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Abstract

Wood is a sought-after resource used in various application areas, representing sustainability

and natural aesthetics. However, the wood industry and its secondary wood products face chal-

lenges of low levels of automation and quality issues. Due to high material costs, improvements

in utilization are necessary to remain competitive in a volatile environment. This goal cannot be

achieved through traditional manual quality controls. Computer vision approaches for defect

detection in the wood industry hold great potential. Automated non-destructive technologies

(NDT) can significantly enhance operational efficiency and lay the foundation for zero-defect

manufacturing (ZDM) principles. In the context of this work, the effective application of im-

age classification and object detection computer vision technologies for wood defect detection

is examined. Furthermore, this thesis explores whether offline data augmentation and trans-

fer learning are effective methods for improving performance with limited data quantities. To

further evaluate these methods, new data is collected using a self-installed camera system in a

simulated production environment. The results demonstrate that modern YOLOv7 and YOLOv8

one-stage object detectors outperform classic image classification algorithms in terms of overall

performance and usability. Through the application of offline data augmentation and transfer

learning, performance can be partly enhanced when working with limited data sets.
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Chapter 1

Introduction

1.1 Motivation

Wood, a fundamental natural resource and has been indispensable to human civilization for

centuries. The material is widely used in construction and in everyday life, e.g. in the home as

furniture or decoration, as musical instruments or as luxury material in cars. Due to its exclusive

mechanical properties and it’s aesthetic appeal, the material is a demanded resource in mod-

ern times. As a result, the industry has undergone a resurgence in importance. The increasing

climate awareness of consumers and investors as well as political pressure and social calls for

more energy-efficient production, renewable materials, and circular economy also contribute

to this. Lower emissions from the processing of wood products and the material’s natural func-

tion of storing atmospheric carbon dioxide over the long term are boosting the market potential

of wood and derived production.

On the other hand, the changes in the market and climate present new challenges to the wood

processing industry. The cost of raw material is rising, as are consumer demands for product

quality and customizability according to their own wishes. As a result, accurate and consistent

defect detection is a pivotal challenge in maintaining the quality of wood products. An industry

that today is still often characterized by manual work, inefficient processes and low utilization

rates must fundamentally adapt its strategy in order not to collapse in the face of local and global

competition. Human-centric defect detection as an important part of quality assurance cannot

stand up to today’s industrial demands because of its serious disadvantages.

Herein lies the urgency for the wood products industry to adapt its production processes and

quality control to new standards by means of transformative, digital concepts of the Indus-

try 4.0 paradigm. Technology-enabled production strategies such as zero-defect manufactur-

2
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ing are important drivers for cost reductions and resource-efficient production and underscore

the need for innovative approaches that can seamlessly integrate into the wood manufacturing

pipeline.

The integration of computer vision for defect detection within wood manufacturing holds sig-

nificant potential. By improving defect detection accuracy and automating quality control, the

efficiency within the industry can be elevated to match the modern manufacturing landscape.

Transfer learning offers new opportunities for small and medium-sized enterprises with a small

data base and can mitigate the problem of data protection concerns.

1.2 Research Questions

This work aims to clarify whether computer vision methods are a suitable method for detect-

ing surface defects in the wood products industry under the paradigm of zero-defect manu-

facturing (ZDM). To determine the potential of the methods, algorithms for multi-label image

classification and state-of-the-art object detection frameworks are evaluated and benchmarked

regarding their performance for detecting and localizing defects on wooden surfaces. A publicly

available data set of wooden surfaces is utilized for this analysis. In addition, it is tested whether

offline data augmentation and transfer learning can provide advantages for object detection in

the domain of wood defect detection where large amounts of data are typically not available.

By means of a use case, the transferability to a real production environment in a manufacturing

plant for the production of wooden windows will be simulated. For this, a prototype camera

setup is installed in an Industry 4.0 learning factory environment. This setup is utilized to ac-

quire image data of wooden surfaces to simulate application in a real production environment.

The acquired data is then evaluated with the models and methods. The results of the tests will

be used to determine whether it is suitable to install and apply the technology in production

operations.

The following research questions are addressed within this work:

• Research question 1: How can computer vision techniques be effectively applied to en-

hance the defect detection process in wood manufacturing processes?

• Research question 1a: How well suited are ResNet and EfficientNet models for defect de-

tection on wooden surfaces based on their performance?

• Research question 1b: How well suited are YOLOv7 and YOLOv8 object detection models

for defect detection and localization on wooden surfaces based on their performance?



CHAPTER 1. INTRODUCTION 4

• Research question 2: How does offline data augmentation impact the training and per-

formance of object detection models?

• Research question 3: How does transfer learning impact the performance of object de-

tection models in the context of defect detection on wooden surfaces?

• Research question 3a: How effective is transfer learning based on pre-training on generic

image databases?

• Research question 3b: How effective is transfer learning based on pre-training on a dif-

ferent data set of wood surfaces?

1.3 Outline

This thesis is structured as follows: Chapter 1 introduces the thesis with a short introductory

motivation and presents the research questions of this work. Chapter 2 deals with important

fundamentals related to the wood industry as well as fundamental concepts. The wood defects

under investigation are also explained, and the necessity of automated defect detection is out-

lined. Subsequently, Chapter 3 explains the relevant technical and theoretical foundations of

deep learning and computer vision, which form the basis of this work. Chapter 4 introduces

related literature. Chapter 5 describes the used data and the methodological approach to ad-

dress the research questions. In Chapter 6, information about the use case is provided, and the

associated data acquisition process is explained before analyzing the collected data. Chapter

7 presents the results of the conducted experiments, followed by a discussion in Chapter 8.1.

Finally, the thesis concludes with chapter 9.



Chapter 2

Background and Foundations

2.1 Background

2.1.1 Wood as a Material

Forests offer a variety of functions, including but not limited to their contribution to the global

carbon cycle, provision of usable material and energy, and preservation of the biological diver-

sity (Butarbutar et al. 2016). About 50 % of the forests in our world are involved in the generation

of forest products, which include both wood and non-wood items (Ramage et al. 2017). Around

half of the wood that is harvested globally is employed for industrial purposes and undergoes

processing to produce wood products. The other half is utilized as a source of energy (Kromoser

et al. 2022). Due to its widespread availability and renewability, wood is an essential resource

that has been used for hundreds of years for building refuges and as an asset for various indus-

trial processes (Ross 2015). Despite the replacement of many of wood’s previous applications

by innovative alternative materials, wood is is currently experiencing a resurgence in its signifi-

cance (Arriaga et al. 2023).

As a natural resource, wood and it’s derivative products are widely used in our lives, e.g. for

furniture, construction, or decoration. Hence, the material plays a significant role in today’s

manufacturing industry (Li et al. 2021, Molinaro & Orzes 2022, Gao et al. 2022, Ding et al. 2020).

In addition to its visual appeal, the material has positive properties in terms of resistance and

elasticity, and can therefore be used in a variety of applications (Yu et al. 2019, Ding et al. 2020).

Important parameters for measuring the mechanical properties of wood are the modulus of

rupture (MOR) and the modulus of elasticity (MOE). The former describes the indicates the

bending strength along the grain direction, while the latter describes the deformation behav-

5
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ior under load (Muñoz & Gete 2012). The material has anisotropic properties, i.e. its physical

and mechanical properties vary significantly along different axes. This is mainly due to the ar-

rangement of fibers in longitudinal direction. The properties in the direction that follows the

length of the wood fibers differ significantly to those perpendicular to the length of the fibers

(Ross 2015, Zielińska & Rucka 2021). MOR and MOE experience a notable increase when tran-

sitioning from the pith towards the bark of the wood (Habite et al. 2022, 2021). Wood comprises

cellulose, lignin, and hemicellulose as its key components. Its distinctive diversity in properties

sets it apart from other materials (Zielińska & Rucka 2021). Due to its qualities, wood is used

for a variety of structural and nonstructural applications in the construction industry (Ahn &

Park 2020). Examples for the non structural use of wood are window frames, doors, and deco-

ration. Window frames made from wood are among the most popular options in Europe and

North-America (Ahn & Park 2020).

2.1.2 Environmental Impacts and Market Growth of Wood Industry

Climate change, the raising awareness for environmentally friendly products, and the overall in-

creased availability for wooden products indicate growth of the wood industry (Heräjärvi et al.

2019), and the market for high-quality wood products (Lin & Sanjaya 2021). It is anticipated that

there will be greater variety in the forest product markets in the future (Leskinen et al. 2018). It

has been shown, that using wood-based products helps alleviate climate change (Smyth et al.

2016). A part of this mitigation results from the substitution of materials and energy (Kayo et al.

2015). Several studies have demonstrated that greenhouse gas emissions caused by wood-based

products are lower than those from fossil-based alternatives (Seppälä et al. 2019). The energy

input during the production process of wood based products is typically lower than for func-

tionally comparable materials (Butarbutar et al. 2016). The advantages of substitution mainly

arise from the decreased emissions during both the production phase and the end-of-life phase

(Leskinen et al. 2018). In addition, products made from harvested wood have the ability to store

carbon that has been absorbed in the form of carbon dioxide from the atmosphere on a long-

term basis. Recycling these products at the end of their life cycle maintains extends the duration

of carbon storage (Geng et al. 2017). According to (Broda 2020), wood is holding the largest ter-

restrial reservoir of stored carbon. Consequently, in the building industry, which is character-

ized by significant greenhouse gas emissions, investors have redirected their focus towards us-

ing wood as a substitute due to its function as carbon storage (Arriaga et al. 2023). Furthermore,

for the reduction of waste in the manufacturing sector the European Union’s circular economy

strategy is a driver as it incorporates a stricter waste legislation (Heräjärvi et al. 2019). The politi-

cal pressure for environmentally friendly production in combination with technological process

forces producing companies to focus on improvements of their manufacturing processes (Eric-
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sson et al. 2021).

2.1.3 Industry Needs

Economies are becoming more unpredictable and there is a trend towards tailoring products to

individual needs. Therefore, production processes need to be flexible to meet these demands,

while maintaining consistent quality and efficient control (Eger et al. 2018). With regard to the

wood and wood-processing industry, material costs for raw material has been increasing due

to unregulated deforestation and the resulting scarcity of resources have led to high material

costs making up to 70% of the costs for secondary wooden products (Chun et al. 2023, Gao, Qi,

Mu & Chen 2021, Hashim et al. 2015). In addition, quantitative requirements are often not met

due to environmental influences or slow growth rates of trees (Ding et al. 2020). To overcome

these issues, companies use materials of lower quality (Kline et al. 2003). The requirements for

loss-free processing of the products have risen sharply in the process. For example, the material

utilization rate in northern European production countries is up to 90 %, while in Asia a maxi-

mum of 60 % is achieved in some cases (Yang et al. 2020). Moreover, the industry is centered on

manual activities and exhibits limited levels of automation as well as a comparatively low pro-

ductivity (Landscheidt & Kans 2016). In light of these difficulties, the wood products industry

must actively engage in the pursuit of innovative technologies in order to thrive in a landscape

that is becoming more and more competitive (Bond et al. 1998). In regions with high produc-

tion costs, enhancing the level of automation within manufacturing processes by implementing

appropriate systems is a commonly adopted strategy (Landscheidt & Kans 2016).

2.2 Foundations

2.2.1 Industry 4.0

Industry 4.0, a phrase introduced by Kagermann et al. (2011), describes the idea of the contin-

uous digital transformation and swift technological progress happening in various industries

and societies. When applied to manufacturing, Industry 4.0 encompasses the concept of smart

manufacturing systems, the interlinking of data, and the utilization of cyber-physical systems.

This means a shift from the previously centralized approach towards a product-centered con-

trol. The product itself determines the next steps of processing based on relevant parameters.

Sensors record these parameters and enable monitoring as well as intervention in the process

in the event of malfunctions. The idea of Industry 4.0 is alternatively referred to as the fourth

industrial revolution (Kagermann et al. 2011). Kagermann et al. (2013) claim that Industry 4.0
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drives the emergence of innovative value creation and novel business models, creating opportu-

nities for startups and small businesses. Furthermore, Industry 4.0 confronts urgent global chal-

lenges, including energy efficiency, resource efficiency, and demographic shifts. In the course of

digital transformation, the scope is no longer limited to production itself, but encompasses the

entire business organization (Vaidya et al. 2018, Issa et al. 2018, Ghobakhloo 2020). It drives on-

going improvements in productivity and resource efficiency throughout the entire value chain

(Kagermann et al. 2013, Ghobakhloo 2020). By considering demographic changes and social

factors, Industry 4.0 enables the organization of work in a manner that adapts to these trans-

formations. For instance, intelligent assistance systems have the potential to alleviate workers

from monotonous routine tasks, enabling them to redirect their efforts towards a wider range

of activities that add value. This not helps aging employees but also addresses the impending

shortage of skilled workers (Kagermann et al. 2013).

Although there is no universally accepted definition of Industry 4.0 within the industrial sec-

tor, the main building blocks of the concept can be named. These enablers include cyber-

physical system (CPS) concepts and technologies such as cloud computing, Internet of Things

(IoT), Internet of Services (IoS), additive manufacturing, big data, augmented reality, smart fac-

tories, cyber security, and autonomous robots (Rüßmann et al. 2015, Bumgardner & Buehlmann

2022, Hofmann & Rüsch 2017, Kagermann et al. 2013, Chen et al. 2018). However, it should be

noted that the concepts are complementary and mutually enabling instead of operating inde-

pendently (Ghobakhloo 2020). For example, the smart factory concept that is enabled by an

interplay of IoT, IoS, and CPS (Hofmann & Rüsch 2017, Chen et al. 2018).

Kagermann & Wahlster (2022) identify artificial intelligence (AI), edge computing, 5G, collabora-

tive robotics, autonomous intralogistics systems, and secure data infrastructures as the primary

components driving the ongoing advancement of Industry 4.0 in the upcoming years. Some

concepts are already increasingly implemented, such as industrial AI and edge computing for

predictive maintenance systems. Newer concepts, such as AI-supported quality control, are

also expected to play a major role in the future. The availability of camera systems, powerful

GPUs and large amounts of digitally available data support the development. AI-assisted zero

defect manufacturing (ZDM) is therefore cited as the industry’s new paradigm. This enables the

carving out of a competitive advantage over production locations with low labor costs and less

technical expertise and goes hand in hand with the increased quality demands of customers

(Kagermann & Wahlster 2022).

SMEs could benefit from the introduction of Industry 4.0 concepts and technologies and in-

crease their competitiveness (Pech & Vrchota 2020). In many economies, SME make up the

largest part of the business landscape and are often seen as the driving force of the economy

(Stentoft et al. 2020, Mittal et al. 2018). However, the entry barrier for the implementation of
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Industry 4.0 concepts is higher among SMEs. SMEs typically have fewer resources compared

to large enterprises, lack requirement and have less capabilities to influence negotiations with

suppliers (Bumgardner & Buehlmann 2022, Stentoft et al. 2020, Mittal et al. 2018, Müller 2019,

Pech & Vrchota 2020).

Many of the secondary wood product firms fall into the category of SMEs. A study conducted

by Bumgardner & Buehlmann (2022) shows that the majority of secondary wood product firms

have limited knowledge about the concept of Industry 4.0. A different picture emerged when de-

termining the automation or digitalization curve. On average, the companies surveyed recorded

a medium level of automation. Around one third of the companies surveyed also stated that

they had increasingly used digital technologies to optimize raw material processing over the

past three years. A lack of financial resources and a shortage of skilled workers were cited as the

biggest obstacles to the introduction of digital technologies (Bumgardner & Buehlmann 2022).

A different picture regarding the wood products industry emerges according to the study pub-

lished in 2016 by Landscheidt & Kans (2016). The Swedish wood and wood product industry,

which makes up an important part of the Swedish economy and provides significant export val-

ues, lacks the necessary prerequisite for the implementation of automation and Industry 4.0

practices. However, the authors show through their research that this problem is not exclusive

to Sweden, but that the industry in general is lagging behind in terms of its technical and orga-

nizational capabilities (Landscheidt & Kans 2016).

As an enhanced version of Industry 4.0, Industry 5.0 is emerging as a new vision with more

focus on the employees, and future generations wellbeing (Demir & Cicibaş 2019). European

Commission et al. (2021) define Industry 5.0 with three key factors: human-centric, sustainable,

and resilient. However, the concept is not yet widely adapted in industry and many companies

are still in the Industry 4.0 transformation process. Therefore, this work does not discuss the

topic further, and the interested reader is referred to the referenced literature.

2.2.2 Zero Defect Manufacturing

In traditional manufacturing, the final product is checked for its condition according to prede-

fined criteria in order to meet the quality requirements of customers. In case the product does

not meet these requirements, time-consuming and resource-intensive rework becomes due, or

the product is discarded completely (Eger et al. 2019). This is does not align with today’s pro-

duction demands and therefore requires new strategies (Raabe et al. 2018, Eger et al. 2019).

Zero-Defect Manufacturing (ZDM) refers to the manufacturing strategy with the goal of elimi-

nating all defects from the manufacturing process (Psarommatis et al. 2019, Powell et al. 2022).

The philosophy shifts the focus on the elimination of defects during the production process
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rather than relying on post-production quality control measures (Gauder et al. 2023). The ul-

timate goal is to achieve the highest possible product quality while minimizing waste, rework,

and customer complaints (Powell et al. 2022). In addition, cost savings and safety improvements

can be realized (Psarommatis et al. 2019).

The technology-driven philosophy has gained significant prominence under the advent of In-

dustry 4.0 and CPSs through the availability of sensors, powerful hardware, big data, and other

associated technologies (Raabe et al. 2018, Psarommatis et al. 2019). These technologies enable

companies to use proactive systems for detecting and preventing defects are employed in ad-

dition to six sigma and lean quality assurance and monitoring approaches (Powell et al. 2022,

Gauder et al. 2023, Alexopoulos et al. 2023).

According to Powell et al. (2022), the ZDM philosophy goes hand in hand with the principles

of sustainability and circular economy, which are becoming increasingly crucial for companies

due to elevated requirements and customer awareness. The authors suggest that in addition to

preventive measures for defect prevention, the focus should also be on the reuse of defective

products and the implementation of non-destructive evaluation methods (Powell et al. 2022).

2.3 Wood Defects and Defect Detection in the Wood Industry

2.3.1 Common Wood Defects

When considering wood as a material, wood defects encompass various irregular texture struc-

tures and harm inflicted by factors either during the growth phase of the wood or during its

processing (Ding et al. 2020). Wood displays a high degree of diversity. The characteristics of

the material differ among trees of the same type, different types of trees, and among different

sections of a single tree (Ross 2015). In particular, genetics, wind, and weather contribute to a

broad range of variations. These factors shape the properties of wood, resulting in significant

diversity of the material (Ross et al. 1998). The definition of a defect is a property of the material

that makes the material inappropriate for its intended purpose (Estévez et al. 2003). From an

economic perspective, this refers to any characteristic of the material that diminishes its market

value (Kollmann & Côté 1968).

In the case of structural applications, e.g. in building, defects in the material significantly reduce

its utilization (Koman et al. 2013). This is due to the fact that defects may affect the mechanical

properties of the material and thus reduce it’s required flexibility or rigidity (Ji et al. 2019, Kamal

et al. 2017, Cao et al. 2016, Koman et al. 2013). When undetected, these issues may even result

in structural collapse in severe cases, e.g. when used in construction (Zielińska & Rucka 2021).
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Besides safety concerns, customers of primary or secondary wood products expect products free

from defects that could affect their visual appearance or structural integrity (Ding et al. 2020).

This concern regarding defects extends even to wood surfaces that are not directly visible to the

customer. Numerous defects lead to unsatisfactory outcomes post-painting, consequently im-

pacting the overall appearance of the end product (Qayyum et al. 2016). The presence of defects,

whether within the material itself or in the final product, results in a reduction in value and the

potential for customer dissatisfaction (Abdullah et al. 2020). Consequently, to ensure the ex-

pected quality of a product, a thorough defect detection process becomes necessary (Rahiddin

et al. 2020, Ji et al. 2019). However, even though defects often render the material unusable for

many purposes, they may be desirable in other cases, for example due to aesthetic reasons (Koll-

mann & Côté 1968). But even in this case, the detection of the abnormality plays an important

role during the manufacturing process.

Knots

Wood defects come in many different shapes and forms. According to Kollmann & Côté (1968),

the by far most prevalent type of defects are knots. Knots form when a branch grows around

the base of a tree stem, becoming incorporated into it. The cambium layers of both the stem

and the branch remain connected as long as the branch is not deceased. If the branch deceases,

the continuous connection between the cambium layers is broken. This forms loose or encased

knots. Knots can take on different shapes in the cut pattern, depending on the direction in which

they are cut. Figure 2.1 showcases this behavior. Knots affect the mechanical characteristics

of the material because the fibers are interrupted. This plays an important role especially in

structural applications (Kollmann & Côté 1968). Due to the changes in the surface, dead knots

or cracked knots in particular can also lead to defects in surface processing, e.g. by painting.

Loosened dead knots can also create holes or gaps in the in material.

Cracks

Cracks (see figure 2.2 (a)) and splits create gaps between the fibers and can emerge from changes

in temperature such as drying stresses or frost, or from mechanical forces applied to the mate-

rial. Cracks negatively impact the mechanical properties of wood and reduce its rigidity (Li et al.

2021, Kollmann & Côté 1968). Cracks also affect the quality of the paint finish and can lead to

unsightly results that do not stand up to quality standards. Particularly problematic are fine

cracks that are not detected during quality control and continue to expand as the coating dries

in a heat chamber.
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(a) (b)

Figure 2.1: Appearance of knot defects in sawn lumber. Figure (a) displays a live knot after a
transverse section through the branch. Figure (b) displays a deceased knot after a cut along the
axis of the branch.

Resin Pockets

Resin pockets or pitch pockets are holes in the material filled with resin (see figure 2.2 (b) for

reference). These may arise from cracks of uncertain origin occurring at the cambium layer.

Insects might also be the cause of damages that subsequently lead to resin pickets. The formed

holes or cracks are then filled with resin (Kollmann & Côté 1968).

Blue Stain and Fungal Defects

Blue stain is a wood defect caused by wood-decaying fungi of types ascomycota and deuteromy-

cota (Broda 2020). The spores of these fungi are transported by insects to different hosts. A high

moisture content and a lack of host defense mechanisms favor the organism (Uzunovic et al.

2008). As a result, infestations with fungi can happen when the material is stored under sub-

optimal conditions. Blue stain affects sapwood and causes blue or grey discolorations of the

material (see figure 2.2 (c) for reference). The phenomenon results into increased water per-

meability due to a deterioration of the pit membranes. Furthermore, the defect can impact the

material’s aesthetic appeal and market value (Broda 2020). Infestations by certain species may

affect the mechanical properties of wood by compromising the integrity of cell walls (Uzunovic

et al. 2008). Other types of defects caused by fungi include brown-rot, white-rot, soft-rot, and

mould (Broda 2020).
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(a) (b) (c)

Figure 2.2: Wood defects in sawn lumber. Figure (a) displays a dark crack. Figure (b) displays
a resin pocket. Figure (c) displays blue stain. Images taken from (Kodytek Pavel et al. 2021,
Kodytek et al. 2022)

Mineral Streaks

Mineral streak or mineral discolouration is a defect that manifests itself as dark discoloration

along the grain pattern (see figure 2.3 (a) for reference). Such discolorations are caused by ac-

cumulations of various minerals in the tissue (Kollmann & Côté 1968). Mineral streak occurs in

trees grown from mineral-rich soil. In addition to optical factors, the mineral streak defect can

play a role in the further processing of the material, as certain minerals may lead to increased

wear of cutting tools (Uzunovic et al. 2008).

