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Abstract—Signal Processing plays a crucial role in addressing
failures in electrical machines. Experimental data are never
perfect due to the intrusion of undesirable fluctuations unrelated
to the investigated phenomenon, namely so-called noise. Noise has
disturbing effects on the measurement data and, in the same way,
could diminish or mask the fault patterns in feature extraction
using different signal processors. This paper introduces various
type of noise occurring in an industrial environment. Several
measurements are performed in the laboratory and power plants
to identify the dominant type of noise. Fault detection in a
custom made 100 kVA synchronous generator under an inter-
turn short circuit fault is also studied using measurements
of the air gap magnetic field. Signal processing tools like a
fast Fourier transform (FFT), short-time Fourier transforms
(STFT), discrete wavelet transforms (DWT), continuous wavelet
transforms (CWT), and time-series data mining (TSDM) are used
to diagnose the faults, with a central focus on additive noise
impacts on processed data. Two novel patterns are introduced
based on STFT and CWT for inter-turn short circuit fault
detection of synchronous generators that do not need a priori
knowledge of a healthy machine. Useful methods are presented
for hardware noise rejection.

Index Terms—Fault diagnosis, inter-turn short circuit, noise
rejection, salient pole synchronous generator, short-time Fourier
transforms, signal processing, time-domain analysis, wavelet
transforms.

I. INTRODUCTION

ARLY stage diagnosis of incipient faults in electrical
machines can limit the progressive damage that leads
to substantial economic losses. Over the past two decades,
sustained research activity has been conducted in the field
of fault detection of electrical machines. Faults in hydro-
generators are divided into two categories: electrical faults,
such as short circuit faults of stator windings or inter-turn short
circuit (ITSC) faults in rotor field windings, and mechanical
faults, such as static or dynamic eccentricity, broken damper
bars, broken end rings, and misalignment. Each type of fault
in an electrical machine can give rise to a specific symptom,
which may be observed in a measured signal [1].
The working environment of electrical machines in the
industries and power plants is susceptible to various kinds
of noise that may have considerable consequences on the
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measured signals [2] The working environment of synchronous
generators in hydropower plants is vulnerable to noise emitted
from power transformers, power station bus-bars and switch-
gear, the turbine, and the machine itself. In addition, industrial
induction motors controlled by a static converter may create
interfering noise [3]-[5]. The amplitude and frequency of the
emitted noise by the converter depend on the modulation
techniques used in the power converter [6].

Previous studies [7] have shown that the majority of indus-
tries are subjected to a high degree of complex noise, which is
the combination of white Gaussian noise and impulsive noise.
The amplitude of the noise in the working environment of the
industry depends on various criteria [8] and the noise profile
varies from case to case. In addition to noise emitted from
the equipment used in the industry, faulty electrical machines
also cause some degree of noise [9], and the noise level is
increased with the increasing severity of the fault.

Feature extraction and signal processing is the central part
of a fault detection procedure. Numerous indices are proposed
based on the various signal processing tools capable of detect-
ing different types of faults in electrical machines. The main
component of fault detection is a measured signal from the
faulty machine in the form of an air-gap magnetic field, stator
or rotor current, voltage, stray magnetic field, or torque. If the
working environment is vulnerable to noise, having a signal
not contaminated by noise is almost impossible, indicating that
the noise effect on the measured signal must be considered.
In addition, the noise might affect the fault signature extracted
by signal processing tools and result in a false alarm, since
various signal processing tools might respond differently to
the noise presence.

Fast Fourier transforms (FFT) is the most commonly applied
signal processing tool in the fault detection of electrical
machines. The FFT is applied to the stator current and the
voltage, torque, air gap magnetic field, and stray magnetic
flux of different electrical machines, such as induction motors,
permanent magnetic machines, and salient pole synchronous
machines, to detect a fault [1], [10]-[14]. Although FFT is
simple and has low computational complexity, it does not show
clear changes in the spectrum plot for a fault with low severity
nor does it determine the type of fault. Moreover, FFT only
depicts the frequency contents of the signal, whereas it lacks
time representation. Therefore, the demand for methods that
could overcome these shortcomings has resulted in advanced
signal processing tools, such as short-time Fourier transforms
(STFT), continuous wavelet transforms (CWT), and discrete
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wavelet transforms (DWT).

Application of these advanced signal processing tools to
fault detection problems has indicated that they could metic-
ulously identify a certain pattern due to the specific type
of fault in electrical machines. For instance, STFT is used
to detect broken bars and inter-turn short circuit faults in
salient pole synchronous generators [15]-[17] and was able
to provide a unique pattern for each type of fault. In [18],
[19], CWT was used to identify broken bars and eccentricity
faults in induction motors. Unlike STFT and CWT, which
provide a qualitative representation of a measured signal, DWT
classifies the signal into different frequency bands. DWT has
been used to diagnose different kinds of faults in induction
motors [18], [19], salient pole synchronous generators [20],
and permanent magnet machines [21]. These advanced signal
processing tools have been widely used for fault detection in
electrical machines, but they have not considered the noise
effect, although some attempts have been made to address this
issue in [22].

