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Abstract: For vehicle-manipulator systems (VMSs) to perform precise operations, a robust
tracking control framework is required. Moreover, to exploit the platform’s redundancy, it is
desirable that the framework allows several tasks to be completed simultaneously. This work
presents a robust hierarchical tracking controller for floating-base robots. In addition to providing
uniform global asymptotic stability (UGAS) in free motion and allowing a total task dimension
greater than the number of degrees of freedom (DoFs), the proposed controller includes a sliding
mode effect and is proved to achieve UGAS even in the presence of bounded disturbances.
Moreover, it is proved that uniform global ultimate boundedness (UGUB) is obtained if a
continuous approximation of the sliding mode term is used. The stability results are proved
mathematically, and are validated through simulations of an articulated intervention autonomous

underwater vehicle (ATIAUV).
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1. INTRODUCTION

The motivation for this paper was found in the field of
underwater vehicle-manipulator systems (UVMSs). Today,
underwater inspection, maintenance, and repair (IMR)
operations are usually performed by human divers or
remotely operated vehicles (ROVs). ROVs are preferred
when the conditions pose a risk to human safety or the
operation requires significant time spent underwater. They
are, however, expensive to use. The main cost driver of IMR
operations within the offshore energy industry is the large
surface vessels from which ROVs are deployed (Liljeback
and Mills, 2017). Increasing the autonomy eliminates the
need for these, and thus autonomous underwater vehicles
(AUVs) can help reduce both the cost and the human risk
of IMR operations. In particular, the snake-like articulated
intervention-AUV (AIAUV) combines the hovering and
intervention capabilities of ROVs with the favorable hy-
drodynamic properties of survey-AUVs, making it very
versatile and a good candidate for autonomous IMR.

Robustness is an important feature of VMS control systems
in general and is crucial when operating underwater, as the
underwater environment entails significant disturbances
and modeling uncertainties. Furthermore, as VMSs are
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redundant with respect to the payload pose, due to their
mobile base and manipulator arm, a tracking control
framework must be able to handle this redundancy. One
way of doing so is by using a task-priority framework where
the tasks define the behavior of all degrees of freedom
(DoFs) at all times. This type of framework also has the
advantage of enabling the VMS to complete several tasks
at once, for instance by using the redundant DoFs to avoid
collisions.

Faced with multiple, possibly conflicting tasks, a redundant
robotic system needs a way of prioritizing when resolving
redundancy. Task-priority methods are usually either based
on null-space projections (Siciliano and Slotine, 1991) or
optimization (Kanoun et al., 2011). The projection methods
obtain strict priority, whereas optimization methods usually
use weighting and thus lack the strict priority between
tasks. However, there exist methods that combine strict
priority between hierarchy levels and soft priority between
tasks on the same level, e.g. Basso and Pettersen (2020).
Optimization-based methods also allow for the incorpora-
tion of inequality tasks, which is a natural way of describing
many important tasks like obstacle avoidance, joint limits,
and contact constraints.

Task-priority control is faced with several challenges con-
cerning singularities, both kinematic and algorithmic (Chi-
averini, 1997), conflicting tasks, and stability analysis. Most
methods lack stability proofs for the whole system and only
show asymptotic stability of the tasks. Moreover, assuming
non-singular Jacobian matrices in the proofs is common.
Singularity-robustness is achieved by methods such as
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damped least-squares instead of the regular pseudo-inverse
(Nakamura and Hanafusa, 1986), or numerical filtering
(Maciejewski and Klein, 1988). Chiaverini (1997) also intro-
duced a technique for two tasks that overcomes algorithmic
singularities, which was extended to an arbitrary number
of tasks by Antonelli (2009) which employs closed-loop
inverse kinematics (CLIK) to prevent drift of the desired
joint angles. Chiacchio et al. (1991) uses the transposed
Jacobian instead of its pseudo-inverse.

