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Abstract

Improved agility for Earth Observation satellites reduces the time spent on maneuvers,
increasing the time available for observations. The aim of this thesis is to study the
feasibility of utilizing Nonlinear Model Predictive Control (NMPC) for agile rest-to-rest
satellite slews with consideration of flexible dynamics. Concerns related to the choice of
Reaction Wheels (RWs) as actuators are also considered, including desaturation while
slewing and avoidance of RW speeds that excite appendage vibrations. The performance
of the control scheme is evaluated with regard to its ability to perform agile slews with-
out exciting long-lasting vibrations and, to some extent, computational complexity. The
flexible dynamics of the satellite are modeled using the Assumed Modes Method with
Lagrange’s equations. As NMPC prediction model, we utilize a single virtual state har-
monic oscillator and corresponding Extended Kalman Filter. The thesis shows that the
implemented control scheme performs well if it is appropriately tailored to the flexible
dynamics at hand. The Nonlinear Model Predictive Control (NMPC) control scheme has
the potential to increase the agility of flexible satellites.
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Chapter 1

Introduction

1.1 Motivation

According to the 2021 European Union Agency for the Space Programme Market Re-
port, Earth Observation (EO) data and service revenues are set to double from =C2.8B
to =C5.5B within the coming decade [2]. This growing market is driving advancements
in the design of EO satellites in order to improve both operational efficiency and data
quality [3].

Recent advances in material science allow for satellite designs to trade off the rigid-
ity of structures such as solar panels and antennas for a significantly decreased mass
[4]. Advantages to this trade-off include lower energy consumption and reduced launch
costs [5]. This trend poses a challenge for EO satellites as exciting vibrations in flexible
structures can be detrimental to pointing accuracy. The simplest solution to this prob-
lem is to maneuver, or slew, the satellite slowly to avoid exciting vibration. But since
long slew times generally reduce observational uptime, there is instead demand for a
certain level of agility [4]. The ambition of this thesis is to contribute to the ongoing re-
search conducted by SENER Aeroespacial on the potential of optimal control techniques
to enhance EO satellite agility.

1.2 Related work

The spacecraft attitude control problem has been extensively studied. Solutions have
historically involved control techniques such as Proportional-Derivative (PD), Linear-
Quadratic (LQ), Lyapunov design, H∞or Sliding Mode Control (SMC) [6]. This section
provides a brief overview of attitude control solutions considering flexible dynamics and
instances of optimization-based techniques such as Model Predictive Control (MPC) in
attitude control.

H∞control techniques involve formulating the control problem as an optimization
problem over the space H∞(all analytic and bounded functions in the right-half com-
plex plane) and minimizing the H∞norm [5]. The resulting controller is typically rel-
atively robust and has satisfactory disturbance attenuation [7]. These qualities have
made H∞control a common control strategy in attitude control with flexible dynamics

1
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[5, 8–10]. However, H∞controllers are generally not considered to have fast conver-
gence properties compared to other control schemes [11]. Other techniques have been
applied, such as an adaptive PD + SMC approach in [12] and a nonlinear controller de-
signed through the introduction of virtual constraints in [13]. Also somewhat related to
the attitude control problem with flexible dynamics are efforts that attempt to directly
damp vibrations in flexible structures, such as with piezoelectrics in [14, 15] and with
shakers in [16].

Embedded and real-time optimization-based control offer an alternative to more tra-
ditional techniques and are ever-growing in popularity thanks to advances in computa-
tional technology [17]. By optimally exploiting satellite torque resources, optimization-
based control techniques could be vital in achieving improved satellite agility [18]. Fur-
thermore, the nature of optimization-based control, minimizing a pre-defined cost func-
tion, provides a flexible control scheme that can satisfy multiple objectives and system
constraints [19].

Perhaps the most well-known real-time optimization scheme is MPC, in which the
control input is determined by solving a numerical optimization problem at regular sam-
pling intervals. In Nonlinear Model Predictive Control (NMPC), an optimization problem
based on nonlinear system dynamics or constraints is generally more computationally
demanding. In recent literature, there are many examples of MPC in attitude control for
linear, linearized, and nonlinear attitude dynamics.

An early instance of NMPC applied to attitude control is that of [20], using a function-
space NMPC approach in which the optimization solution is not recomputed at ev-
ery sampling instant. In [21] and [22] a NMPC on the SO(3) manifold is developed
to avoid issues stemming from attitude representations with either singularities and
double-coverings. Robust MPC was addressed in [23] and [24]. The latter utilizes Tube-
Based MPC in which a "tube" of predicted system trajectories is considered to account
for uncertainty. In [25], NMPC was utilized for attitude control while considering singu-
larity avoidance of Control Moment Gyroscopes (CMGs). In [26–28] NMPC was applied
to the problem of spacecraft rendezvous and docking, in which both translational and
rotational motion must be considered.

In 2021 an article was published that compared a linear MPC scheme to the LQ Reg-
ulator for slews of flexible satellites about a single axis [29]. The study showed superior
performance for the MPC scheme but does have certain limitations. The MPC was de-
ployed with a sampling frequency much higher than that of the two modeled flexible
modes that were both included in the MPC prediction model. Furthermore, the MPC was
initialized using simulated modal amplitudes that are not directly measurable in a phys-
ical system. A 2022 study on linear MPC applied to attitude stabilization of a spacecraft
with a large flexible rotating payload addresses these limitations to a larger extent intro-
ducing a significant mismatch between control and simulation model [30]. Due to the
complex nature of the rotating flexible payload, the authors conclude the scheme to be
unsatisfactory when faced with uncertain inertia parameters for the rotating structure.
We note that this study did not specifically focus on slew maneuvers. Also worth not-
ing are promising results obtained on NMPC for highly flexible aircraft [31, 32], which
could provide an indication of the performance potential for slews of flexible satellites.
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1.3 Scope and aim

Based on the overview of previous work in Section 1.2, there is room for exploring the
attitude control problem for flexible satellites by means of NMPC. With the objective
of improved agility, we will focus on demonstrating the viability of NMPC in perform-
ing agile slews. The proposed idea is to utilize NMPC for slewing up to a certain level
of accuracy and subsequently transitioning to a more proven and conservative control
scheme for final stabilization and observation (such as H∞in [5, 8–10], possibly includ-
ing active vibration suppression as in [14–16]). Critical for this approach is the NMPC
ensuring that the flexible dynamics are not significantly excited by the end of the slew.
This prioritization was identified in conjunction with SENER Aeroespacial.

This thesis is limited to the design and demonstration of NMPC for agile slews. The
emphasis on agile slews directs our focus to factors such as accurate simulation of flexible
dynamics for larger displacements, actuator constraints and saturation, and internally
produced disturbances such as imbalanced actuators. Conversely, the effects of external
disturbances such as solar torques or aerodynamic drag are considered less important
in this context.

The aim of this thesis is to study the feasibility of utilizing Nonlinear Model Predic-
tive Control for agile rest-to-rest satellite slews with consideration of flexible dynamics.
Concerns related to the choice of Reaction Wheels (RWs) as actuators are also con-
sidered, including desaturation while slewing and avoidance of RW speeds that excite
appendage vibrations. The performance of the control scheme is evaluated with regard
to its ability to perform agile slews without exciting long-lasting vibrations and, to some
extent, computational complexity.

1.4 Contributions

The author has identified two main contributions to the field of attitude control in this
thesis:

1. Key design considerations of a NMPC scheme for agile slewing of flexible satel-
lites. Particularly regarding the choice of NMPC parameters, prediction model,
and virtual state estimation.

2. Novel approaches to integrating Reaction Wheel management and desaturation
into the NMPC scheme.
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1.5 Thesis outline

Chapter 2 - Mathematical model presents the mathematical model of the satellite,
which includes a nonlinear analytical model of the flexible dynamics based on Lagrange’s
equations.

Chapter 3 - Control scheme, theory presents relevant background theory on Nonlinear
Model Predictive Control and the Extended Kalman Filter.

Chapter 4 - Controller design presents the particulars of the NMPC and EKF control
scheme used for control of the model in Chapter 2.

Chapter 5 - Results and discussion presents and results of the thesis. Discussion of
the results is done in the respective sections. The last section of this chapter presents
prospects for future work.



Chapter 2

Mathematical model

In this chapter, we present the derivation of the mathematical model used for simulat-
ing the satellite with flexible dynamics. The assumptions and limitations of the model
are, for the most part, listed in Section 2.5. Section 2.6 is in large part similar to the
corresponding section in [1], with minor modifications for clarity. Section 2.8 presents
the complete satellite model in a concise format.

2.1 Notation

x ∈ R Scalar

x ∈ Rn Vector of dimension n

X ∈ Rm×n Matrix with m rows and n columns

x⊤ The transpose of x

X−1 The inverse of X

∥x∥ The 2-norm of x

x a x expressed in coordinate frame (·)a

d
d t x a
�

�

b Time derivative of x a in frame (·)b

ẋ a Time derivative of x a in frame (·)a

Rb
a Rotation matrix from frame (·)a to frame (·)b

ωc
ab Angular velocity of frame (·)b relative to frame (·)a, in frame (·)c

x× Skew-symmetric matrix corresponding to x , see Eq. (2.9)

In The (n× n) identity matrix

det (X) Determinant of X

null (X) Null space of X

coli (X) Column i of X

Table 2.1: Mathematical notation used throughout this thesis

5
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2.2 Reference frames

2.2.1 Inertial frame

The inertial frame, (·)i , is a right-handed frame with its origin at the center of the Earth.
x i points towards vernal equinox (the constellation Aries), and z i points north. y i =
z i × x i completes the right-handed frame. As its name implies, the inertial frame is
assumed to be inertial, meaning it is not undergoing any acceleration.

2.2.2 Orbital frame

The orbital frame, (·)i , is a right-handed frame with its origin at the satellite’s center of
gravity. x o points in the direction of the linear velocity of the satellite, while zo points
directly at the origin of the inertial frame. y o completes the right-handed frame. The
rotation matrix from the orbital frame to the inertial frame may be constructed as

Ri
o =
�

x i
o y i

o z i
o

�

(2.1)

where

z i
o = −

p i

∥p i∥
, x i

o =
v i

∥v i∥
, y i

o = z i
o × x i

o (2.2)

p and v denote, respectively, the position and linear velocity of the satellite.

2.2.3 Body frame

The body frame, (·)b, is a right-handed frame that shares its origin with the orbital frame.
The axes of the body frame are fixed to the body of the satellite. It is typically defined
such that the corresponding inertia matrix is diagonal, or close to diagonal, in the body
frame [33].

2.2.4 Reaction wheel array configuration in the body frame

The Reaction Wheel (RW) array utilized in this thesis consists of nw RWs fixed within
the body frame. Nominally, RWs only produce torque about their spin axes. The torque
produced by a RW about its spin axis, τw

w, may be expressed in the body frame as τb
w

through a constant rotation. By defining the (3×nw) torque distribution matrix, Lb
w, with

columns equal to the spin axes of the wheels in the body frame, we may write

τb
w = Lb

wτ
w
w (2.3)

where τb
w is the torque applied by wheels in the body frame while τw

w is a (nw × 1)
vector of wheel torques about their respective spin axes. We will, for clarity, refer to
the superscript (·)w as the wheel frame, even though it is not a right-handed reference
frame. Introducing the wheel frame and Lb

w simplifies certain mathematical expressions
throughout Chapter 2.

When considering imbalanced RWs, torque is no longer produced solely about the
spin axes. Thus, the wheel frame, as defined above, is insufficient. This issue is dealt
with in Section 2.7.3.
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L x o
z o

y o

x b

y b
z b

x i

z i

y i

Figure 2.1: Figure depicting the inertial (black) and orbital (red) frames and the body (blue)
frame in some arbitrary orientation. x b, x o and y i are pointing out of the paper.

2.3 Orbital dynamics

As this thesis is focused on single, agile attitude slews, only a circular equatorial orbit
is considered. We also assume that the satellite’s mass is negligible with respect to that
of the Earth. Then, by Kepler’s third law, the choice of orbit fixes all orbital parameters
except the orbit height, ho. For the entirety of this thesis, the orbital height will be fixed
at ho = 600km. This is a common orbit height for EO satellites [34].

Again by Kepler’s third law, we may derive an expression for the angular orbital
velocity, ωo, for a satellite in a circular orbit

ωo =
√

√ µ

∥p i∥3
(2.4)

where µ is the standard gravitational parameter of the Earth. The choice of orbit gives
that ∥p i∥ is constant and equal to R⊕ + ho, where R⊕ is the radius of the Earth. For
ho = 600km, Eq. (2.4) evaluates to ωo ≈ 0.001rad/s. By the definition of the orbital
frame, we have

ωo
oi = −ω

o
io =





0
−ωo

0



 (2.5)

One effect experienced by orbiting satellites that will be modeled as a disturbance in
this thesis is the gravity gradient torque. As was explained in [1], the gravity gradient
torque arises from the fact that gravitational attraction is inversely proportional to the
distance from Earth. Therefore, the different point masses comprising an orbiting body
experience varying gravitational attraction. For non-symmetrical bodies, this effect adds
up to the gravity gradient torque.



8 J. Frich: A Nonlinear Model Predictive Controller for flexible satellite attitude control

An expression for the gravity gradient torque, τg g , assuming a spherically symmetric
gravity field is derived in [35]:

τb
g g = 3

µ

∥p i∥3
z i

o ×
�

J z i
o

�

(2.6)

The expression assumes a rigid satellite with inertia J.

2.4 Rotations and quaternions

By the definition of the 3D rotation group, SO(3), a matrix must satisfy certain properties
for it to encode a rotation [36]:

SO(3) =
�

R|R∈ R3×3,R⊤R= I3, det (R) = 1
	

(2.7)

By Eq. (2.7), several other useful properties of rotation matrices emerge:

Ra
b =
�

Rb
a

�⊤
=
�

Rb
a

�−1
(2.8a)

Ra
c = Ra

bRb
c (2.8b)

Ṙa
b = (ω

a
ab)
×Ra

b (2.8c)

The skew-symmetric operator, (·)×, transforms a vector to a skew-symmetric matrix:

s =
�

s1 s2 s3
�⊤
→ s× =





0 −s3 s2
s3 0 −s1
−s2 s1 0



 (2.9)

Due to the properties in Eq. (2.7), all 9 elements of a rotation matrix are not needed
to define a rotation uniquely. We may instead describe rotations by a more compact
parametrization. One such parametrization is the 4-parameter quaternion

q=

�

q1
q2:4

�

(2.10)

consisting of a scalar part, q1, and a vector part, q2:4. The quaternions considered in this
thesis are unit quaternions, constrained by q⊤q = 1. qob describes a rotation from body
to orbit frame. Being the only quaternion considered in this thesis, we will denote it as
q. We may reconstruct the rotation matrix Ro

b from quaternions using

Ro
b = I3 + 2q1q×2:4 + 2q×2:4q×2:4 (2.11)

from [37]. Kinematic equations will also be needed for numerical simulation of the
satellite attitude. These are given in [35] as

q̇=
1
2
Ξ(q)ωb

ob, Ξ(q) =

�

−q⊤2:4
q1I3 + q×2:4

�

(2.12)
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Unit quaternions avoid singularities by covering the space of rotations twice. Therefore,
subtraction is generally not appropriate to represent differences in quaternions. The e
error qe is instead introduced:

qe = q̄−1 ⊙ q (2.13)

where

q−1 =

�

q1
−q2:4

�

, q̄⊙ q=

�

q̄1q1 − q̄⊤2:4q2:4
q1q̄2:4 + q̄1q2:4 + q̄×2:4q2:4

�

(2.14)

with notation is consistent with that of [35]. The attitude error is considered zero when
qe has reached the zero quaternion:

qe =
�

±1 0
�⊤

(2.15)

We will also introduce another measure of attitude error to aid analysis, namely the Line-
Of-Sight (LOS) error. The sensing equipment of the satellite is placed with LOS along
the zb axis. If we assume that the desired orientation for observation is the orientation
of the body frame, an approximate measure of the LOS error, eLOS , may be stated as

zo
b =





z1
z2
z3



 , eLOS = ho

Æ

(z1/z3)2 + (z2/z3)2 (2.16)

The measure does not account for the curvature of the Earth and is therefore not accu-
rate for large eLOS . But since the measure only will be used in comparing performance
towards the end of maneuvers, it is sufficient for the purposes of this thesis.

