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Abstract

Human-made pollution is a large and growing problem on a global scale. This manifests
all around the world, with one specific case being the accumulation of plastics and other
non-biodegradable trash in oceans, rivers and lakes. The consequences of this ranges from
death of marine life to the irreversible introduction of micro-plastics in our environment.
As the sources for the trash are many, the solutions needed to counteract the problem also
have to be varied.

This thesis aims to contribute to such a solution, where the final product is intended
to be an Unmanned Surface Vehicle (USV) capable of collecting trash in sheltered waters
such as harbours. The focus of the thesis is how an USV can detect and track floating
trash while operating autonomously. The thesis first provides a review of current USV
solutions that have been proposed or developed, as well as relevant technology used in
maritime settings that could be leveraged to better performance. A complete system for
the detection and tracking of trash is developed, using a sensor-suite consisting of LiDAR
and a monocular camera mounted on an USV. The system utilizes a pre-trained Yolov7
model for object detection, an established georeferencing method and a tailored LiDAR
filtering process. Measurements from the sensors (modalities) are fused together using a
Joint Probabilistic Data Association filter (JPDA) to produce tracks in a geodetic reference
frame. Efforts were done to synchronize and unify data from different sources. However,
due to weaknesses in the capture setup some manual synchronization had to be performed.

The performance of the overarching system and the individual sensors were validated
using three datasets that were acquired as part of the thesis. It was shown that the methods
implemented for both the camera and the LiDAR had merit as detectors, however each with
its own weaknesses. The georeferencing method was shown to be sensitive to offsets in
pose and orientation, and performed worse further away from the sensor. The LiDAR used,
VLP-16, lost sight of objects due to low vertical resolution, also more prevalent further
from the sensor. The JPDA filter showed great promise both in fusing measurements into
consistent tracks and keeping the established tracks even in less than ideal-scenarios. A
test in an uncontrolled environment at Brattørkaia showed that the system was able to track
objects on the water surface while the USV was undergoing movement.
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Sammendrag

Menneskeskapt forurensning er et stort og økende problem på global skala. Dette mani-
festerer seg over hele verden, hvor en spesifikk situasjon er akkumuleringen av plast og
annet ikke-nedbrytbart avfall i hav, elver og innsjøer. Konsekvensene av dette strekker
seg fra død av maritimt liv til den irreversible introduksjonen av mikroplast i miljøet vårt.
Ettersom kildene til søppelet er mange, må også løsningene for å motvirke problemet være
varierte.

Denne avhandlingen har som mål å bidra til en slik løsning, der det ferdige produktet
skal være et Ubemannet Overflatefartøy (UOF) i stand til å samle opp søppel i skjer-
mede farvann som havner. Fokuset i avhandlingen er hvordan et UOF kan oppdage og
spore flytende søppel under autonom drift. Avhandlingen går først gjennom nåværende
UOF-løsninger som er foreslått eller utviklet, samt relevant teknologi som brukes i mar-
itime omgivelser og kan utnyttes for å forbedre ytelsen. Et komplett system for deteksjon
og sporing av flytende søppel blir utviklet, basert på en sensorplatform bestående av Li-
DAR og et monokulært kamera montert på en UOF. Systemet benytter en forhåndstrent
Yolov7-modell for objektdeteksjon, en etablert metode for georeferering og en spesialisert
LiDAR-filteringsprosess. Målinger fra sensorene (modalitetene) fusjoneres ved hjelp av et
Joint Probabilistic Data Association-filter (JPDA) for å produsere spor i en geodetisk refer-
anseramme. En innsats ble gjort for å synkronisere og forene data fra forskjellige kilder.
På grunn av svakheter i data-oppsamlingen måtte det i tillegg synkroniseres manuelt.

Ytelsen til det overordnede systemet og de individuelle sensorene ble validert ved hjelp
av tre datasett som ble samlet som en del av avhandlingen. Det ble vist at metodene
som ble implementert for både kameraet og LiDAR-en hadde potensiale som detektorer,
men hver med sine egne svakheter. Metoden for georeferering viste seg å være følsom
for forskyvninger i posisjon og vinkel, og skalerte dårlig ved store avstander. LiDAR-en
som ble brukt, VLP-16, mistet oversikt over objekter på grunn av lav vertikal oppløsning,
noe som også var mer utbredt lengre vekk fra sensoren. JPDA-filteret ble vist å være
lovende både når det gjaldt å fusjonere målinger til konsistente spor og for å opprettholde
de etablerte sporene selv i mindre ideelle scenarioer. En test i et ukontrollert miljø på
Brattørkaia viste at systemet var i stand til å spore objekter på vannoverflaten når UOF-en
var i bevegelse.
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Preface

This thesis concludes a M.Sc. degree for the Cybernetics and Robotics study program at
the Norwegian University of Science of Technology. It is written in collaboration with the
company Clean Sea Solutions. Some of the key methods used in the specialization project
fall 2022 (Vormdal (2022)) is carried over and applied in a new framework. I would like to
extend my gratitude to my supervisor Håkon Hagen Helgesen for providing crucial guid-
ance and feedback throughout the project. I also want to thank my co-supervisor Gulleik
Lundtorp Olsen at Clean Sea Solutions for his valuable insights and help in acquiring the
datasets. This project is part of a larger undertaking to develop the Aquadrone v2, in-
tended to be a fully autonomous USV for trash collection. It is developed around the USV
platform Otter supplied by Martime robotics. The final experimental test was intended to
include ground-truth measurements for validation. However, due to large synchronization
issues originating from the USV platform, weaknesses in the testing setup and limited
availability of the equipment, no viable ground-truth data could be acquired.
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1
Introduction

Industrialization and globalization have undeniably improved the standard of living for
most countries on Earth. However, with this improvement new environmental challenges
have appeared. Many of these challenges will require the combined effort of the global
community to develop solutions and counteract changes before irreversible damage is done
to the planet. One such challenge is trash following waterways out into the ocean. Here
it can harm marine life and decomposes over time into smaller particulates, microplastics.
In an effort to counteract this process several solutions have been proposed, ranging from
collection at sea, passive river waste collectors to more autonomous solutions. The main
intent of this thesis is to expand on the latter by researching, developing and integrating
a system for autonomous detection and tracking of floating trash using a tailored set of
sensors. The thesis is written in collaboration with Clean Sea Solutions AS, which aims to
develop a fully autonomous Unmanned Surface Vehicle (USV) based on the Otter platform
from Maritime Robotics AS.

1.1 Background

Plastic waste accumulation is an increasing problem on a global scale. Due to the non-
biodegradable nature of plastics the trash that ends up in nature will remain there for
thousands of years or until humans makes an effort to clean it up. In 2019 alone it was es-
timated that 460 million tons of plastic was produced. A significant amount of this would
end up polluting the environment (OECD (2022)). Due to the fact that many of the largest
cities in the world lie along waterways or rivers much of this trash will also find its way to
the open ocean (Jambeck et al. (2015)). Here it will follow the currents across the planet,

1



1 Introduction 1.1 Background

accumulating in some areas such as the Great Pacific Garbage Patch, depositing along
beaches or degrading into particulates by the wear and tear of the ocean. Even the most
inaccessible places on Earth are not safe, with scientist finding plastic waste in places such
as the Mariana trench (Gibbens (2021)) or the Antarctics (Doyle (2018)). Beside the obvi-
ous eyesore plastic waste in the ocean can have grave consequences, both now and in the
future. In an extensive literature search conducted in 2015 (Gall and Thompson (2015))
it was found that 54 % of marine mammals, 56 % of seabirds and 100 % of sea turtles
observed in the literature had either ingested or was entangled with plastic pollution. This
was also a drastic increase from a similar study in 2007. Furthermore it impacts local
communities in beach zones, many having the tourism industry as their main source of
income. There are also unknown factors that might have consequences for generations to
come. In recent years scientist have seen an increase in the prevalence of microplastics in
human bodies. (Prata et al. (2020)) The long term effects of this accumulation is not well
known, and could potentially pose a health risk. Due to these factors there is a large global
incentive to both reduce the amount of waste reaching the ocean as well as collecting what
is already present. Unfortunately the incentives are much smaller on a national scale, as
investments into collecting infrastructure or trash handling facilities on land requires large
economic commitments. Solutions that could reduce the cost, labor effort and maintain-
ability over time are therefore a key component in making progress in these areas. One
such solution is to use autonomous systems to collect trash at different stages in the cycle,
with the meeting point of rivers and oceans naturally being one of the most viable areas.
The field of autonomous USVs is still in its infancy, USVs in the niche field of collecting
trash even more so. Several entities have taken on the challenge, such as the non-profit
The Ocean Cleanup (Ocean Cleanup (2023)). This thesis is written in cooperation with
Clean sea Solutions AS, which aims to enable smaller entities such as companies or local
government to have access to advanced water cleaning technology. In that pursuit a sys-
tem for the USV-platform Otter by Maritime robotics is currently in development, with the
goal being a fully autonomous vehicle that can locate, collect and deposit floating trash in
harbour-areas while being aware of its surroundings.

2



1 Introduction 1.2 Problem description

1.2 Problem description

This thesis aims to explore the trash detection and tracking problem. This entails deter-

mining which sensor package is viable, how this sensor data should be processed and con-

necting the mathematical framework relating sensor measurements both local and global

reference frames. A modular software system based on the findings is to be designed and

implemented, and then tested on real life data captured from the USV platform. A fully
autonomous USV specialized in surface cleaning will need several components to work in
collaboration to achieve its goal. Beside the control elements common to all USVs such
as propulsion, control design and control allocation, the system will also need a method
to collect trash in the immediate vicinity. Furthermore, a sub-system that can direct the
vehicle to the next piece of trash is needed. The first has been tackled in several different
ways, ranging from grippers and nets to conveyor belts. The navigation component can be
done by something as simple as a pre-determined path set by an operator under installa-
tion, but this solution does present several limitations. The first limitation is that the trash
is not static on the surface, but will move with the currents. A rigid grid-path will therefore
not be guaranteed to result in a successful catch. The second is that the system have little
or no recourse if anything interferes with the planned path, which is to be expected in an
active port. To work around these problems the USV needs to be able to be aware of its
surroundings by using sensors, process the incoming data and make decisions based on
some form of heuristic. In addition the USV should be able to determine if there is trash
in the vicinity and keep a track of the trash over time.

1.3 Delimitations

The main delimitation of this thesis is the focus on the detection and tracking of floating
trash. This is due to the many different areas that has to be covered to reach a functional
system, many of which can be considered complex systems in their own right. There is
also a delimitation regarding the implementation of object detection in a camera stream,
as this is being developed in parallel at Clean Sea Solutions AS. Therefore, a suitable trash
detector is assumed to be available and working. The intended final contribution of this
thesis can be considered two distinct ”black boxes”, the first taking in sensor measure-
ments, doing any necessary processing and returning detection coordinates. This is fed
into the second box, the tracker, and returns relative position tracks in geodetic (global) or
NED-coordinates. This methodology is illustrated in Figure 1.1.

3
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Measurement
processor Tracker

LiDAR

Camera

GNSS

Detection (x,y) Tracks (X, Y)

X,Y = Global coordinates

x, y = Relative coordinates

Point cloud

Pos (lat, long)

i i

Objects (x , y )
i i

x , y  = Image coordinates

Figure 1.1: Black box overview of the intended system

1.4 Structure of the report

A brief description of each chapter is presented below:

• Chapter 2: Literature review
Reviews some of the most relevant implementations of trash collecting USVs, as
well as papers on the use of sensors and filters in a maritime environment, with
focus on autonomous use-cases.

• Chapter 3: Theory
Presents the theory needed to understand how the system is implemented, with a
focus on following the path from raw sensor data to tracking output.

• Chapter 4: Methodology
Presents the hardware used in the thesis as well as an overview of the datasets col-
lected. Also presents the evaluation metrics that were used to measure the perfor-
mance of the system.

• Chapter 5: Implementation
Presents the main software tools used, some of the main design and implementation
considerations and the code implementation of the main modules of the system.

• Chapter 6: Results
Presents the results for sensor specific metrics and overall system performance.

• Chapter 7: Discussion
Explores how the system performed according to evaluation metrics. Determines
weaknesses and strengths of the system and identifies areas of improvement.

4
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• Chapter 8: Conclusion and future work
Summarizes the main results and findings of the thesis. Presents some ideas for how
one could build upon the thesis to improve aspects such as performance, reliability
and system validation.

5



2
Literature review

As the implementation of a USV for trash collection is multifaceted, a literature review
of the field also has to explore several research fields. The main goal of this chapter is to
identify existing solutions and what their their weaknesses and strengths are. Furthermore,
technology that could be used as viable alternatives are explored, presented and discussed.
The chapter first presents the scope of the review, then categorizes and presents current
solutions, before finally diving into novel approaches. As the field of autonomous trash
collecting USV’s is niche the amount of directly related literature is limited. It is therefore
viable to assess and present the main types of solutions that have been explored in various
papers and which were available during the writing of this thesis. As sensors packages and
their use-cases are extensive the viable technology aspect is limited to solutions that are
proven to work in an USV setting, or are directly related to the viability of relevant sensors
in a maritime setting.

2.1 Trash collector USVs

Several trash collector USVs have been produced and several trash collecting papers have
been published. A natural separation presents itself based on the amount of external input
that different solutions require as well as the system complexity. This thesis therefore
separates between the three groups, Remotely operated, Limited automation and Fully
autonomous, based on autonomy level both when looking at the solutions themselves and
when analyzing other relevant technology that could be integrated into such a system. An
illustration of the different categories can be seen in Figure 2.1.

Remotely operated is as the name suggests based on human operator inputs. In Akib

6



2 Literature review 2.1 Trash collector USVs

Remotely operated Simple automation Fully autonomous

Trash Obstacle
Planned path
Corrected path

Figure 2.1: Illustration of the differences between the categories used to classify USV trash col-
lection systems in the literature review. Simple automation does not include situational awareness.
As such any deviation in the expected environment, such as an obstacle in the pre-planned path, can
lead to system failure.

et al. (2019) a solution based on remote control over Bluetooth was prototyped, imple-
mented and tested. Two other remotely operated prototypes were presented in Satheesh
et al. (2020) and Khawaja et al. (2020). All three papers show that remotely operated USVs
is a viable option to collect floating trash. However, the focus of the papers is mainly on
creating an USV that can collect trash, and the drawbacks of the approach was not ex-
plored. Some obvious shortcomings can however be deduced from the papers. One of
the main limitations of the remotely operated USVs is that they are not capable of making
any decisions without direct human supervision, requiring a human operator at all times.
Another drawback that the authors of Gao and Fu (2020) experienced was that there were
limitations on range due to communication requirements. This limitation could also prove
significant, especially if the range of the USV is to be outside of the line of sight of the
operator, requiring a wireless video-stream.

Simple automation describes the USV solutions where the USV are capable of de-
tecting and collecting floating trash in real time without outside intervention. They are
separated from Fully autonomous due to lack of situational awareness and autonomous
decision making beside actual trash capture. Li et al. (2020) presented a solution based
on detecting trash using a camera and a modified YOLOv3 object detection method. The
paper presents two experiments, the first showing that using YOLOv3 was a viable option
for detecting and identifying floating trash. The second experiment was a field test where
the goal was to detect, approach and grab trash. The approach was controlled by a simple
algorithm, with the USV moving forward while adjusting the heading to keep the trash

7



2 Literature review 2.1 Trash collector USVs

aligned with the centre of the image. When the approach was completed the USV picked
up the trash with a robot manipulator. The experiment was performed successfully, show-
ing that trash could be collected according to this methodology. Although the experiment
was a success several challenges present themselves. The first is that the USV had no
further autonomous capabilities than detecting trash within field of view of the camera. If
no trash was present it would ”cruise on the water surface with a random path.” This ap-
proach is therefore highly sensitive to unknown obstacles and reliant on trash within sight
of the camera to operate as intended. Another challenge is dynamic changes in the envi-
ronment such as weather, lighting conditions, boat traffic or other external disturbances.
This can interfere with intended operation by obstructing the camera or moving the trash
to be collected, neither of which this USV has any redundancy for.

Fully autonomous are the systems that integrates a full solution for litter collection
without humans in the loop. This includes, but is not limited to, trash detection, trash
collection, situational awareness, autonomous decision making and autonomous control.
One such example was presented in Chang et al. (2021), where the trash detection was
performed using a vision based system and collection was done using a simple heading
controller. In addition an object avoidance system was integrated based on ultrasonic sen-
sors and a water quality sensor suite was installed. Field tests were performed to validate
the system. The obstacle avoidance was shown to perform as expected. The experiment
to test the viability of the water surface cleaning method gave a collection rate of 70% or
above depending on direction and distance from the image sensor, again pointing to vision
based collection system having merit.

Another example was published in Zhang et al. (2021a), where the USV integrated
path following and trash detection working in tandem to clean an area autonomously. The
trash was collected using guiding rods that fed into a collection bag. LiDAR was used
for obstacle avoidance, resulting in a solution that could account for its surroundings and
cover a larger area. The USV was tested in a pool environment, with real river and reservoir
environments left as future work.

The path planning method was further explored in Zhu et al. (2022), where measure-
ments from camera and millimeter-wave radar were fused based on the procedure de-
scribed in Cheng et al. (2021) and used for both object and obstacle detection. The path
planning was separated into global and local path planning. The former let operators set
the initial cleaning boundary points for the area, which was then processed by a proposed
algorithm named water surface coverage path planning (WSCPP). This returned an opti-
mized path for trash collection, accounting both for shortest path and amount of turns. The
local path planning allowed the USV to diverge from the global path in the precence of
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trash. A field experiment was conducted where the goal was to clean an area of about 4000
m2. The experiment was performed both manually and with the USV. The efficiency was
significantly better for the USV, reducing the task time from 2 hours down to 20 minutes.
The explanation for this efficiency increase was not explicitly stated. One reason could
be that the average speed of the USV was 1.2 m/s throughout the experiment, whereas a
human collector might have had to stop to collect each piece of trash.

2.2 LiDAR detection and tracking

LiDAR technology can be applied in many different fields and environments. Some of the
typical applications are situational awareness, SLAM and autonomous driving. Processing
of LiDAR data is computationally intensive due to the massive amount of points created
during one rotation, resulting in a point cloud. A point cloud from a dataset collected in
this thesis is shown in Figure 2.2. This section focuses on the application of detecting and
tracking objects using LiDAR, with a special focus on small objects.

One such example is Hammer et al. (2018), where the goal was to detect and track
small UAVs using LiDAR. One main finding was that the vertical resolution of the LiDAR
in use had large impact on the detection rate. It is immediately obvious that of the two
sensors used, VLP-16 and HDL-64E, the former with lower vertical resolution had much
worse performance, mostly detecting UAVs only at a distance of 15 m. The paper also
implemented a Kalman filter for tracking, and concludes that detection and tracking of
smaller objects could be a viable solution, although with limitations in range.

