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Abstract

With the modernisation of the electric grid, it is crucial to have smart solutions for e↵ec-

tive and secure system planning and operation. Traditional power system optimisation

methods are being reevaluated and are becoming relevant for new applications. One such

method is the Security Constrained Optimal Power Flow (SCOPF), which is an extension

of the Optimal Power Flow (OPF) problem. In this thesis, the objective of SCOPF is

to minimise cost of load curtailments, while satisfying all system constraints not only in

normal operation conditions, but also in anticipated contingencies such as line outages

and generator outages.

The objective of this Master’s thesis is to make use of a non-sequential Monte Carlo

Simulation and integrate it with a DC optimal power flow (DCOPF) approach using

the Python programming language and the Pyomo framework. The primary focus is

on assessing the reliability (adequacy aspect) of composite power systems. A novel DC

preventive security constrained optimal power flow (DC-PSCOPF) approach has been

developed for assessing the reliability of composite power systems. The main contribution

of this thesis is the implementation of DC-PSCOPF in the OPF analysis of the algorithmic

approach in calculating the reliability indices.

This thesis intends to pioneer the application of SCOPF in the assessment of power sys-

tem reliability, representing a research area that has not been extensively explored before.

The integration of SCOPF techniques, in this case DC-PSCOPF, in the composite sys-

tem adequacy assessment, further develops the framework for evaluating the reliability

of power systems available at the Department of Electric Energy (formerly, Department

of Electric Power Engineering), NTNU. By considering both pre- and post-contingency

constraints, this fresh perspective aims to o↵er helpful insights into the adequacy as-

sessment of composite power systems. One of the goals of this thesis work is to create

a reproducible method, which could be used as a stepping-stone for future research on

the topic. Reliability indices utilising DCOPF and DC-PSCOPF are presented. A com-

prehensive deployment of the methodological approach used is presented, including the

necessary adaptations and underlying assumptions. The details provided o↵er a clear

understanding of the approach utilised, ensuring transparency in the method.
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Two main scripts are developed for the implementation of DCOPF and DC-PSCOPF

in the Pyomo framework in Python. These scripts are used in conjunction with the

previously developed in-house scripts at the Department of Electric Energy, for evaluating

and quantifying power system reliability indices. The first script focuses on the standard

composite system adequacy assessment, utilising the DCOPF approach applied to the

Roy Billinton Test System (RBTS) and the IEEE-Reliability Test System (IEEE RTS).

The second script builds upon the first script by incorporating DC-PSCOPF, and it is also

applied to the RBTS and IEEE RTS systems. In order to give some sense of verification

of the developed code, a comparison of the obtained reliability indices is conducted using

similar methodological approaches.
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Sammendrag

Med modernisering av kraftnettet er det avgjørende å ha smarte løsninger for e↵ektiv og

sikker systemplanlegging og drift. Tradisjonelle optimeringsmetoder av kraftsystemer blir

reevaluert, siden de n̊a er relevante for nye bruksomr̊ader. En slik metode er ”Security

Constrained Optimal Power Flow” (SCOPF), som er en utvidelse av optimal lastflyt

(OPF). I denne avhandlingen, er målet med SCOPF er minimere kostnader gjennom

å finne den mest kostnadse↵ektive fordelingen av kraftproduksjon for et gitt system,

samtidig som alle systembegrensninger oppfylles, ikke bare under normale driftsforhold,

men ogs̊a under eventuelle utfall av linjer eller generatorer.

Målet med denne avhandlingen er å benytte en ikke-sekvensiell Monte Carlo-simuleringsmetode

og integrere den med en DC optimal lastflyt (DCOPF) ved bruk av programmeringsspr̊aket

Python, og rammeverket Pyomo. Hovedfokuset er å vurdere p̊aliteligheten til kraft-

systemer. En ny tilnærming for DC ”Preventive Security Constrained Optimal Power

Flow” (DC-PSCOPF) som er en utvidelse OPF, er utviklet for å vurdere p̊aliteligheten

til kraftsystemer. Hovedbidraget i denne oppgaven er implementering av DC-PSCOPF i

OPF-analysen av den algoritmiske tilnærmingen ved beregning av p̊alitelighetsindekser.

Denne avhandlingen er et pionerarbeid innen anvendelsen av SCOPF i p̊alitelighetsstudier

p̊a kraftsystemer, og representerer et forskningsomr̊ade som ikke tidligere har blitt grundig

utforsket. Integreringen av SCOPF-teknikker, i dette tilfellet DC-PSCOPF, i p̊alitelighetsanalysen

for kraftsystemer videreutvikler rammeverket og dataverktøyene for p̊alitelighetsanalyse

ved Institutt for Elektrisk Energi (tidligere Institutt for Elkraftteknikk), NTNU. Ved

å ta hensyn til b̊ade normale driftsforhold og eventuelle utfall, har denne nyskapende

tilnærmingen som mål å gi verdifulle innsikter i p̊alitelighetsanalysen av kraftsystemer.

Et av målene med avhandlingen er å skape en reproduserbar metode som kan brukes

som et springbrett for fremtidig forskning innen emnet. P̊alitelighetsindikatorer basert

p̊a DCOPF og DC-PSCOPF blir presentert. Det gis en omfattende beskrivelse av den

metodiske tilnærmingen brukt, inkludert nødvendige tilpasninger og underliggende an-

takelser. De detaljerte opplysningene gir en klar forst̊aelse av den anvendte tilnærmingen

og sikrer tydelighet i metoden.

iii



Det er utviklet to dataverktøy for implementeringen av DCOPF og DC-PSCOPF i

Pyomo-rammeverket i Python. Disse dataverktøyene brukes i kombinasjon med tidligere

utviklede dataverktøy tilgjengelig ved Institutt for Elektrisk Energi p̊a NTNU, for å

evaluere og kvantifisere p̊alitelighetsindikatorer for kraftsystemer ved hjelp av de nevnte

optimeringsmetodene. Det første skriptet fokuserer p̊a den grunnleggende metoden for

p̊alitelighetsanalyse ved DCOPF, og blir anvendt p̊a Roy Billinton Test System (RBTS)

og IEEE-Reliability Test System (IEEE RTS). Det andre skriptet bygger videre p̊a det

første skriptet ved å inkludere DC-PSCOPF, og blir ogs̊a anvendt p̊a systemene RBTS

og IEEE RTS. For å gi en viss verifikasjon av koden, gjennomføres det en sammenligning

av de oppn̊adde p̊alitelighetsindikatorene ved lignende metodiske tilnærminger.
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1 Introduction

1.1 Background and Motivation

Over the years, electricity has been a crucial source of energy delivered to industrial,

commercial and residential consumers. Its use is expanding quickly in response to the

demand for automation in advanced technologies, and necessary environment friendly

energy. The operation and planning of the power system, particularly the transmission

system, are to guarantee the economical and secure real-time matching of power gen-

eration and demand. Future power systems will need to have the potential to expand

into complicated topologies while maintaining cost-e↵ectiveness, security, and reliability

in the distribution of electricity. This makes power delivery planning critically important

to the large and complex power system.

The challenges of achieving cost e�ciency in the power system has been extensively dis-

cussed by researchers. In [1], it is shown that billions of dollars could be saved every year

in the U.S., as a result of a 5% increase in dispatch e�ciency. More e�cient methods

for solving optimal power flow problems in transmission system planning can be used

to achieve this improvement. With adequate control of the power system, the potential

savings could be massive. The need for an e↵ective method of solving system operating

problems is imposed by both the economic well-being as well as environmental sustain-

ability.

Another important aspect of energy supply and consumption in the modern power system

is the need for security and reliability for system operation. The power system may be

divided into two parts, the transmission network and the distribution network. A parallel

can be drawn to the design of tra�c systems. The transmission system is designed to

carry huge amounts of energy with minimal loss similar to highways, while the distribution

system is responsible for distributing the electricity to end consumers, similar to local

roads. For some operating conditions, ”tra�c jams” may occur in the power system. This

can be the power transmitted over a transmission line violating the capabilities of the

line, and the congestion may result in cascading failures which may result in blackouts

over an expanded scale of the system. Operation of the modern power system often face
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stressed conditions. As per Statnett’s Annual report [2], the Energy-not-served (ENS)

for the last three years is presented, relating to the system operating under stressed

conditions. The outages were mainly short, being results from strong storms during the

winter, but no significant blackouts due to errors on Statnett’s facilities. Table 1.1 shows

the operational key figures from the last three years. Delivery reliability and security of

supply in the transmission network was satisfactory in 2022. The volume of ENS has

been low, the number operational disruptions at Statnett’s facilities were at the level of

previous years, and the frequency quality was better than the last three the years. It

is crucial for the power system, especially the transmission system, to maintain voltage

and frequency within the required levels to prevent equipment damage, outages, and

blackouts, and ensure uninterrupted power supply.

In the event of a contingency, the power system needs to reconfigure its topology and

restore operation according to the di↵erent criteria [3], by means of restoring loads and

prevent events such as cascading failures. Such critical failures may result in damage

of equipment, financial losses, or even deaths. For system security, safety, and economic

benefits it is essential to solve the challenges of power system operation taking into account

possible contingencies. As a result, in order to ensure overall e�ciency, reliability, and

security, the operation and planning of a system must not only take into account the

normal cases but also need to be designed to withstand uncertainties and disturbances

in potentially hazardous circumstances. Such an approach is known as the N-1 criterion.

Table 1.1: Operational key figures on security of supply from [2].

Security of supply Unit 2022 2021 2020

Frequency deviation* Minutes 9376 10670 9693

Energy not served (ENS) MWh 83 701 1381

Delivery reliability (1 - ENS/ES) % 99.9999 99.9986 99.9939

*Frequency deviation measures stability in the power balance. In the Nordic

countries, the requirement is that the frequency must be within a band of 50.00

+/- 0.10 Hz.

However, planning that takes into account all risks and circumstances is challenging since
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there are additional constraints from di↵erent scenarios that need to be identified and

considered [4]. There are still unsolved challenges with network topology, uncertainties

from renewable energy resources, non-linear performance of network components and

computational complexities, to name a few. It is thus necessary to conduct more research

on problems related to e�ciency and reliability in the planning and operation of the power

system.

System operators need to run a load flow model with immense amounts of data to assess

the impact and power flows in the power system. Due to the non-convex nature of the

load flow equations, it proves troublesome to find global optimal solutions, and no e�cient

approach is guaranteed in such a problem. In addition, the power system are typically

large in size. This leads to di�culties in constructing and solving full-scale mathematical

models.

In recent years, a variety of optimisation algorithms have been proposed and assessed in

research papers for solving transmission system planning and operation problems. This

includes utilising linear approximations [5], convex relaxations [6], interior point method

with barrier function [7], distributed methods [8], dual decomposition methods [8][9] and

heuristic methods [10]. There has also been developed software and tools o↵ering system

operators to make decisions in planning and operation. Some of these tools include Ipopt

[11] and LOQO [12]. Although being solutions, they need consideration in the following

aspects [13]:

1. Simplified assumptions: To minimise solving time and memory usage, it is prefer-

able to keep the computational burden light. However, many methods rely on as-

sumptions that cannot be realistically achieved in actual operations. For instance,

neglecting voltage or reactive power fluctuations may simplify nonlinear constraints,

but this approach may result in infeasible solutions and compromise voltage safety.

2. Time and resource issues: While certain approaches can solve non-linear and large-

scale problems, they may only be suitable for research purposes. In actual opera-

tions, they may encounter di�culties in meeting the required time constraints.

Considering the challenges and di�culties in current power system planning and opera-
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tion, this thesis aims to solve power system optimisation problems while ensuring secure

power delivery and preventing network violations under contingency situations, following

the deterministic N-1 criteria. The main focus is on solving the DCOPF (DC Optimal

Power Flow) and DC-SCOPF (DC - Security Constrained Optimal Power Flow) problems

in the algorithmic approach of calculating reliability indices, see Figure 1.1.
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Figure 1.1: Algorithmic approach in calculating reliability indices.
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1.2 Scope

The scope of work is focused on developing an algorithmic approach for calculating com-

posite power system reliability indices. To achieve this, the OPF analysis is extended to

include SCOPF in the contingency solver. By incorporating this technique, the aim is to

improve the accuracy and reliability of power system operation and planning.

The intention of this thesis was to conduct a comprehensive analysis of SCOPF in the

context of both AC and DC approaches in the contingency solver. Originally, it was

planned to incorporate the Corrective SCOPF (CSCOPF) in the analysis, but constrain-

ing circumstances necessitated a modification of the approach. As a consequence, the

scope of the thesis was adjusted to focus solely on the Preventive SCOPF (PSCOPF) in-

stead. Additionally, due to constraints in resources and time, the analysis was limited to

the DC based approach, with the AC based approach excluded from the study. However,

the thesis aims to provide valuable insights into the application of DC based PSCOPF,

hereby referred to as DC-PSCOPF, in the assessment of power system reliability.

Contributions

The work on this thesis, conducted during Spring 2023, has the following problem state-

ment: Develop in-house software tools (Python-based) as a part of a comprehensive frame-

work for assessing power system adequacy studies for composite systems, using Monte

Carlo simulation methods.

The adequacy of the composite systems has been quantified using the following reliability

indices: Loss of Load Expectation (LOLE) and Expected Energy Not Served (EENS).

1. The main research contribution lies in incorporating SCOPF to the OPF-based

in-house code used for power system reliability assessment. This allows for a more

comprehensive evaluation of reliability indices and provides a more accurate rep-

resentation of real-world power system operations. The approach represents an

improvement over the previous OPF-based algorithmic approach used for calculat-

ing reliability indices, making it a small yet significant contribution to the field of

power system reliability assessment.
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1.3 Structure of Thesis

At the outset, it must be pointed out that none of the work from the specialisation project

report is included in this Master’s thesis; during the specialisation project phase, much

time was devoted to gaining a better understanding of OPF (theory, scripts, illustrative

studies) and conducting a comprehensive literature review on OPF. It was only at the

start of the Master’s thesis work that it was decided that applicability of OPF and SCOPF

in power system reliability studies should be looked into. The thesis is organised into 6

chapters as follows:

Chapter 1 - Introduction: This chapter provides background, scope and structure of the

thesis.

Chapter 2 - Conceptual background : Theoretical fundamentals are presented in this chap-

ter as a prelude to this thesis work. This includes fundamental Power System Reliability

(PSR), Monte Carlo Simulations (MCS), Optimal Power Flow (OPF), Security Con-

strained Optimal Power Flow (SCOPF), and contingency analysis.

The core of the thesis work is presented in Chapters 3 through 6.

Chapter 3 - Methodology : This chapter focuses on the methodological approach in the

calculation of reliability indices. It presents the implementation of an HLII adequacy

assessment, in a step-by-step manner, following the approach illustrated in Figure 1.1.

The chapter includes illustrative examples that demonstrate the conceptual background,

as deemed necessary.

Chapter 4 - Code Development and Programming : This chapter presents the code devel-

opment of the thesis work. This includes a presentation of the modelling approach.

Chapter 5 - Case Studies : In this chapter, the developed standard HLII reliability as-

sessment software is implemented, tested and compared using the RBTS and the IEEE

RTS.

Chapter 6 - Conclusions and Further Work : A summary of the findings of this thesis

work are presented in this chapter, followed by a suggestion of ideas for future work.
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2 Conceptual Background

This chapter serves as a foundational introduction to the theoretical fundamentals essen-

tial for this thesis work. It covers key concepts such as Power System Reliability (PSR),

Optimal Power Flow (OPF), Security Constrained Optimal Power Flow (SCOPF), con-

tingency analysis, and Monte Carlo Simulations (MCS). These concepts form the basis

for the subsequent chapters, providing the necessary background knowledge for under-

standing the methodologies and analyses presented in this thesis.

2.1 Introduction to Power System Reliability (PSR)

The theoretical basis of this Master’s thesis’ methodology is rooted in the Power System

Reliability (PSR) framework. The term ”reliability” refers to a system’s capacity to

perform its intended function within specified conditions for a specific duration of time

[14]. However, the PSR framework is intricate, and its evaluation can be generally split

into two areas: adequacy and security [15]. Each of these domains takes into account

di↵erent aspects of the reliability analysis.

Figure 2.1: Power System Reliability.

The two sub-domains of the PSR framework di↵er mainly in their focus on either the static

or dynamic conditions of a system. Adequacy studies primarily evaluate the static con-

ditions of a power system, such as whether the system’s generation capacity is adequate

to meet its load requirement. Other factors may also be considered, such as whether

the transmission and distribution infrastructure can adequately transport energy from
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generating facilities to end consumers. In contrast, security assessment primarily deals

with the dynamic aspects of a system.

The security assessment focuses on the dynamic events that occur within a system when

exposed to disturbances, such as line faults or the loss of generating units. The critical

concern during such disturbances is whether the system can remain within its stability

limits, when transient e↵ects are induced during such disturbances. Additionally, these

e↵ects can occur when the system transitions between di↵erent states. However, adequacy

studies typically overlook these e↵ects and instead concentrate on whether the system

meets its steady-state requirements for each state [15]. In this thesis, only the adequacy

aspect of PSR will be considered.

2.1.1 Hierarchical Levels

Typically, PSR studies are categorized into hierarchical levels (HL) based on the func-

tional zones of the power system they encompass [15].

The first level, HLI, evaluates the adequacy of generation capacity, while HLII, the sec-

ond level, considers both the generation and transmission facilities. A complete adequacy

assessment of the system, HLIII studies, examines not only the previously mentioned func-

tional zones but also includes the distribution facilities. The inclusion of the distribution

facilities poses a significant challenge for conducting HLIII studies, as it typically results

in large-scale models. Nevertheless, this challenge can often be overcome by conducting

isolated studies focused solely on the distribution functional zone, which reduces the scale

of the problem [15]. A representation of the HLs is shown in Figure 2.2. The focus of this

thesis will revolve around the adequacy studies related to HLII, but some background on

HLI is supplied.
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Figure 2.2: Hierarchical levels.

HLI studies focus on assessing the ability of a power system’s generation facilities to

meet a power system’s load demand. These studies do not concern the energy transport

capabilities of the power system. To create a HLI model, the generating units and loads of

the system are combined into equivalent models, as seen in Figure 2.3. The fundamental

modeling technique in HLI studies involves merging the generation and load models to

create a probabilistic risk model. To determine reliability indices, the total generation

capacity is compared to the total load requirement [15].

Figure 2.3: HLI.

HLII studies incorporate the transmission system’s network topology in their adequacy

assessment, which involves analyzing the system with additional parameters. While the

focus of HLII studies is related to the adequacy of the system, they typically take into

account steady-state security constraints such as voltage limits on buses in the system

during the evaluation process [16]. Including a model of the network topology in HLII
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makes it possible to obtain reliability indices both for the system, and the buses them-

selves. However, performing assessments at this level can be more complex due to the need

for load flow analysis, which can significantly increase computation time. To improve the

evaluation process speed, various techniques have been developed, including intelligent

system methodologies that classify system state vectors through algebraic comparisons

against pre-solved vectors, rather than solving each system state using OPF methods

[17]. One method suggested is the use of Self-Organizing Maps [18].

Regarding the load flow analysis being a part of the HLII studies, there will in this the-

sis be two OPF approaches examined: one DCOPF formulation, and one DC-PSCOPF

formulation. Both will be presented in detail in Chapter 3. The DC power flow ap-

proach simplifies the OPF problem by disregarding reactive power and voltage limit

considerations. Consequently, a linear OPF problem is obtained instead of the nonlinear

OPF problem associated with the AC-based approach. As a result, the optimisation

process is less complex, and computation time is reduced compared to the AC-based

OPF approach. The OPF approach is extended to consider the more complex Security-

Constrained-Optimal Power Flow (SCOPF).

Reliability methods that are based on probability can be broadly classified as either

analytical or simulation based. Analytical methods represent the system using a mathe-

matical model and calculate reliability indices using a set of equations. Several analytical

methods are available: the state space method, minimal cut set method, and contingency

enumeration method are among the more common methods used [19]. The state space

method evaluates all potential system states during the assessment. However, for larger

systems, this can result in an excessive number of states to analyze, which necessitates

the use of network reduction techniques to simplify the process and reduce computational

e↵ort. The minimal cut set method concentrates on determining reliability indices only

at selected load points, rather than the entire system. Therefore, only contingencies that

have the potential to impact the load points are considered, leading to a reduction in

computation time. Finally, the contingency enumeration method assesses only a prede-

termined number of contingencies, with the depth of contingencies chosen based on the

desired level of accuracy.

On the other hand, there are the simulation methods. They often are based on MCS
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methodology, and they replicate a sequence of experiments on a mathematical model

of the system [20]. Through such simulations, the stochastic nature of the system may

be captured. In addition to providing mean values, MCS methods can also produce

distributions for the indices if a sequential method is selected instead of a non-sequential

method [21]. Sequential methods are preferred when operation of the system is dependent

on its history [20]. The work of this thesis has its emphasis in the simulation methods.

