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Abstract

Electroencephalogram (EEG)-based emotion recognition has been widely used in affective computing. However, the study on
improving recognition accuracy across individuals is insufficient. In this study, a new linear domain adaption approach with
experiment-level batch normalization and a single-layer depthwise convolutional neural network is proposed. In particular, the
experiment-level batch normalization and depthwise convolutional neural network can be integrated as a linear mapping with a
scaling parameter and a translation parameter. By linear mapping, difference between subjects in different domain can be effec-
tively diminished, and the mapping parameters can be used to further investigate EEG emotion mechanism. The domain adaption
experiments are conducted with SJTU emotion EEG dataset and SJTU emotion EEG dataset-IV, which are divided into source
domain and target domain to validate the recognition effect across individuals. Multiple traditional machine learning and deep
learning classifiers are used to examine the effectiveness of the proposed approach. By mapping the EEG data from source domain
to target domain, the increment of recognition accuracy is up to 61.11% when using the support vector machine classifier. The
highest recognition accuracy 97.22% is achieved when using the logistic regression classifier. The scaling and translation param-
eters in the mapping procedure are then analyzed with statistical methods. It is found that EEG signal waves in the same emotion
category are highly similar and EEG data have characteristics including integration of channels and hierarchy of frequency bands.
In addition, the experimental results indicate that emotion complexity and emotion sensitiveness of brain cortex regions can affect
the correlations between channels.
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1. Introduction

1.1. Background

Emotion recognition plays a vital role in affective computing.
It is believed that the physiological signal to recognize human
emotions is a useful way for affective computing. In current
studies, electroencephalogram (EEG) signal measurement has
been recognized as one of the effective ways to reflect the hu-
man emotion state [1],[2],[3], which benefits from its avoidance
of human unconscious or conscious interference in emotion ex-
pression. To identify EEG emotion signals with higher recogni-
tion accuracy and understand the working mechanism of EEG
signals is important for EEG-based emotion recognition.
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The methods for EEG-based emotion recognition can be con-
cluded as traditional machine learning methods and deep learn-
ing methods [4],[5]. In the early stage, EEG-based emotion
recognition models are mainly based on traditional machine
learning because of its good stability and interpretability. How-
ever, with rapid development of deep learning, it’s found that
deep learning models can achieve better recognition accuracy
than traditional machine learning with more complicated model
structures. Literature has also proven that deep learning models
are beneficial to improve the recognition accuracies of EEG-
based emotion recognition methods, compared with shallow
machine learning models [6].

Deep learning method are also extensive used for improv-
ing recognition accuracy across subjects, which is an important
target for EEG-based emotion recognition [7]. The factors that
impact cross-subject EEG emotion recognition include EEG in-
dividual differences, temporal instability and experimental er-
ror [8],[9]. Many previous studies deal with this problem by
deep neural network (e.g., domain adaption and transfer learn-
ing), which is expected to narrow the gap between individual
EEG emotion signals. However, though deep neural network
performs well on EEG-based emotion recognition, the poor in-
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terpretability resulted from its deep layers becomes a difficult
issue that hinders the development of deep learning.

1.2. Related work

Given that deep learning methods can achieve high EEG-
based emotion recognition accuracy, many previous researchers
perform high-accuracy EEG-based emotion recognition by con-
structing deep neural networks. Maheshwari et al. [10] pro-
posed a rhythm-specific multi-channel deep convolutional neu-
ral network (CNN) to recognize EEG emotions in valance-
arousal-dominance model. Song et al. [11] proposed a dynami-
cal graph convolutional neural network that facilitated discrim-
inative EEG feature extraction to improve EEG emotion recog-
nition. Yin et al. [12] constructed a fusion model of graph con-
volutional neural network and long-short term memories neural
networks, where graph convolutional neural network was used
to extract graph domain features and long-short term memo-
ries neural networks were used to memorize the changes of
EEG channels relationship. Cui et al. [13] proposed an end-
to-end regional-asymmetric convolutional neural network that
consists of temporal, regional and asymmetric feature extrac-
tors for emotion recognition with an asymmetric differential
layer to capture the discriminative information of brain.

Furthermore, deep neural networks are also specifically de-
signed to address the problem about cross-subject EEG emo-
tion recognition. Some researchers utilize the classical network
structure and optimized them to suit the cross-subject tasks. For
example, Yao et al. [14] proposed a cross-subject emotion train-
ing method based on complex networks with visibility graphs,
in which spatial and temporal information of EEG data could
be characterized to overcome individual differences. Tan et
al. [15] proposed a short-term emotion recognition framework
based on a spiking neural network model, which could utilize
spatio-temporal EEG patterns for subject-independent emotion
recognition. Although the above literature has demonstrated
the decent performance of deep learning models, e.g., CNN,
on EEG emotion recognition, it is difficult to explain how deep
learning models work and how EEG signals respond to differ-
ent emotions, due to the complex computational procedure of
deep learning models, e.g., multiple layers.

Apart from classical network models, transfer learning has
also been proven to be useful for EEG signals processing. For
example, Yang et al. [16] proposed a methodology to develop
a Takagi-Sugeno-Kang (TSK) Fuzzy Logic System (FLS), us-
ing transductive transfer learning to detect epileptic EEG sig-
nals with different distributions. Deng et al. [17] proposed
an advanced method for constructing a TSK fuzzy system with
enhanced transductive transfer learning to address the distribu-
tion problem in EEG datasets. Subsequently, a technique for
transfer learning is devised to tackle cross-subject EEG emotion
recognition by mitigating individual difference. For instance,
Li et al. [18] introduced an EEG-based emotion recognition
method that combines a multi-scale residual network (MSRN)
with a meta-transfer learning (MTL) strategy. The MTL ap-
proach effectively leverages the benefits of meta-learning and
transfer learning to narrow the gap in individual differences

among subjects. Zhou et al. [19] presented a novel trans-
fer learning framework called prototypical representation based
pairwise learning (PR-PL) that aimed to learn discriminative
and generalized prototypical representations for emotion recog-
nition across individuals. By formulating emotion recognition
as pairwise learning, it reduced the dependence on precise la-
bel information. Particularly, domain adaptation methods in
transfer learning appear to be highly suitable for cross-subject
EEG-based emotion recognition. For example, Quan et al.
[20] introduced a cross-subject emotional EEG classification
algorithm that utilizes multi-source domain selection and sub-
domain adaptation. The proposed multi-source domain selec-
tion algorithm aims to identify EEG data from existing subjects
that closely align with the target data distribution in both global
and sub-domain contexts, which enhances the performance of
the transfer learning model on the target subject. Ning et al.
[21] proposed a single-source domain adaptive few-shot learn-
ing network for EEG emotion recognition across subjects, in
which a domain adaptation method was applied to align the data
distribution of different subjects. Similarly, Li et al. [9] pro-
posed a domain adaptation method that integrated task-invariant
features and task-specific features in a unified framework model
to perform subjects’ association reinforcement to eliminate in-
dividual differences.

