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a b s t r a c t

The task of inducing, via continuous static state-feedback control, an asymptotically stable heteroclinic
orbit in a nonlinear control system is considered in this paper. The main motivation comes from
the problem of ensuring convergence to a so-called point-to-point maneuver in an underactuated
mechanical system. Namely, to a smooth curve in its state–control space which is consistent with the
system dynamics and connects two (linearly) stabilizable equilibrium points. The proposed method
uses a particular parameterization, together with a state projection onto the maneuver as to combine
two linearization techniques for this purpose: the Jacobian linearization at the equilibria on the
boundaries and a transverse linearization along the orbit. This allows for the computation of stabi-
lizing control gains offline by solving a semidefinite programming problem. The resulting nonlinear
controller, which simultaneously asymptotically stabilizes both the orbit and the final equilibrium,
is time-invariant, locally Lipschitz continuous, requires no switching, and has a familiar feedforward
plus feedback–like structure. The method is also complemented by synchronization function–based
arguments for planning such maneuvers for mechanical systems with one degree of underactuation.
Numerical simulations of the non-prehensile manipulation task of a ball rolling between two points
upon the ‘‘butterfly’’ robot demonstrates the efficacy of the synthesis.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A point-to-point (PtP) motion is perhaps the most fundamental
f all motions in robotics: Starting from rest at a certain con-
iguration (point), the task is to steer the system to rest at a
ifferent goal configuration. Often it can also be beneficial, or
ven necessary, to know a specific predetermined motion which
moothly connects the two configurations, in the form of a curve
n the state–control space which is consistent with the system
ynamics—a maneuver (Hauser & Hindman, 1995). For instance,
his ensures that the controls remain within the admissible range
long the nominal motion, and that neither any kinematic- nor
ynamic constraints are violated along it. Knowledge of a ma-
euver is also especially important for an underactuated me-
hanical system (UMS) (Liu & Yu, 2013; Spong, 1998). Indeed,
s an UMS has fewer independent controls (actuators) than de-
rees of freedom, any feasible motion must necessarily comply
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with the dynamic constraints which arise due to the system’s
underactuation (Shiriaev, Perram, & Canudas-de Wit, 2005).

Planning such (open-loop) PtP maneuvers in an UMS, e.g. a
swing-up motion of a pendulum-type system with several passive
degrees of freedom, is of course a nontrivial task in itself. Suppose,
however, that such a maneuver has been found. Then the next
step is to design a stabilizing feedback for it. For non-feedback-
linearizable systems (i.e. the vast majority) this is also a nontrivial
task. The challenge again lies in the lack of actuation, which may
severely limit the possible actions the controller can take. This can
make reference tracking controllers less suited for this purpose, as
they, often unnecessarily so, are tasked with tracking one specific
trajectory (among infinitely many) along the maneuver.

For tasks which do not require a specific timing of the mo-
tion, one can instead design an orbitally stabilizing feedback: a
time-invariant state-feedback controller which (asymptotically)
stabilizes the set of all the states along the maneuver—its orbit.
or a PtP maneuver, such a feedback controller is therefore equiv-
lent to inducing an asymptotically stable heteroclinic orbit in the
esulting autonomous closed-loop system. Namely, an invariant,
ne-dimensional manifold which (smoothly) connects the initial
nd final equilibrium points. There are some clear advantageous
o such an approach: First, all solutions initialized upon the
rbit asymptotically converge to the final equilibrium along the
aneuver, with the behavior when evolving along it known a
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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riori. Second, by invoking a reduction principle (El-Hawwary &
aggiore, 2013), the final equilibrium’s asymptotic stability is
nsured by the orbit’s asymptotic stability. Third, the closed-loop
ystem is time invariant.
In regard to the problem of designing such feedback, the

aneuver regulation approach proposed in Hauser and Hindman
1995) is of particular interest. There, the task of stabilizing—via
tatic state feedback—non-vanishing (i.e. equilibrium-free) orbits
f feedback-linearizable systems was considered; with the ap-
roach later extended to a class of non-minimum phase systems
n normal form in Al-Hiddabi and McClamroch (2002). The key
dea in these papers is to convert a linear tracking controller
nto a controller stabilizing the orbit of a known maneuver. This
s achieved by using a projection of the system states onto the
aneuver, a projection operator as we will refer to it here, to

ecover the corresponding ‘‘time’’ to be used in the controller,
hus eliminating its time dependence. The former tracking error
herefore instead becomes a transverse error—a weighted mea-
ure of the distance from the current state to the maneuver’s
rbit.
It has long been known for non-trivial orbits (e.g. periodic

nes) that strict contraction in the directions transverse to it
s equivalent to its asymptotic stability (Borg, 1960; Hartman &
lech, 1962; Hauser & Chung, 1994; Manchester & Slotine, 2014;
rabe, 1967; Zubov, 1999). Moreover, this contraction can be
etermined from a specific linearization of the system dynam-
cs along the nominal orbit (Leonov, Ponomarenko, & Smirnova,
995), a so-called transverse linearization (Hauser & Chung, 1994;
anchester, 2011; Sætre & Shiriaev, 2020; Shiriaev, Freidovich, &
usev, 2010). Since this contraction occurs on transverse hyper-
urfaces, only the linearization of a set of transverse coordinates
f dimension one less than the dimension of the state space needs
o be stabilized; a fact which has been readily used to stabilize
eriodic orbits in UMSs (Shiriaev et al., 2010; Surov, Shiriaev,
reidovich, Gusev, & Paramonov, 2015).
For the purpose we consider in this paper, namely the de-

ign of a continuous (orbitally) stabilizing feedback controller
or PtP motions with a known maneuver, one must also take
nto consideration the equilibria located at the boundaries of the
otion. On the one hand, this directly excludes regular trans-
erse coordinates–based methods such as Manchester (2011) and
hiriaev et al. (2010, 2005), which would then require some form
f control switching and/or orbit jumping à la those in La Hera,
reidovich, Shiriaev, and Mettin (2009) and Sellami, Mamedov,
nd Khusainov (2020). The ideas proposed by Hauser and Hind-
an (1995) in regard to maneuver regulation, on the other hand,
an be modified as to also handle the equilibria, but suffers
rom other shortcomings: 1) the choice of projection operator
s strictly determined by the tracking controller, thus excluding
impler operators, e.g., operators only depending on the configu-
ation variables; while most importantly, 2) the requirement of a
eedback-linearizable system and constant feedback gains greatly
imits its applicability to stabilize (not necessarily PtP) motions of
oth UMSs and nonlinear dynamical systems in general.

ontributions. The main contribution of this paper is an ap-
proach that extends the applicability of the ideas in Hauser and
Hindman (1995) to a larger class of dynamical systems, as well
as to different types of behaviors, including point-to-point (PtP)
maneuvers. The main novelty in our approach lies in the use of
a specific parameterization of the maneuver, together with an
operator providing a projection onto it. Roughly speaking, this
allows us to merge the transverse linearization with the regular
Jacobian linearization at the boundary equilibria. This, in turn,
allows us to derive a (locally Lipschitz) Lyapunov function can-
didate for the nominal orbit as a whole. Specifically, the paper’s

main contributions are:

2

(1) Sufficient conditions ensuring that a (locally Lipschitz con-
tinuous) feedback controller orbitally stabilizes a known
PtP maneuver of a nonlinear control-affine system; see
Theorem 10 in Section 4.

(2) A constructive procedure allowing for the design of such
feedback by solving a semidefinite programming problem;
see Proposition 14 in Section 4.

(3) A synchronization function–based method for planning PtP
maneuvers for a class of underactuated mechanical sys-
tems; see Theorem 17 in Section 5.

(4) Arguments facilitating the generation of orbitally stable PtP
motions of a ball rolling between any two points upon
the frame of the ‘‘butterfly’’ robot; see Proposition 20 in
Section 6

Note also that, with only minor modifications, these statements
can also be used to generate and orbitally stabilize (hybrid) pe-
riodic motions, or to ensure contraction toward a non-vanishing
motion defined on a finite time interval.

All proofs are given in the Appendix. A statement is ended by
□ if its proof is not provided.

Notation. In denotes the n×n identity matrix and 0n×m an n×m
matrix of zeros, with 0n = 0n×n. For S ⊂ Rn, int (S) denotes its
interior and cl(S) its closure. For x ∈ Rn, ∥x∥ =

√
xTx. For some

ϵ > 0 and x ∈ Rn we denote Bϵ(x) := {y ∈ Rn
: ∥x− y∥ < ϵ}. For

column vectors x and y, col(x, y) := [xT, yT]T is used. For x, y ∈ Rn

we denote L(x, y) = {x+ (y− x)ι, ι ∈ [0, 1]}. If h : Rn
→ Rm is C1,

then Dh : Rn
→ Rm×n denotes its Jacobian matrix, and if m = 1

then D2h : Rn
→ Rn×n denotes its Hessian matrix. If s ↦→ h(s) is

differentiable at s ∈ S ⊆ R, then h′(s) =
d
dsh(s). ∥σ (x)∥ = O(∥x∥k)

if there exists c > 0 such that ∥σ (x)∥ ≤ c∥x∥k as ∥x∥ → 0. Mn
≻0

(resp. Mn
⪰0) denotes the set of all real, symmetric, positive (resp.

semi-) definite n × n matrices, such that R ≻ 0n if R ∈ Mn
≻0.

2. Problem formulation

Consider a nonlinear control-affine system

˙ = f (x) + B(x)u (1)

with state x ∈ Rn and with (m ≤ n) controls u ∈ Rm. It is assumed
hat both f : Rn

→ Rn and the columns of the full-rank matrix
unction B : Rn

→ Rn×m, denoted bi(·), are twice continuously
differentiable (C2).