While the hierarchical operational space formulation with
full feedback linearization on each priority level gives
exponential stability of the trajectory tracking error in
theory, it is sensitive to modeling uncertainties, due to
the cancellation of the dynamics, which also requires
problematic feedback of external forces/torques. Instead,
one can leave parts of the dynamics, e.g. the natural inertia,
and utilize passivity in the controller design. An approach
to tackle this in the regulation case is given by Ott et al.
(2015), which proves asymptotic stability and nice passivity
properties. This method was extended to tracking control
in Dietrich and Ott (2020). However, both methods assume
non-singular task Jacobians, and the tracking controller
requires a total task dimension equal to the number of
degrees of freedom. These requirements are removed in
Garofalo and Ott (2020), while simultaneously proving the
stronger property of UGAS. The controller in Garofalo and
Ott (2020) has also been made adaptive in Garofalo et al.
(2021). However, while guaranteeing asymptotic tracking of
the tasks, the framework again requires that the total task
dimension is equal to the number of DoFs. Moreover, strict
priority between the tasks cannot generally be guaranteed.

Sabg et al. (2022) provides an extension of the method
of Dietrich and Ott (2020) to UVMSs. The method of
Dietrich and Ott (2020) has recently also been improved
by Wu et al. (2022a), proving uniform exponential stability,
passivity during physical interaction and input-to-state
stability, using external force feedback. Furthermore, Wu
et al. (2022b) compared the method experimentally with
both the hierarchical PD+ controller of Dietrich and Ott
(2020) and feedback linearization.

In this work, we build on the control approach of Garofalo
and Ott (2020) to obtain the strong properties of this
method. We will adapt the method to VMSs, and also
include hydrodynamic effects so that the class of systems
includes UVMSs. The extended control law will include
compensation for certain parts of the hydrodynamic ef-
fects; moreover, we introduce a sliding mode effect to
achieve robustness to external disturbances and modeling
uncertainties. We prove that the proposed control law
provides uniform global asymptotic stability (UGAS) of
the task error dynamics, even in the presence of external
disturbances. Furthermore, a continuous approximation of
the ideal sliding mode controller is proved to yield uniform
global ultimate boundedness (UGUB). The theoretical
results are validated in simulations, where the performances
of the proposed control laws are also compared to control
laws derived more directly from Garofalo and Ott (2020).

The paper is organized as follows: Section 2 presents a
mathematical model of the class of VMSs, which also
includes UVMSs, and the task specifications. The control
design is given in Section 3, and the corresponding stability
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results are given in Section 4 and proved in Section 5.
The results are validated through simulations in Section
6, where the different controllers are compared, before the
conclusions and future work are presented in Section 7.

2. VMS MODEL AND TASK SPECIFICATIONS

The state of a VMS can be described by the pose of its base
and the manipulator configuration. The pose and velocities
of the robot’s base are given by

n' = [pT qT} eR and v’ = [VT wT] eR® (1)

respectively, with p € R? being the position in the inertial
frame, q € S® := {q € R* : q"'q = 1} a unit quaternion
describing the orientation relative to the inertial frame
and v, w € R3 the body-fixed linear and angular velocities,
respectively. A VMS with n joints will have d = 6 +n DoF's
and its full state will be given by combining the state of
the base (1) with the joint state 6,6 € R™:

€' =[n" 0" eR™ and ¢" = [vT 7] eRL (2)
Notice that the joint state 8 is not constrained by the base
pose 1) given an obstacle-free environment.

The dynamic model of a VMS is (From et al., 2014, Ch. 8.2)

£=Jau(€)¢ (3a)
M(0)¢ + C(0,0)¢ +D(6, ()¢ +g(§) =7+f,  (3b)
in a body-fixed frame. Here, J, is the Jacobian transforming
body-fixed velocities ¢ to velocities in the inertial frame &
and M is the system’s inertia matrix, i.e. the sum of rigid
body mass and, in the case of a marine system, added
mass caused by hydrodynamic effects. The Coriolis and
centripetal force matrix is given by C, which also includes
added mass effects in the case of UVMSs, while D denotes
the hydrodynamic damping or viscous friction matrix
depending on whether the system is marine or terrestrial.
The vector g represents the buoyancy and gravitational
forces, 7 the wrench caused by the actuators, while f is
the sum of the external wrench (not captured by D¢ or g)
and any modeling errors affecting the system.