However, most of the previous studies focus on high recog-
nition accuracy while ignoring investigation regarding individ-
ual EEG emotion response mechanisms. Additionally, as the
models used in previous studies are always designed compli-
catedly, it is difficult to precisely interpret the working pro-
cedure and mechanism of models on EEG data. It is also
hard to utilize these models to figure out EEG emotion mecha-
nism. These issues lead to the fact that existing studies on high-
performance classifiers and brain emotion mechanism have not
directly linked up in a unified methodology, even though the
motivations of most EEG classifier studies come from the EEG
characteristics and response mechanisms [9],[21]. Therefore,
utilizing the developed models to further investigate the mech-
anism is an important topic in the following EEG studies.

1.3. Contributions

In this paper, a new linear domain adaption method based on
experiment-level batch normalization (ELBN) and depthwise
convolutional neural network (DCNN) is developed. The pro-
posed method is different from existing EEG emotion recogni-
tion models. Specifically, it can realize high cross-subject EEG
emotion recognition accuracy by linear domain adaption, which
simply concludes scaling and translation operations. Therefore,
the parameters of scaling and translation can be used not only
for linear mapping for domain adaption, but also to investigate
the EEG emotion mechanism. The main contributions of this
study include:

1) A simplified domain adaption architecture based on ELBN
and DCNN was proposed. The linear mapping process, in-
cluding scaling and translation operations, can effectively nar-
row the gap between domains and contribute to achieving high
cross-subject EEG emotion recognition accuracy. In addition,
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the scaling and translation parameters were adopted to investi-
gate EEG emotion mechanism. This attempt links up the emo-
tion recognition and emotion mechanism and extends the appli-
cations of machine learning approaches in EEG studies.

2) The waveforms of EEG data were proved to be highly
similar as the similarity between EEG data of different sub-
jects could be reinforced by linear mapping process. It re-
veals that the influence of EEG cross-subject difference could
lead to changes on global values of EEG data without interven-
ing wave motion (except amplitude) within a limited temporal
range. This finding provides another improvement direction for
cross-subject EEG emotion recognition that aligns the ampli-
tude of EEG data or extracts patterns of EEG waveforms to
diminish EEG difference.

3) The characteristics of EEG emotion response were inves-
tigated in this study. Using parameters in domain adaption, it
was found that EEG data have integration of channels and hi-
erarchy characteristic of frequency bands. The influencing fac-
tors of channels correlation, including emotion complexity and
emotion sensitiveness of brain cortex regions were also found
in linear mapping parameters analysis. In particular, these find-
ings are achieved with a novel analysis method that integrates
deep learning and statistical analysis.

The remainder of this paper is organized as follows. The next
section introduces the datasets and preprocessing procedure of
EEG features. Section 3 describes the proposed method in de-
tail. The obtained results are presented and discussed in Section
4 and Section 5, respectively. Finally, the conclusions are pre-
sented in Section 6.

2. Datasets and features preprocessing

2.1. SEED series datasets

a) SEED dataset. SJTU emotion EEG dataset (SEED) was
acquired by using the ESI NeuroScan System according to the
international 10-20 system [22]. During the experiment proce-
dure, movie clips were presented to each subject in fifteen sep-
arate emotion elicitation trials (see Fig. 1). The elicited EEG
emotion data were collected from 62 channels at a sampling
rate of 1000 Hz.

Fig. 1. The protocol of experiments in the SEED dataset.

In each trial, a starting hint was given five seconds before
the start of each clip. Each movie clip was approximately four
minutes. After each clip, subjects had 45 seconds to complete
a questionnaire [23] reporting their immediate emotional reac-
tions to the film clips. Subsequently, another fifteen seconds

were provided for rest before the start of the next trial. The
order of emotions presented in the selected clips was [1, 0, -1,
-1, 0, 1, -1, 0, 1, 1, 0, -1, 0, 1, -1], where 1 stood for positive
emotion, 0 for neutral, and -1 for negative.

The collected raw EEG data were downsampled to 200 Hz
and filtered with a 0-75 Hz frequency band to remove noise
and artifacts. Fifteen young subjects (7 males and 8 females;
age: 23.27±2.37 years) participated in data collection in the
SEED. Each subject repeated the abovementioned data collec-
tion procedure three times with an interval of one week or
longer. Thus, the collected data in the SEED includes a total
of 45 experimental sessions and 675 trials (225 trials for each
emotion category). These source data is available for download
at: https://bcmi.sjtu.edu.cn/~seed/seed.html.

b) SEED-IV dataset. SEED-IV dataset was created with
the same devices as the SEED dataset by following a similar
experiment workflow [24]. There were totally 24 trials with
emotional film clips presented to each subject in one experiment
(see Fig. 2). Each film clip had a five seconds hint for starting
and a 45 s self-assessment with the positive and negative affect
schedule scales [25]. Every subject participated in experiments
three times in different periods, and the order of emotions in
these three experimental sessions were set as [1, 2, 3, 0, 2, 0, 0,
1, 0, 1, 2, 1, 1, 1, 2, 3, 2, 2, 3, 3, 0, 3, 0, 3], [2, 1, 3, 0, 0, 2, 0,
2, 3, 3, 2, 3, 2, 0, 1, 1, 2, 1, 0, 3, 0, 1, 3, 1], and [1, 2, 2, 1, 3, 3,
3, 1, 1, 2, 1, 0, 2, 3, 3, 0, 2, 3, 0, 0, 2, 0, 1, 0] respectively with
0, 1, 2, and 3 denoted the ground truth, neutral, sad, fear, and
happy emotions.

Fig. 2. The protocol of experiments in the SEED-IV dataset.

The raw EEG data were recorded at a 1000 Hz sampling rate
and a band-pass filter between 1 and 75 Hz was applied to filter
the unrelated artifacts. Fifteen subjects (seven males and eight
females, aged between 20 and 24 years) participated in data col-
lection in the SEED-IV. As each subject had three experimental
sessions, the collected data in the SEED-IV includes a total of
45 experimental sessions and 1080 trials (270 trials for each
emotion category). These source data is available for download
at: https://bcmi.sjtu.edu.cn/~seed/seed-iv.html.