2.2 Load Model

Load variations within a specified time frame, typically a year, can be e↵ectively captured

through the implementation of a load model. The time period can be divided into incre-

ments based on the desired level of model accuracy. The simplest form of such a model

is the constant yearly peak load (CYPL), which corresponds to the highest load demand

observed within a year. However, the CYPL model su↵ers from limited accuracy as it

only represents a few days out of the entire year. To achieve improved accuracy, alter-

native models such as the weekly peak load (WPL), daily peak load (DPL), and hourly

peak load (HPL) are used. It should be noted that the use of the DPL and HPL models

results in increased computational time, but they o↵er a more precise representation of

the behavior of the load variations throughout the year [22].

Figure 2.4 illustrates chronological representations of CYPL, WPL, DPL and HPL for

the first week of the year for the load model presented in [23]. Each time increment

within this period is associated with a distinct load level. Furthermore, it is important

to highlight that WPL is determined by selecting the peak load value from DPL for each

week. The same relationship holds true for HPL. Consequently, both CYPL and WPL

tend to exhibit more pessimistic load levels compared to DPL and HPL.

An alternative approach to representing the load model is through a load duration curve

(LDC), which arranges the load values in descending order [24]. Figure 2.5 depicts the

LDC for each of the distinct load models. Observing the LDC, it becomes apparent the

the CYPL model remains constant at 185 MW, while the load demand range for HPL

extends from 160 MW down to 72 MW. Once again, it is evident that the CYPL model

exhibits a significantly more pessimistic representation compared to the use of the HPL
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model.

Figure 2.4: Chronological load representation from the first week of the year in the load

data from [23].

Figure 2.5: Descending load representation from the first week of the year in the load

data from [23].
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2.3 State Models

In the field of reliability assessment, there are two distinct state models that can utilised:

a two-state model and a multi-state model. The two-state model operates on the premise

that each component can exist in one of two states, namely fully available or fully un-

available [24]. The availability of a component is determined by its forced outage rate

(FOR), which represents the probability of the component being entirely unavailable. If

FOR is equal to 0.01, it signifies a 1% probability of the component being in an outage

state, while there is a 99% probability of it being available [24]. Figure (2.6) illustrates

this concept.

In contrast, a multi-state model involves more than two states, known as derated states,

which are characterized by partial availability. Figure (2.7) provides an illustration of

this concept. In the scenario in the figure, the system can exist in three distinct states:

fully available, fully unavailable or derated with half of its capacity being available [23].

This thesis will solely cover the two-state model.

Figure 2.6: Two-state model. Figure adapted from [25].

Figure 2.7: Example of multi-state model. Figure adapted from [25].
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2.4 Probabilistic Indices in HLII Assessment

In the literature, several variations for HLII indices are provided [26], [27], [28]. It is

worth noting that the descriptions, abbreviations, and notations utilised for the indices

may vary. This disparity arises from the fact that the indices are designed to convey

diverse information, subject to the specific objective of the assessment at hand.

According to [25], the indices used in HLI assessments may be extended to the HLII

assessments. In the HLII assessment, transmission lines are included in addition to the

generation capacity and load which are parts of the HLI assessment. This means that

for example Loss-of-Load (LOL) events do not only depend on the generators and loads,

but also the capacities of the transmission lines. LOL-indices are dependent on the load

model, and must be interpreted di↵erently for each load model [24].

The probabilistic indices of HLII can be categorized into two groups: individual load

point and system indices [26]. The individual load point indices are determined by as-

sessing each load bus individually, while the system indices assess the overall adequacy

of the system. This thesis encompasses the application of indices from both categories.

Considering the extensive range of HLII indices available, this thesis focuses on the most

comprehensive ones, as documented from [25][26].

2.4.1 Loss of Load Probability (LOLP)

The LOLP is a probability index that displays the probability of a LOL situation for a

given time period. LOL situations occur if the load demand exceed available capacity,

which can happen for di↵erent reasons, such as a generation unit out of service or an

unexpected increase in demand [22]. In an analytical approach, the LOLP is calculated

by comparing the load model to the generation model, known as the capacity outage

probability table (COPT). Equation (2.1) shows the LOLP-value in time increment t

[22].

LOLPt = P (Lt > C �X) = P (X > C � Lt) (2.1)

X is the capacity outage, C is the installed capacity of the system, and Lt is the load at
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a specific time increment t. P (Lt > C �X) is the probability of demand exceeding the

available capacity, while P (X > C � Lt) is the probability of having an outage capacity

that is larger than the installed capacity, minus the load at that particular time increment

[22]. This is shown to illustrate that LOLPt can be expressed in two di↵erent ways.

2.4.2 Loss of Load Expectation (LOLE)

The LOLE is a well recognised reliability index used by power system planners and

operators. It displays the expected number of days (or hours, depending on load model

used), on which a load loss will occur. The calculation of LOLE consist of the summation

of all LOLPt values over a time period [24].

Typically LOLE-values are zero when excess generating capacity is present, as well ass

o↵-peak load periods. Similarly, non-zero values are present during peak periods or during

periods that generating capacity are undergoing maintenance, and therefore not able to

provide capacity. The LOLE does not indicate the severity and neither does it indicate

the frequency nor the duration of the loss of load [15]. Equation (2.2) and Equation (2.3)

illustrates how to calculate LOLE in terms of days/year (DPL-model) and hours/year

(HPL-model), respectively.

LOLE =
365X

t=1

P (X > C � L)�T,


days

year

�
(2.2)

LOLE =
8760X

t=1

P (X > C � L)�T,


hours

year

�
(2.3)

P (X > C � L) is the probability that peak load is not met. �T is the time period for

which a given peak load exists. C is the total installed generation capacity in the system

not on outage. L is the system load for a given time [22].

LOLE analysis is used to determine the level of installed generation that is necessary

to achieve a certain level of resource adequacy. According to [29] European reliability

regulation is not uniform. LOLE-standards for some countries are presented in Table 2.1.
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Table 2.1: Reliability standard for LOLE in Europe [29].

LOLE [hour/year]

Belgium 3

France 3

Great Britain 3

Ireland 8

The Netherlands 4

2.4.3 Probability of Load Curtailments (PLC)

The Probability of Load Curtailments (PLC) represents the probability of load curtail-

ment, including all states denoted as S where such curtailment, or load shedding, occurs

[25]. The expression for PLC, as illustrated in Equation (2.4), involves the summation of

curtailment values xi for each system state i in which curtailment is present [22].

PLC =
X

i2S

P (xi) (2.4)

2.4.4 Expected Load Curtailments (ELC)

The Expected Load Curtailments (ELC) quantifies the anticipated capacity shortage, as

defined by Equation (2.5). In this equation, Ci represents the curtailment of state i, and

Fi denotes the frequency of state i [22].

ELC =
X

i2S

CiFi (2.5)

The determination of Fi can be elaborated using Equation (2.6), which involves the set

N comprising all feasible departure rates corresponding to state i, pi denoting the the

probability of the state, and �k representing the departure rate [25].

Fi = pi
X

k2N

�k (2.6)
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2.4.5 Expected Duration of Load Curtailments (EDLC)

The Expected Duration of Load Curtailments (EDLC) represents the anticipated dura-

tion, measured in hours or days, during which load curtailments are expected to occur

within a year [25]. The calculation of EDLC depends on the model employed, as demon-

strated by Equation (2.7), for the HPL model, and Equation (2.8) for the DPL model

[22].

EDLCHPL = PLC · 8760 (2.7)

EDLCDPL = PLC · 365 (2.8)

2.4.6 Expected Energy Not Served (EENS)

EENS is an important index in HLII assessment [25]. Equation (2.9) illustrates the EENS

for HLII assessments. xj is the curtailment in MW, and p(X = xj) is the probability that

the curtailment is xj. For a more thorough description of the EENS from HLI assessments,

the reader is referred to [25]. The thesis [22] also provides a concise overview.

EENS =
8760X

t=1

CX

xj=C�Ltot

⇥
xj � (C � Ltot)

⇤
· p
�
X = xj

�
(2.9)

2.5 Monte Carlo Simulation Methods

Broadly speaking, the assessment of Power System Reliability (PSR) adequacy can be

classified into two approaches: deterministic and probabilistic methods, as is shown in

Figure 2.8. Deterministic methods primarily focus on estimating the required generation

and network capacities within the system. However, they overlook the inherent random-

ness of the system, such as uncertain load variations and random failures [30]. In contrast,

probabilistic reliability assessment specifically addresses the stochastic characteristics of

the power system, taking into account its probabilistic nature.
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Figure 2.8: PSR methods, adapted from [15] and [22].

As seen from Figure 2.8, probabilistic methods may be divided into analytical methods

and simulation methods. Analytical techniques apply mathematical formulations to as-

sess the adequacy of the system, whereas simulation techniques replicate the stochastic

behavior of the system [22]. One commonly utilized simulation technique for evaluating

PSR is Monte Carlo Simulation (MCS), which will be discussed in detail in subsequent

sections of this chapter.

This thesis excludes the examination and discussion of analytical methods. Instead, the

emphasis will be placed on simulation methods, particularly MCS, which is presented in

this section.

Within PSR, MCS serves as a technique for sampling system states by using random

numbers derived from probability distributions. This methodology enables the simulation

of the stochastic characteristics inherent in a system [25].

In practical use, MCS involves the generation of random numbers to determine the system

state of components at a given time increment. MCS o↵ers several advantages over

analytical methods. Firstly, MCS is not contingent upon system size and demonstrates

superior performance when assessing larger systems. Additionally, an advantage lies in

the capability of MCS to simulate probability distributions associated with failure and

repair events, which is generally challenging to address using analytical methods [25].

MCS methods can be classified into two categories: sequential and non-sequential sim-

ulation methods. Non-sequential MCS methods involve sampling a set of independent
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system states by generating random variates. In contrast, sequential MCS methods gen-

erate a sequence of system states where the current state depends on the previous state.

The forthcoming sections of this chapter will delve into the State Sampling method, State

Duration method, and the State Transition method, all based on the approach in [25],

providing detailed explanations of these methods. Before the methods are explained, a

basis of the mathematical understanding of random number generation and probability

distributions are presented. At the end of the chapter, the convergence criteria of MCS

is shown.

2.5.1 Random Number Generation in MCS

Random number generation uses what is called a random variate, which is a random

variable that follows a certain distribution [25]. The uniform distribution is frequently en-

countered. It is characterized by a range [0, 1], wherein intervals of equal length possess an

equal probability of occurrence. The exponential distribution, shown in Equation (2.10),

is also commonly used in MCS [25].

f(X) = � · e��X (2.10)

Here, X is the random variate, and � is called the shape parameter. Following the

methodology of [25], the inverse transform of the exponential distribution is defined,

in order to be able to obtain random variates with the exponential distribution. The

cumulative distribution of Equation (2.10) is defined, given in Equation (2.11).

F (X) = 1� e��X (2.11)

To obtain the inverse transform, Equation (2.11) is set equal to U as defined above, a

number that is uniformly distributed between [0, 1]. As shown in Equation (2.12), the

equation is solved for X. It is utilised that the distribution of U and 1�U are identical,

with U having the range of [0, 1] [25].

X = F�1(U) = �
1

�
ln 1� U = �

1

�
ln(U) (2.12)

In methods where time to failure and time to repair follow the exponential distribution,
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as in the State Duration and State Transition method, the method described is used to

obtain the random variates [25].

2.5.2 State Sampling Method

First, the State Sampling method is considered. It is a non-sequential approach for the

sampling of system states meaning it is not dependent on previous states, it is chrono-

logically independent [25]. In this approach, each component of the system is subject to

sampling. These components are characterized by a uniform distribution spanning the

interval [0, 1]. For every component, a random number U is generated, and then com-

pared with the FOR value of the component. If U exceeds or equals the FOR value, the

component is considered available; otherwise, if U is smaller, the component is deemed

unavailable. The aggregate of available capacities provides insight into the overall system

state. Conducting the sampling process over a significant number of years, allows for the

derivation of indices. Nevertheless, the method’s main drawback resides in its inability

to capture information regarding frequency and duration [25].

2.5.3 State Duration Method

The State Duration technique instead examines the state duration distribution functions

rather than concentrating on the likelihood that a particular component will be in a given

condition at any given moment. The distributions for a component with two states are

operational and repair [25]. These are assumed distributed exponentially in this example,

but they might have any distribution.

Through the inverse transform method from [25] used on the cumulative probability

function of an exponential distribution, the time each component stays in one state is

given by Equation (2.13) and Equation (2.14) [25].

TTTF,i = �
1

�i
lnUi (2.13)

TTTR,i = �
1

µi
lnUi (2.14)

TTTF,i is the time to failure, TTTR,i is the time to repair, �i is the failure rate and µi is
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the repair rate. Ui is a uniformly distributed variable in the range [0, 1] [25].

To exercise the State Duration approach, the following steps are necessary, depicted from

[25]:

• An initial state for each i-th component must be determined. A typical assumption

is to set each component to up-state.

• For each i-th component, determine the time it is present in its initial state and

record it. Then, determine the time it takes for the component to change state

again. This process is repeated until the chronological component state is found for

the required observing time.

• The individual component chronological state is combined to obtain the total system

chronological state.

• From the chronological state the system state vector, S, can be found for a given

point in time, and used to calculate reliability indices.

Figure 2.9 illustrates the chronological component state transition process, and Figure

2.10 the chronological system state transition process.
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Figure 2.9: Component state transition process. Figure adapted from [25].

Figure 2.10: System state transition process. Figure adapted from [25].

2.5.4 State Transition Method

The State Transition approach emphasizes on how the whole system transitions from one

state to another, instead of each individual component as in the State Duration approach

[25].

Again, all system components are assumed to follow the exponential distribution. A
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state S consisting of m components, each with a transition rate �i is assumed. In this

case, � denotes both failure rate and repair rate. The transition rate for the whole

system, �, with a given system state is given by the sum of all the individual components

transition rate. As all the components are exponentially distributed, so is the system

[25]. Equation (2.15) shows that the total transition rate out of the given system state is

found as the sum of the transition rates out of it [31].

� =
mX

i=1

�i (2.15)

When a component transitions, the system transfers from one state to the next. In other

words, transition of the system state depends randomly on the state duration of the

component which departs earliest from its current state. Therefore, the duration T of

the system state is a random variable expressed in Equation (2.16) [25].

T = minTi (2.16)

The time between transitions may be sampled from Equation (2.17), which follows from

T being exponentially distributed.

T = �
1Pm
i=1 �i

lnU (2.17)

Exploiting that Ti and T follow an exponential distribution, the probability for the tran-

sition from the present state due to a change in the state at component j is given by

Equation (2.18) [25].

Pj = P (Tj = t0/T = t0) =
�jPm
i=1 �i

(2.18)

mX

j=1

Pj = 1 (2.19)

Pj is the probability that the next component to change is component j. t0 is the time

at which the change occurs. �j is the transition rate for component j.
Pm

i=1 �i is the

transition rate for the system. P (Tj = t0/T = t0) is the probability that the transition

in component j coincides with the transition of the whole system, which is equal to Pj.

A more in-depth derivation of this result can be seen in [25].
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To illustrate the result from Equation (2.18), Figure 2.11 is provided. A random variable

U in the interval [0, 1] is generated, and Equation 2.18 gives intervals for each component.

When U in present in the interval for component j, this implies that the system state

will transition due to a transition in component j. In Figure 2.11, when U falls in the

interval for Pj, leading to state Pj being the next state for the system [25].

Figure 2.11: Selection of next state in State Transition approach. Figure adapted from

[25].

Similarly to the State Duration approach, �i for the component that transitions must be

updated before the subsequent calculation is done.

A summarized step-by-step approach can be formulated, as described in [25]:

1. An initial state S0 is determined. Typically, all units are set to up-state.

2. Time is recorded from initial to the next system state by generating a random

variable U1 and using Equation (2.17).

3. The next system state is determined by generating random uniformly distributed

variable U2 in the range [0, 1], and Equation (2.18) is applied.

4. �j is updated for the component that transitioned.

5. Repeat from step two until required observing time is found.

6. System states are determined, and reliability indices calculated.

Being a sequential approach, frequency indices may be calculated, which is a benefit

[25]. Another positive feature is that it is less computationally extensive compared to

State Duration approach as it needs fewer random variables and information to be stored.
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A drawback is the necessity for T and Tj to be exponentially distributed, making it a

requirement for the approach. This is, however, common in PSR analysis [25].

2.5.5 Concept of Monte Carlo Simulation

The behavior of a group of n identical systems operating in real time will vary to some

extent. This includes the number of failures, time duration between failures, and the

restoration times. This variation arises from the random nature from the processes in-

volved. In turn, this means any particular system may exhibit any of these behavior

patterns. The purpose of the simulation process is to predict these real-life behavior

patterns in a simulated environment, in order to estimate the expected or mean value of

reliability parameters. [24]

To illustrate the concepts of understanding system behavior, a simple example is con-

sidered: the toss of a coin. Using the relative frequency interpretation of probability,

Equation (2.20), the probability of getting heads or tails in a throw can be estimated

[24].

P (tails) = lim
N!1

✓
T

N

◆
(2.20)

where T is the number of tails, and N is the number of tosses. Figure 2.12, 2.13, 2.14

shows the results from throwing a coin 30, 250, and 10 000 times, respectively. The

graphs are plotted in Python. The selection of random values is done through the numpy

library, using the method random.choice().
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Figure 2.12: Probability of tossing tails over 30 tosses. Figure inspired from [24].

Figure 2.13: Probability of tossing tails over 250 tosses. Figure inspired from [24].
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Figure 2.14: Probability of tossing tails over 10000 tosses. Figure inspired from [24].

Some key takeaways can be indicated from the results of the coin tossing example, which

are essential to keep in mind when working with MCS [24].

• From a limited number of coin tosses, there is significant inaccuracy in the esti-

mation of probability, necessitating a larger number of tosses for a more reliable

assessment.

• The probability value fluctuates, but tends to converge towards the true value as

the sample size increases.

• Despite not being shown, for a repeated sample, the sequence of outcomes could

di↵er, resulting in a completely distinct pattern of probabilities.

• The true value may occur during the random process. This is not generally known.

2.5.6 Reliability Indices Using Monte Carlo Simulations

As depicted in Section 2.5.5, it is impossible to come to a firm conclusion since MCS is

stochastic rather than analytical. Instead, the MCS is run for several simulated years,

and the indices for each year are stored. Using this, the mean and variance of the results
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may be calculated using Equation (2.21) and Equation (2.22) [24]. In the two equations,

N represents the number of simulations, and xi the value of parameter.

E [x] = µx =
1

N

NX

i=1

xi (2.21)

V ar [x] = �2 =
1

N � 1

NX

i=1

(xi � µx)
2 (2.22)

It should be noted that these values only provide an estimate of the true values, as

shown in Equation (2.20). Only when the value of N tends towards infinity, the mean

and variance of the MCS approach their true expected value µx and true variance �x

for the system. Because of this, the mean of the yearly indices is used to calculate the

MCS indices. This results in an augmentation of the equations for LOLE and EENS,

shown in Equation (2.23) and Equation (2.24). This comes from the combination of

Equation (2.21) with Equation (2.3) and Equation (2.9) [22].

LOLEMCS =

PN
i=1

hPM
j=1 xj ·�t

i

N
(2.23)

EENSMCS =

PN
i=1

hPM
j=1 xj · Cj ·�t

i

N
(2.24)

N is the number of years sampled. M is the number of time steps per year, depending

on the time scale used per year (e.g. DPL or HPL). xj is a binary variable that takes the

value 0 or 1 and represents if a LOL situation has occured at the time step j. �t is the

time increment per step. Cj is the severity of the outage in MW [22].

Obtaining the true indices with absolute accuracy is impossible because it is not possible

to execute an infinite number of simulations. The potential error of the indices can,

however, be calculated. According to the central limit theorem, the population produced

by the estimated mean values from the MCS has a normal distribution. This distribution

is given as N
⇥
E [x̄] , V ar [x̄]

⇤
. For the normal distribution E [x̄] = x̄, and V ar [x̄] = �2

N .

As N increases, the obtained average will be increasingly more likely to be located close

to the true mean. Because of this, the variance of the distribution is used to determine

the accuracy of a MCS [31], given by Equation (2.25).

V ar [x̄] =
1

N(N � 1)

NX

i=1

(xi � x̄)2 (2.25)
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2.5.7 Monte Carlo Simulation Convergence Criteria

The convergence of MCS is a fluctuating process, because it relies on generating random

number, as illustrated in Section 2.5.5. Therefore, the addition of a few more samples

does not necessarily lead to improved accuracy [25]. However, as the number of samples

increases, the range errors become smaller. This phenomena where the sample mean

approaches the true mean when the number of samples tends towards infinity, is shown

in Section 2.5.5. Consequently, a larger number of samples decreases the variance and

brings the value closer to the true mean. Thus, the variance can be utilised as a criterion

for determining the convergence of the MCS approach [22].

The precision of reliability assessment using MCS can be e↵ectively evaluated by using the

CoV, which is illustrated in Equation (2.26). The CoV serves as a convergence criterion

in this context [22].

� =
s(X)

p
N · E(X)

(2.26)

s(X) represents the standard deviation (SD) of a sample, N denotes the number of

samples, and E(X) corresponds to the population mean [31]. Examining the expression, it

is revealed that minimising the CoV necessitates either reducing the variance or increasing

the number of samples.