It can be shown that for UVMSs with a suitable choice of
C, the following properties hold (Antonelli, 2018, Ch. 2.15):

M=M'">0 (4a)

M=C+C' (4b)

z'Dz >0, (4c)

The same properties are known to also hold for terrestrial

VMSs (Chung et al., 2016; De Luca and Book, 2016).
2.1 Task specifications

The tasks are specified as

x; = h;(§) (5)
i = e = T = 3i(e)C )

with 7 € {1,2,...,7} and h; : R&+1 — R™:,

The tasks are stacked in the order of their priority, such
that x; has a higher priority than x; for all ¢ < j. The total
task dimension is given by m = Z;zl m;, and the whole
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. T
stack is denoted as x = [x] xj ... x,| . For every task,

a desired trajectory x; ¢(t) € R™ is given, together with its
first and second order time-derivatives, x; 4(t) and X; 4(%).
The desired trajectories are required to be compatible so
that all tasks can be accomplished simultaneously.

3. CONTROLLER DESIGN

In this section we will build on the control approach of
Garofalo and Ott (2020). We will extend this to the class of
VMSs presented in Section 2, and we will include a sliding
mode effect to achieve robustness to external disturbances
and model errors. The closed-loop stability results and
analysis will be presented in Sections 4 and 5.

To present the basics of the method that we will build on,
and then to extend this, we need to first briefly present some
definitions and propositions from Garofalo and Ott (2020).
As in their work, the controller design relies on null-space
projections to obtain dynamically decoupled task velocities
that are consistent with the priority stack. To achieve
this, the weighted Moore-Penrose inverse (WMPI) is used
extensively. We use their simplified notation AT = AI,M,
where the weights are the identity matrix I and the inertia
matrix M, respectively.

3.1 Dynamically consistent Jacobian matrices

Each task Jacobian is projected onto the null-space of all
the higher priority ones by the following construction:

Definition 1. (Garofalo and Ott (2020), Def. 1) The dy-
namically consistent Jacobian matrix J; is computed using
the orthogonal projection matrix P;_; and is defined as

ji =J,P;_1 (7)
P,=P, ,(I-3J) (8)
for i € {1,...,r}, with Pg =1 (the d x d identity matrix).

3.2 Change of coordinates

Here, the model will be represented by replacing the body
velocities ¢ with decoupled task velocities v.

Proposition 2. (Garofalo and Ott (2020), Prop. 4) Given

the dynamically decoupled task velocities v; = J;(, we
have

¢=J%v (9a)
x=Tv (9b)
where
1 0o O0---0
3+
L e (10)

is a lower block-triangular matrix with identities on the
diagonal (and thus invertible) such that J = TJ.

Using (9a) and pre-multiplying the VMS dynamics (3b) by
J +T, one obtains the dynamics in the new coordinates

AV+ (T +Av=I" (r+f—g), (11)
where A = J+ MJ*, T = J* (CJ* + MJ*) and
A=J"'DJt.
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The transformed inertia matrix is block-diagonal, A =

diag(J ZT"T MJ;"), which follows along the same lines as
for the robot manipulator system in Garofalo and Ott
(2020). Therefore, in these coordinates, there is no coupling
between the tasks in the inertia term. Furthermore, using
(4b) one can show that A =Ty + T, where I' =Ty + Ty,
I'y = diag (T'y;) is block-diagonal with 'y ; = jj'T (CIf +
MJf)and Ty = -T.

Moreover, we have that z' Az > 0 Vz due to (4c). The
matrix A is then split into its block-diagonal and off-
diagonal part, Ay = diag(j;rTDj;r) and A,qg = A — Ay,
where zT Ayz > 0 Vz as well.

3.8 Control law and closed-loop system

We now exploit the properties of the symmetric projector

33+t = (3347

Proposition 3. The projection matrix JJ* satisfies
jj+A:A, jj+Ad :Ad, jj+And :Anda
JITT =T, JItr, =Ty, JITr, =T..

A proof of this can be found in Garofalo and Ott (2020,
Prop. 5). Their argument for I" also holds for A.

The projected gains K,,, K4, and the variables v, and s are
defined similarly as in Garofalo and Ott (2020): The gains
are defined as K, = JJTK/JJ* and Ky = JJITKJJ*
with block-diagonal matrices K}, K; > 0. The variables are
the reference velocity v, =v4—K,X, where vg= JItT x4
and Xx=xX—Xg4, while the sliding variable s=v—v,..