The present work is a detailed study of the noise impact
on the signal processing tools used in the fault diagnosis of
hydroelectric synchronous generators and how noise impact
must be considered in the fault detection procedure as depicted
in Fig. 1. The Hall-effect sensor is used to measure the
air-gap magnetic field since it is exposed to both internal
noise generated by the machine and external noise in the
environment. A custom-made 100 kVA synchronous generator
is used to conduct the ITSC fault and provide the required
data. Section II presents a definition of signal and noise. It
also thoroughly presents a source of noise in a power plant
and industry. Various types of noise are introduced to provide
a perspective for characterizing the existing types of noise in
a power plant. In section III, the experimental setup used to
measure the air-gap magnetic field is explained. The results of
two field tests are discussed to show the existence of noise in
the hydropower plants. In section IV, the effects of noise on
signal processing tools, such as FFT, STFT, CWT, DWT, and
time-series data mining (TSDM)), are investigated. The impacts
of noise on the extracted signature by the signal processing
tools are discussed. The obtained results demonstrate how a
certain level of noise can deteriorate the fault signatures.

II. SIGNAL AND NOISE

A. Definition

The term ‘signal’ in the field of condition monitoring means
only that desirable data that are measured. However, signals
are vulnerable to noise during the process of acquisition,
storage, or conversion. Noise is an unwanted signal that may
disrupt the quality of the main signal. Every device in the
power plant or industry that works based on electromagnetic
law may act as a noise source. The noise generated by each
electric device has its own unique characteristics that fall into
a specific category of noise. The noise level can be expressed
as a ratio of the power in one Hertz of bandwidth (dBm/Hz),
where power is expressed in units of (dBm). The quality of the
signal is quantified by expression of the signal-to-noise ratio.
It represents the ratio of the signal amplitude to the standard
deviation of the noise [2].
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Fig. 1. The flowchart for fault detection.

B. Source of Noise in Industries

The noise radiated from electric equipment is generally lim-
ited to a discrete low-frequency signal. However, an electrical
machine, whether stationary (e.g., transformers) or rotating
(e.g., electric motors or generators), generates a broadband
noise component due to their cooling systems. The net noise
is superimposed on the electromagnetic and cooling system
components. The noise in an electric machine can be repre-
sented as below [2], [5]:

1) The magnetic source of noise in the electrical machine
is due to the radial force created by the interaction
of the stator and rotor magnetic field. When magnetic
flux inside the air-gap passes in a radial direction, a
radial component of the force creates a vibration and
noise. A severe resonance happens if a frequency of
the radial force components coincides with a natural
frequency of the machine. Acoustic noise is one of
the consequences of the resonance in the machine. The
structure of the rotor and the slot harmonics cause high-
frequency components that, in turn, lead to force and
noise inside the machine. Moreover, there exist some
other sources of magnetic noise including a product
of the space harmonics of stator and rotor winding, a
product of space harmonics of the stator winding and
the eccentricity fault, and the product of stator space
harmonics and the rotor saturation harmonics.

2) The aerodynamic source of noise has a broad frequency
band (100 Hz — 10 kHz) that is generated due to the flow
of the air at the inlet or outlet of the machine cooling
system. The fans either inside the machine driven by the
shaft or the external can generate acoustic noise. The



IEEE TRANSACTION ON INDUSTRY APPLICATIONS

Noise source
|
v v v
*Power converters Magnetics: Aerodynamic: Mechanical:
*Power transformers *Radial force *Internal or external fans  *Natural frequency of stator
*Bus-bars *Space harmonics of stator winding  *Radial or axial duscts *Bearing
*Load *Space harmonics of rotor winding *Unbalanced rotor
*Improper coupling *Space harmonics due to faults *Brush commutators

Fig. 2. Sources of noise in the industries and power plants.

axial or radial ventilation ducts inside the stator core
also contribute to the noise.

3) The mechanical source of noise arises due to the natural
frequency of the stator, improper installation of the
machine, shaft and bearing vibration. If the exciting
frequency of the machine coincides with the stator’s
natural frequency, a strong noise will be created. The
improper coupling between the shaft of the synchronous
machine and the driving component or the load is also
accounted as a mechanical source of the noise. There
exist three main factors that result in a mechanical noise
due to bearings, brush commutators, and the unbalanced
rotor during manufacturing. The sleeve bearing com-
pared with the rolling bearing contributes to less noise,
however, the rolling bearing is preferred due to low cost
especially in low-power electric machines.

The amount of noise created by transformers is significant
in comparison to the noise in rotating electrical machines.
The source of the noise in power transformers is divided into
magnetic noise, which is due to the magnetic field of the
core, and the load noise, which is caused due to interaction
of the leakage flux and the current passes through the coils
[3]. However, the metallic body of the transformer may shield
the emitted noise from the working environment, even if the
generated noise is unavoidable. The power transformers in
power plants are also placed in a separate room for safety
reasons, and this further reduces their effect on the measured
signal from the synchronous generator. Bus-bars that carry
large current from the generator to the transformer are another
source of noise in power plants.

