
N
TN

U
N

or
ge

s 
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e 

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g 
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r e

le
kt

ro
ni

sk
e 

sy
st

em
er

M
as
te
ro
pp

ga
ve

Sigurd Hagen Tullander

Application of a real-time operating
system to enhance the
microcontroller software of an
autonomous model car

Nytting av eit sanntidsoperativsystem til å
forbedre mikrokontrollerprogramvaren til ein
førarlaus modellbil

Masteroppgave i Elektronisk Systemdesign og Innovasjon
Veileder: Per Gunnar Kjeldsberg
September 2023





Sigurd Hagen Tullander

Application of a real-time operating
system to enhance the microcontroller
software of an autonomous model car

Nytting av eit sanntidsoperativsystem til å forbedre
mikrokontrollerprogramvaren til ein førarlaus
modellbil

Masteroppgave i Elektronisk Systemdesign og Innovasjon
Veileder: Per Gunnar Kjeldsberg
September 2023

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for elektroniske systemer





Electrical Engineering and
Information Technology
Department
Fachgebiet Echtzeitsysteme

Application of a real-time
operating system to enhance
the microcontroller software of
an autonomous model car
Verwendung eines Echtzeitbetriebsystems für die Verbesserung des
Microcontrollersoftwares eines Autonomes Modellautos
Master thesis by Sigurd Hagen Tullander
Date of submission: 11. September 2023

1. Review: Prof. Per Gunnar Kjeldsberg
2. Review: Prof. Dr. rer. nat. Andy Schürr
3. Review: Dr.-Ing. Stefan Tomaszek
Darmstadt
ES-M-160



Application of a real-time operating system to enhance the microcontroller software of an autonomous
model car
Verwendung eines Echtzeitbetriebsystems für die Verbesserung des Microcontrollersoftwares eines
Autonomes Modellautos

Master thesis by Sigurd Hagen Tullander

Date of submission: 11. September 2023

Darmstadt



Erklärung zur Abschlussarbeit gemäß §22 Abs. 7 APB TU Darmstadt

Hiermit erkläre ich, Sigurd Hagen Tullander, dass ich die vorliegende Arbeit gemäß § 22 Abs. 7 APB der
TU Darmstadt selbstständig, ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmitteln
angefertigt habe. Ich habe mit Ausnahme der zitierten Literatur und anderer in der Arbeit genannter
Quellen keine fremden Hilfsmittel benutzt. Die von mir bei der Anfertigung dieser wissenschaftlichen
Arbeit wörtlich oder inhaltlich benutzte Literatur und alle anderen Quellen habe ich im Text deutlich
gekennzeichnet und gesondert aufgeführt. Dies gilt auch für Quellen oder Hilfsmittel aus dem Internet.

Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem
vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 11. September 2023
S. H. Tullander

iii





Assignment

The system architecture of the vehicle used in the project seminar Autonomes Fahren (PS AF) I and
II is constructed so that a self-developed Microprocessor board takes over controlling the actuators
(electronic speed control and steering servo) as well as reading sensors (IMU, ultrasound, Encoder/Hall
sensor) and provides a suitable interface to an on-board computer for disposal. This will take over the
higher-level tasks of navigation and vehicle management.

At the current development stage, the split between the low-level control of the actuators and the
higher-level control on the computer still has room for improvement. Another problem is dealing with
the different variants. The firmware for the vehicles for the PS AF I and II differs only in a few points,
but currently, two different versions of the firmware for the boards are maintained separately. Within
the scope of this work, the following aspects should be improved:

• In a previous work, a controller for the new BLDC-Motors was developed, which should be
integrated in the scope of this work. Additionally, at least a rudimentary speed controller based
on the old actuators, should be implemented.

• The development of a controller for the yaw rate (steering angle) is part of this work. For this
purpose, it can be beneficial also to make adaptions to the actuators.

• The tasks and the existing code structure must be analyzed, and a concept developed, these
modified to support different variants and open for future developments. For this purpose, also
major changes, like the usage of a real-time operating system, can be made, if this seems to be
advantageous.

• Overtaken components from the existing code base must be adapted in regard to modern quality
standards.

At the end of the work, there should be an interface for direct specification of speed and yaw rate
(steering angle) for both cars. Additionally, a well-structured, documented code base for the microcon-
troller that corresponds to the usual software quality standards should be present, which represents
the basis for future further developments.

The work will be carried out with support from the fachgebiet (expertise field/subject group) Control
and Cyber-Physical Systems (CCPS, Dr.-Ing. Eric Lenz).
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Abstract

The Project Seminar Autonomes Fahren at the Technical University of Darmstadt serves as a learning
platform where students can get hands-on experience with programming an automated driving system
in a 1:10 scale, targeting participation in the Carolo-Cup. In this work, we enhance the microcontroller
software in charge of the underlying hardware of the driving system by applying the embedded
real-time operating system FreeRTOS. Our solution is proven to increase the chances of meeting hard
real-time constraints, reducing the maximum response time from 467.28ms down to only 3.24ms in a
constructed overload scenario. The real-time benefits come at the cost of 45% increased memory usage
compared to the present solution, but as about 50% of the memory is still unused, this is not a problem.
With it, a low-level speed controller has been implemented with an average initial acceleration time of
478ms for speeds in the range 0.5m/s – 1.5m/s, increasing the lifetime of currently used car models
by ensuring compatibility with the upcoming generation. At last, code clones addressing hardware
differences between car models have been refactored by using compile time configuration options,
improving the maintainability of the software’s source code.
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Samandrag

Prosjektseminaret Autonomes Fahren ved det Tekniske Universitetet i Darmstadt er ein læringsplat-
tform der studentar får praktisk erfaring med å programmere ein førarlaus bil i målestokk 1:10 med
mål om deltaking i Carolo-Cupen. I dette arbeidet forbedrar vi mikrokontrollerprogramvaren som
tek hand om dei underliggjande fysiske komponentene i sjølvkjøringssystemet ved å nytte innvevd-
sanntidsoperativsystemet FreeRTOS. Vi viser at løysinga vår aukar sjansane for å imøtekome harde
sanntidskrav og reduserar den maksimale responstida frå 467.28ms ned til berre 3.24ms i eit kon-
struert overlastingsscenario. Sanntidsfordelane har ein kostnad på 45% auka minnebruk samanlikna
med den noverande løysinga, men sidan halvpartan av minnet fortsatt står ubruka er dette ikkje eit
problem. Saman med det har vi implementert ein lavnivå hastigheitsregulator med gjennomsnittleg
aksellerasjonstid på 478ms for hastigheiter i området 0.5m/s – 1.5m/s, noko som forlengar brukstida
til bilmodellande som vert bruka i dag ved å sørgje for kompatibilitet med den kommande generasjo-
nen. I tillegg har vi refaktorert kodeklonar som tek omsyn om forskjellar på bilmodellane ved å nytte
konfigurasjonsval på kompilatornivå, noko som gjer kildekoden enklare å vedlikehalde.
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1 Introduction

Human errors are found to be the critical reason for 94% of road accidents, according to a technical
report by the National Highway Traffic Safety Administration [1]. In other words, 19 out of 20 accidents
would be avoided if the driver could be replaced by a reliable driving system that does the correct thing
all of the time. Automated Driving Systems (ADSes), are being developed with a promise to prevent
accidents and additionally lower transport emissions, free up driving time and increase mobility for
the mobility-impaired [2, 3]. Society of Automotive Engineers (SAE) defines ADSes as automation
systems that can execute dynamic driving tasks on a sustainable basis. SAE further defines six different
levels of driving automation ranging from no automation (level 0) to full automation at all times in any
condition in any road system (level 5) [4, 5, 6, 7]. While level 1 and 2 automation, commonly referred
to as driver assistance systems, are already common in modern cars, the real challenges start at the
higher levels [2]. In fact, no manufacturer in the industry is even close to attain level 5, according to
the Toyota Research Institute [8]. It is still need for much more knowledge and many innovations in
the field to realize the autonomously driving utopia we wish our future to become.

The first experiments on ”self-driving cars” were conducted in the 1920s in the USA. In 1925, the
”American Wonder”, a radio operated car was demonstrated for the first time by Francis P. Houdina
in the streets of New York [7, 9, 10]. At that time, ”self-driving” had quite a different meaning than
today, as those cars were fully operated by human drivers, there was just no human driver on board.
In the 1980s, after huge advancements in computer technology, the research around autonomous
driving systems gained speed by getting access to technologies such as Light Detection And Ranging
(LiDAR), Global Positioning System (GPS) and computer vision [7, 6]. In 2004, the first ”DARPA Grand
Challenge” was organized by the Defense Advanced Research Projects Agency (DARPA). The following
years, the DARPA challenges served as the world’s primary showcase for advances in ADS technology.
With the 2018 Audi A8, the world’s first production car to achieve level 3 autonomy is already a fact
thanks to its AI Traffic Jam Pilot allowing the car to drive all on its own up to a maximum speed of
60 km/h in traffic jams [9, 2]. Several concepts for level 4 ADSes are already present, and there is
reason to expect wide-spread application of highly autonomous vehicles in the near future.

At the Technical University of Darmstadt (TU-Darmstadt), students are offered to take the Project
Seminar Autonomes Fahren (PS AF) to get practical experience with developing an ADS targeting
participation in the Carolo-Cup, an annually held international competition for miniature vehicles
founded in 2008 and carried out at the Technical University of Braunschweig in Germany [11, 12].
The project seminar has been running since 2009 and is currently in the process of developing its third
car model. Pictures of the two currently developed car models are shown in Figure 1.1. Developing
ADSes with model cars is associated with considerably lower costs for equipment than with real cars
and thus opens the field to more people.
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Figure 1.1: Pictures of the PS AF car model 1 (a) and car model 2 (b).
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Figure 1.2: Simplified overview of the physical components of a PS AF car and their interconnections.

A simplified overview of a PS AF car’s physical components is shown in Figure 1.2. Control is split
across two computer systems; a Microcontroller Board (UcBoard) and a more powerful On-Board
Computer (OBC). The OBC is in charge of reading camera output and doing path planning, while the
UcBoard is in charge of reading outputs from all other sensors and applying inputs to the actuators.
The UcBoard and the OBC communicate via Universal Serial Bus (USB). Students participating in the
project seminar work in groups and their task is to implement the best possible autonomous driving
algorithm on the OBC. The rest of the ADS is provided as-is for the students.

The present UcBoard software is a bare-metal C application, with no Real-Time Operating System
(RTOS), meaning that routine scheduling is performed by a custom scheduling system without pre-
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emptive capabilities. As we will describe later, this generally leaves the system’s ability to satisfy
real-time constraints more vulnerable. Also the UcBoard’s current interface to the OBC does not
provide a way to specify an exact driving speed, even tough the UcBoard is in control of the speed
sensor as well as the motor. Improving these aspects of the UcBoard can have significant gains for
the project seminar as a learning platform, as it will enable the OBC to rely more on the UcBoard for
successful accomplishment of low-level tasks and enable the students to focus more on the higher-level
autonomous driving algorithm and in the end develop a more sophisticated ADS.

The scope of this work is in its entirety limited to the software of the UcBoard. Even though the
UcBoard communicates with the OBC under intended operation, we will always connect an off-rig
computer to perform our experiments. The addition of a brushless propulsion motor will be described,
but the only work we contribute in this regard is implementing support for this new component in the
UcBoard’s software.

This work will contribute to the United Nations’s (UN) 17 Sustainable Development Goals (SDGs),
adopted by all UN member states in 2015 [13], by applying a Real-Time Operating System to enhance
the microcontroller software of the PS AF at the TU-Darmstadt. In particular, the work will contribute
to goal 4, quality education, by providing a deeper understanding of the real-time properties of the
microcontroller used in the PS AF and enhance the project seminar’s capabilities as a learning platform.
Since learning about autonomous driving by experimenting with model cars instead of full-scale cars
requires much less energy or other resources, it will also contribute to goal 12, responsible consumption
and production. And additionally, as a contribution to research in the autonomous driving field as
a whole, the work will contribute to goal 9, industry, innovation and infrastructure, and goal 11,
sustainable cities and communities.

1.1 Objectives and limitations

In this section, we present the objectives, or research goals, of the work. We also present the most
noteworthy limitations of how the work is carried out.

In this report, we will investigate what benefits and disadvantages the application of a Real-Time
Operating System can provide the UcBoard software in terms of responsiveness, robustness and
memory usage. To do this, we will implement a new version of the UcBoard software which applies
the embedded Real-Time Operating System FreeRTOS. By comparing the performance of the software
with FreeRTOS to the current version without, we will attempt to answer the following questions:

• Responsiveness – How long time does it take for the UcBoard to respond to a command with
FreeRTOS compared to without?

• Robustness – In which ways and to which degree can the response time be affected by undesirable
conditions in the system, such as overload or software bugs, with FreeRTOS compared to without?

• Memory usage – How much memory does the UcBoard software use with FreeRTOS compared
to without?

The work also includes the implementation of a low-level speed controller, that is, a speed controller
implemented onto the microcontroller, as opposed to the current need for speed control logic in the
OBC software. A major motivation for this is the fact that the next generation of PS AF cars will have a
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dedicated motor controller board with integrated speed controller. When programming the OBC with
the next generation in mind, there is undesirable to implement logic for speed control, since the motor
controller board is more suitable for this task. By implementing a speed controller for the current
motor on the UcBoard, it will make the old car model’s interface to the OBC compatible with the next
generation’s interface, thus making the old cars more useful as development and test platforms.

Regarding the speed controller, we will quantify how well it is able to control the speed. This includes
answering the following questions: How long time does it take the for the car to reach the target
speed? How large is the deviation between the resulting speed and the target speed? How does these
results compare to alternative approaches?

Lastly, we will try to improve the overall structure of the source code for the UcBoard software. Currently,
there exist two different variants of the software, targeting two different car models. Most of the
source code is the exact same, they differ only in a few points. In this work we will discuss strategies
for merging the two variants together to increase the source code’s maintainability.

To produce the experimental results, cars have only operated indoors on a perfectly flat and even floor.
One should expect the results to differ significantly if the same experiments are conducted in rougher
conditions, e.g. outdoors on grass, perhaps even with hills.

The entire work is centered around the ADS of the PS AF at the TU-Darmstadt, its entire hardware
platform and the structure of the existing microcontroller software. The implementation is carried out
specifically for this ADS and the results are directly applicable only for it. However, general methods
and concepts we develop can be applicable for other ADSes as well.

1.2 Research method

In this section, we provide an overall description of the research methods used in the work. That is,
what kind of work is done and what kind of experiments are conducted.

The research begins with a thorough analysis of the present UcBoard software system, comprising its
environment, functional structure as well as source code structure. Then, relevant literature is studied
to search for possible answers and solutions to identified problems. The most promising solutions are
implemented and a series of experiments are conducted to verify the integrity of the theory and the
quality of the implementation, as well as to find answers to our initial research goals. The proposed
solutions are compared to the present UcBoard software and to other but similar software systems
from related academic works.
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1.3 Report structure

The report is divided into the following chapters.

1. Introduction

2. Background

• Review of relevant topics from the literature for understanding concepts and reasoning
utilized in the work.

3. Strategy

• Our developed strategies for implementing and verifying our solutions.

4. UcBoard software implementation

• Implementation of enhancements to the UcBoard software.

5. Experimental setup

• Description of experimental setups used to verify our solutions and answer research ques-
tions.

6. Results

• Results from evaluating implementation and conducting experiments.

7. Discussion

• Discussion of results.

8. Conclusion
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2 Background

In this chapter we present the background theory that is necessary to follow the rest of the report. This
mostly includes theory available in the literature, as well as a thorough technical description of the
present ADS used in the PS AF. In Section 2.1, we describe the linear mapping, a handy mathematical
method to map values across different value ranges, in Section 2.2, fundamental concepts of real-time
systems are introduced and the purpose of Real-Time Operating Systems is explained. In Section 2.4,
we describe necessary concepts from the field of control theory. Section 2.6 describes the present
ADS of the PS AF at the TU-Darmstadt. And in the end, in Section 2.7, we take a look at similar or
related work, featuring three other projects that utilize a Real-Time Operating System to realize an
autonomous model car.

2.1 Linear mapping

Linear mapping is a way to map values from one range to another range:

Definition 2.1 (Linear mapping). The linear mapping of a value x from a range [x0, x1] to a range
[y0, y1] is given by

l(x;x0, x1, y0, y1) = y0 +
y1 − y0
x1 − x0

· (x− x0). (2.1)

It is useful for mapping a control signal value to an appropriate operating range for a physical process.
An example of a linear mapping is visualized in Figure 2.1, where an input value 0.3 from the range
[0, 1] is mapped linearly to an output value 13 in the range [10, 20].
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Figure 2.1: Linear mapping of 0.3 from [0, 1] to [10, 20].

2.2 Real-time systems

A real-time system is a computer system with real-time constraints that define how quickly the system
has to respond to a given set of inputs. In [14], fundamental real-time system concepts are defined and
discussed at a basic level. At the most basic level, a real-time system is defined in the following way:

Definition 2.2 (Real-time system). A real-time system is a system that must satisfy explicit (bounded)
response-time constraints or risk severe consequences, including failure.

In [14], there is further discussed how one can argue that every practical system is a real-time system,
since every practical systems will be completely useless if it cannot produce outputs within a reasonable
time frame. It is therefore necessary to distinguish between hard, firm and soft real-time systems.

Definition 2.3 (Hard real-time system). A hard real-time system is one in which failure to meet a single
deadline may lead to complete and catastrophic system failure.

Definition 2.4 (Firm real-time system). A firm real-time system is one in which a few missed deadlines
will not lead to total failure, but missing more than a few may lead to complete and catastrophic system
failure.

Definition 2.5 (Soft real-time system). A soft real-time system is one in which performance is degraded
but not destroyed by failure to meet response-time constraints.

2.2.1 Real-time constraints

The real-time constraints of a real-time system arise from the physical environment in which the system
operates. For example, when the driver of a car presses the break pedal, the break controller must
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actuate the breaks within a few milliseconds to avoid a potential crash. This is a hard constraint, since
missing a single deadline can have catastrophic consequences. When new speed measurement data is
available, this data must be processed and the speedometer must be updated within a few tenths of a
seconds, or the driver will be misinformed about how fast she/he is driving. This can lead to the driver
doing bad decisions, but since the driver has an intuitive feel of how fast the car is going she/he isn’t
dependent on always getting instant speed data to drive safely. Therefore, this should be categorized
as a firm real-time constraint. Soft real-time constraints in a car include most convenience features,
such as the responsiveness of the navigation system or the air conditioner. [14] also notes that there is
big room for the interpretation of hard, firm and soft real-time systems – every system can probably
be categorized any way – soft, firm or hard – real-time by the construction of a proper supporting
scenario.

2.2.2 Scheduling concepts

A ”task” is an abstraction of a running program [14]. It can be seen as a set of instructions that need to
be executed in order to achieve some functionality. Real-time systems usually have multiple tasks, and
a scheduler’s responsibility is to ”schedule” the tasks, or in other words, decide which task to execute
at any time. In a single-processor system only one task can execute at a time. A task is requested or
initiated at some point in time and executes until it is completed. In a real-time system each task is
associated with a deadline, a point in time before which the task has to be completed. The same task
is often requested multiple times.

Definition 2.6 (Task). A task is an abstraction of a running program. A task can be preempted an
resumed by the scheduler.

One of the most influential works in real-time scheduling theory is a paper by Liu and Layland published
in 1973 [15, 16]. In this paper, there is described a specific, yet common, scheduling problem consisting
of a set of periodically requested tasks, with deadlines defined to be the time of the next request for the
same task. All tasks are assumed to be independent and preemptible and have fixed computation times.
That a task is preemptible means that the scheduler can pause its execution at any time instant to run
another task for a while and resume the first task again later without modifying the task’s behavior.
Another assumption being made is that a task cannot itself ask the scheduler to be paused, it has to be
preempted.

Based on these assumptions, Liu and Layland [15] present the rate-monotonic priority assignment rule
and proves that it is the optimal way to schedule a set of fixed-priority tasks, given these assumptions.
In the same paper, they also present a deadline driven scheduling algorithm. In this algorithm, the
priorities are assigned based on which task has the closest deadline. Up through the years several
researchers and developers have designed and implemented various additions and modifications to
these algorithms to achieve different goals.

For general-purpose computing (in contrast to real-time computing) round-robin scheduling is often
a beneficial approach. In a round-robin scheduler, each task or process is fairly assigned time slices
that give all tasks an equal share of the Central Processing Unit (CPU) time [17]. For general purpose
computers there is often a goal that all tasks get the chance to run the same amount of time, even
when the system is overloaded, this is what round-robin scheduling achieves.
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The term ”task” is very closely related to how the scheduler works. A set of tasks is a set of individually
schedulable programs by the scheduler in question. However, in practical applications, we are often
more interested in the function the task performs. And since most functions can be performed by
multiple tasks and multiple functions can be performed by the same task, we will use the term ”routine”
when we refer to any sort of program, regardless of implementation, that performs a specific function.