Let the pair (xe, ue) ∈ Rn
× Rm correspond to an equilibrium

of (1), i.e., f (xe) + B(xe)ue ≡ 0n×1. If we denote

(x, u) := Df (x) +

m∑
i=1

Dbi(x)ui, (2)

hen the (forced) equilibrium point, xe, is said to be linearly stabi-
izable if there exists some K ∈ Rm×n such that A(xe, ue)+B(xe)K is
Hurwitz (stable). That is, the full-state feedback u = ue+K (x−xe)
then renders xe an exponentially stable equilibrium of (1).

We will assume knowledge of a point-to-point (PtP) maneuver
connecting two separate linearly-stabilizable equilibrium points
of (1). Specifically, we assume that a so-called s-parameterization
of the maneuver is known:

Definition 1. Let (xα, uα) and (xω, uω), xα ̸= xω , be linearly-
stabilizable equilibrium points of (1). For S := [sα, sω] ⊂ R,
sα < sω , the triplet of functions

x⋆ : S → Rn, u⋆ : S → Rm, and ρ : S → R≥0, (3)

constitute an s-parameterization of the PtP maneuver

M := {(x, u) ∈ Rn
× Rm

: x = x⋆(s), u = u⋆(s), s ∈ S}
of (1), whose boundaries are (xα, uα) and (xω, uω), if
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P1 x⋆(·) is of class C2 and traces out a non-self-intersecting
curve, while u⋆(·) and ρ(·) are C1;1

P2 (x⋆(si), u⋆(si)) = (xi, ui) for both i ∈ {α, ω};
P3 ρ(sα) = ρ(sω) ≡ 0, while ρ(s) > 0 for all s ∈ int (S);
P4 ∥F(s)∥ > 0 for all s ∈ S , where F(s) := x′

⋆(s);
P5 F(s)ρ(s) = f (x⋆(s)) + B(x⋆(s))u⋆(s) for all s ∈ S.

The definition requires some further comments. Given an s-
parameterized maneuver M, we denote by

O := {x ∈ Rn
: x = x⋆(s), s ∈ S} (4)

its corresponding orbit (i.e. its projection upon state space). Due
to the properties of M stated in Definition 1, one may in fact
consider O to consist of a (forced) heteroclinic orbit of (1) and its
limit points: by P1, O is a C2-smooth, one-dimensional embedded
submanifold of Rn; by P2, its boundaries correspond to two
separate (forced) equilibrium points of (1); whereas by P3, P4 and
P5, it is a controlled invariant set of (1) that contains no (forced)
equilibrium points on its interior.

Here the latter point can be verified by viewing the curve
parameter s = s(t) as a solution to

ṡ = ρ(s). (5)

Since ẋ⋆(s(t)) = x′
⋆(s(t))ṡ(t) = F(s(t))ρ(s(t)) by the chain rule, one

finds, by inserting this into the left-hand side of the expression
in P5, that M is consistent with the dynamics (1). Thus, whereas
∥ẋ⋆(s(t))∥ ≡ 0 for s(t) ∈ {sα, sω}, the key aspect of an s-
parameterization is that the regularity condition P4 holds for
x⋆(·), as ρ(·) instead vanishes at the boundaries.2 This property
allows for a compact representation of the motion, something
which is clearly seen from the nominal state curve’s arc length:∫

∞

−∞
∥ẋ⋆(s(τ ))∥dτ =

∫ sω
sα

∥F(σ )∥dσ . It is also vital to the approach
we suggest, as it allows one to construct a well-defined projection
onto the maneuver.

For O as defined in (4), denote dist(O, x) := infy∈O ∥x−y∥. We
aim to solve the following problem in this paper:

Problem 2 (Orbital Stabilization). For (1), construct a control law
u = k(x), with k : Rn

→ Rm locally Lipschitz in a neighborhood
of O and satisfying k(x⋆(s)) ≡ u⋆(s) for all s ∈ S , such that O is
an asymptotically stable set of the closed-loop system. Namely,
for every ϵ > 0, there is a δ > 0, such that for any solution
x(·) of the closed-loop system satisfying dist(O, x(t0)) < δ, it is
implied that dist(O, x(t)) < ϵ for all t ≥ t0 (stability), and that
dist(O, x(t)) → 0 as t → ∞ (attractivity).

Note that the asymptotic stability of O is equivalent to the
asymptotic orbital stability of all the solutions upon it Hahn et al.
(1967), Leonov et al. (1995), Urabe (1967) and Zubov (1999). Thus
Problem 2 is a so-called orbital stabilization problem, which can be
stated for any type of orbit (equilibrium points, (hybrid) periodic
orbits, etc.). Moreover, as we here consider a heteroclinic orbit
on which all solutions converge to xω , a solution to Problem 2
also implies the (local) asymptotic stability of xω by the reduction
principle in El-Hawwary and Maggiore (2013).

3. Preliminaries

3.1. Projection operators

A key part of our approach is a projection onto the set O
defined in (4). We define such projection operators in terms of a
specific s-parameterization (see Definition 1) next.

1 While the notion of an s− parameterization can be relaxed in regard to the
moothness of the triplet (x⋆, u⋆, ρ), we will, for simplicity’s sake, require that
1 holds in this paper.
2 As ρ(·) is required to be C1 and ρ(sα) = ρ(sω) ≡ 0, the rate at which s(·)

convergence to sω (resp. sα) in positive (resp. negative) time from within S can
be at most exponential, which corresponds to ρ ′(s ) < 0 (resp. ρ ′(s ) > 0).
ω α r

3

Fig. 1. Illustration of the moving Poincaré section Π (s), defined in (6), ‘‘trav-
eling’’ along the orbit O whose boundaries are xα and xω . The gradient of the
projection operator is assumed to be nonzero and well defined within the blue-
shaded tubular neighborhood T . Within the darkly shaded hemispheres Hα and
Hω , on the other hand, the gradient vanishes as the projection operator projects
the states onto the respective equilibrium therein. The aim of this paper is to
guarantee the existence of a positively invariant neighborhood T, within which
all solutions converge to O. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Definition 3 (Projection Operators for PtP Maneuvers). Let X ⊂ Rn

denote a simply-connected neighborhood of O, whose interior
can be partitioned into three subsets, denoted Hα , T and Hω (i.e.,
l(X) = cl(Hα ∪ T ∪ Hω)), which are such that

• T is a tubular neighborhood of O;
• Bϵ(xα)\T ⊂ cl (Hα) and Bϵ(xω)\T ⊂ cl (Hω), for some ϵ > 0;
• cl(T ) ∩ cl(Hi) ̸= ∅ ∀i ∈ {α, ω}, and cl(Hα) ∩ cl(Hω) = ∅.

map p : X → S is said be to a projection operator for O if
t Lipschitz continuous and well defined within its domain X, as
ell as satisfies

C1 p(x⋆(s)) ≡ s for all s ∈ S;
C2 p(Hα) ≡ sα , p(Hω) ≡ sω , and p(int (T )) ∈ int (S);
C3 p(·) is Cr , r ≥ 2, within Hα , T and Hω .3

In order to provide some intuition behind the need for the
onditions stated in Definition 3, we define the set

(s) := {x ∈ X : p(x) = s}. (6)

s is illustrated in Fig. 1, for some s ∈ int (S), this set traces out a
ypersurface, a so-called moving Poincaré section (Leonov, 2006;
hiriaev et al., 2010), whose tangent space at x⋆(s) is orthogonal
o the transpose of

(s) := Dp(x⋆(s)). (7)

y Condition C1, it follows that P(s)F(s) ≡ 1 for all s ∈ S , from
hich, in turn, one can deduce that the surface Π (s) is locally
ransverse to F(s). The tubular neighborhood T in the definition
consider the blue-shaded tube in Fig. 1) is therefore guaranteed
o everywhere have a nonzero radius as O does not have any
elf-intersections (see P1 in Definition 1). It can be taken as any
onnected subset of

⋃
s∈intS Π (s) such that the surfacesΠ (s1)∩T

nd Π (s2) ∩ T are locally disjoint for any s1, s2 ∈ int (S), s1 ̸= s2.
hus Dp(x) is nonzero, bounded and of class Cr−1 for any x within
.
Conditions C2 and C3, on the other hand, guarantee the ex-

stence of the two open half-ball-like regions, Hα and Hω , con-
ained in Π (sα) and Π (sω), respectively (see the darkly shaded
emi-ellipsoids in Fig. 1). As a consequence, ∥Dp(x)∥ ≡ 0 for all
∈ Hα ∪ Hω , and hence p(·) is C2 almost everywhere within X,
xcept at Xα := lims→s+α

Π (s) and Xω := lims→s−ω
Π (s), which

3 While one can generally relax the condition in C3 to r ≥ 1, we require
≥ 2 for the approach we suggest in this paper.
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orrespond to the intersections of the boundary of T with the
oundaries of Hα and Hω , respectively.
The following statements shows that one can obtain projec-

ion operators satisfying Definition 3, which are similar to those
n Hauser and Hindman (1995).

roposition 4. Given a PtP maneuver as by Definition 1, let the
mooth matrix-valued function Λ : S → Mn

⪰0 be such that h(s) :=

(s)F(s) is of class C2 on S , and FT(s)Λ(s)F(s) > 0 holds for all
∈ S . Then there is an ϵ > 0 and a neighborhood X of O, such that

(x) = argmin
s∈S

L(x⋆(s),x)⊂Bϵ (x⋆(s))

[
(x − x⋆(s))TΛ(s)(x − x⋆(s))

]
(8)

s a projection operator for O (see Definition 3), with Bϵ(x⋆(s)) ⊂ X
or all s ∈ S . Moreover,

(s) := Dp(x⋆(s)) =
FT(s)Λ(s)

FT(s)Λ(s)F(s)
(9)

holds for its Jacobian matrix Dp(·) evaluated inside T .
Note that, in order to effectively compute such operators,

knowledge of the hypersurfaces Xα and Xω can be used to locally
artition X into its respective subsets (see Definition 3), with (8)
hen generally having to be solved numerically when x is in T
see also Hauser & Hindman, 1995). Notice also that Λ(·) is not
equired to be positive definite nor constant; indeed, for certain
aneuvers, this may allow one to use operators depending only
n a few state variables and which can be directly evaluated
ather than found numerically (cf. Example 12 and Section 6.3).