It is important to acknowledge that the indices used in PSR adequacy assessments have

variations in convergence speed. For example, the EENS demonstrates the slowest con-

vergence speed. Therefore, when determining the amount of samples for a simulation,

it is desired to utilise the EENS index when calculating the CoV [25]. By adopting this

approach, a more accurate evaluation of the reliability indices can be achieved.

As previously mentioned, the convergence criteria of the MCS play an important role

in deciding the required number of samples for achieving an accurate evaluation of the

reliability of a system. The chosen CoV representss a trade-o↵ between evaluation accu-

racy and computational time in the MCS. In accordance with [25], it is emphasized that

specifying a reasonable stopping criterion specific to a particular system is essential to

strike a balance between accuracy and computing time. This consideration may need an

examination of the system that is being investigated. Hence, the selection of CoV should
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also be tailored to the characteristics of the system analyzed [22].

In order to determine an accurate evaluation of reliability indices, various approaches

exist for utilising the CoV to secure a su�cient number of samples in the simulation [25].

As mentioned, one method involves terminating the simulations once the CoV attains

a predefined tolerance value: a tolerance criterion. In practice, the CoV is acquired for

each sampled state, and upon reaching the specified tolerance criterion, the simulations

conclude and the indices are calculated. Another method is to set a predetermined

number of samples, and then calculate the CoV. If convergence is not achieved, the

number of samples should be increased. This results in some instances where more

samples are simulated than strictly necessary, which further leads to an unnecessarily

high computational time [22].

2.6 Power Flow Analysis

In this thesis, the definition of power flow analysis is the calculation of the voltage mag-

nitudes and angles in a power system. The input is the load and generation data, and

the system topology in the form of a single line diagram including the line impedances.

A brief presentation of the theory is laid out in this section, as it serves as a basis for the

modelling described in Section 3.2.1.

2.6.1 Representation of the Power System (HLII)

The power system in this case is modelled as a network of buses interconnected by

branches. The buses are referenced by a node index i 2 N . Branches are referenced

as arcs between two nodes (i, j) 2 L. The system size is described by the number of

buses N = |N |, and number of lines L = |L|. Each bus in the system has an associated

complex voltage, |Vi| 6 �i. Branches are described by their admittance, yij. A useful way to

represent the connectivity, is through the bus-admittance matrix. This way admittances

are included [32].
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2.6.2 Network Model and the Bus Admittance Matrix

In order to establish the formulation and simulation procedure for the HLII assessment,

it is necessary to provide a concise overview of the network model. This step is crucial

to gain a thorough understanding of the power system theory required for defining the

OPF problems and system constraints discussed later in this chapter.

Various approaches exist for representing a network model, and in this thesis, the bus

injection model is utilised. This model primarily emphasizes nodal variables, which en-

compass quantities such as voltages, currents and power injections at each bus [32]. The

utilisation of this model o↵ers the advantage of expressing power flow equations in a con-

cise manner. However, it is important to note that this model does not directly address

the power flow on individual branches. Therefore the branch flow model is also used in

some cases [32].

Moreover, the interconnection between two buses can be depicted by the ⇡-model, as

can be seen in Figure 2.15. This model includes a series impedance denoted as zij and

a shunt susceptance, C/2. The shunt susceptance is equally distributed between the two

buses. The power flow across a transmission line can be determined by employing the

parameters of the ⇡-model [32].

Figure 2.15: Nominal ⇡-line model for a medium length transmission line. Figure

adapted from [33].
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From the ⇡-line model the admittance matrix may be derived. The diagonal in the

matrix is obtained by adding the admittance of the lines connected to the bus under

consideration, along with the shunt admittance connected to the bus [32]. The o↵-

diagonal elements represents the negative value of the admittance of the transmission line

connecting the two considered buses. This relationship is shown in Equation (2.27). The

admittance matrix can be decomposed into a conductance and a susceptance matrix, as

depicted in Equation (2.30) [32]. This is a useful tool when applying DC approximations

for the load flow analysis, which will be shown.

The bus-admittance matrix may be seen in Equation (2.27).

Ybus =

2

66666664

Y11 Y12 . . . Y1n

Y21 Y22 . . . Y2n

...
...

. . .
...

Yn1 Yn2 . . . Ynn

3

77777775

(2.27)

The diagonal elements Yii, the self admittance are calculated as:

Yii = yi0 +
nX

j=1,j 6=i

yij, (2.28)

and o↵-diagonal elements as,

Yij = �yij, (2.29)

where yij is the admittance of the line between bus i and bus k, and yi0 is the shunt ad-

mittance on bus i. The Ybus-matrix consists of complex numbers, which can be expressed

in rectangular coordinates as

Yij = Gij + jBij (2.30)

For more details on the construction of the Ybus the reader is referred to [32].

2.6.3 Bus Classification

Each bus in the power system is characterized by four variables: active power injection

Pi, reactive power injection Qi, voltage magnitude |V | and voltage angle �i (typically
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expressed in radians). For a solvable system, two of the variables are specified, and two

must be calculated. The two being specified determine the classification of the bus, and

the classifications are as follows [32]:

• Load bus (PQ): At the load bus, only loads are associated. Here, the active and

reactive power demand, Pi and Qi, are known, hence the name PQ-bus. That leaves

the task at hand to determine the voltage magnitude and angle, |Vi| and �i.

• Generator bus (PV): The PV bus is connected to a generator, where active power Pi

and voltage magnitude |Vi| are known. The unknown voltage angle �i and reactive

power Qi must be calculated.

• Slack Bus: The slack bus is introduced serving as both a physical and mathematical

reference. Here, |Vi| and �i are specified, while Pi and Qi need to be calculated.

A brief summary is presented in Table 2.2 illustrating the relations of the variables of

buses in a power system.

Table 2.2: Power system bus types [32].

Type Slack PQ PV

Number of buses in the system 1 M N �M � 1

Known quantities �, V P , Q P , V

Unknown quantities P , Q �, V �, Q

2.6.4 Power Flow Equations

Two models are normally used to represent a network: the bus injection model and

the branch flow model. The branch flow model is in some cases utilised because of its

application to convex relaxation [34]. The bus injection model is a more compact model

[32], and is the model used in this thesis.

Applying Kirchho↵’s current law (KCL) and utilising the Ybus, the nodal equations for
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a given network may be written as Equation (2.31) [32].

I = YbusV (2.31)

where I is a vector of the current injected at each bus, and V is a vector of the bus

voltages. Thus, for bus i, the nodal equation is written in Equation (2.32).

Ii =
nX

j=1

YijVj, (2.32)

where n is the total number of buses. Further, the complex power injected at bus i is

shown in Equation (2.33).

Si = Pi + jQi = ViI
⇤

i (2.33)

Expressing the voltages in polar coordinates as |V | 6 � and the admittance in rectangular

coordinates as Equation (2.30), inserting Equation (2.32) into Equation (2.33), and sep-

arating into a real and imaginary part yields the PF equations, given in Equation (2.34)

and Equation (2.35) [32].

Pi(V, �) = |Vi|

nX

j=1

|Vj|
⇥
Gij cos (�i � �j) + Bij sin (�i � �j)

⇤
(2.34)

Qi(V, �) = |Vi|

nX

j=1

|Vj|
⇥
Gij sin (�i � �j)� Bij cos (�i � �j)

⇤
(2.35)

These equations are simultaneously solved for all buses in a system in a PF solution, with

exception of the reference bus. This yields 2(n � 1) nonlinear equations, with the four

variables Pi, Qi, |Vi| and 6 �i. These are solved numerically in an iterative approach [35].

As the AC approach is not emphasized in this thesis, the numerical approaches will not

be presented. For a more comprehensive understanding and derivation of the power flow

equations, reference can be made to literature on power flow analysis, such as [36] which

provide an overview and computational methods.

2.6.5 DC Power Flow

The AC Power Flow is computationally heavy. Di↵erent measures have been exercised

to simplify the problem. A result of these measures have resulted in the DC power flow.
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The DC power flow is a linearisation of the AC power flow equations. The AC power flow

equations are nonlinear, and therefore require numerical methods. With the DC power

flow, the need for numerical methods is eliminated [32]. The DC power flow contains the

following simplifications from the AC power flow equations [32]:

• Branch resistances are zero. This implies lossless transmission, and Gij = 0.

• Small angle di↵erence between buses, which implies sin (�i � �j) ⇡ �i � �j and

cos (�i � �j) ⇡ 1.

• All voltage magnitudes are set to 1.0 p.u.

• The reactive power flow is neglected.

Applying the aforementioned assumptions to Equation (2.34) (and Equation (2.35)), the

DC power flow Equation (2.36) is obtained [32].

Pi(�) ⇡
nX

j=1

Bij

�
�i � �j

�
. (2.36)

The DC power flow can give reasonable estimates for the power flow in a power system.

However, no information is supplied for the voltage magnitudes and reactive power flow

in the system. Also, a significant drawback is the errors produced when the method is

applied for stressed systems, which is often the situation when a power flow solution is

necessary [37].

2.7 Optimal Power Flow (OPF)

Optimal Power Flow (OPF) is the key to solving operation and planning problems for

power systems with respect to economic e�ciency and reliability requirements. The goal

of optimal power flow is to determine the optimal dispatches, as well as control settings for

network elements. These network elements include generators, transformer tap changers,

voltages, and other continuous and discrete variables [32]. The optimal settings are found

with respect to one or more objectives, such as minimizing production cost or minimizing
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losses, while satisfying all constraints imposed on the problem. Typically these constraints

are physical and safety limitations [32].

One approach for solving the OPF problem is to linearise the formulation of the problem

to create the DCOPF problem, using assumptions. The approach linearises the non-linear

power flow equations, which eliminates the non-convex constraints and thus simplifies

the computation [32]. However, the approach does not include voltage and reactive

power. Therefore, compared to the ACOPF, the DCOPF lacks in accurate planning and

operation decisions [32].

The main di�culty facing ACOPF is handling the non-convexity included in the model

while taking into account all the properties of power flow. Similar to other non-convex

problems, ACOPF has concerns with regards to convergence, sub-optimal solutions, and

computational time, discussed in [38]. In [39], a decomposition approach is discussed.

More recent studies have shifted to convex relaxations on solving the non-convex ACOPF.

For example, SOCP (Second order cone programming) [40] has been formulated for find-

ing global optimal solutions. Heuristic methods such as genetic algorithms [41], and

neural networks [42] are also found used as solutions for non-convex problems.

The OPF problem is commonly expressed as a minimisation problem. The objective is

minimise an objective function denoted as f(x,u), imposed by a set of equality constraints

represented by g(x,u) and inequality constraints denoted as h(x,u). The problem may

be formulated as shown in Equation (2.37) [43].

minimize f(x0,u)

s.t g(x0,u) = 0

h(x0,u)  0

9
>>>>=

>>>>;

(2.37)

where x and u are vectors of state variables and control variables, respectively [43].

2.7.1 Objective Function

The objective of the OPF problem is to determine the most optimal operational con-

figuration for the power system. Achieving this requires making decisions regarding the
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specific aspects to be optimised, which is contingent upon the intended goals of the OPF.

Several illustrative objectives are outlined below:

• Minimisation of cost of generation: One of the more common objectives is to

minimise the cost of power production. The objective in this case is set to minimise

the total cost of generation of active power [44], and a formulation may be seen in

Equation (2.38).

min

NgenX

i=1

Ci(PGi) (2.38)

where Ci(PGi) is a cost function of generator i [44].

• Maintaining constant voltage profile: It can be of importance for a system

operator to maintain a constant voltage profile to avoid voltage instability problems.

OPF can be used to identify the actions necessary to achieve this goal. the objective

may be formulated as Equation (2.39).

min
nX

i=1

�
Vi � Vsetpoint,i

�2
(2.39)

[44].

• Minimise load curtailment cost: By minimising the load curtailment cost, one

aims to avoid Loss-of-Load situations. From a perspective of reliability this is an

important consideration which will be emphasised in this thesis.

min
nX

i=1

F (Ci) (2.40)

where F (Ci) is a function describing the curtailment costs, and Ci is the curtailment

at each bus.

2.7.2 Variables

The classic power flow analysis aims to find the unknown voltage magnitudes and angles.

The OPF, rather aims to find the optimal system state within a feasible region. This

means that variables which are kept fixed in power flow calculations, may be able to vary

in an OPF calculation. The variables in an OPF calculation may be classified as the

following [32]:
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• Control variables: These variables may, as the name implies, be controlled to

achieve the desired operating state of the system. This means they are independent

variables of the optimisation problem, and are connected to the known values of the

PF equations, typically being the active and reactive power output of generators.

• State variables: Variables that describe the system state, but are not controllable.

These are influenced by the control variables and are dependent variables of the

optimisation problem. Typically, these are the voltage angles (except for the slack

bus), and voltage magnitudes at PQ buses.

• Parameter values: These are fixed values. These are known values in the PF

calculation, that cannot change in the OPF calculation either. This is for example

the voltage angle at the slack bus, which is kept fixed at zero as a reference for the

system. The active and reactive power at PQ buses also fall within this category.

2.7.3 Constraints

The constraints of an optimisation problem define the feasible region. The constraints

are divided into two: inequality and equality constraints [32].

2.7.3.1 Equality constraints

A common equality constraint for all OPF problems is the satisfaction of the power flow

Equations (2.34) and (2.35). The satisfaction of the constraint is necessary for all buses

for any operating point of the system to be a true operating point [44]. The constraints

are presented in Equation (2.41) and Equation (2.42).

Pi (V, ✓) = PG
i � PL

i , 8i 2 N (2.41)

Qi (V, ✓) = QG
i �QL

i , 8i 2 N (2.42)

2.7.3.2 Inequality constraints

The inequality constraints represent the operational limits of the power system. As for

the objective function, these may vary depending on the defined problem. Some typical
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constraints are presented below:

• Active power constraints: Active power constraints dictate that each generator

must operate within its designated limits, which usually consts of minimum and

maximum production thresholds. A general formulation of shown in Equation (2.43)

[44].

PGi,min  PGi  PGi,max, 8i 2 G (2.43)

• Reactive power constraints: Similar to active power limits, the reactive power

must be considered as well. The limits are typically determined by reactive power

capabilities of connected generators or other controllable reactive power devices. A

general formulation is shown in Equation (2.44) [44].

QGi,min  QGi  QGi,max, 8i 2 G (2.44)

• Voltage magnitude constraints: There is a limit for the voltage at buses, which

must not exceed a certain limit around the nominal value. This limit may vary,

but typically falls within the range of 5 � 10% around nominal value. A general

formulation is shown in Equation (2.45) [44].

Vi,min  Vi  Vi,max, 8i 2 N (2.45)

• Voltage angle constraints: Setting limits on voltage angles is crucial for non-

linear solvers used in ACOPF. The use of complex numbers can result in multiple

instances of the same power flow solution. For instance, 1.01 6 0.349 = 1.01 6 6.616 =

1.01 6 �5.937. To ensure a unique solution and avoid cases where the solver oscillates

between two equivalent solutions shifted by 2⇡ rad, bus voltage angles are restricted

to the range of 0 to 2⇡. A formulation is shown in Equation (2.46) [44].

�i,min = �⇡  �i  ⇡ = �max, 8i 2 N (2.46)

• Line flow constraints: Power transfer constraints in a power system limit the

flow of power between buses. The choice of variables for constraining line flows

depends on the limiting factor. Short transmission lines are often constrained by
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thermal limits, which closely relate to current. Transformers are typically con-

strained by apparent power limits. For longer transmission lines, the steady-state

stability limit becomes the limiting factor, and line flow can be constrained using

active power [44].

2.7.4 DC Optimal Power Flow (DCOPF)

The description provided in the previous section depicts the OPF problem called ACOPF.

Essentially, this comes from the fact that the full AC power flow equations are considered

in the constraints. An alternative exists, which utilises the DC power flow formulation

described in Section 2.6.5. This approach is called DCOPF. One of the main benefits of

DCOPF compared to ACOPF is that the constraints become linear, and the optimisation

problem is convex [44]. This makes it possible to solve the problem using optimisation

methods as LP or QP, which are relatively simple compared to the non-convex problem

that is featured in ACOPF.

DCOPF carries with it the same limitations as the DC power flow, that it is an ap-

proximation. It follows that the accuracy of the results then depends on the validity of

the assumptions. The focus of this thesis is on the DCOPF problem, while the ACOPF

algorithm is not extensively covered.

2.8 Security Constrained Optimal Power Flow (SCOPF)

Security Constrained Optimal Power Flow (SCOPF) is an extended version of ACOPF.

One formulation, is that the objective is to determine a minimum cost generation sched-

ule in hand with power demand at each node in the network, while maintaining a func-

tioning transmission network whether the operations are in either pre-contingency or a

post-contingency state [45]. Extending the normal operational conditions is not su�-

cient to maintain network operation. It is necessary for system operators to also include

contingency scenarios in the model, to meet N-1, 2N or N-1-1 criteria. Thus, system

reliability, security, economical benefits and e�ciency are guaranteed [38].

SCOPF problems are divided in two types: preventive and corrective. The preventive
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approach optimises subject to the base case. The preventive SCOPF (PSCOPF) can

be implemented by adding security constraints to the original OPF problem. These

constraints further establish boundaries on the power flow on transmission lines, and

bus voltages for the post-disturbance configuration caused by specific contingencies. In

essence, the SCOPF enforces preventive control measures within the system, and thus

enhances the level of system security [46].

However, the aforementioned definition of PSCOPF is conservative, since it fails to con-

sider the corrective capabilities of the system after an outage has occurred. The correc-

tive SCOPF (CSCOPF) considers corrective actions including generation rescheduling,

overload rotation, switching, etc., which can play an important role in elimination of

constrained violations [46].

For security reasons, preventive approach is preferred in industrial practice [47]. PSCOPF

can be expensive, as no remedial actions can be exercised to eliminate violations. Thus,

extra costs under normal operation condition are a necessity to prevent contingencies. For

CSCOPF, this allows for generation units to reschedule, and lines to be switched, with

the underlying assumption that the violation is corrected before damage of equipment

or cascading failures occur. Reaching a solution of the corrective model is demanding,

because of model size and the increased number of constraints and decision variables.

The SCOPF formulation is an extension of the OPF formulation, and may be formulated

as seen in Equation (2.47) [43].

minimize f(x0,u)

s.t g(x0,u) = 0

h(x0,u)  0

g(xc,u) = 0 8c 2 C

h(xc,u)  0 8c 2 C

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.47)

where C = {1, . . . , Nc} is the set of considered contingencies.
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2.8.1 Post-Contingency Corrective Rescheduling

The solution to the SCOPF problem, as defined in Equation (2.47), entails the implemen-

tation of preventive control measures. These measures are necessary to ensure the system

remains in a feasible state during contingencies, without the need for corrective actions.

By adjusting the power output of a generator within a certain range before an overload

reaches a critical point, it is possible to achieve an equivalent level of security while min-

imising operating costs. This observation is emphasized in [46], which introduces a solu-

tion strategy for the SCOPF problem involving post-contingency rescheduling. The range

of rescheduling actions is represented by coupling constraints of the form |u0 � uc| �c.

The problem formulation for SCOPF may then be formulated as Equation (2.48).

minimize f(x0,u)

s.t g(x0,u) = 0

h(x0,u)  0

g(xc,uc) = 0 8c 2 C

h(xc,uc)  0 8c 2 C

|u0 � uc| �c 8c 2 C

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(2.48)

where u0 are the control variables during the base case. uc are the control variables

during contingency c. �c are the allowed changes in control variables from the base case

to contingency case. In other words, stating that � = 0 would be the same as requiring

preventive security. From this point forward in this thesis, the preventive SCOPF will be

referred to as PSCOPF, and the SCOPF with post-contingency corrective rescheduling

will be referred to as CSCOPF. In [46], it is suggested employing Benders Decomposition

to solve the CSCOPF problem, which will be further discussed as well.

2.8.2 Benders Decomposition

Benders Decomposition, which was initially proposed in [48], has been widely used for

addressing various SCOPF problems. Even though this approach is not adopted in the

thesis, what follows in this subsection is a compact account of the fundamentals of Benders
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decomposition, based on the knowledge gained from literature. This approach involves

decomposing the problem into a master problem and multiple subproblems, which interact

iteratively. Benders decomposition is attractive because it keeps both the master problem

and subproblems manageable. It allows for computation to be distributed across multiple

processors [45]. However, the Benders Decomposition algorithm may not converge reliably

unless the feasible region is convex, which is not always the case in the AC SCOPF.

Therefore, caution should be used when utilising Benders Decomposition [43].

Following the methodology of [46] and utilising the notation used in Equation (2.48),

Benders decomposition may be described as a two stage process:

• First, solve the master problem (base case) depicted by Equation (2.37), to achieve

an operating point (x0,u0).

• Second, from the base case operating point (x0,u0), find new operating points

(xc,uc) that satisfies g (xc,uc) = 0 and h (xc,uc)  0, as well as |u0 � uc|  �c

for all contingencies c 2 C.