Definition 2.7 (Routine). A routine is any program that executes from it is requested until it is completed
to perform a specific function.

2.2.3 Task interaction

In most common applications some task interaction is necessary, and the exact assumptions by Liu
and Layland do not hold [14]. Typical task interaction has two main objectives, to transfer data
(communication) and to ensure relative timing of operations (synchronization). Proper task interaction
is achieved by using synchronization primitives, such as semaphores, mutexes, events, mailboxes and
so on. If task interaction is not done properly it can lead to several faults, including data corruption,
infinite loops and deadlocks, to name a few.

Synchronization and communication is often two sides of the same coin. E.g. when a task A tries to
fetch some data from a task B, it requires B to reach that point of execution where data is actually
provided to A. If B has still not provided data when A requests it, A should wait until the data is ready.
In this situation, A is blocked from executing further. When blocked, the scheduler should not execute
the task it is ready. Therefore, the scheduler assigns each task one of the 4 following states [14]:

1. Executing – The task is currently executing

2. Ready – The task is currently not executing, but is ready to do it

3. Blocked – The task is blocked from executing since it has to wait for other tasks

4. Dormant – The task is either not requested yet or is already completed

2.2.4 Real-time operating systems

An Operating System (OS) is a layer of software that interacts directly with the system hardware
and provides a developer-friendly interface for higher-level applications in the system. A Real-Time
Operating System (RTOS) is an OS that is designed to support real-time system needs. An RTOS usually
gives more control of scheduling than a general-purpose OS, and provides utilities for synchronizing
threads. Many RTOSes target embedded systems, and therefore try to use as little memory and CPU
resources as possible. These can also be categorized as embedded OSes, but that does not mean all
embedded OSes are RTOSes [18].

FreeRTOS is an example of an embedded RTOS. FreeRTOS has a minimal Random Access Memory
(RAM) usage of 236B and minimum Read-Only Memory (ROM) usage of 5-10 KiB [19]. On the other
hand, RTLinux is an example of an RTOS that is not meant for tiny devices. The footprint of RTLinux
will even in the most stripped-down configurations be in the megabyte-range for both ROM and RAM
usage [20].
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Different RTOSes also have varying support for different scheduling strategies. FreeRTOS only supports
one scheduling strategy, which is a fixed priority scheduling algorithm [16, 21] similar to the rate-
monotonic priority assignment rule presented by Liu and Layland in 1973 [15]. The FreeRTOS
scheduler can however be configured to not use task preemption and uses by default round-robin time
slicing to share CPU time between tasks of the same priority [22]. RTLinux supports several more
sophisticated schedulers, like ”earliest deadline first” [20]. Partly due to this, RTLinux has the potential
of consuming considerably more CPU time than FreeRTOS.

2.2.5 Interrupts

Interrupts is a hardware feature present in most modern computers, including microcontrollers. It lets
peripheral devices notify the CPU that some event has occurred by sending an Interrupt Request (IRQ).
The CPU will then interrupt its current execution and start executing the IRQ’s configured Interrupt
Service Routine (ISR). Multiple IRQs might occur at the same time, or a new interrupt request might
occur while another ISR is still executing. For this reason, ISRs can usually be assigned priorities, just
like tasks within an RTOS. However, since ISR execution is controlled by the hardware and not the
RTOS, the priorities of ISRs can usually not be interleaved with priorities of tasks within an RTOS. The
interrupts and the RTOS tasks constitute two separate priority spaces, where the ISRs’ priority space is
above the RTOS tasks’ [22, 23].

The systick interrupt is a special interrupt that is available on most microcontrollers. The systick
interrupt occurs periodically with a configurable tick period Tt, configured to 1ms for the UcBoard in
the ADS of the PS AF. This makes the systick ISR a function that is ensured by the hardware itself to
run periodically with period Tt, which can be used as a basis for implementing periodic routines.

2.3 FreeRTOS

FreeRTOS is a free and open-source Real-Time Operating System for embedded systems. It is suitable
for microcontrollers thanks to its minimal memory usage and limited feature set. In this section, we
will look more into detail of the features FreeRTOS provides that are relevant to us [24, 22].

2.3.1 The FreeRTOS API

The FreeRTOS Application Programming Interface (API) is made up of a set of functions, commonly
referred to as FreeRTOS’ API functions. The application interfaces the FreeRTOS through calling these
functions. Like common functions, the API functions can accept function arguments and return a
return value. API functions are sometime referred to as ”kernel calls” or ”system calls”, since they
invoke the OS kernel. API functions are used to perform operations like creating a task, deleting a task,
delaying a task or interact with synchronization primitives.

In addition to the API functions, the FreeRTOS API also includes a set of port macros. To make FreeRTOS
compatible with and optimized for different CPUs architectures, each supported CPU architecture has
its own port. The port is made up of a C file and a header file that defines CPU architecture-specific
code. For the UcBoard software, for example, we will use the ARM Cortex-M4F port. Port macros are
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conceptually similar to API functions, but they are macros, and they are provided by the port, and not
by the regular kernel.

2.3.2 Tasks and scheduling

FreeRTOS features a priority-driven preemptive scheduler. The scheduler runs each time a task ”yields”
and each time a systick IRQ is raised. A task can yield explicitly by calling the portYIELD port macro,
or implicitly by calling a yielding API function.

Tasks can be created with the xTaskCreate API function, taking the task’s priority as an argument.
Each task has its own execution stack, storing function calls and local variables. FreeRTOS requires
the maximum possible stack usage by each task to be allocated for its stack from the task is created
until it is deleted. This ensures that the task always can be resumed if it is requested.

FreeRTOS task priorities cannot be interleaved with ISR priorities [22], which means that each task
will have a lower priority than all ISRs.

FreeRTOS tasks can generally be divided into two non-overlapping categories; system tasks and
application tasks. System tasks are created and managed automatically by the RTOS itself, while
application tasks are created and managed by the application. In FreeRTOS, there are two system
tasks; the idle task, which is run when no other task is runnable, and the timer task, also called the
daemon task, which is responsible for executing timer callbacks [22].

2.3.3 The stack size of a task

At a given time instant, the stack usage of a task is equal to the sum of the stack usages of the functions
that are currently in the task’s call stack. Say, a task calls a function A, which calls a function B, which
calls a function C, then the stack usage is the sum of the stack usages of A, B and C. But if A calls a
function D after B has returned, the total stack usage is only the sum of the stack usages of A and D. In
other words, the stack usage of a task varies throughout the task[’s] execution. The stack size of the
task has to be greater than (or equal to) the maximum stack usage it can ever have. If the stack usage
becomes greater than the allocated stack size, the task stack will use memory that is not allocated to it
which is likely to cause unpredictable bugs.

The total stack usage of a task, which consists on functions calling other functions, cannot generally be
known exactly at compile time, since conditional branches in the program are performed dependent
on dynamic input. There exist tools to estimate or calculate an upper bound for this, like for example
StackAnalyzer [25].

2.3.4 Synchronization primitives

To enable safe task interaction, FreeRTOS provides synchronization primitives. The only synchronization
primitive especially relevant for this report is the queue. A queue lets items be sent from one task to
another. If the length of the queue is greater than 1, multiple items can be in transmit at the same time.
Any task can send items to a queue with the xQueueSend API function, and any task can receive items
from a queue with the xQueueReceive API function. If a task tries to receive an item from an empty
queue it will be blocked until an item has arrived or until a given maximum block time has run out.
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2.3.5 Timer callbacks

In addition to tasks, FreeRTOS provides a secondary routine scheduling mechanism called software
timers. A software timer is a FreeRTOS object that is responsible for the execution of a timer callback.
A timer callback is a function created by the application writer that executes the code that needs to be
scheduled. Software timers can be created with the xTimerCreate API function. A software timer
can be configured to run once or to run periodically until it is stopped. When running periodically, a
period must be configured.

A timer callback is a more lightweight type of routine, as it doesn’t have its maximum possible stack
usage allocated for itself. Instead, all timer callbacks share the same allocated stack space, and only
one of them can use it at a time. But this also makes them limited, since they cannot be assigned
individual priorities, and if one timer callback hangs up, it will block all other timer callbacks at the
same time. Software timer scheduling is performed by a special FreeRTOS system task called the timer
task, and it is the timer task’s priority and maximum stack size that define the priority and maximum
stack size of every timer callback.

As timer callbacks are callbacks, they enforce a stricter programming pattern than tasks. Say a routine
A needs to wait for another routine B to send a value to a queue, if A is a task, A can simply do a
blocking API call to xQueueReceive and wait. If A is a timer callback, A must first check if there is
something in the queue, and if it is not, it needs to to exit, store necessary state outside of its stack
and check the queue again the next time it runs. It should be mentioned that since timers do run in a
task, it absolutely can do blocking API calls, but it is bad practice, since it will block all other timer
callbacks at the same times.

2.3.6 Non-RTOS real-time systems

This report might up until now have given the impression that utilizing an RTOS is an absolute necessity
when designing a real-time system. But this is by no means a universal truth, many well established
techniques for writing good embedded software without the use of an RTOS exist. If the system being
developed is simple, not using in RTOS might very well be the most appropriate solution [22, 26].
As we will see in Section 2.6, the present PS AF UcBoard software does not use an RTOS, and is
still capable of scheduling conceptually individual routines by periodically running callback functions
sequentially. However, in this work, the goal is to investigate how we can use an RTOS to enhance the
present system, and in this regard, investigating non-RTOS approaches is of little interest.

2.4 Control theory

In this section, we will give a brief introduction to control theory directed towards speed control of
a model car. Control theory and control engineering are huge fields, of which we will only scratch
the surface. We will have a highly practical view, focusing on what knowledge is needed to design a
simple speed controller for the PS AF UcBoard. We will start by introducing the general concept of a
control loop and then narrow it in for speed control. Then, we will describe the purpose and inner
workings of a feed-forward controller and a PI-controller, since these are the two standard controllers
we will use when implementing a speed controller on the PS AF UcBoard.
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Figure 2.2: A basic feedback loop.

2.4.1 A basic control loop

In its most basic sense, a control system is a system that controls a plant. Generally speaking, the
objective is to make some output, say y, behave in a desired way by manipulating some input, say u
[27]. Most control systems use a sensor to measure the plant output y, which gives us a sensor output
signal ym that is fed back to the controller, as shown in Figure 2.2. This is called a feedback loop. The
control system as a whole takes three inputs from the outside world – the reference or command input
yr, the plant disturbance d and the sensor noise n.

In control theory, there is an important distinction between process control systems, in which the goal
is to make the plant output y stay close to a constant reference value yr, and servomechanisms, in
which the goal is to make the plant output y follow a variable reference value yr. Whether the control
system to design is categorized as a process control system or a servomechanism has important impacts
on how the control system best can be designed [28].

2.4.2 Speed controller

Figure 2.3 shows a simplified diagram of a speed control system. It is a simple closed control loop
consisting of a motor, a speed sensor and a speed controller. The speed controller provides the motor
some input u. For our purpose, we will assume that u is a scalar drive value. The motor moves the car
and thus produces a speed v as an output. The speed is measured by a speed sensor and provided as a
feedback vm to the speed controller. The speed controller takes the requested speed vr as an input from
the outside world. The plant disturbance d and the sensor noise n, which were depicted in Figure 2.2,
are ignored for simplicity. A speed controller is a servomechanism, since vr is variable. For this reason,
we will from now on note vr as vr(t).

2.4.3 Feed-forward control

In servomechanisms, the largest impact on the system is usually the reference value. Therefore, it is
often beneficial to apply feed-forward of the reference value within the controller [28].
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Figure 2.3: Simplified diagram of a speed control system.
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Figure 2.4: Visualization of example feed forward control.
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In the case of a speed controller, we can calculate a feed-forward drive value uFF(t) from the currently
requested speed vr(t) by doing a linear interpolation of vr(t) against a finite set of N reference pairs,
each pair consisting of a speed Vn and a drive value Un for n ∈ {0 . . . N} like so:

uFF(t) = Un−1 +
Un − Un−1

Vn − Vn−1
· (vr(t)− Vn−1),

vr(t) ∈ [Vn−1, Vn⟩,
(2.2)

where Vn and Un are sorted in ascending order. A visualization of this is shown in Figure 2.4.

2.4.4 PI-controller

A PI-controller is one of the four most common forms of standard controllers. Standard controllers are
beneficial for constructing control systems, since they have wide-range tunable parameters and usually
give a satisfactory result [28].

A PI-controller is a controller consisting of a proportional and an integral term. A purely proportional
controller is a simple configurable amplifier, and is used to do linear compensation of the control error
e(t) = vr(t) − vm(t). The main goal of the integral term is achieve zero stationary error [28]. The
proportional term is given by

uP(t) = KP · (vr(t)− vm(t)), (2.3)

and the integral term is given by

uI(t) = KI ·
∫︂

vr(t)− vm(t)dt (2.4)

[29]. The proportional constantKP and the integral constantKI are tunable parameters. The resulting
drive value uPI is given by the sum,

uPI(t) = uP(t) + uI(t). (2.5)

2.4.5 Discrete-time PI-controller

While expressions in the continuous time domain are pretty to look at, they are unfeasible to implement
directly on a microcontroller. We need a way to express our controller algorithm with formulas that
can be computed in discrete time steps. To do this we can apply the trapezoidal integration rule on
uPI(t) [28, 29]. Let k ∈ {0,N} denote a time step in which the speed controller algorithm calculates
a new drive value, so that vm,k is the speed measured in time step k. The time steps occur with a
constant time interval TS, the sampling period. Then, the drive value to apply until the next time step
k + 1 can be expressed as

uPI,k+1 = KP · (vr,k − vm,k) +KI ·
∑︂
i≤k

(vr,i − vm,i) · TS. (2.6)
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Figure 2.5: Control structure for a combined feed-forward and PI speed controller.

2.4.6 Combined feed-forward and PI-controller

In servomechanisms it is often beneficial to combine the reference-value-adaptive properties of a
feed-forward controller with the disturbance resistance of a PI-controller [28]. This can be done by
simply adding the terms together, like so:

uFF+PI(t) = uFF(t) + uPI(t), (2.7)

which becomes

uFF+PI,k+1 = uFF,k+1 + uPI,k+1 (2.8)

in the discrete time domain. The full control structure for a combined feed-forward and PI speed
controller is shown in Figure 2.5.

2.5 Software evolution

The term software evolution is often used to refer to the continual development of software over longer
periods of time. The need for software to evolve is generally caused by several reasons. These reasons
include the need to correct and optimize the software as bugs and issues are detected, and the need to
adapt the software to a changing operational environment. The operational environment can change
either because the hardware on which the software runs changes, other physical components with
which the software interacts changes, or because the requirements for what the software should be
able to do changes [30].

Cloning or duplication of code, popularly called copy-pasting [31], is a common practice in software
development. But it is also considered a serious problem in industrial software [32, 33]. Adapted from
[33], we can sum up the problem of code cloning in the following way:

Code cloning is considered a serious problem in industrial software and it is suspected that many large
systems contain approximately 10% – 15% duplicated code. Code cloning generally leads to extra
maintenance overhead and risk. If a bug is identified within a piece of code that has been cloned, the
same bug will have to be fixed in every clone instance. This is not always a simple copy-paste operation,
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as the context or the clone itself can be modified. Bugs can also be introduced in the cloning process if
the programmer lacks a proper understanding of the original code and its context. But cloning can also
occur with good intentions, with regard to code understandability, evolvability, technology limitations
or external business forces. Firstly, duplicating code can be used to keep software architectures clean
and understandable, by keeping unreadable or complicated abstractions from entering the system.
Secondly, code that is abstracted to address two or more similar, but separately evolving requirements
may be difficult to modify. Thirdly, code can be cloned due to limited expressiveness in the programming
language, leading to systematic use of boiler-plated solutions. And lastly, cloning code is in many
situations faster than developing proper abstractions. External business forces may necessitate cloning
due to the need for a short time-to-market for a software product.

Cloning code and modifying it to address separately evolving requirements is called forking. Say, we
have a software A developed for a physical system A’. Then, a very similar system B’ comes into play
and needs a software similar to A, but adapted to the exact requirements for system B’. For solving this
problem it can be a quick and efficient solution to make a new software B as a fork of A. In the long
run this might or might not be a beneficial solution, depending on how the requirements for system
A’ and B’ evolve. If the 2 systems tend to follow the same path forward, aiming to meet the same
new requirements, maintaining the variants as separate forks is undesirable, as it introduces more
maintenance overhead. On the other side, if the requirements for system A’ and B’ evolve in different
directions, so new requirements for system B’ do not apply for system A’ and vice versa, the initial
attempts at keeping the 2 softwares as 1 might have been in vain, and the benefits of maintaining the
softwares as 1 do not outweigh the costs of dealing with more complex abstractions.

Parametrization by introducing configuration options can be used as a technique to refactor code
clones [34, 35]. A configuration option is conceptually a key-value pair, where the key represents the
configuration option’s name and the value is a choice made by a specific practitioner with a specific
use case for the software. Software configuration options can be stored in files, which are called
configuration files. Software configuration can occur at several stages, ranging from compile-time
configuration to run-time configuration. At which stage a configuration option is introduced has a
large impact on what the configuration option can do. For example, a configuration option that enables
or disables a complex feature at compile-time can have a big impact on the compiled program size and
performance, while a run-time configuration option doing the same cannot change the actual compiled
program and is more limited in this sense [34].

2.6 The ADS of the Project Seminar Autonomes Fahren

In this section we will describe the present ADS of the Project Seminar Autonomes Fahren (PS AF) at
the TU-Darmstadt, including its hardware, its software and speed control mechanism. It is purely a
description of the state of the ADS before any contributions from our work are applied.

The ADS of the PS AF possesses two computer systems; the On-Board Computer (OBC) and the
Microcontroller Board (UcBoard). While the UcBoard is a single-core microcontroller with a total of
80KiB of RAM, the OBC is a considerably more powerful Linux machine featuring 4 CPU cores and
8GiB of RAM [36, 37]. The OBC and the UcBoard communicate over a custom serial protocol through
a USB cable. Within the protocol, the OBC holds the role as commander, and the UcBoard holds the
role as worker. By commander/worker, we refer to the same type of relationship which is historically
referred to as master/slave in technical literature.
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Figure 2.6: Simplified overview of the physical components of a PS AF car and their interconnections.

A simplified overview of the physical components of a PS AF car and their interconnections is shown
in Figure 2.6. The OBC is responsible for reading and processing output from the camera, as this
involves a lot of image processing, which is way too resource intensive for the UcBoard. The UcBoard
is responsible of reading data from all other sensors; the Inertial Measurement Unit (IMU), Ultrasonic
Sensors (USes) and the hall sensor. The UcBoard also controls actuators; Light Emitting Diodes (LEDs),
the steering servo and the propulsion motor. The propulsion motor is operated via an Electronic Speed
Control (ESC).

There currently exist two slightly different car models used in the PS AF; model 1 and model 2.
Additionally, a car model 3 is currently in development. The model described above, and the model we
will generally refer to if not otherwise is specified, is model 1. Model 2, however, is for the most part
equal to model 1, but some aspects differ. For us, the most notable differences are:

• Model 2 uses an encoder as speed sensor instead of a hall sensor.

• Model 2 uses a different type of IMU.

• Model 2 uses a different type of Ultrasonic Sensors.

Model 3 will be mostly similar to model 2, the only interesting difference for our part is that it will
have a different motor, a Brushless Direct Current (BLDC) motor, and a dedicated motor controller
board with integrated speed controller, and therefore neither a hall sensor nor an encoder as speed
sensor, as the BLDC motor is orientation-aware and can report the driving speed on its own.

2.6.1 Serial protocol

The OBC and the UcBoard communicate over a custom serial protocol. The serial transfer speed is
configured to 921 600 bit/s and uses 8-bit ASCII encoding with one start bit, one stop bit, no parity
bits and no hardware flow control. This gives us a data transfer speed of 92 160 characters/s or
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92.16 characters/ms [38]. The OBC holds the role as commander and the UcBoard as worker, as the
OBC sends the UcBoard commands, which the UcBoard executes and responds to. A complete list of
all available commands with descriptions can be found in [39].

In principle all commands are structured so that they either set a value or get/retrieve a value. Set-
commands are prefixed by an exclamation mark (!), while get-commands are prefixed by a question
mark (?). For example, to drive forwards with a drive value of 500, the OBC sends the following
message to the UcBoard:

!DRV F 500

. Each command sent by the OBC should have a response from the UcBoard. Responses are prefixed
by a colon (:). For set-commands, the response is usually just the the value that was set or sometimes
even just :ok. For get-commands, the response contains the value that was read. For example, to
retrieve the current drive mode and value, the OBC sends the following message to the UcBoard:

?DRV

, and the UcBoard responds with

: F 500

. However, responses are not the only messages that the UcBoard can send to the OBC, it can also send
messages through output streams, most notable of which being the Data Acquisition Module’s (DAQ)
output stream.