2.2. ELBN for EEG features processing

To unify the format of EEG inputs of DCNN, PSD features
that can show the distribution of signal power [8] were extracted
in different frequency bands (i.e., delta: 1-4 Hz, theta: 4-8 Hz,
alpha: 8-14 Hz, beta: 14-30 Hz, and gamma: 30-50 Hz) per
channel in SEED and SEED-IV and then cut to same-length
epochs. In practical operation, PSD features that had been ex-
tracted and processed with linear dynamic system in SEED and
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SEED-IV were directly applied. According to [22] and [24],
PSD features in SEED were extracted with a 1-second time
window without overlapping, while PSD features in SEED-IV
were extracted with a 4-second time window without overlap-
ping. However, the number of epochs in different trials as well
as different datasets are different. Considering to make full use
of epochs and unify the inputs format, the extracted PSD fea-
tures in the front 180 epochs in each trial were selected as an
independent sample. Those trials less than 180 epochs were
filled with zeros.

Given that ELBN can regulate the baseline of EEG data and
diminish EEG individual difference [8],[26], the processed PSD
features in one experimental session were then processed with
ELBN. Specifically, the PSD features in each frequency band of
each channel were normalized within the experimental session
by using the following equation,

XBNk =
Xk − Xmin

Xmax − Xmin
(1)

where Xk and XBNk were the PSD value in an epoch and the
corresponding value after applying this ELBN method, respec-
tively. Xmin and Xmax were the minimum and maximum values
of the PSD feature in each experimental session, respectively.

ELBN approach could be regarded as a linear mapping pro-
cess by transforming Eq. (1) as:

XBNk = wBN Xk + bBN (2)

where wBN =
1

Xmax−Xmin
and bBN = −

Xmin
Xmax−Xmin

.
The processed PSD features were then reshaped as a

S×62×1×180 matrix, where S represented samples in datasets
(i.e., 15(subjects)×3(sessions)×15(trials) samples in SEED and
15(subjects)×3(sessions)×24(trials) samples in SEED-IV), and
62 and 180 were the number of 62 channels and 180 epochs,
respectively.

2.3. Organization of source domain and target domain
a) Organization of SEED dataset. Processed PSD data of

one randomly selected subject were used as data in target do-
main, while the rest of fourteen subjects were used as training
data in source domain. Given that each subject had three exper-
imental sessions and each session has fifteen trials, there were
totally 14(subjects)×3(sessions)×15(trials) trials in source do-
main. As for target domain, three subjects were randomly se-
lected and put into target domain, and one of them was used in
turn in each round of DCNN training procedure.

In target domain, PSD features of three randomly selected
trials (i.e., three trials with positive, neutral and negative emo-
tions, respectively) in one experimental session were used
as mapping targets and the rest twelve trials were used as
testing data. In general, there were 1 (subjects)×3(sessions)
experimental sessions in target domain, in which 1(sub-
jects)×3(sessions)×3(trials) trials were mapping targets and
1(subjects)×3(sessions)×12(trials) trials were testing data.

Given that EEG signals have individual difference and in-
stability in temporal dimension, each experimental session
that was performed in a continuous time period was taken
as an independent set of data. Therefore, there were totally

3(rounds)×14(subjects)×3(sessions) sets of training data and
3(rounds)×1(subjects)×3(sessions) sets of mapping targets and
testing data. Thereinto, mapping targets and testing data be-
longed to a same experimental session.

b) Organization of SEED-IV dataset. The separation
method of SEED-IV was same as SEED. Given that there
were 15(subjects)×3(sessions)×24(trials) with four emotion
categories in SEED-IV, 14(subjects)×3(sessions)×24(trials)
trials were selected as training data in source domain and
1(subjects)×3(sessions) sessions were in target domain
in each round of DCNN training procedure. Specifi-
cally, the mapping targets and testing data in target do-
main included 3(rounds)×1(subjects)×3(sessions)×4(trials)
trials and 3(rounds)×1(subjects)×3(sessions)×20(trials)
trials, respectively. In general, there were totally
3(rounds)×14(subjects)×3(sessions) sets of training data
and 3(rounds)×1 (subjects)×3(sessions) sets of mapping
targets and testing data in SEED-IV.

3. EEG domain adaption methodology

3.1. Domain adaption procedure
The domain adaption framework includes three primary as-

signments: A) preprocessing the extracted features in SEED se-
ries datasets with ELBN for domain creation, B) mapping pro-
cessed EEG features across individuals based on DCNN model
and performing emotion recognition on DCNN outputs, and C)
reading and analyzing mapping parameters with statistical anal-
ysis. The domain adaption concludes two linear mapping pro-
cesses: ELBN and DCNN, which can be merged into one linear
transformation. The procedure of domain adaption framework
is illustrated in Fig. 3.

The experimental purposes and procedures of assignments
above are described as follows. Assignment A is accomplished
following the procedure in section II. It creates source domain
and target domain for DCNN mapping procedure. In assign-
ment B, DCNN is used to scale and translate data in the source
domain to match that in the target domain without increasing or
decreasing data. After repeated iteration and optimization op-
erations of DCNN, the outputs are used to train classifiers that
involves traditional machine learning and deep learning, which
will be used to perform 5-fold validation and emotion recogni-
tion with testing data. Thereinto, 5-fold validation is to inves-
tigate the changes of EEG data in source domain after domain
adaption, and emotion recognition with testing data is to test the
effect of cross-subject mapping. In assignment C, the parame-
ters of DCNN during mapping procedure are recorded. Given
that ELBN and DCNN can be merged into a linear transforma-
tion, DCNN parameters are combined with ELBN parameters
and then separated into scaling parameters and translation pa-
rameters. These combined parameters will be analyzed with
statistical methods to figure out EEG emotion response mecha-
nism.