2.5 Satellite configuration and model approach

This section sets the stage for the derivation of satellite dynamics by defining the satel-
lite configuration in terms of its structure and actuators and discussing the necessary
assumptions/limitations. Terms and concepts relevant to the remaining sections are in-
troduced.

2.5.1 Orbital effects and perturbations

In the following sections, the orbital frame is assumed to be inertial. This limitation
is justifiable for a set of reasons. One is the relative magnitude of the orbital velocity,
Eq. (2.4), with respect to the body velocity for agile slew maneuvers. Furthermore, the
orbital frequency is much lower than the resonant frequencies of the flexible dynamics
[38], which will be made clear in Section 5.1. Considering the orbital frame as inertial
eases the derivation of the flexible dynamics, as the translational velocity, v i , does not
need to be considered. Though flexible modes may cause translational motion [38],
the choice of actuators in this thesis does not allow for translational control authority.
The neglection of orbital effects is common in literature [39–41], but certainly also a
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limitation of this thesis. For an example of a model that includes orbital and translational
effects, the reader is referred to [42].

Orbital disturbances that, in large part, affect the satellite attitude over longer time
horizons, such as solar radiation pressure, aerodynamic drag, and magnetic disturbances,
will not be included in the model. The exception is the gravity gradient torque from
Eq. (2.6), included for its relative magnitude in LEO.

2.5.2 Rigid structure and actuators

The satellite’s body is the structure to which all other components, such as flexible ap-
pendages and actuators, are attached. The body is assumed to be a perfectly rigid struc-
ture with moment of inertia Jb. By Newton’s second law, the angular momentum of the
rigid body may be stated in the body frame as

hb
b = Jbω

b
ob (2.17)

The dynamics ofωb
ob will be modeled jointly with the flexible appendages in Section 2.6.

Attached to the rigid body are nw Reaction Wheels (RWs) to be utilized for active at-
titude control. RWs provide torque by momentum exchange, a principle rooted in Euler’s
second law. Put simply, an angular acceleration of an RW in one direction will cause the
satellite to spin in the opposite direction. The angular momentum of the total system
will remain constant in the absence of external torques. As in [33], the model of the
RWs will not include electrical dynamics, friction, and the time constant associated with
tracking a torque command. For a single RW in some inertial frame, we therefore have

hw = Jwωw (2.18a)

ḣw = τw (2.18b)

where hw is the momentum of the wheel, Jw its moment inertia about the spin axis, ωw
its angular velocity and τw is the torque applied to the wheel.

For reaction wheels fixed within a rotating rigid body, gyroscopic coupling between
ωb

ob and the wheel velocities must also be accounted for. This effect is derived, inde-
pendently of the flexible dynamics, in Section 2.7.1. Furthermore, physical RWs have
an imperfect mass distribution about their spin axes. The effects of this RW imbalance
will be modeled as external torques according to European Cooperation for Space Stan-
dardization (ECSS) standards [43] in Section 2.7.3.

Over longer periods of operation, external disturbances acting on the satellite will
be counteracted and accumulated by the RWs as residual momentum. Due to physical
constraints, all RWs have a maximum realizable ωw at which point the wheel is satu-
rated. Therefore, residual momentum must be removed to avoid reaching saturation and
subsequently losing control authority. The removal process is known as desaturation and
is only possible by applying external torques [33]. One way of applying these external
torques is through thrusters, which will be the case in this thesis. The thrusters are mod-
eled as on/off external torques in Section 2.7.4. Disturbances caused by the thrusters or
dynamic couplings with other parts of the satellite will not be included in the model.
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l

L

εz(s, t)
x b

z b

y b s

Figure 2.2: A figure displaying the two flexible solar panels and associated parameters. x b is
pointing out of the paper.

2.5.3 Flexible structure

The flexible structure of the satellite is visualized in Fig. 2.2. The two flexible solar panels
extend from the rigid body in the y b direction. The panels are mounted with a distance
ℓ from the origin of the body frame and have a length of L. For any distance from the
mounting point s ∈ (0, L), the panel is displaced from its resting position by εz (s, t) in
the zb direction. This displacement will capture most of the dynamics associated with
the excitation of lower-order flexible modes [38].

Displacement in the x b direction or effects such as torsion or axial deformation will
not be considered in this thesis. The tips of the panels are assumed to be at a constant
length L from the rigid body in the y b direction, meaning that zero elongation is not
enforced. The model is, therefore, only valid for small displacements [44]. The reader is
referred to [45] for a model in which elongation is not neglected. The displacements of
the left and right panels are constrained to be anti-symmetrical, such that the system’s
center of mass always coincides with the center of the rigid body [39, 46]. Further-
more, as was justified in Section 2.5.1, the displacement of the panels will be assumed
decoupled from the linear velocity of the satellite.

The panels will be modeled as Euler-Bernoulli beams with slender, homogenous mass
distributions. The corresponding Partial Differential Equation (PDE) is given in [36] as

∂ 2εz

∂ t2
+

EI2

ρ2

∂ 4εz

∂ s4
= 0 (2.19)

where ρ and EI denote the density and flexural rigidity of the beam, respectively. The
following boundary conditions apply to Eq. (2.19):

εz(0, t) = 0,
∂

∂ s
εz(s, t)

�

�

�

�

s=0
= 0,

∂ 2

∂ s2
εz(s, t)

�

�

�

�

s=L
= 0,

∂ 3

∂ s3
εz(s, t)

�

�

�

�

s=L
= 0 (2.20)
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Since PDEs are difficult to manage both computationally and analytically, we will ap-
proximate the PDE to obtain Ordinary Differential Equations (ODEs) [36]. The Assumed
Modes Method (AMM), as described in [39], is applied for approximation. It proposes
to approximate the geometric shape of the entire flexible structure by a linear combi-
nation of nm space-dependent shape functions, φk(s), multiplied by corresponding time-
dependent amplitude functions, ηk(t):

εz(s, t) =
nm
∑

k=1

φk(s)ηk(t), k ∈ (1, nm) (2.21)

The shape functions, also known as admissible functions, must satisfy the boundary
conditions of Eq. (2.20). The particular shape functions applied in Section 2.6 are those
of [47], in which the kth mode is given by

φk(s) = 1− cos
�

kπs
L

�

+
1
2
(−1)k+1
�

kπs
L

�2

(2.22)

This particular choice of shape functions is widely used when modeling Euler-Bernoulli
beams on rotating structures [44, 48, 49]. The first six φk(s) are plotted in Fig. 2.3 for
a panel length, L, of 4m. An analytical model using Lagrange’s equations, where the ηk
enter as generalized coordinates, is formulated in Section 2.6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
s [m]

150

100

50

0

50

100

 [m
]

1

2

3

4

5

6

Figure 2.3: First 6 assumed mode shapes with Eq. (2.21), L = 4m
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2.6 Analytical modelling

This section is largely similar to the corresponding section in the specialization project,
[1], with minor adjustments for clarity. The analytical model describing the coupled
dynamics of ωb

ob and εz(s, t) is developed using Lagrange’s equations, given as

d
d t
(
∂L
∂ q̇
)−
∂L
∂ q
+
∂F
∂ q̇
= Q, L= T − V (2.23)

in which:

L: Lagrangian of the system
T : Kinetic energy of the system
V : Potential energy of the system
F : Dissipation function
q : Vector of generalized coordinates
Q: Vector of generalized forces

Table 2.2: Symbols in Lagrange’s equations

The vector of generalized coordinates, q , should not be confused with q, the quaternion.
It will become apparent in the following sections that

q =

�

θ
η

�

, q̇ =

�

ωb
ob
η̇

�

, η=
�

η1 · · · ηnm

�⊤
(2.24)

is a natural choice of generalized coordinates, q . We note that θ , defined by θ̇ = ωob,
is somewhat an abuse of notation. But since the term will not appear explicitly in our
equations of motion, we do not bother with its exact definition. The three following
subsections will develop expressions for the for T , V and F on the form:

T =
1
2

N
∑

i=1

N
∑

j=1

mi j q̇i q̇ j = q̇⊤Mq̇ (2.25)

V =
1
2

N
∑

i=1

N
∑

j=1

ki jqiq j = q⊤Kq (2.26)

F =
1
2

N
∑

i=1

N
∑

j=1

ci jqiq j = q̇⊤Cq̇ (2.27)

which will be incorporated in Eq. (2.23) in Section 2.6.4, yielding a set of ODEs describ-
ing the coupled structural dynamics.
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2.6.1 Kinetic energy

Based on the description of the flexible structure in Section 2.5.3, we may express the
position of any infinitesimal mass, dm, on the panel as

rp =
�

0 s+ ℓ εz
�⊤

(2.28)

By the transport theorem, we may express the velocity of any dm in the orbital frame as

vp =ω
b
ob × rp + ε̇, ε̇=

�

0 0 ε̇z
�⊤

(2.29)

Since only anti-symmetric deformations are considered, as explained in Section 2.5.3,
we may formulate the kinetic energy of the system in the orbital frame as the sum of
that of the rigid body and the two beams:

T = Tri gid + 2 · Tbeam =
1
2
ωb

ob
⊤Jbω

b
ob + 2 ·

1
2

∫

beam
v⊤pvp dm (2.30)

By the assumption that the beam is slender and homogeneous, we may rewrite the
integral in Eq. (2.30) as

∫

beam
v⊤pvp dm= ρ

∫ L

0

v⊤pvp ds (2.31)

wherein ρ denotes the density of the beam per length. Exploiting the properties of the
cross product and skew-symmetric matrices, we reformulate expressions for vp and v⊤p

vp = −r×pω
b
ob + ε̇, v⊤p =ω

b
ob
⊤r×p + ε̇

⊤ (2.32)

and expand the right side of Eq. (2.29) by insertion of Eq. (2.32), giving

ρ

∫ L

0

v⊤pvp ds = ρ

�

−
∫ L

0

ωb
ob
⊤r×p r×pω

b
ob ds+

∫ L

0

ωb
ob
⊤r×p ε̇ ds−
∫ L

0

ε̇⊤r×pω
b
ob ds+

∫ L

0

ε̇⊤ε̇ ds

�

(2.33)
We now define the matrix

Φ=





0 · · · 0
0 · · · 0
φ1 · · · φN



 (2.34)

such that we may approximate u̇ as Φη̇ by the assumed modes method. Substituting u̇
with Φη̇ and moving the terms not dependent on s outside the integrals, we may further
expand Eq. (2.33):

ωb
ob
⊤
ρ

∫ L

0

−r×r× dsωb
ob +ω

b
ob
⊤
ρ

∫ L

0

r×Φ ds η̇− η̇⊤ρ
∫ L

0

Φ⊤r× dsωb
ob + η̇

⊤ρ

∫ L

0

Φ⊤Φ ds η̇

(2.35)
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For the choice of generalized derivatives suggested in Section 2.6, q̇ =
�

ωb
ob η̇
�⊤

, we
may now construct the "mass matrix" M(q):

M(q) =











Jb + 2ρ
∫ L

0 −r×p r×p ds 2ρ
∫ L

0 r×pΦ ds

2ρ
∫ L

0 Φ
⊤r×p ds 2ρ
∫ L

0 Φ
⊤Φ ds











(2.36)

such that the expression for the kinetic energy, Eq. (2.30), can be stated on the form of
Eq. (2.25):

T =
1
2

�

ωb
ob
η̇

�⊤

M(q)

�

ωb
ob
η̇

�

(2.37)

To highlight the structure of M(q) and the terms causing the dependence on q , we will
expand Eq. (2.36) once more. Defining

M(q) =







M11(q) M12

M21 M22






(2.38)

we get the following expression for the matrix relating the angular velocity terms, M11(q):

M11(q) = Jb +













2ρ
∫ L

0 ε
2
z + (s+ ℓ)

2 ds 0 0

0 2ρ
∫ L

0 ε
2
z ds −2ρ
∫ L

0 (s+ ℓ)εz ds

0 −2ρ
∫ L

0 (s+ ℓ)εz ds 2ρ
∫ L

0 (s+ ℓ)
2 ds













(2.39)
in which the terms

∫ L

0

ε2
z =

∫ L

0

� nm
∑

k=1

φkηk

�2

ds

= η2
1

∫ L

0

φ2
1 ds+ 2η1η2ρ

∫ L

0

φ1φ2 ds+ · · ·+η2
nm
ρ

∫ L

0

φ2
nm

ds (2.40)

and

∫ L

0

(s+ ℓ)εz dm=

∫ L

0

(s+ ℓ)
nm
∑

k=1

φkηk ds =
nm
∑

k=1

ηk

∫ L

0

(s+ ℓ)φk ds (2.41)

cause the dependence of M on the time-dependent functions η and subsequently on q .
Furthermore, matrices that describe the interaction between the η and ωb

ob, M12 and
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M21, are stated as

M⊤21 =M12 =













2ρ
∫ L

0 (s+ ℓ)φ1 ds 2ρ
∫ L

0 (s+ ℓ)φ2 ds · · · 2ρ
∫ L

0 (s+ ℓ)φN ds

0 0 · · · 0

0 0 · · · 0













(2.42)
Lastly, we have the matrix describing the interaction between the different assumed
modes:

M22 =





















ρ
∫ L

0 φ
2
1 ds ρ
∫ L

0 φ1φ2 ds · · · ρ
∫ L

0 φ1φnm
ds

ρ
∫ L

0 φ2φ1 ds ρ
∫ L

0 φ
2
2 ds · · · ρ
∫ L

0 φ2φnm
ds

...
...

. . .
...