2.6.2 UcBoard

The microcontroller on the UcBoard is an STM32F303VEmicrocontroller. It features an ARM Cortex-M4
32-bit CPU with 512KiB flash memory and 64KiB Static Random Access Memory (SRAM). Additionally,
it features 16KiB routine boosting Core Coupled Random Access Memory (CCRAM) [40]. This means
that CCRAM can be used by time critical routines to lower runtime, as CCRAM is faster than conventional
RAM. But the CCRAM also has some limitations, it is for example not accessible by the Direct Memory
Access (DMA) controller, so it can not be used for DMA interaction. Other hardware features of
interest include high precision hardware timers, Universal Synchronous and Asynchronous Receiver
and Transmitter (USART) controller, Serial Peripheral Interface (SPI) controller and Inter-Integrated
Circuit (I2C) controller.

Software

The UcBoard software is written in C without an RTOS, but utilizes officially provided drivers from ST
as a low-level interface to peripherals. Also without an RTOS, the software is capable of executing
several routines to perform all necessary functions. The routines can be categorized in the following
way:

• Motor controller – Responsible of low-level interactions with the ESC.

• Steering controller – Responsible of low-level interactions with the steering servo motor.
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• Voltage measurement – Measures voltage of the motor battery.

• Hall sensor – Calculates measured driving speed from hall sensor impulses.

• IMU – Interactions with the IMU.

• US – Interactions with Ultrasonic Sensors.

• DAQ – Implements the Data Acquisition Module (DAQ).

• CarUI – User interface of car (buttons and general-purpose LEDs).

• SYS LED – Makes sure the SYS LED blinks.

• Communication RX – Handle commands from the OBC.

• Communication TX – Transmit messages to the OBC.

Most routines are implemented as a systick callback, which is the UcBoard software’s abstraction of
a periodically scheduled routine, without relying on an RTOS. A systick callback is a function that is
called by the systick ISR. As explained in Section 2.2.5, the systick ISR is a periodically running function
that can be used as a basis for implementing periodic routines. The concept of systick callbacks is the
UcBoard’s way of of implementing periodic routines with the systick ISR as a basis. The routines that
are not implemented as systick callbacks are SYS LED, Communication RX and Communication TX.
SYS LED is implemented directly in the systick ISR itself, while Communication RX is implemented in
the serial reception ISR. Communication TX is implemented as a combination of the serial transmission
ISR and an infinite loop in the main thread. A major weakness of systick callbacks compared to
preemptively scheduled tasks in an RTOS is that all systick callbacks are called by the same function,
meaning that if one systick callback consumes a lot of processing time or even hangs up completely
by e.g. entering an infinite loop, the entire system is affected. With preemptive scheduling, if a
low-priority task hangs up, higher priority tasks can still run without interruptions.

It should be noted that the motor controller is not the same as the speed controller. The term ”motor
controller” always refers to the routine in the UcBoard software that is responsible for motor interactions.
The term ”speed controller” always refers to a software algorithm that is used to control the speed by
continuously reading speed measurements and output drive values for the motor. In the present PS AF
ADS, the speed controller algorithm runs on the the OBC, while only the motor controller runs on the
UcBoard. In this work, we will implement a new speed controller algorithm to run on the UcBoard.
This speed controller will be executed by the motor controller routine, so at some point, they might
seem to be the same thing, but the terms will still refer to two fundamentally different concepts.

To deal with differences between car model 1 and 2, there currently exist two different variants of the
UcBoard software. In particular, the software for car model 2 is a fork of the software for model 1. As
described in Section 2.5, forking a software to address a different set of requirements is usually a quick
and efficient solution as opposed to introducing more complex abstractions into the original source
code to be able to address both sets of requirements with the same code. Forking is especially paying
off when the requirements for the two systems diverge later in the development process. However, in
the case for the PS AF model cars, the two different systems, model 1 and model 2, aim to serve the
same purpose, but model 2 has some hardware features that model 1 does not have and vice versa.
Building a model car with physical components has a significant cost, which means that the older
model 1 cars are still valuable for testing and development. This implies that there is also a need to
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maintain the software variant for car model 1, so forking might not be an ideal solution in the long
run.

2.6.3 Speed control loop

A diagram of the full speed control loop of a PS AF model car is shown in Figure 2.7. The speed
controller is implemented on the OBC. The speed controller takes two inputs, the requested speed vr
and the measured speed vm. The speed controller’s output is a drive request, consisting of a driving
direction and a drive value u. The UcBoard software executes the drive request by applying a Pulse-
Width Modulated (PWM) signal uPWM to the ESC. The PWM signal has a period of 20ms and a pulse
width TP given by

TP = 1.5ms+∆TP,

∆TP ∈ [−0.5ms, 0.5ms].
(2.9)

A visualization of one period of the PWM signal when driving backwards or breaking is shown in Fig-
ure 2.8. ∆TP represents the pulse width deviation from the neutral position, as TP = 1.5ms corresponds
to a speed of 0mm/s. A ∆TP < 0 corresponds to forwards drive and a ∆TP > 0 corresponds backwards
drive or breaking. The ESC is calibrated with a dead zone, so that any ∆TP ∈ [∆TP,NFE,∆TP,NBE]
(neutral-forward ended and neutral-backward ended) is interpreted as neutral.

Now, the conversion from drive value u to pulse width deviation ∆TP is a piecewisely linear mapping,
defined differently for the two possible driving directions. For forwards drive, the mapping is from
[1, 1000] to [∆TP,NFE,−0.5ms] for positive drive values and from [−1,−500] to [∆TP,NBE, 0.5ms] for
negative drive values. For backwards drive, the mapping is from [1, 500] to [∆TP,NBE, 0.5ms].

The observant eye will see that the same range of ∆TP values is used for backwards drive as well
as for breaking. However, there is a significant difference between the two driving modes: When
∆TP > ∆TP,NBE, the ESC will only make the motor drive backwards if backwards drive has been
unlocked since the last time it was driving forwards. Backwards drive gets unlocked whenever the
speed is 0mm/s while ∆TP is neutral (∆TP,NFE < ∆TP < ∆TP,NBE) for 100ms continuously. It is the

Speed controller Motor
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Electronic speed

control (ESC)

To speed

To PWM signal

OBC UcBoard

Figure 2.7: Diagram of the PSAF speed control loop (for car model 1).
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Figure 2.8: Visualization of one period of the PWM signal when driving backwards or breaking.

UcBoard software’s task to keep track of whether backwards drive is unlocked in any situation and
perform this unlocking process when necessary [39].

The physical PWM signal uPWM is generated by a hardware timer within the microcontroller. uPWM
propagates to the ESC, which outputs the direct motor input uM. Now, the motor makes the car
accelerate and decelerate, a process resulting in a measurable speed v. The speed is measured by
a speed sensor. In Figure 2.7, this is a hall sensor, which is the case for car model 1. As mentioned
previously, in model 2, an encoder is used instead, and for model 3 the motor and entire speed control
loop is about to totally change. Back on the OBC, the hall sensor output ∆thall is converted to a speed
measurement vm for the speed controller.

2.6.4 BLDC motor controller

In this section we will describe the interface between the UcBoard and the BLDC motor controller. As
previously mentioned, this is the motor that will be used on car model 3 and is neither present on
car model 1 nor on model 2. The motor controller is a dedicated Printed Circuit Board (PCB) and is
connected to the UcBoard over an SPI bus where the UcBoard is bus master. The UcBoard interacts
with the BLDC motor controller by writing and reading registers. A full overview of available registers
and their functions is described in [41]. An important aspect of the BLDC motor controller compared
to the ESC used in car model 1 and 2 is that with the BLDC motor controller, the exact requested
driving speed in mm/s can be written to a register, and the motor controller will monitor the actual
speed and keep it close to this value. With the ESC, the inputted PWM does not describe the exact
driving speed, but rather how much force to apply, which leaves a need to monitor and control the
exact speed in an external speed control loop.
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2.7 Related work

In this section we will take a look at similar research projects to the TU-Darmstadt’s PS AF, including
other projects targeting the Carolo-Cup, as well as similar applications of RTOSes and FreeRTOS in
particular.

In the 2013 project course for the second year students from the bachelor program ”Software Engi-
neering and Management” at the Chalmers – University of Gothenburg, a self-driving model car was
realized over a period of three months, based solely on Commercial-Off-The-Shelf (COTS) hardware
and firmware components [42]. Just like in the PS AF, the architecture of the Chalmers car contains
two separate computer systems connected by USB, a microcontroller board, in this case a STM32F4
Discovery Board, for controlling sensors and actuators, and a more powerful Linux machine in charge
of high-level tasks including image processing and path planning. The software for the Chalmers
microcontroller board uses the RTOS ChibiOS/RT [43] for scheduling and interfacing the steering and
propulsion motors.

In a work by Perciński from 2018, the architecture of the Warsaw University of Technology’s competition
car for the Carolo-Cup of the same year is described [44]. Also here, computations are split across a
microcontroller, in this case an STM32F7 and a more powerful Linux machine. However, interestingly
enough, in the Warsaw car, the microcontroller takes the commander role, while the Linux machine
acts as a worker, interfacing the camera and taking care of image processing. The Warsaw car utilizes
FreeRTOS for priority-driven preemptive scheduling.

The new backbone of the 6th generation of the University of Magdeburg’s Carolo-Cup car is described
in the bachelor thesis of Tim Wiesner and Maximilian Grau [45]. This car has a highly modular
design, featuring nine PCBs with a total of five STM32F103RE microcontrollers. Also these micro-
controllers’ software utilizes FreeRTOS for priority-driven preemptive task scheduling as well as task
synchronization.

While both [44] and [45] claim to utilize FreeRTOS, none of these works evaluate how it actually
affects the system’s robustness or responsiveness. This work, on the other hand, aims to evaluate in
detail how the application of an RTOS impacts the robustness and responsiveness of the microcontroller
it runs on.

24



3 Strategy

In this chapter, we present our developed strategies for implementing and verifying our solutions for
the UcBoard software. In Section 3.1, we describe methods needed when applying an RTOS to a
non-RTOS codebase. In Section 3.2, we derive a suitable low-level speed controller algorithm for the
UcBoard. Lastly, in Section 3.3, we will derive a strategy for merging the two UcBoard software variants
into the same source code by using configuration files. In addition, in Section 3.4, we will derive a set
of real-time constraints for the UcBoard software based on the system’s physical environment, so that
our solutions can be evaluated for their ability to meet those constraints.

3.1 Routine conversions

In this section, we will describe two methods for converting routines between different routine types.
The first method converts a systick callback, a function called directly by the systick ISR, to a FreeRTOS
timer callback. The primary benefit of this conversion is that it brings the routine out of the ISR priority
space and into FreeRTOS’ priority space, which allows its priority to be superseded by high priority
tasks. However, it does not give the routine free priority assignment, since all timer callbacks have the
same priority. If we want the routine to get the same individual priority assignment capabilities, as a
task, we can use the second method described here to further convert it to a task.

3.1.1 Convert a systick callback to a FreeRTOS timer callback

As we saw in subsubsection 2.6.2, in the present UcBoard software, most routines are implemented as
systick callbacks. In principle, we can describe the exact routine of a systick callback by its callback
function C and its callback period T . The same is true for FreeRTOS timer callbacks. This means that
we can implement the same routine by executing C with a period T with a FreeRTOS software timer
instead of calling it manually in the systick ISR. The routine will now execute with the priority of the
timer task. If individual priority assignment is needed, it can be further converted to a task with the
method described in Section 3.1.2.

3.1.2 Convert a FreeRTOS timer to a FreeRTOS task

We will now present a generic method to port a FreeRTOS timer to a FreeRTOS task. This can be
useful if a routine that is currently implemented as a timer callback is considered important and should
be given a higher (or lower) priority than the other timer callbacks. While FreeRTOS timer callbacks
actually can have a variable request period, this approach is limited to fixed-period callbacks only.
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Given we have a FreeRTOS software timer executing the callback function C at a fixed period T , we can
port the timer to execute C in its own task as shown in Algorithm 1, where TaskForTimer is executed
as a FreeRTOS task. This is the task version of our timer. In this way, C is executed with the priority of
this task, instead of the priority of the timer task. If TaskForTimer is given a higher priority than the
timer task, the scheduler will, if needed, preempt the timer task for the benefit of C whenever it is
time for C to execute. The downside is of course that C is now executed in a dedicated task which
requires a dedicated execution stack.

Algorithm 1 A task dedicated to execute a timer callback C with a fixed interval T .
procedure TaskForTimer(C, T )

loop
Delay T
C()

end loop
end procedure

The proposed method is a very simple approach that does not require any adaptions to the implementa-
tion of the callback function C. However, in many cases, a more tailored approach would be beneficial,
e.g. if C only needs to do some processing when an item can be received from a queue, the delay could
be replaced by a blocking call to xQueueReceive and the code that should only run after an item is
received from the queue can run directly afterwards. This would also have the benefit of making the
queue reception event driven, rather than the previous polling-driven approach, which means that
an item from a queue can be received and further processed immediately and no processing time is
wasted on polling when there is nothing there.

3.2 Speed controller

In this section, we describe the speed controller algorithm we will implement on the UcBoard. As
explained in Section 2.4.6, a combined feed-forward and PI-controller is often beneficial for servomech-
anisms, such as a speed controller. The mathematical model and control theory behind such a speed
controller is already described in Section 2.4.6. The full control structure for the speed controller is
shown in Figure 3.1. The speed controller is to be implemented on a microcontroller, and thus has to
be evaluated in discrete time steps. We therefore propose using a discrete-time combined feed-forward
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Feed-forward

Figure 3.1: Control structure for speed controller.
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and PI-controller as our speed controller as described in Section 2.4.6. The drive value to apply for
time step k + 1 is then given by

uk+1 = Un−1 +
Un − Un−1

Vn − Vn−1
· (vr,k − Vn−1)

+KP · (vr,k − vm,k) +KI ·
∑︂
i≤k

(vr,i − vm,i) · TS

vr(t) ∈ [Vn−1, Vn⟩,

(3.1)

where Un and Vn for n ∈ {0 . . . N} are the reference drive values and speeds, vr,k is the requested
speed in time step k, vm,k is the measured speed in time step k, TS is the sampling period, KP is the
proportional constant and KI is the integral constant. The reference drive values, TS, KP and KI are
application specific tuning parameters. Their optimal values are highly dependent on the specific case
to control. This means we will consider tuning a part of our experimental setup, and the final value an
experimental result.

3.3 Merge UcBoard source code variants

To merge the two variants of the UcBoard software source code, we will define a set of configuration
options to store in different two configuration files, one for each car model. The configuration options
must be widely enough configurable to cover all functionality currently provided by the car model 1
software as well as by the car model 2 software. Then we will modify the source code for car model
1 to use these configuration options instead of the current hard-coded values. This modified version
of the car model 1 software source code will be the unified source code for the software for both car
models. The modification of the car model 1 software involves to a large extent applying existing
modifications in the car model 2 software. As described in Section 2.5, compile-time configuration
options are generally more flexible than run-time configuration options, since they can modify bigger
aspects of the software. For this application, the fact that the software must be re-compiled and the
new version must be flashed onto the UcBoard when configuration options are changed is not a major
drawback, as the people that will eventually change the configuration options in the future will not be
non-technical consumers, but rather researchers and students at the TU-Darmstadt.

3.4 Deadlines

In this section we will derive a set of real-time constraints, resulting in two deadlines, for the UcBoard
software on the PS AF model car. These deadlines are not derived from a formal specification of the
car or the UcBoard, but rather from common sense. The purpose of this section is not to derive any
formally required real-time deadlines for the UcBoard, but rather to establish a meaningful real-time
context in which the UcBoard can be seen and evaluated.
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3.4.1 DRV reaction time

The first deadline we derive is how quickly the UcBoard has to change the motor’s PWM signal after
receiving a DRV command. The faster the car is driving, the more crucial it is to react quickly to avoid
potential crashes.

We can define a constraint that the UcBoard should never let the car drive longer than a reaction
distance sD, where D is short for ”deadline”, after a DRV command is received before the motor’s PWM
signal is updated accordingly. This gives a reaction time r = sD

v , where v is the current speed of the
car. Since the speed is constantly changing, we must require the maximum reaction time, or deadline,
to be rD = sD

vtop
, where vtop is the top speed of the car, to make sure the requirement is met for every

possible speed. For example, if we require sD = 100mm, and assume vtop = 2500mm/s, then we get
rD = 40ms.

If the UcBoard is not able to meet this deadline, it can in the worst case can make the model car crash
into an object it otherwise would not crash into. As the entire purpose of the ADS is to navigate the
car through a track without crashing, we can consider a crash a complete system failure. Due to this, if
the UcBoard fails to meet a single DRV reaction time deadline, it might render the UcBoard completely
useless, meaning that the DRV reaction time is a hard real-time constraint.

3.4.2 Response time

Partly because it important for the OBC to get timely responses to know what is going on and partly
because it is a lot more practical to measure, we will to a large extent use the response time R as an
estimator for the reaction time r of the respective command. The response time of a command is the
time it takes from the command is received by the UcBoard until the response is returned. This metric
is usable for all commands since all commands should always return a response. Depending on the
case, this may or may not be a good estimator. For the cases we will study, the causes for differences
in the reaction time is not the command processing and execution itself, but rather other tasks that
occupy CPU time. Dependent on how the command is implemented, the requested action is sometimes
guaranteed to be completed before the response is sent. For such commands, the response time is an
upper bound for the reaction time (R > r).

As a stand-alone real-time requirement, the DRV response time is rather soft, as the only information
being replied back after a DRV command is a confirmation that the order was received. This is of course
dependent on how the OBC’s algorithm is implemented in regard to dealing with late responses from
the UcBoard. But the response time for another command could be a rather hard real-time constraint,
if the response contains vital information the OBC actually needs for navigation in real-time.
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4 UcBoard software implementation

In this chapter, we describe the implementation of our solutions for the UcBoard software. Firstly,
in Section 4.1, we describe how we bundle the FreeRTOS source code together with the UcBoard’s
application source code. In Section 4.2, we describe two alternative ways to implement the UcBoard
software’s routines with FreeRTOS tasks and timer callbacks. In Section 4.3 we will describe how the
source code variants are merged by using configuration options. The implemented interface to the
BLDC motor controller is described in Section 4.4, in Section 4.5 we describe the implementation of
the new motor controller, and in Section 4.6, the new speed controller. Our implementation will be
compared to the present solution in the PS AF ADS where this is relevant.

An outline of the file structure for the UcBoard software source code can be found in Section A.1. The
full source code can due to copyright reasons not be published, but an extract of interesting sections
contributed by this work alone is given in Section A.3.

4.1 Bundle FreeRTOS together with the application source code

In our implementation, we bundle FreeRTOS together with the application source code directly, that
is, the official FreeRTOS kernel source code is cloned into the FreeRTOS-Kernel subdirectory in the
application source code. Then all relevant source files are added to the compilation recipe. Another
opportunity would be to use a program called STM32 CubeMX to bundle the FreeRTOS source code
automatically together with the application source code through the Common Microcontroller Software
Interface Standard (CMSIS) RTOS API version 2 [46] like it is done for the microcontroller software
for the 6th generation of the Carolo-Cup car of the University of Magdeburg [45]. A visualization of
how the application source code is compiled and linked together with FreeRTOS in the two cases is
shown in Figure 4.1.

We choose to bundle FreeRTOS with the application source code directly because it gives us more
control of the code being added. Downloading a piece of open source software and adding it to the
compile recipe does not require much effort, using an external tool to automate this is for the most part
unnecessary. A major difference between bundling directly and using CubeMX is that with CubeMX,
FreeRTOS is bundled through the CMSIS RTOS API, meaning that the API functions to call in the
application code will have different names and potentially use different types and parameters than
when the FreeRTOS API is used directly. The benefit of using the CMSIS API is that it is a standard
API that can be used with a variety of different RTOSes, while the FreeRTOS API is only applicable for
FreeRTOS. This makes an application written with the CMSIS RTOS API easier to adapt to a different
RTOS if desired [47]. On the other hand, this leads to an extra layer of abstraction and reliance on free,
but not open-source software (CubeMX) for source code management. Since the main purpose of the
PS AF is to provide an education platform for students, rather than an industry-standard autonomous
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Figure 4.1: Visualization of how FreeRTOS is bundled with the application source code directly (a)
and with the CMSIS RTOS API (b).

model car, it will likely not be relevant to replace FreeRTOS with a commercial RTOS anytime in the
near future. Therefore, bundling FreeRTOS directly is seen as the most appropriate solution for the PS
AF UcBoard software.