Pith

Pith, as shown in figure 2.3 (b), refers to the central tissue within a tree stem. After its formation,

his typically softer material does not grow as the tree matures (Akachuku & Abolarin 1989). Pith

is classified as a grading defect (Gazo et al. 2020).

2.3.2 Traditional Defect Inspection Process

Defect inspection plays a vital role in ensuring the quality assurance of wood manufacturing

processes (Zhang et al. 2015). Although visual evaluation is widely applied for quality control in

the wood industry (Ross et al. 1998), the inhomogeneity of wood in terms of texture and external

appearance makes it difficult to detect surface defects (Cao et al. 2016). Nondestructive defect

detection procedures are required to meet requirements of utilization rate and waste reduction

(Yang et al. 2020). This is especially important, as the material is the primary cost component
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(a) (b)

Figure 2.3: Darkish mineral streak (a) and dark brown pith (b) defects on wood surfaces. Images
taken from (Kodytek Pavel et al. 2021, Kodytek et al. 2022)

and represents a major lever for cost reduction. Producers therefore strive to enhance their

yield, which denotes the quotient of produced lumber surface and processed lumber surface

(Buehlmann & Thomas 2002). Buehlmann & Thomas (2002) further put the share of lumber

costs at 12 % to 15 % of the total manufacturing cost, while using furniture manufacturers as

an example. The defect detection process in the wood industry is mostly performed manually

by inspection by experienced operators (Gao et al. 2022, Hwang et al. 2021). Defects are then

highlighted and the affected material undergoes rework or is scrapped (Tu et al. 2021). Accord-

ing to Urbonas et al. (2019), the process of manual inspection rarely exceeds an accuracy of

70 %. This leads to various potential problems. Manual inspection is a repetitive, tedious and

time-consuming process that introduces subjectivity and can lead to a number of human errors

(Ericsson et al. 2021, Urbonas et al. 2019, Ding et al. 2020). The decisions made by workers in

the forest products industry have a direct impact on the quality of the resulting wood products,

and the utilization of the material (Conners et al. 1997).

A study by Buehlmann & Thomas (2002) on manual defect detection by operators demonstrated

that over 78 % of the operator’s decisions were not optimal. In more than 43 % of cases, defects

were not recognized as such (Buehlmann & Thomas 2002). These inaccuracies in determining

defects and their respective locations lower the amount of usable material, and thus, increase

the cost of manufacturing (Buehlmann & Thomas 2002). In addition to being error prone, the

manual inspection process involves additional manpower, resulting in increased labor costs (Ke
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et al. 2016). Moreover, the demand for well-trained operators for the inspection task exceeds the

market supply (Kryl et al. 2020). The results are not consistent with current industrial standards

for efficiency and accuracy (Li et al. 2021). According to Hashim et al. (2015), 22 % of the material

that is discarded incorrectly is due to human error. Ultimately, manual inspection processes

increase the cost of the product (Buehlmann & Thomas 2002). Therefore, a fast, accurate defect

detection process is necessary to realize revenue increases (Shi et al. 2020).

2.3.3 Nondestructive Evaluation and Testing

Nondestructive evaluation (NDE) refers to a scientific approach used to evaluate the properties

and quality of a material without damaging it, and thus, without compromising its intended

functionality (Ross et al. 1998, Sun 2022). The methods used within this field to collect accurate

data concerning the material are referred to as nondestructive testing (NDT) technologies. The

via NDT obtained information is then used to determine how to use the material (Ross 2015).

Depending on the objective of the test procedure as well as the properties of the material to be

examined, many different test procedures can be used (Arriaga et al. 2023).

In the wood specific case, NDT methods are employed to assess potential issues of wood without

the need for destructive sampling or cutting (Sun 2022). According to Zielińska & Rucka (2021),

NDT technologies are utilized for wood to detect defects including cracks, decay, failures, and

deformations which could compromise the material’s usability. Additionally, nondestructive

testing methods are critical in the evaluation of important parameters of the material such as its

MOE, MOR, moisture content, density, stiffness and inhomogeneity (Zielińska & Rucka 2021).

The fast and accurate identification of targeted wood defect information serves as a foundation

for the automated detection of wood defects. Automated approaches can bring significant eco-

nomic benefits to enterprises by optimizing the utilization of wood raw materials and improving

overall operational efficiency in the wood industry (Sun 2022).

2.3.4 Automated Approaches

Automated NDT approaches for a variety of purposes have been applied in the wood industry.

Amongst others, these purposes include species identification (Hwang & Sugiyama 2021), wood

polish classification (Lin & Sanjaya 2021), detection of pith and annual rings (Habite et al. 2021,

2022), and quality measurement of timber bundles (Carratu et al. 2021).

The research in automated visual approaches for the detection of wood defects have raised in-

creasing attention, particularly in countries with abundant wood resources, such as Scandinavia

(Gu et al. 2009). According to Conners et al. (1997), machine vision technology has been leading
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to improvements in efficiency in the industry since the early 1980s. In the beginning, this was

mostly for determining the dimensions of the material and not for determining characteristics

of the material. Since then, significant research efforts have been dedicated to developing alter-

native technologies aimed at optimizing the value of the final products (Conners et al. 1997).



Chapter 3

Theoretical Background

This chapter introduces relevant concepts that are important for the understanding of the prob-

lem and the approach of this work. The chapter provides an overview of deep learning, com-

puter vision (specifically image classification and object detection), and transfer learning. This

is important within the context of defect detection in wood manufacturing. First, foundational

concepts of deep learning are explained. This includes deep feedforward neural networks, ac-

tivation functions, and model training procedures. Second, convolutional neural networks are

detailed. Third, it is elaborated upon how these techniques and algorithms are used in image

classification and object detection tasks. Finally, the concept of transfer learning is introduced,

which allows to leverage pre-trained models for improved defect detection with limited or no

labeled data. This chapter establishes the necessary theoretical foundation for the subsequent

empirical investigation in wood manufacturing defect detection.

3.1 Deep Learning

The following description and notations are based on Goodfellow et al. (2016). Deep feedfor-

ward networks, or similarly, deep neural networks, feedforward neural networks, multilayer

perceptrons (MLP) are fundamental models in deep learning. The models are called neural

networks because they are an extremely simplified representation of biological neural networks

and connect multiple features in the structure of a directed acyclic graph (DAG). The functions

are connected in chains one after the other, resulting in a structure of multiple layers. The num-

ber of these layers is referred to as the depth of the network, from which the term deep learning

is derived.

Deep feedforward networks serve as the foundation for many practical applications, includ-

17
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ing object detection and natural language processing (NLP). Their purpose is to approximate a

function f ∗, which varies by task. For instance, in the case of a classifier network, f ∗(x) maps

an input x to a class y . The naming of a feedforward network comes from the fact that informa-

tion flows through the network from input x, through intermediate computations, to output y

without any feedback connections (Goodfellow et al. 2016). Each deep neural network has one

input layer, one output layer and an arbitrary number of hidden layers. Figure 3.1 demonstrates

the flow of information through a feedforward network.

Figure 3.1: Structure of a feedforward network. This figure visually explains the composition of
a feedforward neural network, featuring two hidden layers between the input and output layers.
The information flows from left to right, without any lateral or feedback connections.

During the training of a neural network, the objective is to make the predicted output f (x)

match the desired output f ∗(x). The training data consists of examples of f ∗(x) at different

input points. These examples are typically noisy and approximate. Each training example, de-

noted as x, is associated with a corresponding label y , which is an approximation of f ∗(x). The

training examples explicitly, which enter the network via the input layer, define the expected

behavior of the output layer, which is to produce a value close to y for each input x. However,

the behavior of the intermediate layers, known as hidden layers, is not directly specified by the

training data. The learning algorithm must determine how to utilize these hidden layers in order

to achieve the desired output function. Therefore, the hidden layers are responsible for captur-

ing and representing the complex relationships between the input and output (Goodfellow et al.

2016).
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The hidden layers consist of several neurons connected in parallel, and can be seen as individ-

ual elements of a vector that the layer represents. The dimension of these vector-valued layers,

i.e. the number of parallel neurons, is called the width of the neural network (Goodfellow et al.

2016). Each neuron has multiple input connections and one output connection. Normally, the

neurons of one layer are connected to all neurons of the previous as well as the following layer.

The output h of a hidden layer is computed by h = g (W x + c), where g (z) is an activation func-

tion, W is a weight matrix, x is a vector of input features, and c is a bias vector. W x denotes a

matrix multiplication. The output h is composed of all the outputs of the individual neurons in

that layer. The output of a single neuron j is computed by h j = g (
∑n

i xi j wi j + c j ). A structural

representation of a neuron can be seen in Figure 3.2.

Figure 3.2: A single hidden layer neuron j with multiple inputs xi , associated weights wi and
bias c. The output h is computed via passing the propagation function Σ in the activation func-
tion.

The use of activation functions is inspired by the action potential in biological neurons. Activa-

tion functions are utilized to introduce non-linearity in a mathematical process by performing

element-wise operations to the input after it has undergone linear transformation (Misra 2019).

Activation functions are essential components in neural networks as they prevent the multilayer

network from collapsing into linear models. In the discipline of deep learning, different types of

activation functions are commonly used. Examples of activation functions are the logistic sig-

moid, the hyperbolic tangent, the rectified linear unit (ReLU) (Nair & Hinton 2010), and newer

variants such as Swish (Ramachandran et al. 2017), and Mish (Misra 2019). Table 3.1 provides

an overview of the activation functions mentioned.

Figure 3.3 provides visual depictions of the activation functions and corresponding derivatives

introduced in table 3.1. For a more comprehensive exploration of activation functions, inter-

ested readers are encouraged to refer to the referenced material.
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Table 3.1: Common activation functions in deep learning and their derivatives.

Activation function f (x) d f
d x

Sigmoid (σ) 1
1+e−x f (x)(1− f (x))

Hyberb. tangent tanh(x) 1− f (x)2

ReLU max(0, x)


0, if x < 0

1, if x > 0

undefined, if x = 0

Swish x ·σ(βx) β f (x)+σ(βx)(1−β f (x))

Mish x · tanh(softplus(x)) sech2(softplus(x)) · x ·σ(x))+ f (x)
x

Figure 3.3: Graphic representation of the activation functions and their derivatives.
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Training and Optimization

During training, the network with a mapping y = f (x;θ) learns the optimal parameter values

θ = {W (1), . . . ,W (l ),b(1), . . . ,b(l )}, where W and b denote the weights and biases of the layers, re-

spectively. This has the aim to approximate f to f ∗ as close as possible, and is achieved by

minimizing a loss function J (θ). A common algorithm for adjusting θ is back-propagation with

gradient descent (Rumelhart et al. 1986, Lecun et al. 1998). The steps of the algorithm are:

1. Forward-pass: The input values x are passed forward through the layers of network to ob-

tain a prediction y . The weights of the network are randomly initialized. Random weight

initialization is necessary to break the symmetry between neurons. If neurons with the

same inputs had the same initial weights, they would be updated in the exact same man-

ner during training and thus fail to learn distinct patterns (Goodfellow et al. 2016). De-

pending on the purpose and architecture, popular initialization techniques such as Xavier

initialization (Glorot & Bengio 2010) or He initialization (He et al. 2015) might be used.

2. Loss calculation: A loss function J (θ) is used to determines the loss of the network which

is to be minimized. This loss function is a measure of the dissimilarity between the pre-

dictions made by a model and the actual target values (He et al. 2020). The choice of the

loss functions varies depending on the task and the nature of the target values.

3. Backward-pass: The algorithm starts from the output layer and successively calculates

the gradient of the loss function with respect to each weight and bias in the network, i.e.

to obtain ∂J (θ)
∂W (l ) , and ∂J (θ)

∂b(l ) , respectively. This recursive implementation of the chain rule

of calculus is computationally efficient (LeCun et al. 2015). The gradient indicates the

direction and magnitude of the weight adjustment needed to minimize the loss.

4. Update weights and biases: The calculated gradients are used to update the weights and

biases of the network. The update is performed iteratively using the gradient descent al-

gorithm, which adjusts the weights in the opposite direction of the steepest ascend of the

loss function, according to θk+1 = θk −η∇θ J (θk ). Here, η is the learning rate that deter-

mines the step size in the weight update process. Choosing an appropriate learning rate is

an important factor as the parameter influences the effectiveness and speed of the train-

ing process.

5. Steps 1. - 4. are repeated until a pre-defined termination criterion is reached.

Common issues that can occur during backpropagation are vanishing and exploding gradients.

Vanishing gradients refer to the situation where the gradients of the loss function become ex-

tremely small as they are backpropagated through the network layers. This can happen in deep
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networks when the gradients are multiplied by small values repeatedly. Especially when us-

ing sigmoid activation functions in combination with random weight initialization, the gradi-

ents can disappear due to the nature of the activation function (Glorot & Bengio 2010). As a

result, the weights of the earlier layers are updated very slowly. This leads to slower convergence

and difficulty in learning meaningful representations (Bengio et al. 1994, Glorot & Bengio 2010).

Exploding gradients refer to the situation where the gradients become extremely large during

backpropagation. This can happen when the gradients are multiplied by large values repeat-

edly. This may cause the weights to update dramatically and lead to unstable training (Pascanu

et al. 2013). Special initializations of the weights and the insertion of normalization layers in the

architecture can counteract this phenomenon (He et al. 2016a).

3.1.1 Convolutional Neural Networks

This section aims to provide an overview of convolutional neural networks, including their ar-

chitecture. This is to establish a solid understanding of their functioning, which is essential for

comprehending the subsequent discussions and analyses related to wood defect detection.

Convolutional neural networks (CNN), or convolutional networks, ConvNets, were introduced

by LeCun et al. (1989) in 1989 and have since been applied to various domains. Like deep feed-

forward networks, CNNs are inspired from biology. The overall design shares similarities with

the hierarchical organization observed in the visual cortex, a region of the brain (Fan et al. 2021,

LeCun et al. 1989). CNNs have proven to be highly effective in the field of computer vision since

the early 2000s. They have been widely applied with great success for tasks such as object detec-

tion, region segmentation, and image recognition (LeCun et al. 2015). However, the availability

of large databases with millions of labeled images such as ImageNet (Deng et al. 2009), as well

as the widespread availability of powerful hardware such as GPUs, have led to increased inter-

est in the architecture and to great advances and successes in the field of visual recognition (Si-

monyan & Zisserman 2014, Zeiler & Fergus 2014, Krizhevsky et al. 2012, LeCun et al. 2015). Since

the breakthrough of the deep convolutional neural network AlexNet (Krizhevsky et al. 2012)

at the ImageNet 2012 classification benchmark, the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC), the models have steadily been evolved and outperformed older architec-

tures. Popular architectures such as VGG (Simonyan & Zisserman 2014), Inception (Szegedy

et al. 2015), ResNet (He et al. 2016a), EfficientNet (Tan & Le 2019), and ConvNeXt (Liu et al.

2022) introduced a variety of new features and design principles and have been widely used in

the computer vision community.

The naming of CNNs results from the mathematical operation of convolution, which distin-

guishes the networks from conventional deep feedforward networks (Goodfellow et al. 2016).
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Conventional deep feedforward networks are not suitable for processing large image data due

to their architecture. An RGB image file with a resolution of 256× 256 is used as an example.

The values of the individual pixels are used as input features and the associated parameters are

learned by the neurons. For an image file of this size, there would be 256×256×3+1 =∼ 196,000

learnable parameters per neuron in the first hidden layer alone. For a layer with a width of

300 neurons, this results in about 59 million trainable parameters. Considering that deep neu-

ral networks typically have a large number of hidden layers, it becomes apparent why this is

computationally infeasible. CNNs on the other hand incorporate so-called sparse interactions

(Goodfellow et al. 2016). This refers to the use of kernels which are smaller than the input size.

This approach allows for the detection of relevant features by analyzing only a subset of pixels

within the input. As a result, CNNs have a lower amount of trainable parameters which leads to

improved memory efficiency (Goodfellow et al. 2016). CNNs also benefit from weight sharing

(or parameter sharing), i.e. applying the same kernel to multiple locations in the input. This

property reduces memory requirements and increases training efficiency (Dumoulin & Visin

2016, Gu et al. 2018, Goodfellow et al. 2016). In addition, the convolution operations conducted

in CNNs preserve the ordering of the data. Whereas deep feedforward networks flatten the input

data to a vector before applying matrix multiplications, convolution performed on multidimen-

sional arrays preserves the structural information of the data. Hence, CNNs are valuable for

solving tasks that require understanding spatial or temporal relationships (Dumoulin & Visin

2016).

CNN Architecture

CNNs are composed of multiple stages, with the front stages each consisting of stacks of mul-

tiple convolutional layers. These convolutional layers are equiped with activation functions,

critical for introducing non-linearity between them (LeCun et al. 2015). Within these layers, the

feature maps are computed through the utilization of multiple convolutional kernels (Gu et al.

2018). Multiple kernels form a convolutional filter. Between the stacks of convolutional lay-

ers there are (optionally) pooling layers, which reduce the resolution without having trainable

parameters. Subsequent to this, one or more fully-connected layers follow, each featuring non-

linear activations, leading to the classification head (Loukadakis et al. 2018, LeCun et al. 2015,

Simonyan & Zisserman 2014, Zeiler & Fergus 2014). To provide visual context, figure 3.4 visually

outlines the architecture of VGG-16 (Simonyan & Zisserman 2014), a popular CNN model that

won the ILSVRC in 2014.
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Figure 3.4: Visual representation of a CNN architecture using the example of VGG-16. The
architecture consists of combined stages of convolutional and pooling layers, as well as fully-
connected layers. The final fully-connected layer is followed by a softmax function for classi-
fication. The resolution of the input is denoted on top of each block. The pooling layers each
reduce the height and width of the feature map by half.

Convolution Operation

CNNs work with multidimensional arrays as input, so-called tensors. A tensor refers to a col-

lection of numerical values organized in a structured pattern on a grid-like structure, which can

have a varying number of dimensions (Goodfellow et al. 2016). Matrices can therefore be con-

sidered as two-dimensional tensors, while vectors are one-dimensional tensors. An RGB image

as input can be represented as a three-dimensional tensor with dimensions corresponding to

its height, width, and color channels. In contrast to RGB images with three channels, grayscale

images have only one channel and can thus be represented as two-dimensional tensors. In

common implementations, four-dimensional tensors are used as input values, where the fourth

dimension denotes the batch size (Goodfellow et al. 2016).

The inputs of convolutional layers are called input feature maps. Similarly, the output of convo-

lutional layers is called the output feature map (Dumoulin & Visin 2016). Each neuron within a

feature map is associated with a distinct region of adjacent neurons in the preceding layer. This

group of neighboring neurons is known as the receptive field (Gu et al. 2018). The fundamental

operation in CNNs is convolution. The output feature map is generated by applying a sliding

window called a kernel to the input feature map and performing element-wise multiplication

followed by summation, and the addition of a trainable bias. The convolved output is then pro-

cess by an activation function (Gu et al. 2018). Mathematically, the convolution performed in

CNNs (denoted by the asterisk ∗ ) can be written as:

S(i , j ) = (K ∗ I )(i , j ) =∑
m

∑
n

I (i +m, j +n)K (m,n)
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where S(i , j ) describes the output value at position (i , j ), K (m,n) refers to the value of a 2D ker-

nel at position (m,n), and I (i+m, j+n) to a 2D input image at position (i+m, j+n) (Goodfellow

et al. 2016). For multiple input feature maps, it is necessary to use a three-dimensional filter, i.e.

a specific kernel for each input feature map. The final output feature map is then computed by

element-wise summation of the convolved feature maps (Dumoulin & Visin 2016). Figure 3.5

demonstrates convolution with a three-dimensional filter.

Figure 3.5: Demonstration of the convolution operation on an RGB input image. A 3×3 kernel
with trainable weights is used. The size of the receptive field determines how much information
of the original image is stored in one feature map pixel. To keep the input resolution, padding
can be used.

Pooling

Pooling layers may be added in order to reduce the resolution of feature maps by aggregation

pixel values (Krizhevsky et al. 2012). Pooling aggregates an area A = p × p of the feature map,

where A represents an area of multiple pixels p. There are several variants of pooling, such as

max-pooling max(a ∈ A) or average pooling 1
|A|

∑
a∈A a. Reducing the resolution of the feature

maps reduces the amount of data in the network while preserving the information of the dom-

inant features, even if the input is subject to small translations (Goodfellow et al. 2016). The

latter property is also referred to as translation invariance. This is a useful property, e.g. in the

case of defect detection on wood surfaces. Here, the pixel-precise position of the defect usually
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does not matter, whereas the mere presence of the defect does.

Regularization Techniques

To prevent overfitting and increase training stability of CNNs, regularization techniques are

commonly implemented.

Batch normalization (Ioffe & Szegedy 2015) is used to counteract the constantly changing dis-

tributions of the layer inputs (internal covariate shift) during training which results from the

parameter adjustment of the previous layers. Batch normalization normalizes the activations of

each neuron in a neural network layer to have zero mean and unit variance using the statistics

computed from a mini-batch of samples (Ioffe & Szegedy 2015). Moreover, batch normalization

helps smoothing the landscape of the underlying optimization problem (Santurkar et al. 2018).

As a result, this technique can improve training stability and speed up convergence, while also

reducing the sensitivity to the choice of initialization and learning rate (Ioffe & Szegedy 2015, Li

et al. 2019).

DropoutHinton et al. (2012), Srivastava et al. (2014) involves randomly zeroing out the outputs

of neurons during each training iteration with a specified probability p. During training, these

neurons then are not considered during the forward and backward pass. During testing, all

neurons are active but the weights previously deactivated neurons are scaled down. (Srivastava

et al. 2014, Li et al. 2019) Dropout introduces noise in the network, which helps to prevent the

network from relying on specific neurons (Krizhevsky et al. 2012, Hinton et al. 2012). As a result,

the network must increase its robustness (Krizhevsky et al. 2012).

L1 and L2 regularization (weight decay) (Krogh & Hertz 1991) are regularization techniques to

prevent overfitting and improve the generalization ability of the model. These add a penalty

term to the loss function J (θ), scaled by a parameter α (or λ). The L1 regularization term∑n
i=1 |θi | partially sets weights to zero and therefore leads to sparse features. L1 regularization

is therefore used for feature selection rather than for pure avoidance of overfitting. The penalty

term of L2 regularization
∑n

i=1θ
2
i encourages the model’s weights to be small, but not neces-

sarily zero. This aims to prevent the model from relying too heavily on any particular feature

(Goodfellow et al. 2016).

Data augmentation is another variant to avoid overfitting and make the model more robust.