The HDL-64E sensor was also tested in Halterman and Bruch (2010), where the viabil-
ity of the sensor for obstacle detection on an USV was explored. One important distinction
between this and the tracking of UAVs is that all the objects of relevance is on a water sur-
face with limited variation in height. In addition the objects being tracked are usually
slower than UAVs. It was shown that LiDAR was able to detect objects such as buoys,
semi-submerged rocks and floating kelp. It also showed that the water surface did not
interact with the LiDAR in a way that returned detections, except when the water surface
was disturbed by wakes from passing boats.

A more recent article, Jeong and Li (2021), used the VLP-16 for LiDAR-based in-
water obstacle detection. The article focuses on the segmentation of obstacles in environ-
ments that are not known a priori using only LiDAR measurements. The measurements
were first projected to a 2D spherical projection image, before being fed to a Breadth-First
Search (BFS) algorithm. The BFS returns connected components which were then clus-
tered, yielding obstacles. At the time the method was found to outperform in the mean
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Figure 2.2: LiDAR point cloud from a single timestep of the dataset subsection 4.2.1. It captures
the outline of several moored boats as well as the edge of a pier. Segmenting and tracking objects
using based on these measurements is not a trivial task.

intersection over-union metric (mIoU) compared to other state-of-the-art methods within
aquatic obstacle segmentation. The run time was also acceptable for real-time usage, with
an average segmentation time of 72-297 ms depending on the setup.

2.3 Monocular distance estimation

To use a monocular camera to determine the relative position of an object it is necessary
to convert from a 2D pixel coordinate to a 3D world frame.The general description for
this task is georeferencing, and it is an ill-posed problem. To determine a 3D position
through georeferencing it is a requirement that one or more of the degrees of freedom are
removed. In the case of maritime applications this is possible if the assumption is made
that the ocean surface is a plane, and that the projection of objects seen in the camera
intersects with this plane. An illustration of the process is shown in Figure 2.3. One such
application can be found in Helgesen et al. (2019), where a thermal camera was mounted
on an fixed-wing UAV and used to find the earth-fixed coordinates of objects on the ocean
surface, both static and moving. The results showed that the method was viable even at
heights up to 350 m and several sources of error, with a mean accuracy in centimeters for
the static objects and 2 meters for a moving object.

Øystein Kaarstad Helgesen et al. (2020) is another example of georeferencing in a
maritime setting. The authors set out to extract range information of maritime vessels
from both infrared (IR) and electro-optical (EO) cameras. The cameras were mounted
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Image frame Relative coordinate frame
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Pixel (x, y)

Horizon

Figure 2.3: Illustration of the desired conversion from pixel to world coordinates in the case of
forward looking USVs.

on a static base on land and aligned with the horizon. The calculated positions were fed
into a Joint Integrated Probabilistic Data Association filter which then produced tracks of
each vessel. Some of the main findings were the accuracy of the position estimated in
optimal conditions was as good as a radar equivalent, but that performance degraded at
long distances due to inaccuracies in the pixel coordinates of the bounding boxes. Another
challenge that presented itself was false positives due to the object detection algorithm.

Another approach to georeferencing was performed in Gladstone et al. (2016). In this
instance the object detection was performed using a method called Maximally Stable Ex-
tremal Regions (MSER), which finds regions in an image that remains stable over certain
thresholds. A horizontal line detector was used on each image to extract a line segment.
After selecting the region most likely to correspond to an object, the pixel furthest from
the horizon was related to the extracted horizon line. Under the assumption that each pixel
in an image represented the same angular offset in the vertical field of view, the distance
could then be calculated using simple trigonometry. The implemented system was tested
on moving surface vehicles and had an average error of 7.1% with a standard deviation of
5.8%. A noteworthy part of the results was that the position estimates experienced oscilla-
tions, which in parts could be explained to fluctuations in camera height due to waves. The
authors suggest that this error could be reduced by measuring the height using an inertial
navigation system.

An article directly related to distance estimation from an USV can be found in Woo
and Kim (2015). The article set out to investigate a collision avoidance system based on
information from a mounted camera. To find the position of vehicles on the surface a sim-
ilar approach to the one in Gladstone et al. (2016) was developed and implemented. The
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relative velocity was also estimated using the optical flow equation. Both measurements
were then integrated using a Kalman filter. The corresponding tracks were used to deter-
mine if the USV was on a collision course using a fuzzy estimator. The system was tested
in simulation and was proven to be able to detect and avoid vehicles on a collision course.
The authors remark that the position estimate converges to zero as the relative distance
decreases. Furthermore, the measurements were sensitive to target detection noise as well
as angular and attitude noise. It is suggested that a physical implementation should take
this into consideration by integrating a inertial navigation system (INS).

2.4 Sensor fusion in maritime environments

When a system includes several types of sensors a central issue is how these should be
related to each other and what role they should perform. Sensor fusion is an umbrella
term for a wide array of approaches to unify measurements from different sources. This
is done to improve the accuracy or performance of the system through complementary
information, as sensors have varying strengths and weaknesses. A situation where sensor
fusion could improve the situational awareness is illustrated in Figure 2.4. In a maritime
setting weaknesses could be present due to environmental disturbances, such as fog, rain
or rough sea. A simple example of sensor fusion in such a setting can be found in Zhang
et al. (2021b). The USV in the paper was equipped with a LiDAR and a camera which was
used to extract relative position information from objects in the water. The measurements
were fused by first projecting the a clustered point-cloud from the LiDAR corresponding to
an object into the image plane. A bounding box was obtained and merged with a bounding
box extracted using YOLOv3. A field test proved that the fusion algorithm had good
detection effect and obstacle avoidance function. Another example of a simpler fusion
method was seen in Stanislas and Dunbabin (2019). The sensor package consisted of
radar, LiDAR and a camera, and was used for obstacle detection. The fusion was done
by using a probability product rule to create a single sensor package at each timestep.
This was then merged into a obstacle map using Bayes rule. This integration was tested
on several datasets and was found to reduce classification performance and in some cases
provide a more robust prediction.

One of the main use-cases of sensor fusion is within the field of target tracking. This
usually requires more complex solutions than simple boundary box merging, as it is nec-
essary to relate measurements in the time-domain. Hermann et al. (2015) is one such
example, where a object detection system for a high-speed USV was developed. The sen-
sors involved were GNSS, IMU, camera and radar, where the two first were necessary to
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Figure 2.4: Illustration of how sensor fusion can be used to counteract weaknesses in specific sen-
sors. The ultrasonic sensor can only measure when the person is directly in front, while both the
LiDAR and camera have dead-zones. Utilizing measurements from all three sensors gives a much
better track of where the person has moved.

estimate the pose and global position of the USV. The tracking of objects were performed
by an Extended Kalman Filter (EKF). The system was tested on buoys and proved that it
was possible to track the objects, even in cases where the radar temporarily lost track due to
disturbances in pose. A Kalman filter was also used in Clunie et al. (2021), where LiDAR,
radar and camera information was fused. A distinction from the former paper was that the
defections were associated with a global-nearest neighbor approach and matched using a
bipartite graph algorithm. These processed measurements were then fed to the filter. The
field test performed showed that the sensor fusion worked adequately when the input was
correct, but struggled in cases of false positives. This was a problem especially because of
the camera object detection, which returned more false positives than true positives.

Another approach to multi-target tracking in a maritime setting was implemented in
Haghbayan et al. (2018), where a Probabilistic Data Association Filter (PDA) was used to
filter the incoming measurement originating from radar, LiDAR and cameras (IR, RGB).
Each measurement was mapped to 2D radar coordinates before being filtered, and the
corresponding result was a list of fused defections. The system was tested on a real dataset
captured on a ferry. The paper presents a direct comparison between individual sensor
performance and the filter approach. Here it is shown that the fusion led to a significant
increase in true object detection as well as a strong reduction in false positives.

Han et al. (2020) extends further on the sensor fusion by introducing an intermediary
step. Each sensor was assigned its own local tracking filter (EKF), which was then fed into
a central tracking filter. The latter also received AIS measurements to relate the tracks to
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a global coordinate system. The fusion worked as intended, with the LiDAR and cameras
being able to provide enough measurements to keep tracks when objects entered the radar’s
blind-zone. It was found that the active sensors (radar, LiDAR) provided more reliable
detection performance than the passive. As for many of the previous papers, rough sea
conditions degraded performance.

2.5 Literature overview

As evidenced by the review several potential solutions and supporting technologies to
detect and collect floating waste have been explored in recent years. LiDAR, cameras
and radar are all sensors that have shown promise for object detection and situational
awareness at different scale in maritime environments. In the specific case of USV trash
collection the amount of complete solutions shown to work outside of very controlled
environments are limited. The most complete solution reviewed being the SMURF in
(Zhu et al. (2022)), due to both its autonomous functions as well as supporting framework
easing introduction into new environments. Fusing measurements from different sensors
have also been shown to have the potential to improve overall system performance for
USVs. In relation to the scope of this thesis, where a LiDAR and camera is available for
trash detection and tracking, there are two avenues that are not directly explored in the
literature reviewed. The first is the use of LiDAR to detect trash specifically. In all but one
example where LIDAR is present it is used to detect obstacles that are to be avoided, but
the extension to detecting the trash is offloaded to other sensors. The second is the use of
more advanced tracking algorithms to relate measurements stemming from trash in time.
This could open up possibilities such as path optimization based on the predicted velocity
of the trash or creation of surface gradient fields for more efficient path planning. Both of
these avenues will be explored in this thesis.
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3
Theory

This chapter presents relevant theory needed to understand the implemented system and
the results in this thesis. The first section lays out the foundation for monocular distance
estimation. It first presents camera fundamentals and the pinhole model, then presenting
the simplifications that can be done due to the structure of the problem and finally arriving
at a method of determining distance of objects in a single monocular image. The second
section presents the theory behind extracting relative position information of floating trash
on the water surface using LiDAR. This is done by filtering the raw point cloud data based
on criteria such as distance, height and intensity. Further filtering is done by recognis-
ing land edges using a edge detector called the Line Segment Detector. The last section
presents the Joint Probabilistic Data Association filter (JPDA), which is capable of track-
ing the detected trash under different circumstances using a mix of sensor measurements.
Throughout this section bold upper-case notation (A) denotes matrices, bold lower-case
(b) denotes vectors and regular letters denotes scalars.

3.1 Monocular distance estimation

To extract information from an image a mathematical model of how images are formed is
needed. Although modern cameras are inherently complex a simple and idealized abstrac-
tion called the pinhole perspective model is often used as a viable approximation (Forsyth
and Ponce (2012)). The model relates the image formation through perspective geometry.
This section presents the fundamental mathematical model, how this model can be simpli-
fied due to known variables in the problem and how relative distance between camera and
objects can be determined with these simplifications. Figure 3.1 shows the relevant coor-

15



3 Theory 3.1.1 Camera fundamentals

dinate frames and their relation. The transformations between the frames will be explained
in closer detail in this section.

Camera
frame

Image
frame

Body
frame

NED
frame

Image
formation

Tb
n

Tb
c

Pinhole model

Figure 3.1: Diagram relating the different frames

3.1.1 Camera fundamentals

The pinhole perspective model, having roots in projective geometry, simplifies the concept
of image formation. The geometrical relations of the model can be seen in Figure 3.2. The
basis for modern image formation is that light reflected of objects within the cameras field-
of-view is let through a small opening, illustrated as pinhole in the figure, and interacts
with an exposed medium within the camera on the Image plane. For older cameras this
medium was light sensitive film, but modern cameras uses an array of semiconductors that
responds to exposure of photons. A common simplification is to use the virtual projection

plane/vertical image, which is a flipped and equidistant plane in front of the pinhole. This
removes the need to rotate the image. The distance from the pinhole to the image sensor
(and virtual projection plane) is know as the focal length, marked by f in the figure. Using
similar triangles one can represent the relationship between the distance Z from the object
and the displacement in the x-axis X as

x

f
=
X

Z
(3.1)

=⇒ x = f ∗ X
Z

(3.2)

The same logic can also be applied for the y-axis, leaving the two formulas:
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x = f ∗ X
Z

(3.3)

y = f ∗ Y
Z

(3.4)

Where x and y represent the pixel coordinates in the image.

Image plane Pinhole Virtual image

f f
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x ZO
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Figure 3.2: The geometrical relations of the pinhole model. Inspired by TTK4255, Lecture 3 -
”Image Formation”, Anette Stahl

3.1.2 World coordinates

Having established the pinhole model the next step is to relate the image to a world co-
ordinate frame. To do this three coordinate systems are needed, shown in Figure 3.3.
The first is the world coordinate frame, which functions as the ”base” reference and can
be arbitrarily defined. The second is the camera coordinate system, which is related to
the world coordinate system through the a homogeneous transformation matrix of the lie
group SE(3) (Briot and Khalil (2015)), consisting of a translation and a rotation in 3-D.
Starting with the conversion from image to camera frame the first step is to use (3.3) from
the pinhole-model, which when converted to homogeneous coordinates becomes (3.5). X,
Y and Z represents the camera coordinates, f is the focal length and x and y is the image
coordinates.
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Figure 3.3: The coordinate system relations. Inspired by TTK4255, Lecture 3 - ”Image Formation”,
Anette Stahl

Zc ∗
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1

 (3.5)

Due to the fact that the optical centre aligns with the centre of the image plane a con-
version has to be done to find the corresponding pixel coordinates, which most commonly
has the origin (0,0) in the left top corner of an image. The conversion is done by translating
and scaling the coordinate. The latter is done to specify the relation between pixel array
and the image. The translation is given by ox and oy while the scaling is given by sx, sy
and sθ. sθ is only non-zero if the pixels are not rectangular. The conversion can be seen in
(3.6), where x’ and y’ are the pixel coordinates.x

′

y′

1

 =

sx sθ ox

0 sy oy

0 0 1


xy
1

 (3.6)

Combining (3.6) and (3.5) yields (3.7).

x
′

y′

1

 =

fsx fsθ ox

0 fsy oy

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0



Xc

Yc

Zc

1

 (3.7)
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To relate the camera coordinate vector to a world frame the a homogeneous transfor-
mation matrix of the lie group SE(3) can be used. The transformation can be represented
on matrix form by (3.8):

SE(3) =

[
R T
0 1

]
(3.8)

where the translation matrix is given by T =
[
tx ty tz

]T
. To follow established prac-

tices in marine environments, the zyx-convention is used for the rotation matrix R (Fossen
(2011)). R is the product of consecutive rotations around the z, y, and x-axes. The angles
corresponding to each rotation are given by ψ, θ and ϕ, and entitled yaw, pitch and roll
respectively. The full rotation matrix from the camera frame to world frame Rwc is then
given by (3.9).

Rwc =

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1


︸ ︷︷ ︸

Rz(ψ)

 cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)


︸ ︷︷ ︸

Ry(θ)

1 0 0

0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)


︸ ︷︷ ︸

Rx(ϕ)

(3.9)

Mapping a homogeneous coordinate vector defined as
[
Xc Yc Zc 1

]T
from the

camera coordinate frame to the world frame can then be done by matrix multiplying as

shown in (3.10), yielding the world coordinate vector on the form
[
Xw Yw Zw 1

]T
.

The last row and column are needed to unify the framework when using homogeneous
coordinates.


c(θ)c(ψ) s(ϕ)s(θ)c(ψ)− c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ) tx

c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)s(ψ)− s(ϕ)c(ψ) ty

−s(θ) s(ϕ)c(θ) c(ϕ)c(θ) tz

0 0 0 1


︸ ︷︷ ︸

Tw
c


Xc

Yc

Zc

1

 =


Xw

Yw

Zw

1


(3.10)

Combining the results to find the complete relationship between a pixel in the image
and a point in the world coordinate system gives (3.11).
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x
′

y′

1

 =

fsx fsθ ox

0 fsy oy

0 0 1


1 0 0 0

0 1 0 0

0 0 1 0

[
R T
0 1

]
Xw

Yw

Zw

1

 (3.11)

3.1.3 Georeferencing

This thesis focuses on an USV that is floating on the surface of a body of water that is
shielded from large disturbances due to waves (harbours, lakes and rivers). With this in
mind some very valuable assumptions can be made. The first is that the roll and pitch
of the USV are negligible, or that they can be measured and corrected by an on-board
Inertial Measurement Unit (IMU). The second is that as the height of the camera above
the surface is known. Finally, the surface itself can be assumed to be approximated as a
flat plane under ideal circumstances. The method presented in Øystein Kaarstad Helgesen
et al. (2020) is the chosen approach for georeferencing in this thesis. The choice was
made based on shared characteristics in the problem structure as well as the availability
of an established baseline which could be compared against. The method is illustrated in
Figure 3.4. The main distinction between the referenced paper and the application in this
thesis is related to the vector tcw marked in yellow on the right. When mounted to an USV
the translation along the z-axis (height above water) will be lower and the corresponding
vector will be smaller in magnitude.
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Figure 3.4: Illustration of the georeferencing method applied in this thesis.

When an image object detector, such as the YOLOv7 (You Only Look Once) model
used in this thesis, detects an object in an image a bounding box covering the object is
returned. The bounding box is given in pixel coordinates. The coordinate of interest de-
pends on the orientation of the camera. A camera mounted straight down towards the
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ground would give correct results using the centre of the box. In the case of a forward
looking camera the pixel of interest will be on a y-coordinate along the intersection be-
tween the box and the water surface. This will naturally be where the object intersects
the surface-plane and the z-coordinate therefore is equal to zero. Choosing the central box
coordinate along the x-axis then yields the pixel coordinates

[
Xc Yc

]
.

The georeferencing starts by finding the bearing θc and elevation φc of the pixel in the
camera frame relative to the image centre. The formulas are shown in (3.12) and (3.13)
respectively. Px and Py represent the image resolution of the camera given in pixels, while
Fx and Fy represents the Field of view (FOV) in radians.

θc =
xc − Px/2

Px
Fx (3.12)

φc =
yc − Py/2

Py
Fy (3.13)

Using these angles it is now possible to relate the detection to the camera coordinate by
establishing a vector vc. The z component is chosen as the unit vector z = 1. The relation
is given by (3.14) and seen on the left side of Figure 3.4.

vc =
[
xc yc zc

]
=

[
tan(θc) tan(φc) 1

]
(3.14)

This vector is then converted to an intermediary world reference frame, w’, that shares
the axis alignment with the world frame but is not translated along the z-axis. This keeps
the vectors camera origin. The transformation is done using the transformation matrix
defined in (3.10). The transformation is formulated as (3.15).

vw = Twc vc (3.15)

With the world frame aligned as depicted, where the camera frame z-axis is aligned
with the world frame y-axis, the rotation matrix will consist of a 90◦ rotation around the
y-axis followed by a -90◦ rotation around the z-axis. The translation t is given by the
camera offset from the world frame origin in the xy-plane (world frame).

