
Ba
ch

el
or

’s
 th

es
is Iridium communication for submersible

communication buoy
Theoretical and practical implementation

September 2023

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Marc Falcón Barau

Bachelor’s thesis
2023

Bachelor’s thesis

Iridium communication for submersible
communication buoy

Theoretical and practical implementation

September 2023

NTNU
Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Marc Falcón Barau

ABSTRACT

ENGLISH

The main objective of this Bachelor’s Thesis was to determine the most suitable
service among Iridium Certus 100, Short Burst Data (SBD), and Router-Based
Unrestricted Digital Internetworking Connectivity Solutions (RUDICS) for the
Ocean Access submersible buoy project. Ocean Access sought to identify the op-
timal service based on different use cases, with each use case contingent upon the
selected service and further defined through the course of the thesis work. The
selection of the service would be based on the type of data being collected, the
geographical location, and the required frequency of transmission.

During the project, successful implementation of the SBD service was achieved
in the existing software infrastructure. However, due to the availability of mod-
ules and pre-existing manufacturer implementations, the consideration of Iridium
Certus 100 and RUDICS was confined to theoretical evaluations.

Nevertheless, the thesis played a helpful role in assisting Ocean Access in identi-
fying the specific use cases where each of the three services could offer valuable
contributions to their research. Additionally, the thesis provided a pathway and
guidelines for the future implementation of the remaining two services, Iridium
Certus 100 and RUDICS, in their endeavors.

i

ii

NORWEGIAN

Hovedmålet med denne bacheloroppgaven var å finne ut hvilken tjeneste som
er best egnet blant Iridium Certus 100, Short Burst Data (SBD) og RUDICS
(Router-Based Unrestricted Digital Internetworking Connectivity Solutions) for
Ocean Access’ undervannsbøyeprosjekt. Ocean Access søkte å identifisere den op-
timale tjenesten basert på ulike bruksområder, der hvert bruksområde var avhengig
av den valgte tjenesten og ble ytterligere definert i løpet av arbeidet med avhan-
dlingen. Valget av tjeneste vil være basert på typen data som samles inn, den
geografiske plasseringen og den nødvendige overføringsfrekvensen.

I løpet av prosjektet ble SBD-tjenesten implementert i den eksisterende program-
vareinfrastrukturen. På grunn av tilgjengeligheten av moduler og eksisterende pro-
dusentimplementeringer ble imidlertid Iridium Certus 100 og RUDICS begrenset
til teoretiske evalueringer.

Avhandlingen var likevel nyttig for Ocean Access når det gjaldt å identifisere
spesifikke bruksområder der hver av de tre tjenestene kunne gi verdifulle bidrag
til forskningen. I tillegg ga avhandlingen retningslinjer for den fremtidige imple-
menteringen av de to gjenværende tjenestene, Iridium Certus 100 og RUDICS, i
deres videre arbeid.

PREFACE

I am delighted to present this thesis, which explores the potential of Iridium com-
munication services in the context of submersible communication buoys. This
work represents the culmination of my academic journey and research efforts dur-
ing my time in Norway as part of the Erasmus program.

The main focus of this thesis revolves around the in-depth examination of Iridium
communication services and their applicability to the submersible buoy project
developed by Ocean Access. The allure of this project and the prospect of collab-
orating with individuals from a different cultural and academic backgrounds were
the initial driving forces behind my involvement.

To investigate the feasibility of incorporating Iridium communication services into
the Ocean Access submersible buoy project, I embarked on a journey of research
and data collection. This journey involved engaging with key service providers
and seeking guidance from my mentor, Simen Helgesen.

The process encompassed comprehending the intricacies of satellite communica-
tion, assessing the suitability of various services, deciphering existing code, and
studying manuals for different modems associated with each service. While chal-
lenges were encountered along the way, the endeavor provided valuable insights
into the world of satellite communication.

In the realm of Computer Engineering, this thesis holds the potential to con-
tribute significantly to the understanding and data collection efforts in marine
environments. It can aid scientists in monitoring remote sea locations, which
might otherwise be challenging to access.

This thesis primarily targets scientists and researchers seeking solutions for moni-
toring projects or experiments in aquatic or extreme environments. While initially
conceived for submersible buoys, the insights presented herein are relevant to a
wide range of monitoring projects.

My experience working with international collaborators has expanded my hori-
zons and instilled in me a desire to explore opportunities beyond my home country.

As the final chapter of my undergraduate journey, I hope this thesis serves as
a valuable resource for readers, enabling them to make informed decisions about

iii

iv

the suitability of Iridium services for their own projects. I look forward to the
impact and potential applications that may arise from this work.

I extend my heartfelt gratitude to Simen Helgesen for his unwavering support,
guidance, and assistance throughout the research and implementation phases of
this project. I am also indebted to Fredrik Lilleøkdal and the team at Ocean Access
for their collaboration and for embracing this project. Furthermore, I would like to
acknowledge Arne Midjo for facilitating my connection with Ocean Access, which
made this thesis possible.

CONTENTS

Abstract i

Preface iii

Contents vi

List of Figures vi

List of Tables vii

Abbreviations ix

1 Introduction 1
1.1 Motivation . 1
1.2 Project description . 2
1.3 Stakeholders . 3

1.3.1 Ocean Access . 3
1.3.2 NTNU . 4
1.3.3 UPC . 4

1.4 Problem description . 4

2 Theory 7
2.1 Satellite Networks . 7
2.2 Orbits . 8
2.3 Satellite Communication System . 10
2.4 Frequency bands . 11
2.5 Iridium Satellite Network . 13
2.6 Why Iridium? And services implemented 15

2.6.1 SBD . 15
2.6.2 Certus 100 . 16
2.6.3 RUDICS . 17

3 Implementation 19
3.1 SBD - 9603N Iridium . 21

3.1.1 SBD Software Implementation 25
3.1.2 Algorithm Update config file 27

3.2 Certus 100 - Quicksilver QS-100 NAL Research 33

v

vi CONTENTS

3.3 RUDICS - A3LA-RG NAL Research 36

4 Results 39
4.1 SBD . 39
4.2 Certus 100 and RUDICS . 40

5 Discussion 41
5.1 Future work . 41

6 Conclusions 43

References 45

Appendices: 49

LIST OF FIGURES

2.2.1 The arrangement of orbits surrounding the Earth 9
2.3.1 The complete block diagram of the satellite communication system 11
2.4.1 ESA - Satellite frequency bands, all displayed with the correspond-

ing values . 12
2.5.1 Operation of the Iridium satellite network on a big scale 14