Data augmentation techniques artificially increase the size of the training dataset to provide

more information to the network (Shorten & Khoshgoftaar 2019). Data augmentation can be

achieved by geometric transformations, such as translation, rotation, zoom, and mirroring,

or by color changes, such as changes in brightness, contrast, etc. of the input data. Training
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data can also be generated synthetically, e.g. by using Generative Adversarial Networks (GANs)

(Goodfellow et al. 2014, 2020).

Fully Convolutional Networks

Fully convolutional networks (FCN) were introduced by Long et al. (2015) in 2015, and are pri-

marily designed for dense pixel-level predictions such as semantic segmentation. The architec-

ture is used in object detection algorithms such as R-FCN (Dai et al. 2016), YOLO (Redmon &

Farhadi 2018), FCOS (Tian et al. 2019), and SSD (Liu et al. 2015). FCNs consist entirely of con-

volutional layers by exchanging any fully connected layers with convolutions. As a result, in

contrast to CNNs, FCNs work with inputs of arbitrary size, and process the entire image at once

during learning and inference (see figure 3.6 for reference). The output of the network retains

the same spatial dimensions as the input (Long et al. 2015). FCN use additional so-called de-

convolutional layers that perform upsampling operations and thus boost the resolution of the

output. A skip architecture is then used to combine the unrefined information from deeper lay-

ers with refined information from shallow layers. This enables the architecture to predict finer

details (Ronneberger et al. 2015, Long et al. 2015).

Figure 3.6: High-level Architecture of fully convolutional network (FCN). No fully connected
layers are used, hence learning and inference happen on image level. Figure taken directly from
(Long et al. 2015).
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3.2 Computer Vision

Computer vision deals with replicating the property of vision of humans and animals. The dis-

cipline of computer vision has made great strides in its research in the recent past and is one

of the main application areas for advanced machine learning and deep learning technologies

(Goodfellow et al. 2016). Computer vision is applied in numerous domains for a wide variety of

purposes and is used by humans and machines for decision making. Computer vision applica-

tions play a vital role in quality inspection, essential for achieving the objectives of zero defect

manufacturing (Psarommatis et al. 2019).

In this section, two fundamental tasks of computer vision are explained: image classification

and object detection. Image classification helps classify image data into different classes. Ob-

ject detection goes one step further by identifying the exact location of the object in addition to

classification. Both technologies form the basis for various applications in modern technology.

Due to the increasing efficiency, accuracy and availability of the algorithms, these technologies

are becoming more and more attractive, even for smaller companies such as in the wood pro-

cessing sector.

3.2.1 Image Classification

Image classification is one of the fundamental disciplines in computer vision. Image classifi-

cation treats the input image as a whole and aims at assigning a predefined label to the image,

indicating the associated object class (Wang & Su 2019). An indication of the presence or ab-

sence of objects in an image is achieved via binary labels in image classification (Lin et al. 2014).

With the advancements in deep learning, Convolutional Neural Networks (CNNs) have become

the state-of-the-art approach for image classification tasks.

Binary Classification

Binary classification is a task in image classification where the objective is to classify the image

into one of two mutually exclusive classes. This typically means determining whether the image

belongs to a specific class or not, e.g. defect, or no defect in the case of wood defect classification.

Here, the two classes are typically divided into a positive and a negative class or binary coded

with 0 and 1.
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Multi-Class Classification

Multi-class classification aims to classify an image into one of several mutually exclusive classes.

The input image is assigned exactly one label that corresponds to the most appropriate class

among multiple options. In contrast to binary classification, the number of classes is greater

than two. This task is commonly encountered in scenarios where images can belong to different

categories, such as different wood species.

For multi-class classfification, a softmax function is usually used in the final layer of the CNN.

The softmax function converts the activated output of the previous layer into a normalized prob-

ability distribution over all potential classes. Each class is assigned a probability, and the class

with the highest probability determines the prediction. The softmax function for a problem with

K different classes, and an input vector z ∈RK is defined as:

softmax(z)i = ezi∑K
j ez j

for i = 1, . . . ,K

Multi-Label Classification

In contrast to multi-class classification, multi-label classification assigns zero or more labels to

the input at the same time, where each label describes a specific class in a set of given classes.

Figure 3.7 demonstrates the difference. Here the classes are not mutually exclusive. Multi-label

classification is of practical relevance, since images of real-world scenarios often contain differ-

ent objects at the same time (Wei et al. 2016). For example, a wooden surface may have defects

of different categories at the same time. Using multi-label classification algorithms, the input

can then be classified not only as defective or not defective, but also based on the type of defects

present. This can be useful, for example, if only a subset of the possible defects is considered

relevant in the production context and qualifies the product for rework or scrap, for example.

For multi-label classification, where each input can belong to multiple classes simultaneously,

using the softmax function is not appropriate, as all class probabilities are summed to 1. In-

stead, the sigmoid function can be used in order to allow each class to be evaluated separately.

A threshold is then applied to determine whether a class is present or absent based on its prob-

ability. The sigmoid (σ) function is defined as:

σ(z j ) = 1

1+e−z j
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Figure 3.7: Visual representation of the difference between multi-class classification (top), and
multi-label classification (bottom). Multi-class problems use the softmax function to assign a
specific label. The sigmoid function used for multi-label classification problems can assign mul-
tiple labels to the input.

3.2.2 Object Detection

Object detection is a computer vision task that involves identifying and localizing multiple ob-

jects of interest within an image or video. The localization of objects distinguishes object de-

tection from image classification, where objects are merely classified. Object detection can be

used, for example, to detect and localize defects on wooden surfaces, e.g. if certain regions of

the surface are of particular relevance to the absence of defects, or if the location of the defect

influences further processing steps. The goal is to classify present objects of interest but also

locate their positions via bounding boxes (Lin et al. 2014, Carion et al. 2020).

There are different architectures used for object detection. The classic object recognition algo-

rithm uses a sliding window approach, where a window of defined size passes through different

scales of the input step by step. A classification network then classifies the respective image

regions (LeCun et al. 1989, Vaillant 1994, Lin, Goyal, Girshick, He & Dollar 2017). However, the

advent of deep learning brought significant improvements in object detection performance in

terms of accuracy and speed (Lin, Goyal, Girshick, He & Dollar 2017). This led to the develop-

ment of new dominant architectures, namely, two-stage object detectors such as R-CNN (Gir-

shick et al. 2014), Fast R-CNN (Girshick 2015), Faster R-CNN (Ren et al. 2015), and R-FCN (Dai

et al. 2016), one-stage detectors such as Overfeat (Sermanet et al. 2013), SSD (Liu et al. 2015),

RetinaNet (Lin, Goyal, Girshick, He & Dollar 2017), FCOS (Tian et al. 2019) and YOLO (Redmon

et al. 2016). More recently, transformer architectures, which represent the state of the art in NLP,



CHAPTER 3. THEORETICAL BACKGROUND 31

where adapted to object detection tasks (Dosovitskiy et al. 2020, Liu et al. 2021, Zhang & Yang

2021, Fan et al. 2021, Carion et al. 2020). The latter architecture is out of scope of this work, and

the interested reader is referred to the literature.

A basic component of object recognition algorithms are bounding boxes. Bounding boxes are

minimal two-dimensional boxes that surround the object and thus represent the location and

extend of the object (Zhou et al. 2019). A bounding box is defined by four parameters and as-

sociated with a class label. Bounding boxes can be encoded in different formats such as pixel

coordinates or normalized coordinates relative to the image size. Typical representations of

bounding boxes are Center XYWH, XYWH, and XYXY, where the center coordinates, width and

height, the top left coordinates, width and height, and the top left and bottom left coordinates

are specified, respectively.

The architecture of CNN based models typically consists of two components, a backbone and a

head. The backbone is used for feature extraction and is usually a CNN (for example ResNet or

VGG) that has often been pre-trained with data from one of the large image databases. The head

performs the actual prediction of the object class and its localization based on the extracted

features (Terven & Cordova-Esparza 2023, Bochkovskiy et al. 2020). The differences between

two-stage and one-stage detectors are manifested in the structure of the head (Bochkovskiy et al.

2020).

Two Stage Detectors

As the name indicates, two stage detectors follow a two-step process for object detection. In the

first stage they produce a limited set of potential object locations, which is denoted as region

proposal. In the second stage, these locations are individually classified using a CNN, deter-

mining whether they belong to foreground classes or the background (Lin, Goyal, Girshick, He

& Dollar 2017, Carranza-García et al. 2020).

A region proposal refers to a candidate bounding box in an image that is likely to contain an

object of interest. In object detection tasks, region proposals are generated to identify potential

object locations before further processing and classification. The purpose of generating region

proposals is to reduce the computational burden by focusing only on regions that are more likely

to contain objects, rather than processing the entire image. By generating a set of region pro-

posals, the object detection algorithm can narrow down the search space and concentrate its ef-

forts on these regions, improving efficiency and reducing computational resources. The original

R-CNN and Fast R-CNN use a selective search algorithm for the task of region proposal, which

functions as modules independent of the detection network. The difference between the former

and the latter is that R-CNN forward passes each region proposal through the CNN, whereas the
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CNN in Fast R-CNN processes the set of proposed regions and the image in one forward pass

(Girshick et al. 2014, Girshick 2015, Ren et al. 2015). Later architectures such as Faster R-CNN

and R-FCN do not rely on selective search, and instead, use so-called region proposal networks

(RPN). RPN are end-to-end trainable fully convolutional networks (FCN) (Long et al. 2015) that

take the image feature maps as input. The network uses a sliding window approach to go over

the feature map and generates a number of so-called anchors (or anchor boxes, prior boxes) at

each position, translation invariant rectangular boxes with predefined sizes. These anchors are

then classified and regressed via two separate layers in order to determine whether the region

is an object or background, and predict the offsets between anchors of foreground objects and

their ground-truth boxes (Ren et al. 2015, Huang et al. 2017, Tian et al. 2019).

Two stage detectors are highly accurate but suffer from excessive computational requirements.

Complex pipelines with individually trainable components lead to elaborate training processes.

This property makes them unsuitable for embedded or mobile systems. Furthermore, even with

high-end hardware, their processing speed falls short for real-time applications (Redmon et al.

2016). For reference, Faster R-CNN, which is the fastest and most accurate two stage detector,

operates at a only 7 FPS according to (Liu et al. 2015, Redmon et al. 2016). For real-time object

detection in fast-paced production environment, two-stage detectors are too slow.

One Stage Detectors

In contrast to two-stage detectors, one stage detectors predict bounding box coordinates and

class probabilities in one pass (Redmon et al. 2016, Liu et al. 2015, Sermanet et al. 2013). The

detectors typically consist of a single neural network. This simplifies the detection process by

directly predicting object locations and categories without explicit region proposal steps, re-

sulting in speed gains at the potential cost of detection accuracy. This design enables one-stage

detectors to operate in real-time applications, as they are computationally efficient.

Newer algorithms often extend the models by additional layers between feature extractor and

head. In version 4 (Bochkovskiy et al. 2020) and later iterations of YOLO, these intermediate

layers or networks are referred to as neck. The neck operates with feature outputs from differ-

ent layers of the backbone as input (Bochkovskiy et al. 2020). Different outputs from shallow

and deep layers in the form of feature maps can be combined via this intermediate component

and thus contribute to the extraction of information about different scales(Terven & Cordova-

Esparza 2023). This is often achieved via feature pyramid networks (Lin, Dollar, Girshick, He,

Hariharan & Belongie 2017). These have bottom-up and top-down pathways that use lateral

connections to fuse feature maps from different stages of the backbone with highly sampled

outputs from deeper layers (Lin, Dollar, Girshick, He, Hariharan & Belongie 2017). Figure 3.8
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showcases the high-level backbone-neck-head architecture of modern detectors.

Figure 3.8: High level architecture of modern one-stage detectors with backbone, neck, and
head. The backbone works as a feature extractor, the neck fuses features from different stages
via lateral connections, and the head performs classification and regression operations. Figure
adapted from (Terven & Cordova-Esparza 2023).

For common object detectors, a distinction can be made between anchor-based and anchor-

free approaches. Anchor-based approaches use, as with modern two-stage detectors, prede-

fined anchors in different scales which are subsequently classified as object or background and

refined by regression in their offset to the ground-truth box (Tian et al. 2019). Algorithms using

this anchor-based approach then typically aim to minimize a joint loss function that integrates

both classification and regression objectives (Huang et al. 2017). However, anchor-based ap-

proaches have some drawbacks such as domain specificity and increased complexity due to the

need for hyper-parameters and more expensive computations. This complexity can impact the

inference time and system efficiency (Tian et al. 2019, Ge et al. 2021, Zhou et al. 2019). Anchor-

free approaches predict bounding boxes based on the position of the object. Here, center-based

and keypoint-based approaches are used, which define bounding boxes relative to the center

coordinates or region or to particular coordinates, such as extreme points of objects, respec-

tively (Zhang et al. 2020). By eliminating various hyper-parameters and computations, anchor-

free approaches can significantly reduce the complexity of training (Ge et al. 2021).

One factor for the loss of accuracy of the original one-stage detectors is a high foreground-

background class imbalance (Oksuz et al. 2021). These object detectors propose high amounts

of regions, of which the main part belongs to the background class. Due to the high propor-

tion of negative class, the training efficiency is reduced. In addition, the class imbalance has a
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negative impact on the training process by overpowering the model and might lead to the devel-

opment of less effective models that perform poorly in accurately detecting objects (Carranza-

García et al. 2020, Lin, Goyal, Girshick, He & Dollar 2017). The developers of RetinaNet (Lin,

Goyal, Girshick, He & Dollar 2017) address this issue by reshaping the loss function. This ap-

proach is called focal loss and counteracts the high influence on the gradients of easy negatives,

i.e. image regions that are strongly separated from the object classes by their features. This is

implemented by assigning low importance to the easy negatives within the loss function. The

model thus learns primarily from difficult examples, which ultimately leads to improved detec-

tion performance (Lin, Goyal, Girshick, He & Dollar 2017). Other approaches have addressed

the issue of class imbalance by improving their architectures, and implementing data augmen-

tation (Redmon et al. 2016, Bochkovskiy et al. 2020). By adding new or modified examples to the

training data, the diversity of objects appearances can be increased and thus lead to a more bal-

anced training (Oksuz et al. 2021). The benefit of this approach is that it does not affect inference

time (Bochkovskiy et al. 2020). Hard negative mining, as used for example in (Liu et al. 2015),

uses only the negative examples resulting from the standard boxes with the highest confidence

loss, so that the ratio between negative and positive classes is reduced.

3.3 Model Selection

In this section, we highlight the models used for the analysis. The model architectures and spe-

cial features are discussed, which are important for the selection of the models with respect to

the use case. Furthermore, their advantages over other models are explained. The section is

divided into model selection for image classification tasks and model selection for object detec-

tion.

3.3.1 Models for Image Classification

ResNet

ResNet was developed and introduced by He et al. (2016a) of Microsoft Research in 2015. With

this model, the authors placed first in the 2015 ILSVRC classification challenge as well as other

tasks in the competition. The name ResNet is short for residual network, which refers to the

introduction of residual connections, a specific type of shortcut connections (see figure 3.10).

Residual connections allow for the propagation of information from earlier layers directly to

later layers by identity mapping. This is to solve the problem of degrading training performance

and higher error of networks that are increased in depth. As a result, this architectural design
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facilitates the training of deeper networks with improved accuracy, and might mitigate the van-

ishing gradient problem (He et al. 2016a).

He et al. define H(x) as a mapping with inputs x, which is desired to be approximated by sev-

eral successive layers. In the case of residual learning, the layers now learn a residual mapping

F (x) :=H(x)− x instead of H(x). This residual mapping is the difference between the desired

output and the input. This allows the original function H(x) to be reformulated as F (x)+x. This

technique aims to simplify the learning process of deep networks by allowing the network to

focus on learning the residuals, rather than the entire mapping from input to output (He et al.

2016a).

Figure 3.9: A building block of ResNet with a residual connection. Shortcut connections allow
information to skip layers of the CNN without adding computational complexity. Figure taken
from (He et al. 2016a).

The ResNet architectures are designed with a modular approach where building blocks of the

same shape are stacked together (He et al. 2016b). He et al. (2016b) refer to these structures as

residual units. The original ResNet architecture comes in different depths (18, 34, 50, 101, and

152 layers). For the deeper ResNets with 50 or more layers, the so-called bottleneck architecture

is used. Here, blocks of three layers are used for the residual functions instead of blocks of two

layers as used in ResNet-18 and ResNet-34. The name of the bottleneck blocks results from

the design with a 3×3 convolutional layer between two 1×1 convolutional layers (in contrast

to two 3× 3 convolutional layers in shallower ResNets). With the first 1× 1 layer the input is

compressed so that the 3×3 layer has less computational overhead. With the second 1×1 layer

the resolution is increased again. Here, the advantage of the shortcut connections with regard

to time complexity becomes particularly apparent (He et al. 2016a).

In 2016b, the authors of ResNet introduced an updated version of ResNet with improvements re-

garding to the shortcut connections. Furthermore, residual units were pre-activated with batch

normalization in order to reduce overfitting and enhance training performance (He et al. 2016b).

For this analysis, ResNet-18 and ResNet-50V2 are used.
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EfficientNet

The family of deep learning architectures EfficientNet was introduced by Tan & Le (2019) of

Google AI in 2019. The authors address the problem of scaling CNNs, which in previous research

was often accomplished by scaling one of the three parameters: depth, width, and resolution.

EfficientNet, on the other hand, scales a baseline model (EfficientNet-B0) by applying a com-

pound scaling factor φ to all of the three dimensions simultaneously. Figure X visualizes the

types of scaling of CNNs.

Figure 3.10: Visual representation showcasing different scaling methods of CNN models. From
left to right: (1) baseline model, (2) width scaling - increasing the width of the network, (3) depth
scaling - increasing the depth of the network, (4) resolution scaling - changing the input reso-
lution of the network, and (5) compound scaling - simultaneous scaling of widht, depth, and
resolution using a compound coefficient φ. Figure taken from (Tan & Le 2019).

The parameters width, depth and resolution were determined by the scaled constants αφ, βφ,

and γφ, which are subject to the constraint α ·β2 ·γ2 ≈ 2. The constants were determined via

grid-search in first place. For benchmarking against alternative algorithms, the ImageNet Chal-

lenge (Russakovsky et al. 2015) was used. According to the authors’ benchmarks, the baseline

model achieves accuracy comparable to ResNet-50, but has only 5.3 million trainable parame-

ters compared to 26 million in the case of ResNet-50. In the paper, further upscaled Efficient-

Nets, called EfficientNet-B1 to EfficientNet-B7 were presented. These demonstrated better per-

formance with increasing scaling at the cost of higher training time. However, with a maximum

of 66 million trainable parameters, they remain relatively small compared to other architectures

in the same performance category. Also in the case of transfer learning, less complex Efficient-

Net models showed comparable performance to known architectures.

In 2021, EfficientNetV2, an extension of the original models, were proposed by Tan & Le. The
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family of seven new models focus on lower complexity and improved training speed. This is

achieved by architectural changes in the convolutional layers, and improvements in the area of

compound scaling. Adaptive regularization, which varies in strength depending on image size,

is also introduced. The adaptations have improved the performance while reducing the train-

ing speed Tan & Le. In this thesis, the B0 version of the EfficientNetV2 extenstion is compared

against the ResNet models.

3.3.2 Models for Object Detection

YOLOv7

YOLOv7 was introduced in 2022 by Wang et al. (2023) and is one of the latest iterations of the

YOLO family of one-stage detectors. The model was published by the authors of YOLOv4 (Bochkovskiy

et al. 2020) and YOLOR (Wang et al. 2021). Besides changes in architecture, the variant intro-

duced a range of optimization techniques focused on an improved accuracy when detecting

objects in images without negatively affecting inference speed. These methods, named bag-of-

freebies were introduced in the YOLOv4 iteration and only affect the training of the model in

terms of its required time (Bochkovskiy et al. 2020, Wang et al. 2023, Terven & Cordova-Esparza

2023).

Wang et al. (2023) made the algorithm available in different scales in order to be suitable for a

wide range of hardware including mobile devices. Compared to YOLOv4, YOLOv7 models ex-

hibit a reduction of approximately 40 % in trainable parameters and 20 % in computations. Ver-

sions for edge computing reduce computation nearly by half. Various changes to the algorithm

achieve this reduction in complexity while simultaneously improving the performance of the

model. A compound method comparable to that of EfficientNet is used for scaling (Wang et al.

2023). YOLOv7 uses the design strategy extended efficient layer aggregation network (E-ELAN),

which should lead to efficiency gains (Wang, Liao & Yeh 2022). This technique helps controlling

the longest shortest gradient path in order to ensure that gradients can flow effectively through

the layers during training. The method uses different operations on features to enhance the

network’s learning capacity (Wang et al. 2023, Terven & Cordova-Esparza 2023). Additionally,

the architecture introduces a modified re-parametrized convolution operation, changes in the

integration of batch normalization, and an additional auxillary head that helps training the net-

work. The swish activation function is used in variants of the algorithm. Binary cross-entropy

loss and focal loss (Lin, Goyal, Girshick, He & Dollar 2017) are implemented as loss functions

(Wang et al. 2023).
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YOLOv8

YOLOv8, like YOLOv5, was developed by Jocher et al. (2023), CEO of Ultralytics, and released

in 2023. The developers are not part of the actual authors of the YOLO algorithm and have not

yet published a formal research paper on the algorithm. The algorithm has been published on

GitHub (Jocher et al. 2023) and the associated documentation can also be found on the company

website. As with other iterations of YOLO, the algorithm is available in five differently scaled

versions (nano, small, medium, large, and extra large).

According to Terven & Cordova-Esparza (2023), YOLOv8 adopts a decoupled head structure,

enabling separate processing of objectness, classification, and regression tasks. The separate

processing of the individual tasks leads to improvements in the performance of the model. For

the bounding box regression, Distribution Focal Loss (DFL) (Li et al. 2020) and Distance-IoU

(D-IoU) (Zheng et al. 2020) loss are implemented as loss functions (Terven & Cordova-Esparza

2023). DFL is an extension of Focal Loss, which leads to improved estimates of the boxes by

formulating their positions as general distributions (Li et al. 2020). D-IoU loss enhances training

performance by integrating the standardized distance between the prediction and ground truth

in the function (Zheng et al. 2020). According to Terven & Cordova-Esparza, this choice of loss

functions leads to improvements in detection, especially when objects of smaller dimensions

are to be detected. The mish activation function is used in variants of the algorithm.

3.4 Transfer Learning

While traditional machine learning technology has achieved considerable success and has been

successfully used in numerous practical applications, it has reached its limits in certain real-

world scenarios (Zhuang et al. 2021). The conventional approach to supervised machine learn-

ing relies on an isolated learning procedure, i.e., training a specific learning engine on a labeled

data set intended for that purpose (Ruder et al. 2019). Both data sets should share the same

feature space, and the distribution of the training data set should match the distribution of the

target data (Day & Khoshgoftaar 2017, Pan & Yang 2010). If this is not the case, this can lead to

a deterioration of the prediction ability of a model on unknown instances (Weiss et al. 2016). In

many real-world scenarios, however, this is not feasible. In reality, the training data and the test

data may differ in this respect, for example, they may have different dimensions in the feature

space, or they may have different variables (Day & Khoshgoftaar 2017).