.2. Implicit representation of the orbit

Given a projection operator p : X → S as by Definition 3, we
enote by xp(x) := (x⋆ ◦ p)(x) the corresponding projection onto
, and define the following function:

(x) := x − xp(x). (10)

rom the properties of x⋆(·) and p(·) (see Definitions 1 and 3,
espectively), it follows that e = e(x) is well defined for x ∈ X,
ocally Lipschitz in a neighborhood of O, and therefore twice
ontinuously differentiable everywhere therein except at the two
ypersurfaces Xα and Xω on the orbit’s boundaries. Most impor-
antly, however, is the fact that the zero-level set of this function
orresponds to the nominal orbit O which we aim to stabilize,
hile, locally, its magnitude is nonzero away from it. Our goal
ill therefore be to design a control law which guarantees the
xistence of a positively invariant neighborhood T of O (see
ig. 1) within which e converges to zero.
With this goal in mind, observe from the definition of a projec-

ion operator (Definition 3) that one may interpret e(x) differently
epending on where in X the current state is located. Indeed,
onsider the open sets (Hα,Hω) and the tube T introduced in
ection 3.1. Clearly, whenever x ∈ Hi for a fixed i ∈ {α, ω}, one
as e = x − xi as p(x) ≡ si, and thus De(x) = In therein. For
∈ T , on the other hand, the function e(·) forms an excessive

et of so-called transverse coordinates (Sætre & Shiriaev, 2020).
his can be observed from its Jacobian matrix evaluated along the
rbit, which inside of T is given by

⊥(s) := De(x⋆(s)) = In − F(s)P(s) (11)

ith P defined in (7). Since P(s)F(s) ≡ 1, the matrix E⊥(s) can be
used to project any vector x ∈ Rn upon the hyperplane orthogonal
to PT(s). As it will appear throughout this paper, we recall some
of its properties:

Lemma 5 (Sætre & Shiriaev, 2020). For all s ∈ S , the matrix
function E⊥ : S → Rn×n defined in (11) is a projection matrix,
i.e. E2

⊥
(s) = E⊥(s); its rank is n − 1; while P(s) and F(s) span its

left- and right annihilator spaces, respectively. □
4

3.3. Merging two types of linearizations

To stabilize the zero-level set of the function e = e(x), we will
consider a control law of the following form:

u = u⋆(p(x)) + K (p(x))e. (12)

Here u⋆ : S → Rm is the known function corresponding to the
control curve of the s-parameterized maneuver (see Definition 1)
and K : S → Rm×n is smooth (i.e. of class C∞). Note that,
due to p(·) being locally Lipschitz in X, the (local) existence and
uniqueness of a solution x(t) to (1) is guaranteed if u is taken
according to (12), as the right-hand side of (1) is then locally
Lipschitz continuous in a neighborhood of O.

Whenever Dp(·) is well defined, we have by the chain rule that
the time derivative of e under (12) is given by

ė = De(x) (f (x) + B(x) [u⋆(p) + K (p)e]) , (13)

where p = p(x). With the aim of providing conditions ensuring
that a control law of the form (12) is a solution to Problem 2,
we state the following lemma, which we later will use to derive
the first-order approximation of the right-hand side of (13) with
respect to e.

Lemma 6. Any C2 function σ : Rn
→ R, satisfying σ (y) = 0 for

all y ∈ O, can be equivalently rewritten as

σ (x) = Dσ (xp(x))e(x) + O(∥e(x)∥2) (14)

for almost all x in a neighborhood X̂ ⊆ X of O.

For A(·) as in (2), let Acl(s) := As(s) + Bs(s)K (s) with

As(s) := A(x⋆(s), u⋆(s)) and Bs(s) := B(x⋆(s)). (15)

We may then use Lemma 6 to state the following.

Proposition 7. For some projection operator p : X → S as by
Definition 3, consider the closed-loop system (1) under the (locally
Lipschitz) control law (12). There then exists a neighborhood N (O)
of O, such that the time derivative of e = e(x), defined in (10), can be
written in the following forms within three specific subsets of N (O):
(i) If x(t) ∈ Hi ∩ N (O) with i ∈ {α, ω} fixed, then

ė = Acl(si)e + O(∥e∥2); (16)

(ii) If x(t) ∈ T ∩ N (O), then

ė =
[
E⊥(p)Acl(p) − F(p)P ′(p)ρ(p)

]
E⊥(p)e + O(∥e∥2), (17)

where p = p(x) and P ′(s) = FT(s)D2p(x⋆(s)).

Consider the linear, time-invariant system

ẏ = Acl(si)y, y ∈ Rn, (18)

for some fixed i ∈ {α, ω}. It corresponds to the first-order
approximation system of (16). It is also equivalent to the Jacobian
linearization of (1) under the linear control law u = u⋆(si) +

K (si)(x − xi) about the respective equilibrium point. The first-
order approximation system of (17) along O, on the other hand,
is equivalent to the following system of differential–algebraic
equations:

ż =
[
E⊥(s)Acl(s) − F(s)P ′(s)ρ(s)

]
z, (19a)

0 = P(s)z, (19b)

where z ∈ Rn, s = s(t) solves (5), and with the condition
0 = P(s)z obtained directly from (A.1) using Lemma 5 (see
also Leonov et al., 1995, Sec. 4 or Sætre & Shiriaev, 2020, Thm.
7 for alternative derivations of (19)). Note that (19) is different
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t

ρ

t
Q

o the first-order variational system of (1) about x⋆(s(t)), which
instead is given by

χ̇ =
[
Acl(s) + Bs(s)

(
u′

⋆(s) − K (s)F(s)
)
P(s)

]
χ. (20)

The solutions to (19) and (20) are however related through
z(t) = E⊥(s(t))χ (t). Hence, by recalling the properties of E⊥(·)
(see Lemma 5), it follows that (19) captures the transverse com-
ponents of the variational system (20), and is therefore referred
to as a transverse linearization.

It is well known (see, e.g., Khalil (2002, Theorem 4.6)) that the
origin of (18) is exponentially stable at both sα sω if, and only if,
for any Qα,Qω ∈ Mn

≻0, there exist Rα, Rω ∈ Mn
≻0 satisfying a pair

of algebraic Lyapunov equations (ALEs):

AT
cl(sα)Rα + RαAcl(sα) = −Qα, (21a)

AT
cl(sω)Rω + RωAcl(sω) = −Qω. (21b)

A similar statement can also be readily obtained for (19) by
either a slight reformulation of Theorem 1 in Sætre, Shiriaev,
Pchelkin, and Chemori (2020) or from the stronger statements
found in Leonov (1990) and Leonov et al. (1995) (see, respectively,
Theorem 5.1 and Theorem 1 therein).

Lemma 8. Suppose there exist C1-smooth matrix-valued functions
R,Q⊥ : S → Mn

≻0 such that the projected Lyapunov differential
equation (PrjLDE)

ET
⊥

[
AT
clE

T
⊥
R+RE⊥Acl+Q⊥ +ρ

(
R′

−(P ′)TFTR−RFP ′
)]
E⊥ = 0n (22)

is satisfied for all s ∈ S (here the s-arguments of the functions
have been omitted for brevity). Then the time derivative of the scalar
function V⊥ = zTR(s(t))z, with z = z(t) governed by (19), is
V̇⊥ = −zTQ⊥(s(t))z. □

Note here that by (19b) we have zTR(s)z = zTR⊥(s)z where
R⊥(s) := ET

⊥
(s)R(s)E⊥(s). Due to the fact that E2

⊥
(s) = E⊥(s), this

motivates the following:

Proposition 9. Let the C1 function ρ : S → R≥0 satisfy ρ(sα) =

(sω) ≡ 0, ρ ′(sα) > 0, and ρ(s) > 0 for all s ∈ int (S). Then
here exists a C1 solution R : S → Mn

≻0 to (22) for some smooth
⊥ : S → Mn

≻0 if, and only if, there exists a unique C1 solution
R⊥ : S → Mn

⪰0 to

ET
⊥
(s)
[
AT
cl(s)R⊥(s) + R⊥(s)Acl(s) + ρ(s)R′

⊥
(s) + Q⊥(s)

]
E⊥(s) = 0n

(23)

satisfying R⊥(s) = ET
⊥
(s)R⊥(s)E⊥(s) for all s ∈ S .

4. Main results

We now provide conditions ensuring that a control law of the
form (12) is a solution to Problem 2.

Theorem 10. Given a projection operator p(·) as by Definition 3,
consider the closed-loop system (1) under the (locally Lipschitz)
control law (12). If there exists a C1-smooth matrix function R : S →

Mn
≻0 such that

1. for some Qα,Qω ∈ Mn
≻0, Rα = R(sα) and Rω = R(sω) satisfy

the ALEs (21);
2. for some smooth Q⊥ : S → Mn

≻0, R⊥(s) := ET
⊥
(s)R(s)E⊥(s)

satisfies (23) for all s ∈ S;

then
(a) the final equilibrium, xω , is asymptotically stable;

5

Fig. 2. Phase portrait of q̈ = u, with u corresponding to Example 12 for qα = −1,
qω = 2, κ = 1, p(x) = satqωqα (q) and k1 = k2 = 4. The level curve q̇+2(q+1) = 0
crossing (qα, 0) is illustrated by the yellow, dotted line. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

(b) the one-dimensional manifold O, defined in (4), is invariant
and exponentially stable;

(c) there exists a pair of numbers, µ, ν ∈ R>0, such that the time
derivative of the locally Lipschitz continuous function V (x) =

eT(x)R(p(x))e(x) satisfies V̇ (x) ≤ −µV (x) for almost all x in
T = {x ∈ Rn

: V (x) < ν}.