3.1.1 Photo of the Iridium 9603N modem 21
3.2.1 Photo of the modem Quicksilver QS-100, indicating some of the

important components . 33
3.3.1 Photo of the A3LA-RG modem, indicating some of the important

components . 36

vii

LIST OF TABLES

3.1.1 Iridium 9603N Modem Data Transmission Time and Calculations . 25
3.2.1 Data transfer times for the Quicksilver QS-100 modem 35

viii

ABBREVIATIONS

List of all abbreviations in alphabetic order:

• AVL Automatic Vehicle Location

• BSS Broadcast satellite service

• FSS Fixed satellite service

• GNNS Global Navigation Satellite System

• IoT Internet of Things

• ITU The International Telecommunication Union

• MSS Mobile satellite service

• NASA The National Aeronautics and Space Administration

• NTNU Norwegian University of Science and Technology

• RUDICS Router-based Unrestricted Digital Interworking Connectivity So-
lution

• SBD Short Burst Data

• UART Universal Asynchronous Receiver-Transmitter

• UPC Polytechnic University of Catalonia

ix

CHAPTER

ONE

INTRODUCTION

Ocean Access is a Norwegian startup with a mission to capture previously un-
recorded ocean data. The company recognizes the growing demand for remote
ocean monitoring across various industries and aims to address this need. Their
primary goal is to scale up ocean monitoring efforts, gather extensive oceanic
data, and facilitate digitalization in the ocean sector. To achieve this, Ocean Ac-
cess emphasizes the importance of developing intelligent tools that are affordable
and dependable, enabling widespread adoption and utilization.

Ocean Access is currently in the process of developing a fully submersible ocean
data buoy capable of vertical movement within the water column. This innova-
tive design allows the buoy to be submerged and positioned subsea, shielding it
from potential damage caused by vessels, waves, and wind on the ocean surface.
By providing this subsea placement capability, the solution offers substantial cost
reductions and enhanced reliability for remote ocean access. The buoy’s ability to
navigate the water column will enable more extensive data collection and moni-
toring, contributing to a greater understanding of our oceans.

1.1 Motivation
As a passionate and driven student, I am eager to embark on this project with
Ocean Access as I see it as an opportunity to work on a groundbreaking project,
developing the communication of the submersible buoy.

Ocean Access presents the perfect platform for me to channel my enthusiasm
and academic prowess into tangible advancements in ocean monitoring and data
collection. The prospect of working on this project capturing previously unattain-
able ocean data and transmitting it, is both thrilling and challenging. By being
submerged and shielded from surface disturbances, this innovative buoy offers a
novel solution to the limitations of traditional monitoring methods.

Moreover, Ocean Access’s commitment to affordability and reliability aligns
perfectly with my vision of making scientific advancements accessible and im-
pactful. By ensuring that smart tools are not only state-of-the-art but also

1

2 CHAPTER 1. INTRODUCTION

cost-effective, we can unlock vast opportunities for digitalization and data-driven
decision-making in various industries dependent on oceanic resources.

Undertaking a thesis with Ocean Access would provide me with valuable hands-
on experience, enabling me to grow professionally. Also collaborating with a team
of experts in their fields would expose me to diverse perspectives and foster inter-
disciplinary thinking, propelling my learning to new heights.

I am genuinely excited about the possibility of doing the Thesis with Ocean
Access, working tirelessly to uncover untapped ocean data and contribute to a
sustainable future. Also, I eagerly anticipate the opportunity to contribute my
skills and expertise to this project.

1.2 Project description

To expand upon the available geographical areas where deployment of the buoy
is possible, there is a need to explore the option of using satellite communication
to send gathered data, instead of using cellular infrastructure. Creating a system
that does not need to rely on nearby cellular networks will increase the operational
range of the submersible

communication buoy. The satellite solution will also be used as a backup in
areas with LTE-coverage, in case of network outages outside the control of Ocean
Access. Previously there has been a Bachelor thesis written by a group of stu-
dents at the department of electronic systems at NTNU where the Swarm satellite
service was investigated. Due to their work, Iridium is being investigated as an
alternative to serve as the provider of satellite communication.

There are three different Iridium services being considered: Certus 100, Rudics,
and SBD. Ocean Access would like to find out which of these services should be
used based on different use cases. Use case will depend on which service is used and
can be further defined through the thesis work, below is a table showing typical
use cases and corresponding services that are likely most suitable. The type of
data being collected, the location and frequency of transmission should determine
what service

is best suited.

The proposed work packages for the Bachelor Thesis at Ocean Access provide
a comprehensive roadmap for advancing the capabilities of the existing ocean data
system. These packages encompass essential tasks that are vital for the successful
implementation and integration of satellite communication technology, specifically
focusing on the Iridium network.

1. The first work package emphasizes the importance of conducting a thorough
literature search on satellite communication and comprehending the func-
tioning of the Iridium network. Building upon previous theses conducted
at Ocean Access, this step will provide a solid foundation of knowledge and
insights to inform subsequent work.

CHAPTER 1. INTRODUCTION 3

2. The second work package centers around the design and development of
the code necessary for incorporating Certus 100, Rudics, or SBD into the
existing system. This step will involve coding to ensure seamless integration
and efficient data transfer capabilities.

3. The subsequent work package, the implementation of the solution into the
existing system, highlights the need for the new features to seamlessly co-
exist with the current codebase for sending data. If adjustments to the
codebase are required to accommodate larger data transfers, they should be
documented thoroughly, providing a clear rationale for each alteration. Ad-
ditionally, a driver for the modem should be implemented, ideally utilizing
a pre-written driver from Iridium or an Iridium partner.

4. The final work package focuses on comprehensive testing to ascertain the
limitations and performance metrics of the implemented solution. Parame-
ters such as power consumption, maximum data transfer capacity within a
given time window, and the time required for the system to transition from
shutdown to successful data transmission should be meticulously measured
and recorded. Furthermore, any other factors that emerge as relevant to
the system and its specific use case should also be carefully identified and
documented.

By successfully completing these work packages, the bachelor theses will sig-
nificantly contribute to Ocean Access’s mission of capturing untapped ocean data
and advancing remote ocean monitoring. The outcome of this research and de-
velopment effort will enhance the system’s overall performance, efficiency, and
reliability, ultimately driving progress towards a more sustainable future for ocean
exploration and understanding.

1.3 Stakeholders

In this section I am going to list all the main actors in this project.

1.3.1 Ocean Access

Ocean Access is the startup that engaged Marc Falcón Barau into working on the
project of the submersible buoy. This startup is located in Trondheim and came
up from an NTNU startup project and now they are fully autonomous and have
offices in the main point of innovation and ocean research in the city.