It is necessary to find a scale factor s, so that the vector v′w has z′w = twcz . Scaling
vc with s will yield the vector svw illustrated in purple. The scale factor can be found
according to (3.16).

s = −
twcz
zw

(3.16)

After retrieving the scale factor the objects position can be determined according to
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(3.17).

xw = twc + svw (3.17)

Since the z-component of vw was scaled to match twcz the resulting vector xw should
be on the form

[
x y 0

]
T . This leaves the x and y components, which corresponds to

the position of the object in the world frame.

3.2 Coordinate frames

When measurements from several sensors are to be unified in a common framework it is a
necessity to establish a physical relationship between the different origins. This becomes
even more important when the mounting platform is subject to changes in both pose and
position, as is the case for a moving USV. This section presents the main coordinate frames

used throughout this thesis and their relationship. Figure 3.5 illustrates the relationships
between frames on block diagram form.

Body
frame

Geodetic frame

Camera
frame

LiDAR
frame

 NED
frame

LiDAR
image frame

GNSS
frame

Image
frame

Sensor output

Intermediary
frame

End frame

Figure 3.5: A block diagram showing the relationship between the different frames encountered in
this thesis

The geodetic frame is a representation of earth where geographical coordinates on
the form (latitude, longitude) maps to a specific position on earth. The North-east-down,
NED, frame is the chosen world frame in this thesis. This is the frame where all processed
measurements as well as tracks are mapped and are ready to be distributed outside the
implemented system. The origin of the NED frame is given by a geographical coordinate
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and therefore pinned to the geodetic frame, with the North and east axis at the origin
aligned with the geodetics’. The NED frame is a tangent plane and therefore only accurate
in a limited area around the geodetic origin. The Relative USV frame is given by the
USV’s offset in yaw, pitch and roll as well as the translation along the xy-plane, all relative
to the NED frame. The Camera frame and LiDAR frame are both given by a translation
in the yz-plane from the relative USV frame. This is set by the distance between the
origin of the relative USV frame and the sensor. An offset in roll, pitch and yaw due to
alignment errors might also have to be accounted for. The Image frame is related to the
camera frame through the pinhole model. The LiDAR image frame relates 2D-LiDAR
measurements to a pixel array used during the filtering process. Finally, the GNSS frame,
where GNSS measurements are received, is related to the geodetic frame by a translation
in the z-coordinate equal to the receivers height above the surface.

3.3 Small object LiDAR tracking

This section presents the the working principle of LiDAR as well as the methods used to
filter the relevant information from the noise in the measurements. The filtering process is
tailored to the use-case of detecting floating trash, which is distinct from the object detec-
tion and avoidance commonly implemented in an USV setting. Where object avoidance
deals with identifying objects above a certain size that can endanger the craft, trash detec-
tion seeks to only be left with measurements from objects small enough to be captured.
This thesis proposes a pipeline for separating out the wanted measurements. In addition
to being to able to dynamically process LiDAR in novel surroundings it has the benefit
of returning measurements on a format that conforms with the one-shot assumption of the
JPDA, further explained in Section 3.4. The filtering is done in three steps. The first is
preliminary filtering using simple thresholds to determine which measurements that are
of interests. The second step is filtering, which is done to remove measurements stemming
from harbour edges and other obstacles such as boats. The final step is clustering, which
is performed to reduce noise and unify the measurements with the JPDA filter described in
Section 3.4. An overview of the proposed pipeline to convert raw LiDAR data into usable
LiDAR measurements is shown in Section 3.6.

3.3.1 LiDAR

Light Detection and Ranging, LiDAR, is a sensor technology based on lights ability to
reflect of objects. By sending out highly concentrated laser light and measuring charac-
teristics such as light wave shift, intensity and delay in transit it is possible to calculate
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Figure 3.6: The full pipeline from raw data supplied by the LiDAR to JPDA-compliant LiDAR
measurements. The LiDAR measurements stemming from the MeanShift clustering is ready to be
passed to the JPDA filter to create tracks

a position and heading of the object reflecting the laser light. Most commercial LiDAR
solutions consists of a mechanical laser array rotating several times a second, making it
possible to get information about the surroundings with a 360◦ view. Some limitations do
however apply. A key challenge for this thesis is the density of the lasers in the grid. The
horizontal resolution is determined by the amount of samples taken on a single rotation,
and is usually in the range of less then a degree. The vertical resolution is usually much
less refined, as it is determined by the field of view as well as distance between and number
of lasers in the grid. Figure 3.7 shows how the light from the laser array will spread over a
given vertical distance. The first thing to note is that there is a Dead zone below the sensor
in the area before the lowest laser intersects the ground. No information can be gathered
here, which means that the LiDARs operating range has a minimum distance. To calculate
where the laser intersects the ground one can use (3.18).

disti = h ∗ tan(90◦ − FOV
2

+ i ∗ res) (3.18)

where h is the height above ground, FOV is the field of view of the sensor in the vertical
plane, res is the vertical resolution and i is the number of the ray indexed from zero.

The second challenge can be seen where the two rays intersects the rectangular box in
Figure 3.7. This presents the worst-case scenario where an object is just behind a lasers
detection range. Using the formula (3.19)

min hi =
disti − disti−1

tan(90◦ − FOV
2 + i ∗ res)

(3.19)
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3 Theory 3.3.1 LiDAR

one can determine the height needed to intersect the next ray and with that be observ-
able. These results are calculated for the rays below the horizon (8 individual rays) for a
LiDAR with FOV of 30 degrees at a height of 1 m, corresponding to the LiDAR VLP-16
which is used in this thesis. The results can be seen in Table 3.1. From the table on can see
that the rays closer to the horizon have larger distances between them and correspondingly
require a larger height to intersect with objects.

Ray GID (m) h (m)
0 3.73 -
1 4.33 0.14
2 5.14 0.16
3 6.31 0.19
4 8.14 0.22
5 11.43 0.29
6 19.08 0.40
7 57.28 0.8

Table 3.1: The calculated relative ground intersection distance (GID) and worst case height for each
ray of the VLP-16

One aspect to note is that objects slightly within the Dead zone might be detectable
depending in the height. Reformulating (3.19) one can find the distance of which an object
of i.e. 10 cm would intersect the first ray: disti−1 = 3.73m− 0.1 ∗ tan(75◦) = 3.35m.

Dead zone

h

Active localization area

Lidar
Laser rays

Figure 3.7: Illustration of the vertical resolution of LiDAR and the problems that arise. h corre-
sponds to the height in Table 3.1, which in the illustrated case would be h = 0.29 m
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3 Theory 3.3.2 Preliminary filtering

3.3.2 Preliminary filtering

This thesis focuses on the detection of trash floating on the surface of relatively controlled
areas of water such as harbours, rivers and lakes. This presents the opportunity to simplify
and filter the raw LiDAR data to remove unwanted noise and detections. The first natural
step is to filter any measurements that are not within a thin 3D-slice parallel to the wa-
ter surface. This ensures that any measurement that stems from boats, buildings, harbour
walls etc. above a certain height is removed. The filtering step is shown in Figure 3.8. The
second filtering step follows naturally from Table 3.1, where it was shown that the further
from the source the object is the less likely it is to be detected. There is therefore diminish-
ing returns on probing too far, and filtering measurements outside a radius determined by
calculated results and real-life testing can be a valid approach. The final step is based on
the fact that the final product of this thesis is to determine the relative position of the float-
ing trash. As the USV and the trash is on the same plane (water surface), the z-coordinate
is redundant and might be discarded completely. This also simplifies the integration of
different sensors as only the relative x and y coordinates of each measurement is needed.

Figure 3.8: Before and after preliminary filtering. LiDAR measurements above a set height and
beyond a set radius are discarded.

3.3.3 Line extraction

As the USV moves in its surroundings it will encounter a variety of obstacles, from har-
bour walls to moored ships. One solution to filter out some of the measurements stemming
from these objects is to use a mask based on harbour maps. However, this does not account
for any dynamic changes in the environment, such as ships mooring at new locations or the
tide revealing partly submerged rocks. To do so a method better suited to a changing envi-
ronment should be chosen. This thesis handles the problem by projecting the 3D-LiDAR
measurements to a 2D-plane, also making the assumption that all objects that are larger
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3 Theory 3.3.3 Line extraction

Figure 3.9: LiDAR image created by casting LiDAR measurements to a discrete array. Each white
pixel corresponds to a measurement.

Figure 3.10: Line segment extracted from the LiDAR-image. Note the two lines corresponding to
the edge from black to white and white to black respectively.

than the trash to collect can be represented by lines or line segments. Having projected the
LiDAR to 2D leaves a x and y-coordinate for each point in the pointcloud at each time-
step. To extract the line segments a process called the Line Segment Detector (Morel et al.
(2012)) is used. This process receives an image and returns the start and end coordinate of
each line segment found. For a deeper dive into the working details the reader is referred
to (Vormdal (2022), chapter 3). To utilize the method the measurements have to be unified
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3 Theory 3.3.4 Line filtering

in an image format. To do this one starts by rounding the coordinates to the nearest inte-
ger (yielded as floats with high precision from the VLP-16). This yields a discrete set of
measurement values in the range X ∈ [−radius, radius], Y ∈ [−radius, radius]. The
standard format for an image of equal size is X ∈ [0, 2 ∗ radius], Y ∈ [0, 2 ∗ radius].
To convert a discrete 2D-map of LiDAR measurements is therefore as trivial as adding the
radius to each measurement and ”coloring” the pixel corresponding to the new x and y
values. However, due to the way the LSD grows regions it is preferable that the individual
pixels constituting a line are adjacent. This can be solved by reducing the resolution of a
corresponding pixel-array to a suitable size, making sure that the LiDAR measurements
are calculated to fit the chosen size. A Gaussian blurring effect can also be added to coun-
teract discontinous jumps. A converted LiDAR image is shown in Figure 3.9. A output
image after running the LSD is shown in Figure 3.10. After retrieving the line segments
the next step is to convert them back to the relative measurement framework. This can be
done by doing the conversion process in reverse.

3.3.4 Line filtering

The final step in the filtering process is determining which points are behind the line seg-
ments. The process is shown in Figure 3.11. The first step is to create virtual line seg-

ments between the LiDAR position (i.e. the origin (x,y) = (0,0) in the relative frame)
and the measurement coordinate. It is then possible to calculate if each virtual line seg-
ment intersects any of the line segments found with the LSD using Algorithm 1, which is
implemented based on Antonio (1992). Here get t and get u are calculated according to
(3.20) and (3.21). The subscripts are found from the start and end point of the two line

segments being compared at each iteration, written as L1 =
[
[x1, y1], [x2, y2]

]T
and L2 =[

[x3, y3], [x4, y4]
]T

For the application of determining if a point is behind a line segment it is only neces-
sary to determine if two segments intersect or not, which means that process of finding the
exact intersection point can be skipped.

t =
(x1 − x3)(y3 − y4)− (y1 − y3)(x3 − x4)
(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

(3.20)

u =
(x1 − x3)(y1 − y2)− (y1 − y3)(x1 − x2)
(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)

(3.21)

The intended result in the USV frame is shown in Figure 3.12.
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3 Theory 3.3.5 Buffering and Mean Shift clustering

Algorithm 1 Line segment intersect algorithm

measurements← get measurements(frame)
lines← LSD(image)
non intersecing apoints← []
for line in lines do

for p in measurements do
v line← ((0, 0), (p x, p y))
t← get t(line, v line)
u← get u(line, v line)
if !(0 ≤ u ≤ 1) and (0 ≤ t ≤ 1) then

non intersecing points.append(p)
end if

end for
end for
Return non intersecing points

LiDAR position

Measurement

Virtual line segment

LSD line

Intersection

Figure 3.11: Line segment intersection

3.3.5 Buffering and Mean Shift clustering

The LiDAR measurements that are left after the line intersect filtering have some charac-
teristics that are unwanted. The first is that several measurements can occur from a single
object. The second is that the filtering process does not remove noise due to laser-to-
surface interaction. To counteract this a buffering and clustering step can be used. The
buffer and cluster process is visualised in Figure 3.13.

The buffering serves the purpose of reducing the impact of the low vertical resolution
discussed in subsection 3.3.1. This is done by leveraging the fact that the USV will be
moving during operation and that the LiDAR can rotate at a high frequency. If the USV is
moving at a constant velocity of 1 m/s and the LiDAR rotates at a frequency of 10 Hz, each
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Figure 3.12: Rejected and accepted LiDAR measurements after running 1. The intersect lines marks
the relationship between the LiDAR and the LSD line end-points.
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Figure 3.13: The buffering and clustering process. Three line intersect filtered pointclouds are
buffered to utilize the movement of the USV. The result is a single LiDAR measurement for each
observed object, while also filtering noise from the surface. T denotes the current time-step

laser ray will have its intersection point with the surface moved 10 cm in the direction of
movement. This means that an object caught in-between two rays might move into view at
the next time step, or that an object already in view might still be in view if large enough.

After a user-defined amount of samples is buffered the data can then be passed to
a clustering algorithm. The purpose of the clustering is to find a central point for each
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3 Theory 3.4 Joint Probabilistic Data Association filter - JPDA

cluster of measurements. The clustering method used in this thesis is the Mean Shift clus-
tering algorithm (Comaniciu and Meer (2002)). The choice is based on four advantageous
attributes the method offers. The first is that the algorithm is centroid-based. This is of in-
terest as each cluster center ends up being a mean of all the members in the cluster, which
is especially relevant in the case of multiple scan lines being returned from a single object.
The second attribute is that the amount of clusters can be determined dynamically. As the
amount of objects within range varies as the USV moves in the environment this is key to
map measurements to corresponding clusters. The third attribute is that very little param-
eter tuning is required when using the implementation found in Pedregosa et al. (2011).
This increases robustness as a set of parameters tuned for a specific environment might not
be viable in other circumstances. The density of trash, amount of noise from the surface
or other variable factors can impact what is the ”right” parameters. Finally, the scikit-
implementation enables orphaning, filtering out measurements not connected to a cluster.
This removes ”one-off” noise from the surface. A drawback of the method is that it suf-
fers from limited scaleability. Due to the limited amount of measurements let through the
filtering stages this was deemed an acceptable compromise. The final processing step is to
remove every cluster consisting of less than a user-defined threshold of points. This further
removes noise and ensures that only non-transient measurements remain. The remaining
measurements are then ready to be passed to the tracking filter.

3.4 Joint Probabilistic Data Association filter - JPDA

To unify the measurements from the sensors and keep track of objects over time a tracking
filter is necessary. The chosen filter for this thesis is the Joint Probabilistic Data Associ-
ation filter (JPDA), first presented in Fortmann et al. (1983). The theory in this section is
based on Brekke (2020). The JPDA filter enables tracking of multiple objects simultane-
ously, attributing measurements to tracked objects according to the normalized conditional
probabilities of every track and arriving at a globally consistent solution at each time-step.
It was chosen as it allows for tracking of objects in close proximity as opposed to a single-
target tracking filter such as the Probabilistic Density Association filter (PDAF). One of
the main weaknesses, track-coalescence (merging of different tracks), is also not a large
concern and might in fact be beneficial. This is due to certain types of trash tendency
to entangle (i.e. seaweed, plastic nets). It is also proven to be computationally efficient
enough to run in real-time on common computing hardware. This section presents the
main components of the JPDA-filter, including the chosen measurement and noise mod-
els. The filter was chosen as a proof-of-concept for tracking of floating trash, and some
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simplifications that will be presented were deemed acceptable for this purpose. Note that
the filter is processed in the NED frame, which means that the GNSS position already have
been integrated in the measurements.

3.4.1 Structure

The main structure of the JPDA filter is based on thirteen underlying assumptions. The
first two are a cornerstone for most multi-target tracking methods. Number one is that each
target generates at most one measurement. Number two is that any measurement comes
from at most one target. Although being large simplifications this has a positive impact
on computational complexity and stops the filter from attributing all measurements to a
single cluster. The next six attributes are general for the prevailing paradigm within the
field of multi-target tracking. The final five are JPDA specific. Brekke (2020) lists the
assumptions as:

• M1 New targets are born according to a Poisson process with intensity µ(x).

• M2 Existing targets survive from time step k-1 to k with probability Ps(xk−1).

• M3 The motion of a surviving target is given by fx(xk|xk−1)

• M4 A target with state xk generates a measurement zk with probability PD(xk)

• M5 Clutter measurements occur according to a Poisson process with intensity λ(z).

• M6 The measurements of a detected target is related to the state according to fz(zk|xk).

• M7 The number n of targets is constant and known (i.e zero birth intensity and death
probability).

• M8 The single target motion model and the likelihood are Gaussian-linear:

fx(xk|xk−1) = N (xk;Fxk1 , Q) (3.22)

fz(zk;xk) = N (zk;Hxk, R) (3.23)

• M9 At the end of the previous estimation cycle, the posterior densities of the targets
are independent and Gaussian

ptk−1(x
t
k−1) = (xtk−1; x̂

t
k−1, P

t
k−1). (3.24)

• M10 Target t has a constant detection probability P td
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• M11 The clutter Poisson process has constant intensity λ

The JPDA extends and generalized the Probabilistic Data association filter (PDAF)
which is used for single target tracking (Brekke (2020), page 135). Understanding the
PDAF is therefore key to understanding the JPDA.

3.4.2 PDAF

This section present the PDAF filter as seen in (bar shalom and Daum (2010)). To under-
stand the PDAF it is first necessary to have visited the underlying issue of associating mea-
surements to tracks. For a track given by the state vector x and a chosen transition model
one can predict where the next measurement Ẑ will be found. However, due to measure-
ment uncertainty one cannot guarantee that the prediction and actual measurement will
align. The can be accounted for by establishing a validation gate, which assigns a region
around the predicted measurement where there is a high probability that a measurement
will be detected. However, due to clutter several measurement might fall within the same
validation gate, or two targets might have validation gates that overlap. The situation is
illustrated in Figure 3.14, where the measurement Z2 can be associated with both Ẑ1 and
Ẑ2. Furthermore the measurement Z3, which stems from clutter, can be attributed to Ẑ2.
The PDAF uses a Minimum Mean Square Error (MMSE) approach to associate these mea-
surements. The conditional mean of each target state is found according to (3.25), where
Z is the measurement data, Ai is all events in a set of M mutually exclusive association
events. βi represents the conditional probabilities for each event given the measurements,
denoted βi

∆
= P{Ai|Z}.

Validation gates

Z

Z
Z

Z

Z

^

^
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2

Predicted measurements
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Measurements
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Figure 3.14: The probabilistic data association problem.
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x̂MMSE = E[x|Z] = E{E[x|A,Z]|Z} (3.25)

=
∑
Ai∈A

E[x|Ai, Z]P{Ai|Z} (3.26)

∆
=

M∑
i=1

x̂iβi (3.27)

As the assumptions M3, M6, M8 and M9 hints at, the underlying model for the PDAF
is the standard Kalman filter. For brevity the reader is referred to bar shalom and Daum
(2010), page 10, for the integration of the PDA and Kalman filter into the PDAF.