The primary goal is to minimise operational costs while simultaneously ensuring the

feasibility of the subproblems. To accomplish this, the base case operation and the Nc

post-contingency operating states are examined separately. If the post-contingency state

proves feasible, no alterations to the base case are necessary. Conversely, if the post-

contingency subproblem results in infeasible conditions, constraints related to the base

case operation must be introduced to ensure the feasibility of the subproblem. [43]

One formulation of the subproblem may be as shown in Equation (2.49) [43].

minimize w (x0,u0) = dr
· r+ ds

· s

s.t g(x,u) + r = 0,

h(x,u) + s  0,

|u0 � u|� s �c,

9
>>>>>>>>=

>>>>>>>>;

(2.49)

where, dr and ds are positive cost vectors. r and s are positive vectors of penalty variables

for operating and coupling constraints, respectively. The objective value, represented as
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w, is expressed as a function of the base case operating point. From Equation (2.49) the

following statement is made:

w = 0 , The subproblem is feasible

w � 0 , The subproblem is not feasible

Thus, requiring that wc (x0,u0)  0 8c 2 C, is identical to requiring the feasibility of

the post-contingency subproblems [46]. In a compact form, the CSCOPF may be written

as Equation (2.50).

minimize f(x0,u0)

s.t g(x0,u0) = 0

h(x0,u0)  0

wc(xc,uc)  0 8c 2 C

9
>>>>>>>>=

>>>>>>>>;

(2.50)

Benders Decomposition is used to approximate wc (x0,u0) [43]. The approximation is

refined by solving the base case and the set of Nc contingencies. Each subproblem has an

associated collection of Lagrange multipliers that provide insight into the impact of the

marginal changes in the in the base case operational point (x0,u0) on the infeasibility of

the subproblem. These dual values, along with the objective value w, are used to construct

a linear constraint derived from a specific infeasible subproblem. This constraint, referred

to as a Benders Cut, solely contains the base case variables (x0,u0). Benders Cuts are

iteratively appended to the base case problem [46]. It should be noted that it is also

possible to solve the subproblems in parallel [43], which can be beneficial to reduce

computational e↵orts. Figure 2.16 illustrates the procedure described.
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Figure 2.16: Flow chart of SCOPF algorithm. Adapted from [43].

2.9 Contingency Analysis and Distribution Factors

As emphasized, ensuring the reliable and secure operation of the electrical grid is of

utmost importance. Maintaining a reliable power supply even under unforeseen circum-

stances and disruptions is a complex task. This is where contingency analysis emerges as

a tool of importance, providing information about the potential risks and vulnerabilities

that can emerge due to the outage of a component in the power system.

Contingency analysis involves the evaluation of the performance of a system, after the

occurrence of a specific contingency. This can be line outages, generator outages or other

power system equipment failure. By simulating failure scenarios, it is possible to gain

insight to the ability to withstand disturbances and deliver power to consumers without

46



2.9 Contingency Analysis and Distribution Factors

interruptions.

This thesis focuses on the use of line outage distribution factors (LODFs), which may be

utilised to perform contingency analysis in power systems. The work of [49] is applied,

and an understanding of the method is presented in this section.

2.9.1 Power Transfer Distribution Factors (PTDFs)

Continuing from Equation (2.36), Equation (2.28) and Equation (2.29), along with the

assumptions stated for the DC power flow, the susceptance elements are defined according

to Equation (2.51) [31].

Bij = �
1

Xij
, Bii = �

kX

i=1,j 6=i

Bij (2.51)

Further, the formulation of Equation (2.36) is reformulated to its matrix representation

shown in Equation (2.52). Here the net power injections, Pi 8i 2 N , are expressed as a

column vector through the susceptance matrix, B, and voltage angles, �i 8i 2 N . The

set N is the set of buses for the considered system [31].

B� = P (2.52)

The susceptance matrix represents singularity, as each row could be formulated through

a linear combination of the other rows [31]. The slack bus expresses its utility in order to

overcome the problem. The new matrix Bsub is introduced, shown in Equation (2.53). It

is identical to B, but with the rows and columns associated with the slack bus removed.

The choice of slack bus can be decided, and is here selected as bus 1 of the system [31].

Bsub =

2

66666664

B22 B23 . . . B2n

B32 B33 . . . B3n

...
...

. . .
...

Bn2 . . . . . . Bnn

3

77777775

(2.53)

The slack bus compensates for either the surplus or deficit of power generation in the

system. The slack bus is included into the system again with the row and column cor-

responding to it being filled with values of zero. This matrix is called Z, and shown in
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Equation (2.54) [31].

Z =

2

64
0 0

0 Bsub
�1

3

75 (2.54)

This gives the opportunity to calculate the voltage angles through Equation (2.55).

� = Z ·P (2.55)

With knowledge of the voltage angles, it is possible to calculate the power flow between

bus i and bus j through Equation (2.56).

Pij =
�i � �j
Xij

(2.56)

With the notations used in Equation (2.55), one could express the voltage angles as a

row of the Z matrix times the net active power injection vector. This way, the power flow

through a line located between bus i and bus j is found as depicted in Equation (2.57).

Pij =
zi1 � zj1

Xij
· P1 +

zi2 � zj2
Xij

· P2 + ...+
zin � zjn

Xij
· Pn (2.57)

This leads to the introduction of the power transfer distribution factors (PTDFs) in the

formulation, which gives opportunity to formulate the set of line flows in a simplified

format. The PTDFs are denoted as in Equation (2.58),

aij,n =
zin � zjn

Xij
, (2.58)

yielding Equation (2.59),

Pij = aij,1 · P1 + aij,2 · P2 + . . .+ aij,n · Pn (2.59)

Now, this expression can be generalised for all lines in the system. This is denoted as

the sensitivity matrix, A, which can be said to be the collection of PTDFs. Multiplying

A with the net power injection vector, P yields Equation (2.60) which described all line

flows, T, for the system [31].

T = A ·P (2.60)
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2.9.2 Line Outage Distribution Factors (LODFs)

The LODFs represents the incremental real power flows on monitored transmission lines

caused by line outages with a pre-contingency real power flow of 1 p.u. [49].

PLc

A
= PL0

A
+ LODFA,OPL0

O
(2.61)

where,

• Superscripts 0 and c represent base case and contingency case, respectively.

• Subscript A and O represent the set of u monitored transmission lines, and set of

v transmission lines on outage, respectively.

• PLc

A
and PL0

A
are u⇥ 1 vectors of post- and pre-contingency power flows on mon-

itored lines.

• PL0

O
is a v ⇥ 1 vector of pre-contingency power flows for lines on outage.

• LODFA,O is a u⇥ v matrix.

The approach used to calculate LODFA,O utilises the PTDFs of the pre-contingency

network. Based on the definition of PTDFs, the following equations are present.

PTDFc

A,O = X�1

A
�T [B]c

�1

 

PTDF0

A,O = X�1

A
�T [B]0

�1

 

PTDF0

O,O = X�1

O
 T [B]0

�1

 

9
>>>>=

>>>>;

(2.62)

where,

• XA and XO are diagonal matrices with elements representing the reactances of the

monitored and outaged lines, respectively.

• � and  is a bus-to-monitored line incident matrix and a bus-to-outaged line

incident matrix, respectively.
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• [B]c and [B]0 are susceptance matrices for contingency and base case conditions,

respectively. The case of PTDFc

A,O is not used in this thesis, but it is shown as

an alternative in calculating the post-contingency PTDFs, which is the same as the

LODF described in this section. For proof on the calculation of [B]c, the reader is

referred to [49].

The incidence matrices are behaving as follows: If lines i � j and m � n are monitored,

and lines a� b and p� q are on outage, then the following incidence matrices exist,

�T =

2

64
0 . . . 1 . . . �1 . . . . . . 0

0 . . . . . . 1 . . . �1 . . . 0

3

75

i m

j n (2.63)

 T =

2

64
0 . . . 1 . . . �1 . . . . . . 0

0 . . . . . . 1 . . . �1 . . . 0

3

75

a p

b q (2.64)

with,

XM =

2

64
xij

xmn

3

75 , XO =

2

64
xab

xpq

3

75 . (2.65)

Then the matrices defined in (2.63) through (2.65) are inserted into Equation (2.62).

With this, the next step is matrix operations. This is of helpful use, as it illustrates

clearly the sizes of the di↵erent matrices, supporting the understanding of what is actually

calculated.

With these matrices defined, the PTDFc

A,O, and thus the LODFA,O may be calculated

as in Equation (2.66) [49].

LODFc

A,O = PTDFc

A,O = PTDF0

A,O

⇣
E�PTDF0

O,O

⌘�1

(2.66)

E is an identity matrix of size v ⇥ v. In the methodological approach, an example is

provided to illustrate the use of the approach in order to calculate the post-contingency

lines flows of a power system network.
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2.10 Preventive Security Constrained DC Optimal Power Flow

(DC-PSCOPF) using PTDFs and LODFs

Following is a presentation of the theory involved with the formulation of DC-PSCOPF,

which is applied in this thesis. This involves the combination of the fundamental idea

behind SCOPF from Section 2.8, combined with the contingency analysis and distribution

factors addressed in Section 2.9. In Section 3.2.2, a more thorough description is given

of how the DC-PSCOPF is formulated through the LODFs in particular for this thesis.

Compared to the CSCOPF, the PSCOPF o↵ers some advantages and some disadvantages.

The computational complexity is lower, since it aims to prevent violations in the first place

rather than correcting them after they occur through methods as described in Section

2.8.1. However, this is a less accurate approach, that leads to higher operating costs [46].

The consequences of this feature with regards to implementation in Python is discussed

in the Chapter of Code Development (Chapter 4), Section 4.1.4.

The DCOPF problem can be extended to incorporate the impact of a transmission line

outage. By integrating such a security constraint, the DCOPF problem gains the feature

to address both pre- and post-contingency constraints [50]. In power systems, it should

be noted that not all contingencies lead to a state of post-overload [50]. To reduce the

computational complexity of the SCOPF problem, it is assumed that the most severe

potential cases will be included in the analysis. This approach aims to limit the number

of contingencies that need to be considered in the security assessment [50]. The selection

of the potential contingencies included in the DC-PSCOPF problem, will be further

elaborated upon in Section 5.5.

Using the sensitivity matrix, A, from Equation (2.60) and the LODFs from Equa-

tion (2.66), the post-contingency power flow constraint for a given transmission line can

be obtained by Equation (2.67) [50].

�Tlim+  [A+ LODF ·A] · (P�Pload)  Tlim (2.67)

It is important to highlight that the pre- and post-contingency power flows are depen-

dent on the net power injection, meaning the decision variable is solely the active power
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injected, P. In this thesis, the active power curtailment, CP, will be included as a de-

cision variable. This augmentation of the mathematical formulation of the optimisation

problem will be addressed in the methodological approach, in Section 3.2.2. For this

modelling approach is it not necessary obtaining the post-contingency bus voltages for

the modelling of the line flows.

Ultimately, in this DC-PSCOPF formulation, the pre- and post-contingency constraints

may be mathematically formulated as Equation (2.68) and Equation (2.69), respectively

[50].

�Tlim,pre +A ·Pload  A ·P  Tlim,pre +A ·Pload (2.68)

�Tlim,post + [A+ LODF ·A] ·Pload  [A+ LODF ·A] ·P

 Tlim,post + [A+ LODF ·A] ·Pload (2.69)

The optimisation problem illustrated in the modelling approach in Section 3.2.2 includes

these constraints under the assumption that the active power generation and load cur-

tailments, which are the decision variables of the problem, remain unchanged in both

pre- and post-contingency conditions. Consequently, the inclusion of ramp-up and ramp-

down constraints is deemed unnecessary [50]. In other words, corrective actions are not

present. The complete DC-based PSCOPF formulation applied in this thesis can be seen

in Section 3.2.2.
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This chapter looks into the methodological approach used in the calculation of reliability

indices, with the focus on the implementation of the HLII adequacy assessment. The

assessment requires modelling for the system’s load and generation, as well as a model

representing the network topology. Throughout the chapter, the work of [22] and [31]

are used as fundamentals, as they have implemented similar approaches. Their e↵orts

are used as a stepping-stone towards integrating DC-PSCOPF in the HLII adequacy

assessment.

A step-by-step walkthrough of the HLII assessment applied in this thesis, following the

approach of Figure 3.1. This systematic methodology o↵ers a framework for evaluating

select reliability indices of a power system. By understanding and applying this approach,

one can gain knowledge into the adequacy of the system under consideration.

Throughout the chapter, illustrative examples are provided to enhance the conceptual

understanding of the methodology. These examples demonstrate how calculations are

performed, enabling an understanding of the principles behind the HLII adequacy assess-

ment.

The utilised MCS method of [22] and [31], the State Sampling method, will be applied.

The sampled states are assessed as OPF problems, where the key work of this thesis has

been in the extension of OPF to SCOPF, in particular DC-PSCOPF.

Again, it needs to be emphasized that the methodology presented is based on the inspiring

and foundational work of [22] and [31]. An understanding of the methods formulated by

[22] and [31], is presented from the perspective of the author of this thesis. The aim is

to provide the necessary building blocks, in order to formulate the algorithmic approach

in Python code in an object-oriented manner.
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Figure 3.1: Algorithmic approach in calculating reliability indices.
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3.1 Elements in HLII Adequacy Assessment

The following section presents the elements in the HLII assessment conducted in this

thesis. Descriptive steps of each part of the algorithmic approach in the calculation of

reliability indices are presented, in order to provide transparency and opportunity to

reproduce the approach discussed.

As explained in Section 2.1.1, the network topology is included in the HLII adequacy

assessment, which makes it necessary to perform a load flow analysis of the system. In

this step of the analysis, a choice can be made regarding the desired level of accuracy.

For instance, one could use the AC-based approach, trading computational resources for

accuracy. Another approach is to simplify the problem, and use the decoupled load flow,

or even DC-based load flow. For any of the approaches utilised for the HLII adequacy

assessment, it is needed network data, load data, as well as generation data which is

subject to the MCS sampling. Input data is required to be of a specific format, which is

fed to the OPF solver. As mentioned, this thesis puts emphasis on the DC-based load

flow analysis, which means the AC load flow input data will not be considered. The

reader is referred to [22][31] for a detailed description of the AC load flow contingency

solver.

3.1.1 Input Data

Table 3.1 illustrates the line data which is subject to the MCS state sampling and DC

load flow analysis.

Table 3.1: Line input data for the MCS state sampling DC contingency solver.

Line From bus To bus FOR
Reactance

[p.u.]

Current Rating

[p.u.]

1 1 2 FOR1 X12 Tlim1

2 2 3 FOR2 X23 Tlim2

n i j FOR3 Xij Tlimn
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Table 3.2 shows the generator input data.

Table 3.2: Generator input data, DC contingency solver.

Generator
Capacity

[MW]
Bus number FOR

1 Pcap,1 1 FOR1

2 Pcap,2 2 FOR2

n Pcap,n N FOR3

Table 3.3 is also included, illustrating specific data for each bus in the system. The

allocation of load and cost of curtailment are specified for each bus.

Table 3.3: Bus input data, DC contingency solver.

Bus Share of Load
Cost of

curtailment [$/kWh]

1 %load,1 C1

2 %load,2 C2

N %load,N CN

3.1.2 MCS State Sampling Method - System Sampling

Instead of employing a conventional approach of iterating through each hour of each

year, the State Sampling method adopts a simultaneous sampling approach to assess the

availability of generators and lines. This method involves generating random numbers U ,

which follow a uniform distribution in the range of [0, 1], to ascertain whether the system

states can be classified as available or unavailable. The approach is the same as from

the work of [22], adapted to fit for the developed software. The following description of

the procedure is the interpretation of the work of [22], in the eyes of the author. The

procedure is as follows; The process begins by sampling the states of all generators and

lines, and storing them in a matrix of size ncomponents ⇥ nstates, which can be seen in
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Equation (3.1). The subscripts in the equation denote the component number and the

corresponding state number.

Msamples =

2

66666664

U1,1 U1,2 . . . U1,nstates

U2,1 U2,2 . . . U2,nstates

...
...

. . .
...

Uncomponemt,1 Uncomponemt,2 . . . Uncomponemt,nstates

3

77777775

(3.1)

Subsequently, an additional matrix of identical dimensions is created, containing the FOR

values associated with each component, as can be seen in Equation (3.2). The subscript

number represents the component number. It is worth noting that the FOR values

remain constant across all generated states. By comparing the corresponding elements of

the state matrix and the FOR matrix, a decision is made regarding the availability of the

components within each state, denoted as either available (0) or unavailable (1), shown

in Equation (3.3) [22].

MFOR =

2

66666664

FOR1 FOR1 . . . FOR1

FOR2 FOR2 . . . FOR2

...
...

. . .
...

FORncomponent FORncomponent . . . FORncomponent

3

77777775

(3.2)

MStates =

2

66666664

S1,1 S1,2 . . . S1,nstates

S2,1 S2,2 . . . S2,nstates

...
...

. . .
...

Sncomponent,1 Sncomponent,2 . . . Sncomponent,nstates

3

77777775

(3.3)

In order to provide a more thorough illustration of the State Sampling approach, consider

an example involving the investigation of three system states. The system under consid-

eration comprises three buses, with Bus 1 and Bus 2 featuring one generator each, and

three lines interconnecting the buses. This configuration can be seen in Figure 3.2. The

FOR values assigned to each component, as indicated in Figure 3.2, are used to construct

the MFOR matrix, as presented in Equation (3.4). Random numbers are generated to
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generate the three system states, and the corresponding samples, Msamples are also seen

in Equation (3.4). Element-wise, the MFOR is then compared with the Msamples matrix to

assess the availability status of each component. The resulting matrix, Mstates, illustrates

the availability of the components for the three system states.

Figure 3.2: System with two generators, three buses and three lines.

Following the reasoning above, the size of the matrices are

Msamples =

2

66666666664

0.05 0.5 0.9

0.6 0.05 0.8

0.2 0.8 0.3

0.7 0.9 0.4

0.05 0.3 0.6

3

77777777775

MFOR =

2

66666666664

0.2 0.2 0.2

0.2 0.2 0.2

0.1 0.1 0.1

0.1 0.1 0.1

0.1 0.1 0.1

3

77777777775

(3.4)

Mstates =

2

66666666664

1 0 0

0 1 0

0 0 0

0 0 0

1 0 0

3

77777777775

The evaluation of a large number of system states becomes necessary when simulating over

many years, leading to a significant challenge in achieving convergence. Consequently, the
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utilisation of filtering techniques becomes crucial to reduce the number of states analysed

in the contingency solver. Chapter 4 of this thesis will provide a detailed explanation

of the screening and filtering techniques employed during the HLII assessment, again

following the excellent work done in [22].

Following are three examples to provide some clarity on how to use MCS and calculate

reliability indices. The first example showcases how the State Sampling method (Section

2.5.2) may be used. The second example illustrates similarly for the State Transition

method (Section 2.5.4). The third and final example illustrates a calculation of reliability

indices LOLE and EENS.

3.1.3 State Sampling Example

An example is provided for clarity of the method. Consider a system consisting of four

generating units, each with a capacity of 20 MW and a FOR of 0.02 is considered. The

aim of this example is to sample one state using the State Sampling approach. The

system consists of four units, so a vector of four uniformly distributed variables in the

range [0, 1] is generated. This is illustrated in Equation (3.5).

R =
�
0.6581 0.2783 0.9419 0.0032

 
(3.5)

The system matrix, S, is found by comparing the elements of R against the FOR value

of the generating units. The system matrix is given in Equation (3.6), where 1 indicates

up-state.

S =
�
1 1 1 0

 
(3.6)

Equation (3.6) yields an available capacity of 60 MW, and 20 MW on outage.

3.1.4 State Transition Example

The State Transition method is also applicable for MCS methods. An example is provided

to describe the method. The aim of the example is to obtain the two next system states
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and the duration to those states using State Transition. Assume a system consisting of

four generators with a capacity of 20 MW, expected failure rate of 1, and a repair rate of

100. The initial system state is set to all units functioning, meaning S0 =
�
1 1 1 1

 
.

For state S0, the � values are given in the second column in Table 3.5. For this spe-

cific system state, the next system state intervals, used to determine which component

transitions, are given by Equation (3.7). (Calculated from Equation (2.18))

R =
�
0.25 0.5 0.75 1

 
(3.7)

Table 3.4: Randomly generated variables for the State Transition method.

State 0 State 1

U1 0.2341 0.9321

U2 0.1389 0.8012

Randomly generated variables Ui are given in Table 3.4.

Using that
Pm

i=1 �i = �sys = 4 and U1 = 0.2341 in Equation (2.17), the time until next

transition is T0 = 0.3630 years. From U2 = 0.1389 and Equation (3.7), Generator 1 is

found to transition.

Table 3.5: � values for the State Transition example.

Component � for S0

⇥
Incidents/year

⇤
� for S1

⇥
Incidents/year

⇤

Generator 1 1 100

Generator 2 1 1

Generator 3 1 1

Generator 4 1 1

System 4 103

This means S1 =
�
0 1 1 1

 
. The � values for S1 are found in the third column of

Table 3.5. This gives the intervals shown in Equation (3.8) for the next State Transition
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iteration, again using Equation (2.18).