I am working mainly with two persons in the team of Ocean Access:

1. Simen Helgesen, who is the technical manager and a Marine Cybernetic
Engineer.

2. Fredrik Lilleøkdal, who is the CTO (Chief Technology Officer) of the startup,
and is one of the links between NTNU and Ocean Access.

4 CHAPTER 1. INTRODUCTION

1.3.2 NTNU

NTNU (Norwegian University of Science and Technology) is the university where
I am going to develop my Thesis. Located in Trondheim, Norway.

For this Thesis, I needed a supervisor to be able to make the Thesis possible.
This supervisor is Arne Midjo, who is acting as a link between NTNU and Ocean
Access along with Fredrik.

1.3.3 UPC

UPC (Universitat Politècnica de Catalunya) is my home university. Located in
Barcelona. This actor is going to play a secondary role in the development of
the Thesis, as it has no jurisdiction accorded by the document of Mobility Thesis
Authorization they signed along with Marc Falcón Barau. The only requirement
is that the final report has to be delivered to them for a final revision.

1.4 Problem description
When implementing a digital communication system with the Iridium satellite
constellation using services like Rudics, Certs 100, and SBD, there are several
potential challenges that may arise:

• Network Latency: One of the primary issues when utilizing satellite com-
munication is the inherent latency caused by the long distances the signals
need to travel. This can result in delays in data transmission, affecting real-
time applications and requiring careful consideration during system design.

• Bandwidth Limitations: Satellite communication systems often have lim-
itations on available bandwidth. Depending on the selected Iridium ser-
vice, there may be restrictions on data transfer rates, which can impact the
amount and speed of data that can be transmitted.

• Cost Considerations: While Iridium services provide global coverage, they
typically come with associated costs. Implementing and maintaining a reli-
able connection with the Iridium satellite constellation can involve expenses,
and the specific service chosen may have pricing implications based on usage
requirements.

• Signal Interference: Environmental factors such as atmospheric condi-
tions, obstructions, or interference from other signals can affect the quality
and reliability of satellite communications. It is important to assess and
mitigate potential sources of interference to ensure a robust and consistent
connection.

• Integration Complexity: Integrating the chosen Iridium service (Rudics,
Certs 100, or SBD) into the existing system may present technical com-
plexities. Compatibility with the hardware, software, and communication
protocols should be carefully addressed to ensure seamless integration and
reliable operation.

CHAPTER 1. INTRODUCTION 5

• Power Consumption: Satellite communication systems typically require
sufficient power to establish and maintain connections. Managing power
consumption becomes crucial, especially for remote or autonomous systems
where energy resources may be limited.

• System Resilience: It is important to consider backup and redundancy
mechanisms to ensure system resilience in case of network outages or service
disruptions. Redundant communication paths, alternative service providers,
or local data storage can be explored to mitigate potential connectivity is-
sues.

Addressing these challenges requires thorough planning, system design, and
testing to optimize the performance and reliability of the digital communication
implementation with the Iridium satellite constellation.

6 CHAPTER 1. INTRODUCTION

CHAPTER

TWO

THEORY

The Theory section of this Bachelor’s Thesis establishes the fundamental frame-
work for the entire study. It explores key concepts, models, and existing research
relevant to the project objectives and studies.

2.1 Satellite Networks
Satellite networks have become a crucial technology in global communication, pro-
viding reliable communication across vast distances and transcending geographical
barriers where traditional terrestrial networks encounter limitations. The technol-
ogy has been around for several decades and has evolved significantly over the
years, from the first satellite launched in 1957 to the advanced satellite constella-
tions of today. Satellite networks consist of a network of satellites that orbit the
earth and communicate with ground stations to provide various services such as
telecommunication, broadcasting, navigation, and remote sensing. The satellites
are positioned in different orbits, including geostationary orbit (GEO), medium
earth orbit (MEO), and low earth orbit (LEO), depending on the intended appli-
cation.[1]

The satellite networking industry involves various actors, including satellite manu-
facturers, launch service providers, ground station operators, and service providers.
The industry has grown significantly over the years, driven by the increasing de-
mand for global connectivity and the emergence of new applications and services.
The history of satellite networking dates back to the 1950s when the Soviet Union
launched the first satellite, Sputnik 1, into orbit. The launch of Sputnik 1 marked
the beginning of the space race between the Soviet Union and the United States,
leading to the launch of several other satellites for various applications.[2]

Over the years, satellite networking has become an essential technology for various
applications, including telecommunication, broadcasting, navigation, and remote
sensing. The technology has played a crucial role in providing connectivity to
remote and under-served areas, enabling disaster response and recovery, and sup-
porting scientific research and space exploration. The satellite networking market
has grown significantly over the years, driven by the increasing demand for global
connectivity and the emergence of new applications and services. According to a

7

8 CHAPTER 2. THEORY

report by MarketsandMarkets, the global satellite communication market is ex-
pected to grow from $2.8 billion in 2020 to $7.5 billion by 2025, at a CAGR of
21.0% during the forecast period.[3]

Because this project is intended to be part of the data monitoring space inside
the satellite networking; Data monitoring is one of the key applications of satellite
networking, enabling real-time monitoring and analysis of various parameters such
as weather, climate, and natural resources. The data collected from satellites is
used for various applications, including precision agriculture, environmental mon-
itoring, and disaster management.

In conclusion, satellite networks have become a crucial technology in global com-
munication, providing reliable connectivity across vast distances and transcending
geographical barriers. The satellite networking industry involves various actors,
and the technology has evolved significantly over the years, enabling various appli-
cations and services. The satellite networking market is expected to grow signifi-
cantly in the coming years, driven by the increasing demand for global connectivity
and the emergence of new applications and services.