In order for the model to generalize as well as possible to unknown data, large amounts of la-

beled training data are necessary (Zhuang et al. 2021, Sharma et al. 2019). Deep learning in par-

ticular heavily relies on extensive training data. This high dependence on data is attributed to
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the need for a substantial volume of examples to uncover and comprehend the underlying pat-

terns within the data (Tan et al. 2018). However, labeled data are generally difficult to generate

and often costly (Tan et al. 2018). Manual annotation of data performed by experts is time con-

suming and prone to human error. Furthermore, within the industrial context, classified data

or data containing personal information cannot be used for such purposes or shared within the

organization due to the inherent security risks associated with data transfer (Wang, Zhou, Liang,

Yan & She 2022).

The concept of transfer learning stems from the basic idea that people can apply existing knowl-

edge to obtain better solutions to novel problems, or solve them in a shorter time (Pan & Yang

2010). In machine learning, the paradigm of transfer learning is to transfer knowledge from one

source domain DS to another domain, the target domain DT in order to predict unknown in-

stances (Gao et al. 2019, Zhuang et al. 2021, Neyshabur et al. 2020, Wang, Zhou, Liang, Yan & She

2022, Ruder et al. 2019). During transfer learning, a network is pre-trained using a dataset and

adapts its weights to the generic data. These weights are then used in subsequent tasks to ini-

tialize the network. This initialization enables the network to solve these new tasks with fewer

data (Kolesnikov et al. 2020). This is especially useful when the target domain has non-sufficient

amounts of data or no labeled data at all (Day & Khoshgoftaar 2017). Furthermore, the initial-

ization reduces computational demands, making the process more efficient and cost-effective

than training from scratch (Kolesnikov et al. 2020, Neyshabur et al. 2020). Transfer learning

has been applied for many purposes, including natural language processing (NLP) (Devlin et al.

2018, Ruder et al. 2019), object detection (Ren et al. 2015, Reis et al. 2023, Urbonas et al. 2019),

image classification (Gao et al. 2022, Uzen et al. 2021), semantic segmentation (Long et al. 2015,

He et al. 2017), and others.

Mathematically, a domain D can be represented as D = (X ,P (X )), where X denotes the feature

space and P (X ) represents the marginal probability distribution. The feature space X consists

of a collection of feature vectors, typically denoted as X = {x1, . . . , xn} ∈ X , which describe the

attributes of a specific input instance within that domain (Day & Khoshgoftaar 2017, Pan & Yang

2010, Zhuang et al. 2021). These features can be quantitative, categorical, or a combination of

both.

Pan & Yang (2010) further define the concept of a task for a given domain D. A task consists of a

label space Y and a prediction function f (·) that maps the input instances to the label space Y .

Hence, a task T can be represented as T = (Y , f (·)), or similarly, T = (Y ,P (Y |X )). The prediction

function is learned during the training process by means of the training data of the associated

domain. The labeled training data is in the form {(x1, y1), . . . , (xN , yN )}. Here, xi ∈X describes the

feature vector of the input instance, and yi ∈ Y the associated label. The label space describes

the set of all possible labels of the problem (Pan & Yang 2010). For example, in the context of
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a wood defect classification problem, the label space Y could consist of the set {Blue_Stain,
Crack, Dead_Knot}.

In conventional machine learning problems, the source and target domains as well as the tasks

of the respective domains do not differ from each other, i.e. (DS =DT ), and (TS = TT ). In trans-

fer learning problems, however, the source and target domains are not identical, or the tasks

of the domains differ, i.e (DS ̸= DT ), or (TS ̸= TT ), or both. From the previous definition of a

domain, it is clear that two domains differ if the feature spaces of the two domains are not the

same. Likewise, two domains differ if the marginal probability distributions of the data sets dif-

fer. Similarly, it follows from the definition of a task that the tasks of two domains differ if the

label spaces differ, or if the conditional probability distributions differ. The objective of transfer

learning is to improve the predictive function of the target domain given some knowledge from

the source domain.

Homogeneous and Heterogeneous Transfer Learning

Day & Khoshgoftaar (2017) further divide transfer learning into two basic principles: homo-

geneous transfer learning and heterogeneous transfer learning. In the context of homogeneous

transfer learning, also referred to as domain adaptation, the only discrepancy lies in the marginal

distribution between the source domain and the target domain (P (XS) ̸= P (XT )). Here, the fea-

ture spaces of the original and target domains are in the same dimension (dim(XS) = dim(XT )),

and both domains possess identical independent variables as well as labels, i.e. (XS =XT ), and

(YS =YT ). (Day & Khoshgoftaar 2017).

In heterogeneous transfer learning, the source and target domains may exhibit dissimilar fea-

ture spaces (XS ̸= XT ) which are typically also non-overlapping, and also the label space and

the dimension of the feature space may differ, i.e. (YS ̸= YT ), and (dim(XS) ̸= dim(XT )). This

makes the task of transferring knowledge across domains more challenging. Here, not only the

marginal distribution may differ (P (XS) ̸= P (XT )), but also the conditional distribution of the

features may differ between the domains P (YS |XS) ̸= P (YT |XT ) (Gao et al. 2019, Day & Khoshgof-

taar 2017). An example of heterogeneous transfer learning would be the adaptation of a concrete

defect classification model with corresponding features and classes to a wood defect detection

model with corresponding features and classes.

Other Categorization Criteria

A different categorization of transfer learning arises with respect to the given label information.

Hereby, transfer learning can be divided into the categories inductive, transductive and unsu-
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pervised transfer learning. In inductive transfer learning labels for source domain DS and target

domainDT are available. In transductive transfer learning, only labels for the source domainDS

are present. In unsupervised transfer learning the label information for both domains is missing

(Zhuang et al. 2021).

Transfer Learning in Practice

Transfer learning is a commonly employed technique in deep learning, particularly when lever-

aging pre-trained models. The typical procedure involves several steps. Initially, the model is

trained on the original domain or pre-trained weights from established deep learning libraries

are utilized, which are often based on extensive image databases like ImageNet (Deng et al.

2009) or COCO (Lin et al. 2014). The following paragraph refers to a tutorial of the deep learning

library Keras (Chollet 2020). Figure 3.11 illustrates this concept. The classification head of the

network, originally designed for ImageNet’s 1000 classes, is typically removed, and a new train-

able layer, including a tailored classification layer for the target domain, is added. Subsequently,

certain layers of the pre-trained network are frozen, preserving their weights and biases. This

ensures that these parameters remain unchanged during training. The newly added layers are

then trained using data specific to the target domain. Optionally, fine-tuning can be applied by

unfreezing parts or the entire pre-trained network. The unfrozen layers are trained on the target

data with a very low learning rate. Incrementally adapting the pre-trained features to the target

domain’s data can lead to further performance improvements. Additionally, to expedite train-

ing speed, the pre-trained network can serve as a separate feature extractor. Here, the training

data from the target domain is passed through the pre-trained network, and the resulting output

data (features) act as input for a new trainable network. This approach ensures that the train-

ing dataset only goes through the pre-trained network once, as opposed to the conventional

practice of passing it through the network during every epoch (Chollet 2020).

Effects of Transfer Learning

Neyshabur et al. (2020) investigate what ultimately leads to the success of transfer learning in

the domain of CNN. Feature reuse plays a crucial role in transfer learning. The greatest benefit

was achieved when the original and target domains shared visual features. Raghu et al. (2019)

indicate that the effective reuse of meaningful features is predominantly observed in the lower

layers of the network. Nonetheless, according to Neyshabur et al. (2020), even when applying

transfer learning from distant domains that do not share any visual features, the use of trans-

fer learning can yield a noticeable improvement. This improvement cannot be explained by
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Figure 3.11: Illustration of transfer learning in CNNs. The figure showcases the transfer learning
process, where a pre-trained CNN model on a large dataset is utilized as a starting point for a
new domain.

feature reuse. The analysis shows that in this case the distribution of pixel values contribute

to the benefits of transfer learning, especially in terms of optimization speed. In addition, it

could be shown that the speed improvements are not dependent on the degree of feature reuse

(Neyshabur et al. 2020). In the paper, the information the pixel value distribution inherits is

referred to as low-level statistics (Neyshabur et al. 2020). In addition, the findings of Raghu

et al. (2019) show that the feature-independent weight scaling improved by transfer learning

improves the convergence speed (Raghu et al. 2019).

3.5 Performance Evaluation

Evaluation metrics serve as indicators utilized to evaluate the performance and overall effective-

ness of machine learning models. These metrics objectively quantify the model’s performance

in terms of its quality, predictive capacity, and generalization ability, aiding in the comparison

of various models. When choosing metrics a variety of factors has to be considered. These fac-

tors include the nature of the data, the type of task (e.g. regression or classification), and the

intended goal. The metrics used in this analysis are defined in the following.
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3.5.1 Evaluation Metrics for Image Classification

Recall and Precision

The following metrics use specific notations for classified instances. True positives (TP) rep-

resent the number of correctly predicted positive samples. False positives (FP) represent the

number of negative samples incorrectly predicted as positive. False negatives represents the

number of positive samples incorrectly predicted as negative.

Precision is a measure of the accuracy of positive predictions made by a model. It calculates the

proportion of true positive predictions out of the total predicted positive instances, i.e. precision

quantifies how reliable the positive predictions of a model are.

For a task that is not binary but comes with N classes, e.g. in a multi-label classification problem,

macro precision (or macro-averaged precision) can be used. Macro precision calculates the

precision value separately for each class i and then takes the average. Macro-averaged metrics

give equal weight to each class. Precision and macro-precision are defined as:

Precision = T P

T P +F P

Macro Precision = 1

N

N∑
i=1

T Pi

T Pi +F Pi
= 1

N

N∑
i=1

Precisioni

Recall measures the proportion of relevant instances correctly identified by the model out of

all the actual positive instances. Recall captures the ability of the model to classify all the pos-

itive instances correctly, avoiding false negatives. For defect detection, a high recall value is

important, since negatively classified defective workpieces that are not sorted out can lead to

problems in later production steps. Similarly to macro precision, macro recall computes the

arithmetic mean of all the per-class recall scores. Recall and macro recall are defined as:

Recall (Sensitivity) = T P

T P +F N

Macro Recall = 1

N

N∑
i=1

T Pi

T Pi +F Ni
= 1

N

N∑
i=1

Recalli

Recall and precision generally have an inverse relationship, i.e. increasing recall can lead to a

decrease in precision and vice versa. To maximize recall, the model aims to detect as many
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true positive instances as possible, e.g. by lowering the threshold for considering an object as

positive. This typically leads to a higher number of false positives. To maximize precision, the

model focuses on minimizing false positives by increasing the threshold for considering an ob-

ject as positive. This may result in fewer detections overall, but with a higher confidence in their

correctness.

In scenarios where precision and recall are both crucial factors to consider, the F1 score metric

is often used. The F1 score denotes the harmonic mean of precision and recall. A high F1 score

indicates a good balance between precision and recall. This means the model achieves both

accurate positive predictions and captures a significant portion of positive instances. A low F1

score suggests an imbalance between precision and recall, indicating that the model may be

biased towards either false positives or false negatives. The macro F1 score computes the arith-

metic mean of all per-class F1 scores. F1 score and macro F1 score are defined as:

F1 Score = 2× Precision×Recall

Precision + Recall

Macro F1-Score = 1

N

N∑
i=1

2×Precisioni ×Recalli

Precisioni +Recalli
= 1

N

N∑
i=1

F1 Scorei

3.5.2 Evaluation Metrics for Object Detection

Intersection over Union

Intersection over union (IoU) measures the overlap between the predicted bounding box and

the ground truth bounding box, here denoted as Bp and Bg t , respectively. IoU is calculated

by dividing the intersection area between the predicted and ground truth regions by the union

area of the two regions (see Figure 3.12 for reference. IoU ranges from 0 to 1, where 1 indicates

a perfect match between the predicted and ground truth regions, and 0 indicates no overlap.

Formally, according to (Everingham et al. 2009), IoU can be expressed as:

IoU = Ar ea(Bp ∩Bg t )

Ar ea(Bp ∪Bg t )
= Area of Intersection

Area of Union

Typically, a threshold of I oU > 0.5 is set, for considering a prediction as correct (TP). Likewise

an I oU ≤ 0.5 is considered as an incorrect prediction (FP) (Everingham et al. 2009). A ground

truth box that goes undetected corresponds to a false negative. It should be noted that true neg-

atives are not used in the area of object detection, since this would include all possible correctly
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undetected bounding boxes.

Figure 3.12: Illustration of the area of intersection and area of union between a ground truth and
predicted bounding box.

Precision and Recall

In object detection, precision and recall depend on defined threshold values. Here, according

to (Russakovsky et al. 2015), confidence scores si j are output for each prediction of an object

location. This is done for all available classes, each with a total of N ground truth boxes. For

each detection j in image i ∈ I , a binary variable zi j is assigned with a value of 1 if the detection

matches a ground truth box based on a threshold criterion t , and 0 otherwise. Hence, (Rus-

sakovsky et al. 2015) define precision and recall as:

Precision(t ) =
∑

i j 1[si j ≥ t ]zi j∑
i j 1[si j ≥ t ]

Recall(t ) =
∑

i j 1[si j ≥ t ]zi j

N

Average Precision and Mean Average Precision

Contrary to what the name suggests, the average precision metric does not simply describe the

average of the precision value. Instead, the area under the precision-recall curve (see figure

3.13) is evaluated at different points. For the Pascal VOC challenge, an interpolated AP score

was introduced (Everingham et al. 2009). This metric has since been used in many modern

algorithms. The recall values between 0 and 1 are divided into 11 intervals r of the same size.



CHAPTER 3. THEORETICAL BACKGROUND 46

The precision values p(r̃ ) at a specific recall interval r̃ are interpolated by taking the maximum

precision at each recall level, as follows:

pi nter p (r̃ ) = max
r̃ :r̃≥r

(p(r̃ ))

The interpolation serves to smoothen the curve and to weaken effects of fluctuations. AP is then

defined as the average of the interpolated precision values over all 11 intervals:

AP = 1

11

∑
r∈{0,0.1,...,1}

pi nter p (r̃ )

Mean average precision (mAP) averages AP over all classes and is typically evaluated at differ-

ent IoU thresholds. For the MS COCO object detection challange, thresholds in the range of

[0.5,0.95] in steps of 0.05 are used (Lin & Dollar 2016). The mAP score is defined as:

mAP = 1

C

C∑
c=1

APc

Where C is the number of classes, and APc is the average precision of class c.

Figure 3.13: Precision-recall curve in a multi-label object detection setting. The nature of the
curve undermines the inverse relationship between precision and recall. The dark blue curve
denotes the mean average precision over all classes at an IoU threshold of 0.5.
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3.5.3 Runtime Evaluation Metrics

Runtime performance metrics measure parameters such as GPU memory usage, GPU utiliza-

tion, and training time. These metrics often depend on the hardware used and therefore do not

give an absolute indication. However, they can give clues about the performance requirements

during training and inference. In addition to hardware, the choice of input image resolution and

architecture influence the memory and time requirements. Deep accurate backbone networks

often lead to slower inference times (Lin, Goyal, Girshick, He & Dollar 2017). While the metrics

do not say anything about the quality of the models themselves, the trade-off between speed

and accuracy may be important for users where the availability of powerful hardware is relevant

(Huang et al. 2017).

Frames per Second

The speed of object detectors is measured in frames per seconds (FPS), i.e. the number of frames

or images that can be processed by an object detector in one second. Here, higher FPS val-

ues correspond to a faster processing speed. (Bochkovskiy et al. 2020) define object detectors

that achieve speeds of 30 FPS or more as real-time detectors. FPS can be influenced by various

factors, including the complexity of the object detection model, the computational resources

available, and the resolution of the input frames. Achieving high FPS requires optimizing both

the architecture and implementation of the object detector. Techniques like model compres-

sion, parallel processing, and hardware acceleration can be employed to improve FPS without

sacrificing accuracy significantly.

In this work, the FPS for the object detection algorithms are determined when evaluating the

model with the test dataset. For this, the batch size is set to one and the time to process one

image is determined. For a better adaptation to the use case in a production context, a plot

of the detection is simulated after each processing. The total processing time consists of the

preprocessing time (PRE), inference time (INF), and postprocessing time (POST), each in ms.

Hence, the FPS value is computed as follows:

FPS = 1000

PRE + I N F +POST

Floating-point operations (FLOPs) are a measure for the complexity of the model that do not

depend on the underlying hardware (Huang et al. 2017).



Chapter 4

Related Work

In this chapter, the landscape of existing research is examined. For this, a review of relevant

studies that have explored various approaches with different technologies and methodologies

to address wood defect detection is provided. This chapter seeks to identify gaps in research as

well as trends which lays the foundations for this work.

4.1 Wood Defect Detection

In 2003, Silvén et al. (2003) developed a non-supervised clustering method for detecting defects

in lumber boards. For this, a self-organizing map (SOM) algorithm is used. The approach in-

volves two-stages. First, a human expert manually separates regions suspected of having defects

from intact regions on the surface by setting boundary lines on the computer. Second, the fea-

ture values of the defective regions are merged into a vector and then classified via a detection

SOM. The authors emphasize that the quality of the results is strongly influenced by human in-

teraction. The choice of boundary regions significantly influences the results in terms of the

amount of non-detected defects (error escapes). The highest difference in terms of error escape

were 38.9 % vs. 13.3 %. Moreover, as a human operator decides to classify a region as defective

or not in the first place, this methodology is still prone to human error (Silvén et al. 2003).

Kline et al. (2003) utilized a multiple sensor lumber scanning system to automate the grading

of hardwood lumber. This continues the research conducted by Conners et al. (1997). The pro-

totype system that was used, incorporates a color line scan camera system, a laser-based rang-

ing system, and an X-ray scanner as part of its setup. During the scanning process, the system

generates merged images from objects moving on a conveyor belt. The system outputs infor-

mation about the type of each identified defect, as well as its location and extend. This so called

48
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defect map is generated by software that initially preprocesses the images and then segments

the image into regions of interest, followed by the use of a rule-based fuzzy logic with custom

membership functions for the classification task. The system was trained on a data set with 300

images, and at least 40 images for each of the ten different defect types. On unseen test data,

the system and lines graders achieved a classification accuracy of 63 % and 48 %, respectively.

This means, the automated system performed 31 % better than the manual graders in terms of

accuracy. However, in the study, small defects posed challenges in terms of online detection,

and discolorations of the material led to false positives (Kline et al. 2003).

A different approach with the assistance of computational intelligence techniques was proposed

by Estévez et al. (2003) in 2003. The approach utilized a genetic algorithm in combination with

a neural network for the classification of defects on wooden boards. For the study, 2958 samples

of wood surfaces were used. The database was created using video camera color recordings

of material surfaces, which were manually labeled based on the largest defect, allowing each

sample to be assigned to one of the ten specific defect classes or the negative class without any

defects. The samples were captured multiple times in various orientations. The samples were

divided into defective and intact regions using a histogram-based segmentation module, where

defective regions were represented as objects using an overlaid window. The features were then

extracted by a feature extraction module and selected by a genetic algorithm. Subsequently,

the data were classified into one of the categories using a multilayer perceptron (MLP) with

one hidden layer. The study yielded classification accuracies of 74.5 % for all defect classes and

87.8 % for a reduced problem with only 7 classes (Estévez et al. 2003).

Computational intelligence methods for segmentation were further utilized by (Estevez et al.

2005) and (Ruz et al. 2009). The studies employed fuzzy min-max neural networks for generating

minimal bounding boxes around objects as a segmentation algorithm. These bounding boxes,

here called hyperboxes, are generated from automatically detected seed pixels. Ruz et al. (2009)

increased the number of features compared to Estévez et al. (2003) and performed the classifi-

cation with SVM in addition to the originally proposed MLP. The use of additional features im-

proved the classification results. In the study, the pairwise classification via SVM demonstrated

better results than the MLP classification and lead to an average classification rate of 91.39 %

(Ruz et al. 2009).

Chacon & Alonso (2006) presented another method for defect detection using fuzzy logic. In

their study conducted in 2006, four types of knot defects are classified. Gabor filters are used

for feature extraction. The study compares the performance of unsupervised and supervised

neural networks, specifically using a self-organized neural network (SONN), a SONN with fuzzy

parameters, and a feedforward perceptron neural network (FFPNN). The authors report a test

accuracy of 85.28 %, 88.23 %, and 91.17 % for SONN, fuzzy SONN, and FFPNN, respectively
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(Chacon & Alonso 2006). However, the results should be interpreted with caution. Only 68 and

72 samples were used for training and testing, respectively. Additionally, for all models, the re-

ported training accuracies surpass the reported test accuracies. This indicates overfitting, which

implies that the model has memorized the training data but struggles to generalize well to un-

seen data.

In 2009, Gu et al. (2009) introduced the use of support vector machines (SVM) for classifying dif-

ferent types of knots on lumber boards. The algorithm used represents a four-stage tree struc-

ture, where an SVM classifier at each branch decides whether the defect belongs to one of the

four classes based on a specific feature of the feature vector. The classifier is trained with 800

images and then tested with 400 unknown instances. The images of lumber boards are initially

reduced to rectangular patches, containing only the defect and small parts of the background.

The method used achieves an average classification rate of 96.5 %, and a false positive rate of

2.25 % (Gu et al. 2009).

A faster method for defect detection on wood veneer surfaces was presented by Shi et al. in

2020 by using a multi-channel mask region-based convolutional neural network (Mask R-CNN)

(He et al. 2017) with the addition of a glance network. The faster detection is achieved by pre-

selecting the images with defective surfaces by the glance network. This achieved that only

relevant data need to pass through the actual detection algorithm. Object detection on the pre-

selected data was then performed by a mask R-CNN with ResNet backbone. With this method,

an accuracy of more than 98 %, and a mAP value of about 95 % could be achieved at a process-

ing speed of 2.5 s per 100 frames. However, the study was limited to the detection of only three

defect types (Shi et al. 2020).

Mask R-CNN was also proposed by Li et al. (2021) in 2021 to detect three types of defects on

wood surfaces. The image data were captured via a common DSLR camera. A cycle generative

adversarial network (cycle GAN) (Zhu et al. 2017) was used to enhance the initial data set of

1242 images with a total of 1691 present defects. The authors used this approach to counter the

problem of imbalanced defect data as knots make up roughly 60 % of the defects in the images.

Using this approach, 430 synthetic images were added to the data set resulting in 1673 images,

and 2414 defects present. In addition, data augmentation techniques were used. The ResNet

backbone of the Mask R-CNN was modified by introducing layered connections. Additionally,

the initial 3x3 convolution was replaced by so-called deformable convolution (Zhu et al. 2017,

2019) to account for geometric variations of the input defects. Deformable convolutions allow

the standard convolution to freely deviate from its grid-form in 2D space. Supplementary con-

volutional layers learn the offsets from the feature maps that come before them. The proposed

model achieved mAP values of about 84 % and 83 % for bounding box and mask information,

respectively. The model used had a processing speed of 14.83 FPS (Li et al. 2021).
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Hwang et al. (2021) propose a traditional artifical neural network (ANN) architecture with exter-

nal feature extraction to detect different types of knot defects. The authors use texture descrip-

tors and local feature descriptors for feature extraction from a data set of 937 images of knot

defects. Grey-level co-occurence matrix (GLCM) and local binary pattern (LBP) approaches

are used for the texture descriptors approach. Histogram of oriented gradients (HOG), scale-

invariant feature transform (SIFT), and dense scale-invariant feature transform (DSIFT) are

used as local feature descriptors. The ANN is build as a feed-forward network with multiple lay-

ers. For comparison purposes, a k nearest neighbor (k-NN) and support vector machine (SVM)

are trained on the same input features. The texture descriptors yield better results than the local

feature descriptors. The ANN model achieves a F1-score of 0.793 and 0.613 for GLCM and LBP,

respectively, and 0.776, 0.711 and 0.718 for HOG, SIFT, and DSIFT, respectively (Hwang et al.