Many electrical motors use solid-state converter drives to
feed power sources into the windings. The power supply is not
entirely sinusoidal and contains numerous harmonics and sub-
harmonics. The most important harmonics created are 5th 7th
and 11", which become critical if these harmonics coincide
with a natural frequency of the stator [4]. The net forces
due to the power electronics harmonic components result in
significant noise. Figure. 2 shows the different sources of
noise.

C. Various Types of Noise

Various types of noise, based on their properties, have differ-
ent effects on the measured signal. The signal from the noise
can be discriminated based on the frequency components.

TABLE I
100 kV' A, 50 Hz, SYNCHRONOUS GENERATOR TOPOLOGY
SPECIFICATION AND NAMEPLATE DATA

Quantity Values Quantity Values
Winding connection Wye Number of poles 14

No. of stator turns 8 No. of rotor turns / pole | 35
Nominal speed 428 rpm | Power factor 0.90
Nominal voltage 400 V Nominal current 1443 A
Nominal exc. current | 103 A No-load exc. current 532 A

The signal may contain mostly low-frequency components,
whereas the noise may spread out over the wide frequency
range or the noise may only contain high-frequency com-
ponents. The noise is characterized based on its frequency
spectrum, which is commonly described in terms of noise
color. The noise is categorized as white noise, pink noise,
Brownian noise, blue noise, and violet noise. Each type of
noise is specified according to the frequency distribution of
its power spectral density, as shown in Fig. 3.

1) White noise is a random noise that has equal power over
the entire frequency range.

2) Pink noise is characterized by high power at low fre-
quencies, and its power is diminished by increasing the
frequency.

3) Brownian noise’s amplitude is proportional to the square
of the frequency over a frequency range.

4) Blue noise has strong power at high frequency and is
not common in experimental measurements.

5) Violet noise, which is a differentiation of white noise,
has a power spectral density that is proportional to the
square of the frequency over the finite range.

III. LABORATORY AND FIELD TESTS
A. Experimental Setup

Fig. 4 shows the experimental setup used in this paper with
a detailed specification as shown in Table. I. A custom-made
100 £V A, 400 V, synchronous generator with 14 salient poles
is used to investigate the noise effect on an air-gap magnetic
field signal under an ITSC fault. A 90 kW, 4 pole induction
motor is used to rotate the coupled synchronous generator.
The induction motor shaft is connected to the generator by a
gearbox with a gear ratio of 1/3. A programmable converter
is used to feed the induction motor. The field winding of the
generator is supplied by a DC power supply. A copper plate is
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Fig. 3. The prevalent type of noise based on their color definition. White
Gaussian noise, Pink noise, Brownian noise, Blue noise, Violet noise.

used to create the ITSC fault on one of the rotor field windings,
as shown in Fig. 4. A Hall-effect sensor (AST244), with a
ratio of the induced voltage to the magnetic field equal to
2.54 T/V, is installed on the stator tooth to acquire the air
gap magnetic field (Fig. 4). The data sheet specifies that the
sensor should be supplied by a 2 mA DC current source.
However, due to considerable electromagnetic interference, the
magnitude of the current power supply is increased to 4 mA
to increase the signal-to-noise ratio (SNR). A high-resolution
(16-bit) oscilloscope is used to sample the data at 10 kH z.

Fig. 4. The laboratory setup of a 100 k1 A salient pole synchronous generator
(top). The copper plate used to apply the ITSC fault on one of the rotor field
windings, the installed Hall-effect sensor on the stator tooth of a laboratory
setup (bottom).
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Fig. 5. The measured air gap magnetic field of the synchronous generator in
the laboratory in the presence of a significant noise impact (blue waveform)
and the applied low-pass filter of the oscilloscope to diminish the noise impact
(red waveform).

The test procedure for the experimental setup is as follows:
tests were conducted in both a healthy state and under the
ITSC fault at different degrees of severity. The synchronous
generator is accelerated using an induction motor until it
reaches its nominal speed. The nominal magnetizing current
is applied to the rotor field winding to achieve a nominal
voltage in the stator terminals. The ITSC fault is conducted
at a standstill by removing the desired number of turns from
the rotor field winding using a copper plate. Fig. 5 represents
the measured air gap magnetic field in the presence of noise.
The signal is analyzed to recognize the type of noise that
leaked into the signal. The separated power spectrum of the
noise from the measured air-gap magnetic field shows that its
behavior resembles that of white Gaussian noise.
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Fig. 6. Measured noise in hydropower plant.
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Fig. 7. Spectrum density of a measured noise in a hydropower plant.