2.2 Orbits

Satellites have become indispensable in modern networking, facilitating world-
wide communication, internet access, and data exchange. To ensure smooth and
effective communication, satellites are strategically positioned in various orbits,
considering their specific purposes and operational needs. There are four different
orbits + 1 different, where the satellites can be placed and each of them have
different characteristics to ensure different results or for different objectives;

1. Geostationary orbit (GEO): Satellites in GEO orbit at an altitude of
35,900km above the equator, and they appear stationary at the same point
in the sky. This makes them ideal for communication purposes, as ground
station antennas can be aimed permanently at that spot and do not have to
move to track the satellite. However, the longer signal delay caused by their
great distance from Earth is a downside for real-time communication.[4][5]

2. Low Earth orbit (LEO): Satellites in LEO orbit at an altitude of up
to 2,000 km above Earth’s surface. They move quickly around the planet,
completing an orbit in about 90 minutes. This makes them ideal for Earth
observation and remote sensing, as they can capture high-resolution images
of the planet’s surface. However, they require a large number of satellites to
provide global coverage, and their short orbital lifetime means they need to
be replaced frequently.[4][6][7][8]

3. Medium Earth orbit (MEO): Satellites in MEO orbit at an altitude
of up to 20,000 km above Earth’s surface. They are used primarily for
navigation purposes, such as the GPS system. They provide better coverage
than LEO satellites, but their higher altitude means they have a longer signal
delay.[4][8]

CHAPTER 2. THEORY 9

Figure 2.2.1: The arrangement of orbits surrounding the Earth

4. Highly elliptical orbit (HEO): Satellites in HEO have a highly elliptical
orbit, which means they spend most of their time at a high altitude and
then dip down to a lower altitude for a short period of time. This makes
them ideal for communication purposes, as they can cover a large area of
the planet’s surface. However, their complex orbit requires more fuel to
maintain, and they have a longer signal delay than GEO satellites.[7]

5. Polar orbit: Satellites in polar orbit pass over the Earth’s poles, providing
global coverage for Earth observation and remote sensing. They are typically
placed in a sun-synchronous orbit (SSO), which means they pass over the
same spot on Earth at the same time each day. This allows them to capture
images of the planet’s surface under consistent lighting conditions, making
it easier to compare images taken at different times.[4][6]

In summary, different types of satellites orbits have different characteristics
that make them suitable for different purposes. While GEO satellites are ideal for
communication purposes, LEO satellites are better suited for Earth observation
and remote sensing. MEO satellites are primarly used for navigation, while polar
orbit satellites provide global coverage for Earth observation. Highly elliptical
orbit satellites are ideal for communication purposes but require more fuel to
maintain.

10 CHAPTER 2. THEORY

2.3 Satellite Communication System
The satellite communication can be divided into three sections:

1. Uplink Section (Ground Station)

2. Transponder (Airborne Satellite)

3. Downlink Section (Ground Station)

In the uplink section, the user’s signal, known as the Baseband Signal, goes
through a series of components. The Intermediate Frequency (IF) Modulator
converts the baseband frequency to an intermediate frequency using modulation
techniques like ASK, FSK, or PSK. The resulting IF signal passes through a Band
Pass Filter (BPF) to remove unnecessary frequencies. Next, the IF signal is sent
to an Up Converter, where it is converted from MHz to GHz range using a Mixer
and Uplink Frequency Microwave Generator. The Radio Frequency (RF) signal
is further refined using another BPF, and then its strength is amplified by a High
Power Amplifier (HPA) before being transmitted through the Transmitting (Tx)
Antenna for long-distance travel.[9][10]

The Transponder, combining a Transmitter and a Responder, receives the uplink
frequency through its Receiving (Rx) Antenna. The received RF signal undergoes
noise filtering with a BPF and is then amplified by a Low Noise Amplifier (LNA)
while keeping the noise level low. To optimize certain advantages, the downlink
frequency is usually kept 2 GHz lower than the uplink frequency. A Frequency
Translator, involving a Mixer and Microwave Shift Oscillator, performs the fre-
quency conversion. The resulting downlink frequency is further amplified by a Low
Power Amplifier (LPA) and transmitted back to Earth through the Transponder’s
Transmitting (Tx) Antenna.[11][10]

Finally, in the Downlink Section, the received frequency from the Transponder is
processed. The Receiving (Rx) Antenna captures the downlink frequency, which
is then filtered by a BPF to eliminate unwanted frequencies. The RF signal is
amplified by a Low Noise Amplifier (LNA). It is then fed to a Down Converter,
where the GHz range is decreased to MHz range using a Mixer and Downlink
Frequency Microwave Generator. The Intermediate Frequency (IF) Demodulator
converts the IF signal back to the original baseband frequency, representing the
user’s original signal transmitted via the transponder in the uplink section.[9][12]

CHAPTER 2. THEORY 11

Figure 2.3.1: The complete block diagram of the satellite communication system

2.4 Frequency bands
Satellite communication systems use various frequency bands as commented be-
fore, from the electromagnetic spectrum, depending on the market and climatic
conditions[13]. The ITU is the global coordinator in satellite frequency alloca-
tion, and they have allocated specific bands for satellite communication, including
L-band, S-band, C-band, X-band, Ku-band, K-band, and Ka-band[14][13];

• L-band (1-2GHz): Used for MSS, including satellite mobile phones such as
Iridium, and Inmarsat providing communications at sea, land, and air[15][14][13].

• S-band (2-4GHz): Used for MSS, NASA, and other applications[14][13].

• C-band (4-8GHz): Primarily used for satellite communication, full-time
satellite TV networks, or raw satellite feeds. Also used for FSS and BSS
downlinks[15][14][13].

• X-band (8-12.5GHz): Used for meteorological satellite and FSS mili-
tary[13].

• Ku-band (12.5-18GHz): Used for FSS and BSS[13].

• K-band (18-26.5GHz): Used for FSS and BSS[13].

• Ka-band (26.5-40GHz): Used for FSS and BSS[14][13].

Satellite communication systems are conducted over a wide range of frequency
bands, and the typical bands considered for small satellites are UHF, S, X, and
Ka[16]. The higher frequency bands typically give access to wider bandwidths, but
are also more susceptible to signal degradation due to ’rain fade (the absorption
of radio signals by atmospheric rain, snow, or ice)’[15][14]. Because of satellite’s
increased use, number, and size, congestion has become a serious issue in the lower

12 CHAPTER 2. THEORY

frequency bands, and new technologies are being investigated so that higher bands
can be used[15][14].

Figure 2.4.1: ESA - Satellite frequency bands, all displayed with the correspond-
ing values

The most commonly used frequency bands for satellite communication are Ku-
band and Ka-band[17][18]. These bands are preferred because they offer wider
bandwidths, which means higher data rates and higher total capacity[17][18]. The
Ka-band provides a wider spectrum availability and high data rate or a bit rate
supported communication networks, making it more desirable than low-frequency
bands for satellite applications[18]. However, as said earlier high-frequency bands
are more susceptible to signal degradation due to atmospheric effects and weather
conditions, which can cause signal loss or attenuation[17][18]. Despite this, the
technical improvements achieved with higher frequencies make the frequencies
more desirable than low-frequency bands for satellite applications[17][18]. But for
our project, these great frequency bands are not suitable, because of the harsh
weather that rules the Arctic Ocean where our buoy will be deployed.

