapter 7.3 it was hypothesised that the simulated and experimental stress-
strain curves from the R4 compression tests deviated due to an eccentricity in
the mounts in the experimental setup. To test this hypothesis, the R4 com-
pression test is simulated once more, but with the entire specimen modelled and
by including a small transverse component to the displacement in addition to
the longitudinal component. The mesh and boundary conditions of the full R4
compression model are shown in Figure 7.19. The boundary conditions are en-
forced by applying MPC beam constraints to the left- and rightmost nodes and
constraining them to follow the motion of their respective master node. The left-
hand master node in Figure 7.19 is fixed against displacements and rotations in
all directions. The right-hand master node has a prescribed velocity in the x- and
y-directions while all other degrees of freedom are fixed. The transverse master
node velocity is vy = 0.002mm/s, which produced a final transverse displace-
ment, i.e., eccentricity, of 0.44mm. The minimum cross-sectional diameter of the
full R4 model was calculated in Python by looping through nodes on opposite
sides of the notch root in the xy-plane and calculating the distance between them
in the y-direction. This procedure is analogous to the edge tracing performed in
the experiments.
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7.5. Numerical investigations

x

y

Figure 7.19: FE mesh of the full R4 compression specimen. MPC beam con-
straints are shown in red.

The deformed shape of the full R4 compression simulation is shown in Fig-
ure 7.20 (b) together with the results from the simulation performed with sym-
metric boundary conditions in Figure 7.20 (a). The stress-strain curves from
both simulations are plotted together with the experimental stress-strain curves
in Figure 7.20 (c). The results reveal no noticeable difference between the two
simulations, besides two small jumps in strain levels in the curve from the sim-
ulation with an eccentricity. These strain jumps are simply artefacts from the
routine used to calculate the minimum diameter of the model. The effect of the
mount-eccentricities can therefore not explain the discrepancy between the sim-
ulated and experimental stress-strain curves. Another explanation could be that
the eight-chain model is not able to describe the strain-hardening behaviour of
the material in compression.
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Figure 7.20: Deformed geometry of the FE model of (a) the R4 compression
test modelled with symmetric boundary conditions and (b) the R4 compres-
sion test modelled with full geometry and a slight eccentricity together with (c)
their corresponding stress vs. strain curves. Note that the mesh in (a) has been
mirrored for the purpose of visualisation.

7.6 Summary

• An inverse modelling approach was used to calibrate the parameters of the
constitutive model to experimental data.

• The general stress vs. strain behaviour is captured well by the model. The
model is able to describe both the strain-rate dependency and the pressure
dependency of the flow stress. The stress-relaxation behaviour, however,
is only captured qualitatively, as the magnitude of the stress-relaxation is
underestimated by the model.
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7.6. Summary

• The stochastic fracture initiation model captures the trend in which both
the scatter and the magnitude of the net failure stress are reduced as the
notch radius is decreased.

• The brittle fracture mode is captured by the fracture model, but the crack
velocity is underestimated.
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8 Constitutive model: Validation

As seen in the previous chapter, the proposed model can describe the mechan-
ical behaviour observed in the material tests. However, these tests were directly
used in the calibration of the model. In order to assess the model’s performance
for more complex stress states and its ability to extrapolate beyond the calib-
ration data, additional tests are required. For this purpose, the tests presented
in Chapter 4 are simulated with the calibrated constitutive model and compared
with the experimental results. This chapter presents the numerical models of the
validation tests and how the numerical results compare with the experimental
ones.

8.1 Simulation of the lattice structure compres-
sion tests

The first validation case is the lattice compression tests presented in Chapter 4.
These tests provide a complex combination of tension and compression, in con-
trast to the simpler stress states of the material tests. Additionally, the dynamic
tests feature much higher strain rates than what the model has been calibrated
for, which will test its ability to extrapolate beyond the calibration data.

8.1.1 Finite element model
The geometry of the octet-truss lattice structure is quite complex, which makes
creating a structured mesh challenging. Due to the periodic nature of the struc-
ture, however, it is possible to mesh only a small part of the geometry and then
assemble the rest through symmetries. The approach chosen herein is to create
a structured mesh on one half of a single strut of the structure, and then use
the radial and linear pattern tools in Abaqus CAE to assemble the rest of the
structure. This procedure is illustrated in Figure 8.1.