4.2 Routine implementation

We will utilize the methods from Section 3.1 to convert the routines of the UcBoard software from their
present non-RTOS implementation to a suitable RTOS-based counterpart. The routines in question
are those that were described in subsubsection 2.6.2. We implement two slightly different routine
configurations to evaluate against the present non-RTOS UcBoard software. The first, configuration
A, using less memory than the other, configuration B, which should have more robust reaction and
response times. The only point in which they differ is whether the communications routines are
implemented as routines or tasks. We want to evaluate these two configurations to see if the choice
of implementing a routine as a timer callback or task actually has implications for it’s ability to run,
which we expect it to.

4.2.1 Configuration A

Routine configuration A uses only one application task in addition to the two system tasks. The only
routine being implemented as a task in configuration A is the motor controller. The remaining 10
routines are implemented as software timers. The configuration is shown in Table 4.1. The routines
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Table 4.1: Routine configuration A.
Routine Type of implementation Priority
Motor controller Task 4
Steering controller Timer callback 2
Voltage measurement Timer callback 2
Hall sensor Timer callback 2
IMU Timer callback 2
US Timer callback 2
DAQ Timer callback 2
CarUI Timer callback 2
SYS LED Timer callback 2
Communication RX Timer callback 2
Communication TX Timer callback 2

are sorted by decreasing priority. The system tasks are not listed, since they are not routines as seen
from the application’s perspective. For the timer callbacks, the priority of the timer task is indicated as
the timer callback’s priority. Figure 4.2 shows all FreeRTOS tasks in the system and all timer callbacks
as functions called by the timer task. Since most routines, including the communication routines, are
implemented as timer callbacks, we should expect similar response times to the present non-RTOS
solution, as the communication routines are on the critical path of the response time of all commands.

The reasoning for why specifically the motor controller is implemented as a task is explained in
Section 4.5. In the microcontroller software for the Warsaw University’s Carolo-Cup 2018 competition
car, motor control is not implemented as a dedicated task, but instead steering is. In our case, the
steering controller is directly ported from a systick callback in the current non-RTOS UcBoard software,
which means that it would require more rework to utilize the FreeRTOS API. However, porting it to a
dedicated, as explained in Section 3.1, would let us assign the steering controller a higher priority
than the other timer callbacks, giving it a better chance of running when the system is overloaded.

4.2.2 Configuration B

Routine configuration B uses three application tasks in addition to the two system tasks. The routines
implemented as tasks in configuration A are themotor controller, communication RX and communication
TX. The remaining eight routines are implemented as software timers. The configuration is shown in
Table 4.2. Like in Table 4.1, routines are sorted by decreasing priority and system tasks are not listed.
For the timer callbacks’ priority, the priority of the timer task is listed. The communication tasks are
given high priorities to increase the robustness of commands’ response and reaction times, since they
are both on the critical of the response time of all commands. Communication RX is also on the critical
path of the reaction time of all commands, and has therefore a priority of 9, while communication
TX only has 8. Figure 4.3 shows all FreeRTOS tasks in the system and all timer callbacks as functions
called by the timer task.
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Car UI systick (10 ms)
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Communication TX systick (1 ms)

LED_SYS toggle (500 ms)

Task Callback function (period)

Figure 4.2: FreeRTOS tasks and timer callbacks in configuration A.

Table 4.2: Routine configuration B.
Routine Type of implementation Priority
Communication RX Task 9
Communication TX Task 8
Motor controller Task 4
Steering controller Timer callback 2
Voltage measurement Timer callback 2
Hall sensor Timer callback 2
IMU Timer callback 2
US Timer callback 2
DAQ Timer callback 2
CarUI Timer callback 2
SYS LED Timer callback 2
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Figure 4.3: FreeRTOS tasks and timer callbacks in configuration B.
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4.2.3 Task stack sizes

To get a rough idea of how large stack a task needs, we use the script analyze_stack_usage.py, which
prints an overview of the functions with the highest stack usage. The script simply extracts the stack
usages of functions as reported by the compiler and does not take into account the stack usage of other
functions called by the function in question. Then we apply our knowledge about which functions are
used by which tasks to select the stack size to allocate for each FreeRTOS task. This is not an ideal
solution, finding an exact upper bound using a more sophisticated tool like StackAnalyzer would have
been more beneficial, but the time did not allow for that in this work.

4.3 Merge source code variants

As described in Section 3.3, the UcBoard source code variants for the different car models are merged
by defining and using a set of configuration options. As the UcBoard software is written in C, and C has
a powerful preprocessor macro system, we can use this for realizing compile-time configuration options
for the UcBoard software. In the finally resulting joint codebase, we can store configuration files for
both cars beside each other in a directory, specifically, src/config. The config options can be imported
in source files by including the main config file, config.h. config.h again includes config options from a
car-specific configuration file. By changing which car-specific configuration file is included in config.h,
one can change which car-specific configuration file is included in all source files. The implemented
configuration options with their configured values for car model 1 can be found in Section A.3.2, and
for car model 2 in Section A.3.4. A configuration file for car model 3 will at some point need to be
added, but that is beyond the scope of this work.

4.4 BLDC motor interface

A higher-level interface to the motor controller board for the BLDC motor is implemented in the source
file bldc.c. This interface provides a function bldc_setTargetVelocity which can be used by the
motor controller to update the target velocity of the speed controller. To do anything else, like e.g.
configure parameters for the speed controller of the BLDC motor controller, the BLDC command added
to the serial protocol can be used by the OBC to write or read the BLDC motor controller’s registers
directly.

4.5 Motor controller

The motor controller routine is implemented as a FreeRTOS task both in routine configuration A and
in routine configuration B. As we will see, the motor controller implementation can be significantly
simplified by having the ability to pause for a while while preserving the execution stack.

The entrypoint of the motor controller is the function task_motorController (carbasicfcts.c). This
function runs an infinite loop that starts each iteration with receiving a request from the drive request
queue. If the drive request queue is empty, calling xQueueReceive will block the task until a request

34



has arrived or until the specified timeout has run out. If the speed controller is running, the timeout is
set equal to the sampling period TS. In this way, processing time required is minimized, as it does not
spend processing time on repeatedly checking if there is a new request, but rather waits for FreeRTOS
to unblock it when something can be received from the queue. Except for when the speed controller is
running, since it then has to execute the speed controller algorithm at a steady rate.

The drive request is received as a DriveModeValue_t structure. As shown in Listing 4.1, it consists
of a drive mode and a value. The drive mode is an enumerated type which tells whether to apply the
value directly as TPWM, as a forwards or backwards drive value u or as a cruise speed vr for the speed
controller. Storing these values in a structure is necessary to pass them together through a queue.

Listing 4.1: The enumerate type EnDrvMode_t and the structure type DriveModeValue_t.
1 typedef enum EnDrvMode_ {
2 DRVMODE_OFF,
3 DRVMODE_FORWARDS,
4 DRVMODE_BACKWARDS,
5 DRVMODE_DIRECT,
6 DRVMODE_RC,
7 DRVMODE_CRUISE,
8 } EnDrvMode_t;
9

10 typedef struct {
11 EnDrvMode_t eMode;
12 int32_t iValue;
13 } DriveModeValue_t;

If the drive mode is DIRECT, the function motor_controller_setPwm is used to set TPWM directly.
If the drive mode is managed (either FORWARDS or BACKWARDS), the function
motor_controller_managedRequest is used to handle the managed request. If the drive mode
is CRUISE, the function motor_controller_cruiseRequest is used to handle the cruise request.
These three request types are hierarchically ordered into distinct abstraction levels. Internally,
motor_controller_cruiseRequest generates a managed request and calls
motor_controller_managedRequest to execute it, and
motor_controller_managedRequest calls motor_controller_setPwm internally to apply
values for TPWM. A call graph for this is shown in Figure 4.4. This is a good way of structuring code,
since the logic for setting PWM value directly is also needed for managed requests and cruise requests,
and in this way the same logic exists only one place in the code. In comparison, in the present UcBoard
software, the entire motor controller code is contained within one function. But here, there is no speed
controller, and thus no ”cruise” drive mode, leading to only two possible abstraction levels for a drive
request. The current implementation does not use a significant amount of code duplication to get
everything into one function, but achieving this gets exponentially more complex as the number of
drive request abstraction levels grows.

The motor controller implementation can be simplified by having the ability to pause while preserving
the stack at three particular occasions. When changing drive direction from forwards to backwards,
the motor controller has to wait 100ms in neutral for the ESC to unlock backwards drive, as explained
in Section 2.6.3. To make sure the car is standing still before this happens, it should brake for 1.5 s.
Breaking until the measured speed is 0 would be a more sophisticated option, but it is more complex,
and will face issues when relying on measurements from the hall sensor, since a hall sensor stops
producing measurements when the car stops. After the motor is powered on, the motor controller
should wait 1.5 s before applying the requested drive value, because the motor needs some time from
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task_motorController() motor_controller_cruiseRequest()

motor_controller_managedRequest()

motor_controller_setPwm()

Figure 4.4: Motor controller call graph.

it is powered on until it is ready. When the motor controller is implemented as a task, it can simply use
the blocking FreeRTOS API function vTaskDelay in these situations, and the task will be blocked for
the specified amount of time. If the motor controller was implemented as a timer callback, it would
require dedicated logic to store necessary state outside the stack and repeatedly increment a counter
until it can proceed as explained in Section 2.3.5. This is what the present non-RTOS motor controller
does when changing driving direction, and it is a major obstacle for good code readability.

If the configuration option CONFIG_MOTOR_TYPE_BLDC is set to 1, the behavior is a bit different, as it
means that the car model used has a BLDC motor managed by a BLDC motor controller. In that case, the
previously described function bldc_setTargetVelocity is used instead of the recently described
motor_controller_cruiseRequest for drive mode CRUISE. If the drive mode is DIRECT,
FORWARDS or BACKWARDS, the request is ignored.

4.6 Speed controller

The speed controller algorithm is described in Section 3.2. The algorithm is implemented by the
function motor_controller_cruiseRequest, which is called once per time step by the motor
controller task. The calculation of u as described in Equation 3.1 is performed by the function
cruise_control_getNewDrvModeValue. For a time step k, the function requires two arguments,
the measured speed of the car, vm,k, and the requested speed, vr,k. The function returns the drive value
uk+1 to apply until the next time step as a DriveModeValue_t structure.
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5 Experimental setup

In this chapter, we describe the experimental setup used to evaluate our solution. The results from
these experiments are presented in Chapter 6. In Section 5.1, we describe how we do response time
measurements, and in Section 5.2, we describe the tuning of the feed-forward reference values and
PI-controller constants for the speed controller.

5.1 Response time measurements

As a metric for the robustness of the UcBoard software, we want to measure the response time R
of the DRV command when the UcBoard is under heavy load. This means we need a reliable way
to apply a computational load that is heavy enough to significantly affect the response time of the
DRV command. By abusing the existing functionality of the UcBoard through e.g. activating a lot of
background tasks and at the same time spam it with requests, the system might get overloaded, and we
can see a drop in response time for certain commands. Unfortunately, the present UcBoard software is
well designed and we were not able to overload it enough to make a significant impact. Therefore, we
will instead implement an artificial heavy operation in the UcBoard’s software on purpose to consume
computational resources.

5.1.1 Artificial heavy operation

To overload the UcBoard software, we will use LED A. In detail, each time LED A is powered on, an
artificial heavy operation is performed. The operation consists of writing the integer value 42 to a
variable foo a large number of times N . The operation is performed by the CarUI routine, and not
the Communication RX routine, since we would like the operation to run in the background after the
response for powering the LED on is given. N = 2000 000 was found to be a reasonable value, making
the operation take approximately 500ms.

The implementation code for the heavy operation is shown in Listing 5.1. The code is to be added to
the beginning of carui_do_systick_10ms (carui.c). The variable s_bDelayDone ensures that
the operation only happens once each time the LED is powered on.

Listing 5.1: Artificial heavy operation to run when LED A is powered on.
1 static bool s_bDelayDone = false;
2 if (f_aNewLedSeq[0].mode == LEDMODE_ON) {
3 if (!s_bDelayDone) {
4 volatile int foo;
5 for (uint64_t i = 0; i < 2000000; i++) {
6 foo = 42;

37



7 }
8 s_bDelayDone = true;
9 }

10 }
11 else {
12 s_bDelayDone = false;
13 }

5.1.2 Automated measurement script

A Python script drv_response_time (automate.py) is implemented to automate the experimental
measurement process. It performs the following procedure 50 times:

1. Select a random delay value d ∈ [0.1, 1].

2. Open a serial connection to the UcBoard.

3. Reset UcBoard software.

4. Drive forwards with a drivevalue of 300.

5. Wait 2 s.

6. Power on LED A.

7. Wait d.

8. Brake.

9. Look through the serial response file and find the measured response time Rm for the brake
command.

10. Append d and Rm to a CSV file.

The UcBoard should return a response to every command. To make sure the UcBoard is ready,
drv_response_time always waits for the response before going further. This means that the delay
d is defined from the response for powering on LED A is received until the command to brake is sent.

5.1.3 Applicability of response time as estimator for reaction time

How applicable the response time R is as an estimator for the reaction time r for the DRV command
turns out to be dependent on the routine configuration. We will now explain why.

For the DRV command, actuator input is applied by the motor controller routine and not directly by the
communication RX routine. But in routine configuration A and B, the motor controller is a dedicated
task which uses a blocking API call to fetch drive requests from the drive request queue. In configuration
A, the motor controller also has higher priority than the communication RX routine, which means
that when communication RX pushes a request to the drive request queue, it will immediately be
preempted by the scheduler until the motor controller is done processing it. In routine configuration A,
the response time R is therefore an upper bound for the reaction time r. For routine configuration B,
however both communication RX and TX have higher priority than the motor controller, which means
that the response can be sent before actuator input is applied. For the current UcBoard software it is
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a different story, but since the motor controller only polls for new requests once every 1ms and the
communication TX polls continuously, neither here is R an upper bound for r.

However, in all cases the heavy operation runs in the CarUI routine, and the CarUI routine is in none
of the cases able to block the motor controller from running without also blocking communication
TX from running. This means that as long as the heavy operation in the CarUI is the most significant
contributor to system overload, the response time R is still a decent estimator for the reaction time r.

5.2 Speed controller tuning

In this section, we will describe how we tune the application specific parameters of the speed controller,
Un, Vn ∀ n ∈ {0 . . . N}, TS, KP and KI. We will firstly undertake the feed-forward reference values
Un, Vn ∀ n ∈ {0 . . . N} in Section 5.2.1, and then the PI-controller parameters TS, KP and KI in
Section 5.2.2.

5.2.1 Tune feed-forward reference values

Good feed-forward reference reference values, Un, Vn ∀ n ∈ {0 . . . N}, can quickly be found exper-
imentally for small values of N by conducting a practical experiment: We rig up a model car with
the UcBoard, place it on the floor and connect to the serial interface over bluetooth from a Personal
Computer (PC). Then we let the car drive around in a circle with different drive values and record
the measured speed. In particular, we apply N different drive values Un ∀ n ∈ {1 . . . N} and measure
their equilibrium speeds. The script find_feed_forward_values (automate.py) is implemented
to automate this process on the PC. This is done by repeating the following steps for all n ∈ {1 . . . N}:

1. Setup the DAQ to log hall sensor time deltas over the serial protocol.

2. Apply Un as the car’s drivevalue.

3. Wait 15 s.

4. Stop DAQ logging and brake.

5. Calculate the average speed Vn the last 5 s.

6. Append Un and Vn to a CSV file.

As for the selection of values for N and Un ∀ n ∈ {1 . . . N}, we will use all drivevalues Un ≥ 200 that
are divisible by 100, for both driving directions. As the maximum drive value is 1000 for forwards
drive and 500 for backwards drive, this gives us a total of N = 13 repetitions of the steps above. We
expect the distribution of Un, Vn pairs to be mostly linear, which means that N = 4, giving us two
pairs in each driving direction would in theory be satisfactory. N = 13, however, gives us a better
margin to cope with minor non-linearity. Additionally, the drivevalue 0 is for all purposes expected
to have an equilibrium speed of 0mm/s, so this is also added to the results, without going through
the above mentioned steps. This gives us in total N = 14 drive value/equilibrium speed pairs for the
speed controller. In addition to producing a CSV file, find_feed_forward_reference_values
also generates .h file containing C macros for the UcBoard software config file. This simplifies the
process of updating the feed forward reference values in the UcBoard software in the future.
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5.2.2 Tune PI-controller parameters

[28] gives a profound introduction to theory and systematic rules for PI-controller tuning. However,
we will not apply any of this in this work, as the main motivation for the speed controller is that the
OBC’s interface to car model 1 and 2 achieves compatibility with the next generation of PS AF model
cars. A solution providing ”good enough” performance is perfectly satisfactory. For this reason, we will
take a simple try-and-observe approach, by observing the impulse response of the speed controller for
a limited set of parameter values.

In a similar fashion as for finding feed forward reference values, we measure the final impulse response
of the speed controller by driving the car and measure speed through the DAQ over the serial protocol.
The procedure is as follows for a target speed vr:

1. Setup the DAQ to log hall sensor time deltas over the serial protocol.

2. Apply vr as the speed controller’s target speed.

3. Wait 10 s.

4. Stop DAQ logging and brake.

5. Write measured speed values with timestamps to a file.

The measured impulse response is specific to given values of the parameters TS, KP and KI. We
ended up measuring the impulse response for 56 different combinations of KP and KI, which are
all KP ∈ {0, 50, 100, 200, 500, 1000, 2000} (m/s)−1 and all KI ∈ {0, 5, 10, 20, 50, 100, 200, 500} m−1. To
limit the extensiveness of our speed controller evaluation, we did not test multiple values of TS, and
went with 50ms. This is a reasonable value, since the ESC is controlled by a PWM signal with a period
of 20ms, and any value lower than this would make the speed controller update the drive value more
often than the ESC can sense a drive value change. By selecting 50ms our TS is above this with a good
margin. Having a too high TS is undesired due to the sampling theorem [28].

For each combination of parameters, we measure the impulse response for three different target speeds
vr to verify how the parameters work for a greater range of target speeds. We use the three target
speeds 0.5m/s, 1m/s and 1.5m/s. These are selected since they represent the speed controller’s typical
operating range well.

As a scalar metric of how responsive the speed controller is with a given set of parameters, we will
use the average acceleration time Ta for the three selected target speeds. By acceleration time Ta, we
mean the time passed from the request is given until the car reaches the requested speed for the first
time. The average acceleration time is the arithmetic mean of the acceleration times,

Ta =
1

N

N−1∑︂
i=0

Ta,i, (5.1)

where N is the number of target speeds tested, 3 in our case, and Ta,i is the acceleration time for target
speed i. A low value for Ta implies that the speed controller responds quickly to changes in the target
speed, which is good. This is not a perfect way to summarize the speed controllers, since a speed
controller that undershoots can get an artificially high value, even infinitely high if it never reaches the
exact target speed at all. But it is very easy to understand.
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6 Results

In this chapter, we will present the results from our implementation and experimental setup. First
of all, we present the selection of stack sizes for FreeRTOS tasks in Section 6.1, then the resulting
memory usage of the implementation in Section 6.2. In Section 6.3, we present our response time
measurements, and in Section 6.4, results for the speed controller.

6.1 Stack sizes

The output from the stack usage analysis script is listed in Section B.1, and based on this, we select the
stack sizes for the FreeRTOS tasks as shown in Table 6.1. The stack usage analysis showed that there
are only three functions that have a stack usage above 512B, and they are just used in a few specific
contexts (eeprom_init is not even used at all). One of these contexts occur in the Communication
RX (display_printerror). Most command callbacks (functions starting with cmd_) are among
the functions with the greatest stack usage between 100B and 512B. The command callbacks are
called by the communication RX task, but never at the same time. Based on this we select a stack size
of 4KiB for the communication RX task to have something with a good margin. Since the timer task is
supposed to be flexible and be able to execute any routine in the system, it also gets a stack size of
4KiB. The communication TX and the motor controller tasks only call a few smaller functions, so for
them, 1KiB should be enough. And the idle task does nothing, so it gets 520B, which is FreeRTOS’
officially recommended value for the Arm Cortex-M4 processor series [48].

Table 6.1: Chosen stack sizes for FreeRTOS tasks.
Task Stack size
Communication RX 4KiB
Communication TX 1KiB
Motor controller 1KiB
Timer task 4KiB
Idle task 520B
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6.2 Memory usage

A comparison of the memory usage of the present UcBoard software compared to the new one, using
FreeRTOS, with routine configuration A and with routine configuration B, is shown in Table 6.2. The
exact numbers are gathered from running the script analyze_linker_map.py to analyze the linker map
produced by the compiler. The raw outputs from running this script can be found in Section B.2.

Table 6.2: Comparison of memory usage for the present UcBoard software, the new one with routine
configuration A and routine configuration B.