CHAPTER 2. THEORY 13

2.5 Iridium Satellite Network

The Iridium satellite network is a global satellite communications company that
provides access to voice and data services anywhere on Earth[19]. The network
was founded in 1991 and named after the element Iridium, as it originally con-
sisted of 77 active satellites and additional spares in orbit, matching the atomic
number of Iridium (77).
The Iridium network offers complete coverage of the Earth, including remote and
polar regions, using a constellation of LEO satellites. This global coverage al-
lows communication services in places where traditional terrestrial networks are
not available. The constellation comprises interconnected satellites in LEO. The
satellites of Iridium complete an orbit every 100min[20]. To maintain global cover-
age and seamless connectivity, the Iridium satellites use "inter-satellites links" or
"crosslinks". These crosslinks enable data and calls to be relayed between satel-
lites, allowing communication from one satellite to another before reaching the
ground station.
The Iridium network offers various communication services;

• Voice and data communication: The Iridium satellite network provides
worldwide voice and data communication from handheld satellite phones,
satellite messenger communication devices, and integrated transceivers[21].The
network routes phone calls through space, and calls go from the phone up
to the satellite, which passes the call satellite to satellite until it downlinks
at the Hub station in Tempe, Arizona.

• Two-way satellite messaging: he Iridium network also provides two-way
satellite messaging service from supported Android smartphones[21].

• Internet of Things (IoT) connectivity: The Iridium satellite network is
designed to support the most challenging IoT applications, including remote
asset tracking, monitoring of connected vehicles, and remote sensing[22].
This application is the one that interests us the most.

• Niche markets: The Iridium satellite network offers communication ser-
vices to a niche market of customers who require reliable services in areas of
the planet not covered by traditional geosynchronous orbit communication
satellite services[21].Users include journalists, explorers, and military units.

• Global coverage: The Iridium satellite network offers unparalleled cover-
age and connectivity for various applications[21].The network’s unique con-
stellation architecture makes it the only network that covers 100% of the
planet[20].

The Iridium satellite network consists of a fully meshed network of 66 low-earth
orbiting (LEO) cross-linked satellites, and 9 in-orbit spares, that ensure coverage
over the entire globe in a constellation of six polar planes[23]. The satellites are
cross-linked to provide reliable, low-latency, weather-resilient connections that en-
able communication anywhere in the world[20]. The cross-linked satellites are an
essential part of the Iridium network, as they allow the satellites to communi-
cate with each other and route calls and data around the globe[22]. The Iridium

14 CHAPTER 2. THEORY

network’s unique constellation architecture makes it the only network that cov-
ers 100% of the planet, and the cross-linked satellites ensure that there are no
coverage gaps[20][23]. The Iridium network’s cross-linked satellites also provide
shorter network registration times and low communications latency, making it an
ideal choice for users who require reliable communication services in remote areas
of the planet[23]. Overall, the cross-linked satellites from the Iridium satellite
network are a crucial component of the network’s architecture, enabling reliable,
low-latency, weather-resilient connections that enable communication anywhere
in the world. The cross-linked satellites ensure that there are no coverage gaps
and provide shorter network registration times and low communications latency,
making the Iridium network an ideal choice for users who require reliable commu-
nication services in remote areas of the planet.

Figure 2.5.1: Operation of the Iridium satellite network on a big scale

For this project we needed a service that ensured the communication between
the buoy and the ground station of OceanAcess in order to transmit the informa-
tion to the customer, that is why the Iridium communication network is a great
option for us;

• Global coverage: As said earlier the Iridium network has a 100% of the
Earth covered, so the Arctic sea which is our goal would be available. Those
crosslink satellites will ensure that there are no coverage gaps, making it
ideal for monitoring in remote areas of the Arctic Sea [23].

• Real-time data sharing: The Iridium crosslink network allows scientists
and researchers to share data in real time, even when they are outside the
reach of traditional communication networks [20]. This feature is particularly
useful for monitoring the Arctic sea by providing reliable communication
services in remote areas.

CHAPTER 2. THEORY 15

• Monitoring capabilities: It can be used for monitoring a variety of sen-
sors, including atmospheric monitors, altimeters for monitoring the sea sur-
face, waves, and ocean drifters and buoys [24]. These capabilities make the
Iridium satellite network an ideal choice for monitoring the Arctic Sea.

2.6 Why Iridium? And services implemented
As I said earlier, the Iridium satellites, will be the solution explored in this Thesis
to overcome the communication between the buoy deployed on the Arctic Sea,
and the ground station of Ocean Access. It was chosen because of some of the
capabilities I talked about, earlier while mentioning the Iridium communication
network. I’ll list some of them so we can have the same point of view; Global
coverage was essential, as the Arctic Sea expands to remote areas where some of
the swarm and normal satellite communications don’t reach, and also gives Ocean
Access a suitable platform fit for the project’s expansion to different areas all over
the world. Reliability is key, reliable connectivity aligns with the project’s need
for dependable communication in challenging ocean environments. Also, Iridium
serves as a reliable backup solution in case of cellular network outages, ensuring
continuous data transmission and operational control. In addition, Iridium’s two-
way communication capabilities match the project’s requirements for enabling the
buoy’s movement and operation in both sub-sea and ocean surface conditions. It
is a great fit for the project also because the modems and satellites of Iridium
are built to endure harsh conditions, both in space and on Earth, which suits the
project’s need for communication reliability in adverse weather and sea states.
Iridium also offers customization options, allowing us to tailor the satellite com-
munication solution to the specific demands of the buoy’s design and function.
In essence, Iridium’s global reach, reliability, backup capabilities, two-way com-
munication, resilience to tough conditions, and customization options make it a
strong contender to fulfil the communication requirements of the project’s objec-
tive for enhanced ocean monitoring.

As Iridium was exposed as the solution that had to be explored different ser-
vices were presented to be investigated, each of them had a different usage and
application. The work was to find each of these Iridium services, which was most
suitable for the project’s different needs in different situations proposed by Ocean
Access.

In this section, I am going to present the different services explored in this Thesis
and a little explanation of why they were selected to be investigated.

2.6.1 SBD

Iridium SBD is a service that enables the transmission of short data messages be-
tween equipment and centralized computer systems[25]. It is a real-time, two-way
messaging service that can be used anywhere in the world[25]. SBD is a packet-
based service that is designed for frequent short data transmissions between equip-
ment and centralized host computer systems. It is a simple and efficient service
that is ideal for remote monitoring applications used for asset tracking, remote

16 CHAPTER 2. THEORY

telemetry, and pipeline monitoring. Also this service is especially suitable for low-
power devices and applications where energy efficiency is crucial, making it ideal
for IoT applications[26].

One of the significant advantages of SBD is its global coverage, providing com-
munication in regions where traditional cellular networks might be unreliable or
unavailable. Despite its emphasis on one-way communication, Iridium SBD also
supports limited two-way communication. This enables devices to receive short
messages or commands for basic remote control or configuration[25].