The fracture parameters of the constitutive model were calibrated with an assign-
ment element size of 0.2mm. As such, the element size of the finite element model
should not exceed this. The FE mesh of the lattice structure has eight elements
over the thickness of each strut, which gives an element size of approximately
0.19mm. The same element formulation as in the simulations of the material
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tests was used, i.e., reduced-integration linear solid elements with "combined"
hourglass control.

Figure 8.1: Assembly of the full lattice structure.

Two different models are used in the simulation of the lattice structures; one for
quasi-static simulations and one for dynamic simulations. As the quasi-static test
results showed a symmetric deformation mode, three-fold symmetry is used in
the simulations of these tests, i.e., only one-eighth of the structure is modelled.
Symmetry in the x- and z-directions is enforced through boundary conditions.
Symmetry in the y-direction is enforced by including a rigid plate in the sym-
metry plane to simulate the contact between struts on each side of the symmetry
plane. Another rigid plate with a prescribed velocity is used to represent the
top platen from the experiment. Since the model uses symmetry about the xz-
plane, half of the cross-head velocity, v, from the experiments is applied to the
top plate. The velocity is gradually applied using a tabulated smooth amplitude
where 10% of the simulation time is used to increase the velocity to its final value
in order to avoid oscillations. Friction is included for the contact between the
lattice and the plates and for lattice self-contact. In both cases, the coefficient
of friction from the experiments is unknown and is simply set to 0.1 for both
steel-polymer and polymer-polymer interactions. The "General Contact" formu-
lation with a penalty friction tangential behaviour and "Hard" contact normal
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8.1. Simulation of the lattice structure compression tests

behaviour is used in all analyses. An illustration of the numerical model is shown
in Figure 8.2. Note that only boundary conditions in the x-direction are shown
in the illustration, but similar boundary conditions also exist in the z-direction.
Due to the quasi-static conditions, simulations were run with mass scaling. The
material density was scaled by a factor 1010, 108 and 106 in the simulations with
v = 3mm/min, v = 30mm/min and v = 300mm/min respectively, such that
the number of increments, and the CPU time, is similar for each analysis. The
kinetic energy was checked for each analysis and found to be negligible compared
to the external work.

𝑥 

𝑦 

0.5 

Rigid plates

Figure 8.2: Illustration of the boundary conditions applied to the simulations
of the quasi-static lattice compression tests.

The finite element model of the dynamic tests contains a mesh of the entire lattice
structure, as an asymmetric deformation mode was observed in the experiments.
The contact formulations and friction coefficients remain the same as for the
quasi-static model. The top plate acts as the impactor from the experiment
and is given a mass, mp, and initial velocity, v0. No boundary conditions are
applied to the lattice structure and it is held in place purely by friction, like in
the experiments. An illustration of the numerical model is shown in Figure 8.3.
No mass scaling was used in the dynamic simulations.

In both models, the reaction force and the vertical displacement of the refer-
ence point of the top plate are extracted and used in the comparison with the
experimental results.
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𝑚  

 

Rigid plate with initial velocity      and mass 
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0
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Figure 8.3: Illustration of the boundary conditions applied to the simulations
of the dynamic lattice compression tests.

8.1.2 Results and discussion
Results from the simulations of the quasi-static tests are shown in Figure 8.4 in
terms of force vs. displacement curves. The 300mm/min simulation encountered
convergence issues near the end of the simulation time due to excessive deform-
ation arising from contact instabilities during the densification stage. As such,
the force-displacement curve from the 300mm/min simulation is cut off prema-
turely compared with the other simulations. Only one simulation was performed
for each cross-head velocity as hardly any fractures were observed in the exper-
iments. The simulated force-displacement curves follow the experimental ones
closely but slightly overestimate the force levels. The largest discrepancy is seen
for the simulation of the 300mm/min test, where the peak force is overestim-
ated by approximately 8%. One possible explanation for the overestimated peak
force is that the strain rates in the 300mm/min test are larger than any of the
material tests used to calibrate the strain-rate sensitivity of the model. Thus,
extrapolation beyond the calibration data might lead to an inaccurate repres-
entation of the strain-rate sensitivity of the material. The strain-rate dependent
strain softening, however, seems to be well captured for all test velocities, as can
be seen in the slope of the force-displacement curves immediately after the peak
force is reached. A contour plot of the effective inelastic strain rate, γ̇B, in the
300mm/min simulation is shown in Figure 8.5 which shows that the strain rates
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are of the order of 10−1 s−1.