With this notation, we can adapt the control law of Garofalo
and Ott (2020) to the VMS system (3):

T=g+jT(AVT+I‘dVT+F5V—KdS). (12)
To achieve better tracking and guaranteed stability, we

will in addition compensate for selected parts of the
hydrodynamic effects. We therefore propose the control law

T=g+J " [AV, + (DatAg)v, + (Ts+A,0)v — Kgs]. (13)
These two controllers (12) and (13) will be referred to as
the standard and hydrodynamic controller, respectively. As
in Garofalo and Ott (2020), one can replace v with v,
in the control laws without changing the stability results;
however, strict decoupling of tasks is not ensured in that
case.

As discussed in the Introduction, robustness is an important
feature of VMS control systems in general, and is crucial
when operating underwater. Garofalo and Ott (2020) did
not consider external forces and model uncertainty. In the
following, we seek to enhance the robustness by introducing
a sliding mode effect in the control law. Specifically, we
introduce the sliding mode term J'Kjsgn(s) into (13),
and propose the following sliding mode controller (SMC):
T=g+J [AV, + (Ta+ Ag)v, + (Ts + Ana)v
—Kgs — K;sgn(s)],

where sgn(-) is the element-wise sign function, K, =
JITK.JJT is sufficiently large, and K. > 0 is chosen
as diagonal. In Section 5 we will prove that the resulting

control law achieves robustness with respect to bounded
external forces and model uncertainty.

(14)
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Table 1. The four different control laws.

Name ‘ Expression ‘ Description
Standard T=g+ .iT (Avy +Tgv, + Tsv — Kgs) (12) | Garofalo and Ott (2020), extended to VMS.
Hydrodynamic | 7 =g +_JT (Ave + (Tg+ Ag)vr + (Ts + Apg)v — Kgs) (13) | Adds compensation for hydrodyn. damping.
SMC T=g+I T (AV, +(Tg+ Ay vr+(Ts+A,q)v—Kgs—Kssgn(s)) (14) | Adds a first-order sliding mode term.
CSMA T =g+I  (AVp+(Tg+Ag)vr+(Ts+A,g)v—Kgs—Kssat.(s)) (16) | Replaces sgn with sat.

A discontinuous control law may, however, give rise to  Theorem 8. Given Assumption 4 with m = d, and Assump-

severe chattering and may thus be undesirable in practice.
Using a continuous approximation of the sign function, e.g.
the saturation function

sat. (x) == {Sgn(w)

x/e

if |z| > e,
15
otherwise, (15)

instead of sgn(-) on each element of s in the sliding mode
term, the controller becomes continuous:

T=g+J [AV, + (Tg+ Ag)v, + (Ts + AV

—K s — K;sat(s)].

This mitigates the problem of chattering. In the following

we call (16) the continuous sliding mode approximation

(CSMA) controller. All the proposed control laws are
summarized in Table 1.

(16)

Defining v = v — vy, one can write
v=-Kyx+s,

which is unaffected by the choice of controller.

(17)

Applying (13) to (11) yields the closed-loop s-dynamics

As=—(Ty+Ag+Ky)s+JI'F, (18)
where the properties in Proposition 3 have been used. With
(14), the closed-loop s-dynamics become

As=—(Ty+As+Ky)s+ I f—K,sgn(s), (19)
and with (16), sgn is replaced by sat:
As=—(Ty+ Ay +Ky)s+ I f— K sat(s). (20)

4. STABILITY RESULTS

In this section we will present the main results of this paper.
The proofs are given in Section 5.

Assumption 4. The total task dimension is not smaller
than the number of DoFs, i.e., m > d=n+ 6.

Remark: This merely requires that the specified tasks

completely define the behavior of the VMS.

Assumption 5. The inertia matrix is bounded by
0<04M§||M||§[3M<OO,

where ang and Sy are positive constants.

Remark: This is always true for terrestrial VMSs with
non-singular formulations and only revolute joints.

Assumption 6. J is always full rank, i.e., rank(J) = d.