2021).

4.2 Transfer Learning in Wood Defect Detection

In 2015, Norlander et al. (2015) proposed a convolutional neural network architecture similar to

that of AlexNet to detect wooden knots on wood surfaces. For defect localization, a siding win-

dow approach was used. The algorithm was pre-trained on ImageNet and then learned using

training data from the target domain. For this purpose, deep layers of the pre-trained network

were replaced by new, trainable layers, while the shallower layers were frozen. Subsequently,

fine-tuning of all layers was performed with a lower learning rate. The network pre-trained on

ImageNet achieved a higher accuracy than the variant without transfer learning. However, the

method used only distinguishes between knot (positive) and wood (negative) classes, other de-

fects are not detected (Norlander et al. 2015).

In 2019, Urbonas et al. (2019) proposed Faster R-CNN for the detection and localization of de-

fects on wood veneer surfaces. The method was employed to identify four types of surface de-

fects using common CNN architectures with transfer learning as backbones. A data set of 353

images was acquired by scanning the veneers with a line scan camera on a conveyor belt sys-

tem. The data set was artificially augmented to 3530 images for training and testing. For recall,

precision, and F1 scores, values of up to approximately 0.8 were obtained in the best case. The

averaged accuracy reached around 80 % in the best case. The processing speed in this case was

around 40 ms (Urbonas et al. 2019).

Another method for the detection of defects on veneer wood surfaces was proposed by Hu et al.

(2020) in 2020 via Mask R-CNN and transfer learning. The study aimed at the detection and lo-

calization of three different defect types. A total of 1050 image data were acquired via industrial



CHAPTER 4. RELATED WORK 52

cameras and synthetically augmented by 100 instances of each defect class using a GAN. Each

instance showed a defect in close-up, negative examples without defects were not used in the

analysis. The model pre-trained on COCO achieved an increase in accuracy of about 4 % com-

pared to the from scratch model. The study showed a maximum achieved accuracy of 94.7 %

and a maximum achieved mAP value of 98.4 %. The limitation of the study to close-up images

of defects, however, makes the transferability to real scenarios questionable (Hu et al. 2020).

An approach for classifying and locating defects with a fully convolutional neural network was

proposed by He et al. (2019) in 2019. The authors introduced a so-called mixed, fully convolu-

tional network (Mix-FCN) for semantic segmentation that consists on components of the VGG

and InceptionNet architectures. The weights of the network were transferred from one VGG net-

work pre-trained on another data set from the same domain. The model was then trained on

a new dataset with six different defect categories. All data used were acquired using a line scan

camera, using two different wood species in equal proportions. The data was then augmented

using different augmentation techniques. The proposed method achieved scores of 99.14 %,

91.31 % in terms of overall classification accuracy and pixel accuracy, respectively. The detec-

tion speed was reported to be 368 ms per batch of 50 images (He et al. 2019).

Ding et al. (2020) used an ImageNet pre-trained modified SSD one-stage detector with DenseNet

backbone for object detection of three different defect types on solid wood panels. A line scan

camera was used for data acquisition. The acquired images were then cropped into 500 square

sections of defects. Augmentation methods were applied to enhance the training data. The

results of the study are reported to be about 96 % and 56 ms for mAP and processing time,

respectively (Ding et al. 2020).

Another one-stage object detection approach with a modified YOLOv3 (Redmon & Farhadi 2018)

algorithm was proposed in 2021 by Tu et al. (2021) to detect four types of defects in sawn lumber

from two different wood species. The image data were acquired by using an area array camera

system scanning moving lumber on a conveyor belt. The data set used consists of 5840 and 1108

images of rubber lumber and pine lumber, respectively. The data sets of the two species had dif-

ferent types of defects. The pine lumber data set included only two types of defects, while the

rubber lumber data set contained two additional types of defects. The highest measured mAP

value of 86 % was achieved at a speed of approximately 38 FPS.

A solution for multi-class defect classification using pre-trained CNN was presented by Gao, Qi,

Mu & Chen (2021) in 2021. The authors use a ResNet-34 pre-trained on ImageNet to identify

seven different knot defects from a data set of 450 defect close-up images, which was artificially

enlarged using augmentation methods. The results of the pre-trained and modified architecture

were compared with the results of the base architecture without transfer learning. Compared to

the training from scratch, the accuracy of the ResNet-34 could be improved by about 1.5 % using
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transfer learning. The convergence speed also shows improvements with the use of transfer

learning (Gao, Qi, Mu & Chen 2021). Gao, Song, Wang, Liu, Mandelis & Qi (2021) could further

improve the results on the same dataset by using a modified ResNet-18 CNN with attention

mechanism in combination with transfer learning. In direct comparison to the non-pre-trained

model, accuracy improved by over 2 % when using transfer learning. The convergence speed

also improved (Gao, Song, Wang, Liu, Mandelis & Qi 2021). Gao et al. (2022) proposed a slightly

modified version of the algorithm using more attention modules. This version demonstrated

comparable results when using transfer learning. However, the pre-trained model only achieves

an accuracy improvement of about 0.3 % compared to the model without transfer learning (Gao

et al. 2022).



Chapter 5

Methodology

5.1 Data

Data is one of the most critical elements in computer vision. This section addresses the data

used for the study which serves as a fundamental basis for evaluating the research questions.

First, the origin and acquisition of the data are described. Second, an overview about the com-

position of the data and meta-information are given in more detail. Finally, the preprocessing

and transformation steps performed on the data are explained.

5.1.1 Data Acquisition from Database

Data from Kodytek et al. (2022) are used for the analysis and experiments of this study. The

images were taken on a production line in a sawmill under real production conditions. The

images demonstrate sections of lumber surfaces in plan view. The authors of the paper make the

data publicly available for download at Kodytek Pavel et al. (2021). The available dataset consists

of 20.276 images in .bmp format, the respective samples associated labels and bounding box

coordinates in .txt format, the respective semantic map information in .txt format, and meta-

information about semantic maps. The labeling of the samples was performed by the authors

of the paper using a self-developed tool (Kodytek & Bodzas 2021) which is also provided for

download. The samples have a resolution of 2800 x 1024 pixels. Figure 5.1 shows some examples

of the image data from the data set.
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Figure 5.1: Examples of the image data downloaded from (Kodytek Pavel et al. 2021).

5.1.2 Data Analysis

Each sample contains none, one, or multiple defects. According to (Kodytek et al. 2022), 18.284

samples contain defects, and 1992 samples are without any defects. A total of ten different de-

fects are covered by the image data. The defect types present are: Blue stain, crack, dead knot

(decayed knot), knot hole, live knot, pith, mineral streak, knot with crack, overgrown, and resin.

The associated labels used are: Blue_Stain, Crack, Dead_Knot, Knot_missing, Live_Knot,
Marrow, Quartzity, knot_with_crack, overgrown, resin. To avoid confusion, the class names

chosen by the authors will be adhered to in the further development of this thesis.

It should be noted that the data set is not balanced. Some defect classes such as live knot are

highly prevalent in the data set, whereas defects such as overgrown, and blue stain are extremely

rare. Table 5.1 shows the total number of the respective defect class, the total number of the re-

spective defect class in percent, the number of samples on which the defect class is represented

at least once, and the percentage ratio to the total number of samples.

5.1.3 Data Preprocessing

Data preprocessing techniques are applied to facilitate the training with the models proposed

in this thesis. In addition, the data is processed to lower the requirements for computational

resources and the training time of the models. Different preprocessing steps are applied to the

data set described in section 5.1. The different steps for transformation, cleaning, and organi-

zation that are performed on the data are described in the following.
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(a) (b)

Figure 5.2: Bar plots representing the distribution of defect labels. Figure (a) displays the label
frequency by defect label in descending order. Figure (b) presents the number of samples by
defect label in descending order. This showcases the imbalance of the data set in terms of defect
labels. The background class is excluded.

Table 5.1: Occurence of defects.

Defect class No. of label Percentage No. of samples Percentage of
occurences occurence with defect total samples

Live knot 21224 48.26 % 11912 58.75 %
Dead knot 11985 27.25 % 8350 41.18 %
Resin 3455 7.86 % 2624 12.94 %
Knot with crack 2276 5.18 % 1835 9.05 %
Crack 2169 4.93 % 1578 7.78 %
Marrow 1181 2.69 % 1061 5.23 %
Quartzity 1075 2.44 % 847 4.18 %
Knot missing 503 1.14 % 478 2.36 %
Blue stain 96 0.22 % 77 0.38 %
Overgrown 10 0.02 % 6 0.03 %

Sum 43974 100 % 28768
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Resizing

The data of (Kodytek et al. 2022) is available in a resolution of 2800×1024 after download. This

resolution is not suitable for most algorithms, since large amounts of memory and computation

are required for processing. To counteract these problems, the image files are scaled down to

700×256. The aspect ratio, i.e. the ratio of width and height of the images, is not changed. This

is to avoid distortions of and to maintain the visual representation of the defects and the wood

surface. It should be noted that the object detectors of the YOLO family only accept resolutions

that are a multiple of the max stride of 32. The data is therefore scaled to a resolution of 704

during training and validation.

Label Transformation

The coordinates of the bounding boxes are available in the Albumentations (Buslaev et al. 2018)

format after the download. In the Albumentations bounding box format, each bounding box

is represented as a tuple of four values [class_name, x_min, y_min, x_max, y_max]. These co-

ordinates are normalized, i.e. they are scaled by the width and height of the image and range

from 0 to 1. For the use of the data with the models of the Yolo family, they are converted into

the format [class_id, x_center, y_center, box_width, box_height]. Again, the values are normal-

ized based on the dimensions of the image. Futhermore, the class names in the first place were

encoded with unique numbers from 0 to 9.

Cleaning

The present data have some defective bounding boxes with minimal area that do not enclose

any defect. These are removed from the label files during the downscaling step.

Offline Data Augmentation

To evaluate the impact of offline augmentation, data augmentation techniques are used to en-

hance the given data set. In theory, this should improve the generalization capability of the

trained models and increase their robustness and performance (see section 3.1.1). In contrast

to online data augmentation, offline data augmentation increases the size of the data set. For

this study, offline augmentation is applied to the training and validation data set. The test set is

not augmented. The following five augmentation techniques are applied independently of each

other to the original data:



CHAPTER 5. METHODOLOGY 58

• Vertical flipping: All images are vertically flipped. In this geometric transformation, the

image is mirrored on the horizontal axis. As a result, the positions of objects, patterns,

and features within the image are reversed vertically. Vertical flipping is used to make to

model more robust towards changes in the position and orientation of objects. Figure

5.3(b) illustrates a vertically flip of the original image 5.3(a).

• Hue shift: A random hue shift between -25 and +25 degrees along the color wheel is ap-

plied to the images. This changes the color representation of the images without affecting

brightness or saturation parameters. Hue shift is applied to make the model more in-

variant to changes in color that can occur due to lighting conditions or other real-world

challenges. Figure 5.3(c) demonstrates a hue shift of -20° applied to the original data.

• Saturation: Random adjustments in the color vibrancy are applied to the images. The

adjustments range between -75 % and 75 % with respect to the original image. This tech-

nique is used to improve the model’s ability to generalize to new environmental condi-

tions. Figure 5.3(d) shows an adjustment of saturation by -75 %.

• Gaussian noise: Random noise is added to the image pixel values. The noise values are

drawn from a Gaussian distribution with zero mean. The standard deviation is set to a

value of 10. The standard deviation controls the intensity of the noise. Noise on images

can occur due to factors such as lighting, or sensor defects. Training the model on these

conditions can make the model more robust to variations in the inputs. Figure 5.3 (e)

represents the modification with Gaussian noise.

• Salt and pepper noise: This augmentation technique randomly adds white and black pix-

els to the image. This is done by randomly selecting pixels in the image and changing their

color to white or black based on a predefined probability. The probability value is set to a

value of 1 %. This controls the intensity of the noise. The salt and pepper augmentation

technique is used to make the model more robust to imperfections occurring in the input

data. Figure 5.3(f) shows an example of added salt and pepper noise.

Organization

The data are randomly divided into training, validation and test set in advance. A percentage

distribution of 60 %-20 %-20 % is used for the training, validation, and test set, respectively. The

data is stored in a specific folder structure for training the YOLO algorithms. Each of the training,

validation and test directories contains a subdirectory for images and labels. In the case of the

training and validation directories, there are further subdirectories for images and labels of the

originals, and each of the respective augmentation techniques applied.
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(a) (b) (c)

(d) (e) (f)

Figure 5.3: Examples of the different data augmentation techniques applied. Cropped parts of
the images are used for representation purposes. (a) Original, (b) vertically flipped, (c) hue shift,
(d) saturation, (e) Gaussian noise, and (f) salt and pepper noise.

Table 5.2: Composition of raw data set.

Class label Train Val Test

Blue stain 46 29 21
Crack 1311 451 390
Dead knot 7095 2435 2350
Knot missing 326 87 78
Live knot 12555 4178 4300
Marrow 687 247 239
Quartzity 606 198 207
Knot with crack 1322 427 451
Overgrown 5 0 0
Resin 2081 678 682
Background 1227 382 384
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Table 5.3: Composition of offline augmented data set.

Class label Train Val Test

Blue stain 276 174 21
Crack 7866 2706 390
Dead knot 42570 14610 2350
Knot missing 1956 522 78
Live knot 75330 25068 4300
Marrow 4122 1482 239
Quartzity 3636 1188 207
Knot with crack 7932 2562 451
Overgrown 30 0 0
Resin 12486 4068 682
Background 7362 2292 384

5.2 Implementation Details

Details of the hardware and software and the frameworks used are provided in this section. The

hardware and software provide the basis for processing the data and training the computer vi-

sion models presented in Section 3.3. The information about hardware and software used is

important for the subsequent interpretation of the results and also for their reproducibility. Fur-

thermore, the choice of hardware and framework are relevant with respect to the potential fea-

sibility of the application within a real production setup.

5.2.1 Hardware Used

For storing and pre-processing the data as well as training and evaluating the models, resources

of the Idun cluster, a professionally managed computing platform of NTNU, are used. As con-

ventional mobile hardware is not suitable for training large computer vision models, the training

is performed on one or more GPUs of the cluster depending on the task. In the following, details

about the hardware used by type of computer vision task are provided.

Six object detection models are compared in this evaluation. To ensure the comparability of

the benchmarks, all object detection models, i.e. all scaled versions of the YOLOv7 and YOLOv8

family are each trained and evaluated on a single NVIDIA A100-PCIE GPU with 40 GB VRAM.

CUDA version 11.7 is used. 60 GB of RAM are allocated for each run. As CPU, an Intel Xeon Gold

6248R with 48 cores is used.

The three CNN models for image classification are each trained on two GPUs of type NVIDIA

A100-PCIE with 80 GB VRAM and CUDA version 11.7. As CPU, Intel Xeon Gold 6248R with 48
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cores or AMD EPYC 75F3 with 64 cores are used, depending on the assigned node. As for the

object detection models, 60 GB of RAM are allocated for each run.

5.2.2 Software Used and Modifications

All models are trained and evaluated on a Red Hat Enterprises Linux distribution in version

4.18.0-425.3.1.el8.x86_64. Resource management and job scheduling are performed via Slurm

Workload Manager. Specific Anaconda virtual environments are created to avoid compatibility

conflicts between dependencies. Python version 3.9.16 is used for all of the virtual environ-

ments.

The YOLOv8 models are based on ultralytics version 8.0.153. Both frameworks use torch version

2.0.1. The frameworks were not modified for this evaluation.

For the CNN implementations, the TensorFlow framework (Abadi et al. 2015) version 2.12.0 and

the TensorFlow Keras (Chollet et al. 2015) API are used. EfficientNetV2B0 and ResNet-50V2 are

imported directly from Keras Applications. Since the API does not have a ResNet-18 implemen-

tation, this is imported from the Classification models Zoo library (Iakubovskii 2018). In all

cases, the original output layers of the models are substituted with a custom head (see figure 5.4

for reference). The custom head consists of a 2D average pooling layer, followed by a flattening

operation. Following this, a fully connected layer comprising 512 neurons, L2 regularization and

activated by ReLU is incorporated. Subsequently, a dropout layer with rate 0.5 is implemented.

The final output fully connected layer is using a Sigmoid activation function. The width of the

output layer is determined by the number of classes.

5.2.3 Choice of Hyperparameters

Due to the limited time for this thesis and the computational complexity, the choice of hyper-

parameters is determined by trial and error. For this purpose, different parameter settings are

tested and evaluated based on training and test performance. For the sake of simplicity, only

the results of the best models are presented in this analysis and no further comparison between

different hyperparameter setting is made.

Hyperparameters for Object Detection Models

All object detection models are trained using the same set of hyperparameters, without distinc-

tions between the different analyses related to research questions. The hyperparameter settings
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Figure 5.4: High-level visual representation of the CNN model architecture with the incorpo-
rated custom head. The sequential layer after the input layer denotes the data augmentation
layer. This is followed by the main architecture, in this case ResNet-50V2. The final five layers
denote the custom head attached to the model.

for the models in the YOLOv8 family, as well as the models in the YOLOv7 family, remain con-

sistent across the different scales of the models used. For all models, a batch size of 32 is used

during training. Each model is trained for 200 epochs, or until early stopping (ES) is triggered in

the case of YOLOv8. YOLOv7 does not incorporate an early stopping function. For training on

the use case data, the maximum number of epochs is increased to 300. The standard hyperpa-

rameters of the models are otherwise employed (see the GitHub repositories for YOLOv7 (Wong

2022) and YOLOv8 (Jocher et al. 2023) for reference). Stochastic Gradient Descent (SGD) serves

as the optimizer. The initial learning rate (lr0) is set at 0.01, and the final learning rate (lrf) is

determined by lr0× lrf. For online data augmentation, the standard data augmentation settings

of the algorithms are utilized. An overview of the key hyperparameters is provided in Table 5.4.

Table 5.4: Hyperparameter settings for YOLOv8 and YOLOv7 models. The maximum number of
epochs is different for the original data set and the use case data set.

Model Batch S. Opt. #EpochsOD/UC D lr0 lrf Momentum Weight Decay

YOLOv8 32 SGD 200(ES) / 300(ES) 0.01 0.01 0.937 0.0005

YOLOv7 32 SGD 200 / 300 0.01 0.1 0.937 0.0005
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Hyperparameters for Image Classification Models

All CNN models in this thesis are trained with a batch size of 32 per GPU. The Adam optimizer is

used, with the initial learning rate being reduced over the course of training using cosine decay

schedulers. The number of scheduler steps is determined by the product of the batch size and

the size of the training data set. All models are trained for a maximum of 200 epochs on the

original data, and 500 epochs on the use case data. In addition to that, early stopping is imple-

mented in all models, starting at epoch 20. If no improvement in the validation loss occurs over

the subsequent 50 epochs, training is stopped, and the weights from the best epoch are restored.

The binary cross-entropy loss function is utilized. Additionally, online data augmentation is per-

formed by applying random geometric variations to the inputs: random horizontal and vertical

flip, random rotations ranging from -18° to +18°, and random zooming ranging from -10 % to

+10 %. No other augmentation techniques are employed. An overview of the hyperparameters

used for the image classification models can be found in Table 5.5.

Table 5.5: Hyperparameter settings for ResNet and EfficientNet models. The maximum number
of epochs is different for the original data set and the use case data set. lrOD and lrUC D refer to
the learning rates used for training on the original data set and the use case data set, respectively.

Model Batch S. Opt. #EpochsOD/UC D lr0OD/UC D Dropout Weight Decay

ResNet-18 32 Adam 200(ES) / 500(ES) 5E-4 / 1E-5 0.5 0.01
ResNet-50V2 32 Adam 200(ES) / 500(ES) 5E-4 / 5E-6 0.5 0.01

EfficientNetV2B0 32 Adam 200(ES) / 500(ES) 1E-5 / 1E-4 0.5 0.01
EfficientNetV2S 32 Adam 200(ES) / 500(ES) 1E-5 / 1E-4 0.5 0.01



Chapter 6

Use Case Application

6.1 Use Case Introduction

The use case of this thesis aims to prepare the implementation of a system for surface defect

detection in a production for window frames. In the production, windows are manufactured

whose frames are made of wood. The defect detection system is planned to be installed in per-

spective behind the first sawing machine of the production line. There, delivered wooden parts

that have already been cut into shape are sawn into different lengths according to the order.

Four of these cut pieces are needed for each window, one for each side. The defect detection

system will inspect the sawn parts for defects after the initial sawing process. The defect inspec-

tion system is to replace the manual inspection at this station in the production. The use case is

intended to investigate whether the algorithms and training methods investigated in this thesis

would be suitable for such a task.

Due to delays in the delivery of the necessary hardware as well as scheduling conflicts with the

partner company, the experimental setup cannot be implemented and tested directly in the

production there. Instead, a prototype system is developed in the learning factory of the univer-

sity’s workshop laboratory. This setup is thoroughly evaluated and prepared for possible imple-

mentation in practice. In this chapter of this thesis, a comprehensive overview of the practical

implementation conducted in the learning factory environment is provided.

6.2 Experimental Setup

This section introduces the laboratory environment and the setup of the line scan camera sys-

tem for data acquisition. For this, details about the equipment used and the necessary software
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are provided. Important settings and parameters that are important for reproducing the results

are also determined and recorded. In addition to the general conditions, the procedure for im-

age data acquisition is explained. This is followed by information on the labeling process of the

acquired data and descriptions of the transformation and pre-processing steps.

6.2.1 Laboratory Environment

The experimental setup takes place in the Cyber-Physical Learning Factory at the NTNU campus

in Gjøvik. Experimentation in the learning factory will be conducted to simulate the implemen-

tation of the system in an actual production environment. At the time of the study, such an

implementation was not possible. The learning factory is part of the national research infras-

tructure MANULAB and is used for research purposes in the field of production engineering.

The learning factory represents a full-size production line and has various conveyor systems,

industrial robot cells, sensor technology, HMI, as well as the associated software. Additional

equipment such as cameras and exposure systems can be installed on the production line with

the help of a modular system. The conveyor belt runs at a fixed speed of 110 mm per second.

6.2.2 Equipment and Software Used

This section provides information about the hardware and software used within the experimen-

tal camera setup for data acquisition.