3.4.3 Extension to multiple targets

The JPDA extends on the PDAF by considering multiple targets and their corresponding
tracks during both association and track management.

3.4.4 Transition model

The kinematic model used in the prediction step (3.22) of the underlying Kalman filter is
the constant velocity model, which can be seen in (3.28).

ẋ = Ax + Gn (3.28)

For the 2D case where an object can move in the xy-plane the state vector is given by x
=
[
x vx y vy

]
T . x and y corresponds to the objects position and vx and vy the objects

velocity. The A and G matrix is given by 83.29) and where n is the process noise, assumed
to be white.

A =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

G =


0 0

0 0

1 0

0 1

 (3.29)

3.4.5 Measurement model

The measurement model used in this thesis, corresponding to (3.22), is given by

zk = Hxk + wk (3.30)
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where wk is a zero-mean Gaussian with a covariance matrix given by R. Using the state
vector x =

[
x y vx vy

]
T H is then given by (3.31)

H =

[
1 0 0 0

0 1 0 0

]
(3.31)

This linear model is used for measurements both from the LiDAR and the camera.
In both cases it is a simplification of a nonlinear conversion which might degrade filter
performance. For the camera the amount of distance each pixel covers increases as an
object travels towards the horizon. Optimally this should be reflected in the measurement
noise having bias. The LiDAR measurements also have noise bias, as they are collected
in a polar coordinate system and converted to cartesian coordinates. The simplification is
justified by two observations:

• The chosen detection range is limited to 10 m and the uncertainty of the measure-
ments within this range should be negligible compared to other sources of uncer-
tainty. GNSS noise, USV roll, pitch and yaw errors, inaccurate bounding boxes and
inaccurate clusters are all sources that could dominate.

• The accuracy requirements both in regard to measurements and tracks are limited
due to the use-case. The USV can be assumed to be moving slowly, and losing
track or spawning false tracks, while not optimal, is not critical for the continous
operation of the USV. The latest iteration of the intended garbage collection system
had a capture diameter of 2 meters at the time of writing.

3.4.6 Initiator

The JPDA implementation used in this thesis overrides assumption M1 and M7 for the
initiation of tracks. They are overridden as initialization is done utilizing a procedure con-
sisting of a separate tracking filter tuned for spawning new tracks. The filter inherits the
transition and measurement model, but differs by using a global nearest neighbour data
associator (GNN) and time-step deleter. For each received measurement the filter tries to
associate it with a track. If no association can be made a temporary track with a high initial
uncertainty in velocity is created. The GNN associates measurements based on a distance
hypothesiser, which yields what measurement is spatially closest to a tracks Kalman pre-
diction. Tracks are created and transferred to the JPDA filter after a user-defined amount of
measurements have been associated to the same track. If a measurement is not associated
with the threshold within a set amount of timesteps the track is removed. The overrul-
ing ensures that the system can handle a dynamic environment where the amount of trash
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within range might vary over time, spawning new tracks as necessary.

3.4.7 Deleter

Assumption M2 is also overridden to improve tracking performance. The deletion of tracks
is done using a combination of a covariance based and a time based deleter. The latter is
the same as for the initiator, but with a more relaxed time-constraint. The former removes
tracks that have too high covariance. The combination was chosen to minimize unwanted
behaviours in the tracks while also keeping the need for reestablishing tracks to a mini-
mum. If the error between two subsequent measurements corresponding to a single object
is large, the velocity of the object will scale accordingly. The next Kalman prediction can
then be so far offset that new measurements fall outside the validation gate and cannot be
associated. This leads to a ”loose” track, only being deleted when the time step deleter
activates. Fortunately, the covariance of a ”loose” track increases rapidly, which can be
caught by the covariance filter. In the case where measurements are close to perfectly
aligned and the velocity therefore is close to zero the covariance might not approach the
limit in a reasonable time. This can lead to tracks persisting long after being passed by the
USV even when no new measurements are present. The time step deleter counters this by
removing these tracks after a user-defined amount of time without new measurements.
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4
Methodology

To develop the trash detection system and evaluate its performance three separate instances
of data were acquired from the Otter platform in real-life testing scenarios. Each collec-
tion of data consisted of LiDAR, video recording and GNSS measurements which included
both position and heading. This chapter presents the hardware used, how the data acquisi-
tion was performed and the datasets themselves. In addition the evaluation metrics used to
measure performance and establishing a baseline for comparisons with existing solutions
are presented and explained.

4.1 Hardware

This section presents the hardware used in this thesis. This includes both the comput-
ing platforms and the platform which the data was collected on, the Otter developed by
Maritime Robotics. In addition the specific sensors with corresponding transformation
matrices from the USVs body frame origin will be presented. For the data processing a
standard computer platform running windows was used, as the final integration with the
Otter hardware as well as real-time restrictions were left to future work.

4.1.1 PC

The first piece of hardware was an ordinary laptop with Windows 10 installed. It was used
for developing and running the system, as well as visualizing the data. To interact with
ROS Windows Subsystem for Linux (WSL) was also installed.

• CPU: Intel Core i5-8250 (1.60 GHz)
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• RAM: 8 GB

• Operating system: Windows 10 and WSL

4.1.2 Otter platform

The Otter platform is a fully integrated USV platform intended for maritime environments.
Produced by Maritime Robotics with the intention of being a multipurpose platform, it can
be fitted with a wide array of sensor packages ranging from active sonar to 360◦ cameras
and LiDAR. The platform is built with a catamaran-form factor, increasing stability and
enabling a payload to be attached between the hulls to interact with the environment below
the water surface. The bridge between the hulls contain the computing hardware, as well as
acting as a base for the sensor suite. The Otter used in this project is depicted in Figure 4.1.
The USV specifications are as follows:

Figure 4.1: Clean Sea Solutions Otter platform

• CPU: Intel Core i7-1270p (3.50 GHz)

• RAM: 8 GB

• Weight: 65 kg

• Operational time: 20 hrs

• Dimensions: 108x106.5x200cm

• Sensors: LiDAR, Front-facing camera, Global Navigation Satellite System (GNSS)

Figure 4.2 shows the relative distances that relate sensor measurements, where the
origin of the body frame is given by the centre of the USV according to the dimension
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specifications. Only the YZ-plane is shown, as every sensor is placed along the centre
plane where x = 0.

Z

COG G

C
L

Lidar

GNSS

Camera

1 2

Figure 4.2: Sensor layout on for the Clean Sea Solution’s Otter. CO is the Coordinate origin, L is
the LiDAR lever arm, C is the camera lever arm and G1 and G2 are the lever arms for the GNSS
receiver pair.

The sensors offset in angles were approximated in post-processing using the available
data. The reason it could not be estimated during data-collection was a combination of
limited time with the testing platform and a lack of benchmarks to determine the offsets.
The LiDAR offset was visually estimated in LiDARview when the Otter drove straight
towards a harbour wall, then turning left. It was found to be negligible compared to other
sources of error in system. The camera could be aligned after the fact by comparing the
actual location horizon and front of the USV with the intended. Although both procedures
improves the accuracy they are far from a perfect solution. Unaligned sensors are therefore
a weakness that have the potential to degrade results.

4.1.3 VLP-16

The VLP-16, also referred to as the ”puck”, is a LiDAR sensor produced and sold by
Velodyne. Its small form factor and relatively low cost makes it a viable and accessible
candidate for platforms that does not have the highest requirements for performance. With
a range of 100 meters, 360 degree field of view in the horizontal plane and real-time ca-
pabilities it is well suited for smaller autonomous systems requiring situational awareness.
The most relevant specifications for this thesis, based on (Velodyne), are listed below:

• Vertical channels: 16
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• Range accuracy: ± 3 cm

• FOV (Vertical): ±15 ◦ (30◦)

• Vertical resolution: 2 ◦

• Rotation rate: 5-20 Hz

The sensor is installed on an arm extended vertically from the central base of the Otter,
and is parallel to the horizon. This allows the LiDAR to have an uninterrupted view of the
surroundings, but also means that only eight of the channels are directed towards the sea
surface. As discussed in Section 3.3.1, the total vertical distance and angular distance leave
a ”dead” zone in a circle around the USV, extending to a radius of 3.35 meters assuming
no object is protruding more than 10 cm above the surface.

Combining the translation from the base with the angle offset found experimentally
the total transformation matrix between the body frame and the LiDAR is given by (4.1),
given in meters.

Tblid =


1 0 0 0

0 1 0 −0.28
0 0 1 0.57

0 0 0 1

 (4.1)

4.1.4 HIKVISION DS-2CD2045FWD-I

The HIKVISION DS-2CD2045FWD-I is a network camera produced by Hikvision. It
is water resistant, performs well in dark conditions and can handle strong backlighting.
The latter is especially useful in a maritime environment where the ocean can reflect the
sun or other strong light sources. The focal length is adjustable, meaning that the FOV
can be chosen based the on application. In the use-case of trash detection a wide FOV
is preferable to cover more area, and the focal length and corresponding Field Of View
(FOV) are therefore given based on this criteria. The camera specifications are presented
below:

• Resolution: 2688x1520

• Focal width: 2.8 mm-12mm

• Vertical FOV: 109◦

• Horizontal FOV: 60◦
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• Max Frames Per Second (FPS): 30

As the camera is aligned with the principal axis the rotation matrix is given by the identity
matrix and the full transformation matrix is shown in (4.2), given in meters.

T bcam =


1 0 0 0

0 1 0 −0.04
0 0 1 0.27

0 0 0 1

 (4.2)

4.1.5 ANN-MB-00-00

The GNSS equipment consisted of two ANN-MB-00-00 Multi-band GNSS antennas (Ublox
(2023)), installed along the chosen principal axis of the Otter (y-axis pointing forwards).
This ensured that a heading could be calculated by extracting a vector between the two po-
sitions. As (Kartverket) has both real and virtual RTK stations covering Norway and stores
this data, it is possible to correct the GNSS measurements obtained during data collection
in post-processing. However, due to the data-format available during testing, which data
only included time, latitude and longitude, RTK correction was not integrated in the re-
sults. The position output from the GNSS pair is in the beginning of the vector starting at
the GNSS antenna mounted on the back section of the Otter. The centre of origin (CO) is
chosen as the central point between the receivers, given by an 94 cm offset forward of the
two GNSS receivers. They are mounted along the principal axis pointing forward and the
transformation is therefore (4.3), again given in meters. Note that the CO is approximately
0.30 m above the water surface. This can be discarded as all measurements are already in
the xy-plane when the GNSS measurements are integrated in the system.

T bGNSS =


1 0 0 0

0 1 0 0.94

0 0 1 0

0 0 0 1

 (4.3)

4.2 Datasets and acquisition

Three instances of data were acquired for this thesis. All three were based on real sensor
measurements collected from the Otter platform, but the mounting platform was alter-
nated due to hardware availability. The first dataset was collected by remotely control-
ling the Otter in the harbour at Brattørkaia, Trondheim. The two latter only utilized the
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4 Methodology 4.2.1 Preliminary data - D1

upper mounting of the Otter, therefore being confined to land on a stationary rig. The
acquired data consists of sensor streams from three sensors, Velodyne VLP16, Hikvision
DS-2CD2045FWD-I and ANN-MB-00-00, corresponding to the sensors in Section 4.1.
Furthermore a Samsung S10 was used to establish a ground truth for the final dataset D3.
This section presents each dataset, what the intent was behind each and how this was
handled in the acquisition. The acquisitions were done at three different dates, and some
variations between the sets can be observed. This is in part due to environmental noise
(such as lighting conditions and wind) as well as owing to the fact that weaknesses with
the methods and repeatability in the preliminary gathering were corrected in subsequent
acquisitions.

4.2.1 Preliminary data - D1

The first dataset was intended as a preliminary baseline to identify viable avenues of ap-
proach to solving the overall problem description. It was also needed to develop the sys-
tem, as information about data formats, pre-processing steps and error handling was criti-
cal to ensure function in real-life scenarios. Dataset 1, henceforth referred to as D1, were
collected on 31.01.2023. The sensor settings related to timing for the capture are presented
below, where RPS is Rotations Per Second and MPS is Measurements Per Second:

• Camera FPS: 4 (0.25 sec)

• LiDAR RPS: 10 (0.1 sec)

• GNSS MPS: 20 (0.05 sec)

The dataset is split in two segments. The first capture was performed with a focus on
LiDAR and camera detection viability. The sensor data was an uninterrupted stream of
17 minutes and 50 seconds, where both general navigation as well as specific experiments
were carried out using a remote controller from the pier. The general navigation consisted
of manually steering the Otter along different parts of the harbour. This was done to
ensure that the sensors would be exposed to variations in speed, variations in distance to
the edges of the pier as well as water disturbances. After this was performed a set of
trash commonly found in waterways were introduced one at the time in the vicinity of
the USV. The trash selected was intended to give a baseline of what could and could not
be detected by LiDAR, both due to differing cross-section above the surface as well as
reflective properties. The selection is shown in Figure 4.3.

The USV was then steered so that trash could be observed on approach, standstill at
different ranges, passing as well as a overrun. An illustration of this process is shown in
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Figure 4.3: The different types of trash introduced in D1

Figure 4.4

Figure 4.4: An example of the trash being introduced in the vicinity of the USV

The second segment included a GNSS data stream. The main intent was to have all
sources of data needed to run a tracking filter over time. It was performed with a generic
approach, more akin to what the USV could observe in normal operation. The USV was
controlled along the pier in a zig-zag pattern, being steered closer when coming upon
trash and other floating objects such as kelp that were already present in the harbour. This
approach also meant that the LiDAR was exposed to other edges than the pier, as the
harbour had several docked boats of varying size. The total runtime of the second capture
was 21 minutes.
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4.2.2 Georeferencing validation set - D2

The second dataset was acquired to validate the camera georeferencing accuracy. It was
performed indoors with the upper section of the Otter including the proper mounting of
the LiDAR and camera. The experimental setup is shown in Figure 4.5. The camera
distance above ground was 70.5 cm. Bottles were placed within view of the camera at
different locations to test the accuracy from short to long range with different offsets (6
locations in total). As the system was stationary during the test the LiDAR was used as
ground truth. The positions were determined by visual identification in LiDARView of
the relevant measurements and subsequent distance extraction. The process is shown in
Figure 4.6. The bounding boxes were manually set as the camera trash detection module
were not able to distinguish the bottles in the indoor environment. The labeling was done
on the full resolution image (2688x1520 px) to get the most accurate result, and a separate
data set was created by adding white gaussian noise. This was done to simulate the lower
resolution of the bounding boxes originating from the camera trash detector. The noise
addition also served to test the sensitivity of the georeferencing method. One of the labeled
images are shown in Figure 4.7.

70.5 cm

Figure 4.5: Experimental setup used to acquire dataset D2.

4.2.3 Track validation set - D3

The final dataset was acquired 16.06.2023 at Brattørkaia, Trondheim. This set was in-
tended as a validation set for the accuracy of the processed LiDAR measurements and
tracks produced by the JPDA filter. Some adjustments to the capture method were done to
increase the accuracy of the measurements, as D1 had some weaknesses that were iden-
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(-0.55 m, 6.16 m) 

(1.13 m, 3.93 m) 

Figure 4.6: Extracting ground truth from LiDARView. The objects were removed after extraction
and and confirmed to disappear from the view to ensure proper association.

tified during development. The main distinction was that all the measurements from the
sensor suite were pipe-lined to a ROS-core running on a laptop and captured using the
rosbag command. This allowed metadata from the camera stream to be collected and for
the system to be integrated with the ROS ecosystem. The former was important to en-
sure that a frame could be tied to a specific timestamp. The timestamps for D1 had to
be extrapolated from the start of the recording based on the frame rate, leading to large
synchronization issues. The experimental setup consisted of the upper section of the Otter
(Figure 4.8a) placed at the end of the pier, a Samsung S10 with GNSS enabled enclosed in
a waterproof encasing (Figure 4.8b), several types of trash (Figure 4.8c) and a fishing rod
(Figure 4.9b). Three segment of data was collected for each type of trash. The distance
from the camera to the ocean surface was measured for each segment. The collection was
performed by throwing the trash out in the water on the right side of the sensor platform,
outside of sensing range. The distances thrown from the pier was varied to cover larger
areas of the active tracking area. The fishing rod was then moved to a perpendicular part of
the pier and the fishing line slowly retracted. This ensured that the trash ended up in range
for both the camera and LiDAR. The process is illustrated in Figure 4.10. A final segment
for each type of trash was captured where two pieces of stationary trash was introduced
before starting the test. The trash with GPS was then thrown within the sensing range of
the sensors and pulled in. This was performed to evaluate a setting with multiple targets.
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Figure 4.7: Manually labeled image from D2

The total amount of segments were (4 types * 3 distances) + 4 stationary = 16.

4.3 Evaluation

This section presents the evaluation metrics used in this thesis. The metrics are split into
two categories, the first being sensor specific and the second being overall system perfor-
mance.

4.3.1 Sensor specific metrics

For each raw sensor stream being fed into the system a corresponding processed stream
should be passed on to the JPDA filter. The LiDAR and georeferencing streams have
different weaknesses and strengths, and the metrics used to validate the measurements
should reflect this.

The georeferencing stream is based on a pre-trained YOLOv7 model outside the scope
of this thesis. Metrics related to detection rates is therefore skipped. D2 was specifically
acquired to test the precision of the georeferencing. The ground truth of each bottle is
known and the georeferenced coordinate can be extracted from the bounding boxes. The
metric chosen to validate this stream is therefore the Root Mean Square Error (RMSE),
given by (4.4).

RMSE =

√√√√ N∑
i=1

(x̂− x)2

N
(4.4)

The RMSE yields the accuracy of the predicted position x̂ compared to the ground-
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4 Methodology 4.3.1 Sensor specific metrics

(a) The placement of the sensing platform
during the capture of D3

(b) The Samsung S10 used to establish the
ground-truth of the trash

(c) The different types of trash tested, henceforth referred to as bag, plastic container, box,
bottle

Figure 4.8: Test setup for D3

truth x. To see the effect of the undistortion and test the sensitivity to noise four scenarios
were calculated (Distorted, No noise), (Undistorted, No noise), (Undistorted, ±1◦ vertical
camera offset ) and (Undistorted, ±2 px vertical offset).

The LiDAR measurements are very precise, but lacks the ability to determine what
physical object the measurement stems from. The LiDAR processing in this thesis has
a binary outcome for each measurement received: Valid detection passed to the JPDA
filter, or Invalid detection which is rejected. The most relevant metrics to test therefore
becomes the ones related to detection rates. During the initial development, when only
dataset D1 was available, a qualitative approach had to be used. This was both due to
the LiDAR processing not being fully implemented, and that the data segment where trash
was introduced did not include GNSS data. The latter meant that even after the system was
completed the measurements from different time-steps could not be related. This is one
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(a) The platforms offset from the water sur-
face. Variable due to the tide.