Figures 8.6, 8.7 and 8.8 show the deformed FE models throughout the simulations
of the 3mm/min, 30mm/min and 300mm/min tests respectively. Three images
are shown from each simulation: one immediately after the peak force is reached,
one during the plateau of the force-displacement curve and one from the last
frame of the simulation. Note that the results have been mirrored for the sake of
visualisation and recall that only one-eighth of the model was actually simulated.
It is observed that all simulations result in quite similar deformation modes.
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Figure 8.4: Force vs. displacement curves comparing numerical results with ex-
perimental results from the quasi-static octet-strut lattice structure compression
tests.
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Figure 8.5: Contour plot of the equivalent inelastic strain rate, γ̇B, from
the simulation of a lattice structure compressed with a cross-head velocity of
300mm/min. The contour plot is extracted from the point in the simulation
time at which the peak force occurs.
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Figure 8.6: (a): Force vs. displacement curve from the simulation of the quasi-
static compression test with v = 3mm/min and (b)-(d): the deformed shape of
the lattice structure at points in the deformation history indicated in the force
vs. displacement curve.
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Figure 8.7: (a): Force vs. displacement curve from the simulation of the quasi-
static compression test with v = 30mm/min and (b)-(d): the deformed shape
of the lattice structure at points in the deformation history indicated in the force
vs. displacement curve.
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Figure 8.8: (a): Force vs. displacement curve from the simulation of the quasi-
static compression test with v = 300mm/min and (b)-(d): the deformed shape
of the lattice structure at points in the deformation history indicated in the force
vs. displacement curve.
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When simulating the dynamic compression tests, it became apparent that the
value of the critical time interval for fracture initiation, ∆tc, has a significant im-
pact on the simulated response of the lattice structure. Due to the combination
of small elements and no mass scaling, the critical time increment of the simula-
tions is on the order of 10−8 s, which is much smaller than the default value of
∆tc used so far, which is 10−4 s. When ∆tc is much larger than the critical time
increment, the fracture propagation speed is underestimated in the simulations.
To study how ∆tc affects the simulated dynamic compression of the octet-truss
lattice structure, simulations of the test with v0 = 4m/s were performed with
different values of ∆tc.

The force vs. displacement curves from the simulations are shown in Figure 8.9.
The curves show a reduction of the peak force and an increase of the maximum
displacement as ∆tc is reduced, which indicates that the simulated material be-
comes more brittle for lower values of ∆tc. The observation above is confirmed
in Figures 8.10 (a)-(f) which show the deformed shape of the lattice structure
for different values of ∆tc – revealing a more brittle response as ∆tc is reduced.
Figures 8.10 (g)-(h) show images from the experiments captured at the same
point in time as the simulations. Among the different simulations, the values
of ∆tc = 10−5 s and ∆tc = 2 · 10−5 s seem to give results that best match with
the experimental results, where the former value most closely matches the ex-
perimental deformation mode. In contrast, the latter most closely matches the
experimental force-displacement curves. Since ∆tc = 10−5 s gives a more accur-
ate representation of the experimental failure mode, this value was chosen when
simulating the dynamic compression test with v0 = 5m/s. Moreover, the chosen
value underestimates the peak force and post-fracture force levels and gives con-
servative results in energy absorption applications, which is always preferable to
the opposite case.
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Figure 8.9: Force vs. displacement curves showing how the parameter ∆tc
affects the response of the numerical model of the dynamic compression test with
v0 = 4m/s.

With the choice of ∆tc out of the way, it is time to compare the response of the
simulated dynamic compression tests with the experimental results. Figure 8.11
shows the force vs. displacement curves from both simulations and experiments
for both initial velocities. Only one realisation of the critical stress distribution is
used for each simulation. The first noticeable difference between the simulations
and the experiments is the underestimation of the initial elastic stiffness in the
simulations. The same observation can be seen in the simulations of the material
tests in Chapter 7 and in the simulations of the quasi-static lattice compression
tests, but the effect is made more significant in the dynamic compression tests due
to the high strain rates. The underestimation of the initial stiffness consequently
results in an overestimation of the displacement at peak force. The peak force
is slightly underestimated for both simulations, but the trend of a higher initial
velocity resulting in a higher peak force is captured. As a consequence of the
chosen value of ∆tc, the force levels after the peak force are underestimated, while
the maximum displacement is slightly overestimated. Overall, the simulated force
vs. displacement curves agree with the experimental results quite well – especially
considering how significantly higher the strain rates are in these tests compared
with the calibration data.