Remark 11. Under a control law (12) satisfying the conditions
in Theorem 10, any solution of (1) initialized in vicinity of O
will converge either directly to the initial equilibrium xα , which
is rendered partially unstable (a ‘‘saddle’’), or onto O\{xα} and
then onward to xω . This implies that the system’s states can get
‘‘trapped’’ if they enter the region of attraction of xα . Indeed, they
will then converge toward xα at an exponential rate, but never
enter into the tube T from within which they can converge to
xω . This issue can be resolved by some ad hoc modification to
the controller (12). For example, one can limit the codomain of
the projection operator used in (12). For an operator of the form
(8), this would correspond to p(x) = argmins∈[sα+ϵ,sω](·) for some
sufficiently small ϵ > 0. A similar alternative is to let ϵ ∈ [0, ϵM ]

be a bounded dynamic variable, e.g. ϵ̇ = λϵ · sign
(
δϵ − ∥x − xα∥

)
for small ϵM , δϵ, λϵ > 0, although the control law will then no
longer be truly static in a neighborhood of xα .

Before we move on to showing how such a feedback can be
constructed, we will apply the method to a simple fully-actuated,
one-degree-of-freedom system as to highlight the effect of the
projection operator upon the resulting feedback controller.

Example 12. Consider the double integrator

q̈ = u, q(t), u(t) ∈ R,

with state vector x = col(q, q̇). Starting from rest at qα , the task
is to drive the system to rest at qω(> qα) along the curve x⋆(s) =

col(s, ρ(s)). Here s ∈ S := [qα, qω] and ρ(s) := κ(s − qα)(qω − s)2
for some constant κ > 0. As ∥F(s)∥2

= 1+ (ρ ′(s))2 ≥ 1, this is an
s-parameterization as by Definition 1.

Suppose p(·) is a projection operator in line with Definition 3
(we will provide some candidates for this operator shortly). Using
p = p(x), we define e1 := q − p, e2 := q̇ − ρ(p) and u⋆(p) :=

ρ ′(p)ρ(p), such that u = u⋆(p) − k1e1 − k2e2 is of the form of
(12). Let us therefore check when this feedback, corresponding to
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constant K = [−k1,−k2], satisfies the conditions in Theorem 10
or a given p(·).

Let k1, k2 > 0 such that Acl :=
[ 0 1
−k1 −k2

]
is Hurwitz, and

enote by R ∈ M2
≻0 the unique solution to AT

clR + RAcl = −2I2,
hich corresponds to the ALEs (21). We may then consider the
locally Lipschitz) Lyapunov function candidate V = 2−1eTRe,
with e = col(e1, e2), whose zero-level set evidently corresponds
to the desired orbit. Within the interiors ofΠ (qα) andΠ (qω), with
Π (·) defined in (6), we have V̇ = −∥e∥2 since ∥Dp∥ = 0 therein.
To determine the stability of the orbit as a whole, we therefore
need to check that we also have contraction within some tubular
neighborhood contained in T for the chosen projection operator.
We consider two different such operators next.

By taking inspiration from Hauser and Hindman (1995), let
us first consider the projection operator corresponding to taking
Λ = R in (8). Using (9), we then observe that ET

⊥
(s)RF(s) = 01×2

for all s ∈ S. Hence (23) is everywhere satisfied for this R⊥ and
Q = I2 (see Hauser and Hindman (1995) for further details).
Moreover, we have V̇ = −∥e∥2 for all x such that p(x) ∈ (qα, qω).

Consider now instead the operator obtained by taking Λ =

diag(1, 0) in (8). This is equivalent to p(x) = satqωqα (q), where
satba(q) = max(a,min(q, b)) is the saturation function (an example
of using this operator is shown in Fig. 2). Clearly then e1 ≡ 0 for
q ∈ [qα, qω], while it can be shown that ė2 = −(k2+ρ ′(p))e2. Thus,
the time derivative of the above Lyapunov function candidate
satisfies

V̇ = −R22(k2 + ρ ′(p))e22 = −R22(k2 + ρ ′(p))∥e∥2

whenever q ∈ (qα, qω), with R22 > 0 the bottom-right element
of R. We may therefore ensure that V will be strictly decreasing
everywhere inside the tube (except, of course, on the nominal
orbit) by taking, e.g., k2 > sups∈S |ρ ′(s)|. This is nevertheless in
contrast to the previous operator (i.e. Λ = R) where k2 > 0
could be taken arbitrarily small and still ensure contraction, thus
highlighting the dependence of the feedback K (·) upon the choice
of p(·).

As shown in this example, it is trivial to combine Theorem 10
with a specific projection operator as in Hauser and Hindman
(1995):

Corollary 13. If there exist C1-smooth matrix-valued functions
R,Q : S → Mn

≻0 satisfying, for all s ∈ S ,

ρ(s)R′(s) + AT
cl(s)R(s) + R(s)Acl(s) = −Q (s), (24)

then R(s) satisfies the conditions in Theorem 10 provided that x⋆(·)
is C3 and p(·) is taken as in Proposition 4 with Λ(s) = R(s). □

Corollary 13 shows the possibility of finding a feedback ma-
trix K (·) that solves Problem 2 by solving a differential Riccati
equation. However, it also forces one to use a particular projec-
tion operator (see Proposition 4), which generally requires one
to solve an optimization problem at each iteration. Meanwhile,
Example 12 showed that it also can be possible to find projection
operators which are very simple and can be computed directly.
This motivates a method which allows one to attempt to find
a solution for any choice of projection operator. To this end, let
B⊥(s) := E⊥(s)Bs(s) and

A⊥(s) := E⊥(s)As(s) − ρ(s)F(s)FT(s)D2p(x⋆(s))E⊥(s).

Inspired by linear matrix inequality (LMI) approaches such as that
in Bernussou, Peres, and Geromel (1989), the following statement
provides one such method.

Proposition 14. Given a projection operator p(·) in the sense of
Definition 3, suppose that for a strictly positive, smooth function
6

λ : S → R>0, there exists a pair of smooth matrix-valued functions
Y : S → Rm×n and W : S → Mn

≻0, which for all s ∈ S satisfy the
matrix inequality

ρ(s)W ′(s) − W (s)AT
⊥
(s) − A⊥(s)W (s) − Y T(s)BT

⊥
(s) − B⊥(s)Y (s)

− λ(s)[E⊥(s)W (s) + W (s)ET
⊥
(s)] ⪰ 0n. (25)

Further suppose that for some Kα, Kω ∈ Rm×n which are such that
(As(sα) + Bs(sα)Kα) and (As(sω) + Bs(sω)Kω) are both Hurwitz, the
following two identities hold:

KαW (sα) = Y (sα) and KωW (sω) = Y (sω). (26)

hen by taking K (s) = Y (s)W−1(s) in (12) the matrix function
(s) = W−1(s) satisfies all the requirements stated in Theorem 10.

In order to find a solution pair (W , Y ) to Proposition 14, one
an use some transcription method as to discretize the differen-
ial LMI (25) into a finite set of LMIs. One can then attempt to find
n approximate solution using semidefinite programming (SDP).
n regard to handling the constant stabilizing matrices Kα and Kω
n the resulting SDP formulation, there are two main options:
1) Add, for both s ∈ {sα, sω}, the LMI constraints

(s)AT
s (s) + As(s)W (s) + Y T(s)Bs(s) + Bs(s)Y (s) ≺ 0n;

(2) Add the equality constraints (26), in which some stabilizing
matrices Kα and Kω have already been found.

In case of the latter option, one can for example use LQR: Take,
for both i ∈ {α, ω}, Ki = −Γ −1

i BT
s (si)Ri, where Ri ∈ Mn

≻0 solves the
algebraic Riccati equation

AT
s (si)Ri + RiAs(si) − RiBs(si)Γ −1

i BT
s (si)Ri = −Qi (27)

iven some Γi ∈ Mm
≻0 and Qi ∈ Mn

≻0.

. Planning point-to-point maneuvers of underactuated me-
hanical systems

Consider now the following task: Find an s-parameterized PtP
aneuver (see Definition 1) of an underactuated mechanical sys-

ems with nq degrees of freedom, one degree of underactuation,
nd equations of motion

(q)q̈ + C(q, q̇)q̇ + G(q) = Buu. (28)

ere q = col(q1, . . . , qnq ) ∈ Rnq are generalized coordinates,
˙ ∈ Rnq the corresponding generalized velocities, x = col(q, q̇)
enotes the n = 2nq states, while u ∈ Rm is a vector of m = nq−1
ontrol inputs; M(·) ∈ Mnq

≻0 is the (smooth) inertia matrix; the
onstant matrix Bu ∈ Rnq×m has full rank; C(·, ·) corresponds to
oriolis and centrifugal forces, which we in this paper write as
(q, q̇) = C1(q, q̇) + C2(q, q̇) with C1(q, q̇) :=

∑nq
i=1

∂M(q)
∂qi

q̇i and

C2(q, q̇) := −
1
2

[
∂M(q)
∂q1

q̇, . . . , ∂M(q)
∂qnq

q̇
]T

; while G(·) ∈ Rnq is the

(smooth) gradient of the system’s potential energy.
For a pair of points (configurations) qα and qω , qα ̸= qω ,

suppose there exist uα, uω ∈ Rm such that G(qα) ≡ Buuα and
G(qω) ≡ Buuω . The task we want solve in this section can then be
ore accurately formulated:

roblem 15. For xα = col(qα, 0nq×1) and xω = col(qω, 0nq×1), find
or the system (28) an s-parameterized PtP maneuver connecting
α and xω , i.e., a triplet (x⋆, u⋆, ρ) of the form (3) satisfying
efinition 1.