(b) The fishing rod attached to the trash and
Samsung S10

Figure 4.9: Height above water surface and the fishing rod-solution used in D3

of the base assumptions of the finished LiDAR processor, and running the process without
the GNSS would therefore yield erroneous results. The first metric was therefore based on
visual, manual confirmation in LiDARView. For each piece of trash introduced, 50 con-
secutive frames (5 seconds) of LiDAR measurements were visually inspected. Each frame
was given a score of 1 if one or more points stemming from the trash was observed. No
observed detection was given a 0. The score was then summed and averaged, yielding a
True positive (TP) and False negative (FN) rate. In addition the largest amount of consec-
utive False negatives was recorded for each piece of trash. The video-stream was used to
ensure that the LiDAR measurement under observation was assigned to the right object by
comparing timestamps and visually confirming. A frame of LiDAR with the trash present
and its corresponding visual confirmation is shown in Figure 4.11b and Figure 4.11a.
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Start
position

End
position

Sensor
platform

Search area

A1

A2

A3

Figure 4.10: The capture procedure for each segment in D3. The naming convention A1-A3 is also
used to separate the results from the trials

As the position of the sensor suite is static during D3 and ground truth data have been
captured a quantitative approach should be avaiable. This is again done by calculating the
RMSE for each measurement - ground truth pair.

4.3.2 System performance metrics

Several system performance metrics are viable for testing the performance of the full sys-
tem. The first two, Average Normalized estimation error squared (ANEES) and Average
Normalized Innovation Squared (ANIS), are used for measuring filter consistency(Brekke
(2020), page 69). For any time-step the NEES and NIS can be calculated according to
(4.5) and (4.6) respectively. (x̂k− xk) is the state error of a track at time-step k, P−1

k is the
estimated covariance at time-step k, εvk is the measurement residual and S−1

k is the inno-
vation covariance. Averaging over time yields ANEES and ANIS. To use these metrics it
is necessary to construct a upper and lower bound based on a chosen confidence interval.
The bounds can be calculated as the inverse χ2 cumulative distribution function withNd/2
and Ns/2 degrees of freedom respectively. Nd is the amount of realizations used to find
ANEES and Ns is the amount of realizations used to find NIS.

εk = (x̂k − xk)TP−1
k (x̂k − xk) (4.5)

εvk = νTS−1
k νk (4.6)

ANEES is a valuable metric as it indicates if the state errors of the tracks is of the same
magnitude as the state covariance. If ANEES is high it is a sign that the filter is overcon-

49



4 Methodology 4.3.2 System performance metrics

(a) LiDARview of one frame with measure-
ment from plastic bag visible.

(b) The corresponding video frame used to
match object and measurements.

Figure 4.11: The visual detection and confirmation process.

fident in its state estimate. ANIS enables testing of the innovation covariance consistency.
The metric indicates if the predicted measurement error is of the same magnitude as the
innovation covariance. A low ANIS value indicates that the filter is underconfident in its
measurements.

For the JPDA the performance metrics evaluated is the Track probability of detection
(TPD), track time (TT) and the track fragmentation rate (TRF). TPD is given by tracked
targets divided by total number of targets, TT is the time period of the longest track seg-
ment and TFR is defined as the amount of tracks necessary to track a single target.

Finally, the full proof-of-concept of the system is evaluated. This is based on the
second segment in D1 where GNSS measurements are available for USV positioning.
This allows the system to process real-life data continuously over a longer period, in a
dynamic environment where both trash and obstacles are present. As no ground-truth
was captured the performance is evaluated by looking at detections that can be visually
confirmed, the ability to filter out measurements from the surroundings and the overall
tracking performance.
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5
Implementation

This chapter presents how the full pipeline from raw sensor data to track output for de-
tected trash is implemented. Section 5.1 presents the software tools used, Section 5.2
presents some of the main implementation choices that were made during development,
while Section 5.3 presents the system architecture and the main modules directly related
to the theory in Chapter 3.

5.1 Software tools

This section presents the programming language and software needed to implement and
run the system.

5.1.1 ROS

Robot Operating System (ROS) is an established open-source framework for development
of robotic applications (OpenRobotics (a)). Due to its modular and distributed approach
to software hierarchy, where each process is a Node, it is well suited to create standalone
packages that can be integrated into existing systems across different platforms. Each node
can publish information to topics, and listen on topic by subscribing to them. This allows
information to flow between nodes and lets each node process its task independently. ROS
is also language agnostic, which means that programming languages that usually are non-
compatible are able to communicate and interact over a common interface.

For this thesis the main use of ROS is to interact with the USV over a shared frame-
work, which can handle asynchronous data-streams and relate each measurement with
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common timestamps. This was done utilizing three packages, the first two being
video stream opencv (OpenRobotics (b)) and velodyne (O’Quin) while the final being an
internal package from Clean Sea Solutions. The latter intercepts the GNSS measure-
ments sent by the GNSS receivers to the on-board computer and republished them on a
topic. The former two nodes publishes to two other topics, namely /camera/image raw

and /velodyne packets. All three can be recorded in the same file using the rosbag com-
mand, creating a rosbag-file. The rosbag can then be replayed later, emulating the captured
data-streams by republishing all data to the original topics in chronological order.

To ease future integration into the ROS ecosystem the software in this thesis is devel-
oped with the ROS methodology in mind. Each sensor-stream is therefore assigned its
own module, which is implemented so that it can process one measurement at the time as
they arrive. After processing the measurement the module publishes a corresponding data-
packet and keeps any internal states for the next measurement. Furthermore, the order of
processing is based on the corresponding timestamps given by ROS for each measurement,
with the oldest taking priority.

5.1.2 Programming

The main programming language used in this thesis is Python. The was in large parts due
to ROS being language agnostic, which leaves it up to the developer to choose a program-
ming language based on the needs of the project. For this project two main arguments
laid the foundation for using Python. Foremost, the ease of prototyping and inclusion of
open-source packages speeds up the development process. This is important when the
overarching scope is large and the development time is limited. The access to open-source
packages meant that subsystems which implementation fell outside of the scope could be
offloaded to established frameworks. A comprehensive list of all packages imported and
what purpose they served can be found in Table 5.1. The second argument is that the real-
time processing speed was a secondary priority during the first iteration of this project.
The main goal was to develop and test the viability of a trash detection system based on a
fusion of sensors. It did not matter how fast the system ran if no meaningful information
could be extracted from it. It was therefore decided that the first version of the system was
to be developed in Python. Having established a proof-of-concept one could then revisit
the notion of rewriting the code in a faster language (i.e. C++). This would however fall
outside the scope of this thesis and be left as future work, if the implementation showed
potential but real time capabilities were determined to be lacking.
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Package Offloaded task Source
PyTorch Trash object-detection module Paszke et al. (2019)

Stonesoup JPDA implementation Hiles (2023)
velodyne decoder Velodyne packet decoder Valgur (2023)

PIL Image conversion Clark (2015)
Pymap3d Coordinate conversion Scivision (2023)

Plotly Plotting of JPDA Inc. (2015)
Matplotlib General plotting Hunter (2007)

NumPy Linear algebra Harris et al. (2020)
Rosbag rosbag support Field et al. (2023)

scikit learn Meanshift clustering Buitinck et al. (2013)
OpenCV LSD implementation OpenCV (2015)
FFmpeg mp4 reader Tomar (2006)

vision opencv ROS image to CV2 image Mihelich and Bowman (2023)

Table 5.1: The imported python packages, their use-case and their citations

5.2 Design and implementation

This section presents some of the main design and implementation challenges that had to
be solved during the development of the system. Section 5.2.1 explains how the camera
intrinsic and distortion parameters of the camera were found. Section 5.2.2 describes how
measurements on different data formats were unified. Section 5.2.3 presents how issues
related to synchronization was handled.

5.2.1 Camera calibration

Although the pinhole camera model from Section 3.3 yields a decent approximation of im-
age formation for standard cameras, it does not account for different types of distortion in
the image. This occurs due to the camera lens not being rectilinear, which leads to straight
lines projected onto an image not staying straight. To correct for this it is necessary to
find find the cameras unique intrinsic matrix and distortion parameters. One of the most
common methods for camera calibration was first presented in Zhang (2000). A series of
pictures taken with the camera to be calibrated is needed to perform the calibration, each
image with a black and white checkerboard visible. The dimensions of the checkerboard
and the physical size of each square is also necessary. The actual calibration was done
according to OpenCV (2014). Figure 5.1 shows one of the 40 images used during cali-
bration including the checkerboard detection. Equation 5.1 presents the intrinsic camera
matrix and Equation 5.2 presents the distortion parameters. Figure 5.2a and Figure 5.2b
shows a comparison of a image before and after undistortion. Lines that are supposed to
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be straight have been straightened out after undistorting, with the clearest example being
the window frame. The reprojection error was 0.114 pixels. This means that the points
reprojected back to the scene using the calibrated matrix yields a sub-pixel accurate result.
An important observation is that the undistortion scales and crops the image. This could
potentially have an impact on the georeferencing process where pixel offsets lead to errors
and parts of the image are left out. However, when the cropping was not performed the
returned image was unacceptable, as seen in Figure 5.2c. This was identified as originating
mainly due to a large k3 parameter (-3.706).

Figure 5.1: The checkerboard detection for one of the images used for calibration.

Ipin =

2753 0 1344

0 2784 748

0 0 1

 (5.1)

Dpin =
[
−0.949 2.273 0.0283 −0.009 −3.706

]
(5.2)

The HikVision camera is defined as a bullet camera and should fall within the ”pinhole”-
category. However, due to the large horizontal FOV another calibration method could
also be viable, namely the fisheye model (Kannala and Brandt (2006)). The camera was
therefore also calibrated according to this model (Using the procedure and code outlined
in Jiang (2017)). Equation 5.3 presents the corresponding intrinsic matrix, Equation 5.4
presents the distortion parameters and Figure 5.2d shows the undistorted image. To iden-
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tify if any of the camera calibration improved the performance the georeferencing valida-
tion set was processed both with and without undistortion, using both the cropped pinhole
model and the fisheye model. The calibration determined to be best was then deployed on
to produce the final results.

Ifish =

1673 0 1293

0 1686 768

0 0 1

 (5.3)

Dfish =
[
−0.174 0.191 −0.290 0.204

]
(5.4)

(a) Image before undistortion. The distortion effect can
cleary be seen along the window frame

(b) Image after undistortion. The rectifying effect is
most visible along the window frame.

(c) Undistortion without cropping. Setting the k3 pa-
rameter to zero was the only way to rectify this.

(d) Image after undistortion using the fisheye model.
Black borders are introduced to avoid cropping.

Figure 5.2: The different camera calibrations
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5.2.2 Datastream unification

One central issue when developing a multi-sensor system is how to process the incoming
data streams. In this thesis the processed measurement data is to be fed into the JPDA
filter described in Section 3.4. This opens up the opportunity to feed the filter with mea-
surements as they arrive. This is relatively trivial in ROS with its topic subscription and
rosbag format. In this case measurements are published in chronological order and can be
decoded using packages designed to bridge the gap between ROS and python. When the
data is recorded using other formats, which was the case for dataset D1, there is however
software overhead. In this case it is necessary to determine in which order the data ar-
rived, after first stripping the relevant information and unifying the format. Two methods
is considered for this thesis. The first is to do information extraction, merging and sorting
in a separate process and saving the output to file in chronological order. The second op-
tion is to handle the streams dynamically as the measurements are being received. In this
case only one measurement from each sensor is considered at a time and the measurement
propagated to the system is the oldest of the three. As the intention is to connect the soft-
ware to live sensors the latter, dynamic approach was deemed advantageous, as developing
the system around this format means that the integration with the ROS ecosystem can be
done almost seamlessly. The former would require an intermediary step that would have
to perform many of the same tasks as the dynamic choice.

The dynamic solution interfacing with both rosbags and the alternative data formats in
D1 is implemented by using pythonic data generators to simulate the data streams. These
generators are memory efficient way to access and handle large amounts of data. This
stems from the fact that a generator only processes the next iteration in its loop when called
with the function next(generator). This iteration can include loading the next member of
a data structure from a file, as opposed to loading the file in full.

5.2.3 Synchronization

Another central issue of multi-sensor systems is how the synchronization should be han-
dled. If there is a time offset between actual capture time and the related timestamp this
can have dire consequences for the accuracy of the system, as the translation between
frames described in Section 3.2 depends on both the distance traveled and the heading. Er-
rors in the latter also results in increasingly worse errors for measurements as the distance
increases. To illustrate how severe this problem can become one can look at a scenario
where the USV starts a turn at a constant rate of 10◦ per second and the heading mea-
surements are sampled at 10 Hz. Then assume that the USV is observing an object at
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the edge of the permitted range with LiDAR, with a NED coordinate given by (x,y) = (0
m, 10 m). If the heading measurement and LiDAR timestamp is out of sync with 100
ms, i.e. due to being stamped at measurement initiation versus storage time, a 1◦ error in
heading would be realized, which yields a new coordinate of: x = 10 ∗ cos(1◦) = 10

m , y = 10 ∗ sin(1◦) = 0.17 m. It is clear that majority of the error manifests itself
perpendicular to the heading, with a discrepancy of 17 cm along the x-axis in this spe-
cific case. The situation is illustrated in Figure 5.3, where the USV and a frame aligned
measurement are shown at two subsequent time steps. The red X illustrates the position
in NED of the measurement right before being fed into the JPDA, while the blue circle
signifies the actual object being measured. The discrepancy between the object and the
aligned measurement at the next time step is shown on the right hand side. The sensor has
received a measurement that is translated according to the actual heading change, but since
the heading is lagging behind the assumed heading is still directly north. No correction
is therefore performed and the JPDA is fed erroneous information. In the worst case this
can lead to a bad velocity estimate and track loss. This example only shows the impact
of an error in orientation, but these problems also extend to GNSS position, either over or
under-compensating displacement depending on the offset direction.

Otter

Real
Heading

Trash
Aligned measurement

X

Otter

Real

Heading

X

X

Assumed 
heading

Figure 5.3: Graphical representation of the synchronization issues discussed in Section 5.2.3, given
in the NED frame. The figure is for illustration purposes only and the measurement offsets and
angles are not to scale.
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With the large impact these issues can have on the accuracy and performance of the
system it is clear that steps should be taken to mitigate the risk of asynchronous data. The
first and foremost approach is to stamp all measurements according to the same internal
clock whenever possible. This minimizes outside effects such as transmission delay and
clock offsets. However, this is not always possible due to different measurement origins.
This is the case for the data collection system used in this thesis. The Otter is connected
wirelessly to a radio receiver that is then connected to a laptop. The recording for all three
datasets were done on this laptop, but both how the data was captured (D1 differs from
D2 and D3) and what hardware was available led to limitations that had to be handled
manually.

The GNSS receivers measurements are intrinsically linked to the atomic clocks in the
satellite network, meaning that the sensors passes on an ”internal” stamp at the time of cal-
culation, The VLP-16 also yields an ”internal” stamp, which is connected to the clock on
the Otter. The Hikvision-camera is the weakest link, not being able to embed timestamps
in the metadata of each frame. This results in the timestamp not being resolved before
arriving to the module responsible for storing or propagating the image into the system.
In the case of dataset D1 the only timestamp available is the time the file was written.
This means that every timestamp-image frame pair has to be extrapolated based on the
initial timestamp, adding the frame number multiplied by the time difference between two
frames. For the longer datasets in D1 this leads to further complications, as the theoretical
offset between two frames (0.25 s at 4 FPS) and the actual offset differs slightly. Although
giving a good initial guess it is therefore a necessity to tune the offset manually given a
chosen starting time in a capture file.

For D2 and D3 the ROS framework is used, enabling the stamping of each measure-
ment according to the same internal clock on the laptop running the recording setup. The
clearest advantage is that each image frame has its own associated timestamp, removing
the need for extrapolation. It does however expose measurements from all sensors to the
transmission delay from the Otter to the laptop. Furthermore, the way the camera transmits
the image frames by publishing to a local web-page, which the laptop then is able to in-
terface with to fetch the image. This also introduces a delay, which in addition to being of
varying length between captures also is introduced from the beginning of a capture. This
means that every rosbag capture requires manual tuning to synchronize the LiDAR and
camera measurements. To counteract these shortcomings in synchronization a rework of
the collection system both on the software and hardware side is needed, which was found
to be outside the scope of this thesis.
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5.3 System architecture

This section presents how the system architecture and the modules it consists of are imple-
mented. Section 5.3.1 presents the overarching structure and information flow. The next
sections dives deeper into the implementation of each individual module and how they
relate to the theory presented in Chapter 3. Code lines marked with # represents the pseu-
docode of the actual code, replaced for code readability. For brevity only the main modules
related to the theory section are shown. The reader is referred to (Vormdal (2023)) for the
full source code of the system.
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Figure 5.4: Visualization of the modular system architecture. Also presents the information flow
for data streams based on both data generators and ROS topics.

5.3.1 Overview

An overview of the system architecture, including the different modules and their relations,
is illustrated in Figure 5.4. The lowest layer consists of three modules corresponding to
one sensor each, and is tasked with distributing measurements as they arrive. These mea-
surements either arrive by subscribing to ROS topics as in D2 and D3, or by iterating step
by step through each measurement file, as collected in D1. If the data-streams originates
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from ROS topics the measurements are packaged on format that can be easily converted
to python objects using readily available packages. This means that the data can be passed
straight to the scheduler, which is tasked with deciding which measurement is next in line
for processing. In the case of measurements from D1, the generators are also responsible
for formatting data to the same format as received from a rosbag. The scheduler passes
the next measurement in line to the correct processing module. Each processing module
then converts the raw data to measurements conforming with the JPDA assumptions and
passes them to the filter. The JPDA filter then returns tracks of the observed trash.

5.3.2 LiDAR generator

The generator for the LiDAR data is shown in Code 5.1. This is the simplest generator
as LiDAR packets either originated from .pcap or ros velodyne packets, both of which
could be read using the python package velodyne decoder referenced in Section 5.1.2. The
generator takes the file to read from and the start stamp as inputs. ros is a control variable
selecting the input type. frame[0] returns the time stamp of the current data packet, and
while the start stamp is higher the packets are discarded. This ”rolls” the data packets
forward until the wanted timestamp is reached, and is a feature in every implemented
generator. The first data packet with a time stamp after the start time will go to yield,
where it wills stay until the function is called with next().