B. Field Tests

Field tests were conducted in two power plants: a power
plant with a single unit generator and another power plant
with four units. Hall-effect sensors were installed on the stator
tooth, and the data were measured while the generator was at
standstill. Therefore, the measured data, as shown in Fig. 6,
represent the noise in the working environment of the hydro-
generator. The power spectrum of a measured noise is depicted
in Fig. 7, which indicates that a white Gaussian noise exists
with a 70 dB SNR. The measured noise for a power plant
with only one unit shows a lower SNR, thereby showing the
impact of electric power equipment on the generated level of
noise.

IV. SIGNAL PROCESSING

Signal processing is a core part of the fault detection
procedure. Although the measured signals from the electrical
machines, whether in a healthy or faulty state, contain useful
data, they must be analyzed using signal processing tools. The
signal processing tools are categorized into the following three
domains:

1) Time-domain

2) Frequency domain

3) Time-Frequency domain

Several methods are available, based on time, frequency,
and time-frequency domains. In this paper, TSDM is used as a
time-domain processor. The FFT, which is a frequency domain
processor, is used to obtain the frequency spectrum density of
the signal. The wide range of time-frequency processors is
limited in this paper to STFT, CWT, and DWT.
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Fig. 8. The spectrum density of an air gap magnetic field in a healthy state
and under a 10 ITSC fault, a) without noise interference (top), b) with 20 dB
SNR (bottom)

A. Fast Fourier Transform

The Fourier transform represents the desired function as its
constituent harmonic components and the Fourier transform is
a convolution operation. A Fourier series is a periodic function
and it requires that the processed signal must be periodic.
Since the majority of the measured time series are not periodic,
it assumes that the entire measured data series is one periodic
function. A discrete Fourier transform is formulated for a
discrete signal that represents the frequency contents of the
time data series and the fast Fourier transform is a commonly
applied approach to achieve a discrete Fourier transforms
[23]. FFT is computationally efficient and it reduced the
computational complexity of discrete Fourier transform from
O(m?) to O(mlog(m)), where m is the total number of
samples. The spectral representation of the time signal consists
of periodic components in the frequency domain that each has
a specific frequency, phase angle, and amplitude. The FFT
can provide a general representation of the frequency contents
of the signal. The amplitude of the frequency spectrum is
increased if a signal changes. Indicating that FFT can track
the faulty signal variation in the frequency spectrum, but
the provided information based on frequency spectrum is not
informative unless the fault frequency is known. Moreover, the
accuracy and precision of the spectrum density of the signal
depends on the number of sampled data and the sampling
frequency of the signal.

The distorted magnetic field caused by an ITSC fault
contains sub-harmonics that can be distinguished using FFT
based on the following features:

+k)fs
fsubfharmonic = u (1)

p

where f is the stator terminal frequency, p is the number of
poles, and k is an integer. Fig. 8. depicts the spectral density
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TABLE II
THE EFFECT OF VARIOUS SIGNAL-TO-NOISE RATIOS ON THE
NOMINATED SIGNATURE IN A HEALTHY STATE AND UNDER AN ITSC
FAULT (GRAY COLORS)

Noise Level | 7.15 Hz | 143 Hz | 28.6 Hz | 35.7 Hz | 64.3 Hz
No-Noise -44.6 -53.1 -51.3 -54.9 -57.4
60 dB -44.6 -52.9 -51.2 -55.0 -57.6
50 dB -44.8 -53.1 -51.4 -54.1 -57.8
40 dB -45.1 -53.0 -51.1 -55.3 -58.2
30 dB -45.3 -55.1 -51.5 -54.8 -57.3
No-Noise -39.6 -38.9 -39.4 -40.8 -41.8
60 dB -39.6 -38.9 -39.4 -40.8 -41.8
50 dB -39.5 -38.9 -39.4 -40.8 -41.9
40 dB -39.8 -39.1 -39.2 -40.6 -42.1
30 dB -40.3 -39.1 -39.9 -40.2 -41.8

of the air gap magnetic field in the healthy state and under a
10 ITSC fault in one of the rotor poles, as obtained by the FFT
processor. Increasing the number of shorted turns in the rotor
field winding also increases the amplitude of the side-band
components. For instance, the amplitude of the side-bands for
a 10 ITSC fault at frequency 7.15 Hz, 14.3 Hz, 28.6 Hz, and
35.7 Hz increased from -44.6 dB, -53.1 dB, -51.3 dB, and 54.9
dB to -36.6 dB, -38.9 dB, -39.4 dB, and -40.8 dB, respectively.

Fig. 8 demonstrates the effect of 20 dB white Gaussian
noise on the spectral density of the air-gap magnetic field in
a healthy state and under a 10 ITSC fault. The noise level
of the frequency spectrum is increased from -100 dB to -
50 dB by decreasing the SNR. Therefore, the magnitude of
the introduced feature for ITSC detection is simply masked
in the case of high-level noise interference. Hence, the ITSC
diagnosis under a 30 dB SNR is almost impossible.