Camera Hardware

For the practical test, a color line scan camera of type FS-C2KU7DGES-C from the manufacturer

Omron Sentech is used. The camera uses the GigE interface standard and can be powered by

Power over Ethernet (PoE). The camera’s sensor has a resolution of [2048×2] (2k) with a pixel

size of 7 µm. The scan frequency of the camera is 26 kHz. For better light sensitivity, the camera

has a dual-line system, i.e. the sensor has two rows of pixels instead of just one. This allows the

signal to be vertically combined without reducing the effective resolution. For the experiments,

a lens of type Omron 3Z4S-LE VS-2514H1 is used which is mounted to the camera via C-mount.

The lens has a focal length of 25 mm. The minimum distance is specified as 30 mm. The Field

of View (FOV) is 25.1° × 25.1° (H ×V ).
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Camera Software

As software, the Sentech SDK Package (v1.2.1) with version macOS1x_Intel_v1.2.1 is used ini-

tially. The package is installed on a Dual-Core Intel MacBook Pro 2016 running macOS Mon-

terey (v12.6.8). It should be noted that the computer used only allows a packet size of 1500

Maximum Transition Units (MTU). According to the manufacturer, so-called jumbo frames, i.e.

packet sizes of 9000, are recommended for efficient transmission.

6.2.3 First Test Setup

The initial test setup is shown in Figure 6.1. In the initial test setup, cut-to-size wooden parts

are attached to platforms designed for transport on the conveyor belts. The line scan camera

is positioned at a distance of 300 mm from the workpiece surface using a modular aluminum

construction. The distance of the light source to the workpiece surface is 140 mm. The light

source illuminates the workpiece surface from an angle of 45° relative to the horizontal.

Figure 6.1: Initial test setup with activated illumination. The samples are placed on the moving
platforms.

In the initial test setup, the light unit is missing due to supply shortages. As a substitute, an LED

worklight is used and installed at an angle of 45° relative to the test object. However, in this test
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setup, artifacts appear in the camera image during test runs, which are presumably due to the

50 Hz flickering of the light source. The artifacts appear in the form of black horizontal bars that

can be seen at regular intervals on the camera’s output stream. (Figure 6.2. In addition, it ap-

pears that the luminosity of the spotlight is not sufficient for a result sufficient for the purposes

of this thesis.

Figure 6.2: Test results with inital setup. The black horizontal stripes originate from the 50 Hz
flickering of the LED worklight.

6.2.4 Final Test Setup

For the final setup, changes are made to fix the previously mentioned problems. The previously

used worklight is replaced by an industrial white LED bar of type M-EBAR-125-WHI-UN which is

connected to a power supply of the production line. The bar light has an active area of 125 mm.

The lighting unit is installed above the conveyor belt by means of a self-made structure made

of aluminum beams. The unit is located in front of the camera against the running direction of

the conveyor belt. Relative to the conveyor belt, the bar light is located at a height of 118 mm

and 140 mm for the lower and upper edges of the beam, respectively. Relative to the workpiece,

the bar light is at a height of 70 mm and 92 mm for the lower and upper edges of the beam,

respectively. The inclination angle is 30° to the horizontal. In addition, it was decided not to

use the moving platforms of the initial setup, as this could lead to potential collisions with other

setups. Instead, the samples will be placed directly on the conveyor belt in the final setup. Figure

6.3 outlines the setup. The sensor of the camera is located at a height of 300 mm relative to the

workpiece surface. The line scan camera is powered via PoE by using an adaptor connected to a
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power supply. The camera is connected to the hardware via ethernet. A Category 6 cable is used

to ensure transmission of information according to requirements.

Figure 6.3: The setup of the camera system and the LED bar light above the conveyor system.
The samples move from left to right at a constant speed.

6.3 Image Acquisition

In the following, the sampling process of the use case is described. First, information about the

materials used as well as the practical implementation of the sampling process is given. Second,

the calibration of the camera system is explained based on the available information. Third, the

execution of the image acquisition process is described. Last, the processing steps applied to

the collected data are explained.

6.3.1 Materials and Preparation

For the acquisition of the image data 380 low grade squared timbers made of spruce wood are

used. The squared lumber is cut to size. The dimension of the samples used are [120 mm×
48 mm× 48 mm](l × w ×h). To ensure that the pieces are evenly aligned, they are positioned
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at equal intervals along the right-hand boundary of the conveyor as shown in figure 6.4. The

positions for placing the individual samples are identified by markings on the conveyor. In ad-

dition, each specimen is clearly marked in advance so that its position and orientation can be

determined.

Calibration

A Windows 10 notebook with Omron Sentech SDK (v1.2.1) is used for acquiring and storing the

sampling image data. The calibration of the camera is done via the SDK software. The resolution

in the X-direction of the line scan camera is reduced from 2048 to 704 pixels. This reduction is

performed to reduce the background portion of the resulting images. Due to deviations, a width

of the objects of 50 mm is assumed. The resolution of the image in mm/pixel is determined by:

Width of object in mm

Width of sensor in pixels
= 50

704
= 0.071 mm

With this information, the line rate is determined. Because of the dual line sensor of the camera,

the result must be halved:

Speed of conveyor in mm/s

Size of pixel in mm
= 110

0.071×2
= 775 Hz

The line period is then determined by inverting the line rate:

1

Line rate
= 1

775
= 1290 µs

The line period minus the camera specific line integration time gives the maximum exposure

time. This parameter, however, is set automatically by the camera software to about 1288 µs. An

overview of the calibration data used for sampling can be found in table 6.1.

Table 6.1: Calibration settings used for the line scan camera.

Parameter Setting

Dimensions (W×H) 704×1924
X-Offset 720
Acquisition Frame Rate 0.81 Hz
Acquisition Line Rate 775.04 Hz
Exposure Time 1288.11 µs
Capture Mode Multi Frame
Acquisition Frame Count 3
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6.3.2 Sampling Process

Three samples at a time are manually placed on the conveyor system and then scanned by

the camera in one pass (see figure 6.4). This means, three surfaces of the wooden cuboids are

scanned by the system per run. Since there is no usable motion sensor technology in the Cyber-

Physical Learning Factory at the time of data collection, the acquisition start of the camera is

triggered by software. For this purpose, the conveyor belt is started simultaneously with the

acquisition of the line scan camera.

Figure 6.4: Start of a sampling process. Three samples at a time are placed on the conveyor belt
and then scanned.

After scanning three samples, the image acquisition of the camera stops automatically. New

samples are then placed on the conveyor and the acquisition process is repeated. The previously

scanned samples are then conveyed to a discharge container. New samples are then placed on

the conveyor belt and scanned. If problems occur during acquisition, e.g. due to collisions of the

material with the conveyor or other installed equipment, the scans are repeated. After scanning

all 380 samples, they are rotated by 90° and run through the process again. In total, the process

is carried out four times, so that all samples are scanned once each from all four rectangular

sides. The square side surfaces orthogonal to the fiber course are not scanned.
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6.4 Acquired Data from Sampling

With the sampling process performed, a total of 1525 images of spruce wood surfaces are gener-

ated. Due to the manual activation of the conveyor belt and camera acquisition, there are some

shifts of the subject within the image. Figure 6.5 showcases examples of the images acquired. To

be analyzed with computer vision methods, the data is subsequently labeled and preprocessed.

Figure 6.5: Example of image samples acquired during data acquisition.

6.4.1 Data Labeling

The Roboflow Annotate tool from the Computer Vision Platform Roboflow (Dwyer et al. 2022) is

used for labeling the image files. The image files are uploaded to the suite and manually exam-

ined one by one to identify defects. Subsequently, if defects are present, rectangular bounding
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boxes are drawn by hand to outline the present defects. Images without any defects are marked

null, i.e. categorized as background class with an empty label file. To aid the labeling process,

a model is pre-trained on parts of the data set from (Kodytek Pavel et al. 2021). This enables

the use of the Label Assist tool, which suggests bounding box placements and their correspond-

ing classes if a defect is detected by the model and a certain, pre-defined confidence threshold

is met. Any defect bounding boxes incorrectly detected by the Label Assist tool are manually

modified. In case of false positives, the bounding boxes are removed. In the case of incorrect

annotation, the class of the bounding box is changed to the actual class. If the proposed bound-

ing box has incorrect dimensions and thus only covers parts of the defect or larger parts of the

background, it is be manually adjusted in its dimensions to fit the defect. The available classes

align with the categories presented in section 5.1.1. Result of the manual labeling process are

shown in figure 6.6.

The images are not further manipulated before exporting them. The created labels are exported

as one text file per image, matching the data set introduced in section 5.1.1. This makes them

compatible with the corresponding code for processing. The YOLO format is used as the format

for the bounding box coordinates.

6.4.2 Data Analysis

Table 6.2 shows the distribution of defect types in the acquired image samples. As with the

original data set from 5.1, the data set is highly imbalanced. The label overgrown does not occur

at all in the data set. Furthermore, the distribution of defect types has changed. Whereas in

the original data set, live knot is the most prevalent defect, it is crack in the one acquired by

sampling. It has to be noted that 792 images, more half of the data set, are background images,

i.e. they are without any defect.

Figure 6.7(a) visualizes the distribution of defect types in the data set. In figure 6.7(b) it can

be seen that the number of samples with the respective defect class has a different order than

the label frequency. Although crack is the most represented label, there are more images that

contain at least one of the defects dead knot or live knot than there are images that contain at

least one crack. That is, if cracks occur on images, there are usually several of them present at

once.

6.4.3 Data Preprocessing

Following the labeling process, the image data is preprocessed to be suitable for analysis using

the methods presented in Chapter 5.
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Figure 6.6: Acquired image samples after labeling in Roboflow Annotate. Rectangular bounding
boxes are drawn to outline present defects. The colors of the bounding boxes are different based
on the associated class label.
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Table 6.2: Occurence of defects.

Defect class No. of Percentage No. of samples Percentage of
occurences occurence with defect total samples

Crack 465 29.39 % 201 13.18 %
Dead knot 299 18.90 % 255 16.27 %
Live knot 288 18.20 % 231 15.15 %
Resin 236 14.92 % 134 8.79 %
Knot with crack 108 6.83 % 102 6.69 %
Blue stain 75 4.74 % 40 2.62 %
Knot missing 73 4.61 % 66 4.33 %
Quartzity 34 2.15 % 27 1.77 %
Marrow 4 0.25 % 3 0.20 %

Sum 1582 100 % 1059

(a) (b)

Figure 6.7: Bar plots representing the distribution of defect labels from the sampled images.
Figure (a) displays the label frequency by defect label in descending order. Figure (b) presents
the number of samples by defect label in descending order. The background class is excluded.
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Rotation and Resizing

After labeling, the image data are in portrait format. To match the format of the data from sec-

tion 5.1.1 and to be suitable for input into the classification networks, all images are rotated 90°

to the right. This is done with the help of a program that simultaneously transforms the associ-

ated bounding box coordinates. Then the rotated images are scaled to a resolution of 700×256.

Since the bounding box coordinates are in relative format, no further adjustment is required

here.

Offline Data Augmentation

To investigate the impact of offline data augmentation on the use case data set, the same aug-

mentation techniques as in 5.1.3 are applied to the data set. As with the data from 5.1, the

methods are applied to the training as well as the validation data, while the test data set remains

unchanged. Since the data set as a whole is small, a positive impact of offline data augmentation

on training is expected.

Cleaning

Due to the fact that the defect marrow is only present four times in the dataset and only on

three samples (see table 6.2 and figure 6.7), it is removed from the label space of the data set.

Consequently, the integer IDs assigned to the classes in the label files are adjusted, which is

necessary for the proper execution of the training process.

Organization

Following the procedure for the original data set (see 5.1.3), the sampling data are split in a

distribution of 60 %-20 %-20 % between training, validation and test data set and distributed

into corresponding folders and subfolders.
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Table 6.3: Composition of raw use case data set.

Class label Train Val Test

Blue stain 53 15 7
Crack 297 60 108
Dead knot 179 59 61
Knot missing 44 16 13
Live knot 169 68 51
Quartzity 17 13 4
Knot with crack 71 19 18
Resin 149 38 49
Background 470 153 169

Table 6.4: Composition of augmented use case data set.

Class label Train Val Test

Blue stain 318 90 7
Crack 1782 360 108
Dead knot 1074 354 61
Knot missing 264 96 13
Live knot 1014 408 51
Quartzity 102 78 4
Knot with crack 426 114 18
Resin 894 228 49
Background 2820 918 169



Chapter 7

Results and Analysis

In this section the results of the analysis with regard to the research questions are presented.

The section is structured according to the computer vision task and subsequently regarding the

underlying data set. First, addressing research question 1a, the results of the multi-label image

classification via CNNs are provided with regard to the general case and the use case (7.1 and

7.2). Second, the results of the object detection algorithms trained on the public data set are

provided (research question 1b). The effects of offline data augmentation and transfer learning

on object detection follow in subsections 7.3.2 and 7.3.3 (research questions 2 and 3a). Finally,

the results of the object detection frameworks trained on the use case data are presented in a

similar way.

7.1 Classification Results on Public Data Set

In this section, the results of multi-label classification of different CNN architectures are pre-

sented and compared. All models are trained on two NVIDIA-A100 with 80 GB of VRAM. The

batch size is set to 32 per GPU and the models are trained for a maximum of 200 epochs. Details

on the hyperparameters used are given in section 5.2. The models are trained on the training

data set from section 5.1. The classes blue stain, knot missing and overgrown are not considered

in this analysis and the corresponding class labels are removed from the label space in advance.

As validation data during training, the validation data set presented is used. The test data set

is used for the final evaluation of the models against unknown data. The data is tested against

the test set specified in section 5.1. The test set is divided into batches of size 64 before evalua-

tion. The performance metrics used in this analysis are the macro-averaged area under the ROC

curve (AUC), macro-averaged area under the precision-recall curve (PRC), macro-averaged pre-

cision (Macro P), macro-averaged recall (Macro R), and macro-averaged F1 score (Macro F1).

77
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Regarding run-time metrics, the models are tested in terms of their inference time (Infbatch).

As the test data is organized in batches before inference, the inference time refers to the time

required to process one batch.

Table 7.1 lists the results of the ResNet and EfficientNet models trained on the original data set.

The smallest model in terms of number of trainable parameters, ResNet-18, achieves the highest

values across all performance categories. At the same time, the model takes the longest for

inference with an inference time of 267 ms. In terms of AUC, all models except EfficientNetV2-S

realize scores of 90 % or more. PRC values of more than 80 % are achieved by both of the ResNet

models, while EfficientNetV2-S achieves 50.4 %. A similar picture emerges for macro-averaged

precision, recall, and F1 score, where the scores of EfficientNet-V2s are lower by a large margin

compared to the other models.

Table 7.1: Test results of ResNet and EfficientNet models. The models were trained on the origi-
nal data set. The best in-class performance results are marked bold.

Model #Param. Infbatch AUC PRC Macro P Macro R Macro F1

ResNet-18 22.7M 267 ms 95.0 % 83.7 % 72.7 % 71.2 % 70.0 %
ResNet-50V2 69.7M 95 ms 93.3 % 81.5 % 72.0 % 66.3 % 65.6 %
EfficientNetV2-B0 34.7M 102 ms 90.5 % 72.4 % 64.2 % 54.9 % 55.4 %
EfficientNetV2-S 49.0M 127 ms 77.4 % 50.4 % 41.2 % 31.2 % 29.4 %

In terms of training performance, the ResNet models and the EfficientNet models exhibit dis-

tinct behavior. As figure 7.1(a) shows, the two ResNet models demonstrate a steep upward rise

in macro precision from the initial epochs. After that the rate of improvement lessens. In con-

trast, the EfficentNet models improve in performance first after several epochs. In the begin-

ning, there is even a decrease, which in the case of EfficientNetV2-S lasts for about 25 epochs. A

similar picture emerges for the development of the macro-recall as seen in Figure 7.1(b). Here,

the ResNet models also increase steeply initially, while the EfficientNet models remain close to

zero for several epochs. Moreover, in both cases, the curve of EfficientNetV2-S surpasses that of

the -B0 model after about 100 epochs.

7.2 Classification Results on Use Case Data Set

This section addresses the results of the CNN models for which were trained on the image data

collected for the use case. In contrast to section 7.1, the models in this section are trained for a

maximum of 500 epochs. Information about the set of hyperparameters is provided in section

5.2. The test partition of the raw data set introduced in section 6.4 is used for validation. The
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(a) (b)

Figure 7.1: Development of (a) macro-averaged precision and (b) macro-averaged recall of the
CNN models during training.

evaluation of the models against the test data is performed with a batch size of 64 as in section

7.1.

The results for the CNN models validated against the use case test data set are listed in Table

7.2. ResNet-50V2 achieves the second highest values with a significant distance to the scores

of ResNet-18. It is noteworthy to mention that both EfficientNet models report 0 % for macro-

averaged precision, recall and F1 score.

Table 7.2: Test results of ResNet and EfficientNet models. The models were trained on the use
case data set. The best in-class performance results are marked bold.

Model #Param. Infbatch AUC PRC Macro P Macro R Macro F1

ResNet-18 22.7M 132 ms 67.0 % 24.7 % 21.1 % 9.6 % 11.6 %
ResNet-50V2 69.7M 183 ms 52.5 % 17.3 % 3.0 % 1.2 % 1.5 %
EfficientNetV2-B0 34.7M 149 ms 50.2 % 13.4 % 0 % 0 % 0 %
EfficientNetV2-S 49.0M 203 ms 49.8 % 14.2 % 0 % 0 % 0 %

7.3 Detection Results on Public Data Set

In this section, the benchmark results of the object detection models trained or fine-tuned on

the public data set from section 5.1 are provided. Section 3.5 provides an overview and explana-

tions about the metrics used. The baseline results by training from scratch are communicated

in section 7.3.1. Sections 7.3.2 and 7.3.3 show the results for training on offline augmented data

and transfer learning, respectively as well as their comparison to the baseline results.
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All models in this section are trained and evaluated on the same hardware, as specified in section

5.2. To evaluate the models, all models are tested against the same test data set, which consists

solely of instances unknown to the model. For this purpose, the models are using their best

stored weights. All metrics except m AP val
50 are determined via the test set. The m AP val

50 values

are determined using the validation data set used by the respective model during training. In

the following, if not explicitly stated, all metrics refer to those determined with the test set. The

metrics P test and R test refer to the unweighted mean precision and unweighted mean recall

across all classes. The number of model parameters and FLOPs is extracted directly from the

model’s console output during training.

7.3.1 Baseline Results

In this section, the results of the object detection algorithms by training from scratch are pre-

sented. Table 7.3 shows the results of the models trained on the original data set (see 5.1). It can

be seen that all models except YOLOv7 achieve m AP50 scores of over 70 %. YOLOv8-M achieves

the best results for m AP50, m AP50−95, and R test with values of 76.4 %, 45.4 %, and 70.7 %, re-

spectively. In terms of P test it is outperformed by YOLOv8-S by a margin of 2.1 %. The fastest

model in the test is YOLOv7-tiny (YOLOv7-T) with a detection speed of 227 FPS. It is interest-

ing to see that YOLOv8-L performs worse than the smaller -M model in all aspects. The base

YOLOv7 model has the lowest values overall and is outperformed in all metrics.

Table 7.3: Test results of YOLOv8 and YOLOv7 models in different scales. The models were
trained on the original data set. The best in-class performance results are marked bold.

Model #Param. FLOPs F PS A100 m AP test
50 /m AP val

50 m AP test
50−95 P test R test

YOLOv8-N 3.0M 8.1G 196 74.2 % / 74.3 % 44.4 % 72.7 % 67.5 %
YOLOv8-S 11.1M 28.5G 208 74.5 % / 75.6 % 43.8 % 77.4 % 67.0 %
YOLOv8-M 25.8M 78.7G 169 76.4 % / 75.7 % 45.4 % 75.3 % 70.7 %
YOLOv8-L 43.6M 164.9G 141 75.5 % / 76.0 % 44.7 % 74.5 % 70.6 %

YOLOv7-T 6.0M 13.1G 227 74.1 % / 73.4 % 41.5 % 73.8 % 69.5 %
YOLOv7 36.5M 103.3G 139 66.2 % / 65.7 % 36.9 % 70.4 % 63.2 %

Per Class Results

The models are now compared on a per-class basis. It should be noted here that in this section,

mean precision should not be confused with the m AP50 metric. Instead, it is the unweighted

average of all the per-class precision values. For reasons of clarity, the class names in the tables
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are abbreviated as follows: Blue stain (BS), crack (CR), dead knot (DK), knot missing (KM), live

knot (LK), marrow (MA), quartzity (QU), knot with crack (KC), and resin (RE).

The per-class results for precision are listed in Table 7.4. Here it can be seen that the YOLOv8-S

model achieves the highest precision value in seven of the nine classes, and the overall highest

mean precision. It is noticeable that YOLOv7 and YOLOv7-tiny achieve values of 100 % and

97.6 % for the class BS, which is significantly higher than all other models. The class with the

highest precision averaged accross all models is MA with 82.95 %, followed by RE with 82.18 %.

QU (67.28 %) has the lowest precision on average, followed by CR (67.97 %).

Table 7.4: Per class precision values.

Model Mean BS CR DK KM LK MA QU KC RE

v8-N 72.7 % 46.1 % 72.4 % 82.0 % 70.4 % 80.2 % 85.3 % 65.2 % 69.5 % 82.8 %
v8-S 77.4 % 55.4 % 74.5 % 84.1 % 78.7 % 84.0 % 87.2 % 75.5 % 71.5 % 85.9 %
v8-M 75.3 % 60.4 % 67.8 % 81.7 % 77.0 % 83.1 % 83.9 % 67.4 % 73.4 % 82.7 %
v8-L 74.5 % 57.9 % 70.1 % 80.0 % 75.1 % 82.4 % 84.7 % 67.4 % 71.0 % 81.5 %

v7-T 73.8 % 97.6 % 62.8 % 75.8 % 61.1 % 71.7 % 80.5 % 69.2 % 64.9 % 80.8 %
v7 70.4 % 100 % 60.2 % 70.5 % 65.9 % 60.9 % 76.1 % 59.0 % 61.2 % 79.4 %

The per-class values for recall are showcased in table 7.5. YOLOv8-M achieves the highest recall

values in five of nine classes and the highest mean recall overall. YOLOv7-tiny and YOLOv7 each

achieve best per-class scores in two of nine classes. A noteworthy observation is that YOLOv7

demonstrates a recall of 0 % for the blue stain class. The classes with the highest average recall

across models are MA and LK with 90.35 % and 84.23 %, respectively. The classes with the lowest

average recall are BS and QU with 32.68 % and 36.68 %, respectively.

Table 7.5: Per class recall values.

Model Mean BS CR DK KM LK MA QU KC RE

v8-N 67.5 % 33.3 % 66.4 % 77.6 % 64.1 % 84.4 % 88.7 % 41.5 % 78.5 % 73.2 %
v8-S 67.0 % 38.1 % 66.7 % 75.6 % 67.9 % 78.9 % 88.7 % 36.2 % 78.5 % 72.6 %
v8-M 70.7 % 43.7 % 72.1 % 78.5 % 68.8 % 81.7 % 87.9 % 47.3 % 80.0 % 76.6 %
v8-L 70.6 % 42.9 % 69.8 % 81.0 % 65.7 % 82.5 % 90.5 % 44.4 % 82.3 % 76.4 %

v7-T 69.5 % 38.1 % 66.9 % 83.0 % 68.5 % 88.2 % 93.4 % 29.0 % 83.1 % 75.7 %
v7 63.2 % 0 % 68.7 % 84.2 % 62.1 % 89.7 % 92.9 % 21.7 % 81.4 % 68.3 %

7.3.2 Effects of Offline Data Augmentation

In the following, the results of the validation of the models trained on the offline-augmented

data according to section 5.1.3 are presented. The training is performed under the same condi-
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tions as training from scratch, that is, only the underlying data sets are changed. The validation

results on the test set are based on the same data set and procedure as before. However, to de-

termine m AP val
50 in this analysis, the models are tested against the augmented validation set.