1 def get_raw_lidar_data(rosbag, topic, start_stamp, ros = False):

2 config = vd.Config(model=’VLP-16’, rpm=600)

3 if ros == True:

4 for stamp, points, _ in vd.read_bag(rosbag, config, topic):

5 stamp = stamp.to_sec()

6 if start_stamp > stamp:

7 continue

8 yield [stamp, points]

9 else:

10 for stamp, points in vd.read_pcap(raw_lidar_data, config):

11 if start_stamp > stamp:

12 continue

13 yield [stamp, points]

Code 5.1: The LiDAR data generator

5.3.3 Camera generator

The generator for the camera is shown in Code 5.2. The intrinsic and distortion matrices
are cast in intr and dist. If the video being passed is in the form of a rosbag the correct
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topic is read and each image is converted to a python-friendly format before being undis-
torted. The timestamp is corrected with the user defined offset and the generator yields the
corrected data. If the video is on a .mp4 format as in D1, the metadata end time stamp,
video duration and number of frames frame num is extracted and used to calculate the
correct frame corresponding to the chosen start stamp. The video is rolled forward to this
frame and the remainder of frames are iterated over, keeping track of the new stamp offset.
Each frame is again undistorted before being yielded by the generator.

1 def get_camera_frame(video, start_stamp, video_path = None, ros = False,

topic = None, offset = 0):

2 intr = C_matrix #

3 dist = D_matrix #

4

5 if ros == True:

6 for _, msg, t in video.read_messages(topics=topic):

7 t = t.to_sec()-offset

8 cv_img = bridge.compressed_imgmsg_to_cv2(msg, "passthrough")

9 cv_img = cv2.undistort(cv_img, intr, dist, None, None)

10 cv_img = cv2.UMat.get(cv_img)

11 if start_stamp > t:

12 continue

13 yield [t,cv_img]

14 else:

15 meta_data = ffmpeg.probe(video_path)

16 end_time, duration, frame_num = get_metadata() #

17 video_offset = extrapolate_offset(start_stamp, end_time,

18 duration, frame_num) #

19 video.set(cv2.CAP_PROP_POS_FRAMES, video_offset)

20 success = True

21 for i in range(frame_num):

22 success, img = video.read()

23 stamp = stamp + 0.25

24 if start_stamp > stamp or not success:

25 continue

26 img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

27 cv_img = cv2.undistort(cv_img, intr, dist, None, None)

28 cv_img = cv2.UMat.get(cv_img)

29 yield [stamp, cv_img]

Code 5.2: The camera data generator

5.3.4 GNSS generator

The implementation of the GNSS generator is shown in Code 5.3. The largest distinction
from the other generators is that the reference point in geodetic coordinates is subject to
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change depending on what is being visualized. The variables relative pos, set start pos

and start pos determines where the geodetic origin of the NED-plane is. In the case of the
JPDA visualization this is set as a pre-defined point at a corner of Brattørkaia, while for
the visualizations of D1 it is set as the geodetic coordinate at the chosen initial time-step.
The function g2n stands for geodetic2ned and is imported from the package pymap3d. In
the case of D1 the GNSS data is supplied as a .txt-file, requiring reading the formats line
by line. GPGGA is the header for lines containing positioning data. For each package of
positioning data there is also a corresponding GPHDT package containing the heading.

1 def get_position(data_stream, start_stamp, relative_pos, date = None,

2 ros = False, topic = None):

3 set_start_pos = False

4 heading = 0

5 if ros == True:

6 for _, msg, t in data_stream.read_messages(topics=topic):

7 t = t.to_sec

8 if start_stamp > t:

9 continue

10 heading, lat, lon = get_gnss_ros(msg) #

11 if set_start_pos == False:

12 start_pos = [ned_origin[0], ned_origin[1]] #

13 set_start_pos = True

14 ned = g2n(lat, lon, 0, start_pos[0], start_pos[1]) #

15 yield [t, [ned[0], ned[1], heading]]

16 else:

17 file = open(data_stream, ’r’)

18 frames = file.readlines()

19 for i, frame in enumerate(frames):

20 if frame[1:6] == ’GPGGA’:

21 time, lat, lon = strip_and_format_gnss_string(frame) #

22 heading = find_corresponding_gphdt(frame) #

23 timestamp = time_to_ts(time) #

24 if start_stamp > timestamp:

25 continue

26 if set_start_pos == False:

27 if relative_pos == True:

28 start_pos= [float(lat), float(lon)]

29 else:

30 start_pos = [ned_origin[0], ned_origin[1]] #

31 set_start_pos = True

32 ned = g2n(lat, lon, 0, start_pos[0], start_pos[1]) #

33 yield [timestamp, [ned[0], ned[1], heading]]

Code 5.3: The GNSS data generator
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5.3.5 LiDAR processing

Although being abstracted out into two separate modules in the system overview the Li-
DAR pre-processing and processing is integrated into one overarching function, shown in
Code 5.4. The LiDAR pre-processing is done by direct filtering, which means that every
point outside set thresholds are rejected. This reduces the processing demand significantly,
which is crucial for the processing step. An added advantage is that it can be run in O(n)-
time, since it only requires one iteration through the point-cloud list. The processing steps
described in Section 3.3.1 are done on line 16-20. The function update lines is an addition
not covered in theory. It was added to counteract a weakness of the line segments returned
from the LSD, which in some instances returns several line segments where there should
only be one, leaving gaps. Each line segment detected is therefore passed on to the next
three subsequent time-steps. This requires that each line segment is oriented according
to the current heading and position and that old segments are removed as they pass out of
scope. To improve performance segments that are fully covered by other segments are also
found using the line intersection method and removed.

1 def get_lidar_measurements(detector, lidar_data, position_delta, radius,

intensity, heigth, current_lines):

2 if np.size(lidar_data) == 0:

3 return None, None, None, None

4 frame_points = []

5 unique_points = np.unique(lidar_data, axis=0)

6

7 for point in unique_points:

8 if np.linalg.norm([point[0], point[1]])<= radius and point[2] <

heigth:

9 frame_points.append(point)

10 frame_points = np.array(frame_points)

11 lines = []

12 new_lines = []

13 lidar_measurements = []

14

15 if np.size(frame_points) != 0:

16 lidar_image = lidar_to_image(frame_points)

17 lidar_image = cv2.GaussianBlur(lidar_image,(3,3),0)

18 new_lines = detector.detect(lidar_image)

19 lines = update_lines(new_lines, current_lines, position_delta)

20 lidar_measurements = clean_on_line_intersect(lines, frame_points)

21

22 return lidar_measurements, lines, frame_points

Code 5.4: The overarching LiDAR processor
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5.3.6 Camera processing

The camera processing function is shown in Code 5.5. The image being processed is first
being resized to a resolution that is similar to the one used to train the object detection
model as to not impact the detection performance. Although the model was trained on
640x480 the image is resized to 672x380 in order to keep the original format intact, cir-
cumventing the stretching of pixels. model() is the initialized detector object, returning
bounding boxes for each object detected in a frame. Each bounding box is scaled back to
the original resolution. The scaling and rescaling process introduces a ± 2 pixel systemic
error. It was deemed an acceptable compromise to not degrade the performance of the ob-
ject detector, which even in best case scenarios frequently experienced bad detection rates.
Detections that are above the horizon, below a lower confidence threshold or that are in the
area of the image where the USV is visible are removed on line 10-12. find box coordinate

calculates the horizontal centre of the bounding box and returns the box coordinate used
for georeferencing. Each box is then georeferenced using the implementation shown in
Code 5.6, corresponding to the theory presented in Section 3.1.3.

1 def detect_trash(image, model, rot, heigth):

2 image_res = cv2.resize(image, (672, 380))

3 predictions = model(image_res)

4 boxes = []

5 detections = []

6 world_coords = []

7 for row in predictions.pandas().xyxy[0].itertuples():

8 ymin, ymax = int(row.ymin *4), int(row.ymax *4)

9 xmin, xmax = int(row.xmin *4), int(row.xmax *4)

10 if row.confidence > 0.35 and ymin > 725 and ymax > 725:

11 if bbox in usv_rect: #

12 continue

13 detections.append([xmin, ymin,xmax, ymax])

14 box = find_box_coordinate(ymax, xmin, xmax)

15 boxes.append(box)

16 for b in boxes:

17 R = rotation_matrix(rad(-90.0+rot[0]), rot[1], rad(90.0+rot[2])) #

18 world_coord = georeference(b[1],b[2], R, [0.0,0.0, heigth])

19 if world_coord[0] < 10.0:

20 world_coords.append(world_coord)

21 return [detections, world_coords, boxes]

Code 5.5: The overarching camera processor
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1 def georeference(u,v, R, t_wc):

2 theta = ((u - 1344) / 2688)*np.radians(109)

3 psi = ((v - 760) / 1520)*np.radians(60)

4 v_c = [np.tan(theta), np.tan(psi), 1]

5 v_w = R@v_c + np.array([t_wc[0], t_wc[1], 0])

6 s = -t_wc[2] / v_w[2]

7 x_w = t_wc + s*v_w

8 return x_w

Code 5.6: The georeferencing function

5.3.7 JPDA

The JPDA implementation is presented in Code 5.7. It is almost entirely based on pre-
defined objects and functions from the package Stonesoup. The majority of the work in
this thesis with regard to the JPDA consists of choosing the right components for the trash
detection problem, tuning the parameters to ensure proper tracking and integrating the
framework into the developed system.

Line 1-8 defines the underlying Kalman filter used to estimate each state vector cor-
responding to a trash object. The transition model is the CV model, where the white
noise-component corresponding to the expected acceleration of each object is passed as an
argument. The value of 0.001 was determined experimentally and was found to yield sat-
isfactory results related to tracking performance and corresponding metrics. A low value
indicates that the trash is expected to undergo little to no acceleration. This fits well with
the assumption that the floating trash is mainly moved by environmental forces such as
current and wind. Three measurement models were used, one for track initialization and
one for each sensor. The noise covariance parameter sets the expected uncertainty for each
dimension of the measurements. In the case of the initiator (visible on line 4), this is set
low (0.01 m) to ensure that only subsequent measurements actually measured to be within
a certain distance can initialize tracks. The uncertainty for the sensors is set higher at [0.5,
0.5 m] for the camera and [0.25 m, 0.25 m] for the LiDAR. The higher value for the cam-
era originates from the fact that the camera calculates distance through several steps where
sources of error can be present, while the LiDAR directly measures distance. The values
being higher than for the initializer is selected to relax the constraints for measurement-
to-track association for already established tracks. This counteracts new measurements
falling outside a narrow validation gate and being considered for new tracks. It also has
the added benefit of adding an appropriate uncertainty to the track itself, which will scale
when the track is lost. Three track deleters are cast, the first being time based with a nar-
row time window, used for initialization. This is done to filter out clutter and ensure that a
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track is only accepted when the inital measurements are close in time as well as space.

The two other deleters on line 13-14 are used for the main filter and corresponds to the
discussion in Section 3.4.7. Line 16-27 corresponds to the initator discussed in Section
3.4.6. The initial state vector is cast with uncertainty in the velocity components [0.3 m
0.3 m] corresponding to the process noise. This increases the size of the validation gate.
The remaining parameters are set to zero as they are overwritten by the initial measurement
state. The selected minimum associated measurements to pass a track to the main filter is
set as 2 in min points. This is based on the assumption that clutter is unlikely to appear
close in time and distance over a short period. This does not account for disturbances such
as wakes or other temporary water disturbances which might yield false measurements. In
practice it was however observed to work as intended in the testing environment.

1 transition_model = CombinedLinearGaussianTransitionModel(

2 [ConstantVelocity(0.001),ConstantVelocity(0.001)])

3

4 measurement_model = LinearGaussian(ndim_state=4, mapping=[0,2],

5 noise_covar=np.diag([0.1**2, 0.1**2]))

6

7 predictor = KalmanPredictor(transition_model)

8 updater = KalmanUpdater(measurement_model)

9 hypothesiser = PDAHypothesiser(predictor=predictor,

10 updater = updater, clutter_spatial_density=0.125)

11 data_associator = JPDA(hypothesiser=hypothesiser)

12 deleter_init = UpdateTimeStepsDeleter(time_steps_since_update=3)

13 deleter_2 = UpdateTimeStepsDeleter(time_steps_since_update=35)

14 deleter = CovarianceBasedDeleter(covar_trace_thresh=1.5)

15 multi_del = CompositeDeleter([deleter, deleter_2], intersect = False)

16 init_hypothesiser = DistanceHypothesiser(predictor, updater,

17 measure=Mahalanobis(), missed_distance=0.3)

18

19 init_data_associator = GNNWith2DAssignment(init_hypothesiser)

20

21 initiator = MultiMeasurementInitiator(

22 prior_state=GaussianState([[0], [0], [0], [0]], np.diag([0, 0.3, 0,

0.3])),

23 measurement_model=measurement_model,

24 deleter=deleter_init,

25 data_associator=init_data_associator,

26 updater=updater,

27 min_points=2,)

Code 5.7: The JPDA implementation
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Finally, the integration with the implemented system is shown in Code 5.8. The input
detector generator is a wrapper generator that chronologically yields processed measure-
ments and their corresponding time-step. Each measurement are packaged as a Stonesoup
Detection object with the sensor specific measurement model. The returned tracker object
can then be called to produce tracks and associated information.

1 def track(detector_generator):

2 tracker = MultiTargetMixtureTracker(

3 initiator=initiator,

4 deleter=multi_del,

5 detector=detector_generator,

6 data_associator=data_associator,

7 updater=updater,)

8 return tracker

Code 5.8: The JPDA integration
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6
Results

6.1 Preliminary data - D1

This section presents the results obtained from the Preliminary dataset D1. Section 6.1.1
presents the results from the visual detection test described in Section 4.3.1. Section 6.1.2
presents the full implemented system running on a section of the second data segment of
D1, as described in Section 4.3.2.

6.1.1 LiDAR detection

The results from the visual detection test can be seen in Table 6.1. TP is true positive, FN is
False negative, CN is consecutive negatives and TP rate is the average rate of True positive
over 50 samples. Note that two of the pieces of trash introduced in D1 (Figure 4.3), namely
the 0.5 l bottle second from the left and the black aluminium can fourth from the left are
not present. This is due to an error in the video capture procedure. The error meant that
the two first pieces of trash never were visible in the video, consequently leaving no way
to visually match measurement and object after the fact.

Metric Bottle Can Beaker Clear plastic Bag
TP 43 42 50 30 47
FN 7 8 0 20 3
CN 2 4 0 15 3

TP rate 86% 84% 100% 60% 94%

Table 6.1: The results from the visual detection test, ordered as in Table 6.1, with the exception of
the two pieces not present.
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6.1.2 Global tracking

Figure 6.1: Global NED track results overlaid a map of Brattørkaia. Each color represents a unique
track.

The full result from the global tracking test can be seen in Figure 6.1. Each color repre-
sents a unique track. The semi-transparent circles illustrates the associated covariance for
the track at each time-step. The underlying map is set as the NED plane, with the origin
corresponding with the geographic location with latitude = 63.4386345 and longitude =
10.3985848. The tracks positions on the map are determined by first calculating the dis-
tance in NED between the origin and the USV geodetic coordinate at a given timestep. The
relative distance between the USV and a given track is then rotated by the current heading
and added to the former result. This means that each track should be placed consistent
with its actual geodetic position during the data acquisition. An animation of the under-
lying data processing can be seen by viewing the file Global tracking animation.mp4 at
(Vormdal (2023)) (also embedded in the README). The results were extracted from the
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dataset D1, where GNSS data for the USV was available. The test ran for 100 seconds.
The section was chosen as it was a representative sample of what the USV might encounter
in an harbour environment. This included floating trash, organics, piers, floating jetties and
larger boats. This allowed for verification of the main components of the system. Before
running the system on the section the camera was manually synchronized to the rest of the
data by comparing known movement from the GNSS with the video stream.
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Figure 6.2: A snapshot of the different sensors and corresponding NED track at a single timestep.

Figure 6.2 shows a snapshot of the system as it is processing the sensor measurements.
The top left image show the LiDAR processing, where the extracted line segments are
illustrated by blue lines and the measurements being passed to the clustering is marked
by blue dots. The top right image shows the NED track, where all sensor measurements
observed up until that point are present. The lower image shows the camera frame, where
the object detector shows the current detections with blue boxes. The latter also illustrates
the problem of false positives, where the reflection in the water has been identified as
trash. The low resolution is due to being part of an animation that was poorly optimized.
Storing at higher resolution resulted in the system freezing due to working memory con-
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straints. Figure 6.3 presents a closer view of some of the more interesting tracks that were
established.

(a) Closer look at the tracks in the vicinity of a
harbour wall

(b) Track where the time based deleter led to track
deletion

(c) Track where the covariance based deleter led to
deletion

(d) Track consisting of measurements from both
camera and LiDAR

Figure 6.3: A selection of tracks showing some of the main attributes of the JPDA filter

6.2 Georeferencing validation set - D2

This sections presents the results from processing of the dataset D2, first described in
Section 4.2.2. The six annotated images, their labels and the pixel coordinates of the
corresponding bounding boxes are shown in Figure 6.4. The first row corresponds to
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the distorted images, the second to undistorted using the pinhole model and the last to
undistorted using the fisheye model. Note that Box 3 is not present in the right image, due
to the cropping effect of the undistortion step. Table 6.2 gives the ground truth of each
object extracted from the LiDAR, with the x-axis pointing into the image and the y-axis
to the right. Table 6.3, Table 6.4 and Table 6.5 yields the georeferencing results for each
calibration.
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Figure 6.4: The six images used in the georeferencing experiment. Both the box labels (Box 1-6)
and the bounding boxes upper left and bottom right corner pixel coordinates are overlaid.

GT (m) Box 1 Box 2 Box 3 Box4 Box 5 Box 6
x 6.75 4.73 2.18 1.46 3.93 6.19
y 1.56 -1.75 -1.95 0.00 1.13 -0.55

Table 6.2: LiDAR Ground Truth (GT) for each box, extracted manually

Since the camera calibration with the lowest RMSE was the pinhole model this was
the method chosen for the sensitivity analysis. This still holds true after accounting for the
”outlier” of Box 3, which when removed yields RMSE = 0.32 for the Distorted images.
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Distorted (m) Box 1 Box 2 Box 3 Box4 Box 5 Box 6
x (geo) 6.49 5.40 2.81 1.46 3.82 6.49
y (geo) 1.59 -2.20 -3.04 0.02 1.13 -0.66
x (err) 0.26 0.67 0.91 0.00 0.10 0.30
y (err) 0.03 0.45 1.09 0.02 0.00 0.11
RMSE 0.49

Table 6.3: Distorted, No noise The georeferencing result from distorted image without noise. Error
is given in absolute value

Pinhole (m) Box 1 Box 2 Box 3 Box4 Box 5 Box 6
x (geo) 6.45 5.30 - 1.46 3.74 6.53
y (geo) 1.60 -2.22 - 0.02 1.24 -0.66
x (err) 0.30 0.57 - 0.00 0.19 0.34
y (err) 0.04 0.47 - 0.02 0.11 0.11
RMSE 0.32

Table 6.4: Undistorted, pinhole The georeferencing result from undistorted image using the pin-
hole model (with cropping). Error is given in absolute value

Fisheye (m) Box 1 Box 2 Box 3 Box4 Box 5 Box 6
x (geo) 9.28 7.53 3.15 1.99 5.35 9.44
y (geo) 1.04 -2.23 -2.98 -0.06 0.99 -0.83
x (err) 2.79 2.8 0.97 0.53 1.42 3.25
y (err) 0.52 0.48 1.03 0.06 0.14 0.28
RMSE 1.73

Table 6.5: Undistorted, Fisheye The georeferencing result from undistorted image using the fisheye
model. Error is presented in absolute value

Table 6.6 presents the change in calculated distances when a ± 2 pixel error is introduced
on the vertical component (y). The reason for only testing on this component is that it
will dominate at larger distances. This error is introduced to simulate the systemic error
introduced from low bounding box resolution. Table 6.7 presents the change in calculated
distances when introduced to a ± 1◦ in vertical camera offset.