3.2. DCNN model
a) DCNN model structure. The DCNN model is con-

structed by a single depthwise convolutional layer with 62
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Fig. 3. Domain adaption framework.

group convolution kernels with 1 × 1kernel size and 1 × 1 step-
wise. In each round of DCNN training, EEG inputs in one fre-
quency band are reshaped as 62(channels)×1×180(epochs) so
that 62 group convolution kernels can be used to map EEG data
without mix the channel information (see Fig. 4). As each ex-
perimental session is an independent set, data in one experimen-
tal session are taken as a batch size. The calculation procedure
is regarded as the second linear mapping process as:

XDCNN = WDCNN XBN + BDCNN (3)

where WDCNN and BDCNN respectively represent the sets of scal-
ing parameters wc and translation parameters bc (1 ≤ c ≤ 62),
XBN is the set of XBNk in a batch size and XDCNN is the set of
DCNN outputs. Owing to 62 group convolution kernels, data in
each channel can share a scaling parameter wc and a translation
parameter bc in a batch size. Meanwhile, considering the slight
deviation between source domain and target domain, the initial
value of w and b are set as 1 and 0, respectively.

b) Loss function: γ-soft-DTW. DTW is widely used in
measuring the global similarity of time series [27]. The clas-
sic DTW algorithm is based on dynamic programming, which
means that it gives a non-linear alignment between two time
series. This produces a more intuitive similarity measure, al-
lowing similar waveform to match even if they are located in
different temporal periods. Therefore, given two time series
X = {x1, x2, · · · , xm} and Y = {y1, y2, · · · , yn}, the DTW
distance is calculated by,

d (i, j) =
(
xi − y j

)2
(4)

D (i, j) = d (i, j)+
min {D (i − 1, j) ,D (i, j − 1) ,D (i − 1, j − 1)}

(5)

∆ (X,Y) = D (m, n) (6)

where i = 1, 2, · · · , m and j = 1, 2, · · · , n, and D (i, j)
is the accumulated distance value of time points between xi

and y j. ∆ (X,Y) is distance between X and Y series. Let
Am,n ⊂ {0, 1}m×n be possible binary alignment matrices that
satisfy monotonicity, continuity and boundary conditions [28].
The DTW distance is then defined as:

DTW (X, Y) = min
A∈Am,n

⟨A,∆ (X,Y)⟩ (7)
To apply DTW as loss function in DCNN to calculate dis-

tance between training data and mapping targets, the differen-
tiable γ-soft-DTW algorithm is used [29]. The generalized min
operator with a smoothing parameter γ in γ-soft-DTW is define
as:

minγ {a1, · · · , al} :=

mink≤l ak, γ = 0
−γlog

∑l
k=1 e−ak/γ, γ > 0

(8)

With the operator, the γ-soft-DTW is defined as:

DTWγ (X, Y) = minγ
A∈Am,n

{⟨A,∆ (X,Y)⟩} (9)
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Fig. 4. The mapping process of common CNN and DCNN. (a) common CNN (b) DCNN.

Table 1
5-fold validation emotion recognition accuracies of SEED and SEED-IV. The positive values of the difference between original data group and other two groups
are highlighted in red, and the positive values of the difference between groups with ELBN and groups with ELBN and DCNN are highlighted in green. All the
negative difference values are highlighted in blue.

Classifier Band Original(%) Original+ELBN(%) Original+ELBN+DCNN(%)
SEED SEED-IV SEED SEED-IV SEED SEED-IV

KNN

delta 42.29 47.35 43.28(+0.79) 61.38(+14.03) 43.37(+0.88)(+0.09) 70.52(+23.17)(+9.14)
theta 35.82 54.43 58.25(+22.43) 64.12(+9.69) 57.67(+21.85)(-0.58) 73.48(+19.05)(+9.36)
alpha 34.18 49.44 46.88(+12.70) 60.15(+10.71) 49.63(+15.45)(+2.75) 69.75(+20.31)(+9.60)
beta 42.12 45.33 55.87(+13.75) 55.13(+9.80) 57.86(+15.75)(+1.99) 63.18(+17.85)(+8.05)

gamma 42.64 40.87 54.34(+11.70) 49.27(+8.40) 57.92(+15.28)(+3.58) 52.07(+11.20)(+2.80)

LR

delta 44.07 63.88 48.41(+4.34) 71.99(+8.11) 53.16(+9.08)(+4.75) 74.60(+10.72)(+2.61)
theta 40.53 55.75 64.07(+23.54) 71.30(+15.55) 70.66(+30.13)(+6.59) 74.87(+19.12)(+3.57)
alpha 35.87 63.26 61.96(+26.09) 70.60(+7.34) 61.55(+25.68)(-0.41) 74.18(+10.92)(+3.58)
beta 40.53 51.15 66.61(+26.08) 71.03(+19.88) 66.38(+25.85)(-0.23) 72.09(+20.94)(+1.06)

gamma 50.58 56.31 64.18(+13.60) 67.23(+10.92) 65.20(+14.62)(+1.02) 67.74(+11.43)(+0.51)

SVM

delta 43.02 59.10 48.10(+5.08) 67.30(+8.20) 52.56(+9.54)(+4.46) 72.09(+12.99)(+4.79)
theta 44.71 57.61 59.74+15.03 66.61(+9.00) 68.82(+24.11)(+9.08) 72.33(+14.72)(+5.72)
alpha 45.50 53.57 58.36(+12.86) 65.91(+12.34) 60.30(+14.80)(+1.94) 70.96(+17.39)(+5.05)
beta 45.71 53.41 63.76(+18.05) 64.76(+11.35) 65.11(+19.40)(+1.36) 68.74(+15.33)(+3.98)

gamma 48.20 55.85 61.43(+13.23) 62.87(+7.02) 64.83(+16.63)(+3.41) 65.60(+9.75)(+2.73)

CNN

delta 33.33 76.95 68.13(+34.80) 76.09(-0.86) 65.42(+32.09)(-2.71) 75.79(-1.16)(-0.30)
theta 33.32 75.90 76.83(+43.51) 75.10(-0.80) 77.71(+44.39)(+0.88) 76.16(+0.26)(+1.06)
alpha 33.26 75.57 73.08(+39.82) 73.76(-1.80) 69.56(+36.30)(-3.52) 75.36(-0.21)(+1.60)
beta 33.39 76.95 74.78(+41.39) 74.42(-2.53) 73.73(+40.33)(-1.05) 74.61(-2.34)(+0.19)

gamma 33.53 76.81 71.50(+37.97) 74.24(-2.57) 72.13(+38.60)(+0.63) 73.82(-2.99)(-0.42)

3.3. Domain adaption procedure and emotion recognition

In section 2, processed EEG features in source domain (i.e.,
training data) and target domain (i.e., mapping target and test-
ing data) are divided into independent sets. In each round of
DCNN training procedure, one set of mapping targets will be
selected as the labels of one set of training data with corre-
sponding emotions (e.g., positive PSD features in source do-
main are mapped to the positive PSD features of mapping tar-
gets). At each iteration, γ-soft-DTW function calculates and
returns the sDTW value for mapping parameters optimization
and similarity improvement direction from source domain to
mapping targets. After a thousand times of iteration and opti-
mization operations in DCNN, the outputs will be then used to
train classifiers (i.e., k-nearest neighbor (KNN), logistic regres-
sion (LR), support vector machine (SVM), and CNN. These
trained classifiers will be evaluated by 5-fold validation and ap-
plied to testing data in the same set of mapping targets. There-
fore, there are totally 3(subjects)×3(sessions)×42(sets of train-
ing data)×5(frequency bands) rounds of DCNN mapping pro-
cedure.