Region Section Size present Size A Size B
FLASH (512KiB) Program 62.0KiB 77.5KiB 77.7KiB

Constants 6.6KiB 7.6KiB 7.6KiB
Total used 68.6KiB 85.0KiB 85.3KiB
Unused 443.4KiB 427.0KiB 426.7KiB

RAM (64KiB) Static variables 22.9KiB 24.5KiB 24.6KiB
Idle task stack 0B 512B 512B
Timer task stack 0B 4.0KiB 4.0KiB
Motor controller task stack 0B 1.0KiB 1.0KiB
Comm RX task stack 0B 0B 4.0KiB
Comm TX task stack 0B 0B 1.0KiB
ISR stack 4.0KiB 4.0KiB 4.0KiB
Total used 26.9KiB 34.0KiB 39.1KiB
Unused 37.1KiB 30.0KiB 24.9KiB

CCRAM (16KiB) Total used 0B 0B 0B
Unused 16.0KiB 16.0KiB 16.0KiB

6.3 Response times

By using the automation script drv_response_time to measure the response time R of a brake
command sent a delay d after powering on LED A for 50 randomly selected values of d between 100ms
and 1000ms, we get the response time measurementsRm shown in Figure 6.1 for the present non-RTOS
UcBoard software, Figure 6.2 for routine configuration A and Figure 6.3 for routine configuration
B. The reaction time deadline, rD = 40ms, which we derived in Section 3.4.1 is illustrated with a
dashed line. It should be noted that R is only for routine configuration A an exact upper bound for
r, as described in Section 5.1.3. In all cases, the software is modified to include the artificial heavy
operation described in Section 5.1.1, which is what makes the software get overloaded after LED A is
powered on. The minimum, maximum and average response times from the measurements are shown
in Table 6.3. The values of d are selected randomly and are not the same in each of the three cases.
However, the distribution of values for d can have quite some impact on the results, so for the record,
the percentage of the selected values d that are lower than 500ms are also included.
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Figure 6.1: Response time for brake command when system is overloaded for present UcBoard
software (modified to be overloadable).
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Figure 6.2: Response time for brake command when system is overloaded for routine configuration
A.
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Figure 6.3: Response time for brake command when system is overloaded for routine configuration
B.

Metric Present A B
Percentage d < 500ms 46% 26% 32%
Minimum Rm 1.34ms 1.45ms 1.30ms
Maximum Rm 467.28ms 429.31ms 3.24ms
Average Rm 136.86ms 66.96ms 1.98ms

Table 6.3: Minimum, maximum and average response times for present UcBoard software, routine
configuration A and routine configuration B.
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6.4 Speed controller

The resulting feed forward reference values found by testing are shown in Figure 6.4. A pure feed-
forward speed controller using these reference values, which is the implemented speed control with
KP = 0 (m/s)−1 and KI = 0m−1, has a step response as shown in Figure 6.5. The step response is
shown for 3 different target speeds; 0.5m/s, 1.0m/s and 1.5m/s.

As mentioned in Section 5.2.2, we tested a total of 56 combinations of KP and KI, which were all
KP ∈ {0, 50, 100, 200, 500, 1000, 2000} (m/s)−1 and all KI ∈ {0, 5, 10, 20, 50, 100, 200, 500} m−1. Only
a selected subset is shown here. The most optimal combination is found to be KP = 500 (m/s)−1 and
KI = 10m−1, whose step response is shown in Figure 6.6. We can quickly determine that using these
values gives the speed controller a more desireable behavior than in with feed-forward only. Firstly,
the equilibrium speed gets more accurate, and secondly, the acceleration time is shorter. By increasing
KP and KI further, we get some undesirable properties. Increasing KP to 2000 (m/s)−1 gives us the
step response shown in Figure 6.7, where the speed oscillates. Increasing KI to 500m−1 (while setting
KP back to 500 (m/s)−1) gives us the step response shown in Figure 6.8, where the speed becomes too
big for a while directly after the initial acceleration.

Average acceleration times Ta for the mentioned 4 sets of parameters are listed in Table 6.4.

KP KI Ta
0 (m/s)−1 0m−1 875ms
500 (m/s)−1 10m−1 478ms
2000 (m/s)−1 10m−1 365ms
500 (m/s)−1 500m−1 425ms

Table 6.4: Initial acceleration time for speed controller. TS is in all cases 50ms.
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Figure 6.4: Speed controller feed forward control.
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Figure 6.5: Step response of feed-forward only speed controller for 3 different target speeds.
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Figure 6.6: Step response of FF+P+I speed controller for 3 different target speeds.
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7 Discussion

In this chapter, we will discuss the results presented in Chapter 6. This includes investigating why
the numbers show what they show, what they mean, and what we can learn from them. Firstly, the
memory usage will be discussed in Section 7.1, then the response time measurements will be discussed
in Section 7.2, and then results for the speed controller are discussed in Section 7.3. In the end, we
will attempt to compare the work as a whole to similar software systems from related academic works.

7.1 Memory usage

As we saw in Section 6.2, the new UcBoard software with FreeRTOS uses considerably more memory
than the present one. Table 6.2 shows that the main contribution to increased main memory usage
comes from extra task stacks. The memory usage of static variables in routine configuration A is 1.6KiB
more than in the present software, and in configuration B, 1.7KiB more than in the present software.
Additionally, routine configuration A adds 5.5KiB of memory usage by task stacks, and configuration
B adds 10.5KiB. This leads to a total of 26% and 45% increase in memory usage, respectively for
configuration A and B compared to the present software. However, the UcBoard has a total of 64KiB of
RAM, and there is still 30.0KiB and 24.9KiB unused, respectively for the two configurations. Table 6.2
also shows that the UcBoard has 16KiB of CCRAM that is unused in all 3 alternatives. As we saw in
Section 2.6.2, the CCRAM of the STM32F303VE is intended for routine boosting. This means that
moving the stack of high priority tasks such as communication RX and/or TX to the CCRAM can be
beneficial as it could make these tasks execute faster. How considerable this performance boost actually
is must be deeper investigated to know for sure.

As a conclusion, with routine configuration B, we have increased the memory usage from 26.9KiB to
39.1KiB. However, in total, 40.9KiB of RAM and CCRAM is still unused, which means there is still
room for developing many new features without re-engineering the entire architecture. If the extra
memory usage caused by utilizing FreeRTOS provides considerable real-time benefits, this might very
well be a good fit for the UcBoard software of the PS AF.

7.2 DRV response time

Our measurements from Section 6.3 show that preemptive scheduling does give the system more
robust response times. In configuration A, where the communication routines don’t run as dedicated
tasks, they should not have a chance to run before LED A is fully turned on after about 500ms, which
we can see in Figure 6.2 is actually the case. This is also the case for the present non-RTOS UcBoard
software, where they are systick callbacks, which we can see in Figure 6.1. In routine configuration B
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however, where the communication routines run in dedicated tasks with higher priority than the timer
task, we can see that the response time is much more consistent in Figure 6.3.

In Table 6.3, we see that the average response time is more than twice as long for the present UcBoard
software than for routine configuration A. But from looking at the plots, they seem to perform about
equal for a given value of d. But by looking closer, we see that the distribution of randomly selected
values d is very different for the two cases; for the present software, 46% of the values for d is lower
than 500ms, while the same number is only 26% for routine configuration A. As 46% is almost the
double of 26%, this is most likely the sole explanation for this significant difference in average response
time.

As we saw in Section 2.6.1, the transfer speed of the serial connection is 92.16 characters/ms. The full
command being sent is 12 characters, which should take approximately 0.1ms to transfer. The full
response is about the same length. The callback functions for both routines are called with a period of
1ms, which is how often communication RX checks for new commands and how often communication
TX checks for new responses to send. The internal processing should take less than 1ms in both
callbacks. This means it should take 0.1ms to transfer the command to the UcBoard, maximum 1ms
for communication RX to start processing it, then processing should take maximum 1ms, and then it
might take up to 1ms before communication TX runs again and starts processing the response. In the
end, transmitting the response back to the computer takes 0.1ms, which in total accounts for up to
4.2ms. As we see in Table 6.3, for routine configuration B, the highest measured Rm is 3.24ms, which
is as expected below that.

As we just saw, there is quite a bit of waiting involved in the command-response chain, of a theoretical
maximumR of 4.2ms, as much as 2ms is caused by waiting time between each time the communication
tasks run. This happens because even though the communication routines run as tasks in configuration
B, they are converted with the universal method described in Section 3.1, and do not utilize FreeRTOS
blocking API calls to operate event-driven, rather than polling-driven. By doing a more tailored
conversion, utilizing event-driven programming patterns enabled by blocking FreeRTOS API calls,
the waiting time can be reduced to near 0ms, including only the scheduling overhead required by
FreeRTOS to switch tasks, giving a theoretical maximum R of only about 2.2ms.

As we noted in Section 3.4, the response time R is just an estimator for the more important reaction
time r. And as we explained in Section 5.1.3, for routine configuration A, R is guaranteed to be
an upper bound for r, partly due to the motor controller using an event-driven approach to fetch
drive requests from the drive request queue. In configuration B, the motor controller uses the same
event-driven approach to fetch drive requests from the drive request queue. This means that in both
configurations, there is no polling delay needed from a drive command is received in communication RX
until the drive request is received and gets processed in the motor controller. But in both configurations,
communication TX uses a polling-driven approach to retrieve command responses, with a 1ms polling
period. Due to this, we can assume the actual reaction times r behind the response time measurements
to be up to 1ms lower than their respective values R, for routine configuration A and B. In particular,
we should assume the maximum r to be about 1ms lower than the maximum R, the minimum r to be
about the same as the minimum R, and the average r to be about 0.5ms lower than the average R.
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7.3 Speed controller

As we saw in Section 6.4, the feed-forward only speed controller makes a good basis for the speed
controller, but lacks some accuracy and responsiveness. We saw that those aspects can be improved
significantly by adding a proportional term with KP = 500 (m/s)−1 and an integral term with KI =
10m−1. These parameter values give the speed controller quite a pleasant impulse response as shown
in Figure 6.6. The average acceleration time is reduced to about the half, from 875ms for feed-forward
only down to 478ms. An even largerKP = 2000 (m/s)−1 would further reduce the average acceleration
time down to only 365ms, but it also leads to unwanted oscillations, especially significant for lower
speeds, as shown in Figure 6.7.

One could argue that it is desirable to further increase KI to improve accuracy. We see in Figure 6.8
that setting KI = 500m−1 leads to the speed becoming significantly larger than vr for a while after
the initial acceleration. This could be seen as unintended behavior, since the speed is not correct.
But what actually happens is that the integral term becomes just big enough to compensate for the
travel distance lost during the initial acceleration, since the integral of speed is distance. If the driving
algorithm on the OBC uses distance measurements and timing to drive to a given position, one can
imagine that a speed controller that automatically compensates for lost travel distance during initial
acceleration in many cases leads to a more precise ADS overall. While this can be a good property
for precision-oriented tasks like e.g. parking, it is usually not desirable when driving longer distances
on a road. Roads usually tend to have speed limits to enforce safety, as a high momentary speed is
related to long brake distance, and thus high risk of causing accidents. A speed controller with high
KI will, if needed, defy speed limits for a period of time after the initial acceleration to recover lost
travel distance, putting the ADS and the environment at unnecessary risk. For this reason, a high KI is
definitely not desirable in all cases. One way of mitigating this could be to conditionally set KI based
on the requested speed vr, so that e.g. if vr > 0.8m/s, KI = 500m−1 and if not, KI = 10m−1. This
will on the other side make it more complex for the OBC to know what behavior to expect. The OBC
could also change KI during operation to facilitate different driving scenarios, this would presumably
be the safest option.

7.4 Comparisons to related work

As we have seen, in our FreeRTOS adoption, we use 5 tasks in total. In the comparable microcontroller
software for the Carolo-Cup competition car of 2018 from the Warsaw University of Technology, 8 tasks
are used. These 8 tasks, listed with decreasing priority, are: RC Receiver, Task Governor, Steering, IMU,
Distance Sensors, Bluetooth, LED and Battery Telemetry [44]. The fact that no timer task is listed
means that this software allegedly does not use any FreeRTOS timers, all routines are implemented by
custom tasks. An interesting point here is that the Warsaw car has a dedicated steering task, but no
dedicated motor control task. On the other hand, our implementation uses a dedicated motor control
task, but implements steering as a timer callback. This shows that our software architecture is not an
obvious choice of software architecture for the microcontroller of an autonomous model car; vastly
different architectures can also lead to a functional solution. The most radical architectural difference
between the PS AF car and the Warsaw car is, as mentioned in Section 2.7, that the microcontroller
holds the commander role, while the Linux machine acts as a camera and image processing worker.
This could be an important reason for why there are no dedicated tasks for communication in the
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microcontroller software of the Warsaw car. When the microcontroller has the commander role, it can
typically be structured quite differently, as its only mission is not to wait for commands and respond to
them as quickly as possible, instead, the microcontroller gives the commands and receives responses
when this is convenient. For this type of operation, implementing communication logic in functions to
be called occasionally by a governor task can be more appropriate.

In [45], no further details on routine implementation, memory usage or response time for the 6th
Carolo-Cup car from the University of Magdeburg are provided. But details are provided on how
FreeRTOS is bundled with the application code. For the Magdeburg car, FreeRTOS is bundled through
the CMSIS RTOS API by using CubeMX. In Section 4.1, we found that using the CMSIS API would
not be a proper solution for the PS AF UcBoard. [45] shows that using the CMSIS API also can be a
successful approach for a Carolo-Cup car.
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8 Conclusion

In this chapter, we will conclude what we have accomplished in this work and give an outlook into
what can be researched further based on our work in the future.

8.1 Conclusion

Throughout this work, the free and open-source Real-Time Operating System FreeRTOS has been
integrated into the software for the UcBoard for the Project Seminar Autonomes Fahren at the Technical
University of Darmstadt. Two different routine configurations, namely A and B, have been imple-
mented and tested, leading to an increase in memory usage at 26% and 45% respectively for the two
configurations. It has been shown that routine configuration B can lead to much more stable response
times to commands than both configuration A and the present software. In particular the highest
measured response time was reduced from 467.28ms with the present software to 3.24ms with routine
configuration B in a constructed overload scenario. Even though it increases the memory usage by 45%,
about 50% of the UcBoard’s total memory is still unused and we can conclude that configuration B is
a definitive improvement compared to the present software. Blocking FreeRTOS API functions have
been utilized to implement an event-driven motor controller routine with a low-level speed controller.
This ensures that the UcBoard also on car model 1 and 2 can control speed independently of the OBC,
which makes these car models more useful as test and development platforms in the future when car
model 3 is finished. Support within the UcBoard software for the BLDC motor controller to be used in
car model 3 is also contributed by this work. As a last piece of the work, the two different variants of
the source code targeting the currently two different car models have been refactored and merged
by using compile-time configuration options. Relevant aspects have been discussed and compared to
similar software systems from related academic works.

8.2 Outlook

It was originally a part of the assignment to implement a yaw rate controller for the PS AF model car
in the UcBoard software, but the time did not allow for this in this work. It is however still a desire
to have such functionality embedded in the UcBoard software, which makes for a suitable piece of a
future work. Since a yaw rate controller, just like a speed controller, is a servomechanism, a combined
feed-forward and PI- controller could also here be a good fit. Considering that the UcBoard software
now has an RTOS and a feed-forward and PI- speed controller, the implementation of a yaw rate
controller can benefit from the API and real-time capabilities of the RTOS and re-use the structure of
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the speed controller. This could allow for a straightforward yaw rate controller implementation that
suits well into the source code for the UcBoard software.

As pointed out in Section 4.2.3, the selection of stack sizes for FreeRTOS tasks would be more beneficial
to automate by using a sophisticated tool like e.g. StackAnalyzer to calculate stack size upper bounds,
instead of the currently inexact semi-automatic approach with the script analyze_stack_usage.py. This
would first and foremost improve the memory utilization of the system, since the allocated stack size
for each FreeRTOS task can be lowered considerably, with increased certainty that the selected stack
size actually is large enough. In addition, the stack size selection process would be fully automated,
leaving more time for the developer, designer or researcher to conquer other more challenging tasks.

For routine configuration B, the communication routines have been converted to tasks, but with the
universal method described in Section 3.1.2. In Section 7.2, we explained how a tailored conversion
utilizing FreeRTOS blocking API calls can significantly improve response times for commands. It would
also allow the communication tasks to use less processing time on polling, as explained in Section 3.1.2
and free up processing time for the UcBoard as a whole.
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A Source code

A.1 UcBoard software repository outline

This section provides an outline of the file structure for the the source code for the UcBoard software.
The outline describes the state of the repository at the end of the contributed work.

• ci

– analysis-cppcheck.sh

– format.py

– install_arm_toolchain.sh

– style.clang-format

• include

– Empty directory

• lib

– Empty directory

• src

– common

* ARingbuffer.c

* ARingbuffer.h

* common_fcts.c

* common_fcts.h

* crc.c

* crc.h

* debug.h

* encoding.c

* encoding.h

* ringbuffer.c

* ringbuffer.h
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* stdtypes.h

* strfcts.c

* strfcts.h

– config

* config.h – source code listed in Section A.3.1.

* config_ucboard1.h – source code listed in Section A.3.2.

* config_ucboard1_bldc.h – source code listed in Section A.3.3.

* config_ucboard2.h – source code listed in Section A.3.4.

– devices

* bldc.c

* bldc.h

* carbasicfcts.c

* carbasicfcts.h

* carid.c

* carui.c

* carui.h

* comm.c

* comm.h

* comm_cmdtable.c

* comm_cmdtable.h

* comm_public.h

* daq.c

* daq.h

* display.c

* display.h

* eeprom.c

* eeprom.h

* encoder.c

* encoder.h

* errcodes.h

* globalvar.c

* globalvar.h
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* hal503.c

* hal503.h

* imu.c

* imu.h

* imu_icm20648.c

* imu_icm20648.h

* imu_icm20648_privatedefs.h

* imu_mpu9250.c

* imu_mpu9250.h

* imu_mpu9250_privatedefs.h

* led.c

* led.h

* mag_AK8963_privatedefs.h

* pwm_motor.c

* pwm_motor.h

* receiver.c

* receiver.h

* sid.c

* ucboard_hwdefs.h

* ucboard_hwfcts.h

* us.c

* us.h

* us_srf08.c

* us_srf08.h

* version.c

* version.h

– Drivers

* CMSIS

· Directory contents left out.

* STM32F3xx_HAL_Driver

· Directory contents left out.

– FreeRTOS-Kernel
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* Directory contents left out.

– stmcommon

* atomicsection.h

* exti_mgr.c

* exti_mgr.h

* i2cmgr.c

* i2cmgr.h

* i2cmgr_privatedefs.h

* spimgr.c

* spimgr.h

* stm32_llm.c

* stm32_llm.h

* stopwatch.c

* stopwatch.h

* tim_irq_callbacks.c

– FreeRTOSConfig.h

– main.c

– main.h

– mxconstants.h

– stm32f3xx_hal_conf.h

– stm32f3xx_hal_msp.c

– stm32f3xx_it.c

– stm32f3xx_it.h

– systick.c

– systick.h

• svd

– STM32F303.svd

• tests

– Empty directory

• tools

– analyze_linker_map.py – source code listed in Section A.3.5.

– analyze_stack_usage.py – source code listed in Section A.3.6.
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– stlink.py

– stlink_readme.txt

– stlinkflash_template.bat

• CMakeLists.txt

• CMakePresets.json

• cppcheck_suppressions

• Doxyfile

• pses_ucboard.ioc

• README.adoc

• STM32F303VETx_FLASH.ld

A.2 Pyserial-UcBoard repository outline

This section provides an outline of the files in the Pyserial-UcBoard repository. This repository holds
the code being run on an attached PC to automate the experiments conducted in this work.

• automate.py – source code listed in Section A.4.1.

• dummy_ucboard.py – source code listed in Section A.4.2.