Assumption 7. Each J; is bounded and its nonzero singular
values are bounded away from zero.

Remark: The boundedness of each J; is not very restrictive,
as they are all bounded when the manipulator consists
solely of revolute joints and the position tasks are specified
as x;(&) = p. Furthermore, with Assumptions 5 and 7, each
JF is bounded as well. Thus, & — T(&) is also bounded. In
numerical implementation, singular values below a certain
threshold are set to zero.

tions 5, 6, and 7. Then, the closed-loop system (17, 18)
with £ = 0, obtained by applying (13) to (11), is UGAS.
Similarly, (14) and (16) obtain UGAS systems when f = 0,
but also obtain UGAS and UGUB systems, respectively,
in the more general case of a bounded f.

Corollary 9. Given Assumptions 4, 5, 6, and 7, with the
i-th task being either singularity-free or having J; = 0.
Then, the closed-loop system (17, 18) with f = 0, obtained
by applying (13) to (11), is UGAS. Correspondingly, (14)
and (16) obtain UGAS systems with f = 0, and UGAS and
UGUB systems, respectively, in the case of a bounded f.

Corollary 10. If only one-dimensional tasks are designed
for the system (3b), with the last d tasks being independent
configuration tasks, and Assumptions 5 and 7 are satisfied,
the closed-loop system with (13), (14), or (16) is UGAS if
f =0, and UGAS or UGUB, respectively, for (14) and (16)
if £ is bounded.

5. STABILITY ANALYSIS

Proof of Theorem 8: Similarly as in Garofalo and
Ott (2020), the system (17, 18) can be considered as the
feedforward interconnection of two subsystems. The second
subsystem (17) is itself a feedforward interconnection of
subsystems. This becomes clear when writing it as

x = —~TK,% + Ts, (21)

due to the triangular structure of T. Note that JJT =1 is
used in this transition, which is true under the assumptions
of Theorem 8. We will now show that, for each control
law (13), (14), and (16), the whole task error dynamics
(%,%)=(0,0) is UGAS when s=0 is a UGAS equilibrium
point of (18), (19), and (20), respectively. Furthermore, we
will show that (%,x) is UGUB when s is UGUB.

The triangular structure of (21) means that the dynamics
of each subsystem x; only depend on Xxi,...,X; and
S1,...,8;. For example, il = —-K, x; +s; and 5"(2 =
-K,, %2 — szprlfcl + Jgjfsl + so. Since each block
K,, is positive definite and constant, it follows from Khalil
(2002, Lemma 4.6) that the first system, X1, is ISS with
s as input. Combined with the assumption that s = 0 is
UGAS, we can conclude that (%X1,s) = (0,0) is UGAS
(Khalil, 2002, Lemma 4.7). Next, the X5-system is ISS with
(=J2J7 K, %1 +J2J s1+82) as input. With Assumptions 5
and 7 we can conclude that (X1, %2,s) = (0,0,0) is UGAS.
This argument can be repeated for all the tasks, resulting
in the conclusion that (%,%) = (0,0) is UGAS when s = 0
is UGAS. (The last transition holds since s = T~1x + K, %
when JJT =1I). The same line of reasoning holds when s
is UGUB; by the definition of ISS (Khalil, 2002, Def. 4.7),
a cascaded system consisting of an ISS system perturbed
by a UGUB system, is UGUB.
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Now that we have established the UGAS of the equilibrium
point X = 0 of the second subsystem (21) when s = 0,
we consider the first subsystem with state s. Firstly, we
consider the closed-loop system with the hydrodynamic
control law (13), described by (18). For the first subsystem,
(18), consider the function

1
V, = EsTAs. (22)

Under the assumptions of the theorem, there exist constants
c1 > 0 and ¢y > 0 such that
cifs* < Vi < eols|? (23)
holds for all configurations & € R%*! and thus for all .
Differentiating V; along the flow of (18) yields
Vi=—s (Kg+Ag)s+s I £, (24)
where —s T (Kg+Ay)s < 0 Vs # 0. Thus, in the absence of

external forces and model uncertainty, the first subsystem,

(18) is UGAS.