Pinhole ( ∆ m) Box 1 Box 2 Box4 Box 5 Box 6
∆ x (+2px) 0.07 0.05 0.01 0.02 0.08
∆ y (+2px) 0.02 0.03 0.00 0.01 0.00
∆ x (-2px) 0.15 0.05 0.00 0.03 0.08
∆ y (-2px) 0.02 0.02 0.00 0.01 0.01

Table 6.6: The georeferencing sensitivity to errors in the bounding boxes. Each value signifies the
absolute distance between the original calculated value and the value with error present

73



6 Results 6.3 Track validation set - D3

Pinhole ( ∆ m) Box 1 Box 2 Box4 Box 5 Box 6
∆ x (+1◦) 1.15 0.74 0.05 0.35 1.18
∆ y (+1◦) 0.30 0.33 0.00 0.12 0.13
∆ x (-1◦) 0.84 0.58 0.05 0.28 0.86
∆ y (-1◦) 0.20 0.25 0.00 0.10 0.09

Table 6.7: The georeferencing sensitivity to errors vertical angle. Each value signifies the absolute
distance between the original calculated value and the value with error present

6.3 Track validation set - D3

This section presents the results from the track validation set D3. Due to unforeseen prob-
lems with the captured ground-truth data, no RMSE, NEES or ANEES values are present
in the results. In addition the trials related to the aluminium box are left out. Both issues
are thoroughly covered in Section 7.3.1. Each trial is marked with A1-A4, where the three
first corresponds to the trials with increasing distance from the sensor platform shown in
Figure 4.10. A4 corresponds to the trials where two other bottles were introduced in ad-
dition to the trash being tested. These was intended as a qualitative stress test to observe
the filters ability to track multiple tracks and observe track confusion tendencies, and eval-
uation metrics were therefore not extracted. Each subsection covers a specific piece of
trash being tested, presenting the measurements originating from the senors in each trial,
the JPDA track created based on this measurements and the corresponding JPDA evalua-
tion metrics. Note that the JPDA plots are overlaid an actual map of Brattørkaia, related
through the GNSS coordinate of the USV. The gray section in each image is a series of
steps leading into the water, which at the beginning of data acquisition was covered with
water. Due to the tide one step emerged from the water at the time, requiring the sensor
platform to be moved to a lower step several times to stay close to the water surface. This
is why some of the tracks are illustrated as being on land and why the USV location differs
between trials. The offset from the origin in the x and y axis also stems from this, with the
origin being located in the bottom left corner of the full scale map of Brattørkaia.

6.3.1 Evaluation metrics

This section presents the evaluation metrics results that could be extracted from the trials.
The 90 % confidence interval for the NIS given by two degrees of freedom is I = [0.102,
5.991]. NIS plots for the first trial for each piece of trash is shown in Figure 6.5. Table 6.8,
Table 6.9 and Table 6.10 presents the evaluation metrics for each trial.
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(a) NIS plot for Bottle (A1)
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(b) NIS plot for Bag (A1)
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(c) NIS plot for Container (A1)

Figure 6.5: Plots of NIS for the first trial of each type of trash

Bottle ANIS TPD TT (s) TRF
A1 0.556 2 31.87 1
A2 0.440 3 15.74 2
A3 0.206 2 23.80 1

Table 6.8: ANIS, TPD, TT and TRF for bottle tracks.

Bag ANIS TPD TT (s) TRF
A1 0.127 3 22.99 2
A2 0.254 1 17.75 1
A3 0.273 2 8.99 2

Table 6.9: ANIS, TPD, TT and TRF for bag tracks
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Container ANIS TPD TT (s) TRF
A1 0.42 10 18.65 5
A2 - 7 - 3
A3 - 4 - 1

Table 6.10: ANIS, TPD, TT and TRF for container tracks

6.3.2 Plots

This section presents the plots of the measurements for each trial in addition to the cor-
responding JPDA-tracks. Each unique track is marked in a different color. The semi-
transparent circles illustrates the associated covariance for the track at each time-step. The
USV is illustrated at its geodetic coordinate for each trial, with the arrow signifying the
heading during the test. Each object was introduced south-east of the USV position and
reeled in towards north-west.

(a) Measurements for the bottle trial (A1) (b) Measurements for the bottle trial (A2)

(c) Measurements for the bottle trial (A3) (d) Measurements for the bottle trial (A4)

Figure 6.6: Plots of measurements for the bottle trials.
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(a) JPDA track for bottle trial (A1) (b) PDA track for bottle trial (A2)

(c) JPDA track for bottle trial (A3) (d) JPDA track for bottle trial (A4)

Figure 6.7: Plots of JPDA tracks for the bottle trials.
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(a) Measurements for the bag trial (A1) (b) Measurements for the bag trial (A2)

(c) Measurements for the bag trial (A3) (d) Measurements for the bag trial (A4)

Figure 6.8: Plots of measurements for the bag trials.
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(a) JPDA track for bag trial (A1) (b) JPDA track for bag trial (A2)

(c) JPDA track for bag trial (A3) (d) JPDA track for bag trial (A4)

Figure 6.9: Plots of JPDA tracks for the bag trials.
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(a) Measurements for the container trial (A1) (b) Measurements for the container trial (A2)

(c) Measurements for the container trial (A3) (d) Measurements for the container trial (A4)

Figure 6.10: Plots of measurements for the container trials.
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(a) JPDA track for container trial (A1) (b) JPDA track for container trial (A2)

(c) JPDA track for container trial (A3) (d) JPDA track for container trial (A4)

Figure 6.11: Plots of JPDA tracks for the container trials.
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7
Discussion

This chapter presents and discusses the main findings of this thesis. Section 7.1 discusses
the results related to the dataset D1. Section 7.2 evaluates the viability of the georeferenc-
ing method and its shortcomings based on dataset D2. Finally, Section 7.3 presents and
discusses the LiDAR accuracy and tracking performance of the JPDA based on dataset
D3.

7.1 Preliminary data - D1

7.1.1 LiDAR detection

The visual detection test gives valuable insight into using a LiDAR for detection of small
objects in the water. First of all, all types of trash introduced were observed by the LiDAR
when within the pre-determined 10 meter radius. This, combined with the fact that the
lowest detection rate was 60% suggests that using a LiDAR for trash detection has the
potential to yield correct measurements. Another observation is that the false negatives
has a tendency to arrive consecutively, suggesting a systemic error. The most likely rea-
son for this result is the issues related to low vertical resolution, first discussed in Section
3.3.1. The extreme case of 15 consecutive negatives in the case of the clear plastic con-
tainer requires closer inspection, as there could be several contributing factors. The major
distinction between this object and the other trash is that it is transparent. This means that
the reflective properties also are different, and it is plausible that the laser might scatter at
the right angles of reflection instead of being directed back towards the LiDAR. This is
supported by the fact that the trash that should have the highest reflection coefficients, the
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green and white beaker and white plastic bag, has the best detection rates. A caveat is that
the during testing of the beaker the Otter was mostly turning, having very little transla-
tion. This can have led to an over-representation of the LiDARs detection rate at a specific
range, yielding positively skewed results. This is likely not the case for the clear plastic,
which data was recorded in an instance where the USV was moving continuously.

In summary the visual detection results show that the types of trash introduced can
be detected in the chosen range. They do however reveal some of the weaknesses of
using LiDAR, both because of missed detections and the inability to determine what the
measurements stems from.

7.1.2 Full system test

The full scale system test shown in Figure 6.1 yields promising results. Starting with a
general assessment of the systems detections throughout the run there are two observations
that immediately stands out. The first is that the system has created tracks on the water
surface, where several also lasted over extended periods of time. This suggests that the
system manages to detect and track something over time, but the classification of what is
being tracked cannot be determined directly, due to the lack of a controlled environment.
Using the video-stream and corresponding detections as a baseline for what is floating in
the area does however point to several of the tracks correctly originating from trash. This
is especially evident in another snapshot of the process, shown in Figure 7.1. The camera
frame shows an object being considered, a piece of styrofoam, directly in front of the USV.
Starting with the detection marked by a blue bounding box in the image it is clear that the
corresponding measurement marked in red is appropriately placed as the USV is moving
south-east. The position of the detected trash is further collaborated through the filtered
LiDAR measurements in the top left. Here the cluster straight ahead of the USV (x = 0m,
y = 5 m) overlaps with the camera measurement when transformed to NED coordinates.
Looking closer at the NED plot also reveals that no measurements from land have been
passed on to the JPDA filter. This ties in with the second observation that clearly stands out
in the JPDA-track plot. No measurements from the surroundings have been converted into
tracks, with the sole exception of the track at approximately (x = 60, y = 90). Combining
this with the fact that measurements from obstacles such as harbour walls were in fact
observed and converted into line segments, as shown in Figure 6.2, points to the fact that
the LiDAR filtering process worked as intended. In the same figure it is also clear that the
LiDAR has observed two objects that are not currently visible through the corresponding
image. Forwarding the video stream reveals thata cluster of seaweed is the likely candidate
for the detections at around (x = -2.5, y = 7.5). The cluster at approximately (x = 3, y =
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4) can however not be attributed to anything, either originating from a false positive or
already being out of frame.
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Figure 7.1: A snapshot showing the detection of a piece of trash and corresponding measurements
in NED.

Zooming in on the tracks in the global test, shown in Figure 6.3 gives some other
valuable insights. Figure 6.3a shows a closer view at some of the tracks in the vicinity of
the harbour wall. The first thing of note is the amount of tracks being created, with several
of them persisting for an extended amount of time. This points to the measurements being
consistent and close enough in proximity both in time and displacement to be viable for
the creation of tracks. It also shows that the filter manages to associate measurements to
several tracks in the same time period. It is also clear that tracks are not allowed to deviate
too much from its original position before being removed. This fits well with the fact that
the trash is close to static and that it falls outside range as the USV is moving beyond the
area.

Figure 6.3b shows a situation where two tracks are deleted when the allotted amount of
timesteps without a new measurement has passed. As the covariance was low right before
track loss, possibly due to an overconfidence in the measurements, the tracks were allowed
to drift for an extended amount of time before being removed. Depending on the situation
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and use-case this might be desirable. In a scenario where the trash is slowly drifting with
a ocean current the CV-model might be relied upon enough to predict the position for an
extended time. This would allow for the track to be picked up when the USV is back in
range. On the other hand the focus on re-establishing tracks might be misguided. The
track loss is often due to the USV moving away from the object in question, also meaning
that the USV is unlikely to try to collect the trash in the immediate future. Reestablishing
a new track when the USV is facing the object, i.e. if the USV is following a coverage
path, might be a equally good solution. The tracks themselves are also interesting. Both
are covering relatively large distances in the context of floating trash, and it seems likely
that this originates from a systemic error rather than abnormally fast-floating objects. In
both cases there are at least two perceivable ”jumps” where the filter has joined together
measurements after a period of track loss. A plausible explanation could therefore be
that measurements from several objects in close proximity have been attributed to a single
track. Another could be that some GNSS measurements from the USV were lost or cor-
rupted, leading to the USV being perceived as at rest for a short period. The LiDAR and
camera inherently account for the USV displacement, but to relate relative measurements
to the global map the USV fix has to be accurate.

Figure 6.3c show a comparison of a track being deleted by the time based deleter and
a track being deleted by the covariance based deleter. The latter, illustrated in pink, shows
that the covariance of the track expands until reaching a diameter of 1.5 m, consequently
being removed. The reason for this large uncertainity could be that the track was only
barely let through the initialization filter. The initial point of the track is inserted with
a plausible uncertainty, set through the initialization filters measurement model. If no
subsequent measurements were associated the covariance scales rapidly.

Figure 6.3d shows a track manually confirmed to consist of measurements from both
camera and LiDAR. At the initial point at around (x = 66.75, y = 20.75) the measurements
stems from the camera. As the USV closes in on the object (the styrofoam piece shown
in Figure 7.1), the georeferencing first undershoots the distance before converging in the
area where LiDAR measurements starts appearing. The track is then lost and the time
based deleter removes the track. Two findings can be extracted from this. The first is that
the georeferencing can be sensitive to the distance from the object. The second is that the
JPDA manages to combine measurements of one object from both sensors into a single
track.

From the results of the full system test it is evident that the system developed is ca-
pable of detecting small objects on the water surface, while filtering out disturbances and
measurements from the surroundings. However, due to testing in a relatively uncontrolled
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environment and lacking ground truth, the accuracy of measurements and tracks cannot
be determined beyond visual confirmation. To further prove the viability of both sensors
and the JPDA in the detection and tracking of floating trash the datasets D2 and D3 and
corresponding results were acquired.

7.2 Georeferencing validation set - D2

7.2.1 Calibration

The calibration process for this camera was not trivial. Due to the fact that the measure-
ments from the camera would effect the performance downstream, large efforts were made
to ensure that the camera performed to its full potential. After observing the uncropped
image from the pinhole model (Figure 5.2c) several steps were tried to rectify the situation.
First, different subsets of images were used for calibration to see if the model was overfit in
any way. This can happen if the checkerboards are too similar in pose and position, lead-
ing to the distortion in an small area being extrapolated to the full image. This approach
did not result in any significant improvement. The wrapped image could be rectified by
setting the k3-parameter in the distortion coefficients to zero, but this left the image close
to the original. The k3-parameter is the fourth term in the radial distortion model used in
the openCV model, given by xdistorted = x(1+ k1r2+ k2r4+ k3r6) (OpenCV (2014)).
A large value suggests that the radial distortion along the image edges is high. Visually
it is clear that there is some distortion along the edges, but the wrapping effect suggests
that this parameter was overestimated. The next approach was therefore to collect a new
calibration set to ensure that the results were not due to a bad sample. Another set of 150
checkerboard images were captured in a different setting, with a more representative sam-
ple along the edge of the image. Each image was manually screened to make sure that the
checkerboard was properly detected. The calibration was then run on both the full set and
new subsets. This yielded similar results as the first calibration attempts, again with a large
k3-parameter. Finally, calibrating using the fisheye model was tried. The resulting cali-
bration shown in Figure 5.2d showed promise in the way that it managed to undistort the
image without the need for cropping. The drawback is that black borders are introduced,
which could throw off the calculated distances for objects that are close to the bottom of
the image. Cropping the image to remove the black borders yields the same situation as in
the pinhole-calibration case, where Box 3 disappears.
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7.2.2 Results

Beginning with a general comparison of the different images used to georeference (Fig-
ure 6.4) there are several observations that are of interest. One of the most obvious might
be that the cropping effect of the pinhole model loses information in the image, by remov-
ing Box 3 and its corresponding bottle completely. Calculating the distance the camera
should be able to see horizontally at a distance of 2.18 meters yields tan(54.5) ∗ 2.18 =

3.06m. This means that the bottle should be visible in the frame. At the same time both
the fisheye model and uncalibrated camera yielded inaccurate distances for Box 3, with
errors in the range of 28 % - 53 % from ground truth. The choice of which camera calibra-
tion is best for the purpose of georeferencing therefore also depends on the weight put on
accuracy versus false-negatives. Another aspect that is visually apparent is that the fisheye
calibration ”squeezes” the objects towards the image centre. Every bounding box coordi-
nate is closer to the centre than the corresponding box in the other image instances. This
introduces a significant error in the calculated x-distance for Box 4 which is not present
in the other images. This, coupled with a much higher RMSE at 1.73 meters and overall
worse accuracy, points to the fisheye calibration being a bad choice in the case of geo-
referencing. Although appearing to undistort the image in a satisfactory manner, it does
conflict with the pinhole model used as a foundation for the georeferencing method. Better
results could possibly have been achieved by creating a model based on image formation
in a fisheye lens. However, as the georeferencing module was only one module of many
in the system this was left as future work.

Comparing the results from the pinhole calibration with the results from the distorted
image also yields interesting observations. The first thing to note is that the errors are
remarkably similar overall. This is surprising considering the cropping of the pinhole im-
ages, which has the effect that the pixels need to increase in size to still take up the full
resolution of 2688x1520. It is possible that most of the upsized pixels are found along
the vertical edges of the image, where the cropping seems most severe when comparing
the first four images in Figure 6.4. This theory is also supported by the fact that the white
cupboard on the left is stretched more compared to the bounding boxes (Chosen as refer-
ence as it shares a similar vertical size to Box 4). The vertical stretch of the cupboard was
measured to be about 35 pixels, while none of the bounding boxes experienced stretching
above 8 pixels.

Another interesting result is that Box 1 and Box 6 had an estimated x-component that
ended up being closer to the average of the two corresponding ground truth values (6.47
m). In other words both methods overestimated the position of Box 6 and underestimated
Box 1. The most likely explanation for this is that the camera has an unaccounted error in
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roll around the x-axis. This would lead to object on one side being overestimated and one
being underestimated. Looking at the rest of the boxes one can see that Box 5 (right side)
also is smaller than ground truth, while Box 3 and 1 (left side) are larger. Introducing a
2◦ rotation along the x-axis, tuned so that the x-component of Box 1 has a 1 cm offset in
its x-component, yields a new RMSE error of 0.37 for the uncalibrated scenario and 0.20
for the pinhole calibrated method. Furthermore the x-component of Box 6 decreased as
expected, with new values at 6.75 and 6.71 meters. This suggests that this alignment issue
was a large contributor to the overall error.