Table II presents the effect of various SNRs on the nom-
inated feature under an ITSC fault. The amplitude of the
index for a low degree of SNR is acceptable, since the ITSC
fault can be identified. However, the SNR of 20 dB is the
borderline for accurate fault detection. By decreasing the SNR,
the amplitudes of the side-bands in both the healthy and faulty
cases are masked and the faulty side-band components cannot
be identified. The side-band component of the healthy case is
also increased and its amplitude is similar to that of a faulty
case without noise impact and may result in a false alarm
indication of a fault.

B. Short-Time Fourier Transform

The STFT performs a time-frequency analysis that repre-
sents both the frequency and time contents of a signal. STFT
uses a fixed basis function, like FFT. In addition, the signal
transformation is performed by sweeping a fixed window
function over a signal. STFT, compared with FFT, provides
a better temporal and frequency localization. However, ac-
cording to the uncertainty principle, the product of temporal
and frequency resolution is constant; therefore, achieving an
acceptable time and frequency resolution at the same time
is impossible. Moreover, STFT has a superiority over the
FFT since it can analyze the non-stationary signals. The
mathematical representation of the STFT is shown as below:

STFT(ft) = 2i / h r(t)h(t —1)e 2™ dr  (2)

T J—c0

where h(t) is the window function. There exists numerous type
of window function which must be selected according to the
signal characteristics for optimal result. The end effect must be
considered since it may result in a false decision of fault and
it can be mitigated using a proper window function including,
flat top, Nuttall, Dirichlet, Bartlett-Hann, Parzen, Blackman,
Blackman-Harris, Chebwin, exponential, triangular, Hamming,
Hann, Gaussian, Bartlett, Bohman, Kaiser, and Slepian. There
exists not a straightforward rule to find an appropriate window
function, indicating that several window functions must be
performed. The length of the data in addition to the window
length are also the main factors that must be considered
during parameter adjustment. The time resolution of the STFT
is inversely proportional to the length of the time window
while the frequency resolution of the STFT has a direct
relationship with the length of the window function. The
computational complexity of the STFT compared with FFT
is negligible since the computational complexity of the STFT
is O(n.mlog(m)) where n is window length. Indicating that
the FFT is performed n times. The percentage of the window
overlapping when the window function sweeps across the data
is a key point since window overlap can give a more analysis
point and higher resolution across time, but the computational
cost becomes higher. Therefore, a trade-off must settle down
to have adequate analysis points to achieve a smooth result
across time while the computational cost does not increase
significantly.

Nevertheless, STFT is widely used in feature extraction
for fault detection of electrical machines. Fig. 9 and Fig.
10 present the application of STFT to the measured air gap
magnetic field in a healthy state and a 10 ITSC fault without
a noise effect and with white additive Gaussian noise with
SNR of 40 dB and 20 dB. The STFT is performed with a
window length of one electric period. A novel index using
STFT is introduced that does not require a priori knowledge
of the healthy machine. A comparison between the healthy
and faulty STFT reveals that the fault has a significant impact
on a frequency band of STFT between 50 Hz and 75 Hz. In
a case of a healthy machine, there is a uniform pattern with
the same intensity pattern along with the mentioned frequency
band. Having a 10 ITSC fault in one of the rotor field winding
results in a clear periodic intensity reduction in a frequency
band between 50 Hz and 75 Hz. The width of a red window
in an STFT plot is equal to 140 ms, which represents one
mechanical revolution of the synchronous generator, and the
widths of a faulty pole are equal to 10 ms which is shown with
a blue window. The blue window with a reduced intensity is
periodic which shows a faulty pole in the time-frequency plot.
Conclusively, the frequency pattern of the desired frequency
band in a healthy operation is uniform while having a fault
result in a periodic window with widths equal to a rotor pole.

The demonstration that STFT applied to an air-gap magnetic
field signal interfered with a 40 dB SNR in healthy and faulty
cases shows that detection of the fault is possible, since noise
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Fig. 9. The applied STFT to an air gap magnetic field in healthy case, without
noise impact (first row), 40 dB SNR (second row), and 20 dB SNR (third row)

does not change the available pattern. By contrast, the STFT
plot of the signal with 20 dB white Gaussian noise disturbs the
fault pattern and fault detection is not possible. A qualitative
comparison of the healthy and faulty signal by the introduction
of noise implies that noise does not mask the frequency band
and fault feature to a great extent up to 40 dB of noise, and this
likely reflects the long window length. Therefore, noise with
a higher ratio may lead to false fault identification. A caveat
of STFT analysis in the presence of noise is that increasing
the window length to reject noise will reduce the temporal
resolution and limit its usefulness.

C. Continuous Wavelet Transform

Wavelet transform is a signal processing method that de-
composes a signal into a set of primary waveforms that,
by analyzing the wavelet coefficients of waveforms, may
provide some insight. Wavelet transform tries to alleviate
the constraints of STFT by defining a mother wavelet as a
basis function. Wavelet transform includes numerous mother
wavelets, unlike STFT that has a single basis function. Wavelet
transform divides a time-frequency space from coarse to fine
sizes, while STFT divides a time-frequency space into equal
sizes. Moreover, the transform convolutes the signal to the
mother wavelet while in STFT the window function is dilated
over the entire time series to perform the FFT [24].