• generate_commands.py – source code listed in Section A.4.3

• history.pthistory

• input_test_cruise_controller.txt

• input_test_managed.txt

• pyserial_ucboard.py – source code listed in Section A.4.4

• requirements.txt

A.3 UcBoard software source code extract

In this section a selected extract of the source code for the UcBoard software is provided. The code
base in full can not be published due to copyright considerations, but a relevant extract of the source
code contributed by this work is provided here.
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A.3.1 config.h

1 /*
2 * config.h
3 *
4 * Defines the actual config that is used for compilation.
5 */
6

7 #ifndef CONFIG_H
8 #define CONFIG_H
9

10 #include "config_ucboard1.h"
11

12 #endif /* CONFIG_H */

A.3.2 config_ucboard1.h

1 /*
2 * config_ucboard1.h
3 *
4 * Defines config to use when compiling for ucboard1.
5 */
6

7 #ifndef CONFIG_UCBOARD1_H
8 #define CONFIG_UCBOARD1_H
9

10 // Number of LEDs on the car
11 #define CONFIG_LED_COUNT 6
12

13 // Name of LEDs, used for identification in serial protocol
14 #define CONFIG_LED_NAMES \
15 { "A", "B", "C", "D", "E", "F" }
16

17 // A struct containing information about which GPIO ports and pins the LEDs use
18 #define CONFIG_LED_PORTS_AND_PINS

\
19 {

\
20 {GPIOC, GPIO_PIN_4}, {GPIOC, GPIO_PIN_5}, {GPIOE, GPIO_PIN_0}, {GPIOE,

GPIO_PIN_1}, \
21 {GPIOE, GPIO_PIN_3}, {

\
22 GPIOE, GPIO_PIN_4

\
23 }

\
24 }
25

26 // Enables support for encoder (Inkrementalgeber) for speed measurment
27 #define CONFIG_ENCODER_ENABLE 0
28

29 // Enables support for hall sensor for speed measurement
30 #define CONFIG_HALL_SENSOR_ENABLE 1
31

32 // Defines how far the car moves per 8 hall sensor pulses (unit: um)
33 #define CONFIG_HALL_SENSOR_DELTA_S 204204
34
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35 // Defines which USART of the STM32F303 to use
36 // Possible values are: 2 (USART2), 3 (USART3), 4 (UART4)
37 #define CONFIG_USART 2 // USB
38 // #define CONFIG_USART 4 // Bluetooth
39

40 // Defines the baud rate used for the USART
41 #define CONFIG_USART_BAUD_RATE 921600 // USB
42 // #define CONFIG_USART_BAUD_RATE 57600 // Bluetooth
43

44 // Type of inertial measurement unit
45 #define CONFIG_IMU_TYPE_MPU9250 1
46 #define CONFIG_IMU_TYPE_ICM20648 0
47

48 // Enables support for receiver for remote control
49 #define CONFIG_RECEIVER_ENABLE 0
50

51 // Type of ultrasonic sensors
52 #define CONFIG_US_TYPE_SRF08 1
53 #define CONFIG_US_TYPE_SRF10 0
54

55 // Number of ultrasonic sensors on the car
56 #define CONFIG_US_COUNT 4
57

58 // I2C bus addresses for ultrasonic sensors
59 #define CONFIG_US_ADDRESSES \
60 { 0xE0, 0xE2, 0xE4, 0xE6 }
61

62 // DAQ channel names for ultrasonic sensors
63 #define CONFIG_US_DAQ_CHANNEL_NAMES \
64 { "USL", "USF", "USR", "USB" }
65

66 // DAQ channel descriptions for ultrasonic sensors
67 #define CONFIG_US_DAQ_CHANNEL_DESCRIPTIONS

\
68 {

\
69 "ultrasonic left distance", "ultrasonic front distance", "ultrasonic right

distance", \
70 "ultrasonic back distance"

\
71 }
72

73 #define CONFIG_MOTOR_FULLFORWARDS -500
74 #define CONFIG_MOTOR_NEUTRAL_FORWARDS_ENDED -52
75 #define CONFIG_MOTOR_FULLBACKWARDS 250
76 #define CONFIG_MOTOR_NEUTRAL_BACKWARDS_ENDED 53
77 #define CONFIG_MOTOR_PWMVAL_DELTA_NEGATIVE 0
78

79 // Delay between each time the cruise controller adjusts the drvval (unit: ms)
80 #define CONFIG_CRUISE_CONTROL_T_S 50
81

82 // Estimated top speed for the configuration of car and motor (unit: mm/s)
83 // Used for calibrating the cruise controller.
84 #define CONFIG_CRUISE_CONTROL_REFERENCE_TOP_SPEED_FORWARDS (5000)
85 #define CONFIG_CRUISE_CONTROL_REFERENCE_TOP_SPEED_BACKWARDS (2500)
86

87 // Reference {speed, drvval} pairs for the cruise controller's feed forward term (unit:
mm/s)
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88 // The list must have minimum 2 entries.
89 // All values must be integers.
90 // Entries must be ordered by increasing speed.
91 // Drvval values should always be given as positive numbers. Driving direction is

interpreted
92 // automatically.
93 #define CONFIG_CRUISE_CONTROL_FF_REFERENCE

\
94 {

\
95 {-803, -500}, {-591, -400}, {-393, -300}, {-172, -200}, {0, 0}, {306, 200},

{585, 300}, \
96 {822, 400}, {1041, 500}, {1305, 600}, {1535, 700}, {1729, 800}, {1827, 900},

{ \
97 1868, 1000

\
98 }

\
99 }

100 #define CONFIG_CRUISE_CONTROL_FF_REFERENCE_LENGTH 14
101

102 // Multiplication factor for the cruise controller's proportional term (unit: drvval/(m/
s))

103 #define CONFIG_CRUISE_CONTROL_K_P 1000
104

105 // Multiplication factor for the cruise controller's integral term (unit: drvval/(m))
106 #define CONFIG_CRUISE_CONTROL_K_I 100
107

108 // Type of motor(s)
109 #define CONFIG_MOTOR_TYPE_PWM 1
110 #define CONFIG_MOTOR_TYPE_BLDC 0
111

112 #endif /* CONFIG_UCBOARD1_H */

A.3.3 config_ucboard1_bldc.h

1 /*
2 * config_ucboard1_bldc.h
3 *
4 * Defines config to use when compiling for ucboard1 with BLDC motor.
5 */
6

7 #ifndef CONFIG_UCBOARD1_BLDC_H
8 #define CONFIG_UCBOARD1_BLDC_H
9

10 #include "config_ucboard1.h"
11

12 #undef CONFIG_MOTOR_TYPE_PWM
13 #define CONFIG_MOTOR_TYPE_PWM 0
14

15 #undef CONFIG_MOTOR_TYPE_BLDC
16 #define CONFIG_MOTOR_TYPE_BLDC 1
17

18 #endif /* CONFIG_UCBOARD1_BLDC_H */

A.3.4 config_ucboard2.h
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1 /*
2 * config_ucboard1.h
3 *
4 * Defines config to use when compiling for ucboard2.
5 */
6

7 #ifndef CONFIG_UCBOARD2_H
8 #define CONFIG_UCBOARD2_H
9

10 // Number of LEDs on the car
11 #define CONFIG_LED_COUNT 9
12

13 // Name of LEDs, used for identification in serial protocol
14 #define CONFIG_LED_NAMES \
15 { "A", "B", "U1", "U2", "U3", "U4", "BLKR", "BLKL", "BRMS" }
16

17 // A struct containing information about which GPIO ports and pins the LEDs use
18 #define CONFIG_LED_PORTS_AND_PINS

\
19 {

\
20 {GPIOC, GPIO_PIN_4}, {GPIOC, GPIO_PIN_5}, {GPIOD, GPIO_PIN_10}, {GPIOD,

GPIO_PIN_11}, \
21 {GPIOD, GPIO_PIN_13}, {GPIOB, GPIO_PIN_5}, {GPIOD, GPIO_PIN_3}, {GPIOD,

GPIO_PIN_4}, { \
22 GPIOD, GPIO_PIN_5

\
23 }

\
24 }
25

26 // Enables support for encoder (Inkrementalgeber) for speed measurment
27 #define CONFIG_ENCODER_ENABLE 1
28

29 // Enables support for hall sensor for speed measurement
30 #define CONFIG_HALL_SENSOR_ENABLE 0
31

32 // Defines how far the car moves per 8 hall sensor pulses (unit: um)
33 #define CONFIG_HALL_SENSOR_DELTA_S 0
34

35 // Defines which USART of the STM32F303 to use
36 // Possible values are: 2 (USART2), 3 (USART3), 4 (UART4)
37 #define CONFIG_USART 2 // USB
38

39 // Defines the baud rate used for the USART
40 #define CONFIG_USART_BAUD_RATE 921600 // USB
41

42 // Type of inertial measurement unit
43 #define CONFIG_IMU_TYPE_MPU9250 0
44 #define CONFIG_IMU_TYPE_ICM20648 1
45

46 // Enables support for receiver for remote control
47 #define CONFIG_RECEIVER_ENABLE 1
48

49 // Type of ultrasonic sensors
50 #define CONFIG_US_TYPE_SRF08 0
51 #define CONFIG_US_TYPE_SRF10 1
52
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53 // Number of ultrasonic sensors on the car
54 #define CONFIG_US_COUNT 8
55

56 // I2C bus addresses for ultrasonic sensors
57 #define CONFIG_US_ADDRESSES \
58 { 0xE0, 0xE2, 0xE4, 0xE6, 0xE8, 0xEA, 0xEC, 0xEE }
59

60 // DAQ channel names for ultrasonic sensors
61 #define CONFIG_US_DAQ_CHANNEL_NAMES \
62 { "US1", "US2", "US3", "US4", "US5", "US6", "US7", "US8" }
63

64 // DAQ channel descriptions for ultrasonic sensors
65 #define CONFIG_US_DAQ_CHANNEL_DESCRIPTIONS \
66 { \
67 "ultrasonic 1 distance", "ultrasonic 2 distance", "ultrasonic 3 distance", \
68 "ultrasonic 4 distance", "ultrasonic 5 distance", "ultrasonic 6 distance", \
69 "ultrasonic 7 distance", "ultrasonic 8 distance" \
70 }
71

72 #define CONFIG_MOTOR_FULLFORWARDS -500
73 #define CONFIG_MOTOR_NEUTRAL_FORWARDS_ENDED -38
74 #define CONFIG_MOTOR_FULLBACKWARDS 500
75 #define CONFIG_MOTOR_NEUTRAL_BACKWARDS_ENDED 74
76 #define CONFIG_MOTOR_PWMVAL_DELTA_NEGATIVE 1
77

78 // Delay between each time the cruise controller adjusts the drvval (unit: ms)
79 #define CONFIG_CRUISE_CONTROL_T_S 1000
80

81 // Estimated top speed for the configuration of car and motor (unit: mm/s)
82 // Used for calibrating the cruise controller.
83 #define CONFIG_CRUISE_CONTROL_REFERENCE_TOP_SPEED_FORWARDS (5000)
84 #define CONFIG_CRUISE_CONTROL_REFERENCE_TOP_SPEED_BACKWARDS (2500)
85

86 #endif /* CONFIG_UCBOARD2_H */

A.3.5 analyze_linker_map.py

1 #!/usr/bin/python3
2

3 import argparse
4 import inspect
5 import os
6 import subprocess
7 import time
8 import re
9 from dataclasses import dataclass

10

11

12 def r(*path):
13 """
14 Takes a relative path from the directory of this python file and returns the

absolute path.
15 """
16 return os.path.join(os.path.dirname(os.path.abspath(__file__)), *path)
17

18

19 def run_in_dir(directory, callable):
20 cwd = os.getcwd()
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21 os.chdir(directory)
22 result = callable()
23 os.chdir(cwd)
24 return result
25

26

27 def main(linker_map_path):
28 with open(linker_map_path) as file:
29 linker_map = file.read()
30

31 linker_map = linker_map[linker_map.index("Linker script and memory map") :]
32

33 def get_section_size(section):
34 match re.search(
35 r"\n(" + re.escape(section) + r")\s+(0x[0-9a-f]+)\s+(0x[0-9a-f]+)",
36 linker_map,
37 ):
38 case None:
39 raise Exception(f"Section {section} was not found")
40 case m:
41 return int(m.group(3), 16)
42

43 def format_bytes(num_of_bytes):
44 if num_of_bytes < 1024:
45 return f"{num_of_bytes} B"
46 elif num_of_bytes < 1024**2:
47 return f"{num_of_bytes/1024:.1f} KiB"
48

49 text_size = get_section_size(".text")
50 rodata_size = get_section_size(".rodata")
51 data_size = get_section_size(".data")
52 bss_size = get_section_size(".bss")
53 main_stack_size = 0x1000
54

55 @dataclass
56 class SpecialStaticVariable:
57 description: str
58 variable_name: str
59

60 def size(self):
61 try:
62 return get_section_size(f" .bss.{self.variable_name}")
63 except:
64 return 0
65

66 special_static_variables = [
67 SpecialStaticVariable(
68 description="idle task stack", variable_name="f_xIdleTaskStack"
69 ),
70 SpecialStaticVariable(
71 description="timer task stack", variable_name="f_xTimerTaskStack"
72 ),
73 SpecialStaticVariable(
74 description="motor controller stack",
75 variable_name="f_axMotorControllerTaskStack",
76 ),
77 SpecialStaticVariable(
78 description="comm rx task stack",
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79 variable_name="f_comm_rx_do_systickTaskStack",
80 ),
81 SpecialStaticVariable(
82 description="comm tx task stack",
83 variable_name="f_comm_tx_do_systickTaskStack",
84 ),
85 ]
86

87 flash_size = 512 * 1024
88 flash_used = text_size + rodata_size
89 ram_size = 64 * 1024
90 ram_used = data_size + bss_size + main_stack_size
91 ccram_size = 16 * 1024
92 ccram_used = 0
93

94 print(f'+{"-"*24}+{"-"*24}+{"-"*24}+')
95 print(f'|{f"FLASH":^24}|{f"program ":>24}|{f"{format_bytes(text_size)} ":>24}|')
96 print(f'|{"":^24}|{f"constants ":>24}|{f"{format_bytes(rodata_size)} ":>24}|')
97 print(f'|{" "*24}+{"-"*24}+{"-"*24}+')
98 print(f'|{"":^24}|{f"total used ":>24}|{f"{format_bytes(flash_used)} ":>24}|')
99 print(

100 f'|{"":^24}|{f"not used ":>24}|{f"{format_bytes(flash_size - flash_used)}
":>24}|'

101 )
102 print(f'+{"-"*24}+{"-"*24}+{"-"*24}+')
103 print(
104 f'|{f"RAM":^24}|{f"static variables ":>24}|{f"{format_bytes(data_size + bss_size

- sum([variable.size() for variable in special_static_variables]))} ":>24}|'
105 )
106 for variable in special_static_variables:
107 print(
108 f'|{"":^24}|{f"{variable.description} ":>24}|{f"{format_bytes(variable.size

())} ":>24}|'
109 )
110 print(f'|{"":^24}|{f"ISR stack ":>24}|{f"{format_bytes(main_stack_size)} ":>24}|')
111 print(f'|{" "*24}+{"-"*24}+{"-"*24}+')
112 print(f'|{"":^24}|{f"total ":>24}|{f"{format_bytes(ram_used)} ":>24}|')
113 print(
114 f'|{"":^24}|{f"not used ":>24}|{f"{format_bytes(ram_size - ram_used)} ":>24}|'
115 )
116 print(f'+{"-"*24}+{"-"*24}+{"-"*24}+')
117 print(f'|{f"CCRAM":^24}|{f"total ":>24}|{f"{format_bytes(ccram_used)} ":>24}|')
118 print(
119 f'|{"":^24}|{f"not used ":>24}|{f"{format_bytes(ccram_size - ccram_used)}

":>24}|'
120 )
121 print(f'+{"-"*24}+{"-"*24}+{"-"*24}+')
122 print()
123

124 print("32 largest static variables")
125 print(f'+{"-"*32}+{"-"*12}+')
126 total_size_highest_32 = 0
127 for variable_name, address, size, file_path in sorted(
128 (
129 re.findall(
130 r"\n \.bss\.([\w\.]+)\s+(0x[0-9a-f]+)\s+(0x[0-9a-f]+) (.+)", linker_map
131 )
132 + re.findall(
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133 r"\n \.data\.([\w\.]+)\s+(0x[0-9a-f]+)\s+(0x[0-9a-f]+) (.+)", linker_map
134 )
135 ),
136 key=lambda m: int(m[2], 16),
137 reverse=True,
138 )[:32]:
139 if variable_name in [
140 variable.variable_name for variable in special_static_variables
141 ]:
142 continue
143 size = int(size, 16)
144 total_size_highest_32 += size
145 if file_path.startswith("CMakeFiles/pses_ucboard.dir/"):
146 file_path = file_path[len("CMakeFiles/pses_ucboard.dir/") :]
147 print(f'|{f" {variable_name}":<32}|{f"{format_bytes(size)} ":>12}| {file_path}')
148 print(f'|{f" total":<32}|{f"{format_bytes(total_size_highest_32)} ":>12}|')
149 print(f'+{"-"*32}+{"-"*12}+')
150

151

152 if __name__ == "__main__":
153 argument_parser = argparse.ArgumentParser()
154 for parameter in inspect.signature(main).parameters:
155 argument_parser.add_argument(parameter)
156 arguments = argument_parser.parse_args()
157 main(**vars(arguments))

A.3.6 analyze_stack_usage.py

1 #!/usr/bin/python3
2

3 import argparse
4 import inspect
5 import os
6 import subprocess
7 import time
8 import re
9 from dataclasses import dataclass

10

11

12 def r(*path):
13 """
14 Takes a relative path from the directory of this python file and returns the

absolute path.
15 """
16 return os.path.join(os.path.dirname(os.path.abspath(__file__)), *path)
17

18

19 def run_in_dir(directory, callable):
20 cwd = os.getcwd()
21 os.chdir(directory)
22 result = callable()
23 os.chdir(cwd)
24 return result
25

26

27 def main(compile_output_dir_path):
28 def format_bytes(num_of_bytes):
29 if num_of_bytes < 1024:
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30 return f"{num_of_bytes} B"
31 elif num_of_bytes < 1024**2:
32 return f"{num_of_bytes/1024:.1f} KiB"
33

34 @dataclass
35 class FunctionStackUsage:
36 su_file_path: str
37 file_path: str
38 line_number: int
39 column_number: int
40 function_name: str
41 stack_usage: int
42 staticness: str
43

44 all_functions = []
45 for root, dirs, filenames in os.walk(compile_output_dir_path):
46 for filename in filter(lambda filename: filename.endswith(".su"), filenames):
47 su_file_path = os.path.join(root, filename)
48 with open(su_file_path) as file:
49 stack_usage_info = file.read()
50 for (
51 file_path,
52 line_number,
53 column_number,
54 function_name,
55 stack_usage,
56 staticness,
57 ) in re.findall(
58 r"(.+):(\d+):(\d+):([\w\.]+)\s+(\d+)\s*(.*)\n", stack_usage_info
59 ):
60 all_functions.append(
61 FunctionStackUsage(
62 su_file_path,
63 file_path,
64 int(line_number),
65 int(column_number),
66 function_name,
67 int(stack_usage),
68 staticness,
69 )
70 )
71

72 print("64 functions with the highest stack usage")
73 print(f'+{"-"*48}+{"-"*12}+')
74 for function in sorted(all_functions, key=lambda f: f.stack_usage, reverse=True)[
75 :64
76 ]:
77 print(
78 f'|{f" {function.function_name}":<48}|{f"{format_bytes(function.stack_usage)

} ":>12}|'
79 )
80 print(f'+{"-"*48}+{"-"*12}+')
81 print()
82 print(
83 "NOTE: This analysis only looks at the stack usage of each function isolated and

"
84 )
85 print(
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86 "does not take into account how much stack each function actually needs when
calling"

87 )
88 print(
89 "other functions. This is not even possible to determine by static analysis

alone."
90 )
91

92

93 if __name__ == "__main__":
94 argument_parser = argparse.ArgumentParser()
95 for parameter in inspect.signature(main).parameters:
96 argument_parser.add_argument(parameter)
97 arguments = argument_parser.parse_args()
98 main(**vars(arguments))

A.4 Pyserial-UcBoard source code

This section provides the source code in the Pyserial-UcBoard repository. This is the code being run on
an attached PC to automate the experiments conducted in this work. The code is also available online
at https://gitlab.stud.idi.ntnu.no/sigurdht/pyserial-ucboard.