As seen from the simulation results in this section, the calibrated material model
is able to adequately predict the response of lattice structures compressed over a
wide range of strain rates. This, in turn, demonstrates the ability of the material
model to handle complex stress states and to extrapolate beyond the calibration
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(a) ∆tc = 0 s

(b) ∆tc = 10−6 s

(c) ∆tc = 10−5 s (d) ∆tc = 2 · 10−5 s

(e) ∆tc = 5 · 10−5 s (f) ∆tc = 10−4 s

(g) (h)

Figure 8.10: (a)-(f): Images from simulations of dynamic compression tests
with v0 = 4m/s performed with different values of the critical time interval
for fracture initiation, ∆tc and (g)-(h): images from the two experiments for
reference. All images shown are captured 3ms after impact.
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Figure 8.11: Force vs. displacement curves comparing numerical results with
experimental results from the dynamic octet-strut lattice structure compression
tests.

data. Even though the results were satisfactory, some improvements could still be
made to the model. One way to implement a strain-rate-dependent elastic stiff-
ness, as observed in the experiments, would be to extend the model to take mul-
tiple relaxation times. Thinking in terms of rheological models, this would mean
adding additional spring-dashpot networks in parallel with the current model.
This approach was applied by van Breemen et al. [48] to extend the Eindhoven
Glassy Polymer model. Such an implementation is relatively straightforward but
requires the identification of several additional material parameters. Another as-
pect not investigated in this work is the effect of imperfections in the 3D-printed
lattice structures. The FE model is based on the CAD geometry, and any im-
perfections in the 3D-printed structures due to either warping or shrinkage are
not taken into account in the simulations. Since the octet-truss lattice structure
is a stretching-dominated structure [33], it is expected to fail from buckling of
the struts when compressed. The buckling load of the struts will thus be over-
estimated by the idealised FE model when small eccentricities in the struts and
deviations in the cross-sectional area of the struts are not taken into account. This
might be part of why the force levels are slightly overestimated in the simulations
of the quasi-static compression tests.
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8.2 Simulation of the three-point-bending tests

The second validation case is the three-point bending tests on notched specimens
presented in Chapter 4. These tests provide a combination of tension and com-
pression without the strong geometric effects of the lattice tests. The fracture
initiation and the fracture propagation behaviour of the model will be tested due
to the off-centre notches in the test specimens.

8.2.1 Finite element models
The finite element model of the R1.25 three-point bending test is shown in Fig-
ure 8.12. The specimen actually consists of three parts joined together by "tie"
constraints – two coarsely meshed parts on either side of the notch area, which
are expected to undergo elastic deformation, and the finely meshed area around
the notch where fracture and inelastic deformation are expected to occur. Only
the part containing the notch area differs between the models of the R1.25 and
R2.50 specimens. The supports and the punch were modelled as analytical ri-
gid parts. Note that the parts of the mesh making contact with the supports
are locally refined to improve the contact behaviour. Both structured and ran-
dom meshing algorithms were studied in the simulations and the meshes can be
seen in Figure 8.13. The transition from the coarse mesh to the fine mesh is
shown in Figure 8.14. An element size of 0.1mm was used around the notch
together with an assignment mesh element size of 0.2mm, as in the material test
simulations. To reduce the computational time, symmetry boundary conditions
were applied to the xy-plane. The element formulation was the same as for the
simulations of the material tests and the lattice structures; reduced-integration
solid elements with "combined" hourglass control. A mass-scaling factor of 108
was used to achieve reasonable computation times. The total kinetic energy was
checked for all analyses and found to be negligible compared with the external
work, indicating that the mass scaling was not too severe.

The supports and the punch interact with the mesh of the bending specimens
through the "General Contact" algorithm. The normal and tangential contact
behaviours are set to "Hard" contact and penalty friction respectively. The coeffi-
cient of friction was set to 0.1 as in the lattice compression simulations. To reduce
spurious oscillations in the results, 10% of the analysis time is spent gradually
ramping up the velocity of the punch to the experimental value of 3mm/min.
The reaction force and the displacement of the reference point of the punch were
extracted from the analyses and compared with experimental force-displacement
curves.
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(a)

(b)

Figure 8.12: (a): FE model of the three-point bending test of the R1.25 speci-
men and (b): an alternate view showing the symmetry plane of the model.
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(a) R1.25 - Structured mesh (b) R1.25 - Random mesh

(c) R2.50 - Structured mesh (d) R2.50 - Random mesh

Figure 8.13: The mesh around the notch of the three-point bending specimens.