To solve this problem, we propose a procedure inspired by the
pproach in Shiriaev et al. (2005).
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.1. Synchronization function–based orbit generation

Since (28) is a second-order system, the state curve x⋆ : S →

(see Definition 1) can be written on the form

⋆(s) := col
(
Φ(s),Φ ′(s)ρ(s)

)
. (29)

ere Φ(s) = col(φ1(s), . . . , φnq (s)) is a vector-valued function,
which we will assume is smooth, that traces out a curve in
the configuration space of the system. As one may consider the
generalized coordinates as being synchronized when confined to
this curve, we will refer to the smooth, scalar functions φi(·) as
synchronization functions.4 Moreover, the scalar function ρ : S →

≥0 may now, in addition to governing the dynamics of the curve
arameter s (see (5)), also be considered as to set the speed at
hich the curve formed by Φ(·) is traversed.
Let us now derive condition upon the functions Φ(·), ρ(·) and

⋆(s) such that they together provide as solution to Problem 15.
n this regard, we first note that Property P4 in Definition 1,
.e. ∥F(s)∥ > 0, is equivalent to

Φ ′(s)∥2
+ ∥Φ ′′(s)ρ(s) +Φ ′(s)ρ ′(s)∥2 > 0. (30)

ext we note that Property P2 obviously requires thatΦ(sα) = qα
nd Φ(sω) = qω . Furthermore, to ensure consistency with the
ynamics of (28), corresponding to Property P5, it is clear that the
unctions Φ(·), ρ(·) and u⋆(s) must satisfy the following equality
or all s ∈ S:

(s)ρ ′(s)ρ(s) + B(s)ρ2(s) + G(s) = Buu⋆(s). (31)

ere A(s) := M
(
Φ(s)

)
Φ ′(s), B(s) := M

(
Φ(s)

)
Φ ′′(s) + C

Φ(s),Φ ′(s)
)
Φ ′(s), and G(s) := G

(
Φ(s)

)
. Due to the assumption

hat Bu has full rank, we can multiply (31) from the left by any
f its left inverses B†

u ∈ Rm×nq i.e. B†
uBu = Im, to obtain

⋆(s) = B†
u

[
A(s)ρ ′(s)ρ(s) + B(s)ρ2(s) + G(s)

]
. (32)

ence, if Φ : S → Rnq and ρ : S → R≥0 are known, then the
orresponding u⋆(·) can be found from (32).
From the above it is clear that if the system (28) was fully actu-

ted, i.e. m ≡ nq, and therefore B†
u = B−1

u , then Property P5 would
mmediately be satisfied simply by taking u⋆(·) according to (32)
or any combination of Φ(·) and ρ(·) (see Example 12). This is,
owever, not the case for the underactuated systems we consider,
s Bu ∈ Rnq×nq−1 has a family of full-rank left annihilators. Denote
y B⊥

u ∈ R1×nq such an annihilator, i.e. B⊥
u Bu = 01×m. Multiplying

31) from the left by B⊥
u , one then finds that Φ(·) and ρ(·) must

atisfy

(s)ρ ′(s)ρ(s) + β(s)ρ2(s) + γ (s) = 0 (33)

or all s ∈ S , where α(s) := B⊥
u A(s), β(s) := B⊥

u B(s) and γ (s) :=
⊥
u G(s).
Our suggested approach for solving Problem 15 can now

oughly be described as follows: For a particular choice of a
mooth Φ(·), try to find some ρ(·) satisfying (33) and Property
3 in Definition 1, i.e. ρ(sα) = ρ(sω) ≡ 0 and ρ(s) > 0 for
ll s ∈ int (S). If a (satisfactory) solution ρ(·) is found, then the
orresponding unique u⋆(·) is in turn found directly from (32).
In order to help us find such a function ρ(·), we will utilize

he fact that a solution s = s(t) to ṡ = ρ(s) must then also be a
olution to the second-order differential equation (cf. (33))

(s)s̈ + β(s)ṡ2 + γ (s) = 0. (34)

4 If one replaces s with a known function of only the generalized coordinates,
.e. θ = θ (q), then the relations φi(θ ) have commonly been referred to as
irtual (holonomic) constraints (see, e.g., Shiriaev et al. (2005)). This terminology
s somewhat misleading for the purpose we consider in this paper, however,
nd we therefore use the more fitting notion of synchronization functions.
7

e will refer to (34) as the reduced dynamics associated with the
ynchronization functions Φ(·). Next we briefly review some key
roperties of this equation, originally derived in Shiriaev et al.
2005), Shiriaev, Robertsson, Perram, and Sandberg (2006).

.2. Properties of the reduced dynamics

The following is a (weaker) reformulation of Theorem 3 in
hiriaev et al. (2006), and thus stated without proof.

emma 16. Let se ∈ S be an equilibrium point of (34), i.e. γ (se) ≡

, satisfying α(se) ̸= 0, and denote

ν(s) := γ ′(s)/α(s). (35)

hen the equilibrium point se is a center if ν(se) > 0, while it is a
addle if ν(se) < 0. □

Here the conditions for a saddle equilibrium follows directly
rom the Hartman–Grobman theorem (see also Hahn et al., 1967,
ec. 20), whereas the condition for a center equilibrium point, on
he other hand, can be attained by noticing that the solutions
f (33) form certain level curves. More precisely, let ρ(·) ≥ 0

solve (33), and note that β(s) := α′(s) + β̂(s) with β̂(s) :=

B⊥
u C2(Φ(s),Φ ′(s))Φ ′(s). Then

1
2
α(s) exp

(∫ s

sr

2β̂(η)
α(η)

dη

)
=:

1
2
α(s)Ψ (sr , s) (36)

s an integrating factor of (33) for any sr ∈ S. By Shiriaev et al.
2005, Thm. 1), if s = s(t) ∈ S is simultaneously a solution to (34)
nd to ṡ = ρ(s), with ρ : S → R≥0 strictly positive on int (S), then
or any pair of points s1, s2 ∈ S:

2(s2)ρ2(s2)−Ψ (s2, s1)
[
α2(s1)ρ2(s1) (37)

− 2
∫ s2

s1

Ψ (s1, τ )α(τ )γ (τ )dτ
]
= 0.

ote that for certain systems, β̂(s) ≡ 0 ∀s ∈ S , and hence Ψ ≡ 1.
his property, which can make it significantly easier to check if
37) is satisfied, holds for all systems whose inertia matrix M(·) is
onstant, and for any system where the passive joint is the first
n a kinematic chain, such as underactuated systems of Class-I
ccording to the classification of Olfati-Saber (2001).

.3. Conditions for the existence of a PtP maneuver

We will now demonstrate how one can use the properties of
he reduced dynamics in order to obtain a solution to Problem 15.
n this regard, recall the definitions of ν(·) and Ψ (·) given in (35)
nd (36), respectively.

heorem 17. Let the smooth vector-valued function Φ : S → Rnq

e such that Φ(sα) = qα , Φ(sω) = qω , ∥Φ ′(sα)∥ ̸= 0, ∥Φ ′(sω)∥ ̸= 0,
(sα) ≤ 0 and ν(sω) ≤ 0. Further suppose that the following
onditions hold: α(s) ̸= 0 for all s ∈ S; there exists a single point
e ∈ int (S) satisfying γ (se) ≡ 0, for which ν(se) > 0; and∫ sω

sα
Ψ (sα, τ )α(τ )γ (τ )dτ ≡ 0. (38)

hen there exists a unique, bounded, smooth function ρ : S → R≥0
atisfying (33), such that the triplet (x⋆, u⋆, ρ), with x⋆(·) given by
29) and u⋆(·) by (32), is a solution to Problem 15. That is, they
onstitute an s-parameterized point-to-point maneuver of (28) as by
efinition 1.



C.F. Sætre and A. Shiriaev Automatica 147 (2023) 110735

t
i
e
(

R
T
m
e
s
w
s
i
t
f

t

C

c
w

f
Θ

f
a
t
b

g

α

Fig. 3. The coordinate convention used in Section 6.1, with frame having the
form of the ‘‘butterfly’’ robot.

Remark 18. As ∥G(qα)−Buuα∥ = ∥G(qω)−Buuω∥ = 0, a solution
to Theorem 17 implies γ (ŝ) ≡ 0 for ŝ ∈ {sα, sω}. Hence (33) is then
trivially true at ŝ ∈ {sα, sω}, while from its derivative with respect
to s,

αρ ′′ρ + α(ρ ′)2 +
(
3α′

+ 2β̂
)
ρ ′ρ +

(
α′′

+ β̂ ′
)
ρ2

+ γ ′
= 0,

one finds that (ρ ′(ŝ))2 = −γ ′(ŝ)/α(ŝ). Thus, for sα and sω to be
hyperbolic (saddle) equilibrium points of (34), and consequently
ρ ′(sα) > 0 and ρ ′(sω) < 0, it is further required that ν(sα) < 0 and
ν(sω) < 0. From this, one can deduce that the function γ (s)/α(s)
hen must change its sign an odd number of times over the open
nterval (sα, sω). Considering only one sign change, the necessary
xistence of a point se ∈ int (S) for which γ (se) = 0 and ν(se) > 0
i.e. a center) is evident.

emark 19. Due to the requirement of a center on int (S),
heorem 17 cannot be used to construct an s-parameterized PtP
aneuver between two adjacent equilibria for systems where the
quilibria of (34) are fixed. In light of Remark 18, one can in
uch cases instead attempt to use an alternative set of conditions
hich are based on α(s) changing its sign once over int (S) in-
tead of γ (s). Such conditions can be obtained from Theorem 1
n Surov, Gusev, and Shiriaev (2018), and correspond to replacing
he conditions in the second sentence in Theorem 17 with the
ollowing: ν(sα) < 0 and ν(sω) < 0; γ (s) > 0 for all s ∈ int (S);
and there exists a single point ss ∈ int S satisfying α(ss) ≡ 0 and
β̂(ss) < −

3
2α

′(ss) < 0. Roughly speaking, these conditions ensure
hat the point (s, ṡ) =

(
ss,

√
−γ (ss)/β(ss)

)
is finite-time attractive

(resp. repellent) for all solutions of (34) within a neighborhood
lying to the left (resp. right) of this point in the upper (s, ṡ)-plane.

6. Application to non-prehensile manipulation

We will now apply both the motion planning method pro-
posed in Section 5 and the feedback design approach outlined
in Section 4 as to solve the following non-prehensile manipu-
lation (Ruggiero, Lippiello, & Siciliano, 2018) problem: Generate
an asymptotically orbitally stable PtP motion corresponding to
a ball rolling between any two points upon an actuated planar
frame. We begin by describing the system model and provide
some necessary assumptions.