A.4.1 automate.py

1 #!/usr/bin/python3
2

3 import argparse
4 import inspect
5 import os
6 import sys
7 import subprocess
8 import time
9 import itertools

10 import re
11 import numpy as np
12 import random
13

14

15 def r(*path):
16 """
17 Takes a relative path from the directory of this python file and returns the

absolute path.
18 """
19 return os.path.join(os.path.dirname(os.path.abspath(__file__)), *path)
20

21

22 def run_in_dir(directory, callable):
23 cwd = os.getcwd()
24 os.chdir(directory)
25 result = callable()
26 os.chdir(cwd)
27 return result
28

29
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30 def parse_data_from_serial_output(serial_output_file, group_config: dict):
31 result = {
32 group_number: {channel: [] for channel in channels}
33 for group_number, channels in group_config.items()
34 }
35 with open(serial_output_file) as file:
36 for i, line in enumerate(filter(lambda line: line[0] == "#", file.readlines())):
37 if "\x02" in line:
38 continue
39 group_number_match = re.compile(r"#(\d+):").search(line)
40 if group_number_match is None or group_number_match.start() != 0:
41 # raise Exception(
42 # f"Line {i} starts with # but has no recognizable group number"
43 # )
44 continue
45 group_number = group_number_match.group(1)
46 if group_number not in group_config.keys():
47 continue
48 channel_values = line[group_number_match.end() :].split(" | ")
49 if len(channel_values) != len(group_config[group_number]):
50 continue
51 for i, value in enumerate(channel_values):
52 try:
53 value = float(value)
54 except ValueError:
55 value = None
56 result[group_number][group_config[group_number][i]].append(value)
57 return result
58

59

60 HALL_SENSOR_DELTA_S = 0.204204 # Diameter of wheel in meters
61

62

63 def cruise_controller_step_response(python_path: str, serial_port: str):
64 setup_commands = "\n".join(
65 [
66 "set command_delay 0",
67 "",
68 "!reset now",
69 "wait 2",
70 "",
71 "!steer 450",
72 "!drv f 100",
73 "wait 5",
74 "",
75 "!drv f -100",
76 "wait 2",
77 ]
78 ).encode("ascii")
79 # subprocess.run([python_path, r("pyserial_ucboard.py"), "-e", serial_port], input=

setup_commands, stdout=sys.stdout)
80 t_s = 50
81 for k_p in [0, 50, 100, 200, 500, 1000, 2000]:
82 for k_i in [0, 5, 10, 20, 50, 100, 200, 500]:
83 for requested_speed in [500, 1000, 1500]:
84 output_file = r(
85 f"automated_outputs/cruise_controller_step_response/serial_output_ts

{t_s}_ff+p{k_p}+i{k_i}_{requested_speed}mmps.txt"
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86 )
87 if os.path.exists(output_file):
88 continue
89 input_commands = "\n".join(
90 [
91 "set command_delay 0",
92 "",
93 f"!globalvar g_carbasicfcts_cruiseTS {t_s}",
94 f"!globalvar g_carbasicfcts_cruiseKP {k_p}",
95 f"!globalvar g_carbasicfcts_cruiseKI {k_i}",
96 "wait 1",
97 "",
98 "!daq grp 4 ~all _tics cruise_drvval hall_cnt hall_dt hall_dt8",
99 "!daq start",

100 "",
101 f"!drv c {requested_speed}",
102 "wait 10",
103 "!daq stop",
104 "",
105 "!drv f -100",
106 "wait 2",
107 "",
108 ]
109 ).encode("ascii")
110 # print(input_commands.decode("ascii"))
111 subprocess.run(
112 [
113 python_path,
114 r("pyserial_ucboard.py"),
115 "--output-file",
116 output_file,
117 "-ce",
118 serial_port,
119 ],
120 input=input_commands,
121 stdout=sys.stdout,
122 )
123

124

125 def find_feed_forward_values(python_path: str, serial_port: str):
126 setup_commands = "\n".join(
127 [
128 "set command_delay 0",
129 "",
130 "!reset now",
131 "wait 2",
132 "",
133 "!steer -800",
134 "!drv f 300",
135 "wait 5",
136 "",
137 "!drv f -100",
138 "wait 2",
139 ]
140 ).encode("ascii")
141 # subprocess.run([python_path, r("pyserial_ucboard.py"), "-e", serial_port], input=

setup_commands, stdout=sys.stdout)
142 results = {
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143 # "f 50": None,
144 # "f 100": None,
145 "f 200": None,
146 "f 300": None,
147 "f 400": None,
148 "f 500": None,
149 "f 600": None,
150 "f 700": None,
151 "f 800": None,
152 "f 900": None,
153 "f 1000": None,
154 # "b 50": None,
155 # "b 100": None,
156 "b 200": None,
157 "b 300": None,
158 "b 400": None,
159 "b 500": None,
160 }
161 for drvcommand in results.keys():
162 output_file = r(
163 f"automated_outputs/find_feed_forward_values/serial_output_drv_{drvcommand}.

txt"
164 )
165 # if os.path.exists(output_file):
166 # continue
167 input_commands = "\n".join(
168 [
169 "set command_delay 0",
170 "",
171 "!daq grp 4 ~all _tics hall_cnt hall_dt hall_dt8",
172 "!daq start",
173 "",
174 f"!drv {drvcommand}",
175 "wait 15",
176 "!daq stop",
177 "",
178 "!drv f -100",
179 "wait 2",
180 "",
181 ]
182 ).encode("ascii")
183 # print(input_commands.decode("ascii"))
184 # subprocess.run([python_path, r("pyserial_ucboard.py"), "--output-file",

output_file, "-ce", serial_port], input=input_commands, stdout=sys.stdout)
185 data = parse_data_from_serial_output(
186 output_file,
187 {
188 "4": ["_tics", "hall_cnt", "hall_dt", "hall_dt8"],
189 },
190 )
191 speed = HALL_SENSOR_DELTA_S / (np.array(data["4"]["hall_dt8"]) * 1e-3)
192 # print(speed)
193 average_speed = np.average(speed[-len(speed) // 3 :])
194 results[drvcommand] = average_speed
195 results["f 0"] = 0
196 print(results)
197

198 results_csv_file = r("automated_outputs/find_feed_forward_values/results.csv")
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199 results_config_file = r("automated_outputs/find_feed_forward_values/results.h")
200 # os.makedirs(os.path.dirname(results_csv_file), exist_ok=True)
201 result_numbers = [
202 (
203 int(key[2:]) * (1 if key[0] == "f" else -1),
204 results[key] * (1 if key[0] == "f" else -1),
205 )
206 for key in results
207 ]
208 result_numbers = sorted(result_numbers, key=lambda pair: pair[0])
209

210 with open(results_csv_file, "w") as file:
211 file.write(
212 "\n".join([",".join([str(col) for col in cols]) for cols in result_numbers])
213 )
214 with open(results_config_file, "w") as file:
215 pairs = [f"{{{1000*speed:.0f},{drvval}}}" for drvval, speed in result_numbers]
216 content = (
217 "#define CONFIG_CRUISE_CONTROL_FF_REFERENCE {"
218 + ",".join(pairs)
219 + "}\n#define CONFIG_CRUISE_CONTROL_FF_REFERENCE_LENGTH "
220 + str(len(pairs))
221 + "\n"
222 )
223 file.write(content)
224

225

226 def dos_attack(python_path: str, serial_port: str):
227 setup_commands = "\n".join(
228 [
229 "set command_delay 0",
230 "",
231 "!reset now",
232 "wait 2",
233 "",
234 # "!steer 100",
235 # "!drv f 100",
236 # "wait 5",
237 # "",
238 # "!drv f -100",
239 # "wait 2",
240 ]
241 ).encode("ascii")
242 subprocess.run(
243 [python_path, r("pyserial_ucboard.py"), "-e", serial_port],
244 input=setup_commands,
245 stdout=sys.stdout,
246 )
247 input_commands = "\n".join(
248 [
249 "set command_delay 0",
250 "",
251 "!us on",
252 "",
253 # *[
254 # f"!daq grp {group_number} ~any _tics _dly ax gy mz usf usl usr usb

vdbat"
255 # for group_number in range(20)
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256 # ],
257 # "!daq start",
258 # "!drv c 1000",
259 *itertools.chain(
260 *[
261 [
262 "!led a on",
263 "!led a off",
264 ]
265 for _ in range(3)
266 ]
267 ),
268 "",
269 "!drv off",
270 "",
271 ]
272 ).encode("ascii")
273 output_file = r("automated_outputs/dos_attack/serial_output.txt")
274 # print(input_commands.decode("ascii"))
275 subprocess.run(
276 [
277 python_path,
278 r("pyserial_ucboard.py"),
279 "--output-file",
280 output_file,
281 "-cer",
282 serial_port,
283 ],
284 input=input_commands,
285 stdout=sys.stdout,
286 )
287

288

289 def drv_response_time(python_path: str, serial_port: str):
290 for _ in range(50):
291 setup_commands = "\n".join(
292 [
293 "set command_delay 0",
294 "",
295 "!reset now",
296 "wait 2",
297 "",
298 # "!steer 100",
299 # "!drv f 100",
300 # "wait 5",
301 # "",
302 # "!drv f -100",
303 # "wait 2",
304 ]
305 ).encode("ascii")
306 subprocess.run(
307 [python_path, r("pyserial_ucboard.py"), "-e", serial_port],
308 input=setup_commands,
309 stdout=sys.stdout,
310 )
311 delay = random.uniform(0.1, 1)
312 # delay = 0
313 input_commands = "\n".join(
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314 [
315 "set command_delay 0",
316 "",
317 "!drv f 300",
318 "wait 2",
319 "",
320 "!led a on",
321 f"wait {delay:.3f}",
322 "",
323 "# Measure response time",
324 "!drv f -300",
325 "",
326 "!led a off",
327 "",
328 ]
329 ).encode("ascii")
330 output_file = r("automated_outputs/drv_response_time/serial_output.txt")
331 results_file = r("automated_outputs/drv_response_time/results.csv")
332 # print(input_commands.decode("ascii"))
333 subprocess.run(
334 [
335 python_path,
336 r("pyserial_ucboard.py"),
337 "--output-file",
338 output_file,
339 "-cer",
340 serial_port,
341 ],
342 input=input_commands,
343 stdout=sys.stdout,
344 )
345 with open(output_file) as serial_output:
346 for line in serial_output.readlines():
347 response_time_match = re.compile(r":F -300 \((\d+\.\d+) ms\)").search(
348 line
349 )
350 if response_time_match is None:
351 continue
352 response_time = float(response_time_match.group(1))
353 os.makedirs(os.path.dirname(results_file), exist_ok=True)
354 with open(results_file, "a") as results:
355 delay_ms = delay * 1000
356 results.write(f"{delay_ms:.2f},{response_time:.2f}\n")
357 break
358

359

360 def drv_response_time_static(python_path: str, serial_port: str):
361 for _ in range(50):
362 delay = random.uniform(0.1, 1)
363 # delay = 0
364 input_commands = "\n".join(
365 [
366 "set command_delay 0.1",
367 "",
368 "!reset now",
369 "wait 2",
370 "",
371 "!drv f 300",
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372 "wait 2",
373 "",
374 "set command_delay 0",
375 "!led a on",
376 f"wait {delay:.3f}",
377 "set command_delay 0.1",
378 "",
379 "# Measure response time",
380 "!drv f -300",
381 "",
382 "!led a off",
383 "",
384 ]
385 ).encode("ascii")
386 output_file = r("automated_outputs/drv_response_time/serial_output.txt")
387 results_file = r("automated_outputs/drv_response_time/results.csv")
388 # print(input_commands.decode("ascii"))
389 subprocess.run(
390 [
391 python_path,
392 r("pyserial_ucboard.py"),
393 "--output-file",
394 output_file,
395 "-cer",
396 "-t",
397 "0",
398 serial_port,
399 ],
400 input=input_commands,
401 stdout=sys.stdout,
402 )
403 with open(output_file) as serial_output:
404 for line in serial_output.readlines():
405 response_time_match = re.compile(r":F -300 \((\d+\.\d+) ms\)").search(
406 line
407 )
408 if response_time_match is None:
409 continue
410 response_time = float(response_time_match.group(1))
411 os.makedirs(os.path.dirname(results_file), exist_ok=True)
412 with open(results_file, "a") as results:
413 delay_ms = delay * 1000
414 results.write(f"{delay_ms:.2f},{response_time:.2f}\n")
415 break
416

417

418 def main(function_name: str, python_path: str, serial_port: str):
419 try:
420 globals().get(function_name)(python_path, serial_port)
421 except KeyboardInterrupt:
422 subprocess.run(
423 [python_path, r("pyserial_ucboard.py"), "-e", serial_port],
424 input="!led a off".encode("ascii"),
425 stdout=sys.stdout,
426 )
427 subprocess.run(
428 [python_path, r("pyserial_ucboard.py"), "-e", serial_port],
429 input="!drv off".encode("ascii"),
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430 stdout=sys.stdout,
431 )
432

433

434 if __name__ == "__main__":
435 argument_parser = argparse.ArgumentParser()
436 for parameter in inspect.signature(main).parameters:
437 argument_parser.add_argument(parameter)
438 arguments = argument_parser.parse_args()
439 main(**vars(arguments))

A.4.2 dummy_ucboard.py

1 #!/usr/sbin/python3
2

3 # usage: dummy_ucboard.py [-h] [--baudrate BAUDRATE] [--delay DELAY] serial_port
4

5 # This script can be used for testing/debugging `pyserial_ucboard.py` or other command
6 # passing workflows. To use it, firstly set up a virutal serial port connection. On
7 # linux this can be done with socat: `socat -d -d pty,raw,echo=0 pty,raw,echo=0` This
8 # command will output two serial devices (e.g. `/dev/pts/X` and `/dev/pts/Y`) that are
9 # now connected. Leave this process running. Now, in another terminal, run `python

10 # dummy_ucboard.py /dev/pts/X` and leave also this process running. Then, run your
11 # command passing workflow with `/dev/pts/Y` as serial port. The dummy is, as the name
12 # suggests, quite stupid and can only print the commands it receives and respond with
13 # `:ok`.
14

15 # positional arguments:
16 # serial_port Serial communication port to use
17

18 # options:
19 # -h, --help show this help message and exit
20 # --baudrate BAUDRATE, -b BAUDRATE
21 # Baudrate for serial communication (default: 921600)
22 # --delay DELAY, -d DELAY
23 # Delay in seconds before responding to commands (default:
24 # 0.001)
25

26 import serial
27 import serial.tools.list_ports
28 import sys
29 import time
30 import threading
31 import argparse
32 import os
33 import time
34

35 def r(*path):
36 """"
37 Takes a relative path from the directory of this python file and returns the

absolute path.
38 """
39 return os.path.join(os.path.dirname(os.path.abspath(__file__)), *path)
40

41

42 if __name__ == "__main__":
43 class ArgumentParserCustom(argparse.ArgumentParser):
44 def error(self, message):
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45 sys.stderr.write(f"error: {message}\n")
46 self.print_help()
47 sys.exit(2)
48

49 argument_parser = ArgumentParserCustom(
50 epilog="Available serial ports are: "+", ".join([str(port) for port in serial.

tools.list_ports.comports()]),
51 formatter_class=argparse.ArgumentDefaultsHelpFormatter,
52 description="""\
53 This script can be used for testing/debugging `pyserial_ucboard.py` or other command

passing workflows.
54 To use it, firstly set up a virutal serial port connection. On linux this can be done

with socat:
55 `socat -d -d pty,raw,echo=0 pty,raw,echo=0`
56 This command will output two serial devices (e.g. `/dev/pts/X` and `/dev/pts/Y`) that

are now connected. Leave this process running.
57 Now, in another terminal, run `python dummy_ucboard.py /dev/pts/X` and leave also this

process running.
58 Then, run your command passing workflow with `/dev/pts/Y` as serial port.
59 The dummy is, as the name suggests, quite stupid and can only print the commands it

receives and respond with `:ok`."""
60 )
61 argument_parser.add_argument("--baudrate", "-b", type=int, default=921600, help="

Baudrate for serial communication")
62 argument_parser.add_argument("--delay", "-d", type=float, default=.001, help="Delay

in seconds before responding to commands")
63 argument_parser.add_argument("serial_port", type=str, help="Serial communication

port to use")
64 args = argument_parser.parse_args()
65

66 serial_port = args.serial_port
67

68 try:
69 serial_connection = serial.Serial(port=serial_port, baudrate=args.baudrate,

timeout=.1)
70 except Exception as exception:
71 print(exception)
72 print("Something went wrong. Did you enter the correct serial port?")
73 print("Available ports are:")
74 for port in serial.tools.list_ports.comports():
75 print(f" {port}")
76 print("If you are on Linux you might have to get permission to read/write to the

device with")
77 print(f" sudo chmod a+rw {serial_port}")
78 sys.exit(1)
79

80 print(f"Successfully connected to commander on {serial_port}")
81 print("Press Ctrl+C to exit")
82

83 try:
84 while True:
85 command = serial_connection.read_until(expected=b"\n")
86 if command == b"":
87 continue
88 command = command.decode(encoding="ascii")
89 print(command, end="")
90 time.sleep(args.delay)
91 serial_connection.write(b"\x02:ok\x03")
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92 except (KeyboardInterrupt):
93 # Exit on Ctrl+C
94 pass

A.4.3 generate_commands.py

1 #!/usr/sbin/python3
2

3 # usage: generate_commands.py [-h] [--output-file OUTPUT_FILE]
4

5 # This scripts generates command input for `pyserial_ucboard.py`. Edit this script
6 # directly to change which commands it generates. Commands could either be stored to a
7 # file which is then used as input file for `pyserial_ucboard.py` like so: `python
8 # generate_commands.py -o commands.txt && python pyserial_ucboard.py -i commands.txt -e
9 # /dev/ttyUSBX`, or you can pipe the commands directly like so: `python

10 # generate_commands.py | python pyserial_ucboard.py -e /dev/ttyUSBX`. `
11

12 # options:
13 # -h, --help show this help message and exit
14 # --output-file OUTPUT_FILE, -o OUTPUT_FILE
15 # Path to file for storing output
16

17 import sys
18 import time
19 import threading
20 import argparse
21 import os
22 import time
23 import itertools
24

25

26 def r(*path):
27 """
28 Takes a relative path from the directory of this python file and returns the

absolute path.
29 """
30 return os.path.join(os.path.dirname(os.path.abspath(__file__)), *path)
31

32 def run_in_dir(directory, callable):
33 cwd = os.getcwd()
34 os.chdir(directory)
35 result = callable()
36 os.chdir(cwd)
37 return result
38

39 commands = [
40 "set command_delay 0",
41 "",
42 "!reset now",
43 "wait 2",
44 "",
45 "!steer 100",
46 "wait 1",
47 "",
48 *itertools.chain(
49 *[[
50 f"# Driving 10s with drvval {drvval}",
51 f"!drv f {drvval}",
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52 "wait 10",
53 "!drv f -100",
54 "wait 2",
55 "",
56 ] for drvval in range(100, 1001, 100)]
57 ),
58 ]
59

60 # print(commands); exit()
61

62 commands_txt = "\n".join(commands)
63

64 if __name__ == "__main__":
65 argument_parser = argparse.ArgumentParser(
66 description="""\
67 This scripts generates command input for `pyserial_ucboard.py`.
68 Edit this script directly to change which commands it generates.
69 Commands could either be stored to a file which is then used as input file for `

pyserial_ucboard.py` like so:
70 `python generate_commands.py -o commands.txt && python pyserial_ucboard.py -i commands.

txt -e /dev/ttyUSBX`,
71 or you can pipe the commands directly like so:
72 `python generate_commands.py | python pyserial_ucboard.py -e /dev/ttyUSBX`.
73 `""",
74 )
75 argument_parser.add_argument("--output-file", "-o", type=str, default=None, help="

Path to file for storing output")
76 args = argument_parser.parse_args()
77 output_file = sys.stdout
78 if args.output_file is not None:
79 output_file = open(args.output_file, "w")
80 print(commands_txt, file=output_file)

A.4.4 pyserial_ucboard.py

1 #!/usr/sbin/python3
2

3 # usage: pyserial_ucboard.py [-h] [--baudrate BAUDRATE] [--timeout TIMEOUT]
4 # [--history-file HISTORY_FILE] [--input-file INPUT_FILE]
5 # [--exit-after-input-commands] [--output-file OUTPUT_FILE]
6 # [--clear-output-file] [--response-time]
7 # serial_port [command ...]
8

9 # positional arguments:
10 # serial_port Serial communication port to use
11 # command Send command, listen for response and exit (default: None)
12

13 # options:
14 # -h, --help show this help message and exit
15 # --baudrate BAUDRATE, -b BAUDRATE
16 # Baudrate for serial communication (default: 921600)
17 # --timeout TIMEOUT, -t TIMEOUT
18 # Timeout in seconds when waiting for response (default: 3)
19 # --history-file HISTORY_FILE, -f HISTORY_FILE
20 # Path to file for reading and storing history of previously
21 # sent commands (default: None)
22 # --input-file INPUT_FILE, -i INPUT_FILE
23 # Path to file for input commands. Will be overridden by
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24 # command provided directly through positional argument
25 # (default: None)
26 # --exit-after-input-commands, -e
27 # Exit after provided input commands are executed (default:
28 # False)
29 # --output-file OUTPUT_FILE, -o OUTPUT_FILE
30 # Path to file for storing output (default: None)
31 # --clear-output-file, -c
32 # Clear output file on startup (default: False)
33 # --response-time, -r Prints how long time it takes from a command is sent until
34 # the direct response is received (default: False)
35

36 import serial
37 import serial.tools.list_ports
38 import sys
39 import time
40 import threading
41 import argparse
42 import os
43 import time
44

45 from prompt_toolkit import PromptSession
46 from prompt_toolkit.key_binding import KeyBindings
47 from prompt_toolkit.key_binding.bindings.named_commands import end_of_line
48 from prompt_toolkit.auto_suggest import AutoSuggestFromHistory
49 from prompt_toolkit.history import FileHistory
50 from prompt_toolkit.patch_stdout import patch_stdout
51