Another key feature of Iridium SBD is the reliability of Iridium’s LEO satellite
constellation as explained before, which ensures consistent connectivity, even in
challenging environments and remote locations. Due to its cost-effective nature
(as it involves transmitting small bursts of data), Iridium SBD is favored for ap-
plications that do not require continuous high-bandwidth communication[27].

But as we know this service was considered for this actual project for the sub-
mersible buoy that Ocean Access wants to deploy, so is Iridium SBD a service
that could help on this project knowing what we know?
We know that the LEO constellation from Iridium provides reliable coverage from
pole to pole, including the Arctic Sea, where our buoy will be deployed. This en-
sures that the submersible buoy can maintain connectivity and transmit data even
in remote and challenging environments. It also allows periodic data transmission
from the buoy to the central data point, which is what we need as our submersible
buoy will have an alarm that will make the buoy float to the surface where is going
to do the transmission of the data, this ensures that the data is promptly available
for storage and analysis. The burst transmission technique used by SBD devices
conserves power and enhances battery life, making it efficient and reliable for data
transfer. LEO network enables low-latency connections compared to other types of
satellite networks, this means minimal lag with ping times of less than one second,
allowing for near real-time remote monitoring and data transfer. If we add this to
the two-way messaging, allowing bidirectional communication between the buoy
and the central data point, this last actor can be used to send information related
to the behavior of the first, like changing the configuration file, as implemented
in this Thesis. In conclusion we can say that the Iridium SBD service is a good
option to be implemented for this project.

2.6.2 Certus 100

Iridium Certus 100 is a midband satellite service that provides reliable, truly
global connectivity for vehicles, vessels, and aircraft all over the world[28]. It is
optimized for solutions with strict size, weight, and power requirements, making
it ideal for mobile, fixed, and portable operations like workforce communications,
remote monitoring, and real-time asset control[28]. The key feature of Iridium
Certus 100 is its ability to deliver broadband-level data speeds, enabling fast and
efficient transfer of information. This is particularly beneficial in sectors requiring
rapid data transmission, such as maritime, aviation, remote industrial operations,
and emergency response[28][29].

CHAPTER 2. THEORY 17

The service is designed for global coverage, ensuring that users can maintain
communication even in remote and challenging environments where traditional
terrestrial networks may be limited. This makes Iridium Certus 100 a valuable
option for businesses and organizations operating across the globe[30].

With Iridium Certus 100, users can take advantage of both voice and internet
services. This multifunctionality enhances its utility in situations where reliable
communication and data access are paramount. The service is compatible with a
variety of devices, ranging from smartphones to specialized communication equip-
ment[28][30].

Iridium Certus 100 can support email, messaging applications like WhatsApp,
media sharing, telemetry reporting, file transfer, internet/VPN access, and up to
two simultaneous high-quality voice calls[31]. It can also support low-resolution
video transmission for surveillance and monitoring applications when combined
with the latest in Iridium partner data compression technologies[31]. Iridium Cer-
tus 100 is delivered over the recently upgraded Iridium satellite network, which is
the world’s most advanced L-band satellite service platform[31].

As we did for the Iridium SBD service we want to know if the Certus 100 ser-
vice is suitable for this project.
We know that Iridium Certus 100 is a satellite service that can be a good choice
for a project involving a submersible buoy in the Arctic Sea. The service pro-
vides truly global coverage, as we said earlier, including the Arctic area as the
SBD thanks to the LEO satellite network that Iridium has. This ensures reliable
connectivity in those remote spots where traditional communication networks can
not reach, it also minimizes the risk of signal loss or interruption. The service
also supports IP data speeds of up to 88Kbps, which is sufficient for transmitting
periodic data from the submersible buoy to the headquarters of Ocean Access as
needed. This allows sending important information, such as sensor readings or
environmental data, to be stored and analyzed. As said earlier "Iridium Certus
100 is optimized for solutions with strict size, weight, and power requirements"
making it easy to integrate into the submersible buoy without adding significant
weight or power consumption. As SBD, Certus 100 also has low latency, this
means that like in the SBD the transmission time would be less than 1 second,
ensuring a near real-time data transmission. Is also suitable for IoT applications,
enabling Ocean Access to monitor and control the buoy remotely. So like the SBD
we can ensure that Certus 100 could be a possible option to implement into the
project.

2.6.3 RUDICS

RUDICS is a data service that provides customers with the ability to transfer large
amounts of data reliably and affordably using multiple protocols[32]. RUDICS en-
ables both Mobile Originated (MO) and Mobile Terminated (MT) circuit switched
data transfers[32].

18 CHAPTER 2. THEORY

At its core, Iridium RUDICS is designed to enable router-based communication,
allowing devices and systems to establish reliable data connections using the Irid-
ium satellite network. This service is particularly valuable for applications that
demand continuous and uninterrupted data transfer[32].

One of the key features of Iridium RUDICS is its ability to support unrestricted
digital internetworking connectivity solutions. This means that users can estab-
lish efficient, bidirectional data links between remote locations and centralized
systems. It’s a versatile solution suitable for various sectors, including utilities,
energy, maritime, transportation, and remote industrial operations[33][34]. With
that we can say that the service leverages the global coverage of the Iridium satel-
lite constellation, ensuring that communication can be maintained even in the
most remote and isolated areas. This is essential for industries that rely on con-
sistent data exchange regardless of location.

Iridium RUDICS offers various data plans and configurations to accommodate
diverse communication needs and usage patterns. Users can select plans that
align with their data requirements and operational demands[35].

As for the last two services we want to know if the Iridium RUDICS is a valid
service to be implemented in this project.
Iridium RUDICS can be a suitable choice for a project involving a submersible
buoy in the Arctic Sea that requires periodic data transmission to a central data
point, for several reasons. Firstly, it provides reliable connectivity, even in remote
and challenging environments, thanks to its utilization of the Iridium satellite net-
work, as we said in the last two services, which ensures data can be transmitted
globally regardless of location. Its optimized circuit-switched data approach also
makes it efficient and cost-effective for the regular data transfers needed by the
project. Additionally, RUDICS is well-suited for integrating with remote oceano-
graphic assets like buoys, enabling effective data collection and communication.
Its compatibility with high-value mobile sensor platforms indicates its potential
to handle the buoy project’s data transmission requirements. Notably, RUDICS
has a track record of successful use in remote projects, bolstering its capability
to perform in harsh and distant locations. However, considerations such as data
volume, transmission frequency, and budget should also be kept in mind. So for
this service consulting with Iridium is necessary so they can guide the project in
the right direction for the project goal. But otherwise it is seen that RUDICS is
also a valuable service that could be implemented to the project and give potential
value performance for the project needs.