6.1. System description and mathematical model

Consider a ball of (effective) radius rb which is rolling without
slipping upon the boundary of an actuated frame; see Fig. 3. The
edge of the frame is traced out by the polar coordinates (ϑ, rf (ϑ)),
with ϑ ∈ I ⊆ S1 and where the scalar function rf : I → R>0 is
smooth. This representation can be used to describe several well-
known nonlinear systems, including the ball-and-beam (Hauser,
 t

8

Sastry, & Kokotovic, 1992), rf (ϑ) =
const.
cos(ϑ) ; the disk-on-disk (Ryu,

Ruggiero, & Lynch, 2013), rf (ϑ) = const.; as well as the so-called
‘‘butterfly’’ robot (Lynch, Shiroma, Arai, & Tanie, 1998), whose
frame, as in Surov et al. (2015), can be of the form

rf (ϑ) = a − b cos(2ϑ), a, b ∈ R>0. (39)

We will make the following assumptions, whose validity must be
checked for any found motion of the system:

A1. The ball’s center traces out a smooth curve when it traverses
the frame5;

A2. The ball is always in contact with the frame;
A3. The ball always rolls without slipping.

Let θ and ϕ be defined as shown in Fig. 3, and take q =

col(θ, ϕ). Then, in light of the above assumptions, the system
matrices corresponding to (28) are given by

M(q) =

⎡⎣ Jf + Jb + m∥σ⃗∥
2

−
(
mσ⃗ · n⃗ +

Jb
rb

)
ζ

−
(
mσ⃗ · n⃗ +

Jb
rb

)
ζ ′

( Jb
r2b

+ m
)
ζ ′2

⎤⎦ ,
(q, q̇) =

[
c11ϕ̇ c11θ̇ − c12ϕ̇

−c11θ̇
(

Jb
r2b

+ m
)
ζ ′ζ ′′ϕ̇

]
, Bu =

[
1
0

]
,

G(q) = col
(
mg⃗ ·

((
d
dθ

Rot(θ )
)
σ⃗

)
,mg⃗ · (Rot(θ )τ⃗ ζ ′)

)
where c11 := mζ ′σ⃗ · τ⃗ , c12 :=

(
mσ⃗ · n⃗ +

Jb
rb

)
ζ ′′

+ c11κζ ′ and g⃗ =

col(0, g). See Surov et al. (2015) for a more detailed description
of the system parameters and variables, albeit with a slightly
different notation.

6.2. Maneuver design

Wewill now utilize the procedure outlined in Section 5 to plan
PtP maneuvers for such systems. For this purpose, letψ(ϕ) denote
the tangential angle of the polar curve at ϕ. Namely, the angle
such that the unit tangent vector τ⃗ at ϕ can be written as τ⃗ =

ol(cos(ψ), sin(ψ)); or equivalently, the angle such that ∂ψ

∂ζ
= κ

here ζ is the arc length and κ = κ(ϕ) is the signed curvature of
the curve traced out by the ball. Hence ψ is trivial for systems
with constant curvature, e.g., ψ ≡ 0 for the ball-and-beam
system and ψ = −ϕ for the disk-on-disk.

With this in mind, consider

Φ(s) = col
(
Θ(s) − ψ(s), s

)
, s ∈ S ⊆ S, (40)

or some smooth, scalar function Θ(·). Simply put, if one takes
= 0, then the synchronization function (40) aligns τ⃗ with the

ixed horizontal axis (see Fig. 3), such that the ball can be consider
s to be rolling on a horizontal surface. The function Θ(·) can
herefore be used to slow down or speed up the rolling motion
y altering the ‘‘slope’’ upon which the ball rolls.
For this choice of Φ(·), the functions α(·) and γ (·) in (33) are

iven by γ (s) = mgζ ′ sin(Θ(s)) and

(s) =

(
Jb
R

(
κ +

1
R

)
+ m(1 + σ⃗ · κ⃗)

)
ζ ′2

−

(
mσ⃗ · n⃗ +

Jb
R

)
ζ ′Θ ′.

From this and Lemma 16, the following can be deduced:

Proposition 20. A point se ∈ S , for which α(se) ̸= 0, is an
equilibrium point of (34) if Θ(se) ≡ 0. Moreover, it is a center if
Θ ′(se)/α(se) > 0, or a saddle if Θ ′(se)/α(se) < 0. □

5 Mathematically, this is equivalent to rbκf (ϑ) < 1 ∀ϑ ∈ I, where κf (ϑ) is
he signed curvature of the planar curve at ϑ .
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Table 1
Parameter values of the ‘‘butterfly’’ robot (BR).
m [kg] rb [m] Jb [kgm2] Jf [kgm2] g [m s−2]

3.0 × 10−3 1.09 × 10−2 5.8 × 10−7 8.9 × 10−4 9.81

Fig. 4. Phase portrait of (34), with the red curve the solution of (33) satisfying
P3 in Definition 1.

One can therefore choose the equilibrium points of (34) freely
hrough the choice of Θ . In light of the discussion in Section 5.3,
this in turn can be utilized to find a solution satisfying the
conditions in Theorem 17. More specifically, let Θ be taken such
hat α(s) ̸= 0 on S , Θ ′(sα)/α(sα) ≤ 0 and Θ ′(sω)/α(sω) ≤ 0, as
ell as Θ(se) = 0 and Θ ′(se)/α(se) > 0 for some se ∈ int (S).

Then Condition (38) corresponds to the existence of a separatrix
connecting sα and sω , for which the corresponding function ρ :

S → R≥0 can be found from (37). We utilize this procedure in
the following example.

6.3. Simulation example: The ‘‘butterfly’’ robot

Consider the ‘‘butterfly’’ robot (BR) illustrated in Fig. 3. Its
shape is described by (39) with a = 1.14 × 10−1 and b =

.9 × 10−2, while the values of the system parameters are given
n Table 1. The task we will consider is to maneuver the ball from
α = 0 rad to ϕω = 2 rad.

otion planning. In light of Proposition 20, consider the syn-
hronization functions (40) with Θ(s) = k(s− sα)(s− se)(sω − s)2,
here sα = 0, se ≈ 0.707, sω = 2, and k = 0.01. The
orresponding unique (positive) solution to (33), found using (37)
nd satisfying Property P3 in Definition 1, is shown in red in
ig. 4. The corresponding nominal control input found from (32)
an be seen in Fig. 5, where it is measured relative to the right
ertical axis.

rojection operator. We took Λ = diag(0, 1, 0, 0) in (8) with
:= [sα, sω], which is equivalent to p(x) = satsωsα (ϕ) = max

sα,min(ϕ, sω)).

ontrol design. Since the Jacobian linearization is linearly con-
rollable at both xα = x⋆(sα) and xω = x⋆(sω), we computed a
air of constant LQR-based feedback matrices Kα, Kω ∈ Rm×n by

solving the algebraic Riccati Eqs. (27) using the CARE command
in MATLAB, with Γα = Γω = 105 and Qα = Qω = I4. Note
hat the magnitude of Γα and Γω here simply reflects the small
arameter values (see Table 1). We then took λ = 0.5, and
ormulated a semidefinite programming (SDP) problem following
roposition 14 with the equality constraints (26). In order to dis-
retize the differential LMI (25) into a finite number of LMIs, we
ook the elements of the matrix functions W and Y as sixth-order
eziér polynomials, and took (25) evaluated at 200 evenly spaced
oints as LMI constraints in the SDP. The resulting SDP was then
9

Fig. 5. Found elements of K (s) = [k1(s), k2(s), k3(s), k4(s)] (left axis) and the
nominal control input u⋆(s) (right axis).

solved using the YALMIP toolbox for MATLAB (Löfberg, 2004)
together with the SDPT3 solver (Tütüncü, Toh, & Todd, 2003).
Fig. 5 shows the elements of the obtained K (s) = Y (s)W−1(s) ∈

1×4.

mplementation. Following the discussion of Remark 11, the
rojection operator was implemented as p(x) = satsωsα+ϵ(ϕ),

where the dynamic variable ϵ ∈ [0, ϵM ] was governed by ϵ̇ =

Msign
(
ϵM − ∥x − xα∥

)
with ϵM = 10−3 (similar results were

obtained with a constant ϵ = ϵM ). Since exact measurements of
all the states were assumed to be given, the implementation of
the controller (12) is straightforward: Step 1: Given x, compute
p = p(x); Step 2: Compute u⋆(p), K (p) and x⋆(p) (e.g. using
splines or lookup tables); Step 3: Take u = u⋆(p) + K (p)e with
e = x − x⋆(p).

imulation results. The response of the system when starting
ith the initial conditions x(0) = xα + col(0.1,−0.3, 0, 0) is

shown in Fig. 6, with some snapshots of the system’s configura-
tion shown in Fig. 7. As the states are initially within the half-ball
corresponding to xα , it can be seen that the controller first brings
the states close to xα , after which they then follow the nominal
orbit to xω . Notice also that Assumption A2 holds, as the normal
force Fn between the ball and the frame is everywhere positive.

To test the sensitivity of the closed-loop system to noise and
perturbations, we simulated the system with the same initial
conditions, but with a small amount of white noise added to the
measurements passed to the controller, with the actual mass of
the ball, mb, being 10% larger than that assumed, as well as with
the matched disturbance 10−4 sin(t) added to the right-hand side
of (28). The resulting system response is shown in Fig. 8.

Fig. 9 shows the system response for x(0) = xω +

ol(0.1, 0.1, 0, 0). Interestingly, these initial conditions do not lie
in the region of attraction of the linear feedback u = u⋆(sω) +

K (sω)(x − xω). Notice also that ϕ becomes less than 2 rad just
before t = 1 s, at which the gradient of the projection operator
has a discontinuity. It can be seen that the smoothness of the
control signal is violated at this time instant, but it is clear
from the highlighted rectangle that Lipschitz continuity is still
preserved.