ρ
∫ L

0 φnm
φ1 ds ρ
∫ L

0 φnm
φ2 ds · · · ρ

∫ L
0 φ

2
nm

ds





















(2.43)

2.6.2 Potential energy

The potential energy of the satellite structure in the orbit frame is simply that of the two
beams:

V = 2 · Vbeam (2.44)

By applying the expression for the potential energy of an Euler-Bernoulli beam given in
[36] we obtain:

V = 2 ·
1
2

∫ L

0

EI

�

∂ 2εz

∂ 2s

�2

ds =

∫ L

0

EI

�

∂ 2
∑nm

k=0φkηk

∂ 2s

�2

ds

=

∫ L

0

EI

�

∂ 2φ1η1

∂ 2s
+ · · ·+

∂ 2φnm
ηnm

∂ 2s

�2

ds (2.45)

For the same choice of generalized coordinates as in Section 2.6.1, this expression may
be expressed in matrix form as

V =
1
2

q⊤Kq (2.46)
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by defining the "stiffness matrix", K, as

K =





























03×3 03×1 03×1 · · · 03×1

01×3 2EI
∫ L

0 (
∂ 2φ1
∂ 2s )

2ds 2EI
∫ L

0
∂ 2φ1
∂ 2s

∂ 2φ2
∂ 2s ds · · · 2EI

∫ L
0
∂ 2φ1
∂ 2s

∂ 2φnm
∂ 2s ds

01×3 2EI
∫ L

0
∂ 2φ2
∂ 2s

∂ 2φ1
∂ 2s ds 2EI
∫ L

0 (
∂ 2φ2
∂ 2s )

2ds · · · 2EI
∫ L

0
∂ 2φ2
∂ 2s

∂ 2φnm
∂ 2s ds

...
...

...
. . .

...

01×3 2EI
∫ L

0
∂ 2φnm
∂ 2s

∂ 2φ1
∂ 2s ds 2EI
∫ L

0
∂ 2φnm
∂ 2s

∂ 2φ2
∂ 2s ds · · · 2EI

∫ L
0 (
∂ 2φnm
∂ 2s )

2ds





























(2.47)

2.6.3 Dissipation

The dissipation forces, the most important of which is viscous damping, are approxi-
mated by the Rayleigh dissipation function:

Fbeam =
1
2

∫ L

0

kd

�

∂ 2ε̇z

∂ 2s

�2

ds (2.48)

in which kd are damping coefficients [40]. We may express the

F =
1
2

q̇⊤Cq̇ (2.49)

by defining C, the "dissipation matrix":

C=





























03×3 03×1 03×1 · · · 03×1

01×3 2kd

∫ L
0 (
∂ 2φ1
∂ 2s )

2ds 2kd

∫ L
0
∂ 2φ1
∂ 2s

∂ 2φ2
∂ 2s ds · · · 2kd

∫ L
0
∂ 2φ1
∂ 2s

∂ 2φnm
∂ 2s ds

01×3 2kd

∫ L
0
∂ 2φ2
∂ 2s

∂ 2φ1
∂ 2s ds 2kd

∫ L
0 (
∂ 2φ2
∂ 2s )

2ds · · · 2kd

∫ L
0
∂ 2φ2
∂ 2s

∂ 2φnm
∂ 2s ds

...
...

...
. . .

...

01×3 2kd

∫ L
0
∂ 2φnm
∂ 2s

∂ 2φ1
∂ 2s ds 2kd

∫ L
0
∂ 2φnm
∂ 2s

∂ 2φ2
∂ 2s ds · · · 2kd

∫ L
0 (
∂ 2φnm
∂ 2s )

2ds





























(2.50)
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2.6.4 Developing Lagrange’s equations

Having found suitable expressions for T , V , and F , we may further develop Lagrange’s
equations to obtain the particularized ODEs. By substituting Eqs. (2.37, 2.46, 2.49) into
Eq. (2.23) and applying the derivatives, we obtain

M(q)q̈ + Ṁ(q , q̇)q̇ −
1
2

q̇⊤
∂M(q)
∂ q

q̇ +Cq̇ +Kq = Q(q) (2.51)

The matrix Ṁ(q , q̇) is given by

Ṁ(q , q̇) =







Ṁ11(q , q̇) 03×nm

0nm×3 0nm×nm






(2.52)

where

Ṁ11(q , q̇) =















2 d
d t

�

ρ
∫ L

0 εz
2 ds
�

0 0

0 2 d
d t

�

ρ
∫ L

0 εz
2 ds
�

−2 d
d t

�

ρ
∫ L

0 (s+ ℓ)εz ds
�

0 −2 d
d t

�

ρ
∫ L

0 (s+ ℓ)εz ds
�

0















(2.53)
The dependence on both q and q̇ is clear from the chain rule applied to Eq. (2.40).

The (nm × nm × nm)matrix ∂M(q)/∂ q was left to be computed by the inbuilt jtimes
function in CasADi. Because M12, M21 and M22 do not depend on q , only the three first
rows of 1

2 q̇⊤(∂M(q)/∂ q)q̇ are nonzero. Therefore, we will, for the sake of compact
notation, define

M∂ (q , q̇) :=
1
2

q̇⊤
∂M(q)
∂ q

q̇[: 3] (2.54)

in which the notation [: 3] is used to represent the three first rows of the expression.
The vector of generalized forces may be stated as

Q(q) =







τ+
�

M11(q)ωb
ob

�×
ωb

ob

0nm×1






(2.55)

in which τ represents torques on the rigid body, and the term
�

M11(q)ωb
ob

�×
ωb

ob ac-
counts for the rotating nature of the system [50]. The effects of the actuators are added
in Section 2.7 through τ. In Section 2.8, the complete model is stated explicitly in ωb

ob
and η.
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2.7 Modelling actuators

This section covers modeling aspects related to the addition of actuators - RW dynamics,
configuration, and imbalance, as well as a note on the use of thrusters for desaturation.
We again note that the orbital frame is assumed to be inertial to maintain consistency
with Section 2.6.

2.7.1 Reaction Wheel dynamics

The angular momentum of a rigid satellite actuated by RWs relative to the orbit frame
is stated in [51, 52] as

hb
tot = Jbω

b
ob + hb

w (2.56)

The equation resembles Eq. (2.17) but with the addition of hb
w, the angular momentum

of the RW array in the body frame. By applying the transport theorem, we may obtain
an expression for hb

tot in the orbital frame:

d
d t

htot

�

�

�

�

o
= Jb

d
d t
ωb

ob

�

�

�

�

b
+

d
d t

hb
w

�

�

�

�

b
+ωb

ob ×
�

Jbω
b
ob + hb

w

�

(2.57)

giving

Jbω̇
b
ob +
�

ωb
ob

�× �
Jbω

b
ob

�

= −ḣb
w +
�

hb
w

�×
ωb

ob = −Lb
wJwω̇

w
bw +
�

Lb
wJwω

w
bw

�×
ωb

ob (2.58)

in which Lb
w is the torque distribution matrix as defined in Section 2.2.4, Jw is a (nw×nw)

diagonal matrix of wheel inertia about respective spin axes, and ωw
bw is an (nw × 1)

vector of wheel velocities. The right-hand side of Eq. (2.58), describing RW torque and
gyroscopic coupling, is included the dynamics ofωb

ob through τ of Eq. (2.55). To develop
the dynamics of ω̇w

bw, we first state the angular momentum of the RW, given in [52], as

hw
w = JwLb

w
⊤
ωb

ob + Jwω
w
bw (2.59)

and apply the transport theorem

d
d t

hw
w

�

�

�

�

o
= JwLb

w
⊤
ω̇b

ob + Jwω̇
w
bw + (L

b
w
⊤
ωb

ob +ω
w
ow)
×(JwLb

w
⊤
ωb

ob + Jwω
w
ow) (2.60)

We now assume identical inertia for all RWs such that Jw = JwInw. Thus, the skew-
symmetric term in Eq. (2.60) is equal to 0 by the property of the cross product s that
s × s = 0 for any s . We may now state the dynamics of ω̇w

bw as

JwLb
w
⊤
ω̇b

ob + Jwω̇
w
bw = τ

w
w (2.61)

Section 2.8 states the full model of ωb
ob and η, η̇, in which the effects of Eq. (2.58) and

Eq. (2.61) are included.
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2.7.2 Reaction Wheel configuration and null motion

The simplest RW configuration that provides three-axis control authority is that of three
RWs with spin axes aligned with the body frame axes [33]. The corresponding torque
distribution matrix, Lb

w, is simply I3. One reason to instead choose a configuration with
more than three RWs is that of redundancy in case one wheel fails [35]. The other, which
is of a larger concern in this thesis, is the possibility of null motion within the RW array
[51].

Formally, the null space of a linear map F : V → W between two vector spaces V
and W is the space of all v ∈ V such that F(v) = 0. In the case of the linear mapping
from torque commands in the wheel frame to the body frame, we have:

τb
w = F
�

τw
w

�

= Lb
wτ

w
w, τb

w ∈W ⊂ R3, τw
w ∈ V ⊂ Rnw (2.62)

Thus the null space of F is the set of τw
w that do not produce a torque on the spacecraft.

Put differently, by the existence of the null space of F there is no unique choice of τw
w

in realizing any τw
w [35]. Therefore, we gain control authority over ωw

bw, in addition to
that of the spacecraft attitude, which may be utilized to achieve secondary objectives.

The RW configuration to be used in this thesis is the commonly used pyramid con-
figuration [35]. In this configuration, all four RWs provide torque about two body axes.
The configuration is visualized in Fig. 2.4.

x by b

z b

β

Figure 2.4: An illustration of the specific 4-RW pyramid configuration to be used in this thesis.

The torque distribution matrix for the specific configuration in Fig. 2.4, with β as shown
in the figure, is stated as

Lb
w =





cosβ 0 − cosβ 0
0 cosβ 0 − cosβ

sinβ sinβ sinβ sinβ



 (2.63)

For the Lb
w in Eq. (2.63), the set of all vectors in null space may be written as

null(Lb
w) =
¦

unull ·
�

1 −1 1 −1
�⊤

, unull : τw
w ∈ V
©

(2.64)

where unull is constrained such that the torque limits of the wheels are respected.
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2.7.3 Reaction Wheel imbalance

In many spacecraft, RWs have been found to be the most severe sources of micro-
vibrations [43]. The disturbances are due to more significant static and dynamic rotating
mass imbalances, and less significant imperfections in the ball bearing or motor [43].
Only static imbalance is of concern in this thesis, which will be modeled as an external
torque.

Static imbalance is the offset of the center of mass of the RW from the rotation axis
by some distance cw. An expression for the static imbalance torque in the body frame,
τb

s , is given in [35]:

τb
s =

nw
∑

i=0

(p b
wi
)×Fb

s,i (2.65)

in which p b
wi

is the position of wheel center of mass i in the body frame and Fb
s,i is the

static imbalance force of wheel i:

Fb
s,i = mwω

2
wi
(x b

wi
)×
�

(x b
wi
)×cb

wi

�

(2.66)

mw is the mass of the wheel, chosen to be equal for all RWs. ωwi
is the angular velocity

of the wheel about its spin axis, x b
wi

is a unit vector along the axis of rotation, and cb
wi

is a
vector from the nominal center of mass to the actual center of mass. The nominal center
of mass is perfectly located on the spin axis. By the definition of the torque distribution
matrix, we have:

x b
wi
= coli
�

Lb
w

�

, (i = 1, . . . , nw) (2.67)

where coli denotes the ith column. Since cb
wi

rotates with the speed ofωwi
, we may find

its expression by introducing individual right-handed wheel frames, wi . cb
wi

may then be
stated as

cb
wi
= Rb

wi

�

0 cw cos(αwi
) cw sin(αwi

)
�⊤

(2.68)

where Rb
wi

is the rotation matrix between wheel frame wi and the body frame, and αwi

is the angle between the center of mass vector and its implicitly defined zero-position
along the ywi

axis.
For the pyramid array, Eq. (2.63), we define the matrix Yw:

Yw =





0 −1 0 1
1 0 −1 0
0 0 0 0



 (2.69)

such that
y b

wi
= coli (Yw) , (i = 1, . . . , nw) (2.70)

gives the ywi
axis in the body frame when αwi

= 0. We may now construct Rb
wi

as

Rb
wi
=
�

x b
wi

y b
wi
(x b

wi
)×y b

wi

�

(2.71)
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to be applied in Eq. (2.68). Similarly, we define a matrix

Pw =





rw 0 −rw 0
0 rw 0 −rw
0 0 0 0



 (2.72)

in which the wheels are assumed to be at an equal distance, rw, from the origin of the
body frame. We may now state the position of the center of mass of wheel i in the body
frame as

p b
wi
= coli (Pw) + cb

wi
, (i = 1, . . . , nw) (2.73)

Eq. (2.65) may now be applied to compute τb
s . A consequence of including static imbal-

ance in the satellite’s model is that the vector of nw wheel angles, αwi
, must be included

in numerical simulation.

2.7.4 Thrusters for Reaction Wheel desaturation

As was explained in Section 2.5.2, thrusters will be utilized for desaturation of the RW
array. "On/off" thrusters are considered, meaning that the thrusters may only produce a
constant force, ft , when switched on. To realize some torque in the body frame, τb

t , the
Pulse Width Modulator (PWM) in [33] may be utilized to find suitable thruster on/off
switching times. However, the NMPC desaturation scheme described in Section 4.3 re-
quires τb

t to be determined ahead of the maneuver. Thus, we will model thrusters only
by their equivalent torque in the body frame, τb

t .
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2.8 Complete satellite model

This section gives the completed satellite model. We define the set of states, x , and the
set of inputs, u, as

x =
�

q αw
w η ωb

ob ηd ωw
bw

�⊤
, u = τw

w (2.74)

where ηd = η̇ is defined for notational clarity. We may now state the dynamics as a
nonlinear ODE by combining Eq. (2.6), Eq. (2.12), Eq. (2.51), Eq. (2.58) and Eq. (2.61):

q̇ =
1
2
Ξ(q)ωb

ob (2.75a)

α̇w
w = ω

w
bw (2.75b)

η̇ = ηd (2.75c)




M11(η) M12 Lb
wJw

M21 M22 0
J⊤wLb

w
⊤ 0 Jw









ω̇b
ob
η̇d
ω̇w

bw



= (2.75d)





�

M11(η)ωb
ob + Lb

wJwω
b
bw

�×
ωb

ob − Ṁ11(η,ηd)ωb
ob +M∂ (ωb

ob,η,ηd) +τb
g g +τ

b
t +τ

b
s

−C22ηd −K22η
τw

w





By inverting the leftmost in matrix in Eq. (2.75d), we obtain an ODE on the form ẋ =
f (x , u). For four RWs and six assumed flexible modes, x contains 27 states.

q Quaternion, (·)bto (·)o ωb
ob Angular velocity, (·)bto (·)o

Ξ(q) Defined by Eq. (2.12) η Modal amplitudes, Eq. (2.21)

αw
w Vector of wheel angles ηd Time-derivative of η

ωw
bw Vector of wheel velocities M11(η) Defined by Eq. (2.39)

Jw Matrix of wheel inertias M12 =M⊤21 Defined by Eq. (2.42)

Lb
w Distribution matrix, Eq. (2.63) M22 Defined by Eq. (2.43)

τb
g g Gravity gradient, Eq. (2.6) Ṁ11(η,ηd) Defined by Eq. (2.53)

τb
t Thruster torque M∂ (ωb

ob,η,ηd) Defined by Eq. (2.54)

τb
s Static imbalance, Eq. (2.65) C22 Nonzero part of C, Eq. (2.50)

τw
w Wheel torques K22 Nonzero part of K, Eq. (2.47)

Table 2.3: A summary of the notation relevant to Eq. (2.75)





Chapter 3

Control scheme, theory

This section provides brief theoretical introductions to the two main components of
the proposed control scheme: Nonlinear Model Predictive Control (NMPC) and the Ex-
tended Kalman Filter (EKF). Section 3.1.1 and Section 3.1.2 are largely similar to the
corresponding sections in [1], with minor modifications for clarity.