3.4. Mapping parameters analysis

a) Purposes. The scaling and translation parameters of
DCNN are analyzed with statistical methods to find the EEG
emotion response mechanism across channels and frequency
bands. EEG data in source domain are mapped to the data
of mapping targets through two linear mapping processes (i.e.,
ELBN and DCNN procedure), which can be summarized as a
linear mapping process as,

XDCNN = WDCNN (wBN {Xk} + bBN) + BDCNN

= W {Xk} + B
(10)

where {Xk} denotes the set of PSD inputs in an experimental
session, W = WDCNNwBN and B = WDCNNbBN + BDCNN .

Given a mapping target in DCNN training procedure, the
whole mapping procedure is a linear transformation where each
channel and frequency band have an exclusive scaling parame-
ter in W and translation parameter in B in each round of map-
ping procedure (see Fig. 5). By mapping different EEG data of
training data to one common mapping target, the difference be-
tween training data can be found through the values of mapping
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Fig. 5. Application of mapping parameters.

parameters. For example, given three samples k1, k2, k3 that be-
long to same emotion category in training data and a mapping
target t in mapping targets, there are three pairs of mapping pa-
rameters {w1, b1}, {w2, b2}, {w3, b3} corresponding to three sam-
ples. The mapping procedure can be described as:k1

k2
k3

 ·
w1
w2
w3

 +
b1
b2
b3

 =
ttt
 (11)

The greater similarity between samples exists, the smaller
difference between mapping parameters can be found. That is,
the values of mapping parameters can be used to measure the
difference of EEG samples. Furthermore, according to the one-
to-one correspondence between mapping parameters and chan-
nels as well as frequency bands, mapping parameters can be re-
garded as EEG features to figure out the EEG emotion response
mechanism based on channels and frequency bands.

b) Statistical analysis processes. The statistical analysis on
parameters W and B in channels across frequency bands in-
cludes three parts: 1) parameter numerical statistics, 2) corre-
lation analysis, and 3) nonparametric significance testing. In
parameter numerical statistics, the parameters in the same chan-
nel and frequency band are averaged firstly and then compared
across channels and frequency bands to explore their distribu-
tions. In correlation analysis and nonparametric significance
testing, parameters in the same frequency bands of one experi-
mental session are firstly averaged. The averaged data in each
channel and frequency band are used as averaged scaling and
translation parameters in one source domain adaption that maps
training data to mapping targets. Corresponding to 3(rounds)×1
(subjects)×3(sessions) sets of mapping targets, there are 18 av-
eraged parameters (i.e., 9 scaling averaged parameters and 9 av-

eraged translation parameters respectively) in one channel un-
der one frequency band in each dataset. Statistical analysis is
performed on the averaged data of every two channels of the
same frequency band. Specifically, Spearman’s rank correlation
[30] is used in correlation analysis to compute the correlation,
and Mann-Whitney U test [31] is used in nonparametric sig-
nificance testing to compute the pairwise p-value. It’s defined
that the pairwise channels are significantly different when their
p-values are no higher than 0.05.

4. Results

4.1. Emotion recognition results
The 5-fold validation emotion recognition results of SEED

and SEED-IV are shown in Table 1. The experimental groups
include original PSD features, PSD features processed with
ELBN, and PSD features processed with ELBN and DCNN
mapping. Compared with the original data group, the ELBN
approach can improve most of the recognition accuracies by
0.79%-43.51% in all the five frequency bands when using the
employed classifiers. The DCNN mapping process can further
improve most of recognition results in both SEED and SEED-
IV on the basic of ELBN by 0.09%-9.60%. In particular, the
highest increment with ELBN and DCNN in SEED is up to
44.39% in theta frequency band when using the CNN classi-
fier, while the highest number in SEED-IV is up to 23.17%
in delta frequency band when using KNN. It indicates that
the differences of EEG data across individuals and experimen-
tal sessions (i.e., the changing pattern of EEG in temporal di-
mension) can be effectively diminished by mapping EEG data
to a mutual target with linear transformation. Furthermore,
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(a) Loss in SEED dataset. (b) Loss in SEED-IV dataset.

Fig. 6. The averaged γ-soft-DTW loss curves in five frequency bands.

Table 2
Emotion recognition accuracies on testing data of SEED and SEED-IV. The positive values of the difference between original data group and other two groups are
highlighted in red, and the positive values of the difference between groups with ELBN and groups with ELBN and DCNN are highlighted in green. All the negative
difference values are highlighted in blue.

Classifier Band Original(%) Original+ELBN(%) Original+ELBN+DCNN(%)
SEED SEED-IV SEED SEED-IV SEED SEED-IV

KNN

delta 33.33 25.00 50.00(+16.67) 60.00(+35.00) 65.74(+32.41)(+15.74) 73.89(+48.89)(+13.89)
theta 33.33 25.00 62.96(+29.63) 59.45(+34.45) 87.96(+54.63)(+25.00) 69.44(+44.44)(+9.99)
alpha 33.33 25.00 43.52(+10.88) 60.55(+35.55) 73.15(+39.82)(+29.63) 75.00(+50.00)(+14.45)
beta 33.33 25.00 66.67(+33.34) 51.11(+26.11) 77.78(+44.45)(+11.11) 60.00(+35.00)(+8.89)

gamma 33.33 25.00 64.82(+31.49) 48.89(+23.89) 81.48(+48.15)(+16.66) 55.00(+30.00)(+6.11)

LR

delta 43.52 56.67 41.67(-1.85) 70.56(+13.89) 86.11(+42.59)(+44.44) 80.00(+23.33)(+9.44)
theta 37.96 49.44 67.59(+29.63) 69.44(+20.00) 97.22(+59.26)(+29.63) 74.44(+25.00)(+5.00)
alpha 51.85 51.11 64.82(+12.97) 70.56(+19.45) 85.19(+33.34)(+20.37) 77.22(+26.11)(+6.66)
beta 62.04 43.33 69.44(+7.41) 65.00(+21.67) 88.89(+26.85)(+19.45) 72.22(+28.89)(+7.22)

gamma 29.63 50.00 58.33(+28.70) 61.67(+11.67) 84.26(+54.63)(+25.93) 72.22(+22.22)(+10.55)