Table 7.6 provides an overview about the test results of the different models.

Table 7.6: Test results for training on offline-augmented public data set. The best per-category
performance metrics are marked bold.

Model #Param. FLOPs F PS A100 m AP test
50 /m AP val

50 m AP test
50−95 P test R test

YOLOv8-N (AUG) 3.0M 8.1G 145 72.5 % / 72.7 % 43.2 % 71.4 % 66.4 %
YOLOv8-S (AUG) 11.1M 28.5G 149 73.8 % / 72.4 % 44.4 % 74.7 % 68.4 %
YOLOv8-M (AUG) 25.8M 78.7G 112 75.3 % / 74.8 % 46.3 % 78.8 % 68.4 %
YOLOv8-L (AUG) 43.6M 164.9G 104 76.9 % / 76.2 % 46.5 % 75.5 % 70.7 %

YOLOv7-T (AUG) 6.0M 13.1G 200 77.2 % / 74.9 % 45.3 % 72.4 % 72.5 %
YOLOv7 (AUG) 36.5M 103.3G 130 76.9 % / 76.4 % 46.3 % 76.9 % 70.2 %

Effects on Model Training

Offline augmentation affects the training of the models. Since the data set was multiplied in

size due to offline data augmentation, significant increases in training time are observed. For

instance, when training on the augmented data set, YOLOv7 demands more than 69 hours us-

ing an A100 40GB, whereas training on the raw data set completes in approximately 13 hours.

In addition to impacts on training time, changes in training performance can be observed. As

shown in figure 7.2, using YOLOv7-tiny as an example, there are noticeable changes in conver-

gence speed and training loss of the models . In 7.2(a), it can be seen that the augmented model

gains in m AP50 faster than the non-augmented model in early epochs. However, eventually,

both models converge at the end of training. Figure 7.2(b) demonstrates differences regarding

training loss. The training box loss of the augmented model drops quicker and reaches a lower

minimum. These changes can be observed in all models examined.

As shown in figure 7.3, differences in the behavior of the loss can be observed between the mod-

els trained on augmented data and those trained on the original data. Subfigure 7.3(a)(bottom)

displays the training losses of the augmented model consistently decreasing, while its validation

losses reach a minimum after a short time and then increase steadily. Subfigure 7.3(b) depicts

the behavior of the baseline model. There, validation box loss and dfl loss exhibit a light increase

over an extended period. Another noteworthy observation is that when trained on the offline-

augmented data set, all YOLOv8 models demonstrate an earlier activation of the early stopping

criterion in comparison to their training on the raw data set.
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(a) (b)

Figure 7.2: Effects of-offline augmentation on the training process of the YOLOv7-tiny models
in terms of (a) m AP50, and (b) training box loss.

(a) (b)

Figure 7.3: Comparison of training (top) and validation (bottom) losses over epochs for the
YOLOv8-L model. Subfigure (a) presents the loss curves of the model trained on original data.
Subfigure (b) displays the corresponding loss curves for the model trained on augmented data.
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Effects on Model Performance

Table 7.7 shows the test performance differences of the models trained on the augmented data

relative to the baseline models. It is noticeable that all models have a slower processing time.

Regarding the performance metrics, no clear picture emerges. YOLOv8-N, -S and -M decrease in

m AP50, while YOLOv8-L, YOLOv7-tiny, and YOLOv7 increase. Regarding m AP50−95, all models

achieved higher m AP50−95 values with the exception of the YOLOv8-N model. For YOLOv8-L,

and YOLOv7, the training on offline augmented data improves all performance metrics except

FPS. YOLOv7 demonstrates the highest increases. In contrast, YOLOv8-N shows a deterioration

in all areas.

Table 7.7: Relative change in performance when trained on augmented data compared to train-
ing from scratch.

Model FPS m AP test
50 m AP test

50−95 P test R test

YOLOv8-N -51 -1.7 % -1.2 % -1.3 % -1.1 %
YOLOv8-S -59 -0.7 % +0.6 % -2.7 % +1.4 %
YOLOv8-M -57 -1.1 % +0.9 % +3.5 % -2.3 %
YOLOv8-L -37 +1.4 % +1.8 % +1.0 % +0,1 %

YOLOv7-T -27 +3.1 % +3.8 % -1.4 % +3,0 %
YOLOv7 -9 +10.7 % +9.4 % +6.5 % +7.0 %

The change in the performance metrics of YOLOv7 can be seen in the comparison of the precision-

recall (PR) curves of the models. Figure 7.4 (a) and (b) display the test PR curves of the model

trained on augmented data and the model trained on raw data, respectively. The curve for blue

stain demonstrates a noticeable increase in AUC. Also visible is an increase in mean precision

at higher confidence thresholds.

7.3.3 Effects of Transfer Learning

In the following, the effects of transfer learning via pre-training on a large image database are

presented. All models are initialized with weights from corresponding models pre-trained on

the MS COCO data set. Other training parameters remain unchanged and correspond to the

settings from sections 7.3.1 and 7.3.2. A freezing of layers of the models is not applied. An

overview about the acquired results is given in table 7.8.
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(a) (b)

Figure 7.4: Comparison of precision-recall-curves between the YOLOv7 model trained (a) on
augmented data and (b) on raw data. A noticeable increase in AUC for blue stain can be ob-
served.

Table 7.8: Test results for training on public data set with transfer learning. The best per-category
performance metrics are marked bold.

Model #Param. FLOPs F PS A100 m AP test
50 /m AP val

50 m AP test
50−95 P test R test

YOLOv8-N 3.0M 8.1G 204 73.9 % / 75.8 % 45.5 % 69.2 % 72.8 %
YOLOv8-S 11.1M 28.5G 204 75.6 % / 75.6 % 46.0 % 75.7 % 70.3 %
YOLOv8-M 25.8M 78.7G 169 75.9 % / 76.4 % 46.1 % 72.0 % 71.2 %
YOLOv8-L 43.6M 164.9G 141 74.6 % / 76.9 % 46.3 % 76.3 % 69.7 %

YOLOv7-T 6.0M 13.1G 217 76.2 % / 76.4 % 45.0 % 74.7 % 71.4 %
YOLOv7 36.5M 103.3G 139 59.7 % / 60.7 % 30.7 % 70.4 % 58.3 %
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Effects on Model Training

The training behavior between the pre-trained models and those trained from scratch differs.

With the exception of YOLOv7, the pre-trained models all demonstrate a more rapid increase in

their metrics during training in conjunction with lower training and validation loss at the begin-

ning of the training. Figure 7.5 demonstrates this behavior using YOLOv7-tiny as an example.

(a) (b)

Figure 7.5: Effects of transfer learning with pre-trained weights on MS COCO on the training
process of the YOLOv7-tiny models in terms of (a) m AP50, and (b) training box loss. The green
graph depicts the model trained from scratch. The pre-trained results are visualized in red.

Effects on Model Performance

Table 7.9 shows the changes in test performance of the pre-trained models compared to the

baseline models. YOLOv8-S and YOLOv7-T show increases in m AP50 by +1.1 % and +2.1 %, re-

spectively. The value decreases for the other models, with YOLOv7 showing the largest decrease

with -6.5 %. Increases in m AP50−95 are achieved by all the pre-trained models except YOLOv7.

YOLOv8-N, -S, and -M achieve lower mean precision values and higher mean recall values com-

pared to their baseline models. The pre-trained YOLOv8-L variant reaches a higher mean preci-

sion and a lower mean recall compared to the baseline model. Pre-trained YOLOv7-tiny shows

increases in all metrics except processing speed. YOLOv7 metrics decrease or do not exhibit any

change. It should be noted, however, that the processing speed is subject to fluctuations and

can therefore vary slightly between different test runs.
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Table 7.9: Relative change in performance when trained using transfer learning compared to
training from scratch.

Model FPS m AP test
50 m AP test

50−95 P test R test

YOLOv8-N +8 -0.3 % +1.1 % -3.5 % +5.3 %
YOLOv8-S -4 +1.1 % +2.2 % -1.7 % +3.3 %
YOLOv8-M - -0.5 % +0.7 % -3.3 % +0.5 %
YOLOv8-L - -0.9 % +1.6 % +1.8 % -0,9 %

YOLOv7-T -10 +2.1 % +3,5 % +0,9 % +1,9 %
YOLOv7 - -6.5 % -6.2 % - -4.9 %

7.4 Detection Results on Use Case Data Set

This section summarizes the test results of the models trained on the use case data. This sec-

tion is similar to the structure of section 7.3. First, the baseline results, i.e. by training from

scratch are presented. This is followed by the effects of offline data augmentation on training

and model performance. Finally, the results of transfer learning and the effects on training and

model performance are provided.

The general procedure for the experiments on the use case data set corresponds to the proce-

dure of section 7.3. There are no differences in the hardware and software used. However, in

contrast to the training on the public data set, the number of maximum epochs is increased to

300. Otherwise, no changes are made to the set of hyperparameters.

7.4.1 Baseline Results

Table 7.10 lists the results from the models trained from scratch on the raw use case data set (sec-

tion 6.4). The values of the performance metrics are significantly when using the use case data

for training compared to using the public data set. The highest m AP50 is achieved by YOLOv8-M

with 30.4 %. All other models results in this category are below 30 %. Noticeable are the differ-

ences between m AP test
50 and m AP val

50 . The score determined via the validation set is higher than

the results via the test set by a significant margin. This observation applies to all models exam-

ined. In terms of mean precision, YOLOv7 scores significantly higher than the other models with

a value of 53.9 %. Another interesting observation is that the process speed is significantly lower

than that of the models trained on the public data set for all models, despite the same resolution

of the samples.
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Table 7.10: Test results of YOLOv8 and YOLOv7 models in different scales. The models are
trained on the data set from the use case. The best in-class performance results are marked
bold.

Model #Param. FLOPs F PS A100 m AP test
50 /m AP val

50 m AP test
50−95 P test R test

YOLOv8-N 3.0M 8.1G 139 23.0 % / 32.4 % 10.3 % 32.3 % 25.6 %
YOLOv8-S 11.1M 28.5G 154 27.5 % / 35.4 % 14.2 % 27.1 % 38.0 %
YOLOv8-M 25.8M 78.7G 125 30.4 % / 33.6 % 13.0 % 25.6 % 39.4 %
YOLOv8-L 43.6M 164.9G 108 27.2 % / 35.4 % 14.1 % 32.9 % 29.3 %

YOLOv7-T 6.0M 13.1G 149 26.5 % / 33.6 % 12.2 % 40.8 % 31.0 %
YOLOv7 36.5M 103.3G 120 27.6 % / 35.3 % 13.4 % 53.9 % 30.1 %

7.4.2 Effects of Offline Data Augmentation

In the following, the test results of models trained on the use case data that has undergone of-

fline data augmentation are presented. Table 7.11 lists the results for all models examined. In

contrast to the baseline models, the training is performed on a data set enlarged by a factor of

six. The size of the validation set is correspondingly increased. This results in training and val-

idation data sets of 5490 and 1830 images, respectively. The test set remains the same size with

305 images.

Table 7.11: Test results for training on offline-augmented use case data set. The best per-
category performance metrics are marked bold.

Model #Param. FLOPs F PS A100 m AP test
50 /m AP val

50 m AP test
50−95 P test R test

YOLOv8-N 3.0M 8.1G 152 23.7 % / 30.3 % 12.5 % 25.1 % 32.7 %
YOLOv8-S 11.1M 28.5G 154 27.3 % / 34.8 % 14.5 % 43.8 % 30.7 %
YOLOv8-M 25.8M 78.7G 130 27.2 % / 35.6 % 15.2 % 33.1 % 31.6 %
YOLOv8-L 43.6M 164.9G 109 27.2 % / 37.4 % 14.9 % 34.5 % 31.6 %

YOLOv7-T 6.0M 13.1G 161 27.4 % / 37.3 % 14.0 % 45.0 % 32.5 %
YOLOv7 36.5M 103.3G 118 28.3 % / 40.1 % 14.2 % 31.1 % 36.0 %

Effects on Model Performance

Similar to the public data set, there are changes in the performance of the models after training

on the augmented use case data in comparison to training on the raw use case data.

Table 7.12 provides an overview of the differences in metrics for all models. Looking at m AP50,

both increases and decreases in performance are seen, with the largest increase being 0.9 per-

centage points. The m AP50−95 of all models improved after offline data augmentation with a
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maximum increase of 2.2 percentage points. The changes in mean precision show a wide vari-

ation across the models with changes ranging from -22.8 % in the case of YOLOv7 to +16.7 % in

the case of YOLOv8-S. The changes for mean recall range from -7.8 % to +5.9 %. For both mean

precision and mean recall metrics, performance improvement was observed in four out of the

six models.

Table 7.12: Relative change in performance when trained on augmented use case data com-
pared to training from scratch.

Model FPS m AP test
50 m AP test

50−95 P test R test

YOLOv8-N +13 +0.7 % +2.2 % -7.2 % +7.1 %
YOLOv8-S - -0.2 % +0.3 % +16.7 % -7.3 %
YOLOv8-M +5 -3.2 % +2.2 % +7.5 % -7.8 %
YOLOv8-L +1 - +0.8 % +1.6 % +2,3 %

YOLOv7-T +12 +0.9 % +1.8 % +4.2 % +1,5 %
YOLOv7 -3 +0.7 % +0.8 % -22.8 % +5.9 %

7.4.3 Effects of Transfer Learning

In this section, the results of transfer learning by fine-tuning pre-trained models using the data

from the use case are outlined. Unlike the models trained on the public dataset, which are ini-

tially pre-trained on MS COCO, the models in this section are initialized with the optimized

weights obtained from models trained on the offline augmented public dataset. Similiar to the

previous study on transfer learning in object detection, the same set of hyperparameters is used

for training from scratch is employed here. Moreover, all layers of the models remain trainable,

i.e. no freezing of layers is implemented. Table 7.13 shows the results of the tests.

Table 7.13: Test results for training on use case data set with transfer learning. The best per-
category performance metrics are marked bold.

Model #Param. FLOPs F PS A100 m AP test
50 /m AP val

50 m AP test
50−95 P test R test

YOLOv8-N 3.0M 8.1G 145 24.8 % / 35.6 % 13.4 % 51.2 % 29.1 %
YOLOv8-S 11.1M 28.5G 149 29.0 % / 39.3 % 13.6 % 54.8 % 26.8 %
YOLOv8-M 25.8M 78.7G 127 30.3 % / 39.0 % 15.6 % 32.3 % 36.6 %
YOLOv8-L 43.6M 164.9G 106 34.7 % / 39.7 % 18.4 % 38.5 % 39.5 %

YOLOv7-T 6.0M 13.1G 132 26.7 % / 41.2 % 13.4 % 47.5 % 30.9 %
YOLOv7 36.5M 103.3G 122 24.0 % / 40.6 % 16.8% 38.0 % 42.2 %
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Effects on Training

As with the public data set, transfer learning impacts the training process while training with the

use case data. Initializing the models with the best weights of the models from section 7.6 leads

to a faster improvement of the metrics of the models as well as lower initial and faster declining

losses during training. This can be seen well in the training curves regarding m AP50 and box loss

of the yolov7-tiny model (see figure 7.6). Also remarkable is that all YOLOv8 models stagnate

or deteriorate in their performance after a maximum of 65 epochs, so that early stopping sets

in. In particular, YOLOv8-S experiences no improvement after just 28 epochs. On the other

hand, during training from scratch, early stopping sets in after 126 epochs in the earliest case

(YOLOv8-M).

(a) (b)

Figure 7.6: Effects of transfer learning with weights from section 7.6 on the training process of
the YOLOv7-tiny model in terms of (a) m AP50, and (b) training box loss.

Effects on Model Performance

As seen in table 7.14, there are changes in model performance, when initializing the models

with weights from models trained on a similar domain. The performance in terms of m AP50

is increased in for all models except YOLOv8-M. The highest increase in m AP50 is achieved by

YOLOv8-L with +7.5 percentage points. YOLOv7 achieves a plus of 6.4 percentage points. The

results for m AP50−95 are higher in all cases except YOLOv8-S. The change in mean precision

ranges from 27.7 to -15.9 percentage points, with YOLOv8-S showing the largest increase and

YOLOv7 the largest decrease. The change in mean recall also shows a high variance with changes

ranging from -11.2 to +12.1 percentage points.

Overall, YOLOv8-N and -L are the only models in this comparison that improve in all perfor-

mance metrics with respect to detection quality through transfer learning.
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Table 7.14: Relative change in performance when trained on augmented use case data com-
pared to training from scratch.

Model FPS m AP test
50 m AP test

50−95 P test R test

YOLOv8-N +6 +1.8 % +3,1 % +18.9 % +3.5 %
YOLOv8-S -5 +1.5 % -0.6 % +27.7 % -11.2 %
YOLOv8-M +2 -0.1 % +2.6 % +6.6 % -2.8 %
YOLOv8-L -1 +7.5 % +4.3 % +5.6 % +10.2 %

YOLOv7-T -18 +0.2 % +1.2 % +6.7 % -0,1 %
YOLOv7 +1 +6.4 % +3.4 % -15.9 % +12.1 %



Chapter 8

Discussion

8.1 Application of Computer Vision in Wood Defect Detection

8.1.1 Image Classification Models

Research question 1a. asked how suitable ResNet and EfficientNet models are for detecting

defects on wood surfaces. In this thesis, the performance of two ResNet models (ResNet-18,

ResNet-50V2) and two EfficientNet models (EfficientNetV2B0, EfficientNetV2-S) were evaluated.

The evaluation was based on a publicly available data set as well as on data collected during the

use case. The models were evaluated using the respective macro-averaged classification met-

rics: ROC AUC, PRC AUC, precision, recall, and F1 score. Additionally, the inference time of the

models was determined when performing inference on unknown data.

Comparison of Model Performance

For the comparison of the architectures trained on the public data set, a clear picture emerges.

ResNet-18 outperforms all other models with respect to the evaluated classification metrics. For

the macro-averaged metrics ROC AUC and PRC AUC, calculated over a wide range of thresholds,

values of up to 95 % and 83.7 % were obtained using ResNet-18. For the macro-averaged metrics

precision, recall, and F1 score, values of 72.7 %, 71.2 %, and 70 % were achieved in this case.

ResNet50-V2, EfficientNetV2-B0 and EfficientNetV2-S follow in descending order in terms of

performance, with the difference between ResNet-18 and EfficientNetV2-S scores of more than

40 percentage points in terms of macro recall and precision. Hence, EfficientNet-V2S achieves

scores of 77.4 % and 50.4 % for ROC AUC and PRC AUC, and scores of 41.2 %, 31.2 %, and 29.4 %

for precision, recall, and the F1 score, respectively. In general, the two ResNet models perform

92
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significantly better in terms of recall, precision, and the derived metrics.

This result was not to be expected, since ResNet-18 is the smallest (and oldest) model in this

study. This contradicts the paradigm that deeper models usually lead to better performance (He

et al. 2016a). Also contradictory are the comparatively poor results of the EfficientNet models,

which perform equally or better than ResNet-50 in the authors’ benchmarks (Tan & Le 2019,

2021). On the other hand, these benchmarks were performed based on the ImageNet challenge,

which is not comparable to the procedure and underlying data in this work.

One reason for the comparatively good performance of ResNet-18 could be its low complexity

combined with the small amount of training data. This combination could help ResNet-18 con-

verge faster during training. The CNNs were each trained for only 200 epochs when training on

the original data set. Due to the limited training time, the models could have been prevented

from reaching a better or optimal solution. This argument is supported by the lack of onset of

early stopping in the deeper models as well as the course of the training curves. In the curves

it can be observed that the EfficientNet models demonstrate starting difficulties, but then im-

prove continuously until the maximum number of epochs is reached. ResNet-18 on the other

hand experiences early stopping. This leads to the assumption that the performance of the

larger models would have improved further with longer training.

Remarkably, in the case of the original data, ResNet-18 is inferior to the other models in terms

of inference speed. This is counterintuitive since ResNet-18 is the smallest and least complex

of the models examined. Possible reasons could lie in the implementation, as the model is not

imported directly from the TensorFlow Keras API and may not have been optimally optimized

for it. On the other hand, external factors such as hardware utilization level or background pro-

cesses may also have increased the inference time. This is supported by the fact that, in the case

of inference on the use case data, the model is the fastest in comparison.

Interpreting the Results

To answer the question about the suitability of the models for defect detection in the wood man-

ufacturing domain, it’s crucial to examine the results and their significance. Therefore, the re-

sults of the models are now interpreted and contextualized within the existing research.

A high ROC AUC value indicates that the model can generally distinguish well between defec-

tive and non-defective instances. Besides EfficientNetV2-S, all models achieved values higher

than 90 % in this category, indicating these models have a good discrimination ability. Precision

measures how often the model predicts correctly when labeling images as defective. In the case

of ResNet-18 this means that in 72.7 % of the cases where a defect is predicted, there is actually
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a defect present. Recall represents the ratio of detecting actual defects in the data. For ResNet-

18 this indicates that on average 71.2 % of the various defects in the data were detected by the

model. EfficientNetV2-S on the other hand classifies only 31.2 % of the defects correctly. Of fur-

ther interest are the metrics combining recall and precision. A high value of PRC AUC indicates

a good balance of recall and precision across various thresholds, and the F1 score measures the

balance between the two metrics at the given threshold.

To address the question of the technology’s suitability, it’s essential to contextualize these results.

In contrast to manual inspection, the results of the ResNets work in favor of the computer vision

approach. According to the study of Buehlmann & Thomas (2002) on manual defect inspection,

the false negative rate (FNR) was measured to be more than 43 %. In the case of ResNet-18, on

average across all classes, around 29 % of the defects are incorrectly classified as non-defective,

taking the FNR as 1− recall. Similarly, in the case of ResNet-50V2, the obtained value advocates

for the use of the computer vision technology. However, this result cannot be transferred to the

EfficientNet models. These models perform worse as compared to the manual inspection in

the study, demonstrating FNRs of around 45 % (B0) and 69 % (S). However, compared to other

computer vision methods investigated in research, there are some drawbacks of the examined

technologies. While this study did not use accuracy as a performance metric, as it would be

heavily skewed by true negatives in the case of multi-label classification, a general comparison

is still feasible. The Mixed FCN approach by (He et al. 2019) reported precision values exceed-

ing 98 % for the detection of six different defect types, and an overall classification accuracy of

99.14 %. However, in that study, the acquired image data were cropped and excess background

was removed, resulting in at least one defect present in the majority of training samples. In the

study by Gao, Qi, Mu & Chen (2021), per-class precision values of at least 92.5 % and per-class

recall values of at least 95.5 % are achieved for seven different types of knot defects. The mod-

ified ResNet-18 from the study by Gao, Song, Wang, Liu, Mandelis & Qi (2021) reports per-class

precision values of at least 97 %, per-class recall values of at least 94 %, and an overall accuracy

of 99.92 %. These values are on average significantly higher than the averaged metrics acquired

in this thesis. However, both of these studies represented a multi-class classification problem,

where each input image consists of one specific knot defect. Hence, only the defect that is pre-

dicted as the most likely by the softmax function is detected. The approach investigated in this

thesis has the potential to identify all defects present in the input and is therefore more special-

ized for an application in a production context.