R =
�
0.9709 0.9806 0.9903 1

 
(3.8)

Now, the time to the next transition is found by using,
Pm

i=1 �i = �sys = 103 and

U1 = 0.9321, yielding T1 = 0.000683 years. From U2 = 0.8012 and Equation (3.8), again

Generator 1 is found to transition. (Since U2 < R [0] from Equation (3.8)). The system

states are now S2 =
�
1 1 1 1

 
.

The results for this example can be found in Table 3.6.

Table 3.6: State Transition example: Resulting states and duration

i = 0 i = 1 i = 2

Sn

�
1 1 1 1

 �
0 1 1 1

 �
1 1 1 1

 

Tn [years] 0.3630 0.000683

3.1.5 Reliability Index Calculation - An Example of LOLE and EENS

An example is presented on how a reliability index may be calculated. Consider a system

of four generators, where each of the generators has a capacity of 40 MW. It is assumed

a constant yearly peak load of 150 MW. Based on the simulated states, shown in Table

3.7, the LOLE and EENS indices are obtained. In this example, the states are simulated

once per year. The MCS approach used in this example is the State Sampling approach.

A FOR of 0.1 is set for each generator. The hours for a year is set to 8736 hours/year.

Table 3.7: MCS data for calculation of reliability index.

Simulation year number Random generated variables System State Vector LOL [year] ENS [MWh]

1
�
0.823 0.6968 0.6466 0.1597

 �
1 1 1 1

 
0 0

2
�
0.2445 0.2421 0.1525 0.2803

 �
1 1 1 1

 
0 0

3
�
0.8268 0.0764 0.6789 0.7746

 �
1 0 1 1

 
1 262 080

4
�
0.0357 0.3714 0.9336 0.5028

 �
0 1 1 1

 
1 262 080

5
�
0.7849 0.6116 0.081 0.1565

 �
1 1 0 1

 
1 262 080
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The average for LOLE and EENS are found in Equation (3.9) and Equation (3.10),

respectively.

LOLE =
0 · 2 + 1 · 3

5
= 0.6

⇥
years/year

⇤
(3.9)

EENS =
0 · 2 + 262080 · 3

5
= 157248

⇥
MWh/year

⇤
(3.10)

The standard deviation (SD) is also found by taking the square root of the variance

from Equation (2.25). The SD for the LOLE and EENS reliability indices are shown in

Equation (3.11) and Equation (3.12).

SDLOLE = 0.245
⇥
years/year

⇤
(3.11)

SDEENS = 64196
⇥
MWh/year

⇤
(3.12)

3.1.6 Convergence Criteria

In the context of this thesis, the simulation approach involves calculating the coe�cient

of variation (CoV) after completing the simulations. The purpose of this calculation is

to assess the convergence of the reliability indices. The CoV can in many cases be used

as a stopping criterion for MCS methods [22]. In this thesis, because of the use of the

simultaneous sampling in order to achieve lower computational time as done in [22], this

is not the case.

As explained in Section 2.5.7, selecting an appropriate CoV involves finding a balance

between accuracy and computational time. In [25][51] the CoV used in case studies varies

between 1% and 10%. The selection depends on the demanded accuracy of the results.

In this thesis, this is used as a benchmark, similarly to [22]. This means that successful

convergence is achieved for CoV in the lower end of the interval of 1% to 10%.

3.1.7 Isolated Buses

In the process of evaluating the sampled states of a power system network, it is necessary

to examine the potential on the isolation of buses or specific parts of the system. Isolation

refers to situations where one or more lines are on outage, leading to a lack of connection
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between a bus or a group of buses and the remainder of the system. It is an important

aspect to consider due to the disconnection of loads at the isolated buses. Mathematically,

the complications that arise from the isolation of buses, have their origin in the singularity

of the Jacobian matrix [52].

Literature has been investigated for methods that handle detection and management of

isolated buses. Among others is the approach of [52], where bus isolation is detected

for multiple line outages. Methods like linked list approaches, numerical methods, and

graph-theoretic schemes are mentioned in [52] as the main categories of the tools available

to detect island formations. Several of these propose interesting implementations, which

could have been adapted into this thesis. However, to limit the scope of work, the

approach proposed by [31] is followed. The reader is referred to [31] for an in-depth

explanation of the bus isolation algorithm applied. The approach is here presented briefly.

3.1.7.1 Bus Isolation Detection Algorithm

1. Step 1: If any of the power system components, i.e. generators and lines, subject

to the MCS state sampling are on outage, they are removed from the system under

consideration.

2. Step 2: The conductance and susceptance matrices are then constructed with re-

spect to the MCS state sampling, and are utilised to check if any buses are isolated

from the system.

3. Step 3: Each bus is checked for line connections to a bus with a lower number, if

is is not, the bus is marked as isolated. This has a control step where a check is

conducted to see if any bus is marked incorrectly: If that is the case, it is corrected

to be marked as not isolated.

4. Step 4: Confirmed isolated buses are then removed from the conductance and

susceptance matrices.

The described approach is only applied for contingency cases where one or more line

outages are present, since an outage of a generator would not result in the isolation of a

bus.
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3.2 OPF in HLII Adequacy Assessment

OPF is used in this HLII adequacy assessment to find a feasible operating point subject

to the system states that are the output from the MCS state sampling. This section

uses the theory presented in Section 2.7, in order to formulate a specific description for

the OPF problem which is solved for each system state. First, the model of the system

is presented, in hand with the theory presented on power flow and OPF studies. The

implemented DCOPF method is tested in the algorithmic approach, and compared to

results of [22], which can be seen in Chapter 5. Note again that the following OPF

formulation, and in general this section, is based on the deduction and work of [31].

3.2.1 DCOPF

As stated, this thesis puts emphasis on the DC based approach. The main benefit and

reasoning behind it is to formulate transmission line flows as linear functions of the net

power injected at the buses in the system. With this as a foundation, it is possible to

achieve a convex optimisation problem.

The net injection vector in standard DCOPF needs a small adjustment to some classical

definitions where it is said that the net injection is equal to the generation minus the load

associated with the considered bus. In this case, the load is considered to be constant

in the analysis. This leads to the introduction of the load curtailment vector, Cp in the

expression for the net injection. It is used in such a way that if there is need to reduce

load to maintain balance of active power, it is done by shedding, or curtailing, loads. The

net injection vector, P, is shown in Equation (3.13) [31].

P = Pg +Cp �Pload (3.13)

The necessary building blocks to formulate the DCOPF problem have been formulated,

by making use of Section 2.9.1. Following is a description of the constraints of the

optimisation problem.

• Equality constraint: The power generation of the system must be larger or equal

to the load requirement.
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• Inequality constraint: The power flowing between buses are constrained to the

current rating of the bus.

• Bound: The power generation at a bus cannot exceed the power generation capacity

of the bus.

• Bound: The load curtailment at a bus cannot exceed the load demand at the bus.

• Bound: Non-negative constraints: The power generation and load curtailment at a

bus cannot be negative.

When the OPF solver receives a system state, its goal is to find a feasible operating

state subject to the aforementioned constraints. If a constraint is violated, the solver

takes actions to restore the system to a feasible state. First, it attempts to reschedule

generation. If that is not enough, load curtailments are considered. The order of actions

is determined by an objective function that assigns costs to rescheduling generation and

load curtailments. By setting higher costs for load curtailments, the solver prioritizes

generation rescheduling. Di↵erent costs for load curtailments at each bus allow for a pri-

oritised list, starting with the bus where curtailment costs are lowest [53]. This approach

can be represented by a row vector of 2n elements, where n is the number of buses in

the system. This vector is shown in Equation (3.14). The first n elements represent the

cost associated with rescheduling generation, and the subsequent n elements represent

the cost of load curtailments. In this analysis, the cost for rescheduling generation are

uniformly set to zero, while the costs for load curtailments are determined based on the

specifications provided in the input data, Table 3.3. Each cost element corresponds to a

decision variable, which is optimised to minimise the overall cost. These decision variables

are organised in a column vector, where the first n elements represents the generation,

Pgi, at the buses, and the following n elements represent the load curtailments, Ci, at the

buses [31]. The decision variables are illustrated in Equation (3.15).

W =


w1 w2 . . . wn wn+1 ... w2n

�
(3.14)

X =


Pg1 Pg2 . . . Pgn C1 C2 . . . Cn

�T
(3.15)
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As the system is now represented in terms of vectors and matrices, the next step is

to formulate the OPF problem. In accordance with [31], the optimisation problem is

presented from the objective function (3.16) through the constraints (3.17)-(3.20).

minimize f =
nX

i=1

Ci (3.16)

s.t
nX

i=1

Pgi +
nX

i=1

Ci =
nX

i=1

Pload,i, 8i 2 N (3.17)

|A ·P|  Tlim, 8l 2 L (3.18)

0  Pgi  Pcap,i 8i 2 N (3.19)

0  Ci  Pload,i 8i 2 N (3.20)

In the formulation the set N represents the buses, and the set L represents the lines

of the system. Constraint (3.17) depicts the power balance of the system; the sum of

active power generation and load curtailments for each bus is equal to the total load of

the system. Constraint (3.18) presents the limitation of the active power that can flow

on the lines in the system. The absolute value in this constraint is present as the active

power flow can flow in in two direction, either from bus i ! j or bus j ! i, which may

results in negative values when multiplying values from A and P. Constraint (3.19) is

limiting the active power generation associated with a bus. The last Constraint (3.20)

limits the load to be curtailed to the load demand at the associated bus [31].

The optimisation problem described needs some modifications, in order to formulate it

to Pyomo in a fitting manner. It is a necessity to formulate the problem in terms of the

decision variables. The problem is formulated in Python, using the Pyomo framework,

and Gurobi as the solver of choice. The reasoning for selection of framework and solver

will be discussed in Chapter 4. Using the presented notations in this section, the concrete

formulation in Pyomo is as the following.

• Objective function: The objective function is expressed in terms of the decision

variables through Equation (3.21).

f = WgenCost ·XPg +WcurtCost ·XC (3.21)

It could also be formulated by combining the cost vectors and decision variables into
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one vector each, as shown in Equation (3.14) and Equation (3.15). This was just the

Author’s preference in management of the decision variables during implementation.

• Equality constraint: The Constraint (3.17) which states the power balance of

the system is reformulated to Equation (3.22).

K ·XPg +K ·XC =
nX

i=1

Pload,i (3.22)

K is a row vector of n elements, with values equal to one. This way, an expression

in terms of the decision variables is obtained. Again, it could be formulated by

combining the decision variables to one vector, and increasing the size of K to be

2n elements with values of one [31].

• Inequality constraint: For the Constraint (3.18), which limits the power flow

through transmission lines, the absolute value sign must be removed. This can be

done by converting the constraint into two inequality constraints. Also, the load

demand is constant, so the multiplication of A and Pload can be moved to the con-

stant side of the inequality. The new inequalities are shown in as Constraint (3.23)

and Constraint (3.24).

A ·XPg +A ·XC  Tlim +A ·Pload (3.23)

�A ·XPg �A ·XC  Tlim �A ·Pload (3.24)

Again the decision variables could be combined into one vector. The formulation

would then be as seen in Equation (3.25) and Equation (3.26), which is the approach

used in [31].


A A

�
·X  Tlim +A ·Pload (3.25)

�


A A

�
·X  Tlim �A ·Pload (3.26)

To summarize, the model formulation for DCOPF that is implemented in Python with
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Pyomo, is shown in Equation (3.27).

minimize f = WgenCost ·XPg +WcurtCost ·XC

s.t K ·XPg +K ·XC =
Pn

i=1 Pload,i 8i 2 N

A ·XPg +A ·XC  Tlim +A ·Pload 8l 2 L

�A ·XPg �A ·XC  Tlim �A ·Pload 8l 2 L

0  Pgi  Pcap,i 8i 2 N

0  Ci  Pload,i 8i 2 N

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

(3.27)

3.2.2 DC-PSCOPF

As mentioned, one of the main contributions of this thesis is the implementation of

DC-PSCOPF in the OPF analysis of the algorithmic approach in calculating reliability

indices. This section explains how the method is implemented in Python, using the

framework of Pyomo, and theory presented in Section 2.10.

The DCOPF formulation defined in Section 3.2.1, is extended to consider the outage of

a component in the system. The constraints added to the optimisation problem, allow

the DCOPF problem to manage post-contingency line flows. The approach is as follows.

The model in [50] is extended to account for load curtailments, including this as a decision

variable in the mathematical formulation. The following mathematical formulation is

applied to describe the post contingency formulations, denoted as DC-PSCOPF.

minimize f =
nX

i=1

Ci (3.28)

s.t
nX

i=1

Pgi +
nX

i=1

Ci =
nX

i=1

Pload,i 8i 2 N (3.29)

|A ·P|  Tlim 8l 2 L (3.30)

�Tlim +G ·Pload  AP  Tlim +G ·Pload 8↵ 2 A (3.31)

0  Pgi  Pcap,i 8i 2 N (3.32)

0  Ci  Pload,i 8i 2 N (3.33)

where G = A + LODF · A. The set A is the set of active lines in the system. For
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contingency cases where one line is on outage, this set has the size A = L � 1. If two

lines on outage, A = L� 2, and so on. There is only one di↵erence from the formulation

of the DCOPF seen in (3.16)-(3.20), which is the inclusion of Constraint (3.31). This

constraint considers the e↵ect of post-contingency line flows in the system, resulting from

a line outage, using the LODFs.

This formulation presents a highly e↵ective approach to solving SCOPF problems by

simultaneously handling pre- and post-contingency constraints. It achieves this by exclu-

sively using linear distribution factors, the PTDFs and LODFs. Notably, these factors

remain fixed throughout the analysis, enhancing computational e�ciency.

Again, some modifications must be made in the formulation of the optimisation problem

in Python with Pyomo. Following is a description of the model implemented, following

the same reasoning as for the DCOPF model. As a result, the model below is obtained.

minimize f = WgenCost ·XPg +WcurtCost ·XC (3.34)

s.t. K ·XPg +K ·XC =
nX

i=1

Pload,i 8i 2 N (3.35)

A ·XPg +A ·XC  Tlim +A ·Pload 8l 2 L (3.36)

�A ·XPg �A ·XC  Tlim �A ·Pload 8l 2 L (3.37)

A ·XPg +A ·XC  Tlim + [A+ LODF ·A] ·Pload 8↵ 2 A (3.38)

�A ·XPg �A ·XC  Tlim � [A+ LODF ·A] ·Pload 8↵ 2 A (3.39)

0  Pgi  Pcap,i 8i 2 N (3.40)

0  Ci  Pload,i 8i 2 N (3.41)

The only di↵erence from the DCOPF formulation previously displayed, is the inclusion of

Constraint (3.38) and Constraint (3.39). As for the DCOPF case with pre-contingencies,

the post-contingency constraint is split in two. These two constraints handle the impact

of the line(s) on outage on the remaining operating lines. Therefore, the set A varies

with the amount of lines on outage. If the set of lines on outage are denoted as O, the set

of active lines may be denoted as A = L �O. In this thesis, the set O has a maximum

size of one. However, the implementation of LODFs consider multiple line outages, if

necessary.
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It is important to always be wary of the size of the matrices and vectors when formu-

lating the optimisation problem. For instance, when calculating Constraint (3.38) and

Constraint (3.39), it is of significance to remove an element from the sensitivity matrix

A corresponding to the line that is on outage. The same applies for the parameter of line

flow ratings, Tlim, that the line on outage is not included in the set A is removed from the

correct index. An example of post-contingency line flow calculation using LODFs will be

illustrated to help clarify how the LODFs work in this analysis, and how they may be

applied for multiple line outages. This is illustrated in the following Section 3.3.
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3.3 Post-contingency Line Flow Calculation Through LODFs:

Examples

The following section presents two illustrative examples to clarify the utility of the LODFs

in contingency analysis. First, an example is shown for a simple 4-bus system, inducing

a single line outage. Subsequently, an example inducing multiple line outages is applied

for the same system. The aim is to calculate the post-contingency line flows.

3.3.1 4-bus Example: Single Line Outage

Given the 4-bus system in Figure 3.3. P2, P3 and P4 in figure represent the net injections

on each bus. The network and bus parameters are given in Table 3.8 and Table 3.9,

respectively.

Figure 3.3: 4-bus system with no contingencies.
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Table 3.8: Line data for 4-bus system, data given in p.u. Line losses are neglected

Rij = 0.

Line [Frombus - Tobus] Reactance [X]

L1: [1 - 2] 0.25

L2: [2 - 3] 0.1

L3: [3 - 4] 0.25

L4: [2 - 4] 0.25

L5: [1 - 4] 0.25

Table 3.9: Bus data for 4-bus system

Bus number Loads

1 (slack) -

2 -0.6

3 -1.25

4 -0.4

Say, an outage occurs for the line L3. The task at hand is to find the resulting post-

contingency power flows in the network, through the LODFs. In order to achieve this,

the theory presented in Section 2.9.2 is followed, and presented in a step-wise manner.

The new topology is illustrated in Figure 3.4.
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Figure 3.4: 4-bus system with contingency case: Outage of L3 connecting bus 3 and bus

4.

The setA contains the lines not on outage (i.e. L1, L2, L4 and L5), and the setO contains

the line on outage (i.e. L3). The first step is to calculate PTDF0

A,O and PTDF0

O,O from

Equation (2.66). In order to do this, the matrices �,  , XA and XO must be calculated.

Given the system data, the matrices �,  , XA and XO can be determined as shown in

(3.42) and (3.43).

�T =

2

66666664

1 �1 0 0

0 1 �1 0

0 1 0 �1

1 0 0 �1

3

77777775

,  T =


0 0 1 �1

�
, (3.42)

XA =

2

66666664

0.25 0 0 0

0 0.1 0 0

0 0 0.25 0

0 0 0 0.25

3

77777775

, XO =


0.25

�
. (3.43)

The susceptance matrix for the base case conditions, B0, is calculated through Equa-
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tion (2.51).

B =

2

66666664

8 �4 0 �4

�4 18 �10 �4

0 �10 14 �4

�4 �4 �4 12

3

77777775

(3.44)

However, some adaptations have to be made. The determinant of B0 is zero, meaning

the matrix is singular and thus cannot be inverted. To avoid problems with singular

matrices, the principle of the slack bus is used. Utilising that our slack bus is bus number

1, Bsub is established by removing the rows and columns corresponding to bus 1.

Bsub =

2

66664

18 �10 �4

�10 14 �4

�4 �4 12

3

77775
(3.45)

Then the Z matrix is constructed according to Equation (2.54). Note that it is the Z

matrix that is used in Equation (2.62), in place of the B0. PTDF0

A,O and PTDF0

O,O are

calculated,

PTDF0

A,O =

2

66666664

0.25 0 0 0

0 0.1 0 0

0 0 0.25 0

0 0 0 0.25

3

77777775

�1 2

66666664

1 �1 0 0

0 1 �1 0

0 1 0 �1

1 0 0 �1

3

77777775

2

66666664

0 0 0 0

0 0.1532 0.1371 0.097

0 0.1371 0.2016 0.1129

0 0.097 0.1129 0.1532

3

77777775

2

66666664

0

0

1

�1

3

77777775

=


�0.1613 �0.4839 0.3226 0.1613

�T

and,

PTDF0

O,O =


0.25

��1 
0 0 1 �1

�

2

66666664

0 0 0 0

0 0.1532 0.1371 0.097

0 0.1371 0.2016 0.1129

0 0.097 0.1129 0.1532

3

77777775


0 0 1 �1

�T

=


0.5161

�
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Finally, using Equation (2.66), the LODFs are obtained.

LODFc

A,O =


�0.1613 �0.4839 0.3226 0.1613

�T  
1

�
�


0.5161

�!�1

=


�0.3333 �1 0.6666 0.3333

�T

With the LODFs defined, the new line flows of the system may be calculated through

Equation (2.61).

PL0

A
are the base case line flows of the active lines in the post-contingency state, and

PL0

O
is the base case line flow for the line(s) on outage. Next, the base case line flows

are found. Here illustrated achievable in two di↵erent ways.

• Option 1: Using PTDFs. The PTDFs and the sensitivity matrix can be used to find

the line flows of the system. This can be done by solving the system of equations

(3.46).

Pij = Aij⇥iPi (3.46)

• Option 2: Through angle di↵erences. The line flows can also be found as done in

Equation (2.52). Note that the slack bus is not included in the set of equations, as

�1 is fixed at 0.

Solving Equation (2.52) for �i, opens the door to calculate the line flows through

Equation (3.47).

Pij =
�i � �j
Xij

(3.47)

In this case, the solution is found using option 1. The power transfer distribution factors

are then established for each line.

P12 =
z11 � z21

X12
· P1 +

z12 � z22
X12

· P2 +
z13 � z23

X12
· P3 +

z14 � z24
X12

· P4

P23 =
z21 � z31

X23
· P1 +

z22 � z32
X23

· P2 +
z23 � z33

X23
· P3 +

z24 � z34
X23

· P4

P34 =
z31 � z41

X34
· P1 +

z32 � z42
X34

· P2 +
z33 � z43

X34
· P3 +

z34 � z44
X34

· P4

P24 =
z21 � z41

X24
· P1 +

z22 � z42
X24

· P2 +
z23 � z43

X24
· P3 +

z24 � z44
X24

· P4

P14 =
z11 � z41

X14
· P1 +

z12 � z42
X14

· P2 +
z13 � z43

X14
· P3 +

z14 � z44
X14

· P4
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Illustrated in a more compact form of the sensitivity matrixA. The matrixA has the size

of l ⇥ n, where l represents the number of lines of the system, and n represents number

of buses.