Different frequencies in the signal can be tracked by com-
pressing or stretching the wavelet using the wavelet scaling
factor. The convolution computation is applied as (3) to the
signal and the obtained result is depicted in the time-frequency
plot.
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Fig. 10. The applied STFT to an air gap magnetic field under a 10 ITSC
fault, without noise impact (first row), 40 dB SNR (second row), and 20 dB
SNR (third row)

X(a,b) = ;a/_z x(t)qz*<t;b)dt 3)

The analyzed signal is denoted by x(¢) and the ¥ represents
the mother wavelet. The scaling factor and the temporal center
of the wavelet are adjusted by a and b. The type of mother
wavelet must be chosen depends on the type of signal, the
frequency of interests, and the investigated properties in the
signal. Indicating that there exists no clear rule of thumb
to select the mother wavelet and it must be selected by try
and error. However, a general rule indicates that a mother
wavelet must be used that is similar to the measured signal.
For instance, a Haar wavelet can be utilized if the signal
has a sudden transition while a Morelet mother wavelet is
suitable when the signal has a smooth variation [25]. The
computational complexity of the CWT is (O(m)) where m is
the length of data. A comparison between the computational
complexity of the CWT and FFT indicates that FFT performs
slower than CWT. Conclusively, the CWT also outperforms
faster than STFT since the computational complexity of the
STFT is n times the computational complexity of the FFT. The
data interpretation of the processed signal by CWT is arduous
since it must be analyzed by a convolutional neural network or
image processing expert which make its application difficult.

The CWT is a qualitative signal processing tool that is
widely used in fault detection of electrical machines [13]. A
novel index using the frequency B-spline mother wavelet is
introduced to diagnose the ITSC in the rotor field winding
based on CWT. Finding healthy state data of a synchronous
generator that operates for decades in a power plant is almost
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Fig. 11. The applied CWT to an air-gap magnetic field in healthy case in
no-noise (first row), 40 dB SNR (second row), and 20 dB SNR (third row).

impossible. Indicating that a method that can independently
indicate the health status of the generator is required. Ap-
plication of fault detection algorithm based on CWT to the
air-gap magnetic field as shown in Fig. 11 generate a uniform
frequency band with a various intensity map. Having a short
circuit fault in the rotor field winding result is an appearance of
a periodic notch in the time-frequency plot. A periodic notch
pattern repeated when a faulty pole passes over the installed
sensor in the air-gap. Fig. 11 and Fig. 12 depict the application
of CWT to a measured air gap magnetic fields of a healthy
and faulty machine. A comparison between the healthy state
and a 10 ITSC fault between the frequency bands of 40 Hz to
60 Hz indicates that the presence of a fault changes the CWT
profile by introducing a periodic notch.

The effect of white Gaussian noise on CWT is studied by
adding different amounts of noise. Fig. 11 and Fig. 12 show
the impact of 40 dB and 20 dB noise on CWT plots in both
healthy and faulty cases. A signal with a SNR up to 40 dB
noise does not show significant changes and identifying the
changes due to ITSC fault is still possible, while the intensity
of the CWT is reduced by decreasing SNR level. Moreover, a
signal with SNR equal to 20 dB completely destroys the shape
of pattern in both healthy and under ITSC fault. The CWT is
affected uniformly across frequencies, unlike the STFT, due
to its greater time-frequency resolution. This effect will vary
among wavelets. Some of the noise-rejecting qualities of STFT
could be achieved in CWT by selecting wavelets with a greater
number of oscillations, such as the Shannon mother wavelet.
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Fig. 12. The applied CWT to an air-gap magnetic field in a 10 ITSC fault
case in no-noise (first row), 40 dB SNR (second row), and 20 dB SNR (third
row).

D. Discrete Wavelet Transform

The DWT is based on the same principle as the CWT since
the DWT is commonly implemented based on filter banks.
Each level of the filter consists of a low-pass filter and a high-
pass filter in which the output is down-sampled by a factor
of 2 at each level. The output of the high-pass filter plus the
downsampling is known as a detailed signal (h(n)), while the
output of the low-pass filter plus downsampling is called an
approximate signal (g(n)). The output of the detail coefficient
is saved while the output of the approximate coefficient is fed
to the next level of the DWT. This process continues until the
desired number of decomposition is achieved. Fig. 13 shows
one level of the DWT.

The decomposed signal by DWT depends on the type of
selected mother wavelet. Daubechies wavelet and Haar wavelet
are two commonly applied mother wavelet in DWT. The
computational complexity of the DWT is similar to CWT
while in practice it is faster than CWT since the data are
downsampled in each level. A better temporal resolution can
be achieved by CWT compared with DWT since it can shift
the filter only by one sample, but higher storage is required
in CWT. A frequency tracking of the DWT compared with
CWT and STFT is simpler since the mother wavelets are
limited. The frequency of interest must be determined and
based on that the number of DWT levels must be picked out,
if not the frequency of interest appears in two different detail
sub-bands. In this paper, Daubechies 8 is used to decompose
the air gap magnetic field into various frequency sub-bands.
Since the sampling frequency is 10 kHz, the first and second
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Fig. 13. One level DWT including the filtering and the downsampling
procedures.

detailed sub-band are between 5000-2500 Hz and 2500-1250
Hz, respectively.