Figure 8.14: The transition from a coarse mesh to a fine mesh by a tie con-
straint.
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8.2.2 Results and discussion
The force vs. displacement curves from the simulations are shown in Figure 8.15
and compared with the experimental results. Each simulation type was run three
times with a different realisation of the critical stress distribution to compare
the scatter in the force and displacement at failure between the simulations and
the experiments. The results from both specimen types show an underestima-
tion of the force at yielding and an overestimation of the displacement at failure,
but the overall shape of the simulated force-displacement curves is similar to the
experimental ones. The initial elastic stiffness, on the other hand, is well cap-
tured which indicates that the geometry and boundary conditions are properly
modelled. The underestimated force levels contrast the simulations of the lattice
compression tests and the notch material tests where the simulated results gener-
ally overestimated the forces and stresses. The reason for this underprediction is
not clear. Since the model was able to predict the response of notched specimens
in tension and compression, it is reasonable to expect the model to be able to
predict the response of notched specimens experiencing bending as well. One pos-
sible explanation could be that the assumption of a linear pressure dependency
of the effective shear strength, as shown in Eq. 5.28, is too simple to describe the
pressure sensitivity of the material. A more accurate modelling of the pressure
sensitivity could be to use an exponential pressure dependency of the effective
shear strength [49] or by modelling inelastic flow with a pressure-dependent yield
surface like the Raghava [50] model or the Deshpande-Fleck [51] model, though
this last suggestion would substantially alter the model as it requires the inclusion
of a friction element in the rheological model. Note that the calibrated model
also underestimates the experimental results in some of the simulations of smooth
and notched specimens in Chapter 7, but not to the same extent as observed in
the three-point bending simulations.

As the external forces on a solid body need to be in equilibrium with the internal
stresses, an underestimation of the force means that the stresses are underestim-
ated as well. Since the fracture initiation criterion of the constitutive model is
stress-based, fracture occurs too late in the simulations compared to the exper-
iments, as seen in Figure 8.15. This goes to show that the fracture initiation
model only gives good predictions as long as the stress-strain relationship is ad-
equately captured. Nonetheless, the fracture model does predict scatter in the
displacement at failure.
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Figure 8.15: Force vs. displacement curves from repeat simulations of three-
point bending tests and from experiments.

No difference is seen between the structured and random mesh before fracture.
After fracture the random mesh results in a ductile fracture mode in the R1.25
specimen, while the structured mesh gives a brittle fracture mode which can be
seen clearly in the post-fracture response in the force-displacement curves. The
crack patterns from these simulations are shown in Figure 8.16 (a) and (b). The
crack paths from the R1.25 structured mesh clearly follow the pattern of the mesh
which results in straight cracks. The cracks start to propagate vertically and then
change direction horizontally briefly before continuing on a vertical path. The
change in direction as the crack propagates through the thickness of the beam
is similar to the experimental results seen in Figure 8.16 (c). The crack paths
from the R1.25 random mesh are noticeably shallower than those seen in the
structured mesh. Interestingly, the crack paths slant towards the right-hand side
in these simulations which is the opposite direction of the experimental results.
Even though the mesh was intended to be random, there might still exist a bias
in the mesh which promotes crack propagation in this direction. This might also
explain why the random mesh gives a less brittle fracture mode. The mesh could
promote fracture along a path which does not release enough elastic energy for
a brittle fracture to occur. Note that neither mesh types produce a crack which
fully propagates through the beam thickness.

In the case of the R2.50 simulations, both a structured mesh and a random mesh
result in a brittle fracture mode as can be seen in Figure 8.15 (b). The crack
paths in Figure 8.17 show that two out of six simulations produced realisations
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of the stochastic fracture stress where the fracture stress values in the notch root
were too low for fracture to occur during the analysis. Furthermore, the crack
propagation in the structured mesh follows predominantly a vertical path that
aligns with the pattern of the mesh similar to the R1.25 simulations. The random
mesh, on the other hand, results in one simulation where the crack propagates
slanted to the left and one simulation with a vertical crack direction. In both
cases, the crack "zig-zags" from the non-uniform mesh. None of the R2.50 simu-
lations produced a crack that propagated through the beam thickness.
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(a) Structured mesh (b) Random mesh