If instead f # 0, V; < 0 can no longer be guaranteed using
(13). Next, we consider the stability of the closed-loop
system (19) where the SMC control law (14) is applied.
We then get

Vi=—s (Kat+ Ag)s+s™ (I - Kysen(s)), (25)

and sgn(-) is replaced by sat(-) in the case of CSMA (16).
The last term of V; can then be bounded as follows:

s’ (j+Tf - K, sgn(s)) = zr: s; (jij - K, Sgn(si))
i1

< i 50| T (|jij| - diag(Ksi)> :
=1

where | - | is the element-wise absolute value, K, denotes
each block along the diagonal of K, which has a block-
diagonal structure, and s; are the corresponding elements
of s. Since JJ* =1, we have K, = K.

In conclusion, we obtain
Ve < —sT(Ka+ Ag)s — ks (26)

when diag(K,) — |JFT£| > K1 for some constant x > 0.
The equilibrium s = 0 is UGAS, with the first term in
(26) giving exponential stability and the second giving
finite time convergence towards the sliding surface, by
the comparison lemma (Khalil, 2002, Lemma 3.4). Due to
the previously shown structure of (21), by Khalil (2002,
Lemma 4.7) and the definition of s, we can conclude that

(%,%) = (0,0) is UGAS.

Using CSMA (16), which gives (20), the conditions of Khalil
(2002, Theorem 4.18) hold with D = R™, ay(r) = 172,
az(r) = car? € Ko and any initial state s(tg). Hence, s is
UGUB with (cz/c1)e as the ultimate bound, and (%,%) is
UGUB due to the structure of (21). It can be shown that the
ultimate bound on X decreases with decreasing ¢ and ||T||
and increasing Amin(K,). The bound on x has the same

dependencies, in addition to decreasing with decreasing
Amax(Kp). O

Proof of Corollary 9: As in Garofalo and Ott (2020),
we utilize that J; is assumed to be either full row rank or
equal to the zero matrix. Hence, the tasks with J; = 0
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yield identities of the form 0 = 0 in the dynamics, and can
be omitted from further analysis. The proof then reduces
to that of Theorem 8. O

Proof of Corollary 10: The proof is identical to that of
Garofalo and Ott (2020, Cor. 1): The requirement on the
last d tasks implies that Assumptions 4 and 6 are satisfied.
With scalar tasks, the only way J; can be singular is if
J; = 0. The result therefore follows from Corollary 9. O

6. SIMULATIONS

The proposed controllers were simulated on an ATAUV with
four z- and four y-revolute joints, meaning the system had
14 DoFs in total. Furthermore, the ATAUV was equipped
with seven thrusters producing up to 40 N of force each,
and a motor in every joint producing up to 10 Nm of
torque each. The simulations were run using an ode4 solver
in MATLAB/Simulink with 1 ms time steps, and when
performing the singular value decomposition needed to
compute the WMPIs, the singular values were set to zero
if they were below 0.01. To obtain a fair comparison, the
controller gains were tuned so that the control inputs were
of similar size. The controller gains were set to K; =1.21
and Kj; = 200I for (12) and (13), and Kj, = K, = 31 and
K’ =51 for (14) and (16), while the ¢ in (15) was set to
0.01. During the simulations, only the linear part of the
damping matrix D was assumed known to the controller.

In decreasing priority, the tasks provided to the controllers
were the end effector pose, the base pose, and each
individual joint angle. The robot was initially in a “C-
shape”, with each z-revolute joint having a 30-degree angle,
and all y-revolute joints having zero-degree angles. The
tasks were for the end effector to smoothly move forward
and backward 20 cm along the inertial z-axis, while the
rest of the end effector pose, along with the base pose and
the joint angles, were to be kept constant.

To test the robustness to modeling errors, the control laws
were implemented with a 40% error in the inertia and
Coriolis matrices (M and C from (3b)). Additionally, a
constant disturbance f = 1, also from (3b), was added to
the simulation to test the robustness to other disturbances.
Note that even if f is constant, the effect on the closed-loop
system is not, due to the change in J* T, see e.g. (18). The
initial positions of the end effector and base were chosen
to have a 10 cm offset with respect to the reference along
each of the inertial axes.