A =

2

66666666664

0 �0.6129 �0.5484 �0.3871

0 0.1613 �0.6452 �0.1613

0 0.1613 0.3548 �0.1613

0 0.2258 0.0968 �0.2258

0 �0.3871 �0.4516 �0.6129

3

77777777775

The net injections are defined as


P2 P3 P4

�T
=


�0.7 �0.5 �0.9

�T
. Bus 1 is

excluded from this expression as it is the slack bus.

Through Equation (3.46), the following line flows are obtained


P12 P23 P34 P24 P14

�T
=


1.052 0.355 �0.145 �0.003 1.048

�T

Using the network topology, the injections can be verified.
2

66666664

P2

P3

P4

P1

3

77777775

=

2

66666664

P23 + P21 + P24

P32 + P34

P43 + P41 + P42

P2 + P3 + P4

3

77777775

⇡

2

66666664

�0.7

�0.5

�0.9

2.1

3

77777775

Note that some deviation in the values is present. This is due to decimal errors.

The flows and their direction are illustrated in Figure 3.5.
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Figure 3.5: 4-bus system base case line flows.

With knowledge of the base case line flows, the LODFs and the index of the line on

outage, the line flows of the post-contingency case may be found using Equation (2.61).

2

66666664

PcL1:1�2

PcL2:2�3

PcL4:2�4

PcL5:1�4

3

77777775

=

2

66666664

1.093

0.5

�0.0999

0.999

3

77777775

Figure 3.6 illustrates the post-contingency line flows.
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Figure 3.6: 4-bus system post-contingency line flows.

Some deviations are present due to some shortcomings in the selection of decimals in

calculations. Neglecting this, the system illustrates feasible power flows between nodes.

As mentioned, the procedure works with multiple lines on outage, making it a useful tool

for contingency analysis.
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3.3.2 4-bus Example: Multiple Line Outages

Next, an example is shown illustrating that the LODFs described in the previous example

also work for multiple lines on outage. Consider again the system in Figure 3.3. This

time, L1 and L4 are on outage. It is desired to determine the post-contingency line flows

for the remaining lines. It is necessary to calculate the LODFs, similarly to the previous

example. The base case power flows are naturally the same as for the previous case, and

therefore not calculated.

The set A contains the lines not on outage (i.e. L2, L3 and L5), while the set O contains

the lines on outage (i.e. L1 and L4). Note that the set A does not necessarily have to

contain all the lines of the system that are not on outage. It could also solely be the lines

that is of interest, which can be useful for larger networks. In this case, all lines are of

interest.

Given the knowledge of which lines are on outage, including the network parameters, the

matrices �,  , XA and XO can be determined.

�T =

2

66664

0 1 �1 0

0 0 1 �1

1 0 0 �1

3

77775
,  T =

2

64
1 �1 0 0

0 1 0 �1

3

75 , (3.48)

XA =

2

66664

0.1 0 0

0 0.25 0

0 0 0.25

3

77775
, XO =

2

64
0.25 0

0 0.25

3

75 . (3.49)

The susceptance matrix B0 and coherent matrix Z are defined as in the previous example.

PTDF0

A,O =

2

66664

0.1 0 0

0 0.25 0

0 0 0.25

3

77775

�1 2

66664

0 1 �1 0

0 0 1 �1

1 0 0 �1

3

77775

2

66666664

0 0 0 0

0 0.1532 0.1371 0.097

0 0.1371 0.2016 0.1129

0 0.097 0.1129 0.1532

3

77777775

2

64
1 �1 0 0

0 1 0 �1

3

75

T

=

2

64
�0.161 �0.1604 0.388

0.32 0.3216 0.2248

3

75

T
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and,

PTDF0

O,O =

2

64
0.25 0

0 0.25

3

75

�1 2

64
1 �1 0 0

0 1 0 �1

3

75

2

66666664

0 0 0 0

0 0.1532 0.1371 0.097

0 0.1371 0.2016 0.1129

0 0.097 0.1129 0.1532

3

77777775

2

64
1 �1 0 0

0 1 0 �1

3

75

T

=

2

64
0.6128 �0.2248

�0.2248 0.4496

3

75

Which results in the LODFs,

LODFc

A,O =

2

64
�0.161 �0.1604 0.388

0.32 0.3216 0.2248

3

75

T
0

BB@

2

64
1 0

0 1

3

75�

2

64
0.6128 �0.2248

�0.2248 0.4496

3

75

1

CCA

�1

=

2

64
�0.9875 �0.9877 1.0027

0.9847 0.9877 �0.00111

3

75

T

(3.50)

Which again results in the following post-contingency line flows, using Equation (2.61),

2

66664

PcL2:2�3

PcL3:3�4

PcL5:1�4

3

77775
=

2

66664

�0.687

�1.187

2.1028

3

77775
(3.51)

The line flows for this specific contingency scenario, with L1 and L4 on outage, are

illustrated in Figure 3.7.
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Figure 3.7: 4-bus system post-contingency line flows for outage of L1 and L4.

Again, some deviation is present due to precision errors with decimals. Neglecting the

small deviation, the power flows of the network seem feasible. All injected power at

the slack bus follows the only path it can take towards bus 4, delivering 0.9 p.u. The

remaining power transfers to bus 3, delivering to the load of 0.5 p.u. The remaining of

load follows the last path, delivering to the load of 0.7 p.u.
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4 Code Development and Programming

A significant portion of the e↵orts expended in this thesis involved the creation, and

extension of a Python-based PSR tool. The objective was to devise a computational tool

that can perform the HLII assessment, with OPF and SCOPF used in the contingency

solver. The developed code is designed in a generalised manner, facilitating the implemen-

tation of most systems for the HLII assessment, regardless of the number of generators,

buses, and transmission lines. It is essential that the system parameters follow the same

input format as the test systems employed in this thesis.

The standard HLII assessment is implemented with a DCOPF formulation, using the

MCS State Sampling method. The approach is based on the methodological approach of

[22] and [31]. In-house software codes for composite system adequacy from the Depart-

ment of Electric Energy (formerly, Department of Electric Power Engineering) were made

available to this thesis work as a springboard and comparison for the code development

conducted. Especially the work of [22] has been used as a foundation to build upon. The

developed HLII DC-PSCOPF code is an extension of the standard HLII adequacy assess-

ment. The approach of the standard HLII assessment is explained in Chapter 3.2.1, and

the approach of DC-PSCOPF as the contingency solver is explained in Chapter 3.2.2.

Unlike the work conducted in [22], this thesis uses a di↵erent approach in the optimisa-

tion part of the algorithm. The approach in [22] took use of Scipy to handle the OPF

formulations, this thesis takes use of Pyomo instead. Pyomo is an optimisation model-

ing language, while Scipy is a scientific library with numerical and scientific computing

capabilities. Pyomo provides a higher level of abstraction and advanced features for opti-

mization problems, while Scipy is a general-purpose library. As a result, the code treating

optimisation is based on the adaptation of the methodology in [31], rather than a direct

adaptation of the in-house Python code itself from [22].
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4.1 Modelling in Python with Pyomo

This section aims to discuss and reason the choices made within the code development

of this thesis. As mentioned, this thesis aimed to formulate the optimisation problem

through the Pyomo framework in Python, using Gurobi as a solver.

4.1.1 Choice of Modelling Framework

To solve the OPF problem, it was decided to use the framework of Pyomo [54][55], as an

alternative to the approach of the SciPy [56] method optimize.minimize used in [22] and

the fmincon in MATLAB used in [31]. Pyomo is a Python-based open-source optimisation

modeling language with a diverse set of optimisation capabilities for formulating and

solving optimisation models. The formulated optimisation problems may be solved with

commercial and open-source solvers.

The author of the thesis also finds the syntax of Pyomo understandable and intuitive

to work with. Another advantage of selecting Pyomo as an optimisation tool framework

is its inclusion in the educational curriculum of the study programmes at NTNU. At

least for the author of the thesis, Pyomo has been featured in courses building up to the

Master’s thesis. Pyomo’s use in courses allows for future students to apply their knowl-

edge through the programming framework to further develop software codes handling

complex optimisation problems within power system reliability. The formulation of the

problems is similar to what is taught, when you learn your first optimisation problems

written by hand. The mathematical modelling follows the central mathematical concepts

of variables, parameters, constraints and objectives. In other words, a Pyomo model con-

sists of modeling components that define the aspects of the mathematical model. These

modelling components are shown below, related to their respective definitions in Pyomo

through Python classes:

• Set() - This is set data which is used to define a model instance, initialized by the

Python class.

• Param() - Parameter data which is used to define a model instance.
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• Var() - Decision variables in a model.

• Objective() - Expressions to be minimised or maximised in a model.

• Constraint() - Constraint expressions which impose restrictions on decision vari-

ables in a model.

Pyomo is widely utilised, and documentation is easily accessible. For a more thorough

introduction to Pyomo and its documentation, the reader is referred to [54][55].

With Pyomo, optimisation models may be expressed in a way which closely resembles the

mathematical notation. In the eyes of the author of the thesis, this feature allows for the

focus to be on the formulation of the optimisation problem, rather than getting mired

in syntax. The syntax is intuitive, making it easier to communicate and understand the

mathematical model structure. Since this thesis work aims to be a building block for the

future, developing readable code was of importance.

4.1.2 Choice of solver

Pyomo in itself does not solve the optimisation problem that is mathematically formu-

lated. Instead, Pyomo provides an interface that communicates with solvers, and users

need to install a solver separately from Pyomo. The interface enables Pyomo to pass the

formulated optimisation model to the solver of choice, retrieve a solution, and provide

the result to the user.

Di↵erent solvers exist that handle di↵erent optimisation problems, some that are com-

mercial and some that are open-source. Through an academic license, which is available

as a student at NTNU, it is possible to gain access to Gurobi, which is the solver utilised

in this thesis.

4.1.2.1 Gurobi

Gurobi [57] was the solver of choice for solving the mathematical models formulated in

Pyomo. Gurobi is a commercial optimisation solver, which can be accessed through an
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academic license. Gurobi is a flexible tool that can solve linear programming, mixed inte-

ger programming, quadratic programming, and other types of mathematical optimisation

problems.

4.1.3 Modelling Approach

Before presenting the modeling hierarchy, and the connection between di↵erent Python

files used in the approach, it is important to highlight the emphasis that is placed by the

author of the thesis on promoting transparency in the overall structure. The approach

follows a structured design, utilising multiple Python files to ensure clarity and re-usable

code. The code is implemented in an object-oriented manner, for flexibility to apply to

any type of system, as long as input data is of the correct format.

The total framework is not solely developed by the author of the thesis. The contributions

of previous work, particularly from [22] and [31], have significantly influenced the model.

By building upon their valuable work and insights, the approach aims to enhance and

expand upon the existing solutions while including unique contributions. The approach

developed in this thesis stands on the shoulders of the pioneering work of [22], which

developed a framework for PSR adequacy assessment in Python. Figure 4.1 illustrates

the complete hierarchy of Python files used in this thesis.

All credit and recognition for the scripts used in this work go to their original creators,

and it is specified whether the scripts are developed in this thesis or not below. The

development and availability of these scripts are attributed to the Department of Elec-

tric Energy and supervisor Vijay Venu Vadlamudi. The author of the thesis expresses

gratitude and acknowledges their contributions in enabling the utilisation of these scripts

for the purposes of this Master’s thesis. Disclaimers are presented in the Python files

themselves, as well.
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Figure 4.1: Python files hierarchy for modeling approach in calculating reliability indices.

Following is a brief description of each of the Python files, including the files’ origin -

i.e., if they are newly developed in this thesis, or belong to the previously developed

PSR software from [22], or external libraries. It must be kept in mind that this is a

brief description, to provide an overview. For a more thorough description, the scripts

themselves provide detailed comments.

• MCS.py: This script contains classes and methods for conducting the MCS State

Sampling method. The script utilises a filtering technique which is further described

later in this chapter, in Section 4.3. This script is developed by [22]. There is some

deviation from the original script from [22], but there are only minimal changes

from the original.

• relIndices.py: This script calculates reliability indices. This includes the indices

presented in theory, LOLE, LOLP and EENS. Additionally, it calculates the CoVs.
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Both the indices and CoVs are presented for each individual bus and the entire

system. This script is developed by [22].

• helpFunctions.py: This script includes helpful functions for the OPF formula-

tions. This includes methods for calculating PTDFs and LODFs. This script was

developed during the thesis work.

• DCOPF.py: This script contains the majority of implementation. A part of the script

is from the work of [22]. In general, this considers the algorithmic approach before

the contingency solver is involved. In other words, the part used from [22] provides

the input for the contingency solver and OPF analysis. Further, the script contains

a method for DCOPF and DC-PSCOPF, which both are implemented with the

Pyomo framework. This integrated OPF part in Pyomo was developed during the

thesis work.

• main.py: This is the main script to run the adequacy assessment. Here, the number

of simulation years may be determined, as well as the choice to solve states in

parallell or iteratively.

• plotting.py: This script illustrates the convergence of MCS through an example

of coin tossing, and thus not related with the rest of hierarchy. This was developed

during the thesis work.

• LoadModel.py: This script implements the load model. The script was developed

by [22]. Some changes were made to the script to illustrate plots, which are seen in

Figure 2.4.

• BuildSystemFile.py: This script was the original file to convert data read from

Excel sheets describing RBTS and IEEE RTS into classes of lines, generators and

buses. This approach showed some struggles in implementation, thus not utilised.

• The remaining files not mentioned, are packages which are not developed by the

author nor the previous work of [22]. These packages contain modules that present

functionality fitting for the implementation.
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4.1.4 Challenges with Implementation

Due to limited time remaining and a tight deadline, the workload associated with imple-

menting the CSCOPF with Benders decomposition, fully integrated with the adequacy

assessment, proved to be overwhelming. Given the time constraints, a critical decision

had to be made regarding the approach to pursue, in order to achieve results.

In light of this dilemma, the author of the thesis made the choice to go for a simpler

approach: the DC-PSCOPF which handles pre- and post-contingency constraints simul-

taneously. By opting for a more straightforward approach, the aim was to streamline

the implementation process and accelerate the generation of results within the available

time-frame.

Despite being less complex than the CSCOPF with Benders decomposition, the DC-

PSCOPF still holds some potential to o↵er insights in the application of SCOPF in

adequacy assessment.

When implementing new methods at a later stage of the thesis work, certain drawbacks

were still encountered despite opting for a simpler approach with the DC-PSCOPF rather

than the CSCOPF. These drawbacks included long simulation times and some missing

features in the implementation that required handling through throwing exceptions. In

the following paragraphs, these issues and their implication will be discussed.

In the original proposed approach of CSCOPF, it was focused on only solving the subprob-

lems where violations would be present, which could yield a shorter analysis. The LODFs

would be used to calculate new line flows to identify overloaded lines. The subproblems

would be solved only for the scenarios with overloaded lines, as generation rescheduling

or load curtailments would be a necessary action in these cases, and yielding w > 0 in

accordance with Equation (2.49). This is deducted from, recalling from Equation (2.49),

that w = 0 does not result in any Benders Cut appended to the master problem. For

scenarios with generator outages an optimisation problem cannot be ignored, as curtail-

ments in the system are of essence: if a large generator is on outage, it is not certain the

load balance is satisfied without curtailing load to keep the system balanced.

In the developed DC-PSCOPF it was planned to check all possible contingencies, sim-
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ulating outages of each component for the system at hand. However, this was found to

demand excessive computational e↵ort within the limited time scope. This fact will be

pointed out in the results presented in Chapter 5. To cope with the extensive simulation

times, it was deemed necessary to only check a few select components and the conse-

quence of their outage, to acquire reliability indices from an adequacy assessment. The

selection of contingencies to check was based on the curiosity of the author of the thesis,

as well as contingencies that would likely result in load curtailments.

In order to reduce the computational e↵ort and also provide insightful analysis, it could be

a solution to utilise the CSCOPF methodology described. The analysis would concentrate

on generators and overloaded lines for each contingency case. This selective examination

would reduce the number of problems analysed compared to the exhaustive N-1 analysis.

At the same time it would give a better representation of which problems to solve, as it

is not preemptively selected without the knowledge of overloaded lines.

The reason the argued better method is not utilised in this thesis, is because it is depen-

dent on the solution of a base case problem. The reason why this is a problem, is because

for each sampled state, a solution of a new base case is necessary. This contradicts

with the utility of the formulated model, where pre- and post-contingency constraints are

solved simultaneously, removing the need for base case (master problem) and subprob-

lems. It could be done with a pre-analysis of the system, by first solving the base case

system with no contingencies. Thus, the line flows of the system could be calculated.

However, it would be needed a mapping of each sampled state and its base case solution.

Thereafter, the post-contingency line flows could be found through the LODFs, and re-

turn a list of which line outages result in line overloads, for each specific sampled state.

This selection of line outages would then be the scenarios checked as subproblems. This

is, however, not done in this thesis work. However, many of the tools necessary to perform

such an analysis are available through the work of this thesis and [22], which could be an

interesting comparison of the selection of contingencies to assess. For example, selecting

line outages from the said procedure, and comparing to selecting line outages with the

lines most likely to be on outage, e.g., largest FOR value.

As mentioned, even though being a less complex approach, the implemented approach

has some drawbacks, which has its root at the formulation and use of the LODFs in this
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thesis. A challenge is handling cases where the outage of a line results in an isolated

system, as it is required �XO+ T [B]0
�1

 is non-singular [49]. To provide some clarity

on what this means, a simple example is illustrated.

Say, Figure 4.2 is the result of a sampled state for a given time increment. For the given

case, L9 and L8 are on outage. This results in the isolation of bus 6, which is handled

through the bus isolation algorithm depicted in 3.1.7.1 (work of [31] and implemented in

Python by [22]).

Figure 4.2: Example of sampled system state for RBTS.

When performing the DC-PSCOPF for the given system, it can lead to isolation of bus 5,

with the outage of L5. This leads to the commented problem, of singularity and matrix

inversion. In this thesis, the problem is handled by calculating the pseudo-inverse using

the (numpy.linalg.pinv()) method from the numPy package in Python.
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The problem is commented in references [49][52][58]. For the future, a solution method

may be to adopt the approach of [52], which can detect potential isolated buses (only one

line connected), and remove them from the analysis.

However, the use of the pseudo-inverse can represent a case of problem-shifting. By

performing the DC-PSCOPF analysis, for the case where L5 in Figure 4.2 is on outage,

bus 5 will be isolated. This is something that needs to be considered in the analysis as

well, reconfiguring the system again, even though there are no issues by calculation of

singular matrices.

To summarize, the developed method is far from perfected, but may still provide insight

in the desired direction of SCOPF integration in PSR adequacy assessment.

4.2 Multi Processing

Given that the PSR MCS assessment involves analysing a vast number of system states,

it is of interest to enhance the computational e�ciency of the code. One approach to

achieve this goal is by incorporating multi-processing functionality that allows for the

analysis of multiple states in parallel, taking advantage of the multiple cores in modern

CPUs.

The concurrent.futures.ProcessPoolExecutor [59] method in Python can be utilised to

implement this functionality, creating a pool of workers based on the available CPU cores

and distributing contingency states to each worker as they complete the assigned state.

The investigated states are not completed in chronological order due to the varying time

required to solve each contingency state. To map the indices back to the original order,

each contingency state is attached with its original positional index, allowing for sorting in

chronological order after all contingency states have been resolved [22]. Overall, parallel

computing significantly reduces the computational time required to complete the PSR

MCS assessment, particularly when analyzing a vast number of system states.
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4.3 Contingency State Filtering

The computational time required for HLII adequacy assessment is quite significant. The

most computationally intensive task in the HLII adequacy assessment is the contingency

solver. To mitigate this, one approach is to reduce the computational time by minimising

the number of states examined. This can be achieved by pre-screening the sampled states

and excluding trivial states based on specific criteria. An example of a trivial state is

a system state where no components are in an outage condition. Investigating such a

state using the contingency solver would not result in any load curtailment and would

therefore have no impact on the system reliability indices [22].

In the software codes of [22] which were built upon in this thesis, three filtering criteria

are introduced as an alternative to reduce the amount of states being solved by the

contingency analysis tool. A thorough description of the criteria can be seen in [31]. A

duplicate state filtering method that recognizes the states that occur more than once, is

also included in the approach of [22]. This is to even further increase the e�ciency of

simulations, building upon the base filtering criteria in [31]. The filtering criteria used

and presented in [22] and [31], are here briefly presented on their functionality in this

thesis. The filtering criteria are presented in Section 4.3.1 and 4.3.2.

4.3.1 Sampled State Filtering Criteria - Power System Components

The filtering criteria used in the sampling of states is presented in this section. First

filtering procedures regarding components of the network are handled.