(c) Experiment

Figure 8.16: Crack paths from the last frame of the three repeat simulations
of the R1.25 bending tests with (a) a structured mesh and (b) a random mesh.
The cracks are visualised by plotting the damage variable, δ, in the reference
configuration. The fracture path from an experiment is shown for reference in
(c).
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(a) Structured mesh (b) Random mesh

(c) Experiment

Figure 8.17: Crack paths from the last frame of the three repeat simulations
of the R2.50 bending tests with (a) a structured mesh and (b) a random mesh.
The cracks are visualised by plotting the damage variable, δ, in the reference
configuration. The fracture path from an experiment is shown for reference in
(c).
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8.3 Summary

• The validation tests were simulated with the calibrated constitutive model.

• Simulations of the quasi-static lattice compression tests agreed well with
the experimental results, albeit with a slight overestimation of the plateau
force. The largest discrepancy was observed in the v = 300mm/min sim-
ulations, which is attributed to the strain-rate sensitivity of the model not
being calibrated for the strain rates occurring for this particular cross-head
velocity.

• Simulations of the dynamic lattice compression tests captured the exper-
imental trend where the lattice structure collapsed due to brittle fracture
in the struts. The peak force and maximum displacement were also reas-
onably well captured considering the complexity of the experiments and
simulations. The strain-rate sensitivity of the initial elastic stiffness was
noticeably not captured due to the model’s inability to describe this beha-
viour.

• Simulations of the three-point bending tests captured the overall shape of
the force-displacement curves but the force at yield was underestimated
for both specimen geometries. The underestimated force levels also led to
fracture occurring too late, i.e., at a larger cross-head displacement than
in the experiments. The fracture propagation was mesh dependent and
neither a structured nor random mesh produced crack patterns that closely
matched the experimental results.
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9 Conclusions and outlook

This chapter wraps up the thesis by providing some concluding remarks and
suggestions for further work.

9.1 Conclusions

This thesis presented a thorough characterisation of a commercial SLA resin.
The effects of triaxiality, strain rate and print orientation were studied through
tensile and compression tests on smooth and notched specimens. In addition,
compression tests of octet-strut lattice structures and three-point bending tests
of notched beams were performed to provide additional experimental data for the
purpose of validating a constitutive model. Based on the experimental results, a
constitutive model was formulated and implemented as a user material model in
Abaqus/Explicit. The model was calibrated to the tensile tests and compression
tests and validated against the lattice compression tests and three-point bending
tests. The main findings from this work can be summarised as follows:

• The material exhibited a typical glassy polymer behaviour with an initial
elastic response followed by inelastic flow, and strain hardening due to the
orientation of the polymer chains. The flow stress of the material was
found to be both strain-rate and pressure dependent, while the effect of the
print orientation on the flow stress appeared to be negligible. The material
behaviour differs from other glassy polymers, however, in the brittle fracture
mode after significant inelastic deformation.

• Fracture occurred suddenly without any prior signs of strain localisation,
which has a significant impact on the reliability of structures manufactured
with such a material. A scatter in the fracture stress was observed in the
tensile tests, where the largest scatter was observed in the smooth specimens
and the smallest scatter was observed in the sharpest notched specimens.
This observation, in turn, suggests that fracture in the material is governed
by a size effect.

• The force-displacement curves from the quasi-static octet-strut lattice com-
pression tests followed a typical cellular material behaviour with an initial
elastic response followed by a plateau with near-constant force before reach-
ing a densification stage where the force levels increase rapidly due to self-
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contact between the lattice struts. The tests exhibited the same strain-rate
sensitivity as in the tensile tests. The dynamic compression tests showed
an extremely brittle response compared to the quasi-static tests as the high
strain rates caused the struts of the structure to fracture before any signi-
ficant inelastic deformation occurred.

• Three-point bending tests of beam specimens with off-centre notches exhib-
ited the same general behaviour as the notch tensile tests. The specimens
with the smallest notch radius exhibited higher force levels and lower ductil-
ity than the specimens with the largest notch radius. Both specimen types
failed in a brittle fracture mode where the fracture initiated in the notch
roots and propagated to the top of the beam with a slanted crack path.

• A material model consisting of a hyper-viscoelastic rheological model in con-
junction with a stress-based fracture initiation criterion was implemented
in Abaqus/Explicit. The numerical implementation was verified through
an extensive study of the model’s behaviour in single-element simulations
for different stress states.