52 def r(*path):
53 """"
54 Takes a relative path from the directory of this python file and returns the

absolute path.
55 """
56 return os.path.join(os.path.dirname(os.path.abspath(__file__)), *path)
57

58

59 def read_message_from_ucboard(serial_connection: serial.Serial):
60 # output = serial_connection.read()
61 # return None if output == b"" else output.decode(encoding="ascii")
62 # Read until start of message
63 output = serial_connection.read_until(expected=b"\x02")
64

65 if output == b"":
66 return None
67

68 # Read until end of message, do not include the \x03 in result, strip eventual extra
leading \x02

69 # and decode (convert from bytes to str)
70 return (serial_connection.read_until(expected=b"\x03")[:-1]).strip(b"\x02").decode(

encoding="ascii")
71

72

73 if __name__ == "__main__":
74 class ArgumentParserCustom(argparse.ArgumentParser):
75 def error(self, message):
76 sys.stderr.write(f"error: {message}\n")
77 self.print_help()
78 sys.exit(2)
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79

80 argument_parser = ArgumentParserCustom(
81 epilog="Available serial ports are: "+", ".join([str(port) for port in serial.

tools.list_ports.comports()]),
82 formatter_class=argparse.ArgumentDefaultsHelpFormatter,
83 )
84 argument_parser.add_argument("--baudrate", "-b", type=int, default=921600, help="

Baudrate for serial communication")
85 argument_parser.add_argument("--timeout", "-t", type=float, default=3, help="Timeout

in seconds when waiting for response")
86 argument_parser.add_argument("--history-file", "-f", type=str, default=None, help="

Path to file for reading and storing history of previously sent commands")
87 argument_parser.add_argument("--input-file", "-i", type=str, default=None, help="

Path to file for input commands. Will be overridden by command provided directly
through positional argument")

88 argument_parser.add_argument("--exit-after-input-commands", "-e", action="store_true
", help="Exit after provided input commands are executed")

89 argument_parser.add_argument("--output-file", "-o", type=str, default=None, help="
Path to file for storing output")

90 argument_parser.add_argument("--clear-output-file", "-c", action="store_true", help=
"Clear output file on startup")

91 argument_parser.add_argument("--response-time", "-r", action="store_true", help="
Prints how long time it takes from a command is sent until the direct response is
received")

92 argument_parser.add_argument("serial_port", type=str, help="Serial communication
port to use")

93 argument_parser.add_argument("command", type=str, nargs="*", help="Send command,
listen for response and exit")

94 args = argument_parser.parse_args()
95

96 serial_port = args.serial_port
97

98 try:
99 serial_connection = serial.Serial(port=serial_port, baudrate=args.baudrate,

timeout=.1)
100 except Exception as exception:
101 print(exception)
102 print("Something went wrong. Did you enter the correct serial port?")
103 print("Available ports are:")
104 for port in serial.tools.list_ports.comports():
105 print(f" {port}")
106 print("If you are on Linux you might have to get permission to read/write to the

device with")
107 print(f" sudo chmod a+rw {serial_port}")
108 sys.exit(1)
109

110 time.sleep(0.1)
111

112 if args.output_file is not None:
113 os.makedirs(os.path.dirname(args.output_file), exist_ok=True)
114 if args.clear_output_file:
115 with open(args.output_file, "w") as output_file:
116 output_file.write("")
117

118 exit_event = threading.Event()
119 response_received_event = threading.Event()
120

121 output_lock = threading.Lock()
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122

123 last_command_time = time.time()
124

125 def print_to_output_file(output, *print_args, **print_kwargs):
126 if args.output_file is not None:
127 with open(args.output_file, "a") as output_file:
128 print(output, *print_args, file=output_file, **print_kwargs)
129

130 def read_output_thread():
131 global serial_connection, exit_event, last_command_time
132

133 while not exit_event.is_set():
134 message = read_message_from_ucboard(serial_connection)
135

136 if message is None or message == "":
137 continue
138

139 output_lock.acquire()
140 if message[0] == ":":
141 response_received_event.set()
142 if args.response_time:
143 time_since_last_command_ms = (time.time() - last_command_time) *

1000
144 message = f"{message} ({time_since_last_command_ms:.2f} ms)"
145 print(message)
146 print_to_output_file(message)
147 output_lock.release()
148

149 def send_command(command):
150 global serial_connection, last_command_time
151 response_received_event.clear()
152 serial_connection.write((command + "\n").encode(encoding="ascii"))
153 last_command_time = time.time()
154

155 if len(args.command) > 0:
156 command = " ".join(args.command)
157 command = (command + "\n").encode(encoding="ascii")
158 serial_connection.write(command)
159 print_to_output_file(f"> {command}")
160 while True:
161 answer = read_message_from_ucboard(serial_connection)
162 if answer is None:
163 break
164 print(answer)
165 print_to_output_file(answer)
166 if args.exit_after_input_commands:
167 sys.exit()
168

169 threading.Thread(target=read_output_thread).start()
170

171 print(f"Successfully connected to ucboard on {serial_port}")
172 print("Type the command you want to send below and press ENTER to send it")
173 print("Press Ctrl+C to exit")
174

175 try:
176 input_commands = None
177 if args.input_file is not None:
178 with open(args.input_file) as input_file:
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179 input_commands = input_file.read().split("\n")
180 elif not sys.stdin.isatty():
181 input_commands = sys.stdin.read().split("\n")
182

183 if input_commands is not None:
184 command_delay = 0.1
185 for command in input_commands:
186 if command == "" or command[0] == "#":
187 # Ignore empty lines and comments
188 continue
189 if command[0] in ["!", "?"]:
190 # Command to ucboard
191 output_lock.acquire()
192 send_command(command)
193 print(f"> {command}")
194 print_to_output_file(f"> {command}")
195 output_lock.release()
196 time.sleep(command_delay)
197 response_received_event.wait(timeout=args.timeout)
198 continue
199 if command.startswith("wait"):
200 # Wait for the specified number of seconds
201 time.sleep(float(command[len("wait "):]))
202 if command.startswith("set command_delay"):
203 command_delay = float(command[len("set command_delay "):])
204 if args.exit_after_input_commands:
205 raise KeyboardInterrupt()
206 prompt_session = PromptSession(
207 history=FileHistory(args.history_file or r("history.pthistory")),
208 auto_suggest=AutoSuggestFromHistory(),
209 )
210 while True:
211 with patch_stdout():
212 command = prompt_session.prompt("> ")
213 output_lock.acquire()
214 send_command(command)
215 print_to_output_file(f"> {command}")
216 output_lock.release()
217 response_received_event.wait(timeout=args.timeout)
218 except (KeyboardInterrupt, EOFError):
219 # Exit on Ctrl+C and Ctrl+D
220 exit_event.set()
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B Compile time analysis output

B.1 Analyze stack usage

In this section, output from running the script analyze_stack_usage.py on our implementation (routine
configuration B) is listed.

64 func t i on s with the h ighes t s t a ck usage
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| eeprom_ini t | 2.1 KiB |
| d i s p l a y _p r i n t e r r o r | 1016 B |
| parseGrpDef | 528 B |
| cmd_drv | 408 B |
| cmd_imu | 320 B |
| cmd_us | 320 B |
| cmd_daq | 312 B |
| cmd_mag | 304 B |
| cmd_bldc | 288 B |
| streamout | 256 B |
| cmd_encoder | 232 B |
| us_do_sy s t i ck | 224 B |
| cruise_contro l_getNewDrvVal | 176 B |
| daq_do_sys t i ck | 168 B |
| SystemClock_Config | 160 B |
| cmd_dbg | 152 B |
| cmd_led | 144 B |
| u s _ i n i t | 136 B |
| cmd_commstats | 136 B |
| cmd_reset | 120 B |
| cmd_t ics | 120 B |
| cmd_sess ionid | 120 B |
| cmd_version | 120 B |
| cmd_vout12v | 120 B |
| cmd_steer | 120 B |
| comm_parseSubcmdArgs | 120 B |
| cmd_eeprom | 120 B |
| cmd_globalvar | 120 B |
| cmd_rcmode | 120 B |
| cmd_carid | 120 B |
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| comm_parseArgs | 112 B |
| HAL_ADCEx_MultiModeStart_DMA | 112 B |
| HAL_ADC_Init | 104 B |
| HAL_ADC_DeInit | 104 B |
| HAL_ADCEx_MultiModeStop_DMA | 104 B |
| HAL_ADCEx_RegularMultiModeStop_DMA | 104 B |
| HAL_ADCEx_InjectedConfigChannel | 104 B |
| HAL_ADCEx_MultiModeConfigChannel | 104 B |
| HAL_ADC_ConfigChannel | 96 B |
| r e c e i v e r _ i n i t | 88 B |
| b l d c _ i n i t | 80 B |
| imuMPU9250_init | 80 B |
| imuICM20648_init | 80 B |
| MX_GPIO_Init | 72 B |
| eeprom_streamout | 72 B |
| ge tGrpDataSt r ingAsc i i _ re turnend | 64 B |
| getDataSt r ing_re turnend | 64 B |
| encode r_ in i t | 64 B |
| sp imgr_ in i t | 64 B |
| getIMUConfStr ing_returnend | 56 B |
| c rea teEr rS t r_ re tu rnend | 56 B |
| processUsartCommand | 56 B |
| HAL_ADC_MspInit | 48 B |
| HAL_I2C_MspInit | 48 B |
| HAL_TIM_IC_MspInit | 48 B |
| HAL_TIM_MspPostInit | 48 B |
| MX_TIM2_Init | 48 B |
| initPWM | 48 B |
| d i s p l a y _ p r i n t l n _ b i t s | 48 B |
| ha l503_ in i t | 48 B |
| imu_do_sys t ick | 48 B |
| u toa_b i t s | 48 B |
| HAL_I2C_Mem_Write | 48 B |
| HAL_I2C_Mem_Read | 48 B |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+

NOTE: This ana l y s i s only looks at the s tack usage of each func t ion
i s o l a t e d and

does not take in to account how much s tack each func t ion a c t u a l l y needs
when c a l l i n g

other func t i on s . This i s not even po s s i b l e to determine by s t a t i c
ana l y s i s alone .
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B.2 Analyze linker map

In this section, output from running the script analyze_linker_map.py on the present UcBoard software,
our implementation with routine configuration A and our implementation with routine configuration
B is listed.

B.2.1 Present

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| FLASH | program | 62.0
KiB |

| | cons tan t s | 6.6
KiB |

|
+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| | t o t a l used | 68.6
KiB |

| | not used | 443.4
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| RAM | s t a t i c v a r i a b l e s | 22.9
KiB |

| | i d l e ta sk s tack | 0
B |

| | t imer ta sk s tack | 0
B |

| | motor c o n t r o l l e r s t ack | 0
B |

| | comm rx task s tack | 0
B |

| | comm tx task s tack | 0
B |

| | ISR s tack | 4.0
KiB |

|
+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| | t o t a l | 26.9
KiB |

| | not used | 37.1
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| CCRAM | t o t a l | 0
B |
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| | not used | 16.0
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

32 l a r g e s t s t a t i c v a r i a b l e s
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| f_grps | 9.1 KiB | dev i ce s /daq . c . ob j
| f_eepromdata | 2.0 KiB | dev i ce s /eeprom . c . obj
| f _ v a l s | 1.1 KiB | dev i ce s /daq . c . ob j
| f_acRxBuf | 1002 B | dev i ce s /comm. c . obj
| f_acTxSecondaryBuf | 1001 B | dev i ce s /comm. c . obj
| f_acTxOutstreamBuf | 1001 B | dev i ce s /comm. c . obj
| f_acTxRespBuf | 1001 B | dev i ce s /comm. c . obj
| f _a cBu f f e r | 1000 B | dev i ce s / d i sp l ay . c . ob j
| f_aSPIConf igs | 572 B | stmcommon/ spimgr . c . ob j
| f_chs | 480 B | dev i ce s /daq . c . ob j
| f _u sdev i c e s | 400 B | dev i ce s /us . c . ob j
| __g l oba l _ l o ca l e | 364 B | /home/ s igurd /

masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−lo c a l e . o)

| f_aMsgs | 320 B | stmcommon/ i2cmgr . c . ob j
| __ s f | 312 B | /home/ s igurd /

masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−f ind fp . o)

| f_aCurLedSeq | 264 B | dev i ce s / ca ru i . c . ob j
| f_aNewLedSeq | 264 B | dev i ce s / ca ru i . c . ob j
| f_acErrMsg | 255 B | dev i ce s /daq . c . ob j
| f_acErrMsg | 255 B | dev i ce s / d i sp l ay . c . ob j
| f _a cBu f f e r | 200 B | dev i ce s /daq . c . ob j
| f_aI2C | 192 B | stmcommon/ i2cmgr . c . ob j
| g_commCmdFctTable | 136 B | dev i ce s /comm_cmdtable . c .

ob j
| f_aDev ices | 120 B | stmcommon/ i2cmgr . c . ob j
| f_aDev ices | 120 B | stmcommon/ spimgr . c . ob j
| huart2 | 112 B | Src /main . c . ob j
| hspi1 | 100 B | Src /main . c . ob j
| f _gues tdev i ce | 100 B | dev i ce s / us_s r f08 . c . ob j
| hadc4 | 84 B | Src /main . c . ob j
| hadc3 | 84 B | Src /main . c . ob j
| hadc1 | 84 B | Src /main . c . ob j
| hi2c1 | 76 B | Src /main . c . ob j
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| _impure_data | 76 B | /home/ s igurd /
masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−impure . o)

| htim6 | 60 B | Src /main . c . ob j
| t o t a l | 21.9 KiB |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+

B.2.2 Routine configuration A

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| FLASH | program | 77.5
KiB |

| | cons tan t s | 7.6
KiB |

|
+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| | t o t a l used | 85.0
KiB |

| | not used | 427.0
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| RAM | s t a t i c v a r i a b l e s | 24.5
KiB |

| | i d l e ta sk s tack | 512
B |

| | t imer ta sk s tack | 4.0
KiB |

| | motor c o n t r o l l e r s t ack | 1.0
KiB |

| | comm rx task s tack | 0
B |

| | comm tx task s tack | 0
B |

| | ISR s tack | 4.0
KiB |

|
+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| | t o t a l | 34.0
KiB |

| | not used | 30.0
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+
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| CCRAM | t o t a l | 0
B |

| | not used | 16.0
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

32 l a r g e s t s t a t i c v a r i a b l e s
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| f_grps | 9.1 KiB | s r c / dev i ce s /daq . c . ob j
| f_eepromdata | 2.0 KiB | s r c / dev i ce s /eeprom . c . obj
| f _ v a l s | 1.1 KiB | s r c / dev i ce s /daq . c . ob j
| f_sUsar t2RxBuf fe r | 1012 B | s r c / dev i ce s /comm. c . obj
| f_acTxOutstreamBuf | 1001 B | s r c / dev i ce s /comm. c . obj
| f_acTxRespBuf | 1001 B | s r c / dev i ce s /comm. c . obj
| f _a cBu f f e r | 1000 B | s r c / dev i ce s / d i sp l ay . c .

ob j
| f_aSPIConf igs | 572 B | s r c /stmcommon/ spimgr . c .

ob j
| f_chs | 480 B | s r c / dev i ce s /daq . c . ob j
| f _u sdev i c e s | 400 B | s r c / dev i ce s /us . c . ob j
| __g l oba l _ l o ca l e | 364 B | /home/ s igurd /

masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−lo c a l e . o)

| f_aMsgs | 320 B | s r c /stmcommon/ i2cmgr . c .
ob j

| pxReadyTasksL is t s | 320 B | s r c /FreeRTOS−Kernel /
t a sk s . c . ob j

| __ s f | 312 B | /home/ s igurd /
masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−f ind fp . o)

| f_aCurLedSeq | 264 B | s r c / dev i ce s / ca ru i . c . ob j
| f_aNewLedSeq | 264 B | s r c / dev i ce s / ca ru i . c . ob j
| f_acErrMsg | 255 B | s r c / dev i ce s /daq . c . ob j
| f_acErrMsg | 255 B | s r c / dev i ce s / d i sp l ay . c .

ob j
| f _a cBu f f e r | 200 B | s r c / dev i ce s /daq . c . ob j
| f_aI2C | 192 B | s r c /stmcommon/ i2cmgr . c .

ob j
| g_commCmdFctTable | 160 B | s r c / dev i ce s /

comm_cmdtable . c . ob j
| f_aDev ices | 120 B | s r c /stmcommon/ i2cmgr . c .

ob j
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| f_aDev ices | 120 B | s r c /stmcommon/ spimgr . c .
ob j

| ucStat icTimerQueueStorage .1 | 120 B | s r c /FreeRTOS−Kernel /
t imers . c . ob j

| huart | 112 B | s r c /main . c . ob j
| hspi2 | 100 B | s r c /main . c . ob j
| hspi1 | 100 B | s r c /main . c . ob j
| f _gues tdev i ce | 100 B | s r c / dev i ce s / us_s r f08 . c .

ob j
| f_xT imerTaskSta t i c | 92 B | s r c /main . c . ob j
| t o t a l | 21.1 KiB |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+

B.2.3 Routine configuration B

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| FLASH | program | 77.7
KiB |

| | cons tan t s | 7.6
KiB |

|
+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| | t o t a l used | 85.3
KiB |

| | not used | 426.7
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| RAM | s t a t i c v a r i a b l e s | 24.6
KiB |

| | i d l e ta sk s tack | 512
B |

| | t imer ta sk s tack | 4.0
KiB |

| | motor c o n t r o l l e r s t ack | 1.0
KiB |

| | comm rx task s tack | 4.0
KiB |

| | comm tx task s tack | 1.0
KiB |

| | ISR s tack | 4.0
KiB |

|
+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| | t o t a l | 39.1
KiB |
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| | not used | 24.9
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

| CCRAM | t o t a l | 0
B |

| | not used | 16.0
KiB |

+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−−−−−−−+

32 l a r g e s t s t a t i c v a r i a b l e s
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
| f_grps | 9.1 KiB | s r c / dev i ce s /daq . c . ob j
| f_eepromdata | 2.0 KiB | s r c / dev i ce s /eeprom . c . obj
| f _ v a l s | 1.1 KiB | s r c / dev i ce s /daq . c . ob j
| f_sUsar t2RxBuf fe r | 1012 B | s r c / dev i ce s /comm. c . obj
| f_acTxOutstreamBuf | 1001 B | s r c / dev i ce s /comm. c . obj
| f_acTxRespBuf | 1001 B | s r c / dev i ce s /comm. c . obj
| f _a cBu f f e r | 1000 B | s r c / dev i ce s / d i sp l ay . c .

ob j
| f_aSPIConf igs | 572 B | s r c /stmcommon/ spimgr . c .

ob j
| f_chs | 480 B | s r c / dev i ce s /daq . c . ob j
| f _u sdev i c e s | 400 B | s r c / dev i ce s /us . c . ob j
| __g l oba l _ l o ca l e | 364 B | /home/ s igurd /

masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−lo c a l e . o)

| f_aMsgs | 320 B | s r c /stmcommon/ i2cmgr . c .
ob j

| pxReadyTasksL is t s | 320 B | s r c /FreeRTOS−Kernel /
t a sk s . c . ob j

| __ s f | 312 B | /home/ s igurd /
masteroppgave/uc−board−os/arm−too l cha in /arm−gnu−toolcha in −12.2.
mpacbti−rel1−x86_64−arm−none−eabi / bin / . . / l i b / gcc /arm−none−eabi
/ 1 2 . 2 . 1 / . . / . . / . . / . . / arm−none−eabi / l i b /thumb/v7e−m+fp /hard/ l ibc_nano . a
( l i bc_a−f ind fp . o)

| f_aCurLedSeq | 264 B | s r c / dev i ce s / ca ru i . c . ob j
| f_aNewLedSeq | 264 B | s r c / dev i ce s / ca ru i . c . ob j
| f_acErrMsg | 255 B | s r c / dev i ce s /daq . c . ob j
| f_acErrMsg | 255 B | s r c / dev i ce s / d i sp l ay . c .

ob j
| f _a cBu f f e r | 200 B | s r c / dev i ce s /daq . c . ob j
| f_aI2C | 192 B | s r c /stmcommon/ i2cmgr . c .

ob j
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| g_commCmdFctTable | 160 B | s r c / dev i ce s /
comm_cmdtable . c . ob j

| f_aDev ices | 120 B | s r c /stmcommon/ i2cmgr . c .
ob j

| f_aDev ices | 120 B | s r c /stmcommon/ spimgr . c .
ob j

| ucStat icTimerQueueStorage .1 | 120 B | s r c /FreeRTOS−Kernel /
t imers . c . ob j

| huart | 112 B | s r c /main . c . ob j
| hspi2 | 100 B | s r c /main . c . ob j
| hspi1 | 100 B | s r c /main . c . ob j
| t o t a l | 20.9 KiB |
+−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−+
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