3.1 Nonlinear Model Predictive Control (NMPC)

3.1.1 Fundamentals

Model Predictive Control (MPC) is a control scheme that produces control inputs, u, by
minimizing some penalty function, L, with respect to the dynamics of a prediction model.
The problem may be formulated as an Optimal Control Problem (OCP), here with a
prediction model on ODE form:

min L (x (·), u(·), p)

s.t. ẋ (t) = F (x (t), u(t), p)

h (x (t), u(t), p)≤ 0

x (t0) = x ini t (3.1)

x , F , and h are the states, dynamics, and constraints of the system, respectively. p is a
vector of parameters that could be used in the definition of L, F , and h. Nonlinear Model
Predictive Control (NMPC) is a special case of MPC with nonlinear F . Since Eq. (3.1)
must be solved in real-time, only a prediction horizon up to t = T is considered. Further-
more, the inputs are discretized over some time grid t0, . . . , tN , where N is the number
of discrete inputs to be applied within the horizon. As in [53], the approach may roughly
be broken down into four steps:

1. Initialize the prediction model with a state vector x ini t .
2. Minimize L by predicting system dynamics and optimizing over the N inputs.
3. Implement the first control input, u0, at the real system.
4. Move the prediction horizon one step forward and repeat.

25



26 J. Frich: A Nonlinear Model Predictive Controller for flexible satellite attitude control

xt0
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t

t0 t0+T

← Past Future→
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xt0
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ut0

t0
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Solution to the open loop
optimization problem at t = t0

(measured history)
(most recent measurement)
(control history)
(most recent control input)

(most recent measurement)
(predicted)
(predicted)

First control input
ut0 from solution

Me asured
state at t0

Figure 3.1: The working principle of MPC: u0 from the solution of the OCP (above) is applied
to the real system (below). Figure adapted from [54].

The scheme is visualized in Fig. 3.1, in which the lower graph represents the real system
and the upper graph represents the solution of Eq. (3.1) at time t0.

3.1.2 Discretizing the Optimal Control Problem (OCP)

We may address the OCP in Eq. (3.1) by transforming it into a Nonlinear Program (NLP),
which is then solved by utilizing a dedicated optimization solver [55]. A NLP may be
stated as

min
w

Φ (w , p)

s.t. g (w , p) = 0

h(w , p)≤ 0 (3.2)

Φ is the penalty function, g are equality constraints, h are inequality constraints, p are
parameters, and w is a set of discrete decision variables. To obtain a finite-dimensional
NLP from the continuous-time OCP we must discretize the system dynamics. The dis-
cretization schemes used in this context are known as shooting methods.

One such shooting method is that of direct single shooting. In single shooting, we
define the set of inputs

w = {u0, · · · , uN−1} (3.3)

and regard the system dynamics as a function of w , p, x ini t and time:

x i = f (w , p, x ini t , t i) (3.4)
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The function f is obtained through forward integration, such as with Runge-Kutta meth-
ods, of the dynamics from x ini t . Evaluating the path constraints at the same time grid
defined for the inputs, we obtain the following NLP:

min
w

Φ ( f (w , p, x ini t , ·) , w )

s.t. h ( f (w , p, x ini t , t i) , wi , t i)≤ 0, i = 0, . . . , N − 1 (3.5)

If the underlying system dynamics, F , are nonlinear or unstable, the function f may
become highly nonlinear as the length of the horizon, T , increases. Consequently, the
trajectory’s accuracy may depend heavily on the initial state, x ini t . Since the NMPC
scheme utilizes an imperfect prediction model, f may fail to sufficiently capture the
dynamics of the real system well as t progresses. The issue is known as nonlinearity
propagation [53].

To reduce nonlinearity propagation, the direct multiple shooting method may be
utilized [53]. To avoid long integration of dynamics, multiple shooting integrates the
dynamics in a piece-wise fashion. The integration is typically performed on the same
time grid chosen for the ui . The resulting piece-wise state trajectories are "stitched"
together through constraints in the NLP.Multiple-Shooting - key idea

Input ...
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function f (xk , uk ) can be made ”as linear as
we want” by reducing tk+1 − tk

S. Gros (ITK NTNU) Numerical Optimal Control, lecture 4 2020 12 / 26

Figure 3.2: An illustration of the direct multiple shooting approach. Decision variables are shown
in red, and integrated trajectories are shown in black. The differences between the two, shooting
gaps, are shown in blue. Figure adapted from [56].

In multiple shooting, f only integrates the system from time-step t i to t i+1. As in Fig. 3.2,
we denote the value of this function at t i+1 as f (x i , ui , p). Furthermore, we define the
N +1 decision variables x i , which act as initial states for each piece-wise trajectory. The
difference between some x i+1 and f (x i , ui , p), in blue in Fig. 3.2, are referred to as
shooting gaps. We obtain the following NLP by constraining the shooting gaps to zero:
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min
w

Φ (w , p)

s.t. f (x i , ui , p)− x i+1 = 0, i = 0, . . . , N − 1

h (x i , ui , p)≤ 0, i = 0, . . . , N

x0 = x ini t (3.6)

in which

w = {x0, u0, . . . , xN−1, uN−1, xN} (3.7)

The control scheme proposed in this thesis will utilize the multiple shooting method.

3.1.3 Solving Nonlinear Programs (NLPs)

The two main approaches to solving NLPs are Sequential Quadratic Programming (SQP)
methods and Interior Point (IP) methods [53]. This thesis will use utilize an IP method,
specifically IPOPT [57]. To grasp the fundamentals of IP methods, we will briefly intro-
duce the Karush–Kuhn–Tucker (KKT) conditions and how IP methods attempt to han-
dle their non-smoothness. The purpose of this section is not to give a comprehensive
overview of the field of numerical optimization. For that, we refer to [55].

Both SQP and IP methods aim to find a w that satisfies the necessary conditions for
a local optimum: the KKT conditions. We note that all KKT points are not local optima.
Rather, if Φ, g and h are continuously differentiable, all regular local optima are KKT
points. For more on regularity and sufficient conditions for optima, we refer the reader
to [55]. The KKT conditions may be stated as

Dual Feasibility: ∇wL (w ,µ,λ, p) = 0, µ≥ 0, (3.8a)

Primal Feasibility: g (w , p) = 0, h (w , p)≤ 0, (3.8b)

Complementarity slackness: µi hi (w , p) = 0,∀ i (3.8c)

where

L= Φ (w , p) +λ⊤ g (w , p) +µ⊤h (w , p) (3.9)

and ∇wL is the gradient of L with respect to w . λ and µ are Lagrange multipliers for
the equality and inequality constraints, respectively. We will limit our focus to µ, the
Lagrange multipliers for the inequality constraints. The complementarity slackness con-
dition, Eq. (3.8c), implies that µmust equal zero if a constraint function, hi , is nonzero.
When hi is zero and actively enforced in the sense that it directly limits an improvement
in w , µ must be positive by definition [55]. The takeaway is that the complementarity
slackness condition is non-smooth. This limits the use of root-finding algorithms, such
as Newton’s method, in search of a w that satisfies the KKT conditions [53].
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IP methods allow for the use of Newton’s method in search of an optimal w by replacing
the KKT conditions with a smooth approximation:

Dual Feasibility: ∇wL (w ,µ,λ, p) = 0, µ≥ 0, (3.10a)

Primal Feasibility: g (w , p) = 0, h (w , p)≤ 0, (3.10b)

Complementarity slackness: µi hi (w , p) +τ= 0,∀ i (3.10c)

where τ > 0 is a smoothing constant. For increasingly small τ, Eq. (3.10) more closely
approximates Eq. (3.8). Typical for IP methods is to start the search for an optimal w
with a large τ, and gradually decrease τ when approaching a solution [53]. However,
if we initialize an IP solver with an optimal w , the solver must still perform iterations
to find a τ that is smaller than some predefined tolerance [58].

The approach of initializing a solver with a "good guess" of w is known as warm-
starting and may be computationally beneficial when solving a series of related NLPs
in real-time [53]. Because of the nature of the smoothing constant, warm-started IP
methods may not be as efficient as warm-started SQP methods [53]. Nonetheless, IPOPT
was used as a solver in this thesis because of its satisfactory performance, ease of use,
and compatibility with CasADi.

3.2 Extended Kalman Filter

A state estimator may be utilized to estimate the state of a dynamic system in the pres-
ence of noisy measurements and disturbances. The Kalman Filter is one common choice
for such an estimator. The Kalman Filter produces a state estimate by combining ex-
ternal real-time measurements with an internal prediction based on prior knowledge.
The Kalman Filter produces the minimum mean square error estimate with linear sys-
tem dynamics and under the assumption of Gaussian additive noises in measurements
and disturbances [59]. The Extended Kalman Filter (EKF) is an extension of the Kalman
Filter for nonlinear dynamics. Although it does not guarantee a minimum mean square
error estimate, it is still commonly used in control applications [59].

The discrete-time EKF assumes the true state at time k, xk, and measurement, zk, to
be given by

xk = f (xk−1, uk) + wk , wk ∼N
�

0, Q̃k

�

zk = h (xk) + vk , vk ∼N
�

0, R̃k

� (3.11)

f and h are differentiable and possibly nonlinear functions. wk and vk are process and
observation noises assumed to be zero mean multivariate Gaussian noises with covari-
ance Q̃k and R̃k. In practice, the true system’s f and h are not perfectly known. Instead,
an approximate model is used.
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The EKF algorithm consists of two distinct steps, named the prediction and update steps.
We may state the corresponding equations as in [59]:

Predict

(

Predicted state estimate x̂k|k−1 = f (x̂k−1|k−1, uk)

Predicted covariance estimate Pk|k−1 = FkPk−1|k−1F⊤k + Q̃k

(3.12)

Update



































Innovation residual yk = zk − h(x̂k|k−1)

Innovation covariance Sk = HkPk|k−1H⊤k + R̃k

Kalman gain Kk = Pk|k−1H⊤kS−1
k

Updated state estimate x̂k|k = x̂k|k−1 +Kk yk

Updated covariance estimate Pk|k = (I−KkHk)Pk|k−1

(3.13)

where

Fk =
∂ f
∂ x

�

�

�

�

x̂k−1|k−1,uk

, Hk =
∂ h
∂ x

�

�

�

�

x̂k|k−1

(3.14)

In the prediction step, Eq. (3.12), f is used to predict the state estimate x̂k|k−1 (x̂ at time
k given its estimate at time k−1). Likewise, the covariance of x̂ , denoted P, is predicted
by computing the jacobian of f at the current state such that the corresponding linear
Kalman Filter equation may be applied.

The update step, Eq. (3.13), incorporates the measurement zk. The innovation, yk,
is computed as the difference between the measurement and the observation function
at the predicted state, h(x̂k|k−1). Similarly to the prediction step, the jacobian of h at
the predicted state estimate is used to compute the innovation covariance. The Kalman
gain, K, is used to weigh the relative importance of the measurement to the predicted
state estimate in the updated state estimate, x̂k|k. P is also updated, such that it may be
used in the next prediction step.



Chapter 4

Controller design

In this section, we utilize the theory presented in Chapter 3 to design the NMPC+EKF
control scheme for the specific model presented in Chapter 2.

4.1 Prediction model design

A crucial step in designing a NMPC scheme is that of choosing a suitable prediction
model. For comparison, we will again state the part of the complete satellite dynamics
most relevant to this section, Eq. (2.75d). See Table 2.3 for notation.
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Utilizing Eq. (4.1) as a prediction immediately presents two issues. One is that the high
nonlinearity of the system presents a substantial computational cost, as shown in [1].
Furthermore, with the prediction model equal to the simulation model, we are not sub-
jecting the control scheme to modeling errors that would be present in a physical system.
Some mismatch between the simulation model and NMPC prediction model is therefore
desirable. For this reason, the gravity gradient, τb

g g , and the static imbalance, τb
s are to

be regarded as disturbances in this thesis, and will not be eligible for use in the prediction
model.
[1] proposed to simplify Eq. (4.1) by neglecting nonlinearities in η and ηd , and

reducing the number of assumed modes, nm. Though the model in [1] was somewhat
less comprehensive, the equivalent for Eq. (4.1) would be:
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in which M̄11 = M11(0). In [1], an NMPC scheme with a prediction model similar to
Eq. (4.2) was shown to be much less computationally demanding than that of the full
nonlinear model, without significant loss in performance.

However, Eq. (4.2) may not be successfully deployed as a prediction model for a
physical system. That is because of the lack of directly available measurement of as-
sumed modal amplitudes, η, as they have little physical meaning [60]. We instead pro-
pose to use a prediction model where flexible displacement is represented by driven
harmonic oscillators.
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(4.3)

For easy reference, we will refer to this specific prediction model as PM1 . The dynamics
of q̇ are included for completeness. The oscillator displacement, σ, is regarded as a vir-
tual, nonphysical state. B represents the "effect" of σ on the satellite, ξ is the oscillator’s
damping ratio, and Ω is the oscillator’s natural frequency. J̄ is the altered inertia matrix
that includes the constant part of M11 as in Eq. (2.39):

J̄ = Jb +







2ρ
∫ L

0 (s+ ℓ)
2 ds 0 0

0 0 0

0 0 2ρ
∫ L

0 (s+ ℓ)
2 ds






(4.4)

For low computational complexity, a single oscillator is desirable. For multiple oscillators,
ξ and Ω are diagonal matrices.

B, ξ and Ω are parameters to be selected in the control design. How the three pa-
rameters shape the response of the oscillator is perhaps best explained through the Bode
plots in Fig. 4.1.
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Figure 4.1: Bode plots from the first RW toω about x b. The grey dotted line serves as a baseline
from which B is increased (left), ξ is decreased (middle), Ω is increased (right).
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In Fig. 4.1, the frequency response of a simulation model with six assumed modes, re-
sulting in six distinct resonant peaks, is shown in orange. The specific parameters of
the simulation model are not important in this context. The grey dotted line is the fre-
quency response of a single oscillator for some choice of B, ξ, and Ω. The blue lines
show how the frequency response changes for each oscillator parameter. Increasing B
gives a resonant peak at a higher frequency and increases the response for higher fre-
quencies. Decreasing ξ gives a reduced response for both anti-resonant and resonant
peaks. Increasing Ω shifts both peaks to a higher frequency.