SVM

delta 33.33 25.00 44.44(+11.11) 68.89(+43.89) 84.26(+50.93)(+39.82) 71.67(+46.67)(+2.78)
theta 33.33 25.00 72.22(+38.89) 59.44(+34.44) 94.44(+61.11)(+22.22) 70.00(+45.00)(+10.56)
alpha 33.33 25.00 63.89(+30.56) 68.89(+43.89) 83.33(+50.00)(+19.44) 72.22(+47.22)(+3.33)
beta 33.33 25.00 67.59(+34.26) 58.33(+33.33) 88.89(+55.56)(+21.30) 70.00(+45.00)(+11.67)

gamma 33.33 25.00 57.41(+24.08) 56.67(+31.67) 85.18(+51.85)(+27.77) 69.44(+44.44)(+12.77)

CNN

delta 33.39 73.24 43.64(+10.25) 71.02(-2.22) 86.64(+53.25)(+43.00) 79.50(+6.26)(+8.48)
theta 33.33 72.98 72.59(+39.26) 69.11(-3.87) 91.70(+58.37)(+19.11) 77.96(+4.98)(+8.85)
alpha 33.33 72.26 59.78(+26.45) 68.68(-3.58) 86.64(+53.31)(+26.86) 77.80(+5.54)(+9.12)
beta 33.33 69.93 69.26(+35.93) 68.65(-1.28) 85.90(+52.57)(+16.64) 75.71(+5.78)(+7.06)

gamma 33.33 70.52 55.06(+21.73) 68.52(-2.00) 83.15(+49.82)(+28.09) 74.08(+3.56)(+5.56)

compared with the experimental-session-independent normal-
ization, DCNN can link experimental sessions in the source do-
main and experimental sessions of mapping targets to achieve
a more purposive and sophisticated mapping effect by means
of iteration and optimization operations of the neural network.
However, comparing results in Table 1, the increments in SEED
are better than those in SEED-IV, which may be caused by the
more emotion categories and more zero paddings in SEED-IV.

The emotion recognition results on the testing data of SEED
and SEED-IV are shown in Table 2. The recognition results of
the original data group obviously show the gap between individ-
uals. Classifiers trained with subjects in the source domain have
poor emotion recognition performance on subjects in the target
domain. Compared with the original data group, the ELBN
approach can improve most of the recognition results in both
SEED and SEED-IV, and the results of ELBN can be further

improved by incorporating DCNN mapping. The recognition
accuracies are all increased across frequency bands and classi-
fiers compared with the original data group. As shown in Table
2, the highest recognition accuracies with ELBN and DCNN
in SEED and SEED-IV are 97.22% and 80.00%, respectively.
The highest increment in SEED is up to 61.11% when using
SVM classifier in theta frequency band, while that in SEED-IV
is up to 50.00% when using KNN classifier in alpha frequency
band. Furthermore, compared with the results in Table 1, the
influence of DCNN mapping process is better in Table 2. As
shown in Table 2, the increment in SEED is up to 39.82% af-
ter adding DCNN mapping, but the increment of SEED is only
up to 9.08% in Table 1. Similarly, in SEED-IV, the increment
with adding DCNN mapping is up to 13.89% in Table 2, while
that in Table 1 is only up to 9.60%. It indicates that the DCNN
mapping works more effectively to dimmish the individual dif-
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Table 3
The number of channels in which each channel has significant difference with more than 25%, 50% and 75% of other 61 channels.

Dataset SEED SEED-IV
Mapping Parameter Scaling parameter Translation parameter Scaling parameter Translation parameter

Percentage of significantly
different channels >25% >50% >75% >25% >50% >75% >25% >50% >75% >25% >50% >75%

Number of channels 61 60 22 62 34 12 62 53 25 8 2 1

Table 4
Comparison results on SEED and SEED-IV datasets. The highest accuracies on SEED and SEED-IV datasets across methods are highlighted in bold, respectively.

Author Published year Method Dataset Highest accuracy (%)

Chen et al. [32] 2021 Multi-source marginal distribution adaptation (MS-MDA) SEED 89.63
SEED-IV 59.34

Li et al. [33] 2021 Self-organized graph neural network (SOGNN) SEED 86.81
SEED-IV 75.27

Li et al. [34] 2022 Dynamic domain adaptation (DDA) SEED 91.08
SEED-IV 81.58

Peng et al. [35] 2022 Joint EEG feature transfer and semisupervised
cross-subject emotion recognition model

SEED 84.69
SEED-IV 78.85

Magdiel and Gibran [36] 2023 Multi-source feature alignment and label rectification (MFA-LR) SEED 89.11
SEED-IV 74.99

This study - Linear domain adaption SEED 97.22
SEED-IV 80.00

Fig. 7. Illustration of DCNN mapping destination.

ference between source domain and target domain, though it
can also improve 5-fold validation results in source domain.
It’s because the direction of DCNN mapping procedure is to
reduce sDTW values between training data in source domain
and mapping targets in target domain so that the similarity be-
tween them can be augmented definitely. The γ-soft-DTW loss
curves of five frequency bands that are averaged in channels are
shown in Fig. 6. Although the mapping direction is common
in source domain, the scope of mapping destination is wider,
leading to more individual difference in mapped data of source
domain (see Fig. 7).

4.2. Statistical analysis results

a) Parameter numerical statistics. The parameter numeri-
cal statistics results of scaling parameters W and translation pa-
rameters B are shown in Fig. 8, respectively. Firstly, given that
the whole mapping procedure is a linear transformation (see Eq.
(9)) that W and B transform the EEG data values to diminish
difference between individuals (see Fig. 6) without changing
their waveforms, it can be inferred that the waveforms between
individual EEG data are pretty similar but the values of them are
variant. This could be resulted from the individual difference,
instability of EEG patterns in temporal dimension and exper-
imental error in experimental sessions [8],[26]. This finding

could reveal how the EEG difference is reflected on practical
recorded EEG data, in which the global values of EEG data
are directly influenced but the waveforms in a limited temporal
range are relatively stable. Furthermore, as shown in Fig. 8, the
parameter distribution is hierarchical in five frequency bands
and the parameters in channels from same frequency band can
be regarded as a relatively integration. The boundaries between
frequency bands are obviously existing and the EEG data across
channels fluctuate within boundaries. Meanwhile, parameters
from parietal lobe are prone to higher scaling values and lower
translation values in both SEED and SEED-IV. That is, the scale
extent of EEG data from parietal lobe is significantly lesser than
other brain cortex regions. Thereinto, outlier data of W parame-
ters occur at the region centered in Cz and CPz channels, which
is the center of parietal lobe. This could be attributed to the use
of EEG cap where parietal lobe (especially the positions of Cz
and CPz) are prone to be firstly located with higher location ac-
curacy, while the locations of other channels on cap are easier
to move because of the deformation of EEG cap and difference
of subjects’ head shape. This can result in more experimental
errors in channels, which makes difference greater between ex-
perimental sessions and requires more scaling operations. The
integration of channels can be enhanced if the experimental er-
rors above can be diminished.