CHAPTER

THREE

IMPLEMENTATION

In the landscape of satellite communication services, the usage of dedicated modems
has enabled the implementation of distinct solutions to address specific communi-
cation demands. This Thesis as mentioned before delves into three of the Iridium
services; SBD, Certus 100, and RUDICS. Each of these services has been tailored
to meet unique connectivity requirements and has been associated with its unique
modem configuration.

Each service has its own qualities but we want to know which of these services
would be a better solution for the satellite communication dilemma. For that, I’ll
expose the principal capacities of each service to introduce the main implementa-
tion part which is going to be presented what modem was picked for each service
and the thought process behind it.

• SBD: Serves as an efficient means of transmitting concise data bursts from
remote locations to central systems. This service finds utility in applications
such as remote monitoring, tracking, and IoT.

• Certus 100: Is characterized by its ability to offer high-speed broadband
connectivity in areas where conventional networks encounter limitations.
This service demands a modem to harness the capabilities of the Iridium
network for swift data transfer, serving sectors such as maritime, aviation,
and emergency response.

• RUDICS: In scenarios requiring comprehensive communication links, RUDICS
operates on the framework of router-based communication. This specialized
service relies on a dedicated modem to establish bidirectional data connec-
tions between remote locales and centralized systems. Its adaptability makes
it pertinent for industries like utilities, energy, and transportation that re-
quire consistent and reliable data exchange.

19

20 CHAPTER 3. IMPLEMENTATION

Considering these different implementations, the selection of the most suitable
service becomes a vital consideration. In the context we are in, the submersible
buoy has challenging aspects to be taken into account. The feasibility of im-
plementing these services for the submersible buoy needs research and thought
processes to fulfil the communication requisites that Ocean Access has. The as-
sessment of these services, each paired with its tailored modem, will facilitate
informed decision-making, and the solution for the communication process for
Ocean Access.

As said earlier for each of the services a specific modem has been picked to be
the one considered to implement into the project. So for each of these services,
a modem is going to be explained and reasoned on why it has been picked and
the theoretical benefits in the implementation to the project with the two cases
Ocean Access wanted to be solved.

CHAPTER 3. IMPLEMENTATION 21

3.1 SBD - 9603N Iridium
The first service that was contemplated was the SBD, for this service specific the
modem 9603N from Iridium was picked. The Iridium 9603N modem is a single-
board transceiver that provides global coverage through the Iridium constellation.
It is a small form factor module that offers unmatched flexibility. The 9603N needs
to be connected to a PCB in order to be functionally useful. This was already
implemented at the Ocean Access office where it was connected through a PCB to
the STM32 micro-controller, but there was an error where the modem itself did
not connect correctly to the main program implemented by Ocean Access, this is
going to be discussed in the Results part. Anyway, the 9603N as said before is
the smallest commercially available satellite module, one-fourth the volume and
half the footprint of its predecessor, the Iridium 9602. The Iridium 9603N delivers
Short Burst Data, which allows for the transmission of short messages or small
amounts of data/telemetry. This modem is lightweight and low-power, making
it highly flexible for integration into various applications, whether fixed, mobile,
or battery-powered, this is a great feature for the project we are working on.
Finally, the modem 9603N is used in various applications, including IoT devices,
remote monitoring - our case -, asset tracking, and communication in remote or
inaccessible areas.

Figure 3.1.1: Photo of the Iridium 9603N modem

22 CHAPTER 3. IMPLEMENTATION

For this project, some key factors must be taken into account in order to have
the modem implemented into the buoy. The Iridium 9603N modem’s capability to
operate efficiently in intermittent communication mode aligns with the project’s
operational pattern. Since the buoy will spend most of its time submerged and
surface only for data transmission, the modem’s design suits this usage.

The ability of the 9603N modem to transmit different types of data supports
the diverse needs of the potential clients the project could have in the future.
Its adaptability supplies to scenarios like an oil rig monitoring or monitoring the
weather of a certain region of the ocean to be able to tell the ships where to navi-
gate without danger. The 9603N modem is capable of transmitting data received
from AVL equipment to the low-orbit Iridium satellite. This suggests the modem
can handle different data types, including location information.

One of the key features that the 9603N offers is that has compact size and low-
profile design - as said before - makes it suitable for integration within the buoy’s
limited space. It is the smaller modem out of the three with these dimensions;
31.5 mm X 29.6 mm x 8.1 mm, which aligns with the factor of conserving space
inside the buoy. Also, the weight would not be a problem because the total weight
of the modem is 11.4g the lightest in the market.

In the field of power consumption, another key factor, the 9603N has a low power
consumption which addresses the requirements for energy-efficient components. It
needs an input voltage of 5.0V +/- .5V DC which is very low, for the different
states of the modem it has different power parameters. For the Idle mode, the peak
performance is 156mA, and the average is 34mA. For the transmission current,
the peak is 1.3A, while the average is 145mA. The receive current has different
values, the peak performance is 156mA, and the average is 39mA. Finally, for the
SBD transfer, we have that the average current is 158mA, while the average power
consumption is less than 0.8W. These numbers indicate that the Iridium 9603N
is a low-power consumption modem that aligns with the specifications that the
buoy needs.

This project is focused mostly on monitoring and transmitting data, but one
of the objectives is to send information from places where usual communications
cannot be transmitted. That is why using the 9603N modem is useful, this mo-
dem is designed to withstand harsh environments. Its rugged construction and
ability to function in extreme weather conditions align with the project’s need for
durability. It can do it because the operational temperature ranges from - 40°C
to +85°C cover most of the extreme conditions on Earth.

Like all the Iridium products, the 9603N modem’s connectivity through the Irid-
ium network ensures reliable communication from even the remotest areas of the
world, which ensures a potential growth to the number of projects that this mo-
dem can be effective. Also, it has perfect usage in the buoy project, where we want
to drop it in remote locations and gather data, so having a modem that ensures
reliable communication with the server is a key factor.

CHAPTER 3. IMPLEMENTATION 23

The Iridium 9603N SBD modem works differently as the next two modems, this
modem works through messages, while the other two work with IP-based trans-
missions. The 9603N has on the low end a capacity of 270B per message and on
the high end a capacity of 340B per message. So what the 9603N does is transmit
short messages or small amounts of data with sizes ranging from 270-340B, which
allows us to transmit any type of message with low latency to any destination we
want from anywhere in the world.