7. Discussion

Is this Orbital Stabilization? The main focus of this paper has
been upon the stabilization of the set O (see (4)) corresponding
to an assumed-to-be-known maneuver M. Even though this set
consists of a heteroclinic orbit and its limit points, it may not be
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Fig. 6. Response of the BR system initialized close to xα .

mmediately clear that this form of set-stabilizing feedback can
e referred to as an orbitally stabilizing feedback. We however be-
ieve such a classification is not only justified, but that it is in fact
n important one to make. To illustrate this point, consider the
rbital stabilization problem (see Problem 2). As previously stated,
t is equivalent to ensuring the asymptotic orbital stability (Hahn
t al., 1967; Leonov et al., 1995; Urabe, 1967; Zubov, 1999) of the
esired motion. It therefore incorporates the problem of stabiliz-
ng several important behaviors, including those corresponding
o equilibria (trivial orbits), limit cycles (periodic orbits) and
tP maneuvers (heteroclinic orbits). This motivates developing
eneral-purpose methods which can be used to control and sta-
ilize these types of maneuvers (and more). Take, for instance,
he method we have proposed in this paper: In the case of trivial
rbits, Theorem 10 and Proposition 14 condenses down to a
tandard linear feedback stabilizing the Jacobian linearization and
o the satisfaction of an algebraic Lyapunov equation; whereas for
ontrivial periodic orbits, a control law of the form (12) satisfying
22), e.g. found by solving the then periodic differential LMI (25),
ill exponentially stabilize the desired orbit.

ate of convergence. A major (practical) limitation of the pro-
osed scheme is the slow convergence away from the initial
quilibrium. In light of this issue, a possible ad hoc modification
as proposed in Remark 11 as to ensure that the state do not
emain too long about xα . The suggested modifications were,
oughly speaking, based on removing the initial equilibrium and
nstead starting part way along the maneuver, either by removing
t altogether (static approach) or gradually moving away from it
dynamic approach). As an alternative way of handling this issue,
specially the slow convergence away from the initial equilib-
ium, one can instead consider maneuvers where xα is finite-time
epellent with respect to O. If also xω is finite-time attractive,
hen we refer to it as a finite-time PtP maneuver. For such a
aneuver, ρ(·) can of course no longer be Lipschitz about sα
nd/or sω . For instance, taking ρ(s) = κ|s − qα|nα |qω − s|nω for
ny nα, nω ∈ (0.5, 1) in Example 12 corresponds to a finite-
ime maneuver. Note, however, that for p(x) = satqωqα (q), the
rbitally stabilizing feedback then cannot be Lipschitz about xω ,
s ρ ′(s) → −∞ when s → sω . Note also that for such a maneuver
o exist in the solution space of an underactuated mechanical
ystem, the reduced dynamics (34) must a have certain type of
ingular point at the respective boundaries. Take, for example,
s̈ + (1 − a)ṡ2 − bs(s − c) = 0 with a > 3/2 and b, c > 0. It
as a heteroclinic orbit connecting sα = 0 and sω = c. Here sα is
ot only an equilibrium point, but also a singular point of the type
onsidered in Surov et al. (2018), making it finite-time repellent

ith respect to the orbit.

10
8. Conclusion

We have introduced a method for inducing, via locally Lipschitz
continuous static state-feedback control, an asymptotically stable
heteroclinic orbit in a nonlinear control system. Our suggested
approach used a particular parameterization of a known point-to-
point maneuver, together with a so-called projection operator, as
to merge a Jacobian linearization with a transverse linearization
for the purpose of control design. Moreover, a possible way of
constructing such a feedback by solving a semidefinite program-
ming problem was suggested, while statements which may be
used to plan such maneuvers for mechanical systems with one
degree of underactuation using synchronization functions were
provided.

It was demonstrated that the approach could be used to solve
the challenging nonprehensile manipulation problem of rolling a
ball, in a stable manner, between any two points upon a smooth
actuated planer frame. This provided a general solution applicable
to a number of well-known nonlinear systems, including the
ball-and-beam, the disk-on-disk and the ‘‘butterfly’’ robot. The
approach was successfully demonstrated on the latter system in
numerical simulations.
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Appendix

A.1. Proof of Proposition 4

We need to show that all the conditions in Definition 3 are
satisfied. To this end, we begin by differentiating the terms inside
the brackets in (8) with respect to s, from which we obtain the
function

z(x, s) := (x − x⋆(s))T
[
Λ′(s)(x − x⋆(s)) − 2Λ(s)F(s)

]
.

ince ∂
∂s z(x, s)|x=x⋆(s) = 2FT(s)Λ(s)F(s) > 0 and z(x⋆(s), s) ≡ 0,

Condition C1 is implied. Moreover, by noting from Property P1
in Definition 1 that the curve x⋆(·) has bounded curvature and is
not self-intersecting, the implicit function theorem (Berger, 1977,
Thm. 3.1.10) ensures that there exists, in a certain vicinity of each
point on O, a unique function p(x) satisfying z(x, p(x)) ≡ 0, which
in turn implies that p(x) solves (8). Thus, for X ⊂ Rn a suffi-
ciently small neighborhood of O, the requirement L(x⋆(p(x)), x) ⊂

Bϵ(x⋆(s)) ⊂ X ensures the uniqueness of a solution to (8) within
T := {x ∈ X : z(x, p(x)) = 0}. Moreover, if x ∈ T , then (Berger,
1977, Cor. 3.1.11)

Dp(x) =
FTΛ− eTΛ′

FTΛF + eT
[ 1
2Λ

′′e − 2Λ′F −ΛF ′
]

or such a solution p = p(x), with e := x − x⋆(p), and where we
ave omitted the p-arguments to shorten the notation, i.e. F =

(p) etc. Hence Dp(·) is nonzero and Cr (asΛF ′ is) within T ⊂ Rn,
ith P(s) := Dp(x⋆(s)) given by (9) therein.
What remains is therefore to show the parts of C2 and C3

n Definition 3 relating to the sets Hα and Hω also hold. Let us
ssume these sets exist. Due to the expression for Dp(·) above,
hich is valid within T , together with PF = 1, it follows that
ufficiently close to xω the states will leave T and enter Hω if they
o in the direction F(sω) when on Xω := cl(T ) ∩ cl(Hω). Take X
uch that any x ∈ H can be written as x = χ + cF(s ) for some
ω ω ω
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Fig. 7. Snapshots of the configuration of the ‘‘butterfly’’ robot system corresponding to the response shown in Fig. 6.
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Fig. 8. Response of the BR system initialized close to xα , with white noise added
o all the state measurements, with the mass of the ball increased by 10% and
ubject to a small matched disturbance.

Fig. 9. Response of the BR system initialized close to xω .

ω ∈ Xω and c > 0. Since z(χω, sω) = 0, one can, for ∥x − xω∥
sufficiently small, always find a Lagrange multiplier µω > 0
associated with the inequality constraint sω − s ≥ 0, such that
z(x, sω) + µω = 0. Thus sω is a minimizer by the Karush–Kuhn–
Tucker conditions. Moreover, due to the constraint L(x⋆(s), x) ⊂

Bϵ(x⋆(s)) ⊂ X and the condition FTΛF > 0, we can always take
both X and Hω to be sufficiently small as to guarantee that sω
is the unique minimizer of (8) for all x ∈ Hω . Using the same
arguments about Xα := cl(Hα) ∩ cl(T ), the existence of Hα and
Hω in Condition C2 is therefore implied, and the requirements of
C3 are met.

A.2. Proof of Lemma 6

According to Taylor’s theorem (see, e.g., Berger (1977, Thm.
2.1.33)), σ (x) = Dσ (y)(x − y) + O(∥x − y∥2) holds for all x in
some neighborhood of a fixed y ∈ O. Due to the properties of
11
a projection operator (see Definition 3), there is a neighborhood
X̂ ⊆ X of O, such that L(xp(x), x) ⊂ X̂ for all x ∈ X̂. Hence, for any
x ∈ X̂, we may take y = xp(x) to obtain (14). Due to p(·) being
at least C1 within Hα , T and Hω , the validity of (14) is ensured
almost everywhere within X̂.

A.3. Proof of Proposition 7

Recall that De(x) = In whenever x is within either Hα or Hω .
y computing the Jacobian matrix of the right-hand side of (13)
nd using (14), we therefore readily obtain (16). In order to also
how that (17) is valid within T , we note that (14) must also be
alid for the function e(·) itself within the interior of T , as p ∈ C2

therein. Let p = p(x) and recall that E2
⊥

= E⊥ (see Lemma 5).
Applying (14) to each element of e, and then multiplying from
the left by E⊥(p), one finds that

(x) = E⊥(p)e(x) + F(p)l(x) (A.1)

must hold for x ∈ T , with l : Rn
→ R some C2 function satisfying

∥l(x)∥ = O(∥e∥2). Using the fact that De(x) = In − F(p(x))Dp(x)
whenever x ∈ T , the Jacobian matrix of the right-hand side of
13) can also be computed inside T . By writing it in the form (14)
nd using (A.1), one obtains (17).
The above still applies even if there are points such that

(xp(x), x) does not remain in a given subset of X, regardless
f how small N (O) is taken. Indeed, within Hi one can use the
quivalence between the right-hand side of (13) with the function
btained by fixing p = si. Moreover, Property P1 in Definition 1
nsures that one can always find a function which is C2-smooth
n N (O) and equivalent to the right-hand side of (13) for all x
n N (O) ∩ T . Specifically, there exists an ϵ > 0 such that one
an extend the maneuver at its boundaries in the appropriate
irection along F(si) and u′

s(si) for |s − si| < ϵ. An appropriate
rojection onto this extended maneuver, which is equivalent to p
n T and which is C2-smooth in the whole of N (O), can then be
onstructed and used to define the aforementioned function.