b) Correlation analysis. Fig. 9 and Fig. 10 show the corre-
lation analysis results in SEED and SEED-IV, respectively. The
pairwise correlation of channels shows that there is obviously
positive correlation in most channels. This correlation is ex-
isting across frequency bands and evenly distributed in global
brain cortex region, which is in accord with the previous con-
clusion that EEG data in 62 channels are a unity when in emo-
tion response. Furthermore, given that there are three emotion
categories in SEED and four in SEED-IV, the overall correla-
tion in SEED-IV is stronger than that in SEED in all the five
frequency bands. The range of positive correlation in channels
in SEED-IV is greater as well. It indicates that the experimental
emotion complexity (i.e., emotion categories) can influence the
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(a) Scaling parameter numerical statistics of SEED.

(b) Scaling parameter numerical statistics of SEED-IV.

(c) Translation parameter numerical statistics of SEED (left) and SEED-IV (right).

Fig. 8. Parameter numerical statistics in SEED and SEED-IV dataset. The x-axis represents the 62 channels and the y-axis represents the value of parameters.

correlation of channels. Higher degree in emotion complexity
contributes to strengthened integration of channels. However,
the effect of such an influence should be further discussed. On
the one hand, the integration of channels implies that the global
EEG signals can be obtained with fewer channels. On the other
hand, the global features extraction (e.g., convolutional layers
of CNN) maybe impacted as less differences between brain
cortex regions are preserved with higher emotion complexity,
which could be a difficulty for multi-emotion recognition.

c) Nonparametric significance testing. The nonparamet-
ric significance testing is performed on mapping parameters of
SEED and SEED-IV, and the results are shown in Fig. 11 and
Fig. 12, respectively. The number of channels that have sig-
nificant difference with more than 25%, 50% and 75% of other
channels is recorded in Table 4. It can be found that most of
channels in different brain regions have no significant difference
across frequency bands, which means that most channels are in-
terconnected without the limitation of brain regions in emotion
responses. Specifically, as shown in Table 4, nearly all channels
have significant difference with more than 25% of other chan-
nels, but less than a half of channels are significantly different
with other channels when the percentage is more than 75%. It

shows that the difference between channels is limited especially
when the scope covers the whole brain regions, which further
proves the integration of channels. However, as shown in Fig.
12 and Fig. 12, the interconnection doesn’t appear in frequency
bands. The p-value distributions in frequency bands are obvi-
ously different, which is consistent with the hierarchy charac-
teristics in parameter numerical statistics analysis before.

Furthermore, as there are a few channels that have significant
difference with most of the others in some of frequency bands,
each channel that has significant difference with over 75% of
other channels in each frequency band is recorded. The oc-
currence numbers of these channels in SEED and SEED-IV is
counted and transformed as occurrence rate by dividing 10 (i.e.,
2(datasets)×5(frequency bands)). The occurrence rates calcu-
lated by W and B are illustrated in Fig. 13. As shown in Fig.
13, the regions of high occurrence rate are concentrated on pari-
etal lobe and parts of frontal lobe/occipital lobe, which are rec-
ognized as the emotion-insensitive brain cortex region in previ-
ous studies [8],[22]. It indicates that emotion sensitiveness of
brain cortex region can influence the correlation between chan-
nels. Channels in relatively insensitive regions are more likely
to have weaker correlations with other channels. However, it
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Fig. 9. Parameter numerical statistics in SEED and SEED-IV dataset. The x-axis represents the 62 channels and the y-axis represents the value of parameters.

Fig. 10. Parameter numerical statistics in SEED and SEED-IV dataset. The x-axis represents the 62 channels and the y-axis represents the value of parameters.

should be noticed that this weak correlation happens in a few
parts of frequency bands with relatively small probabilities and
doesn’t significantly influence the general integration of chan-
nels.

4.3. Comparative analysis

To further evaluate the performance of the proposed linear
domain adaption method, related methods (especially for trans-
fer learning) that perform cross-subject EEG-based emotion
recognition on the SEED and SEED-IV datasets are involved
for comparative analysis. As shown in Table 4, these related
methods realized good cross-subject emotion recognition per-
formance by using deep learning networks and transfer learn-
ing. The highest recognition accuracies of related methods on
SEED and SEED-IV datasets are 91.08% and 81.58% respec-

tively, while the method in this study attains recognition accu-
racies of 97.22% and 80.00% for the same datasets. It shows
that the proposed method can achieve comparable and even
much higher cross-subject emotion recognition accuracy. Fur-
thermore, as the related methods in Table 4 are based on neural
network with deep layers, it needs more computational costs
when comparing with the proposed method that integrates sin-
gle neural network layer with shallow machine learning. The
interpretability problem also appears in the deep neural net-
work model above, leading to the fact that unparsable model
parameters hinder the further investigation of models and EEG
emotion response mechanisms. In contrast, parameters in the
linear domain adaptation model can be completely parsed and
utilized as features to investigate the underlying EEG mecha-
nisms due to the simplified model structure. In general, com-
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Fig. 11. Parameter numerical statistics in SEED and SEED-IV dataset. The x-axis represents the 62 channels and the y-axis represents the value of parameters.

Fig. 12. Parameter numerical statistics in SEED and SEED-IV dataset. The x-axis represents the 62 channels and the y-axis represents the value of parameters.

Fig. 13. Occurrence rate of channel-unrelated channels based on mapping pa-
rameters.

pared with other related methods, the proposed method in this
study can make fully use of the network model to achieve high
EEG-based cross-subject emotion recognition accuracy as well

as EEG emotion mechanisms investigation.