• Load level criterion: This criterion is established in order to identify contingency

states where the total generation falls below the total hourly load demand multiplied

with a constant value k. Equation (4.1) illustrates this criterion, where n represents

the total number of buses in the system. The value of the constant k is influenced

by the system’s topology and the distribution pattern of generators [22].

nX

i=1

Pgi < k
nX

i=1

Pload,i (4.1)
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• Generators on outage criterion: This criterion is based on the count of gen-

erators on outage. If the number of generators currently on outage is lower than

a specified limit, the state is disregarded. According to [22], the combination of

these two criteria has been found to be an e�cient approach without significantly

impacting the reliability assessment. It should be noted that these two criteria,

filter out all the sampled states where no contingencies occur [22].

• Lines on outage criterion: This criterion involves checking all states in which

one or more transmission lines are on outage. The criterion was found to have

minimal impact on the overall number of contingency states. This is due to the

transmission lines being more reliable than the generators in the test systems RBTS

and IEEE RTS [22].

4.3.2 Duplicate Contingency State Filtering

Following the approach of [22], using a simultaneous sampling method, all states are

sampled prior to examination by the OPF analysis tool. This unconventional approach

enables the screening and filtration of all sampled states before they are subjected to the

OPF analysis, or contingency solver tool. As a result, it becomes feasible to identify,

quantify, and eliminate duplicate contingency states. As a consequence, this approach

reduces the total number of contingency states that require further analysis [22].

The state filtering technique developed by [22], identifies contingency states that are

identical, meaning they have the same load level and components on outage. As a con-

sequence, these states contribute with the same values to the reliability indices when

assessed by the contingency solver. An essential aspect of the filtering procedure, is to

accurately associate the solution with the corresponding simulation years in which they

occur. [22] introduces a year of state index, which stores the simulation years associ-

ated with each specific contingency state. For a more in-depth explanation, the reader is

referred to [22] where an example is provided as well.
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In this chapter, the testing and verification of the standard HLII software and the HLII

SCOPF software that were developed are presented. Initially the test systems are de-

scribed, outlining the system-specific parameters used in the contingency state filtering

stage (Section 4.3.2) and the contingency solver. Furthermore, the load model and com-

puter employed for the simulations are discussed.

The first case study aims to test the developed standard HLII software by applying it

to RBTS and IEEE RTS. The second case study aims to test the HLII DC-PSCOPF

software, for the same systems. Both case studies are subdivided into several cases.

5.1 Test systems

In this thesis, two distinct test systems are examined for the purpose of either enhancing

theoretical comprehension or verifying the feasibility of the methods under investigation.

The following section outlines each system in detail, with the intention of providing

a comprehensive understanding of the parameters used and the rationale behind their

selection.

5.1.1 Roy Billinton Test System (RBTS)

RBTS is a relatively simple power system comprising six buses and was originally created

for educational purposes [23]. The system is characterized by a power factor of 0.2 at

all buses and a yearly peak load of 185 MW. It comprises of 11 generators with a total

generation capacity of 240 MW, where individual generator capacity ranges from 5 to 40

MW. The system includes 6 buses and 9 transmission lines interconnecting them. Com-

prehensive system data including generator data, bus specifications, network parameters,

and outage data can be found in Appendix B. A graphical representation of the system

topology is provided in Figure 5.1.
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Figure 5.1: Single line diagram of the RBTS. Adapted from [23] with MS Visio.

5.1.1.1 System Specific Parameters

Table 5.1 presents the parameters for the contingency state filtering criteria described in

Section 4.3.1 and 4.3.2. The parameters are identical to that of [22] and [31], due to the

comparison done in Case 1 of the standard HLII assessment, seen in Section 5.4.1.
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Table 5.1: Filtering criteria from [22] and [31] applied to the RBTS for standard HLII

assessment.

Test System
Generation Capacity

to Load

Max lines

on outage

Max generators

on outage
Duplicate filter

RBTS 1.04 x total load 1 2 Yes

5.1.2 IEEE Reliability Test System (IEEE RTS)

The IEEE RTS, also developed for educational purposes, exhibits a greater level of intri-

cacy in contrast to the RBTS [60]. With a YPL of 2850 MW and a power factor of 0.2

at all its buses, the system encompasses 32 generating units ranging from 12 to 400 MW,

resulting in a total generation capacity of 3405 MW. Additionally, the system contains

voltage regulating units that incorporate a synchronous condenser, a reactor, and auto-

transformers. It also comprises 38 lines that interconnect the buses. The system data,

encompassing generator data, bus specifications, network parameters, and outage data,

can be found in Appendix C. The system’s grid topology is depicted in Figure 5.2.
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5.1 Test systems

Figure 5.2: Single line diagram of the IEEE RTS. Adapted from [60] with MS Visio.

5.1.2.1 System Specific Parameters

The parameters for the IEEE RTS state filtering are presented in Table 5.2. The param-

eters are identical to [22], as the same code is applied.
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Table 5.2: Filtering criteria from [22] and [31] applied to the IEEE RTS for standard

HLII assessment.

Test System
Generation Capacity

to Load

Max lines

on outage

Max generators

on outage
Duplicate filter

IEEE RTS 1.1 x total load 1 5 Yes

5.2 Load Model

The case studies employ an hourly load model, which is further elaborated in Section

2.2. The load data, derived from [60], are available in Appendix A. The HPL at any

given time, t, can be calculated by applying Equation (5.1). The load model incorporates

seasonal, weekly, daily and hourly fluctuations [60]. It is important to note that adopting

this approach to estimate the load for hourly increments produces a total of 8736 hours

in a year (52 ·7 ·24). The variables Lweekly,t is represented as a percentage of YPL, Ldaily,t

as a percentage of Lweekly,t, and Lhourly,t as a percentage of Ldaily,t.

HPLt = Y PL · Lweekly,t · Ldaily,t · Lhourly,t (5.1)

5.3 NTNU Server Farm

The computational time performance is closely tied to the specific hardware that is used.

In order to reduce the computational time, the Python code is executed using the remote

desktop for IEL through the NTNU software farm. The computer that is used has 2

processors, Intel Xeon CPU E5-2690 v4 2.60GHz, and has a total of 28 cores. Make note

that this number varies with the number of users connected to the computer. It does

however make a large di↵erence, as the cores of the authors laptop is 4 cores.
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5.4 HLII Case Studies

To ensure the accuracy of the implementation of the DC-PSCOPF contingency solver, it

is crucial to conduct a testing of the Python-based standard HLII assessment code. This

step is critical to avoid any potential errors that may arise during the implementation

process. Given that this thesis follows the methodological framework proposed by [22] and

[31], it is necessary to compare the results. Even though [22] is already a Python-based

approach, this thesis has modelled the optimisation with Pyomo, which is a di↵erent

approach than in the work conducted in [22]. Also, the OPF formulation in this thesis

is the DCOPF, while [22] utilised the ACOPF. Thus, it is deemed necessary to compare

this approach with the standard HLII assessment as well. As the models are di↵erent,

some deviation is expected. However, it is expected to observe a similar trend in the

curtailment of loads at specific buses in the test systems RBTS and IEEE RTS.

All simulations have been done following the MCS State Sampling method explained in

Section 3.1.2. The simulation period was tested for a period of 500 years. Dealing with

high computational time was a problem in the testing of code. It is however a necessity

as to achieve a satisfactory level of convergence for the MCS.

The standard HLII case studies will be presented in the following order:

• Case 1: Standard HLII assessment using the RBTS. The results from the simula-

tions are presented, as well as a comparison with the benchmark results in [22].

• Case 2: Standard HLII assessment using the IEEE RTS. The results from the

simulations are presented, as well as a comparison with the benchmark results in

[22].

• Case 3: HLII assessment using the DC-PSCOPF software implemented on RBTS.

Results are presented, and compared.

• Case 4: HLII assessment using the DC-PSCOPF software implemented on IEEE

RTS. Results are presented, and compared.

After all the individual cases are presented, some discussion on the results will follow.
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5.4 HLII Case Studies

This includes a comparison of the most important features from each case, such as the

simulation times and total system indices.

In the tables presented for CoVs, nan stands for not a number. This means that there

were no cases of the given parameter.

5.4.1 Case 1: RBTS

The standard HLII assessment using State Sampling method on the RBTS is executed

for 500 simulation years. The state sampling had a computational time of 11.437 seconds.

The solving of states took 46.06 minutes, while the calculation of reliability indices took

0.306 seconds. The reliability indices for the simulation are found in Table 5.3 The CoVs

are found in Table 5.4.

The highest curtailment is at Bus 6. This is an expected result, as it does not follow

the N-1 criterion; meaning, bus isolation occurs more often for this bus. Due to the low

curtailment cost in the optimisation problem definition, there is high curtailment at bus

3. As was to be expected, buses with no loads have no occurrence of any loss of load.

Table 5.3: HLII State Sampling of the RBTS reliability indices, with 500 simulation

years.

Bus
LOLE

[hours/year]

LOL SD

[hours/year]
LOLP

EENS

[MWh/year]

ENS SD

[MWh/year]

2 0.000000 0.000000 0.000000 0.000000 0.000000

3 1.180000 1.080555 0.000135 9.567378 12.797377

4 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.008000 0.089084 0.000001 0.106719 1.212348

6 9.894000 3.110428 0.001133 121.955647 39.618642

Total system 11.074000 3.328742 0.001268 131.629744 41.960704

100



5.4 HLII Case Studies

Table 5.4: Coe�cient of Variation for RBTS 500 year simulation

Bus # LOLE EENS

1 nan nan

2 nan nan

3 0.0410 0.0598

4 nan nan

5 0.4980 0.5080

6 0.0141 0.0145

Tot 0.0134 0.0143

The results are compared to those of the RBTS HLII state sampling of [22]. Table

5.5 shows the comparison of indices from [22]; note that the ACOPF and a di↵erent

optimisation tool was utilised for the calculation of indices. It can be seen that the

reliability indices follow a similar trend. An observation of interest is that an overall

increase can be seen in values of the indices in [22]. This is coherent with the ACOPF

being a tighter constrained problem, resulting in an increased value of the optimisation

problem, and thus more curtailed load.

Table 5.5: Comparison of reliability indices from [22], simulation period of 500 years.

Bus
LOLE

[hours/year]

LOLE[22]

[hours/year]
LOLP LOLP[22]

EENS

[MWh/year]

EENS[22]

[MWh/year]

1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

3 1.180000 1.948 0.000135 0.000223 9.567378 17.5218

4 0.000000 0.002 0.000000 0.000000 0.000000 0.0001

5 0.008000 0.012 0.000001 0.000001 0.106719 0.0860

6 9.894000 10.822 0.001133 0.001239 121.955647 124.9821

Total system 11.074000 12.552 0.001268 0.001437 131.629744 142.5891
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5.4.2 IEEE RTS

The MCS State Sampling method was executed for 500 simulation years. The sampling

of states was calculated in 79.7 seconds. The solving of states had a computational time

of 113.67 minutes, while the indices were calculated in 0.588 seconds. The computational

time for the same system in [22] had a simulation time of 55 minutes, in assessing the

ACOPF. The execution of the DCOPF formulation in Pyomo is about twice the size.

The system CoV (EENS) is 1.63%, while a CoV in [22] of 1.47% was achieved. In other

words, the same level of convergence is reached. The large curtailment at bus 7 is due to

the N-1 criterion not being fulfilled, and at bus 6 is due to the low curtailment cost.

The reliability indices from the code are presented in Table 5.6. It is observed that the

largest EENS values are at bus 7, bus 9, bus 14 and bus 19. This trends similarly to the

EENS indices of [22]. There is much curtailment at bus 7 due to the N-1 criterion not

being satisfied, as there is only one transmission line connecting the bus to the rest of

the system, which can be seen in Figure 5.2. The curtailment at bus 9 is correlated to

its low curtailment cost.
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Table 5.6: HLII State Sampling of the RTS reliability indices, with 500 simulation years

Bus
LOLE

[hours/year]

LOL SD

[hours/year]
LOLP

EENS

[MWh/year]

ENS SD

[MWh/year]

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000 0.000000

4 0.002000 0.044677 0.000000 0.093174 2.081348

5 0.002000 0.044677 0.000000 0.075056 1.676628

6 0.010000 0.099499 0.000001 0.846942 8.707685

7 2.960000 1.648757 0.000339 227.680624 130.626990

8 0.002000 0.044677 0.000000 0.202413 4.521572

9 9.424000 2.892788 0.001079 862.232041 314.446521

10 0.124000 0.347310 0.000014 7.511028 28.462876

11 0.000000 0.000000 0.000000 0.000000 0.000000

12 0.000000 0.000000 0.000000 0.000000 0.000000

13 0.000000 0.000000 0.000000 0.000000 0.000000

14 2.896000 1.647175 0.000332 257.673730 179.438266

15 0.000000 0.000000 0.000000 0.000000 0.000000

16 0.000000 0.000000 0.000000 0.000000 0.000000

17 0.000000 0.000000 0.000000 0.000000 0.000000

18 0.008000 0.089084 0.000001 0.463576 5.575295

19 0.636000 0.755979 0.000073 51.147785 75.508030

20 0.000000 0.000000 0.000000 0.000000 0.000000

21 0.000000 0.000000 0.000000 0.000000 0.000000

22 0.000000 0.000000 0.000000 0.000000 0.000000

23 0.000000 0.000000 0.000000 0.000000 0.000000

24 0.000000 0.000000 0.000000 0.000000 0.000000

Total system 12.392000 3.297019 0.001418 1407.926369 512.620993
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Table 5.7 shows the CoVs for the 500 year simulation period for the IEEE RTS.

Table 5.7: Coe�cient of Variation for the IEEE RTS DCOPF formulation

Bus # LOLE EENS

1 nan nan

2 nan nan

3 nan nan

4 0.9990 0.9990

5 0.9990 0.9990

6 0.4450 0.4598

7 0.0249 0.0257

8 0.9990 0.9990

9 0.0137 0.0163

10 0.1253 0.1695

11 nan nan

12 nan nan

13 nan nan

14 0.0254 0.0311

15 nan nan

16 nan nan

17 nan nan

18 0.4980 0.5379

19 0.0532 0.0660

20 nan nan

21 nan nan

22 nan nan

23 nan nan

24 nan nan

Tot 0.0119 0.0163

Table 5.8 shows the comparison of indices from [22]. It is observed that the system indices
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follow a similar trend. Even though the procedure in [22] uses ACOPF, and this thesis

uses DCOPF, the results from [22] are used as a reference point. Given this di↵erence, the

result is as expected. The DCOPF is a relaxed version of the ACOPF, so it is expected a

lower objective value in the optimisation problem, which is to minimise load curtailment.

Overall, it can be seen lower values for the indices in the DCOPF formulation.
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Table 5.8: HLII State Sampling of the RTS reliability indices, with 500 simulation years

Bus LOLE LOLE[22] LOLP LOLP[22] EENS EENS[22]

1 0.000000 0.5600 0.000000 0.000064 0 0.5282

2 0.000000 0.4440 0.000000 0.000051 0 0.2649

3 0.000000 0.4220 0.000000 0.000048 0 0.7519

4 0.002000 0.3840 0.000000 0.000044 0.093174 0.2418

5 0.002000 0.4040 0.000000 0.000046 0.075056 0.1533

6 0.010000 3.3040 0.000001 0.000378 0.846942 41.6690

7 2.960000 3.3560 0.000339 0.000384 227.680624 225.2893

8 0.002000 0.3980 0.000000 0.000046 0.202413 0.6885

9 9.424000 12.2920 0.001079 0.001407 862.232041 1071.3724

10 0.124000 0.5400 0.000014 0.000062 7.511028 9.9534

11 0.000000 0.0000 0.000000 0 0 0

12 0.000000 0.0000 0.000000 0 0 0

13 0.000000 0.4040 0.000000 0.000046 0 0.0025

14 2.896000 4.0580 0.000332 0.000465 257.673730 314.3406

15 0.000000 0.4300 0.000000 0.000049 0 0.0092

16 0.000000 0.3860 0.000000 0.000044 0 0.0057

17 0.000000 0.0000 0.000000 0 0 0

18 0.008000 0.4660 0.000001 0.000053 0.463576 1.1076

19 0.636000 1.2580 0.000073 0.000144 51.147785 64.5627

20 0.000000 0.4040 0.000000 0.000046 0 0.0452

21 0.000000 0.0000 0.000000 0 0 0

22 0.000000 0.0000 0.000000 0 0 0

23 0.000000 0.0000 0.000000 0 0 0

24 0.000000 0.0000 0.000000 0 0 0

Total system 12.392000 18.0540 0.001418 0.002067 1407.926369 1730.9864
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5.5 DC-PSCOPF HLII Case Studies

The DC-PSCOPF HLII adequacy assessment was executed for 500 simulation years.

The states were sampled with MCS State Sampling method, and duplicated states were

filtered out using the criteria described in Section 4.3. As the optimisation problem for

DC-PSCOPF has to consider several more optimisation problems than the DCOPF, it is

expected quite much longer runtime for the code.

A test was done for 1 year, where all components were assessed, performing a N-1 analysis.

This resulted in a simulation time of 7 minutes for the RBTS. The same was tested for

IEEE RTS, which resulted in a simulation time of around 13 minutes. Scaling this up

to 500 years resulted in too high computation time ( 58 hours for RBTS, 108 hours for

IEEE RTS).

These are heavy computations to perform, so it was rather tested for some select com-

ponents, and how their outage would a↵ect the reliability indices for a simulation period

of 500 years.

It is important again to achieve the full simulation run of 500 years, in order to achieve

convergence for the MCS State Sampling method.

5.5.1 RBTS - Largest generator outage and FOR line

For this scenario, it was tested the DC-PSCOPF for the outage of the largest generator,

and the line with the largest FOR value. This makes this scenario not a complete N-1

study. The sampling of states was done in 14.792 seconds. The solving of states was

done in 80.415 minutes, while the indices were calculated in 0.543 seconds. The CoV was

found to be 1.4%. Table 5.9 illustrates the reliability indices calculated.
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Table 5.9: HLII State Sampling of the RBTS reliability indices, with 500 simulation

years.

Bus
LOLE

[hours/year]

LOL SD

[hours/year]
LOLP

EENS

[MWh/year]

ENS SD

[MWh/year]

2 0.000000 0.000000 0.000000 0.000000 0.000000

3 5.652000 2.360275 0.000647 135.079762 69.321787

4 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.012000 0.108885 0.000001 0.140799 1.300975

6 9.824000 3.165600 0.001125 120.045144 39.514351

Total system 15.460000 3.963887 0.001770 255.265705 79.659806

Table 5.10 shows the CoVs for the 500 year simulation period for the RBTS DC-PSCOPF

simulation.

Table 5.10: Coe�cient of Variation for the RBTS reliability indices, 500 year simulation

DC-PSCOPF

Bus LOLE EENS

1 nan nan

2 nan nan

3 0.0187 0.0230

4 nan nan

5 0.4058 0.4132

6 0.0144 0.0147

Tot 0.0115 0.0140

5.5.2 IEEE RTS - Largest generator outage and FOR line

For this scenario, it was tested the DC-PSCOPF for the outage of the largest generator,

and the line with the largest FOR value. This makes this scenario not a complete N-1

study.
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The MCS State Sampling was executed for 500 years. The sampling of states was done

in 66.63 seconds. The solving of states took 188.879 minutes, and the indices calculation

took 2.052 seconds. The system CoV was found to be 0.68%.

The results overall prove similar trends to that of the DCOPF conducted in the previous

section. The main di↵erence is an overall increase in the value of the indices. This makes

sense, as it is a more constrained optimisation problem, which leads to an increase in the

objective function (more load curtailed). Table 5.11 illustrates the indices calculated.
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Table 5.11: HLII State Sampling of the RTS reliability indices, with 500 simulation

years for DC-PSCOPF.

Bus
LOLE

[hours/year]

LOL SD

[hours/year]
LOLP

EENS

[MWh/year]

ENS SD

[MWh/year]

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000

3 0.002000 0.044677 0.000000 0.218412 4.878958

4 0.002000 0.044677 0.000000 0.071572 1.598804

5 0.002000 0.044677 0.000000 0.082236 1.837011

6 0.002000 0.044677 0.000000 0.183120 4.090598

7 2.754000 1.679727 0.000315 214.071762 132.882183

8 0.002000 0.044677 0.000000 0.139094 3.107125

9 52.344000 7.295044 0.005992 7527.096179 1072.879536

10 3.328000 1.814502 0.000381 273.520050 177.139886

11 0.000000 0.000000 0.000000 0.000000 0.000000

12 0.000000 0.000000 0.000000 0.000000 0.000000

13 0.000000 0.000000 0.000000 0.000000 0.000000

14 45.082000 6.827538 0.005160 4737.578030 821.888888

15 0.000000 0.000000 0.000000 0.000000 0.000000

16 0.000000 0.000000 0.000000 0.000000 0.000000

17 0.000000 0.000000 0.000000 0.000000 0.000000

18 0.536000 0.710425 0.000061 39.864205 75.462017

19 14.276000 3.806287 0.001634 1238.451285 384.739585

20 0.004000 0.063119 0.000000 0.375051 6.140540

21 0.000000 0.000000 0.000000 0.000000 0.000000

22 0.000000 0.000000 0.000000 0.000000 0.000000

23 0.000000 0.000000 0.000000 0.000000 0.000000

24 0.000000 0.000000 0.000000 0.000000 0.000000

Total system 55.078000 7.483844 0.006305 14031.650997 2126.779525
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Table 5.12 shows the CoVs for the 500 year simulation period for the IEEE RTS.