7.2.3 Sensitivity

Expanding on the fact that an unaccounted 2◦ rotation could cause large discrepancies,
the sensitivity test in Table 6.6 and Table 6.6 shows how sensitive the setup is to noise
in general. This is especially true for offsets in the orientation of the camera, with the
largest displacement being 1.18 m along the x-axis. Only the vertical offsets were used,
as although both x and y distance scales with tan(θ), the angles are restricted to different
subsets of the set A ∈ (-90◦,90◦). An object in the bottom of the image corresponds to a
vertical angle of FOVv

2 = 30◦ and at the horizon to 90◦, yielding the subset B = [30◦,90◦].
The horizontal angle is constrained by FOVh

2 which yields a subset C = [-54.5◦,54.5◦]

7.2.4 Measurement model considerations

The shortcomings of the system presented in this section has direct implications for the
viability as a sensor in the system. Although the RMSE for the uncalibrated and pinhole
alternatives can be deemed acceptable for the purpose of locating the trash on the water
surface, assumptions that were made during implementation should be revisited. The de-
cision to treat the noise of the georeferencing in the CV-model as uniformly distributed is
tenuous at best. However, due to the limited detection range before the performance starts
to degrade it might still have merit. One way to counteract the impact of a bad measure-
ment model could be to increase the uncertainty in only the x-component. This would lead
the underlying Kalman filter to put less weight on that specific part of the measurement
when iterating.

The sensitivity issue is also important to be aware of, as the USV is subject to wind and
waves which can disturb the pose. To counteract this there are several methods that could
be considered. The first is integrating an Inertial Measurement Unit (IMU) in the system,
which allows for continuous estimation and correction of pose. However, how accurate
such a system would have to be is also a consideration. With a 1◦ error potentially leading
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to errors in the magnitude of meters the added complexity and cost might not be worth
the effort. The second clear candidate is to increase the height of the camera. During
testing the camera was 70.5 cm above ground looking at objects up to 6.75 m in front.
This yields a max angle of atan( 6.75

0.705 ) = 84.0◦, where a +1◦ shift gives a new distance
of tan(85◦) ∗ 0.705 = 8.06m. Doubling the height yields atan( 6.751.41 ) = 78.2◦, where
a +1◦ shift gives tan(79.2◦) ∗ 1.41 = 7.39m. It is clear that just by raising the camera
the sensitivity decreases. A trade-off between sensitivity to noise and the practicality of
mounting the camera higher can therefore be considered. Another aspect of sensitivity that
should be considered is the static error that can be introduced easily by aligning the camera
and USV improperly. Even in a controlled environment, with a solid surface as baseline,
the alignment effort proved to be inaccurate enough to introduce significant error.

To summarize, the georeferencing model and setup used in this thesis might be too sen-
sitive for the application. When aligned properly and under calm conditions the method
might be viable, but outside this scope the resulting measurements might ending up de-
grading overall system performance. The method was originally used for the tracking of
marine vessels from land, which allowed both for the camera to be installed higher and the
pose to be known exactly. One way to leverage the position information extracted could be
to only use it attribute classification of of objects to the JPDA tracks. This would cover one
of the main weaknesses of using the LiDAR, namely the inability to segment the detected
objects, while also circumventing the introduction of uncertain measurements in the filter.

7.3 Track validation set - D3

7.3.1 D3 test setup

During processing of the dataset D3 it became clear that there were two problems with the
experimental setup that led to issues with the test results. The issues were severe enough
that they could not be rectified without a complete recapture of the dataset, which was
not possible due to both limited access to the test equipment and time-constraints. This
impacted both the accuracy of the sensor measurements as well as the ground truth used to
validate the system performance. The first and most detrimental issue was the degradation
of the ground truth tracks. Although returning a decent geographical fix when on land,
which was inspected during testing, the ground truth measurements when the objects were
throw in the water were few to non-existent. Closer inspection of the gps-data revealed
that the periods where the drop-outs where the most prominent were the periods when the
trash was being actively pulled by the fishing-rod. Observing the video-stream from one
of the trials yields a plausible explanation. A frame from one of the trials with a bottle
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is shown in Figure 7.2. It is clear that the phone attached to the bottle is at least partly
submerged during the trial. This could potentially degrade the signal strength arriving at
the receiver, as the signal has to travel through another medium than air.

Figure 7.2: Submerged GNSS logger (phone) during bottle trial

Furthermore, the ground truth measurements that were actually captured could not be
compared to the sensor measurements or tracks in any meaningful way. Each ground truth
measurement was compared to each tracks corresponding measurement in a ±1 second
time window. An upper limit of 5 m error between each component in the sensor mea-
surement state vector and corresponding GNSS measurement was imposed. This would
have set an upper limit on the RMSE and NEES-values, but was deemed an acceptable
compromise as such a high value in practice means that the sensor was completely un-
able to track in the chosen radius of 10 m. Throughout all trials this yielded at most two
matches, both with the corresponding RMSE at around 2 meters. There are several plausi-
ble explanations for this. It is likely that the delay issues experienced when aligning sensor
measurements also extends to the difference between LiDAR capture time and stamping
by the laptop. If the radio-connection had a delay over 1 second the sensor measurements
would fall behind the corresponding ground truth track and introduce a systemic error.
Accounting for this offset is also not trivial as it is originates from a wireless connection
that can have variable delay. Another contributor could be inaccuracies in the mapping
from the body frame to the NED frame. Deviations in heading or USV geodetic location
could lead to bad alignment between tracks and ground truth. Both the USV position and
ground truth was captured on .gpx format and could therefore not be RTK corrected. The
horizontal accuracy of normal GNSS is usually in meters, which could make the offsets
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even larger. Overall the data degradation led to a decision to leave out the metrics based
on ground truth, namely NEES, ANEES and RMSE.

The second issue was the impact the tide had on the experiments. Throughout the test-
ing the water-level was steadily decreasing, requiring constant monitoring. Furthermore,
submerged concrete steps were revealed and the USV had to be relocated closer to the sur-
face at two occasions. In addition to introducing a source of error on the georeferenecing
as the height varied, it also heavily impacted the final trials where the aluminium box was
introduced. Here partly submerged rocks along the harbour wall were so prominent that
they overshadowed the object being tested. This was further exacerbated by the fact that
the buoyancy of the box was overcome by the weight of the waterproofed phone, leaving
the combination mostly submerged. This trial was therefore removed from the results.
The trial do however point to one important consideration, namely that the system has no
way of filtering out static objects right on the water surface that are small enough to not be
caught by the line segment filtering. Trying to catch such an object could in the worst case
lead to the USV being damanged or stuck.

7.3.2 Evaluation metrics

Starting with the evaluation metrics presented in Table 6.8, Table 6.9 and Table 6.10 the
first thing of note is that almost all tracks exists for an extended period of time. The two
notable exceptions being for trial A2 and A3 for the plastic container, where no proper
track can be attributed. This could tie in to the reflective properties discussed in Section
7.1.1. It is also possible that the attached phone again reduced the footprint of the con-
tainer by weighing it down. The track fragmentation rate is low overall, pointing towards
the system being able to establish and keep track of the objects to a satisfactory degree.
The outlier is Figure 6.11a which was tracked by 5 distinct tracks. The corresponding
measurements in Figure 6.10a shows that the measurements in the beginning of the track
comes in small clusters with distinct jumps between them. It is therefore likely that the
bare minimum of measurements needed to establish a track has been achieved, but that the
velocity could not be determined accurately enough to connect the tracks. A possible solu-
tion to this could be to increase the threshold of measurements needed to establish a track.
This might however degrade the performance in other instances. The track probability of
detection (TPD) is positively skewed in all trials. For the bottle trials this likely due to
a mix of track fragmentation and a persistent false positive at around (x = 55, y = 157),
i.e. seen in Figure 6.7c. For the bag trials the positive skew seems to stem from purely
track fragmentation, possibly with the exception of Figure 6.9a where a misaligned camera
measurement as seen in Figure 6.8a. For the container trials the high positive skew seems
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to again be a combination of false positives and track fragmentation. The semi-submerged
rocks discussed in Section 7.3.1 could be a potential reason for the former.

Looking at filter consistency all the ANIS values are within the confidence interval,
although closer to the lower limit. This suggests that the predicted measurement error is of
the same magnitude as the innovation covariance, with the measurements leaning towards
being somewhat underconfident. This is likely an artefact of the tuning process using the
first trial of the bottle test (A1). It was found that better results could be achieved by
setting the uncertainty in the measurement model for both sensors relatively high. The
underconfidence is supported by the NIS plots shown in Figure 6.5. It is evident that the
NIS over time is consistently closer the lower limit, especially in the case of the Bag (A1)
trial. The most interesting part of the plots is that they all have a sharp negative spike.
This suggests that either the measurement residual was small or the innovation covariance
large.

The ANIS and NIS values can also be seen in connection with the chosen transition
model, which was tuned to be very conservative with regards to acceleration. As the mea-
surements from the sensor were subject to a wide array of sources of error two subsequent
measurements from the same object could end up with a significant distance between them.
Trusting these measurements too much would yield a high velocity vector and the track
would start drifting. By having a higher confidence in the underlying CV-model this effect
is reduced. As no NEES could be calculated it is not possible to determine quantitatively if
the transition model is consistent. However, looking at a track where track loss is present
such as Figure 6.7b might give an indication. The velocity right before track loss has been
determined by a significant sample of measurements. From the moment of track loss the
covariance starts to increase, but not fast enough to be caught by the time-based deleter.
This suggests that the transition model does not add a lot of uncertainty, pointing towards
it being confident.

7.3.3 Measurement and JPDA plots

Delving into the measurements and corresponding JPDA tracks in Figure 6.6 - Figure 6.11
gives a clearer picture of the performance of both the individual sensors and the JPDA
filter. Figure 6.6a and the corresponding JPDA track in Figure 6.7a presents a situation
where the object being tracked most likely fell within the ”dead-zone” of the system. This
is evident by the lack of measurements in the middle of the track. The tracker does how-
ever manage to re-establish the track when new measurements are apparent. This points
to the filter being robust in the presence of varying amount of measurements available, at
least when the movement is uniform. The measurement plot also shows that the sensors

92



7 Discussion 7.3.3 Measurement and JPDA plots

agree on the position of the object. Figure 6.6b and Figure 6.7b presents a case where
the two sensors compliment each other well. In the areas where LiDAR measurements
are not present the camera ”fills in” the gap, resulting in a singular track. This showcases
the strength of fusing measurements from different sensors to improve performance. Fig-
ure 6.6c and Figure 6.7c shows a case where the LiDAR is unable to see the object except
for in the beginning, while the camera produces a coherent track on its own. The initial-
ization is likely to have stemmed from the LiDAR measurements as the covariance in the
bottom right of the JPDA plot is increasing, until being connected to the camera measure-
ments. Figure 6.6d and Figure 6.7d shows that in an environment with several objects to
be tracked the filter manages to create and hold tracks over time. However, some of the
weaknesses of the JPDA also become apparent. The path the bottle was pulled, observed
in the video stream, suggests that the pink, light blue and parts of the dark blue track ac-
tually stems form the same object. the fact that the dark blue track changes direction and
starts traveling towards the USV implies that the track has been confused with one of the
other bottles. It is also plausible that the end of the dark blue track is followed by the
beginning of the lime-green track. In situations where the correct attribution of tracks is
critical, such as in the tracking of aerial vehicles, track confusion is an important factor. It
can be argued to be of less importance in a trash collection setting, where every detected
object is to be collected and the order is determined by a higher-level heuristic.

Figure 6.8a and Figure 6.9a presents a case where the LiDAR is the only sensor con-
tributing to the track. The only camera measurement present is also offset from the LiDAR
measurements. A plausible explanation for the offset could be that the heigth above the
surface was inaccurate due to the tide. Figure 6.8b andFigure 6.8c shows the opposite
scenario, where camera measurements are the ones relied upon to establish tracks. The
offset between camera and LiDAR is also present in and Figure 6.9b, which leads to the
track first heading north-east before aligning with the actual north-west direction. Fig-
ure 6.8d and Figure 6.9d, where the yellow track corresponds to the bag tied to the fishing
rod. Firstly, it is clear that track confusion has not taken place. This might be due to the
velocity vectors for the yellow and blue track pointing in different directions. It could also
be due to timing, with one of the tracks passing the intersection before the other. Another
interesting observation is that the filter manages to catch even abrupt changes in direction.

Continuing with the container measurements and tracks the results are worse overall.
Figure 6.10b and Figure 6.10c shows two situations where the sensors are not able to de-
tect the object properly, leading to no decent tracks being established in Figure 6.11b and
Figure 6.11c. Also in the case of Figure 6.10a the measurements have larger disconti-
nuities between them, reflecting in the 5 tracks established in Figure 6.11a to track one
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object. Finally Figure 6.10d shows that three objects are likely to have been tracked, albeit
with some errors. This is evident in Figure 6.11d, where the lime-green and dark-pink is
likely to originate from the container, while the red and pink/purple represent two different
objects. The overlapping of the pink and yellow track could be due to a synchronization
offset, where measurements that were supposed to come together were offset in time lead-
ing to two track initializations.

In total 10 out of the total 12 trials yielded tracks that could be correctly attributed to
the introduced object. From the results obtained it is evident that all main components
of the system have merit in the detection and tracking of floating trash. In optimal con-
ditions the sensors have the ability to determine the presence of floating trash, and there
are several scenarios where the multi-sensor fusion approach contributes to better tracking
performance.
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8.1 Conclusion

The main goals of this thesis was to explore the trash detection and tracking problem,
establish a framework that could relate measurements from a viable sensor package to a
moving USV, and finally develop and test a trash detection and tracking system based on
the findings. The literature review found that although several solutions for trash collect-
ing USV have been proposed, few have the capabilities for fully autonomous operation.
Furthermore, the combination of LiDAR and camera to detect floating trash have barely
been explored, and the use of a tracking filter to relate measurements in time has not
been tried to improve upon the proposed solutions. Using an established georeferencing
method, a tailored approach to the filtering of LiDAR data and a JPDA filter, a system to
track and detect trash was developed for an USV. Three real-life datasets were captured by
the USV in question and used to establish the viability of both the individual system and
the specific sensors. The overarching goal of detecting and tracking trash was achieved,
with tracks of trash being properly attributed to actual objects on the water surface in a
semi-controlled environment. A test in an uncontrolled environment at Brattørkaia proved
that the system was capable of detecting objects on the water surface and placing them at
a reasonable geographic location while the USV was moving. Due to a lack of ground-
truth the precision of the system could not be determined quantitatively, and the datasets
only represent a small subset of weather, light and sea conditions. Further experiments is
therefore needed to validate the precision and performance in different settings. Several
shortcomings of the sensor-package were identified, the most critical being the sensitivity
of the georeferencing method to offsets in pose and orientation. The viability of a monoc-
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ular camera for distance estimation in this setting can therefore be drawn into question.
An alternative could be to use the camera for classification, tagging corresponding tracks
using the calculated distance. The LiDAR sensor did not suffer the same sensitivity prob-
lems, but is not able to determine what the measurements stems from. Relying purely on
LiDAR is therefore not viable with the developed system, as the USV might try to collect
semi-submerged obstacles or animals on the surface.

8.2 Future work

This section presents some of the areas where one could build or improve upon the the-
sis. Firstly, some of the main shortcomings of the current data-collection system and what
could be done to improve them are discussed. Some computational bottlenecks in the cur-
rent python implementation are then identified and potential optimizations are suggested.
Finally, a road-map for integrating the implemented system in a fully autonomous trash
collecting USV is drawn up.

Full ROS integration

When looking at the datasets captured and used in this thesis two things are immediately
apparent. Firstly, large amounts of effort had to be undertaken to format, synchronize and
pipeline information from different sensors into a joint framework. Secondly, even after
the measurements were unified problems with synchronization persisted. All of the issues
can be significantly improved by changing a single system design decision, namely by
running data collection through a roscore local to the USV. The roscore is the central node
which all other nodes attaches to for ROS to function. This has three clear advantages.
The first is that the camera stream can be integrated straight in to the system. The current
solution has the camera publishing to a ip-address which then has to be transmitted and
read before any processing can take place. This introduces significant, variable delay
that is hard to measure without meta-data. The second and most important advantage
extends on this in the way that all the measurements can be stamped as they arrive in the
roscore, instead of having the measurements being stamped according to a remote desktop,
satellites in orbit and the LiDAR itself. Some delays might still have to be accounted for
due to internal transmission delay, but this should be more predictable than the wireless
communication setup. The second improvement is that the system no longer will require
a stable, high-speed radio connection to the computer during operation. As of now, if the
trash detection system is to be integrated in a fully autonomous USV, the processing has
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to be handled remotely and way-points sent back to the USV. This leaves it susceptible to
drop outs in communication due to range limitations and environmental obstructions.

Runtime optimization

Real-time performance was an early ambition in this thesis. It was however deemed nec-
essary to put the ambition aside and focus on proving and validating the concept of fusing
LiDAR and camera measurements to detect and track trash. Throughout the work done
there were however several options that were identified as potential improvements. One
of the clearest candidates is optimizing the LiDAR intersection step, which runs an ex-
haustive search comparing line segments and measurements, yielding a O(m ∗ n) time
complexity, where m is the amount of measurements and n is the amount of lines. Al-
though some improvements were made, such as dynamically removing measurements and
redundant lines, the process scales poorly. An improvement would be to implement the
line-sweep algorithm first described in Bentley and Ottmann (1979), having a O(nlog(m))
runtime in this specific application.

The next improvement that has clear potential is parallelization. The largest (consis-
tent) bottleneck identified is the YOLOv7 model running on every image, taking up to two
seconds per frame. This processing could be done in parallel if a Graphics Processing
Unit (GPU) was a added. This is likely to both reduce the processing time per frame and
free up compute resources. The first is crucial as four images arrives every second. The
latter is equally important as a delay might lead to loss of measurements or a backlog of
measurement needing to be processed, both degrading performance. It is also possible that
the LiDAR processing could benefit from being transitioned to a GPU.

Finally, rewriting the code in a faster language such as C++ (Alomari et al. (2015)) can
also be considered. If implemented properly it could improve the run-time of the entire
pipeline of processes. A caveat is that the packages used to offload tasks in python might
not have an equivalent in C++, leading to development overhead to implement the neces-
sary components. It might therefore be considered a last resort if the other optimization
steps outlined fails to achieve real-time capabilities.

Fully autonomous USV

The logical next step for the system developed in this thesis is to integrate it in a overar-
ching system capable of full autonomy in the detection, collection and deposit of floating
trash. A draft of how such a system could be constructed is shown in Figure 8.1. The guid-
ance system, identified by yellow boxes, are responsible for the overall positioning of the
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USV. The user selects a geographic area that is to be cleaned and the global path planner
creates a optimized path that covers the area, feeding a set of waypoints to the system. This
is only necessary to do in the initial setup. The rest of the system runs continuously, with
the local path planner deciding on an optimal path based on the current state of the USV,
the amount of trash that can be collected, obstacles that are present and deviation from the
global path. The heading and speed needed to follow the optimal path is passed on to a
inner control loop which calculates and returns the needed control inputs to achieve the
state using the available actuators. Sensor measurements from the USV is then propagated
back into the sensor processors and the next iteration begins.
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Figure 8.1: Draft of a system for a fully autonomous USV, only requiring a operator to select the
area to be cleaned.
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