• The constitutive model was calibrated to the experimental results from the
tensile and compression tests through inverse modelling. The overall shape
of the stress-strain curves was accurately predicted by the model. The
model captured the strain-rate- and pressure-dependent inelastic flow of
the material and was able to predict the fracture initiation in the tensile
tests. However, some viscoelastic aspects were not captured. The mag-
nitude of the stress relaxation in the simulated relaxation test was underes-
timated by the model and the hysteresis in the loading/unloading tests was
not accurately captured either. Furthermore, the model can not describe
the strain-rate dependency of the initial elastic stiffness. The viscoelastic
behaviour of the model could be improved by including additional viscous
dashpots in the rheological model.

• The simulations of the lattice compression tests agreed well with the ex-
perimental results. The model captured both the deformation mode and
the shape of the force-displacement curves of the quasi-static tests but the
plateau force levels were slightly overestimated. For the simulations of the
dynamic tests, the model was able to predict the brittle deformation mode
observed in the experiments. The peak force and max. displacements were
also reasonably captured, but a significant deviation between the simulated
and experimental initial elastic stiffness was observed due to the model’s
inability to describe this behaviour.

• Simulations of the three-point bending tests captured the experimental
trends, but the force at yield was underestimated for both specimen types.
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The underestimation of the force levels led to fracture occurring at a lar-
ger cross-head displacement than observed experimentally. The scatter in
the displacement at fracture was nonetheless captured by the fracture ini-
tiation model. Fracture propagation, however, was not accurately captured
– neither with a structured mesh nor a random mesh around the fracture
initiation zone.

The experimental campaign conducted in this work contributes to the research of
SLA polymers, and other photopolymers, by providing a comprehensive exper-
imental database for use in the validation of material models or for comparing
with other polymers. The material model demonstrates how the classical hyper-
viscoelastic modelling framework coupled with a fracture criterion can describe
the most defining features of the studied resin: the inelastic flow and the brittle
fracture mode.

9.2 Suggestions for further work

Although the presented work has contributed to the initial research objectives
within the chosen scope, there are some aspects of both mechanical behaviour
and constitutive modelling that would be interesting to study further. Some
suggested topics for further work are:

• Viscoelasticity: The small-strain viscoelastic behaviour of the material
was neglected in the constitutive model and no material tests were dedicated
to studying this phenomenon. However, several of the numerical results in
this work could be improved by including these effects. By taking additional
relaxation times into account, i.e., adding additional viscoelastic networks
to the rheological model, the unloading and relaxation behaviour of the
model would most likely improve. The strain-rate dependency of the initial
elastic stiffness would also be captured by such an extension of the model.

• Fracture propagation: Although the presented constitutive model was
able to adequately predict fracture initiation, the fracture propagation in
the sharpest notched tensile tests and in the three-point bending tests was
not captured. The fracture model could be extended with a dedicated
fracture propagation model to improve fracture propagation. Promising
candidates for this task are classes of non-local fracture models such as
gradient damage models [52, 53], phase field [54, 55] and eigen-erosion [56,
57].

• Shear tests: The effects of stress triaxiality were studied in the material
test series, but no tests containing stress triaxiality in the interval (-1/3,1/3)
were performed. A shear test, e.g. simple shear, could be performed to
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provide experimental data where the stress triaxiality is approximately zero.
The experimental data would be valuable for validating the constitutive
model.

• Comparison with a simpler model: The constitutive model presen-
ted in this work is advanced and not straightforward to calibrate. It
would be interesting to simulate the experiments with a simpler hypoelastic-
viscoplastic model and compare the results from the presented constitutive
model to assess whether or not the complexity of the presented model is ne-
cessary to adequately describe the studied material. A simple model could
for instance be a non-associative viscoplastic Drucker-Prager model with
isotropic hardening.

• Thermomechanical behaviour: The effects of temperature were out of
scope for this thesis, but they are nonetheless critical for the mechanical
behaviour of a polymer. Additional experiments at higher and lower tem-
peratures should be performed to document the temperature sensitivity of
the material.

• SEM imaging: We have postulated that fracture in the studied material
is governed by defects in the material, but have not provided evidence of
the existence of such defects. The fracture surfaces of fractured tensile
specimens should be imaged with scanning electron microscopy (SEM) to
study the fracture initiation zones for signs of these defects.
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