PM1 still contains fairly complex dynamics, particularly in relation to the RWs. In
Section 5.6, we will analyze the potential improvements in performance and compu-
tational of simplifying PM1. We define PM2 as the prediction model in which ω̇w

bw is
decoupled from ω̇b

ob:
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Furthermore, we define PM3 as a simplification of PM2 in which the RW gyroscopic
effect is neglected:
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(4.6)

4.2 Initializing σ with the Extended Kalman Filter

As was mentioned in Section 4.1, the assumed modal amplitudes,η, lack physical mean-
ing. We will, therefore, not use measurements of η or η̇ to determine the current state
of the flexible panels in this thesis. One could attempt to determine the state of the pan-
els through measurements from piezoelectrics or accelerometers attached to the panels
[16]. We instead attempt to extract the torque produced on the spacecraft by the panels
from a measurement of ω̇b

ob. This quantity is then used to form a measurement from
which the Extended Kalman Filter (EKF) may estimate suitable values of σ and σ̇. The
resulting σ and σ̇ are to be used as starting conditions in the NMPC scheme. q,ωb

ob and
ωw

bw are assumed to be perfectly known and will not be estimated by the EKF.
We now assume that the complete satellite dynamics, Eq. (2.75), are unknown and

that PM1, Eq. (4.3), is instead our best available model. By rewriting Eq. (4.3), we have
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Bσ̈ represents the virtual torque produced by the oscillator on the satellite. We note
that the right-hand side of Eq. (4.7) includes only measurable states. Furthermore, we
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premultiply the second equation in Eq. (4.3) by B to obtain

Bσ̈ = −BB⊤ω̇b
ob −B(2ξΩσ̇ −Ω2σ) (4.8)

We may now combine Eq. (4.7) and Eq. (4.8) to produce z, the measurement, and h(x ),
the observation function, as in Eq. (3.11) such that we may apply the EKF equations in
Eq. (3.12) and Eq. (3.13).
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h(x ) = −B(2ξΩσ̇ −Ω2σ) (4.9b)

In the EKF, h(x ) is evaluated on the one-step-ahead state estimate as predicted by
f (x , u), Eq. (3.11). In our case, f (·) is defined as a one-step forward integration of
PM1 by a RK-4 scheme.

Although z is evaluated on true state measurements, its expression is based on in-
complete dynamics. The measurement based on complete knowledge of the model, zt rue,
is instead stated as
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Therefore, z is not to be fully trusted. In terms of the EKF: R̃ is nonzero. We may weigh
the relative importance of the internal prediction to the external measurement by the
covariance matrices, Q̃ and R̃ respectively. This process of tuning the EKF is covered in
Section 5.3.

We will define three EKFs that differ in how their respective prediction models are
treated:

• EKF1, which utilizes PM1 with one harmonic oscillator. Parameters of the oscilla-
tor are found in Section 5.2.
• EKF2, which utilizes PM1 with two harmonic oscillators. The resulting states cor-

responding to the second oscillator, σ2 and ˙si gma2 are discarded.
• EKF3, which utilizes PM1 with two harmonic oscillators. The resulting σ2 and
σ̇2 are added to σ1 and σ̇1 through some weighting factor to be decided in Sec-
tion 5.3. E.g.: σini t = σ1+aσ2, where σini t is the value passed to the NMPC, and
a is some constant.

We also introduce notation to denote the specifics of any EKF. For example: EKF1(z,
R̃= 2e4) denotes EKF1 using Eq. (4.9a) as measurement, with R̃= 2e4·I3.
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4.2.1 Notch filters

To be computationally feasible, the NMPC requires relatively low bandwidth, mean-
ing large input discretization. This implies that the controller will not counter high-
frequency disturbances efficiently [61]. The complete satellite model, Eq. (2.75), con-
tains two effects that may be regarded as high-frequency disturbances. One is that of the
RW static imbalance torque, which has a frequency equal to the wheel speed. The other
is the panel vibration caused by higher-order modes, with frequencies dependent on the
specific satellite structure. Starting from Section 5.5 we utilize notch filters, specifically
on z and ωb

ob, to avoid initializing the NMPC with state values containing undesirable
high-frequency content.

A notch filter is a filter that attenuates frequencies within a narrow range. The pro-
cess of combining multiple notch filters is known as convolution. Fig. 4.2 shows three
convolved notch filters. Notch filters generally cause less phase lag than low-pass filters
in a control loop [62]. The specific notch filter applied in this thesis is the second-order
infinite-impulse-response (IIR) digital notch filter provided by SciPy, which is imple-
mented as in [63].

The parameters required by this specific filter are the frequency to be filtered, ω0,
and the quality factor determining the filter’s width. In this thesis, we will use a quality
factor as in Fig. 4.2, equal to ω0. The notch filters are applied to an array of the 100
most recent measurements. Whether or not a notch filter is applied, and to what ω0, is
stated clearly in the relevant sections in Chapter 5.
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Figure 4.2: The amplitude and phase of three convolved Scipy IIR notch filters with quality
factors equal to ω0.
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4.3 NMPC formulation

Unless explicitly stated otherwise, the NMPC formulation to be used throughout this
thesis is Eq. (4.11), NMPC1.
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+
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1
2
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NMPC1: s.t. x0 = x ini t (4.11b)

x i+1 = PM(x i ,τ
w
w,i) (4.11c)

|τw
w,i| ≤ τ

w
w, max , |ωw

bw,i| ≤ω
w
bw, max (4.11d)

Q, Q f and R are positive and diagonal weighting matrices. xre f is the desired state vec-
tor. Eq. (4.11a) contains an abuse of notation, as the difference in quaternion is instead
expressed using q from Eq. (2.13). PM denotes one of the prediction models defined in
Section 4.1, and is discretized using multiple shooting as in Eq. (3.6). We utilize RK4
integration with ten subintervals per NMPC input. The two constraints, Eq. (4.11d),
represent RW limits in terms of maximum torque and wheel speed.

Tuning of the weighting matrices Q, Q f and R was explored in [1]. In this thesis, we
will use weights with diagonal elements given as in Table 4.1.

Q Q f R

q 1e0 1e2 τw
w 5e-4

ωb
ob 5e0 1e1

σ 5e-1 1e4

σ̇ 5e-1 1e4

Table 4.1: NMPC weights used throughout this thesis

We will warm-start the decision variables of all NMPC schemes throughout this thesis.
See Section 3.1.3 for theoretical background. Given the decision variables w for the pre-
vious iteration, we discard the previous initial state and input. Furthermore, we replace
the predicted state after one iteration with the new initial state as found by the EKF.
Lastly, we duplicate the last set of decision variables.

For Section 5.5, we expand on Eq. (4.11) for the purposes of RW management.
Namely, we will attempt to avoid convergence of ωw

bw to certain regions. The purpose
is to avoid static imbalance torques that may interact or interfere with the dominant
flexible modes. To achieve this, we define a term, Γ , to be appended to the NMPC penalty
function.

Γ (x i ,ωγ) =
nγ
∑

γ=1

nw
∑

j=1

ae−b(ω j,i−ωγ)2 , Γ (xN ,ωγ) =
nγ
∑

γ=1

nw
∑

j=1

a f e−b(ω j,N−ωγ)2 (4.12)

A similar penalty term is found in [64]. ω j,i is the velocity of wheel j at time i. ωγ
is a vector of nγ wheel velocities to avoid. The value of Eq. (4.12) is near zero nearly
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everywhere but with a peak centered on ωγ. a and a f are constants that determine the
magnitude of peak at times i and time N , respectively. b determines the width of the
peak. Fig. 4.3 shows Γ with a = 1e-4, b = 5e-2.

Figure 4.3: The Γ penalty term with a = 1e-4, b = 5e-2, ωγ = 0.

We now define Φ as the penalty function of Eq. (4.11)
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and state the RW management NMPC formulation, NMPC2, as
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Γ increases the nonlinearity of the NLP, which could potentially increase the difficulty of
convergence. In Section 5.5, we will also investigate whether the addition of an explicit
null space input component with a reduced penalty could make Γ simpler to navigate.
We define the new decision variables, unull,i , as in Eq. (2.64). We now state the NMPC
with the null space component, NMPC3, as
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where Λ is the penalty terms associated with unull :

Λ(unull) =
N−1
∑

i=0

1
2
∥unull,i∥2Rnull

(4.16)

Rnull weights the penalty of unull,i , and is intended to be lower than the elements of R.
The null space direction for the RW configuration stated in Section 2.7.2, d, is given as

d =
�

1 −1 1 −1
�⊤

(4.17)

In section Section 5.7, we will show the desaturation of the RW array by means of
thrusters. The desaturation scheme assumes a predefined trajectory of realizable τt ,
which is passed to the NMPC as parameters, p in Eq. (3.6). The NMPC, therefore, has
knowledge of the thrusters’ effects through the prediction model. Furthermore, since
the design of thruster commands is decoupled from the NMPC, we may be certain that
the NMPC will not misuse the thrusters for purposes of maneuvering. Thus, no fuel is
wasted. We state the NMPC for desaturation, NMPC4, as:

min
x ,τw

w
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NMPC4: s.t. x0 = x ini t (4.18b)
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The parameter vector, p, is updated such that it always contains thruster torques for the
next N steps.
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Results and discussion

In this chapter, we present the results of the thesis. The results are discussed in the
respective sections, such that we may properly motivate succeeding results. First, we
present the specific parameters of the simulation model.

5.1 Simulation model parameters

Symbol Description Value Unit Based on

ho Orbital height 600 km -

(Jx x , Jy y , Jzz) Moments of inertia 100, 150, 110 kgm2 -

(Jx y , Jyz , Jzz) Products of inertia -30, 0, 0 kgm2 -

L Length of solar panels 4 m -

ℓ Length to panel mount 0.5 m -

w Panel width 0.8 m -

ρ Panel area density 2.5 kg/m2 [65]

kd Panel dissipation coefficient 0.005 kgm2/s2 [41]
EI Panel flexural rigidity 100 Nm2 [42]
nm Number of assumed modes 6 - -

β RW configuration parameter π/4 rad -

τw,max RW max torque ± 1 N m [66]
ωw,max RW max velocity ± 157.08 rad s−1 [66]

Jw RW inertia about spin axis 0.095 kgm2 [43]
mw RW mass 2 kg [66]
cw RW center of mass offset 0.1 mm [43]
rw RW abs. dist. to body origin 1 m [43]

Table 5.1: Simulation model satellite and actuator parameters

39
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The satellite parameters used for all simulations in this thesis are listed in Table 5.1.
CVODES, a stiff and non-stiff ODE solver from SUNDIALS, is used for simulation [67].
A time discretization of 0.01s is used throughout the thesis.
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Figure 5.1: Bode plot of the simulation model, Eq. (2.75), linearized about zero position. From
the first actuator to ωx . Parameters as in Table 5.1.

We now aim to gain some insight into the specific simulation model with parameters as
in Table 5.1. By linearizing the simulation model about zero position (unit quaternion,
remaining states 0), we may create a Bode plot to visualize the frequency response.
Fig. 5.1 the bode plot from the first τw (nominal torque about the x-axis) to ωx , the
axis most affected by the flexible dynamics. Six distinct resonant peaks are visible. It is
apparent from the magnitude of the smaller peaks that using six assumed mode shapes
is enough to capture most of the flexible system dynamics. The frequencies and periods
of the six flexible modes are listen in Table 5.2.

Mode 1 2 3 4 5 6
Frequency [rad/s] 3.00 10.52 27.78 54.07 90.05 134.66

Period [s] 2.09 0.60 0.23 0.11 0.07 0.01

Table 5.2: Frequency and period of the simulation model resonant modes

As was explained in Chapter 4, the NMPC requires a relatively large input discretization
because of its computational complexity. Specifically, input discretizations of ∼ 0.2-1.4s
are explored. The specific resonant modes in Table 5.2 are therefore particularly chal-
lenging, as the most dominant modes occupy roughly the same frequency domain as
that of the controller.

For convenience, we have in Appendix A listed certain components of the matrices
M, K and C of Eq. (2.75) for structural parameters as in Table 5.1.
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5.2 Prediction model parameters: B, ξ, and Ω

The virtual oscillator of the prediction models presented in Section 4.1 is intended to
provide the NMPC with knowledge of how the true flexible dynamics respond to control
torques. However, a good choice of B, ξ, andΩ is not necessarily that which best predicts
the state of the panels. Instead, a suitable choice of oscillator parameters is one that
gives a well-behaved controller. We may, therefore, think of B, ξ, and Ω as NMPC tuning
parameters, but with a strong physical interpretation.

This section aims for a proper understanding of what values of B, ξ, Ω give a well-
behaved NMPC. To characterize the performance of the various tunings in an unbiased
fashion, we resort to Monte Carlo (MC) simulation. The MC method involves extensive
simulation with the key parameters selected randomly from a predefined probability dis-
tribution [68]. We then define criteria of performance to help determine what subspace
of parameters gives desired behavior.

We sample B with from a uniform distribution with an upper limit where the dynam-
ics are no longer uniquely defined (augmented "mass matrix" no longer invertible, see
Eq. (4.3)). B is chosen such that the oscillator only affects the angular velocity about
x b. It, therefore, has only one nonzero element and is denoted as a scalar. ξ and Ω are
sampled in the logarithmic space in order to gain improved fidelity in the regions of
low resonant frequencies and damping ratios - where the lower flexible modes reside.
In order to judge how robust the choice of B, ξ, Ω is to uncertainties in the flexible dy-
namics, we include uncertainties on EI and ρ (see Table 5.1) in the MC simulation. EI
and ρ are assumed normally distributed, with means as defined in Table 5.1 and stan-
dard deviations given by the ESA factors for safety and reliability [69]. Table 5.3 shows
the specific assumed distributions of all five parameters. U and N denote uniform and
normal distributions, respectfully.

B ξ Ω EI ρ

U(4,12.3) 10U(−7,1) 10U(−0.5,1.3) N (100, 8) N (2.5, 0.1)

Table 5.3: Probability distributions for MC simulation, Fig. 5.2 and Fig. 5.3

The maneuver performed in the MC simulations is a 40-second slew to zero position
from a random initial orientation. In order to reach the desired orientation, the initial
Euler angles (to be converted to an initial quaternion) have an upper limit of 60◦ for
all axes. The initial Euler angles have a lower limit of 5◦ for all axes to ensure that all
maneuvers are sufficiently difficult. The NMPC is set to an input discretization is 0.7s
and horizon of 14.7s. Since the EKF is yet to be tuned, we have Q̃, R̃ equal to identity,
EKF1(z), and all external disturbances set to zero.