Generally speaking, the best test result aligns with expectations about the performance of the

models regarding the nature of the data used for the analysis. This is justified by the fact that the

data set, consisting of 20,267 instances is small for computer vision problems. Upon partitioning

into training, validation, and test sets, there are only 12,166 training instances remaining for
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training purposes, of which about 10 % are hard negatives. The significance of the underlying

data is emphasized when considering the results obtained through training on the use case data.

Here, the performance is consistently poorer across all models compared to the results for the

public data set. Particularly concerning precision and recall, and the combined metrics derived

from them (PRC, F1), notable differences arise. Here, the EfficientNet models achieve values

of 0 % for macro-averaged precision, recall, and F1 score using the pre-defined threshold for

positive predictions of 0.5. The most probable reason for the poor performance of the models

is the underlying data. The data set is approximately 13 times smaller than the public data set,

and around half of the images are hard negatives. Due to the train-validation-test split, there

are ultimately only 445 image data with defects available for training the models. Moreover, as

with the public data set, the use case data exhibits significant imbalance between classes. The

loss curves of the models indicate overfitting. The occurrence of overfitting is a typical sign of a

small amount of data and relatively excessive complexity of the models.

Suitability for Wood Defect Detection

Based on the results of this investigation, the EfficientNetV2 variants are not suitable for defect

detection in wood manufacturing. Despite the ResNet models outperforming human perfor-

mance, the technology used comes with certain disadvantages that raise questions about its

suitability for defect detection. In addition to insufficient performance, there are further disad-

vantages that are inherent to the nature of the computer vision task. On one hand, classifica-

tion models only indicate the potential presence of one or more defects. However, in a produc-

tion environment, the precise determination of the location of defects can also be crucial. This

plays a significant role in defect assessment, potentially influencing the decision about rework

or scrap. Within the scope of automation, the additional information obtained from detection

could be used for machine or production control. Moreover, false positive results in image clas-

sification are not easily traceable and could lead to increased waste. Visualized bounding boxes

in object detection can assist in avoiding false positives, i.e. when displayed on a monitor in pro-

duction. Another important factor not covered by image classification algorithms is the severity

of the detected defect. Images can only be examined for the presence of defects, while the size or

extent of the defects remains unaccounted for. In summary, multi-label classification using the

investigated CNN models and the available data is not an optimal solution for defect detection

in wood processing production under the paradigm of ZDM.
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8.1.2 Object Detection Models

Research question 1b focuses on the suitability of YOLOv7 and YOLOv8 object detectors for de-

fect detection in wood manufacturing. For this purpose, the frameworks were trained on a vari-

ety of scales using an available dataset, and their performance was compared. The models were

evaluated using various metrics, including m AP50, m AP50−95, as well as recall, and precision

across classes. In terms of model speed, their frames per second (FPS) values for processing

individual images were measured. To ensure comparability, all models were tested on the same

hardware.

Comparison of Model Performance

In contrast to the image classification models, when comparing the cumulative object detec-

tion performance on the public dataset, it’s noticeable that the variance in results for the per-

formance metrics between the models is significantly lower. Only the base scaling of YOLOv7

stands out with lower values, particularly in the mAP metrics. YOLOv8-M achieved the best re-

sults in the categories of mAP50 and mAP50-95, with scores of 76.4 % and 45.4 %, respectively.

Additionally, the model’s recall was the highest with a score of 70.7 %. However, in terms of

mean precision, the model is slightly outperformed by YOLOv8-S with 77.4 % vs. 75.3 %.

The rather similar performance of the models was not anticipated before analyzing the exper-

iments. Particularly, considering that the smaller models, designed for applications on mobile

devices, were expected to have a larger trade-off between detection performance and speed.

One reason for the similar performance could be the small dataset on which the models were

trained. This could result in the potential of the larger variants not being fully utilized. Addi-

tionally, relatively low learning rates were used, which might have prevented the models from

finding better solutions due to insufficient convergence. For larger training datasets, it’s ex-

pected that the performance of the larger models will show a more distinct difference from the

smaller variants in terms of performance.

Regarding per-class precision results, YOLOv8-S emerged as the overall best alternative, being

surpassed in only two classes. Interestingly, both YOLOv7 scalings outperform the values of the

YOLOv8 frameworks in the blue stain class by a significant margin. This variance between the

models could be caused by the architecture of the models, which determines how the models

handle different features. Other potential reasons could include variations in hyperparame-

ters or differences in the initialization between the architectures. The trade-off between high

precision and high recall becomes evident when considering the per-class recall values. This

observation is supported by the fact that YOLOv8-S is not the best-performing model for any of
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the classes.

Contrary to expectations, the comparison of model speeds is not solely dependent on the com-

plexity of the models. While the largest models, YOLOv7 and YOLOv8-L, are the slowest, the

FPS values do not increase proportionally to the number of parameters for the other models.

Surprisingly, YOLOv7-T emerges as the fastest model in the analysis, even though it has more

FLOPs and parameters compared to YOLOv8-N. A similar pattern is observed when comparing

YOLOv8-N and -S, with -S exhibiting superior FPS. Possible reasons for this discrepancy could

be resource contention on the hardware or background processes affecting performance. Addi-

tionally, it’s important to note that the models were evaluated on high-performance GPUs. In a

real production implementation with less powerful hardware, significantly lower speeds should

be anticipated.

Interpretation of Results

To determine how well the YOLOv7 and YOLOv8 models perform in the context of defect detec-

tion and localization in wood production, the results need to be examined with respect to this

specific case.

The m AP50 value describes the average of the average precision across all classes at a defined

IoU overlap of 50 %, thereby assessing how well the model performs in the detection and local-

ization of defects in the image data. Apart from YOLOv7, all models exhibit values of at least

74 %, indicating robustness across various confidence thresholds. Additionally, in the compari-

son between test and validation m AP50, no significant differences are observed, suggesting that

excessive overfitting is not likely. However, the significant drop in the m AP50−95 values com-

pared to the m AP50 values across all models indicates that the models suffer in terms of localiza-

tion performance when higher IoU thresholds are applied. Reasons for this could be attributed

to the high variability of the examined defects, which come in different forms and appearances.

Additionally, the associated bounding box coordinates of the data set could influence these val-

ues. Accurately determining the extent of a defect can often be challenging when performed

manually, leading to variations in the quality of bounding boxes during the labeling process.

Regarding per class precision, the values for quartzity and crack appear to be the lowest on av-

erage despite being not the least prevalent in the data set. In contrast to other classes like knots

with distinct shapes, the absence of distinct features in the defects could lead to a higher num-

ber of false positives occuring for these classes. It also has to be noted that the average values

for the blue stain class are distorted by the very high results from the YOLOv7 models.

Regarding per-class recall, the classes of blue stain and quartzity exhibit the lowest average val-
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ues. The blue stain class is infrequently represented in the training dataset, which could re-

sult in the models not properly learning its features. Additionally, variations in appearance and

ambiguous features could contribute to increased false negatives in these cases. On the other

hand, marrow and live knot represent the classes with the highest average recall. In these cases,

the models appear to have little difficulty in recognizing the defects. This could be attributed

to distinct features or low variability in the appearance of the defects. Referring to the study of

Buehlmann & Thomas (2002), the calculated average recall values indicate that all the presented

models outperform the human operator.

Compared to the approach by (Li et al. 2021), the models examined in this thesis show lower

m AP50 values in the object detection study. The study reports a mAP50 of 84.4 % for the pro-

posed model. On the other hand, the model is significantly slower at around 15 FPS (NVIDIA

V100) compared to the models presented here. However, it’s important to note that the study

only examines three types of defects, and the data consists of close-up shots of the defects.

In another study targeting three types of defects with a one-stage detector, Ding et al. (2020)

achieved an mAP score of 96.1 % with a DenseNet-SSD algorithm, using close-up images of the

respective defects as the data set. Compared to the results of this study, the performance is

significantly higher. However, this comes at the expense of processing speed, which is reported

to be around 18 FPS.

The Faster R-CNN approach from 2019 by (Urbonas et al. 2019) reports average precision and

recall of 80.53 % and 80.65 %, respectively, which are also higher than the metrics results in

this study. Specific mAP values are not provided and thus cannot be compared. However, it’s

important to note that the study only considers four defect classes in their investigation.

The modified YOLOv3 algorithms used by (Tu et al. 2021) achieved higher results with 92 % mAP

and 86 % mAP on two different data sets, as compared to the study in this thesis. However,

it is worth noting that the best result is based on a problem with only two defects, and in the

other case, four defects. Additionally, no specific IoU threshold is provided based on which

the mAP was calculated in their study, which complicates the comparison. On the other hand,

the fundamental nature of the data is similar to that of this thesis regarding the content and

appearance of the images.

Based on the results of the experiments and the comparison with other approaches, it is rea-

sonable to assume that the models would perform better on more and higher-quality data or

when reduced to fewer classes. Regarding the results of the models trained on the use case data,

the importance of having sufficient and well-labeled data becomes even more evident. Signif-

icant discrepancies between test and validation mAP indicate overfitting. Due to the overall

low amount of data with a substantial proportion of hard negatives, as well as the existing class
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imbalance, the models are unable to effectively learn from the data. Additionally, the quality

of the labeled bounding boxes likely plays a significant role, as indicated by the low values for

m AP50−95.

Suitability for Wood Defect Detection

To summarize the results it can be said that no model is superior at all tasks. For an applica-

tion in the field of defect detection, the recall value holds the highest importance. This is be-

cause false negative detections can incur higher costs than false positive detections. As a result,

YOLOv8-M might be the most suitable version out of the models analyzed. However, depending

on the individual prioritization of certain defect types, a different model might be more suitable.

All the investigated models process images very quickly, making them suitable for deployment

in a fast-paced production environment, especially if the precise localization of defects is not ex-

tremely important. Furthermore, the use of object detectors also brings additional advantages,

as described in section 8.1.1. However, it’s important to note that the collected metrics were

averaged without considering the imbalanced class distribution. In automated defect detection

within wood product manufacturing, certain defects such as cracks might hold greater signif-

icance as they might not be immediately visible and could further develop during processing.

Due to data imbalance, this results in a skewed view of the model’s performance. To determine

suitability for application in the wood manufacturing industry, classes might need to be exam-

ined separately or the metrics adjusted with weights as necessary. Setting a specific threshold

value in order to minimize a certain error is crucial.

8.2 Effects of Offline Data Augmentation

Research question 2 focuses on evaluating the effectiveness of offline data augmentation for

object detectors. Various augmentation operations were applied to the data, and the models

trained on augmented data were tested against the baseline results. Augmentation was per-

formed on both the public dataset and the use case dataset equally.

Based on reviewed studies, positive impacts on the performance and robustness of the models

were expected. However, regarding the obtained results, this has only been partially confirmed.

In the case of the public dataset, improvements in m AP50 are observed in only three out of

six cases. The same applies to the mean precision. The mean recall improves in four cases.

However, it is noteworthy that the m AP50−95 has improved for five of the models. The better

values across different IoU thresholds could be attributed to greater diversity introduced by the
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additional modified data. The extra data with increased variability may enable the model to po-

tentially generalize better to unknown instances. It is also interesting that YOLOv7 significantly

benefits from offline augmentation compared to training on raw data. Possible reasons could

be that the model, due to its complexity or architecture, requires more data compared to the

other models under investigation to achieve good results. The augmented data set might have

countered this issue by providing a larger set of data. Furthermore, it is possible that there were

issues during training on the raw data, which could have caused the significant differences. Also

noticeable is the poorer processing time during evaluation for all models. Besides possible ex-

ternal factors, reasons for this could include additional complexity introduced into the models

as a result of training on augmented data.

In the case of the use case data, a similar pattern emerges. However, here the effects are some-

times more pronounced. The m AP50−95 could be improved in all cases through offline aug-

mentation, which indicates greater robustness of the models across different IoU thresholds.

The introduced variability from the additional and modified data could have led to this effect,

making the model more robust against potentially different instances from the test set. Also no-

ticeable is that in many cases, the average recall increases while the average precision decreases,

and vice versa. This behavior could also be attributed to the introduced variation in the data.

Moreover, all of the models trained on augmented data seem to experience significant overfit-

ting. This is indicated by the adverse behavior of validation loss compared to training loss. Rea-

sons for this could lie in the chosen augmentation techniques. In this thesis, offline augmenta-

tion only involved a single geometric transformation. The other augmentation techniques were

limited to color transformations and adding noise. This might have led to insufficient introduc-

tion of variability into the data, resulting in the observed overfitting. The lack of data diversity

could have led the models to memorize the data rather than learning significant features of the

defects. This could have also impacted their generalization ability, which might explain the par-

tially poorer performance on the unchanged test data. In the case of the use case data, however,

offline augmentation had a predominantly positive effect on the performance of the models.

This could be attributed to the expansion of the very small data set with additional instances.

8.3 Effects of Transfer Learning

Research question 3 deals with the effects of transfer learning on object detection for defect

detection in wood production. The question is divided into the effectiveness of transfer learning

via pretraining on generic image data (3a) and via pretraining on other wood data. To answer

research question 3a, the object detectors were initialized with weights pretrained on MS COCO,
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then trained and evaluated on the public dataset. For research question 3b, the object detectors

were initialized with the best weights from the augmentation study on public data, then trained

and evaluated on the use case dataset. The results were compared to the baseline model results.

Pre-training Based on Generic Data

For the COCO-initialized models trained on the public data set, positive effects on training can

be observed. These are reflected in faster improvements of the models and generally lower loss

curves. Furthermore, the training duration was improved through transfer learning. This could

be due to the fact that the models, through initialization with weights pre-trained on COCO,

already possess knowledge about basic features and general patterns. In general, due to the

diversity of the COCO data set, it is to be expected that some of the visual features are shared

between the two different domains. Lower layers of the architectures could effectively reuse

these features. As a result, this can help prevent initial difficulties during training compared to

random initializations, resulting in faster convergence of the models. Another point in favor

of the convergence speed could be the low-level statistics transferred by the initialization with

pre-trained weights, in accordance to the findings of Neyshabur et al. (2020).

In terms of performance differences compared to training from scratch, a mixed picture emerges.

The m AP50 slightly decreased for three of the YOLOv8 models, while YOLOv7 experienced a 6.5

percentage point drop. YOLOv7 also noticeably declined in m AP50−95, whereas the other mod-

els showed improvements. The differences could be due to the model architectures and their

sensitivity to pre-trained weights. Alternatively, differences in performance could also be at-

tributed to hyperparameters. Regarding the values for mean precision and mean recall, a simi-

lar behavior was observed as with training on augmented data, where some models improve in

recall at the expense of precision, and vice versa. Surprisingly, the YOLOv7-T model improved

in all performance metrics compared to the larger YOLOv7 model. Reasons for this could be the

lower complexity of the model and the resulting better fit to the available dataset and defined

hyperparameters.

Pre-training Based on Wood Data

When training the use case data on the pre-trained weights from the augmented public dataset,

significant improvements were anticipated. Advantages are reflected in the training process,

with significantly improved convergence speeds in all cases, which could also be attributed to

feature reuse. The performance comparison results show more improvements compared to the

case with COCO weights. The values for m AP50 and m AP50−95 were enhanced in five out of six
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cases each, and in several instances, by a few percentage points. The reason for this is believed

to be the reuse of visually similar features from the same domain. This improvement helps the

models avoid making false positive predictions. The mean precision was greatly improved in

the cases of YOLOv8-N and -S, by 18.9 and 27.7 percentage points, respectively. At the same

time, some models experienced a drop in mean recall. This behavior could be attributed to the

specialization on the pretrained features, which may differ significantly in distribution from the

features in the use case dataset. This divergence might lead to more cautious models, resulting

in higher precision for certain classes but simultaneously reducing recall. Errors in the labeling

process could also contribute to deteriorations, for instance, if defects were misclassified.

The results largely align with previous research. In the study by Norlander et al. (2015), pre-

training on ImageNet improved the accuracy of a CNN for knot defect detection. The Mask R-

CNN proposed by Hu et al. (2020) also improved by 4 percentage points through transfer learn-

ing with COCO. Similar findings regarding improvements in accuracy and convergence speed

were reported by Gao, Qi, Mu & Chen (2021) and Gao, Song, Wang, Liu, Mandelis & Qi (2021)

in relation to this thesis. It should be noted that in this study, transfer learning was conducted

according to the official YOLOv7 tutorial (Wong 2022), and that no layer freezing was performed.

Trial and error tests with frozen layers using YOLOv7 also revealed no improvements in perfor-

mance.

8.4 Limitations

A central limitation of this work arises from the data set. Since not many large scale publicly

available databases for images of wood defects exist, compromises had to be made, which is

reflected in the size of the data set, the class distribution and the quality of the labels. Effec-

tive training of computer vision models requires a substantial amount of data. Due to the small

data set size and imbalances within it, the best-possible performance of the examined methods

could not be fully determined. Temporal limitations also led to the experiments not being con-

ducted under optimal conditions. Extensive hyperparameter tuning and lengthy test runs were

neglected due to limited hardware resources on the Idun cluster, associated with long waiting

times for scheduled jobs. Instead, a trial-and-error approach was pursued, which might not

have achieved the optimal solution. The obtained results could likely be improved with a suffi-

cient data foundation and a structured optimization of the algorithms.

Additionally, due to delivery and scheduling difficulties, the use case could not be executed as

originally planned in a real production environment. As a result, a last-minute decision was

made to simulate the use case in a learning factory. However, this approach lacked the foun-
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dation to gather a larger data set, prompting the need to replace it with self-acquired samples.

Furthermore, deficiencies in tools and equipment within the learning factory led to delays and

suboptimal solutions during the setup of the experiment. These issues are reflected in the col-

lected use case data, which, due to its nature, is only of limited use for the underlying investi-

gation. Another issue regarding use case data quality arises from the labeling process. While

the data was labeled to the best of the available knowledge, some misjudgments and errors are

likely to have occurred due to the lack of expert knowledge.



Chapter 9

Conclusion and Further Work

9.1 Conclusion

This thesis investigated how computer vision technologies can be effectively applied in the field

of defect detection for wood production, under the framework of Industry 4.0 and ZDM con-

cepts. The necessity of this research arose from the context that the competitiveness of compa-

nies in the wood processing industry is not sustainable due to economic and environmental fac-

tors when using traditional methods for quality assurance. For this purpose, four image classifi-

cation models (ResNet-18, ResNet-50V2, EfficientNetV2-B0, EfficientNetV2-S) and six differently

scaled object detection algorithms (YOLOv7-tiny, YOLOv7, YOLOv8-N, YOLOV8-S, YOLOv8-M,

YOLOv8-L) were compared in terms of their performance and suitability. A publicly available

image database covering various production-related wood defects was used as the data founda-

tion. To examine the transferability to a real production setting, a prototype of a camera system

was established within the scope of a use case. This system was employed to collect additional

image data, which was subsequently used for additionally evaluating the models.

In the evaluation of the image classification models, significant differences in their performance

on the used data sets were observed. On the publicly available data, ResNet-18 emerged as the

overall best-performing model in terms of its ability to identify various defects. ResNet-50V2

also demonstrated acceptable performance, whereas the EfficientNetV2 models did not exhibit

satisfactory performance within the scope of the study. On the use case data, none of the models

performed well. Based on the investigation’s results, it can be concluded that image classifica-

tion is only partially suitable for defect detection in the production environment. Although the

examined ResNet models were able to surpass the performance of manual inspection processes,

there are disadvantages inherent to the nature of computer vision tasks that can lead to draw-

backs in applying them for quality assurance in a production context, such as the lack of defect

104
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localization and missing control mechanisms.

When examining the object detection algorithms on the publicly available dataset, less signif-

icant differences in performance between the models were observed. None of the examined

models dominated in all performance categories. However, YOLOv8-M achieved the best re-

sults in the categories of m AP50, m AP50−95, and mean recall. YOLOv8-S exhibited the best per-

formance in terms of precision. YOLOv7 represented the overall worst-performing model in the

study. However, none of the examined models could demonstrate an acceptable performance

on the use case data. Based on the results, the fundamental suitability of the models for defect

detection in wood production can be determined. Furthermore, additional benefits of the com-

puter vision task, such as providing information about the location, size, and severity of defects,

can be utilized for intelligent production concepts. The output of bounding box information

also provides an additional means of control.

An additional challenge in the domain of wood processing industry is the lack of data, primarily

due to limited adoption of digital technologies and Industry 4.0 practices. Therefore, this the-

sis investigated whether effective improvements in model performance can be achieved with

offline data augmentation or transfer learning methods, even when dealing with limited data

sets.

To assess the effectiveness of offline augmentation techniques, both datasets were augmented

using various methods. When compared to the baseline results, the outcomes were mixed for

the publicly available dataset. The YOLOv8-L and YOLOv7 models were able to significantly en-

hance their detection performance. Other models exhibited improvements in certain metrics at

the expense of deteriorations in other metrics. However, the models exhibited significant over-

fitting, which can be attributed to the lack of diversity in augmented data due to limited vari-

ations in the augmentation techniques. For the use case data, predominantly positive effects

on the performance of the models were observed, with some instances of substantial improve-

ments. In summary, it can be stated that, at least in scenarios with very limited data, offline data

augmentation can be an effective tool for enhancing the performance. However, it is recom-

mended to employ a more diverse range of augmentation techniques.

The effectiveness of transfer learning was investigated in two scenarios. When initializing mod-

els with pre-trained weights on generic image data, no clear improvement in performance was

observed. However, significant improvements in convergence speed were noted. In the case

of initializing with weights from models trained on wood images, training performance and

convergence were also greatly enhanced. The performance development of the models under

transfer learning was generally positive. In summary, it can be said that transfer learning is an

effective tool to support the models in wood defect detection during training. However, due to

the varied results, further investigations should be conducted for enhancing performance.
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9.2 Recommendations for Further Work

The results obtained in this thesis have revealed issues due to the limited data set size and the

existing class imbalance within the datasets. Therefore, it is recommended to generate more

and better-distributed data and to train the tests on larger datasets. To achieve this, experts

should be involved in the labeling process to ensure consistent high-quality labels and associ-

ated bounding box coordinates.

To further investigate the impacts of offline data augmentation in the field of wood defect detec-

tion, tests involving various geometric transformations should be conducted. Since the images

in the existing data set are all in the same position, this approach could potentially enhance the

models’ robustness.

The effects of transfer learning using pre-trained models within the domain of wood defect de-

tection should be validated with a significantly larger data set. This validation could determine

whether the utilization of pre-trained models in real-world production scenarios can lead to

significant improvements.

Furthermore, the models should be tested and optimized against different hyperparameter set-

tings. This could be accomplished through heuristics or implemented optimization algorithms.

The effects of training for more epochs should also be investigated.
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