In Fig. 1, the pose and joint angle task errors are shown.
Only the first two joint angle tasks are performed, as the
pose tasks use up all but two of the system’s DoF's. The
large errors of the rest of the joint angle tasks are therefore
expected. After about four seconds, the SMC' (14) and
CSMA (16) control laws yield better tracking of the desired
position trajectory than the standard (12) and hydrody-
namic (13) control laws do, while the orientation and active
joint angle task errors are kept lower even during the
transient period. In accordance with Corollary 9, the errors
converge (close) to zero when using the SMC (14) con-
troller, are ultimately bounded when using the CSMA (16)
controller, and have more significant stationary errors using
the standard (12) or hydrodynamic (13) control laws. The
mean, the maximum and the standard deviation of the
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Fig. 1. Two-norm of the pose task errors, and one-norm of the active and inactive joint angle task errors for the different
control laws. The error quaternion’s vector part has been used for the orientation error.
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Fig. 2. One-norm of the applied thruster forces and joint torques for three of the control laws.

steady-state end effector pose tracking errors are given in
Table 6.

The applied thruster forces and joint torques when using the
standard (12), hydrodynamic (13), and CSMA (16) control
laws are shown in Fig. 2. The control inputs when using
the SMC (14) controller suffer heavily from chattering and
are therefore not visualized. Furthermore, with >, u[k]?At
used as a proxy for the energy consumption, where u are
the control inputs and At is the simulation time step, the
thrusters and joint motors are found to consume energy
an order of magnitude larger when using the SMC (14)

controller instead of one of the other proposed control laws
over the time of the simulation.

As seen in Fig. 2, the control inputs when using the
standard (12), hydrodynamic (13) and CSMA (16) control
laws are relatively similar, apart from the initial ones, where
those yielded by the standard (12) and hydrodynamic (13)
control laws are significantly larger than those yielded
by the CSMA (16) controller. The difference in energy
consumption is less than 5%, apart from the energy
consumption of the joint motors when using the CSMA (16)
controller, which is about 13% higher than when using the
standard (12) control law.
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Table 2. The mean, maximal (Max), and standard deviation (Std) of the steady-state end effector

pose error vectors’ two norms using the different control laws. The error quaternion’s vector part

has been used for orientation, and steady-state is said to be achieved after a transient period of
five seconds.

Controller Position Orientation

Mean Max Std Mean Max Std
Standard (12) | 1.56 cm 1.65cm  0.60 mm | 1.03 x 1072 1.09 x 1072 4.16 x 1074
Hydrodynamic  (13) | 1.50 cm 1.6l cm  0.78 mm | 1.03 x 1072 1.08 x 1072 3.81 x 1074
SMC (14) | 0.07cm 0.16 cm 0.15mm | 0.13 X 102 0.16 x 10~2 1.25x 10~*
CSMA (16) | 0.24 cm 0.30cm 023 mm | 0.16 x 1072 0.18 x 1072 0.86 x 10~

7. CONCLUSIONS AND FUTURE WORK

This paper has extended the control approach in Garofalo
and Ott (2020) to VMSs, including UVMSs. In addition to
including hydrodynamic compensation in the controller, we
have added a sliding mode effect to improve the robustness.
The closed-loop error dynamics are shown to be UGAS even
in the presence of bounded disturbances, and UGUB with
a continuous approximation of the sliding mode term. The
methods are validated and compared through simulations of
an ATAUV. The simulations show that the extended control
law with the sliding mode effect increases the robustness
to disturbances and model errors, yielding better tracking
performance than without the sliding mode term. We also
find that the continuous approximation of the sliding mode
term seems to be a better choice in practice as it yields
more achievable control inputs. In future work, the method
should be tested in physical experiments.

ACKNOWLEDGEMENTS

We would like to thank Ph.D. candidate Marianna Wrzos-
Kaminska for helpful discussions and advice.

REFERENCES

Antonelli, G. (2009). Stability Analysis for Prioritized
Closed-Loop Inverse Kinematic Algorithms for Redun-
dant Robotic Systems. IEEE Trans. Robot., 25(5).

Antonelli, G. (2018). Underwater Robots, volume 123
of Springer Tracts in Advanced Robotics. Springer
International Publishing, Cham.