5. Discussion

5.1. Brain cortex regions and channels integration

The functions of brain cortex regions should be further inves-
tigated and determined in affective computing as the channel
integration is out of regions constraint. Previous studies divide
brain cortex into different functional regions [22],[37], such as
the orbital frontal cortex, ventral medial prefrontal cortex, and
amygdala [38],[39]. Channels located at different brain cortex
regions contribute differently to emotion recognition [40],[41]
and hence selecting channels from the right brain cortex re-
gions is helpful for improving emotion recognition accuracy
[8],[22],[42]. However, in statistical analysis results, it is found
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that channels can be regarded as an integrated unity that breaks
the boundary between different brain cortex regions. Nonpara-
metric significance testing results show that brain cortex regions
associated with emotions have different performances in chan-
nel correlation. However, the occurrence rate of such differ-
ence is still in low degree. In general, it is believed that dif-
ference exists between different brain cortex regions in emotion
response studies. However, given that channel locations could
move because of the deformation of EEG cap and the difference
in subjects’ head shape when using EEG cap to collect EEG
signals, the range of brain cortex regions is not strictly fixed in
experiments. This undefined brain cortex regions could inter-
vene in the expression of EEG signals collected from different
regions, which may further lead to the magnification of differ-
ence between brain cortex regions. Therefore, it should be fur-
ther investigated how the position offset of channels influences
the EEG signals collection and brain cortex region functions
as well as the influence extent, and whether the differences be-
tween brain cortex regions are overestimated.

5.2. Hierarchy characteristic of frequency bands
The hierarchy characteristic of frequency bands has no per-

ceptible influence on emotion recognition since there is no sig-
nificant difference in the recognition accuracy of different fre-
quency bands. According to the results in Tables 1-2, there is
no significant difference in the recognition accuracy of different
frequency bands, indicating that hierarchy characteristic of fre-
quency bands does not affect emotion recognition significantly.
Consistent with previous studies, it has been shown that EEG
signals in diverse frequency bands could be associated with spe-
cific human activities [43],[44]. For example, alpha band is re-
lated to the state when a person is relaxed and conscious, while
beta band is related to the state that human mind is active and
highly concentrated [45]. Moreover, it was found that emotion
EEG signals are more active in the low-frequency band than
that in the high-frequency band, and a wider distribution and
higher intensity occur in negative emotion responses than in
positive emotion [46]. However, in the recognition results of
different frequency bands in Tables 1-2, there is no significant
difference in frequency bands across classifiers. The recogni-
tion performances have little identifiable difference in different
frequency bands across classifiers and datasets. It seems that
the difference of frequency bands cannot be well reflected in
emotion recognition results. It may be because that the EEG
data of different frequency bands share the same original source
data and the effective information is distributed unevenly in dif-
ferent frequency bands. Hence, for improving EEG emotion
recognition, dividing EEG signals into several frequency bands
to attain more frequency features is more useful than taking
EEG signals from one specific frequency band. This view can
be supported by previous studies which conclude that using the
organization of all frequency bands could achieve better emo-
tion recognition accuracy than using a single band [22].

5.3. Potential application
Beyond previous CNN based emotion recognition methods,

which prefer to focusing on EEG data of some specific research

areas, the proposed methods (i.e., ELBN and DCNN mapping)
can transfer EEG data from one domain into another. As shown
in the recognition accuracy of Tables 1-2, the mapping process
is able to map the EEG features from one subject to another,
reinforcing the similarity between subjects’ EEG data and im-
proving emotion recognition across subjects. Based on the
characteristics of the proposed methods, this study sees several
ways in which the method could be used to improve emotion
recognition. Firstly, since the individual differences or experi-
mental errors could lead to differences in separate datasets, one
key implication of the proposed method is to integrate diverse
EEG datasets and extend their potential use cases. Specifically,
the external EEG data from other subjects can be mapped to
a specific person as his/her training data for emotion recogni-
tion classifiers, which can change the situation that one subject
should participate in experiments many times to collect enough
EEG data for training classifiers. That is, EEG data of a specific
subject are expended by transferring other EEG data. Moreover,
this expansion ability of mapping process can also be used in
mapping EEG across different research areas. For example, the
emotional EEG signals elicited in daily life can be used to rec-
ognize driving emotion [47], which is helpful for building driv-
ing assistance systems. Additionally, the EEG signals elicited
in different scenarios can be intercommunicated and the con-
tent of them can be enriched by each other. The applicable
categories of EEG conclude not only emotions but also other
human activities, such as distraction EEG signals [48].

5.4. Limitations and future work

The main limitations and future work of this study can be
summarized as follows. Firstly, in the features processing pro-
cedure, features in some of trials that less than 180 epochs are
filled with zeros. The unified format of EEG features is benefi-
cial to data application in classifiers, and zero paddings will be
ignored in feature identified. However, zero paddings will influ-
ence the results of ELBN outputs. Though these outputs will be
rectified in the following DCNN mapping processes, whether
EEG data without zero padding have better classification re-
sults is still need to be investigated in the future. Secondly, the
scaling parameters W and translation parameters B are both an-
alyzed in statistical analysis. In most cases, these two kinds
of parameters are distributed similarly. However, in param-
eter numerical statistics results shown in Fig. 8 and Fig. 9,
W and B show different distribution in frequency bands, which
makes it difficult to determine how frequency bands work in hu-
man emotion responses. In future work, the variant parameters
should be further decreased to ensure the states of frequency
bands in emotion responses. Finally, there are only four EEG
emotion categories used in this study. However, human emo-
tion categories are much more than four. To further validate the
conclusions of the experimental analysis, more emotion cate-
gories should be involved in future study. In the meanwhile,
more sound and representative emotion measurements can be
used for EEG emotion analysis to draw a more general conclu-
sion, such as valence-arousal-dominance model [47].
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6. Conclusion

In this study a new subject-independent EEG linear domain
adaption method based on ELBN and DCNN is proposed. By
scaling and translating EEG signal waves (i.e., linear map-
ping) to map the data in source domain to target domain, the
EEG emotion recognition accuracy across individuals is con-
siderably improved in both SEED and SEED-IV. The highest
increment across frequency bands with ELBN and DCNN in
SEED is up to 61.11% while the highest recognition accuracy
can reach 97.22%. This improvement indicates that the wave
forms between individual EEG data are highly similar so that
the linear mapping can work effectively. Moreover, the scal-
ing parameters and translation parameters are analyzed to fig-
ure out EEG emotion response mechanism. In statistical analy-
sis results, channels interconnect to each other under the same
frequency band, while those EEG data in different frequency
bands are separated out. It is also found that the emotion com-
plexity in experiments may influence the connection of chan-
nels. The more emotion categories are involved, the stronger
correlation between channels can be led. Furthermore, those
channels that are more likely to differ from others are prone
to appearing at emotion insensitive brain cortex regions (i.e.,
parietal lobe and frontal lobe), which indicates that emotion
sensitiveness of brain cortex region can influence the integra-
tion of intra-regional channels. Stronger emotion sensitiveness
is related to stronger correlation between channels. In a word,
this study provides an efficient approach to break the bound-
aries between subjects and reveals the EEG emotion response
mechanism for future studies.
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