Since the choice of initial orientation is such that convergence to desired orientation
is feasible, we define two metrics of performance based on the state of the system in the
last 10 seconds of the maneuvers. Namely, Mean Squared Error (MSE) of the quaternion
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vector and the torque produced by the panels on the rigid body:

MSEq =
1
n

n
∑

j=0

qe, j (5.1a)

MSEτp
=

1
n

n
∑

j=0

τp :=
1
n

n
∑

j=0

M12η̈ j + Ṁ11(η j , η̇ j)−M∂ (ω
b
ob, j ,η j , η̇ j) (5.1b)

See Eq. (2.13) and Eq. (2.75) for relevant definitions. MSEτp
was found to generally of

greater magnitude than MSEq. However, adding MSEq to MSEτp
proved to be sufficient

in separating well-performing B, ξ, Ω from those which achieved low MSEτp
by moving

relatively slow. Therefore, the results in this section are presented only in terms of MSEq
+ MSEτp

.
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Figure 5.2: All 3423 simulations with parameters as in Table 5.3. The color gradient shows the
metric MSEq +MSEτp

, Eq. (5.1), on a logarithmic scale. The color gradient is clipped at 2.5e-3
(lower) and at the 50th percentile (upper). The figure shows good performance and robustness
for high B (10-12.3) and low Ω (0.5-2.5). Most of the better tunings also have a ξ beneath 10−1.
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Figure 5.3: The same data as in Fig. 5.2, but without MSE better than 1. We find that the well-
performing B, Ω region only contains two instances of severely poor performance, highlighting
some robustness in the choice of oscillator parameters.

The results of the MC simulation with parameters as in Table 5.3 are shown in Fig. 5.2.
We find that a good oscillator is one with high B (10-12.3) and low Ω (0.5-2.5). Further-
more, most of the good solutions have a ξ beneath 10−1. See Fig. 4.1 for an illustration
of how the three parameters shape the frequency response of the oscillator. This result
indicates that the NMPC is better when it has a relatively accurate picture of the lower-
frequency, most impactful, flexible modes, which is not particularly surprising. Another
key takeaway from Fig. 5.2, is the seemingly complete lack of poor performance in the
region previously mentioned B, Ω region. To verify whether this is the case, we remove
all solutions in Fig. 5.2 with MSE lower than 1 and plot again in Fig. 5.3.

Fig. 5.3 shows that inside of the well-performing B, Ω region, we only have two
instances of severely poor performance. Taking a closer look at these two instances, we
find that they are large maneuvers (53◦+) with ξ at the very ends of the searched space.
Thus, they do not reflect a difficulty in terms of choosing appropriate B, Ω.

Now that we have shown the oscillator model to be relatively robust, we attempt to
gain a deeper understanding as to what B, ξ, Ω gives superior performance. For that,
we neglect the uncertainties in EI and ρ and perform a new MC simulation on a more
restricted parameter space. The assumed distributions for the parameters in the second
simulation are shown in Table 5.4. All other factors remain unchanged.

B ξ Ω

U(10,12.3) 10U(−7,−1) 10U(−0.3,0.4)

Table 5.4: Probability distributions for MC simulation 2, Fig. 5.4
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Figure 5.4: All 910 runs using parameters as in Table 5.4. The color gradient shows the metric
MSEq+MSEτp

, Eq. (5.1), on a logarithmic scale. The color scale is clipped at 2.5e-4 (lower) and
at the 50th percentile (upper). No uncertainties were included in EI and ρ, as this simulation
only intends to provide a clear picture of what the superior choice of B, ξ, Ω is. The result is
perhaps best illustrated in the frequency domain: Fig. 5.5.

The results of the MC simulation with parameters as in Table 5.4 are shown in Fig. 5.4.
We note that the color gradient has shifted, and is now much more selective. We create
a Bode plot of the top 4% solutions in terms of MSE from Fig. 5.4 and remove out-
liers by excluding the lower and upper 15% in B, ξ and Ω. The resulting Bode plot is
shown in Fig. 5.5, which shows that the best choices of B, ξ, Ω are most often approx-
imations of the first flexible mode. The figure could also show some improvement by
slightly increasing B beyond what would correspond to the first mode, to achieve an
increased frequency response for higher frequencies. However, this could also be due to
the relatively low sample size, and will not be investigated in further detail.
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Figure 5.5: Bode plot from the first RW to ωx , showing the B, ξ, Ω Fig. 5.4 with top 4% MSE.
Outliers in terms of B, ξ, Ω are removed. The figure shows that it is desirable to choose the
oscillator model, PM1 , such that it approximates the response of the first flexible mode.

For the remainder of this thesis, we select the oscillator parameters such that its fre-
quency response is close to, but not exactly, equal to that first flexible mode, see Ta-
ble 5.5. In a physical system, one could use sensor-based modal identification techniques
to identify the frequency response of the first flexible mode [70].

B ξ Ω

10.65 6.3e− 5 1.58

Table 5.5: Oscillator parameters used for the remainder of this thesis.
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5.3 EKF uncertainties: Q̃ and R̃

In Section 5.2, both external disturbances, τg g and τs, were set to zero. Thus, the EKF
measurement, z from Eq. (4.9a), was a close approximation to zt rue, Eq. (4.10), lacking
only in "unobtainable" knowledge on the flexible dynamics. Therefore, the specific EKF
tunings in terms of the uncertainties in the prediction model, Q̃, and measurement, R̃,
were therefore not of great importance.

In this section, we examine the performance of the EKF with external disturbances
switched on. Both τg g and τs affect ω̇b

ob, on which z is based. Therefore, if R̃ is too low,
the EKF might determine σ, σ̇ that incorporate the effects of the external disturbances
on ωb

ob. However, if R̃ is too high, the oscillator might not capture the state of the panel
accurately, as σ, σ̇ are to a larger extent based on an inaccurate prediction model. To
demonstrate the importance of an accurate R̃, we will perform the same maneuver with
four different EKF implementations:

A.1 EKF1(zt rue), using true measurement
A.2 EKF1(z,R̃= I3)
A.3 EKF1(z,R̃= 2e4I3)
A.4 EKF1(z,R̃= 2e6I3)

The maneuver to be completed is a slew from an initial orientation of (−34,24, 0) in XYZ
Euler angles to zero. The initial angular velocities of the RWs are [−8.5, −8.5, 8.5, 42],
chosen such that the static imbalance torque about x b, produced by the 2nd and 4th RW,
spans both low and high frequencies at the beginning of the slew. All four simulations
use an NMPC with input discretization of 0.7s and horizon of 14.7s.

A.1: ztrue as measurement A.2: z as meas., R = 1 ~ A.3: z as meas., R = 2e4 ~ A.4: z as meas., R = 2e6 ~

Figure 5.6: The figure shows variations of the EKF: one with "unobtainable" measurement zt rue,
and three with using z with increasing values for the measurement uncertainty. As seen from the
tip displacements, the four schemes are affected by external disturbances to varying degrees.
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Fig. 5.6 shows the the error quaternion, qe, and panel tip displacements for all four
manueuvers. We see that the four simulations roughly reach the desired orientation in
about 30 seconds. However, the differences in performance are evident from the plots of
the tip displacements. The EKF with zt rue, A.1, clearly exhibits the best behavior, as the
resulting tip displacement is relatively smooth and does not show oscillations towards
the end of the maneuver. The EKF with R̃=1, A.2, shows significantly more excitation in
the tip displacement plot, with some oscillations of similar frequency towards the end.
The EKF with R̃=2e4, A.3, shows somewhat less of this excitation, indicating a more
reasonable choice of σ, σ̇. For R̃=2e6, A.4, the NMPC seems to be exciting the panels in
a very regular fashion.

Fig. 5.6 gives insight into the performance of the four schemes but does not pro-
vide a complete explanation. Fig. 5.7 shows zt rue, z and the observation function, h
from Eq. (4.9b), evaluated on x̂k|k (the post update step estimate of x , see Eq. (3.13)).
h(x̂k|k) is to be interpreted as the "accepted" state estimate. Only the components of the
respective quantities corresponding to x b are plotted. Note that Fig. 5.7 only covers the
very beginning of the maneuver, when the system states are most similar.

A.1: ztrue as measurement 

A.2: z as meas., R = 1 ~

A.3: z as meas., R = 2e4 ~

A.4: z as meas., R = 2e6 ~

Figure 5.7: The same four cases as in Fig. 5.6. This figure shows how increasing the measurement
uncertainty reduces the sensitivity to noise. In case A.4, the EKF fails to capture the effects of
the second mode (period 0.6s).
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For R̃=1, A.2, in Fig. 5.7 we find that the measurement, z, is not significantly altered by
the EKF internal prediction. Therefore, the resulting h contains the effects of the static
imbalance, giving the NMPC a distorted view of the initial state. For R̃=2e4, A.3, the
effects of the static imbalance are still noticeable, but much less pronounced. We see,
however, that this comes at the cost of some responsiveness, as h is slightly lagged with
respect to zt rue. For R̃=2e6, A.4, this lack of responsiveness is very evident. The state
produced by the EKF does not sufficiently capture the oscillations with a period of∼0.6s
- the period of the second mode in Table 5.2.

5.3.1 The importance of the second mode

The case of A.4 is quite interesting. The problem seems from Fig. 5.7 to be a lack of
information on the second mode. However, the second mode is not modeled in NMPC
and EKF prediction models. Furthermore, it has a period of 0.6s, while the NMPC input
discretization used in Fig. 5.6 and Fig. 5.7 was 0.7s. The frequency of the second mode is
significantly higher than the Nyquist frequency corresponding to the input discretization.
Thus, the NMPC does not "see" the full extent of the second modal vibration. In this
section, we will more rigorously test the importance of whether information on the
higher modes is reflected in σ, σ̇.

To make the analysis more conclusive, we now set external disturbances to zero and
use zt rue as a measurement. To exclude information on the higher modes from σ, σ̇,
we alter the EKF. Instead of an EKF prediction model with one harmonic oscillator, we
instead use two oscillators and discard the states associated with the second, σ2 and σ̇2.
The second oscillator approximates the second mode with parameters as in Table 5.6.

B ξ Ω

1: 10.65 6.3e− 5 1.58
2: 2.65 1.6e− 4 9.55

Table 5.6: Oscillator parameters for EKF with two oscillators.

We attempt the same maneuver as in Section 5.3 with two different EKF schemes.

B.1 EKF1(zt rue), parameters as in Table 5.5: EKF with oscillator approximating the
first mode. The same EKF as A.1, the difference being that external disturbances
are set to zero.

B.2 EKF2(zt rue), parameters as in Table 5.6: EKF with two oscillators approximating
the first and second mode. σ2 and σ̇2 are discarded.

Fig. 5.8 shows the inputs and tip displacements of the two schemes. We clearly see
that the EKF with two oscillators, B.2, shows some of the oscillatory behavior in the tip
displacement as A.4 did in Fig. 5.6.
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B.1: EKF w/ 1 oscillator B.2: EKF w/ 2 oscillators 

Figure 5.8: The same maneuver as in Fig. 5.6, but without external disturbances. B.2 is an EKF
that aims to neglect information on modes higher than the first. We find that this information
should not be filtered out, even though it is of higher frequency than what the NMPC can control
with input discretization 0.7s. The plot of inputs is included to visualize to what extent the
initialization of the virtual oscillator affects the NLP solution.

B.1, B.2 B.1, B.2

Figure 5.9: Same cases as in Fig. 5.8. The PSD of zt rue shows to what extent the flexible modes
are excited. The PSD of h(x̂k|k) shows what part of the frequency spectrum we are actively trying
to control through the initialization of the NMPC prediction model. We see that B.2, which
discards the measurement relating to the higher modes, gives increased excitation of the second
mode.



50 J. Frich: A Nonlinear Model Predictive Controller for flexible satellite attitude control

To better visualize what information σ, σ̇ produced by the EKF with two oscillators is
lacking, we plot the Power Spectral Density (PSD) of h(x̂k|k) in Fig. 5.9. We see that by
discarding the σ2 and σ̇2, we discard most of the higher frequency information. The
two-oscillator EKF scheme is, in essence, a low-pass filter. Observing now the PSD of
zt rue in Fig. 5.9, we find that the lost information only results in increased excitement of
the second mode. The lack of change in the PSDs of the third and fourth modes indicates
that neither scheme effectively utilize information on these modes.

B.1: EKF w/ 1 oscillator 

B.2: EKF w/ 2 oscillators 

Figure 5.10: Same cases as Fig. 5.8. This figure shows that B.2 provides a smooth approximation
of the panel state. But we also see that this causes excitation of the second mode (period 0.6s).

To verify that the worse performance of the two-oscillator EKF, B.2, is not due to, e.g.,
phase lag, we plot zt rue and h(x̂k|k) for both schemes in Fig. 5.10. We see that the B.2
EKF scheme produces what it should - a very smooth approximation of zt rue.

It seems from Fig. 5.10 that B.1 avoids significantly exciting the second mode. That
is, even though the NMPC in B.1 treats the part of z corresponding to the second mode
as if it behaves like the first mode (owing to the oscillator parameters, Table 5.5). We
reason that the NMPC performs better if it is aware of the extent of the vibrations, even
though it may not predict their future behavior very accurately. Or put differently, a good
response to the excitement of the first mode is also a sufficiently good response to that
of the second. Therefore, we conclude that neglecting measurements of the vibrations
of the second flexible mode will result in decreased performance.

The fact that information on the second mode is critical in providing the NMPC
with suitable σ, σ̇ poses an important question. Namely, whether the NMPC prediction
model, PM1, should be expanded with another, higher frequency, oscillator. Based on
the results of Section 5.2, a suitable choice of parameters, B, ξ, and Ω, could be such
that the second oscillator approximates the frequency response of the second flexible
mode in Fig. 5.1. For the NMPC to effectively utilize the extended prediction model,
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the input discretization would likely have to decrease significantly. The computational
burden would therefore increase because the resulting NLP is both more complex and
must be solved more often. Even though assessing computational viability is not the
main aim of this thesis, we will stick with the prediction model, PM1, based on a single
oscillator. The reasoning is that, given some bound on the computational complexity,
having one significant flexible mode which can not be directly controlled could, in all
probability, be an issue if the NMPC controller scheme is to be implemented on a physical
system. We will therefore seize the opportunity to provide insight into the issues caused
by the not directly controllable, but significant, flexible mode.

5.3.2 EKF with two oscillators

Given that we are now looking to include information on the second mode in the es-
timates of σ, σ̇, one modification may be made to the EKF. Instead of one oscillator
approximating the first mode with R̃ low enough as not to neglect all effects related to
the second mode, we may use two oscillators and incorporate the resulting σ2, σ̇2 into
σ1, σ̇1. This approach requires additional knowledge of the flexible dynamics, which
allows for an increased R̃. As proposed in EKF3 of Section 4.2:

σini t = σ1 + aσ2, σ̇ini t = σ̇1 + bσ̇2 (5.2)

where σini t , σ̇ini t are the final product of the filter which is passed as initial conditions
to the NMPC. σ1, σ̇1 and σ2, σ̇2 are the EKF estimates associated with the first and
second oscillator, respectively. a and b are scaling constants. We now define two cases
for comparison:

C.1 Exactly the same as A.3: EKF1(z, R̃= 2e4·I3), parameters as in Table 5.5
C.2 EKF3(z,R̃= 2e7·I3), parameters as in Table 5.6. Eq. (5.2) is used to combine the

two state estimates, with a, b = 11.

Cases C.1 and C.2 are tested on the same maneuver as A.3: Slew from initial orientation
of (−34,24, 0) in XYZ Euler angles to zero, nonzero initial RW angular velocity, and the
external disturbances, τg g and τs, turned on.