Basso, E.A. and Pettersen, K.Y. (2020). Task-Priority
Control of Redundant Robotic Systems using Control
Lyapunov and Control Barrier Function based Quadratic
Programs. In Proc. IFAC World Cong. Berlin, Germany.

Chiacchio, P., Chiaverini, S., Sciavicco, L., and Siciliano,
B. (1991). Closed-Loop Inverse Kinematics Schemes
for Constrained Redundant Manipulators with Task
Space Augmentation and Task Priority Strategy. Int. J.
Robotics Research, 10(4), 410-425.

Chiaverini, S. (1997). Singularity-robust task-priority
redundancy resolution for real-time kinematic control
of robot manipulators. IEEE Trans. Robotics and
Automation, 13(3), 398-410.

Chung, W.K., Fu, L.C., and Kréger, T. (2016). Motion
Control. In B. Siciliano and O. Khatib (eds.), Springer
Handbook of Robotics. Springer International Publishing.

De Luca, A. and Book, W.J. (2016). Robots with Flexible
Elements. In B. Siciliano and O. Khatib (eds.), Springer
Handbook of Robotics. Springer International Publishing.

Dietrich, A. and Ott, C. (2020). Hierarchical Impedance-
Based Tracking Control of Kinematically Redundant
Robots. IEEE Trans. on Robotics, 36(1), 204-221.

From, P.J., Gravdahl, J.T., and Pettersen, K.Y. (2014).
Vehicle-Manipulator Systems: Modeling for Simulation,
Analysis, and Control. Advances in Industrial Control.
Springer London, London.

Garofalo, G. and Ott, C. (2020). Hierarchical Tracking
Control With Arbitrary Task Dimensions: Application
to Trajectory Tracking on Submanifolds. IEEE Robotics
and Automation Letters, 5(4), 6153-6160.

Garofalo, G., Wu, X., and Ott, C. (2021). Adaptive
Passivity-Based Multi-Task Tracking Control for Robotic
Manipulators. IEEE Robotics and Automation Letters,
6(4), 7129-7136.

Kanoun, O., Lamiraux, F., and Wieber, P.B. (2011). Kine-
matic Control of Redundant Manipulators: Generalizing
the Task-Priority Framework to Inequality Task. IEEFE
Trans. on Robotics, 27(4), 785-792.

Khalil, H. (2002). Nonlinear Systems. Pearson Education.
Prentice Hall, 3rd edition.

Liljeback, P. and Mills, R. (2017). Eelume: A flexible and
subsea resident IMR vehicle. In Proc. OCEANS 2017.
Aberdeen, UK.

Maciejewski, A.A. and Klein, C.A. (1988). Numerical fil-
tering for the operation of robotic manipulators through
kinematically singular configurations. J. Robotic Systems,
5(6), 527-552.

Nakamura, Y. and Hanafusa, H. (1986). Inverse Kinematic
Solutions With Singularity Robustness for Robot Manip-
ulator Control. J. Dynamic Syst., Meas., and Control,
108(3), 163-171.

Ott, C., Dietrich, A., and Albu-Schéeffer, A. (2015).
Prioritized Multi-Task Compliance Control of Redundant
Manipulators. Automatica, 53, 416—423.

Sabg, B.K., Pettersen, K.Y., and Gravdahl, J.T. (2022).
Robust Task-Priority Impedance Control for Vehicle-
Manipulator Systems. In Proc. IEEE Conf. Control
Technol. and Appl. Trieste, Italy.

Siciliano, B. and Slotine, J.J. (1991). A general framework
for managing multiple tasks in highly redundant robotic
systems. In Proc. 5th Int. Conf. Adv. Robot. Pisa, Italy.

Wu, X., Ott, C., Albu-Schéffer, A., and Dietrich, A. (2022a).
Passive Decoupled Multitask Controller for Redundant
Robots. IEEE Trans. on Control Syst. Technol., 1-16.

Wu, X., Ott, C., and Dietrich, A. (2022b). A Comparative
Experimental Study of Multi-Tasking Tracking and
Interaction Control on a Torque-Controlled Humanoid
Robot. In Proc. American Control Conf. Atlanta, USA.