Table 5.12: Coe�cient of Variation for the IEEE RTS DCOPF formulation

Bus LOLE EENS

1 nan nan

2 nan nan

3 0.9990 0.9990

4 0.9990 0.9990

5 0.9990 0.9990

6 0.9990 0.9990

7 0.0273 0.0278

8 0.9990 0.9990

9 0.0062 0.0064

10 0.0244 0.0290

11 nan nan

12 nan nan

13 nan nan

14 0.0068 0.0078

15 nan nan

16 nan nan

17 nan nan

18 0.0593 0.0847

19 0.0119 0.0139

20 0.7057 0.7322

21 nan nan

22 nan nan

23 nan nan

24 nan nan

Tot 0.0061 0.0068
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5.5.3 RBTS - 2 largest generators, and 3 largest FOR lines

In this scenario, the DC-PSCOPF was tested for the outage of the two largest generators,

and 3 lines with the largest FOR values. This results in a total of 5 optimisation problems

that are checked for the given contingency state. For comparison, this would only be one

optimisation problem for the DCOPF. Naturally, this leads to larger computational time

- but a closer version to the N-1 analysis. For this specific case, the sampling of states was

15.182 seconds, the solving of states was 239.143 minutes, and indices were calculated in

0.527 seconds. The system CoV was found to be 1.34%.

The results provide a similar trend to that shown in Section 5.5.1. The main di↵erence

is an overall increase in values of the reliability indices. The results can be seen in Table

5.13.

Table 5.13: HLII State Sampling of the RBTS reliability indices, with 500 simulation

years. Outage of 2 generators and 3 lines

Bus
LOLE

[hours/year]

LOL SD

[hours/year]
LOLP

EENS

[MWh/year]

ENS SD

[MWh/year]

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000

3 6.438000 2.475915 0.000737 136.946972 67.481222

4 0.000000 0.000000 0.000000 0.000000 0.000000

5 0.010000 0.099499 0.000001 0.114809 1.162594

6 9.980000 3.131709 0.001142 122.954998 39.205534

Total system 16.404000 4.012578 0.001878 260.016780 78.165858

Table 5.14 shows the CoVs for the 500 year simulation period for this scenario.
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5.5 DC-PSCOPF HLII Case Studies

Table 5.14: Coe�cient of Variation for the RBTS reliability indices, 500 year simulation

DC-PSCOPF

Bus LOLE EENS

1 nan nan

2 nan nan

3 0.0172 0.0220

4 nan nan

5 0.4450 0.4529

6 0.0140 0.0143

Tot 0.0109 0.0134

5.5.4 IEEE RTS - 2 largest generators, and 3 largest FOR lines

In this scenario, the DC-PSCOPF was tested for the outage of the 2 largest generators

and the two largest FOR values for the IEEE RTS. The sampling of states was done

in 72.024 seconds. The solving of states was done in 566.28 minutes, while the indices

calculation was done in 1.968 seconds. The system CoV was found to be 0.63%, which

was a satisfactory level of convergence.

The results are presented in Table 5.15.
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Table 5.15: HLII State Sampling of the RTS reliability indices, with 500 simulation

years for DC-PSCOPF, 2 generators and 3 lines.

Bus
LOLE

[hours/year]

LOL SD

[hours/year]
LOLP

EENS

[MWh/year]

ENS SD

[MWh/year]

1 0.000000 0.000000 0.000000 0.000000 0.000000

2 0.000000 0.000000 0.000000 0.000000 0.000000

3 0.000000 0.000000 0.000000 0.000000 0.000000

4 0.002000 0.044677 0.000000 0.112807 2.519928

5 0.000000 0.000000 0.000000 0.000000 0.000000

6 0.002000 0.044677 0.000000 0.198554 4.435364

7 3.180000 1.765106 0.000364 245.133395 139.669458

8 0.006000 0.077227 0.000001 0.596842 8.044533

9 51.962000 6.980871 0.005948 7485.191257 996.810623

10 3.312000 1.834845 0.000379 263.243959 170.321296

11 0.000000 0.000000 0.000000 0.000000 0.000000

12 0.000000 0.000000 0.000000 0.000000 0.000000

13 0.000000 0.000000 0.000000 0.000000 0.000000

14 44.784000 6.255345 0.005126 4687.939930 747.654370

15 0.000000 0.000000 0.000000 0.000000 0.000000

16 0.000000 0.000000 0.000000 0.000000 0.000000

17 0.000000 0.000000 0.000000 0.000000 0.000000

18 0.474000 0.673293 0.000054 39.227005 73.778084

19 14.062000 3.629622 0.001610 1226.690792 381.138893

20 0.008000 0.089084 0.000001 0.188175 3.162414

21 0.000000 0.000000 0.000000 0.000000 0.000000

22 0.000000 0.000000 0.000000 0.000000 0.000000

23 0.000000 0.000000 0.000000 0.000000 0.000000

24 0.000000 0.000000 0.000000 0.000000 0.000000

Total system 55.114000 7.101057 0.006309 13948.522716 1959.961165
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Table 5.16 shows the CoVs for the 500 year simulation period for the IEEE RTS.

Table 5.16: Coe�cient of Variation for the IEEE RTS DCOPF formulation

Bus LOLE EENS

1 nan nan

2 nan nan

3 0.9990 0.9990

4 0.9990 0.9990

5 0.9990 0.9990

6 0.9990 0.9990

7 0.0248 0.0255

8 0.5756 0.6028

9 0.0060 0.0060

10 0.0248 0.0289

11 nan nan

12 nan nan

13 nan nan

14 0.0062 0.0071

15 nan nan

16 nan nan

17 nan nan

18 0.0635 0.0841

19 0.0115 0.0139

20 0.4980 0.7516

21 nan nan

22 nan nan

23 nan nan

24 nan nan

Tot 0.0058 0.0063
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5.6 Summary and Discussion of Results

Table 5.17 illustrates the simulation times for the cases presented. For DC-PSCOPF case

1 refers to Section 5.5.1 and 5.5.2, and DC-PSCOPF case 2 refers to Section 5.5.3 and

5.5.4.

Table 5.17: Simulation times for 500 year MCS.

DCOPF DC-PSCOPF, case 1 DC-PSCOPF, case 2

RBTS 00:46:15 01:20:37 03:59:24

IEEE RTS 01:55:05 03:10:01 09:27:31
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6 Conclusions and Further Work

In the concluding chapter of this Master’s thesis, the key findings and insights gained

from the research journey of the author of the thesis are presented. This chapter serves

as a reflection on the process of working on the thesis, on the main findings of the thesis,

and also an exploration for future work.

The journey of working on this thesis has been both challenging and rewarding. It in-

volved reviewing literature, identifying suitable problem statements, model development,

and analysis. Ambitious problem statements were initially devised, and had to be toned

down in scale and scope subsequently, keeping in mind the constraints on time and fea-

sibility of execution.

Writing the thesis has been a significant learning experience - all from improving commu-

nication with supervisors, communicating complex ideas in a simple yet e↵ective manner,

and developing a deeper pedagogical understanding of the topics of optimal power flow

and power system reliability.

The contributions of this thesis have hopefully succeeded in providing valuable insights

into the application of optimal power flow in the assessment of power system reliability.

While the work conducted has laid a foundation on the use of security constrained optimal

power flow in power system reliability, numerous opportunities remain unexplored. Some

of these ambitious targets that were not met could be seen in Figure D.1.

In the following subsections, the main conclusions of this thesis work are presented, and

then some proposals for further work on continuing the work carried out in this thesis

are presented.

6.1 Conclusions

The purpose of this thesis was to further develop the in-house PSR adequacy assessment

software tools at the Department of Electric Energy (NTNU), to incorporate the DC-

PSCOPF in the HLII adequacy assessment. In the thesis, the MCS State Sampling
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method [25] and Python software codes developed by [22], have been used as a foundation

and stepping-stone for further development. The thesis adapted the DCOPF approach

of [31] to the optimisation framework of Pyomo [54][55] in Python, in order to conduct

HLII adequacy assessment. The DCOPF formulation was extended to the DC-PSCOPF.

As a result, two in-house Python scripts were developed. One for the DCOPF HLII

assessment, and one for the DC-PSCOPF HLII assessment.

By building on the work of [22], this thesis aimed to expand the foundation for continued

work using Python in PSR studies, by integrating the use of the Pyomo framework. The

aim has been to expand the foundation with respect to the OPF assessment within PSR

adequacy assessment. Of emphasis in this thesis has been the presentation of the proposed

methodology in a transparent manner. In order to achieve this, the algorithmic approach

was presented in a detailed manner, allowing for replication of results and opportunity

to extend the work.

The adaptation of the DC-based methodological approach of [31] was found to be suc-

cessful when applied to the RBTS and the IEEE RTS. This was concluded through the

observed similar trends of the main reliability indices and CoVs of [22], which adapted

the AC-based methodological approach of [31]. The deviation in the indices is explained

by the di↵erent OPF formulations. The thesis of [22] used an AC-based approach, while

this thesis conducted a DC-based approach; even though these theses use di↵erent for-

mulations, the results show correlation. The indices of [22] showed overall greater values

than the indices found in this thesis. This correlates well as the DCOPF is a linearized

version of the ACOPF.

It will be necessary to conduct a verification of the implemented DC-PSCOPF in order to

ensure its accuracy and reliability as a tool to be used in the PSR adequacy assessment.

The methodology utilised yielded interesting results, with the overall indices indicating

higher values compared to those obtained from the DCOPF. This is expected, as the

DC-PSCOPF imposes tighter constraints, resulting in a more constrained solution than

the DCOPF.
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6.2 Further Work

Throughout the journey of this thesis work, several aspects and ideas that were initially

considered were not implemented or did not yield desired outcomes. However, these

discoveries have opened up a myriad of possibilities for the natural continuation and

exploration of the thesis work. The unexplored avenues discovered during the thesis

work, which will allow for potential advancements in the field of PSR are discussed here.

Figure D.1 illustrates some possible avenues which could be explored.

The first potential avenue involves developing diverse approaches for the MCS, such as

the State Duration approach and the State Transition approach, explained in Section

2.5.3 and Section 2.5.4, respectively. These are sequential MCS methods, which make it

possible to derive frequency based indices [25].

It is both possible and, perhaps, essential to verify the developed DC-PSCOPF method.

The developed method has not been compared with any other methods, as no comparable

results have been found in the literature. This process may involve testing, and validation

against known benchmark results of similar developed methods.

Another interesting avenue is to implement the CSCOPF as described in Section 2.8.1,

for example using Benders Decomposition. As argued, this approach holds the potential

to provide more accurate results compared to the PSCOPF implemented in this thesis.

It could also reduce the computational e↵orts; only analyzing the contingencies that

result in violation of constraints, instead of having to preemptively select contingencies

for analysis.

It is proposed to expand the model to an ACOPF formulation, which considers more vari-

ables in the power system, such as voltage angles and line losses. Moreover, the ACOPF

can be extended to the AC-PSCOPF framework, incorporating security constraints as

done in this thesis for the DC-PSCOPF. This progression will enhance the precision in

the optimisation model. For even further progress, even an AC-based CSCOPF method

could be implemented.

To mitigate the issue of long simulation times in the Python script, optimising the model

is crucial. This can for example be done through reformulations of the model, or using
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other approaches in the coding structure.
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Appendices

Appendices

A Load Data

Table A.1: Weekly peak load in percent of annual peak [60].

Week Peak load [%] Week Peak load [%]

1 86.2 27 75.5

2 90.0 28 81.6

3 87.8 29 80.1

4 83.4 30 88.0

5 88.0 31 72.2

6 84.1 32 77.6

7 83.2 33 80.0

8 80.6 34 72.9

9 74.0 35 72.6

10 73.7 36 70.5

11 71.5 37 78.0

12 72.7 38 69.5

13 70.4 39 72.4

14 75.0 40 72.4

15 72.1 41 74.3

16 80.0 42 74.4

17 75.4 43 80.0

18 83.7 44 88.1

19 87.0 45 88.5

20 88.0 46 90.9

21 85.6 47 94.0

22 81.1 48 89.0

23 90.0 49 94.2

24 88.7 50 97.0

25 89.6 51 100.0

26 86.1 52 95.2
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Table A.2: Daily peak load in percent of weekly peak [60].

Day Peak load [%]

Monday 93

Tuesday 100

Wednesday 98

Thursday 96

Friday 94

Saturday 77

Sunday 75
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Table A.3: Hourly peak load in percent of daily peak [60].

Winter weeks Summer weeks Spring/Fall Weeks

1-8 & 44-52 18-30 9-17 & 31-43

Hour Weekday Weekend Weekday Weekend Weekday Weekend

00-01 67 78 64 74 63 75

01-02 63 72 60 70 62 73

02-03 60 68 58 66 60 69

03-04 59 66 56 65 58 66

04-05 59 64 56 64 59 65

05-06 60 65 58 62 65 65

06-07 74 66 64 62 72 68

07-08 86 70 76 66 85 74

08-09 95 80 87 81 95 83

09-10 96 88 95 86 99 89

10-11 96 90 99 91 100 92

11-12 95 91 100 93 99 94

12-13 95 90 99 93 93 91

13-14 95 88 100 92 92 90

14-15 93 87 100 91 90 90

15-16 94 87 97 91 88 86

16-17 99 91 96 92 90 85

17-18 100 100 96 94 92 88

18-19 100 99 93 95 96 92

19-20 96 97 92 95 98 100

20-21 91 94 92 100 96 97

21-22 83 92 93 93 90 95

22-23 73 87 87 88 80 90

23-00 63 81 72 80 70 85

130



Appendices

B RBTS Data

Table B.1: The generator data for the RBTS [23].

Capacity [MW] Bus Qmin [MVar] Qmax [MVar] FOR

10 1 0 7 0.020

20 1 -7 12 0.025

40 1 -15 17 0.030

40 1 -15 17 0.030

5 2 0 5 0.010

5 2 0 5 0.010

20 2 -7 12 0.015

20 2 -7 12 0.015

20 2 -7 12 0.015

20 2 -7 12 0.015

40 2 -15 17 0.020

Table B.2: Bus specifications for the RBTS [23] including IEAR [61].

Bus Share of load Vmin [pu] Vmax [pu] IEAR [$/kWh] Priority

1 0 0.97 1.05 0 –

2 0.1081 0.97 1.05 9.6325 1

3 0.4595 0.97 1.05 4.3769 5

3 0.2162 0.97 1.05 8.0267 3

4 0.1081 0.97 1.05 8.6323 2

4 0.1081 0.97 1.05 5.5132 0
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Table B.3: Network parameters and outage data for the RBTS [23].

Line From To R [pu] X [pu] B/2 [pu] Current rating [pu] FOR

1 1 3 0.0342 0.18 0.0106 0.85 0.00171

2 2 4 0.1140 0.60 0.0352 0.71 0.00568

3 1 2 0.0912 0.48 0.0282 0.71 0.00455

4 3 4 0.0228 0.12 0.0071 0.71 0.00114

5 3 5 0.0228 0.12 0.0071 0.71 0.00114

6 1 3 0.0342 0.18 0.0106 0.85 0.00171

7 2 4 0.1140 0.60 0.0352 0.71 0.00568

8 4 5 0.0228 0.12 0.0071 0.71 0.00114

9 5 6 0.0228 0.12 0.0071 0.71 0.00114
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C IEEE RTS Data

Table C.1: Generator data for the IEEE RTS [60].

Capacity [MW] Bus Qmin [MVar] Qmax [MVar] FOR

12 15 0 7 0.02

12 15 0 7 0.02

12 15 0 7 0.02

12 15 0 7 0.02

12 15 0 7 0.02

20 1 0 10 0.1

20 1 0 10 0.1

20 2 0 10 0.1

20 2 0 10 0.1

50 22 -10 16 0.01

50 22 -10 16 0.01

50 22 -10 16 0.01

50 22 -10 16 0.01

50 22 -10 16 0.01

50 22 -10 16 0.01

76 1 -25 30 0.02

76 1 -25 30 0.02

76 2 -25 30 0.02

76 2 -25 30 0.02

100 7 0 60 0.04

100 7 0 60 0.04

100 7 0 60 0.04

155 15 -50 80 0.04

155 16 -50 80 0.04

155 23 -50 80 0.04

155 23 -50 80 0.04

197 13 0 80 0.05

197 13 0 80 0.05

197 13 0 80 0.05

350 23 -25 150 0.08

400 18 -50 200 0.12

400 21 -50 200 0.12

0 14 -50 200 0

0 6 -100 0 0
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Table C.2: Bus specifications for the IEEE RTS [60] including IEAR [61].

Bus Share of load Vmin [pu] Vmax [pu] IEAR [$/kWh] Priority

1 0.038 0.97 1.05 8.9815 3

2 0.034 0.97 1.05 7.3606 5

3 0.063 0.97 1.05 5.8990 11

4 0.026 0.97 1.05 9.5992 1

5 0.025 0.97 1.05 9.2323 2

6 0.048 0.97 1.05 6.5238 9

7 0.044 0.97 1.05 7.0291 8

8 0.060 0.97 1.05 7.7742 4

9 0.061 0.97 1.05 3.6623 17

10 0.068 0.97 1.05 5.1940 14

11 0 0.97 1.05 0 –

12 0 0.97 1.05 0 –

13 0.093 0.97 1.05 7.2813 6

14 0.068 0.97 1.05 4.3717 16

15 0.111 0.97 1.05 5.9744 10

16 0.035 0.97 1.05 7.2305 7

17 0 0.97 1.05 0 –

18 0.117 0.97 1.05 5.6149 13

19 0.064 0.97 1.05 4.5430 15

20 0.045 0.97 1.05 5.6836 12

21 0 0.97 1.05 0 –

22 0 0.97 1.05 0 –

23 0 0.97 1.05 0 –

24 0 0.97 1.05 0 –
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Table C.3: Network parameters and outage data for the IEEE RTS [60].

Line From To R [pu] X [pu] B/2 [pu] Current rating [pu] FOR

1 1 2 0.0026 0.0139 0.23055 1.93 0.000438164

2 1 3 0.0546 0.2112 0.0286 2.08 0.000581853

3 1 5 0.0218 0.0845 0.01145 2.08 0.00037657

4 2 4 0.0328 0.1267 0.01715 2.08 0.000445007

5 2 6 0.0497 0.1920 0.0260 2.08 0.000547645

6 3 9 0.0308 0.1190 0.0161 2.08 0.000433602

7 3 24 0.0023 0.0839 0 5.1 0.001750356

8 4 9 0.0268 0.1037 0.01405 2.08 0.00041079

9 5 10 0.0228 0.0883 0.01195 2.08 0.000387977

10 6 10 0.0139 0.0605 1.2295 1.93 0.001316757

11 7 8 0.0159 0.0614 0.0083 2.08 0.000342349

12 8 9 0.0427 0.1651 0.02235 2.08 0.000502031

13 8 10 0.0427 0.1651 0.02235 2.08 0.000502031

14 9 11 0.0023 0.0839 0 5.1 0.001750356

15 9 12 0.0023 0.0839 0 5.1 0.001750356

16 10 11 0.0023 0.0839 0 5.1 0.001750356

17 10 12 0.0023 0.0839 0 5.1 0.001750356

18 11 13 0.0061 0.0476 0.04995 6 0.000502031

19 11 14 0.0054 0.0418 0.04395 6 0.000489486

20 12 13 0.0061 0.0476 0.04995 6 0.000502031

21 12 23 0.0124 0.0966 0.1015 6 0.000652542

22 13 23 0.0111 0.0865 0.0909 6 0.000614918

23 14 16 0.0050 0.0389 0.0409 6 0.000476941

24 14 16 0.0022 0.0173 0.0182 6 0.000414212

25 15 21 0.0063 0.0490 0.0515 6 0.000514575

26 15 21 0.0063 0.0490 0.0515 6 0.000514575

27 15 24 0.0067 0.0519 0.05455 6 0.000514575

28 16 17 0.0033 0.0259 0.02725 6 0.000439305

29 16 19 0.0030 0.0231 0.02425 6 0.000426758

30 17 18 0.0018 0.0144 0.01515 6 0.000401665

31 17 22 0.0135 0.1053 0.1106 6 0.000677623

32 18 21 0.0033 0.0259 0.02725 6 0.000439305

33 18 21 0.0033 0.0259 0.02725 6 0.000439305

34 19 20 0.0051 0.0396 0.04165 6 0.000476941

35 19 20 0.0051 0.0396 0.04165 6 0.000476941

36 20 23 0.0028 0.0216 0.02275 6 0.000426758

37 20 23 0.0028 0.0216 0.02275 6 0.000426758

38 21 22 0.0087 0.0678 0.0712 6 0.000564749
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D Original Flowchart Approach

Figure D.1: Complete algorithmic approach: Included selection of methods ACOPF,

AC-SCOPF, DCOPF, DC-SCOPF and MCS methods. SS: State Sampling Approach,

SDS: State Duration Samplingm, STS: State Transition Sampling.
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E Software Codes

(Restricted Public Access)
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