To examine whether C.2 has the desired effect, we plot the PSDs of zt rue and h(x̂k|k)
in Fig. 5.11. The choice of scaling constants a, b seems reasonable, as the second mode
seems to be captured to a similar extent in h(x̂k|k) of both C.1 and C.2. We see that
the increased R̃ of C.2 allows for increased rejection of higher frequency content not
targeted by the EKF. Fig. 5.10 shows the same result: the h(x̂k|k) produced by C.2 is
more reactive to oscillations of the second mode, and manages to reject more of the
external disturbances from z.
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C.1, C.2 C.1, C.2

Figure 5.11: PSD of cases C.1 and C.2. External disturbances are turned on. C.2 uses an ad-
ditional oscillator in the EKF prediction model, and combines the estimated parameters by
Eq. (5.2). C.2 effectively filters out most of the measurement information with frequencies higher
than the second mode from h(x̂k|k). The PSD of zt rue indicates a small reduction in excitation of
the first and second flexible modes.

C.1: EKF w/ 1 oscillator 

C.2: EKF w/ 2 oscillators 

Figure 5.12: Same cases as Fig. 5.11. We see that C.2 better captures the second mode, as well
as reduces the amount of high-frequency disturbance, when compared to C.1
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C.1: EKF w/ 1 oscillator 

C.2: EKF w/ 2 oscillators 

Figure 5.13: Same cases as Fig. 5.11. This figure shows that the flexible displacement with C.2
shows less high-frequency oscillation than that of C.1.

In terms of tip displacement, Fig. 5.13 shows that C.2 exhibits somewhat improved
performance when compared to C.1. The difference is, however, not huge. We, therefore,
conclude that the two-oscillator EKF, C.2, is not essential, but rather a nice-to-have when
given sufficient knowledge of the second mode.
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5.4 NMPC parameters: dt and N

In Section 5.2 and Section 5.3, the NMPC input discretization, d t, was set to 0.7s. Fur-
thermore, the horizon was set to 14.7s, giving N = 21. We will see in this section that
this choice, particularly in regard to d t, is by no means trivial. To quantify performance
over the space of feasible d t and N, we again resort to a MC-style simulation.

To quantify performance over the space of feasible d t and N , we again resort to a
MC-style simulation. In the aim of making the MC simulation as conclusive as possible,
we will not include uncertainties on EI or ρ. Furthermore, external disturbances are
not present. As prediction model, we use PM1 with parameters as in Table 5.5. Since
external disturbances are not present, we use the same EKF as in Section 5.2. That is,
EKF1(z, R̃= 1). We remark that this EKF will produce σ and σ̇ that reflect whether the
second mode is excited.

We use MSEτ and MSEq as metrics to judge performance. In contrast to Section 5.2,
the two metrics will be judged separately in this section. That is because, with a constant
NMPC tuning, d t and N directly affect the speed of convergence. We define the space
of various d t and N to be explored as:

N dt

U(5, 30) U(0.05,1.4)

Table 5.7: Probability distributions for MC simulation 3, Fig. 5.14

In this section, we will consider only a slew from (−40,30, 0) XYZ Euler angles to
zero orientation. Results from a simulation campaign with random initial orientation
(5◦ to 60◦ for all Euler angles) are included in Appendix B, but are largely the same as
that of the set slew in this section.

Fig. 5.14 shows the results of the simulation campaign defined by Table 5.7. We
should first note that the MSEq plot is, perhaps, a bit misleading. The higher values
in the upper-right region of the plot do not necessarily indicate a poor choice of d t
and N . For most of these cases, the controllers have simply not yet reached desired
orientation because of an insufficient weighting of the error quaternion in the NMPC.
We also note that excitation of the 3rd-6th modes is largely not reflected in the MSE
metrics in Fig. 5.14. Thus, the observed effects are due to interactions with the first and,
mostly, the second mode.

For both MSEτ and MSEq in Fig. 5.14, we find that performance significantly varies
with d t. We have been able to find the definitive explanation for all of these bands.
However, this section will provide some explanation, starting with the conclusion: The
issue seems to be that the NMPC is unstable if the second mode is unfortunately sampled.
The effects of poor sampling may perhaps be best described as aliasing-like. We should
note that this is not aliasing in the traditional sense of signal processing, as the NMPC
does not have any memory of the dynamics past x ini t . However, if we are providing x ini t
that does not sufficiently capture variation in the second mode over time, the NMPC is
liable to give repeated inputs that further excite the mode.
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Figure 5.14: All 2362 simulations with parameters as in Table 5.7. The color gradient shows the
metrics MSEq and MSEτp

, Eq. (5.1), on a logarithmic scale. The color gradient is clipped at the
15th and 30th percentile, respectively, (lower) and at the 65th percentile (upper). We find that
performance varies significantly with input discretization, d t, while the prediction horizon, N ,
does not show significant anomalies.

For a proper explanation of Fig. 5.14, we define four controllers for comparison:

D.1 EKF2(z,R̃=1), parameters as in Table 5.6. As seen in Fig. 5.9, EKF2 produces a
measurement where most of the frequency content above the controller band-
width is filtered out. d t = 0.7s, N = 20.

D.2 EKF1(z,R̃=1). As seen in Fig. 5.9,EKF1 produces σ and σ̇ that contain informa-
tion on the excitation of the second mode. d t = 0.7s, N = 20.

D.3 Equal to D.2, but with d t = 0.57s, N = 20.
D.4 Equal to D.2, but with d t = 0.4s, N = 20.

To see how the four schemes handle the excitation of the second mode differently, we
initialize the second assumed modal amplitude, η2, to 5e-5. This corresponds to a vibra-
tion, mostly of the second mode, that produces about ±0.5Nm of torque on the satellite
body. We set both the initial and desired orientation to zero. τg g and τs are set to zero.
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We will plot the simulated torque produced by the panel on the x-axis of the rigid body,
τp,x . See Eq. (5.1b) for the definition of τp. We will also define the non-physical torque
that would be produced by the oscillator on the satellite body in PM1, τpm as

τpm = Bσ̈ (5.3)

τp is useful for analyzing to what extent vibrations are exited, without having to analyze
the individual assumed modes. τpm quantifies how much of this vibration the NMPC is
made aware of. If we extract the NMPC decision variables corresponding to the next
input step, we may plot the predicted τpm.

D.1: EKF �lters out higher modes. dt: 0.7, N: 20

D.2: dt: 0.7, N: 20

D.3: dt: 0.57, N: 20

D.4: dt: 0.40, N: 20

Figure 5.15: Initial orientation at zero, no external disturbances. η2 is initialized to 5e-5. The
figure shows the importance of treating the second mode as σ, σ̇ in the NMPC (D.1 vs. D.2),
and the importance of an appropriate input discretization (D.2 vs. D.3/D.4).
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Fig. 5.15 shows the results of the simulation. D.1 shows, similarly to B.2, that the NMPC
is not able to dampen the oscillations of the second mode if the effects of the second
mode are filtered out. For D.2, which has a d t of 0.7s, we see in Fig. 5.15 that the vibra-
tion is sampled at various stages of its cycle. Thus, the NMPC succeeds in dampening the
second mode. We can see that the control actions, visualized by the red segments, are
relatively different from one step to the next. For D.3, the NMPC is exciting vibration in
the second mode. The d t of 0.57s is very close to 0.6s - the period of the second mode.
Thus, the vibrations are sampled, from one input step to the next, at relatively similar
stages in the vibration cycle. This results in a sequence of similar control actions that
further excites the second mode. For D.4, while there is a pattern emerging in the NMPC
predictions, the picture is perhaps a bit less clear. The oscillations grow in magnitude to
nonphysical levels. It seems, also, that the panel is significantly excited by every single
input.

By plotting the LOS error, eLOS from Eq. (2.16), we gain a better picture of how
the three approaches in Fig. 5.15 are affected in terms of attitude. Fig. 5.16 shows that
the lack of a proper response in D.1 gives a relatively small pointing error in terms of
magnitude, but significant oscillations. By closer inspection, we find that the oscillations
have an amplitude of ∼15m after the 40s. For D.2, we see a larger initial deviation from
desired LOS followed by convergence without significant oscillations. For D.3, we see
instability caused by the repeated excitation of the second mode. D.4 has been left out
of Eq. (2.16) as it excites the panels to an extent that conflicts with the underlying
assumptions of the dynamic model, Eq. (2.75).

D.1, dt: 0.7
D.2, dt: 0.7
D.3, dt: 0.57
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Figure 5.16: LOS errors for three of the cases in Fig. 5.15. D.2 handles the excitation of the
second mode better than D.1 and D.3.
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The poor performance in Fig. 5.14 for d t close to the period of the second mode is
perhaps the most easily understandable. In the following subsection, we will attempt to
improve our understanding of the other d t bands of poor performance in Fig. 5.14.

5.4.1 Experimental frequency response of the NMPC

We now aim to better understand if the NMPC scheme is vulnerable to disturbances
at high, specific, frequencies. To approximate the frequency response of the NMPC, we
will perform a series of simulations with a disturbance of increasing frequency. We will
exploit the static imbalance torque, τs, to serve as this disturbance, as it has a frequency
equal to the RW spin velocity. Specifically, we set the initial velocity of the first RW,
which produces a static imbalance torque about the y- and z-axes in the body frame, to
some nonzero value. Initial and desired orientations are both zero. τg g is set to zero.
The simulations were performed using EKF1(z, R̃=1), d t = 0.7s and N = 20.
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Integer multiples of input freq., dt: 0.7s
Avg. LOS error after 20s

Figure 5.17: The response of the NMPC to τs at different frequencies. Without appropriate
filtering, the NMPC does not exhibit desired performance when faced with disturbances at an
integer multiple of the controller frequency, ∼9.1 rad/s in this case.

Fig. 5.17 shows the result of 845 simulations, spanning disturbance frequencies of 0.5-
85 rad/s. We note that since the magnitude of τs increases with frequency, we have
plotted the LOS error on a logarithmic scale. We should also note that the significantly
higher peak at 53.8 rad/s in Fig. 5.17 is likely due to the proximity to the frequency of
the fourth mode at 54 rad/s.

Fig. 5.17 shows that the aliasing-like effects seen in D.3 seem to occur at all integer
multiples of the controller frequency. This is no issue in terms of robustness for frequen-
cies above that of the second mode as this content is, as seen in Fig. 5.9, not properly
utilized by the NMPC. Thus, we apply filters to ensure that this frequency content is not
made available to the NMPC. In the case of the second mode, however, filtering is not a
viable option, as shown in Fig. 5.10 and Fig. 5.16. We must, therefore, select a NMPC d t
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such that the frequency of the second mode is not an integer multiple of the controller
frequency. This reasoning would explain the poor performance for d t ≃ 1.2 in Fig. 5.14.
It does not, however, explain the poor performance of, e.g., D.4 in Fig. 5.15. We spec-
ulate that while Fig. 5.17 shows unfavorable reactions to a high-frequency disturbance,
we have yet to adequately explain when a poor choice of d t results in unfavorable in-
teractions with the second mode.

5.4.2 Robustness in the choice of input discretization

In Section 5.4 and Section 5.4.1, we partly managed to explain how certain choices of
input discretization result in poor performance. However, from an engineering perspec-
tive, finding a robust choice of input discretization is perhaps of greater importance.
Therefore, we now attempt the MC-style simulation in Table 5.7, but with uncertain-
ties in EI and ρ. All other parameters are the same as for Fig. 5.14. Using the same
uncertainties for EI and ρ as in Table 5.3, we have:

N dt EI ρ

U(5,30) U(0.05, 1.4) N (100,8) N (2.5,0.1)

Table 5.8: Probability distributions for MC simulation 4, Fig. 5.18
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Figure 5.18: All 1992 simulations with parameters as in Table 5.8. The color gradient shows the
metrics MSEq and MSEτp

, Eq. (5.1), on a logarithmic scale. The color gradient is clipped at the
15th and 30th percentile, respectively, (lower) and at the 65th percentile (upper). The figure
shows the same maneuver as in Fig. 5.14, but with uncertainties in the flexible dynamics. We
find that an input discretization of ∼0.7-0.9s is the most robust.
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Fig. 5.18 shows a region of reliable performance with input discretizations of ∼0.7-
0.9s, and a prediction horizon over 15. We should also note that though the physical
parameters of the flexible panels may not be perfectly known, they are constant. Thus,
finer adjustments of d t after launch are possible.

5.5 Reaction wheel management

We have now established that the NMPC should approximate the first mode (Section 5.2),
which should be initialized based on a measurement of both the first and second modes
(Section 5.3). In our case, the measurement should include frequency content up to
∼ 12 rad/s, as to include the second mode with some margin. Furthermore, we have
seen that the NMPC is sensitive to high-frequency vibrations, specifically those of the
static imbalance torque (Section 5.4). Static imbalance torques with a frequency above
12 rad/s may be filtered out from the initialization of PM1 in the NMPC. However, fil-
ters targeting disturbances of frequencies lower than 12 rad/s are not desired, as these
would interfere with the accuracy in the initialization of σ and σ̇.

In this section, we will utilize NMPC2 and NMPC3 to avoid RW velocity convergence
to the < 12 rad/s frequency range, as well as in the regions around ±27.8 rad/s - the
frequency of the third mode. To filter out the effects ofτs for all RW withωbw > 12 rad/s,
we utilize a set of notch filters as described in Section 4.2.1. The filters are applied to the
measurements of z and ωb

ob. Notch filters alter the phase of frequency content higher
than the targeted frequency, as evidenced by Fig. 4.2. Therefore, we will also apply notch
filters to the modal frequencies of the 3rd-6th modes, as listed in Table 5.2. All notch
filters are applied after 5s, so the array of past measurements may be initialized. We
now define three cases for comparison:

E.1 NMPC1 , EKF3(z, R̃= 2e7) with notch filters.
E.2 NMPC2 , ωγ = [0, 27.8, -27.8]. EKF3(z, R̃= 2e7) with notch filters. Γ set to zero

after 40s.
E.3 NMPC3 , with ωγ = [0, 27.8, -27.8]. Rnull = 5e-10. EKF3(z, R̃= 2e7) with notch

filters. Contains the null space input component. Γ set to zero after 40s.

For both E.2 and E.3, we use Γ parameters of a = 1e-4, a f = 1e-2. b = 5e-2 for ωγ = 0
and b = 1 for ωγ = ±27.8. See Eq. (4.12) for the structure of the penalty term Γ .
Furthermore, we switch off the Γ term when nearing convergence, after 40s for both
E.2 and E.3. The reasoning is that Γ is a smooth function, and could interfere with the
convergence in q when is q small. A more robust criterion than "after 40s" could be
formulated but was not deemed necessary for our purposes.