.4. Proof of Proposition 9

In the following, we will sometimes omit the s-arguments as
o shorten the notation. Given a solution R(s) to (22), let R⊥ :=
T
⊥
RE⊥. Clearly R⊥ = ET

⊥
R⊥E⊥ then holds by Lemma 5. Differenti-

ting R⊥(s) with respect to s yields R′

⊥
=

(
d
dsE

T
⊥

)
RE⊥ + ET

⊥
R′E⊥ +

ET
⊥
R
(

d
dsE⊥

)
. By then using that

( d
dsE⊥

)
E⊥ = −FFTD2p(x⋆), one

inds, by inserting the above expression for R′

⊥
into (23), that (23)

olds if R(s) satisfies (22).
To show that the converse holds as well, let R⊥(s) = ET

⊥
(s)

⊥(s)E⊥(s) solve (22). Taking then R(s) := R⊥(s) + hR(s)PT(s)P(s),
ith hR : S → R>0 an arbitrary smooth function, one can easily
how, using the properties stated in Lemma 5, that R(s) satisfies
22).

What remains is therefore to show that a solution R⊥(s) =
T
⊥
(s)R⊥(s)E⊥(s) to (22) is unique. In this regard, first note that

y Lemma 5 and the relation PF ≡ 1, we can always find some
T,J : S → Rn×n−1 which are sufficiently smooth and satisfy
(s)F(s) ≡ 0 , P(s)J (s) ≡ 0 and ω(s)J (s) ≡ I for all
n−1×1 1×n−1 n−1
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∈ S. In particular, we will here take J satisfying J̇ = −FṖJ .
his allows us to write E⊥(s) = Ω(s)EΩ−1(s) in which E :=

diag(0, In−1), Ω(s) :=
[
F(s),J (s)

]
and Ω−1(s) =

[
PT(s), ωT(s)

]T.
We can then equivalently rewrite (22) as

EΩT
[
Ṙ + AT

cl(Ω
−1)TEΩTR̂⊥ + R̂⊥ΩEΩ−1Acl

− ṖTFTR − RFṖ + Q
]
ΩE = 0n,

with Ṗ = FTD2p(x⋆)ρ. It can further be shown that the parts
of this equation which are not trivially zero correspond to the
following matrix differential equation:

ATR⊥ + R⊥A + J T
[
Ṙ − ṖTFTR − RFṖ

]
J + Q⊥ = 0n,

where A(s) := ω(s)Acl(s)J (s), while the matrix functions R⊥(s) :=

J T(s)R(s)J (s) and Q⊥(s) := J T(s)Q (s)J (s) evidently are both C1-
smooth, symmetric and positive definite. Since J̇ = −FṖJ , we
have Ṙ⊥ = J T

[
Ṙ − ṖTFTR − RFṖ

]
J . We can therefore rewrite

the above equation as

R′

⊥
(s)ρ(s) = −AT(s)R⊥(s) − R⊥(s)A(s) − Q⊥(s). (A.2)

In order to show uniqueness, we use hypotheses that ρ(sα) = 0
nd ρ ′(sα) > 0. Hence, due to both R⊥(sα) and Q⊥(sα) being
embers of Mn−1

≻0 and satisfying the algebraic Lyapunov Eq. (A.2)
or s = sα , it follows that the matrix A(sα) := ω(sα)Acl(sα)J (sα)
ust necessarily be Hurwitz, which in turn implies that R⊥(sα) is
nique (Khalil, 2002, Theorem 4.6). Since the right-hand side of
A.2) is continuously differentiable, it then has a unique solution
⊥(s) satisfying R⊥(s(tα)) = R⊥(sα). Consequently R̂⊥(s) =
T
⊥
(s)R(s)E⊥(s) = ωT(s)J T(s)R(s)J (s)ω(s) = ωT(s)R⊥(s)ω(s) is also

nique. This concludes the proof.

.5. Proof of Theorem 10

By the reduction principle stated in Corollary 11 in El-Hawwary
nd Maggiore (2013), (b) H⇒ (a). Moreover, the forward
nvariance property stated in (b) holds due to the existence of
he maneuver (see Property P5 in Definition 1) and the properties
f projection operators (see Definition 3). We therefore claim that
c) H⇒ (b). Indeed, first note that V is differentiable everywhere
n X except at the hypersurfaces (having zero Lebesgue measure;
f. Rademacher’s theorem Clarke, Ledyaev, Stern, & Wolenski,
008) Xα := lims→s+α

Π (s) and Xω := lims→s−ω
Π (s) (see (6) for

he definition of Π ). Denote v(t) = V (x(t)) and consider the
pper-right (Dini) derivative v+(t) of v(t), defined by v+(t) :=

im suph→0+
1
h [v(t + h) − v(t)]. At x = x(t), this is equivalent to

(see Yoshizawa (1975))

V+(x) = lim sup
h→0+

1
h
[V (x + hfcl(x)) − V (x)] .

Here fcl(x) := f (x)+ B(x)
[
u⋆(p)+ K (p)e

]
corresponds to the right-

hand side of the autonomous closed-loop system, which we recall
is locally Lipschitz and thus guaranteeing (local) existence and
uniqueness of solutions. It is known (Clarke et al., 2008) that the
following holds:

V+(x) ≤ lim sup
y→x

{DV (y)fcl(x) : y /∈ Xα ∪ Xω} .

Hence (c) implies v+(t) ≤ −µ · v(t) holding for all t ≥ t0 if the
system is initialized within some neighborhood T at time t0. Thus
(c) H⇒ (b) follows from the comparison lemma (see, e.g., Khalil
(2002) and Yoshizawa (1975)).

What remains is therefore to show that the theorem’s hy-
potheses imply (c). Under the assumption that V is differentiable
at some x in X, one finds, using the shorthand notation p = p(x),
that its time derivative is

V̇ = ėTR(p)e + eT
[
R′(p)Dp(x)ẋ

]
e + eTR(p)ė. (A.3)
12
Hence, whenever x is within the interior of either of the sets
intHi, i ∈ {α, ω}, where ∥Dp(x)∥ = 0, one has by (16) and the
ALEs (21) that the following holds therein:

V̇ = −eTQie + O(∥e∥3). (A.4)

Whenever x is in T , one instead has Dp(x)ẋ = ρ(p(x)) + O(∥e∥)
(this follows from the first-order Taylor expansion about x⋆(p(x))
nd by using (5)). Thus by (17), (A.1) and (A.3) we obtain, for
∈ T :

˙ =eTET
⊥

[
AT
clE

T
⊥
R + RE⊥Acl

+ ρ
[
R′

− (P ′)TFTR − RFP ′
] ]

E⊥e + O(∥e∥3).

ince a solution R⊥(s) to (23) implies a solution to (22) (see
roposition 9), we thus obtain, using also (A.1), that

˙ = −eTQ⊥(p)e + O(∥e∥3). (A.5)

hus, by (A.4) and (A.5), there exists some constant µ > 0 such
hat the differential inequality V̇ ≤ −µV holds almost every-
here (or everywhere if one considers V+(x)) within a neighbor-
ood T of O where ∥e∥ is sufficiently small. This concludes the
roof.

.6. Proof of Proposition 14

Let us first demonstrate that the ALEs (21) are satisfied. To
this end, we note that the constant matrix Acl(sα) = As(sα) +

Bs(sα)Y (sα)W−1(sα) is Hurwitz. Thus by Theorem 1 in Bernus-
ou et al. (1989), there exists a matrix Q̂α ∈ Mn

≻0 such that
sym [As(sα)W (sα) + Bs(sα)Y (sα)] = −Q̂α , where sym[A] = A + AT.
or R(sα) = W−1(sα) we may therefore take Qα = W−1(sα)
ˆ
αW−1(sα) in (21a). The exact same arguments can be used for
he point sω .

Let us now show that a matrix function W (·) solving the
ifferential LMI (25) is equivalent to a solution R(·) to (22) (and
herefore also a solution R⊥ to (23)). For this purpose, recall
hat for any smooth nonsingular matrix function W : S →
n×n one has d

dsW
−1(s) = −W−1(s)[ d

dsW (s)]W−1(s). Thus taking
R(s) := W−1(s) and dropping the s-argument to keep the notation
hort, we obtain the following from (25): ρR′

⪯ −sym[RA⊥ +

B⊥K + λRE⊥]. Multiplying from the left by ET
⊥

and by E⊥ from
he right, this can be written as ET

⊥
sym

[
RE⊥Acl + λR+ ρ

(
2−1R′

−

FFTD2p(x⋆)
)]

E⊥ ⪯ 0n. Hence, as R = W−1
∈ Mn

≻0 and λ
s strictly positive, there must exist a C1-smooth matrix-valued
unction Q⊥ : S → Mn

≻0 such that R solves the PrjLDE (22).

.7. Proof of Theorem 17

The boundary conditions imposed on Φ(·) are obvious,
hereas those on Φ ′(·) are obtained directly from (30) by setting
(sα) = ρ(sω) = 0. The condition α(s) ̸= 0 ensures the
niqueness and smoothness of the solutions to (34). Moreover,
t implies that the integrating factor (36) is both nonzero and
ounded on S , such that (33) ⇐⇒ (37) on S by the fundamental
heorem of calculus. By taking s1 = sα and s2 = s in (37),
he function ρ(s) =

√
−2Ψ (s,sα )

α2(s)

∫ s
sα
Ψ (sα, τ )α(τ )γ (τ )dτ can be

btained. Clearly it is smooth, bounded and satisfies (33) on
, while ρ(sω) = 0 due to (38). To show that it is also real
nd strictly positive on int S , it suffices to note that the smooth
unction Υ (s) := γ (s)/α(s) (which has the same sign as α(s)γ (s))
s strictly negative on (sα, se) and strictly positive on (se, sω) as
(s̄) = 0 and Υ ′(s̄) = υ(s̄) ∀s̄ ∈ {sα, se, sω}. Thus the term inside

he square root is strictly positive on (sα, se). Since γ (s) ̸= 0 for
ll int (S)\{se}, and ν(se) > 0, the terms inside the square root,
nd therefore also the function ρ, must remain strictly positive
n (s , s ).
e ω
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