The discrete wavelet transform is a useful signal processing
tool for feature extraction of an electrical machine under a
faulty condition. Various features can be extracted from detail
sub-bands of DWT such as standard deviation, median, mean,
entropy, skewness, kurtosis, variance, and various energies. In
this paper, the energy of each sub-band level is introduced as a
proper signature to diagnose the occurrence of the ITSC fault.
The energy of the signal is as follows:

E:/ |D,, | dt 4)

where D,, is the magnitude of each DWT sub-bands. The
occurrence of a 10 ITSC fault in one of rotor poles leads
to an increment of the energy of D1 to D6 from 1.35, 1.06, 1,
0.97, 0.94, and 0.83 to 0.65, 0.72, 0.79, 0.83, 0.88, and 0.81,
respectively. A comparison between the energy variation of
the different wavelet sub-bands in a healthy and faulty case
provides an accurate indication of the occurrence of an ITSC
fault.

Having an air-gap magnetic field signal with a SNR up to 40
dB does not disturb the introduced feature, whereas the signal
with a SNR equal to 20 dB changes the results significantly.
Fig. 14 shows the discrete wavelet transforms of the air-gap
magnetic field in a healthy case without a white Gaussian
noise effect and under a noisy condition with a 20 dB SNR.
As shown in Fig. 14, the 20 dB noise significantly changes
the amplitude and shape of some of the sub-bands, like D5,
D4, D3, D2, and D1 even in a healthy case, while it does
not change the sub-bands level of D6, D7, and DS. However,
the energy of wavelet sub-bands of the healthy generator with
20 dB white Gaussian noise is equal to the energy level of
the corresponding wavelet sub-bands under a 10 ITSC fault.
For instance, the amplitude of the energy of the sub-bands
of D3, D2, and DI for the healthy generator with 20 dB
SNR is decreased to 0.79, 0.72, and 0.65, while the energy
of the same sub-bands for a 10 ITSC fault is also the same.
Consequently, the noisy environment leads to a false alarm of
a fault occurrence in a healthy generator. Table III shows the
result of DWT applied to the healthy and faulty generator. The
application of DWT for fault detection of the electric machines
in a noisy environment must be evaluated based on a sub-band
level on which the signature is defined, since some of the low-
frequency sub-bands do not undergo any changes even with
20 dB noise.

E. Time Series Data Mining
TSDM is a time-domain nonlinear signal processing tool
that is developed based on discrete stochastic models of the
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Fig. 14. The DWT of air gap magnetic field in a healthy case without noise
impact (red), and with 20 dB SNR (blue).

TABLE III
THE ENERGY OF VARIOUS DWT SUB-BANDS APPLIED TO AIR-GAP
MAGNETIC FIELD SIGNAL IN A HEALTHY AND UNDER ITSC FAULT.

D6 D5 D4 D3 D2 D1

Healthy - No-Noise | 0.83 | 0.94 | 0.97 1.0 1.06 | 1.35
Faulty - No-Noise 0.81 | 0.88 | 0.83 | 0.79 | 0.72 | 0.65
Healthy - 20 dB 0.81 | 0.88 | 0.83 | 0.79 | 0.72 | 0.65

reconstructed phase space using the dynamical system theory
[26]. A single sampled state variable can generate a metrically
equivalent state space, in addition, a dynamical invariant is also
preserved in the reconstructed state space. If the trend of time
variation of the signal is high, its average value for the different
operating points may be utilized to extract a feature. The air-
gap magnetic field signal is considered as a state variable to
create the state space of the generator.

The reconstructed state space can be developed using
time-delay embedding and derivative embedding approaches.
The method based on derivative embedding includes higher-
order derivates that make its application impractical in noisy
environments indicating that time delay embedding is the
proper approach for TSDM development. The invariant of
the dynamical system in the time delay embedding method is
found by transforming scalar points into a vector form [27]-
[29].

For a given time series of the magnetic field of the air gap,
as below:

B={B(k)—B(k—1)}k=2.3,...j )

where j is the number of the sampled signal, and k is the
time index. The reconstructed phase space for k equal to 10
is shown in Fig. 15. A TDSM is used to generate the mass
(gyration) based on variation in the magnetic field time series.
The variation in a radius of gyration (RG) is a suitable tool for
feature extraction from the air-gap magnetic field of a faulty
machine. The RG is calculated from the generated mass to
quantify the rate of changes due to ITSC fault, as follows
[30]:

e \/ Shin (Bl —pol + (B~ — )

g—=1
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Fig. 15. The gyration radius of the air gap magnetic field in a healthy and a
10 ITSC fault without noise impact (top) and with a 20 dB SNR (bottom).