We initialize the satellite orientation at (−30,−20, 0) in XYZ Euler angles, with zero
as desired orientation. The RW velocities are initialized at [35, 10.5, -10.5, -20]. The
NMPC parameters are d t = 0.7s, N = 20.
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E.1: No RW management E.2: RW management E.3: RW management, w/unull 

Figure 5.19: Input and tip displacements for E.1, E.2 and E.3. E.2 and E.3 attempt RW man-
agement through the Γ penalty term from Eq. (4.12). E.3 is an NMPC with a reduced penalty on
movement in the RW null space. The tip displacements indicate that RW management does not
have a large effect on the state of the panels.

Fig. 5.19 shows inputs and tip displacements for the three cases. All three cases converge
at roughly the same time. The input profile of E.2 and E.3 are somewhat different than
that of E.1. The RW velocities after 70s are found in Table 5.9.

E.1: [28.07, 16.26, -9.63, -24.77]
E.2: [21.11, 23.24, -16.61, -17.79]
E.3: [20.69, 23.65, -17.03, -17.36]

Table 5.9: ωw
bw at t = 70s for the three cases. In rad/s.

Table 5.9 shows that E.2 and E.3 find roughly the same solution, with ωw
bw sufficiently

distant from both±10.5 and±27.8 rad/s. E.1, however, converges to one wheel velocity
just above the third mode (28.07 rad/s) and one just below the second mode (-9.63
rad/s). The notch filter scheme presented earlier in this paragraph does not include -
9.63 rad/s, thus the effect of this disturbance will be reflected in the σ, σ̇ passed to the
NMPC.

Fig. 5.20 shows z, zt rue and h(x̂k|k) for the three cases. Firstly, we find that the notch
filters are effective in filtering out external disturbances for all three schemes, evidenced
by the difference between z and h(x̂k|k). In E.1, we find in zt rue a sustained excitation of
the third mode. We also observe small oscillations in h(x̂k|k), found on closer inspection
to have a frequency of ∼ 9.75 rad/s. The larger oscillations in h(x̂k|k), with a period of
∼ 10s are likely caused by the response of the NMPC.
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E.1: No RW management

E.2: RW management

E.3: RW management, w/unull 

Figure 5.20: Measurement, true measurement and EKF observation function for E.1, E.2 and
E.3. When comparing z and h, we observe that the notch filters function as intended. E.1, which
does not converge to desired RW velocities, is visibly more excited.

E.1
E.2
E.3

Figure 5.21: LOS as defined in Eq. (2.16) for the three cases of Fig. 5.19. We see the effects of
the disturbances in h of E.1, as displayed in Fig. 5.20. E.2 and E.3 converge with fairly good
precision.
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Fig. 5.21 shows the LOS error of the three cases after t = 45s. The improvement in the
performance of E.2 and E.3 is clear. This, however, comes at a cost. Fig. 5.22 shows
the computation time of each NLP for the three schemes. Including the Γ penalty term
results in a threefold increase in the computational time for E.2 and E.3 at the begin-
ning of the maneuver - when the solution is the most difficult. Comparing E.2 and E.3,
we find no definitive reduction in computational cost by including the null space input
component. Furthermore, though not covered by any of the figures, we find that unull
is barely used (peak 0.02Nm at ∼ 12s). By these two factors, we conclude that includ-
ing unull in NMPC3 is unnecessary. We reason that the NMPC input weight, R, is likely
already sufficiently low in NMPC2 .

E.1
E.2
E.3

Figure 5.22: NMPC computation times of the three cases in Fig. 5.19. Both controllers with the
Γ penalty term, E.2 and E.3, are more computationally complex than E.1. Compared to E.2, we
see no definitive improvement with the null space input component in E.3.
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5.6 Simplified prediction models

To compensate for increased computational complexity caused by penalty terms such as
Γ , certain simplifications may be made to the NMPC prediction model. Specifically, we
will compare the three prediction models defined in Chapter 4. We recall that PM2 is a
prediction model in which ω̇w

bw is decoupled from ω̇b
ob, and PM3 is a simplification of

PM2 that neglects the RW gyroscopic effect. We define three cases:

F.1 NMPC1 with PM1. EKF3(z, R̃= 2e7) with notch filters.
F.2 NMPC1 with PM2. EKF3(z, R̃= 2e7) with notch filters.
F.3 NMPC1 with PM3. EKF3(z, R̃= 2e7) with notch filters.

The maneuver to be performed is one from an initial orientation of (−50,40, 40) in
XYZ Euler angles to zero. The initial RW velocities are [110,110,-110,-110] rad/s. The
trajectory is designed such that we achieve large ω̇b

ob, and saturate multiple RWs.

F.1: Prediction model 1 F.2: Prediction model 2 F.3: Prediction model 3

Figure 5.23: Inputs and tip displacements for F.1, F.2 and F.3. The neglection of RW gyroscopic
effect in F.3 seemingly makes convergence difficult.

Fig. 5.23 shows the inputs and tip displacement for the three cases. F.1 and F.2 converge
in about 40s, while F.3 converges in about 70s. The input profile of F.3 is less coordinated
than that of F.1 and F.2. F.3 also causes increased tip displacement.
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F.1: Prediction model 1 F.2: Prediction model 2 F.3: Prediction model 3
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Figure 5.24: Projected line of sight, in kilometers from the target, for the same maneuvers as in
Fig. 5.23. The six colors give an indication of time passed. The background from Google Earth
is meant to provide intuition but is not exact. F.3 does not converge as efficiently as F.1 and F.2.

F.1: Prediction model 1
F.2: Prediction model 2
F.3: Prediction model 3

Figure 5.25: LOS errors after t=60s. No significant difference between F.1 and F.2. F.3 does not
reach the target within the 100s.

Fig. 5.24 shows the LOS as projected on Earth. We recall that eLOS does not account
for the curvature of the Earth. Thus Fig. 5.24 is not exact. However, we see clearly that
F.3 attempts an approach much different from that of F.1 and F.2. In turn, F.3 struggles
to converge efficiently. Fig. 5.25 shows that convergence without knowledge of the RW
gyroscopic effect is difficult even for small ω̇b

ob when ω̇w
bw is large. F.3 does not manage

to fully converge within 100s, in contrast to F.1 and F.2.
Fig. 5.26 shows the NMPC step computation times with the three different prediction

models. We find that F.2 reduces computational complexity by about one-third when
compared to F.1. F.3 is naturally the most computationally efficient. But as shown in
Fig. 5.24 and Fig. 5.25, the decrease in performance is quite substantial.
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F.1: Prediction model 1
F.2: Prediction model 2
F.3: Prediction model 3

Figure 5.26: Computation times for the same maneuvers as in Fig. 5.23. We find that F.2 signif-
icantly reduces the average computation time when compared to F.1. F.3 also gives a decrease
in computational complexity, but the solution is comparatively more difficult for a longer time.

F.1: Prediction model 1

F.2: Prediction model 2

F.3: Prediction model 3

Figure 5.27: Figure shows a section in time of the maneuvers in Fig. 5.23, when all control
schemes are at saturation in ωw1. The grey dashed line is the constraint on RW velocity. As F.2
and F.3 lack dynamics of ω̇w

bw, the constraint is initially more violated (5.6s).

Since the dynamics of ω̇w
bw are not as accurate in F.2 as F.1, one potential issue could be

that of violating the ωw
bw, max constraint. Fig. 5.27 shows the velocity of RW one, ωw,1,

for the duration it is saturated. We see that we have some constraint violation for all
three cases since ω̇w

bw is coupled to ω̇b
ob, which experiences disturbances. Furthermore,

we find that both F.2 and F.3 cause some violation when the constraint is first approach
(5.6s). However, the violations are no larger than those seen in F.1. We thus conclude
that, for all three prediction models, ωw

bw, max should be set with some small margin.
Evidenced by all figures in this section, F.2 shows no flaws compared to F.1. We,

therefore, conclude that the use of PM2, as in F.2, is as sufficient as PM1. F.3 does provide
a decrease in computational complexity but compares unfavorably in performance.
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5.7 Desaturation

We will now demonstrate the desaturation scheme of NMPC4. We recall that the thruster
torques are not decision variables of the NMPC. Instead, we pass knowledge of the equiv-
alent body thruster torques to the NMPC as parameters in p. This way, the NMPC may
efficiently prepare for and react to τt . To demonstrate the saturation scheme, we define
four cases. No thrust is applied in G.1, such that we may compare how the addition of
some τt affects the execution of the maneuver.

G.1 NMPC1 with PM1. τt,x = 0Nm, no thrust applied. EKF3(z, R̃= 2e7) with notch
filters.

G.2 NMPC1 with PM1. From 2.1s to 9.8s: τt,x = −1Nm, the NMPC is not aware of
the thrust. EKF3(z, R̃= 2e7) with notch filters.

G.3 NMPC4 with PM1. From 2.1s to 9.8s: τt,x = −1Nm, pi,x = −1Nm, the NMPC is
perfectly aware of the thrust. EKF3(z, R̃= 2e7) with notch filters.

G.4 NMPC4 with PM1. From 2.1s to 9.8s: τt,x = −1Nm, pi,x = −0.9Nm, the NMPC is
imperfectly aware of the thrust. EKF3(z, R̃= 2e7) with notch filters.

pi,x denotes the parameters corresponding to some input step i about the x b axis. In
G.4, the NMPC is given a pi,x that is not exactly equal to τt,x . The maneuver to be
completed is a slew from an initial orientation of (−30,30, 0) in XYZ Euler angles to
zero. The initial RW velocities are [110, 110, -110, -110] rad/s. The τt applied is one
of -1Nm about x b from over 14 input steps, from 2.1s to 9.8s. The NMPC pararmeters
are d t = 0.7s and N = 20.

G.1: τt=0Nm G.2: τt=-1Nm, p=0Nm G.4: τt=-1Nm, p=-0.9NmG.3: τt=-1Nm, p=-1Nm

Figure 5.28: Inputs and tip displacements for G.1, G.2, G.3 and G.4. Passing knowledge of τt as
NMPC parameters in G.3 and G.4 does not significantly impact the execution of the maneuver.
In G.2, where τt is treated as a disturbance, we find significantly more excitation of the flexible
dynamics.
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Fig. 5.28 shows the inputs and tip displacements for the four cases. G.1 serves as a
comparison to the three other cases. In G.2, τt is essentially treated as an unmodelled
disturbance. The figure shows relatively large flexible displacements, particularly just
after τt returns to zero. Both G.3 and G.4 manage to converge at about the same time
as G.1 without excessive excitation of the panels. We see from the input that both react
promptly to the two changes in τt . The difference between G.3 and G.4, G.4 being the
case in which the NMPC is aware of only 90% of τt , is relatively small.

G.1: [97.86, 127.38, -92.60, -118.42]
G.2: [41.27, 134.86, -41.60, -90.02]
G.3: [58.87, 120.04, -24.17, -108.18]
G.4: [54.89, 123.51, -28.10, -104.25]

Table 5.10: ωw
bw at t = 40s for the four cases. In rad/s.-30, -30, 0 XYZ Euler ang.

Table 5.10 shows the ω̇w
bw at t=40s for the four cases. As expected, the desaturating

torque about x b results in lower wheel speeds for the first and third wheels.
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Figure 5.29: Computation times for the maneuvers in Fig. 5.28. We find no significant increase
in computational complexity by the introduction of parameters in G.3 and G.4 when compared
to G.1.

From Fig. 5.29, it is clear that the introduction of p comes at no significant computational
expense. The lack of p in G.2 makes convergence more complex, resulting in longer
computation times.
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5.8 Prospects for future work

The main result of this thesis is that an NMPC with a properly designed prediction model
based on a single virtual state harmonic oscillator is sufficient, both in performance
and computational complexity, for attitude control of flexible satellites. However, the
implication of this result in terms of improved agility is somewhat uncertain because
this thesis lacks a proper comparison with an alternative control scheme. Future work
should include a comparison with an alternative controller, e.g., H∞, designed with the
same level of care as the NMPC in this thesis.

We also acknowledge that accurate initialization of the virtual oscillator state, as de-
scribed in Section 5.3, is vital to the robustness of the NMPC scheme as presented in this
thesis. Therefore, how the NMPC reacts to noisy measurements should be investigated
further. The approach of estimating the prediction model initial states from a measure-
ment of the satellite’s angular acceleration might prove to be too ambitious. In that case,
future work should investigate whether alternative measurements, for example through
piezoelectrics or accelerometers mounted directly on the panels, are more appropriate.

Furthermore, we acknowledge that the model of the flexible dynamics is based on
a fair number of assumptions, see Section 2.5.3. The performance of the NMPC scheme
should also be evaluated on a more accurate simulation model such as one based on the
Finite Element Method. Furthermore, the parameters of the specific flexible structure
in this thesis, as well as their uncertainties, are not based on any one preexisting satel-
lite. Future work should more rigorously define the flexible structure and its associated
uncertainties, such that the performance of the NMPC scheme for uncertainties in the
flexible dynamics may be extensively evaluated.





Chapter 6

Conclusion

In this thesis, we have designed a Nonlinear Model Predictive Controller for the atti-
tude control of flexible satellites. The controller was tested on a nonlinear model of
the flexible dynamics, derived using the Assumed Modes Method and Lagrange’s equa-
tions. We have shown that a prediction model based on a single virtual oscillator that
approximates the first flexible mode gives desired performance. Furthermore, we have
shown that we may avoid excitation of the second flexible mode by actively targeting
its frequency in the Extended Kalman Filter and choosing an appropriate NMPC input
discretization. We have also analyzed the performance and computational complexity
of the NMPC for two simplified prediction models. Lastly, we have demonstrated how
to integrate RW management and desaturation into the NMPC scheme.
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Appendix A

Model-related integrals

The integrals that partly make up M, K, C are listed below for the particular case of
L = 4, ℓ = 0.5 and k = 6. The evaluations were performed using the Python library
SymPy, and are rounded to one decimal point.

∫ 4

0

(s+ 0.5)φk ds :















36.3
−82.1
217.6
−358.5
585.9
−819.1















,

∫ 4

0

(s+ 0.5)2 ds = 30.3 (A.1)

∫ 4

0

∂ 2φk1

∂ 2s

∂ 2φk2

∂ 2s
ds :















2.3 −6.1 13.7 −24.4 38.1 −54.8
−6.1 36.5 −54.8 97.4 −152.2 219.2
13.7 −54.8 184.9 −219.2 342.5 −493.1
−24.4 97.4 −219.2 584.5 −608.8 876.7
38.1 −152.2 342.5 −608.8 1426.9 −1369.8
−54.8 219.2 −493.1 876.7 −1369.8 2958.8















(A.2)

∫ 4

0

φk1
φk2

ds :















46.6 −110.7 281.6 −470.7 762.3 −1071.8
−110.7 273.1 −675.2 1136.2 −1831.7 2582.6
281.6 −675.2 1710.5 −2856.8 4623.7 −6502.8
−470.7 1136.2 −2856.8 4790.8 −7738.3 10894.2
762.3 −1831.7 4623.7 −7738.3 12519.1 −17610.6
−1071.8 2582.6 −6502.8 10894.2 −17610.6 24788.7















(A.3)

79





Appendix B

MC simulation of dt and N with
random initial orientation
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Figure B.1: The figure shows the same result as Fig. 5.14, but for randomly generated
initial orientations. 1474 simulations.
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