As shown in Fig. 15, the fault leads to distortion of the
magnetic field, which results in an increment in the radius
of gyration. The calculated RG to magnetic flux density in
the healthy state and under a 10 ITSC fault is 61 and 78,
respectively. Fig. 15 represents the application of TSDM to the
healthy and faulty air gap magnetic field in a presence of 20 dB
white Gaussian noise. The magnitude of the RG is increased
considerably compared with the signal without the noise effect.
Moreover, the area of the mass and, correspondingly, the RG
in healthy cases is enormously larger than in the faulty case.
This results in false identification of a fault and indicates that
the signal input to the TSDM algorithm must be noiseless,
otherwise it leads to an inaccurate feature.

V. HARDWARE NOISE REJECTION

Every wire in the electrical instrument behaves like an
antenna that absorbs the electromagnetic energy emitted from
electrical equipment in the environment and converts it into
an electrical signal with low amplitude. Therefore, rejecting
this noise or reducing its impact on the measured signal is
essential. A couple of simple solutions are shown below:

1) Grounding the machine frame diminishes the environ-

mental noise effect.

2) Protecting a circuit or wires which are exposed to noise
with a conducting material like a copper foil.

3) Reducing the length of wire used for data transmission
or preferably using a coaxial cable.

4) Using the low-pass filter implemented in the measure-
ment instrument.

Since the air-gap magnetic field measured in the laboratory
is vulnerable to noise, copper foil is used to shield the sensor
wires all the way to the DC power supply. The connection
between the DC power supply to the oscilloscope is made with
a coaxial cable. In addition, the SNR of the measured air-gap
magnetic field is increased by increasing the magnitude of the
current feeding into the Hall-effect sensor. The body of the
generator is grounded in to avoid additional noise leaking into
the sensor.

VI. CONCLUSION

This paper discussed thoroughly the various kinds of noise
that may exist in the industrial environment and demonstrated
how it can negatively affect the measured data. A detailed
investigation of the frequency component of the measured
noisy data in both laboratory and hydropower plants revealed
that white Gaussian noise exists and is the most prevalent type
of noise in power industries.

Signal processing tools are key to fault detection procedures
for electrical machines. Based on the level of leaked noise
into the signal, the processed data may indicate a false result.
Indicating that noise must be measured in industry and power
plants during data acquisition. Although, the main criteria
to select a proper signal processing tool is its ability to
track the fault frequency and performing algorithm in real-
time with low computational burden, the level of noise must
also be considered during the fault detection procedure. In
order to show how signal processing tools work in a noisy
environment, the air gap magnetic field of a 100 £V A salient
pole synchronous generator in a healthy state and under ITSC
fault is measured. The Hall-effect sensor is used to measure the
air-gap magnetic field, since it is susceptible to the magnetic
noise from inside the generator and noise from the working
environment of the generator. Different signal processing tools,
such as FFT, STFT, CWT, DWT, and TSDM, are used for
ITSC fault detection. Suitable features were introduced and
their performance in the presence of noise are evaluated and
summarized below:

1) FFT: FFT can provide a general picture of the health
state of the machine since it cannot reveal the fault type.
Moreover, fault detection based on FFT requires a priori
data of a healthy machine for comparison. FFT is only
sensitive to high-level noise, and side-bands are masked
if SNR is higher than 20 dB.

2) STFT: STFT can indicate the fault harmonics if a proper
window function is selected and the parameters are
adjusted precisely. The computational complexity of the
STFT is n times a FFT, however, it can be used in
real-time fault detection. Its sensitivity to noise and
resolution of the frequency bands depends on the length
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of the window and may result in a false alarm for SNR
below 40 dB.

CWT: Application of CWT in fault detection provides
a pattern that indicates the harmonics variation both in
time and frequency. The selection of a proper mother
wavelet is a key factor to track the fault harmonics.
The computational complexity of the CWT compared
with STFT and FFT is lower that makes its real-time
implementation easier. CWT works fine with an SNR
up to 40 dB, although its time-frequency plot becomes
blurry. However, fault identification is still possible.
CWT generates a chaotic representation of a signal with
SNR above 40 dB and interpreting the plot is impossible.
DWT: Selection of a proper number of sub-bands plays
a key role in precise fault harmonic track. A proper
mathematical tool based on the signal property must
be applied to the signal to indicate the effect of fault
harmonic in the selected sub-band. The computational
complexity of the DWT is similar to CWT. It depends
on a frequency sub-band, which is utilized for feature
extraction. If a feature is defined based on low-frequency
sub-bands like D8 to D6, even a signal with SNR above
20 dB could not disturb the data.

TDSM: Although extracted feature based on variation
in RG shows a fault harmonic impact on the measured
signal, It is highly sensitive to noisy data, and it is
not a useful tool if a signal is measured in a noisy
environment.
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