For the connection with the buoy the modem has to be connected to the STM32
micro-controller that powers all the components of the buoy. For this modem the
9603N, the connection will be via connecting the appropriate pins of the modem
to the corresponding pins of the micro-controller, such as the UART pins for serial
communication. The 9603N communicates with the STM32 using serial commu-
nication, typically through an RS-232 serial port. Once the hardware connection
and the serial communication are established, the software logic has to be devel-
oped - which we are going to talk about in the next section -, this involves sending
commands and receiving responses from the modem using the UART interface.

After having all the information about the Iridium 9603N modem, two cases were
presented by Ocean Access to see if the modem we are exploring, is suited for the
operations the company wants to conduct.

The first case is to see if the modem could be used as an emergency backup
to LTE, for example, if the LTE equipment is broken (trawler, harsh weather, un-
foreseen wear and tear, LTE network downtime). So in this case what is needed,
it would be necessary to send out an SOS containing the location of the buoy and
the battery percentage. The 9603N modem has all the features to be used as an
emergency backup to LTE. First of all the global coverage of the Iridium satellite
network ensures communication connectivity even in remote and isolated areas
where LTE might not be available. This global reach is essential for maintaining
communication in emergency situations, especially at sea. The Iridium 9603N
modem can be programmed to initiate an emergency communication protocol in
situations where the LTE connection becomes unreliable, with the usage of the
AT& commands - which are used to communicate the modem with the micro-
controller - where one of them triggers a message of a maximum of 340B that
indicates the SOS containing the location of the buoy that can be extracted from
the location information of the satellite network and from the GPS receiver, and
the battery percentage from the micro-controller connected through the UART
connection to the modem. Also, the 9603N can handle intermittent operation, so
when an emergency condition is detected, the modem can activate and establish
communication with the Iridium satellite network from the Idle mode. Also, the
modem’s intermittent operation aligns with the buoy’s behaviour of surfacing pe-
riodically for data transmission. The Iridium 9603N modem’s low power consump-
tion is advantageous for emergency scenarios, ensuring that energy resources are
conserved for critical operations. This allows the modem to initiate and maintain
communication without overly depleting the buoy’s battery, also not consuming
roughly any battery while in Idle mode. The compact design ensures that it can

24 CHAPTER 3. IMPLEMENTATION

be easily integrated into the buoy’s structure without taking up excessive space.
Its low-profile form factor aligns with the preference for minimizing the modem’s
impact on the buoy’s internal layout, which for an emergency backup is what we
want to not occupy much space and consume less power the better. Finally, the
modem’s rugged design is also a fantastic quality for withstanding the challenging
conditions of the sea, including adverse weather and potential physical impacts.
Its durability ensures reliable operation even in harsh environments, where LTE
or common communication solutions can not.

In summary, the Iridium 9603N modem is well-equipped to handle emergency
backup scenarios and transmit SOS messages from a submersible buoy in the sea.
Its global connectivity, capability to send critical SOS messages with accurate lo-
cation and battery data, intermittent operation, low power usage, compact design,
and ruggedness make it a suitable solution for ensuring communication in emer-
gency situations.

The second case exposed by Ocean Access is that, if the buoy is placed in ar-
eas too remote for LTE or other types of communication, for example, the buoy
is placed in the Arctic Sea in order to do long-term monitoring of environmental
conditions. In this case, it could be anywhere from 4kB a day on the low end to
500kB a day on the high end. In both cases, sending data once a week would be
necessary so it would be 4*7kB on the low end and 500*7kB on the high end. As
said earlier the connectivity would not be a problem thanks to the connection of
the modem to the Iridium satellite network that gives the project global connec-
tivity throughout the entire world, so the problem of dropping off the buoy into
the Arctic Sea would not be a problem in order to maintain connectivity. Also,
for the harsh weather conditions, the rugged design of the modem will be perfect
to maintain the communication available as explained in the previous paragraph.
The data transmission rate from the Iridium 9603N is that it can send 1 mes-
sage up to 340bytes per 20s at its maximum. With that, we know how is going
to handle the transmissions ranging from 4kB to 500kB a day, or from 28kB to
3.5MB a day for one week of transmissions. Based on the calculations from the
table 3.1.1, for the small transmissions the modem can comfortably transmit all
the accumulated data even if it has to send all the data once a week. On the
higher end, it is different in the case of sending each day’s data, it has to take
more than 8 hours to transmit all the data, this is a huge amount of time that
can be divided into different time frames during the day programming an alarm
to submerge and surface every now and then to send data, and not to send it
all at once. But in the case of sending all the data of a week on a specific day,
it is impossible because the transmission time will be superior to 48 hours so a
different approach would be necessary in this case for this modem. We can say
that the Iridium 9603N modem can handle these payloads but in the higher-end
sizes, a different approach to send data has to be reconsidered.

CHAPTER 3. IMPLEMENTATION 25

Data Transmission Requirement Total Data Messages Needed Time Required

Low-End (4kB per day) 28kB per week 83 messages 27.67 minutes
High-End (500kB per day) 3500kB per week 10295 messages 57.19 hours

Individual Data Calculation (Per Day)
Low-End (4kB per day) 4kB 12 messages 4 minutes
High-End (500kB per day) 500kB 1471 messages 8.18 hours

Table 3.1.1: Iridium 9603N Modem Data Transmission Time and Calculations

3.1.1 SBD Software Implementation

The SBD service has been the only one that could have been implemented into
the software of the normal communication system of the buoy. For this implemen-
tation, it was necessary to implement the AT& commands that Iridium supports
its product with, to be able to connect the modem with the Iridium satellite net-
work. For this implementation, the normal communication system of messaging
from Ocean Access was used as the base of the SBD communication. So for this
explanation, we are going to take into account that all the software and hardware
connections that the simple communication uses are implemented.

For this implementation, a new class was created - iridium_sbd_drv.h.cpp - where
all the main functioning of the SBD communication system was thought of. To
know how the AT& commands work here in the next label there is a great expla-
nation on how it works, and the main idea when implementing this solution for
the communication between the buoy and the satellite network 3.1.

1 // Command structure: AT-commands
2

3 // Procedure for connecting and sending message:
4 // AT -> OK -------- we are in contact with the modem
5 // AT+SBDWT=MESSAGE -> OK -------- we have written

message to modem , the message is stored in modem
buffer

6 // AT+SBDIX -> +SBDIX: int , int , int , int , int , int
-------- if the first int is not 0, repeat AT+SBDIX

Listing 3.1: Overall functioning of the communication with AT commands

First of all, we send an AT and wait for the response of an OK to know if
we are in contact with the modem. After that, once we are in contact with the
modem, we have to write the message inside the modem buffer where we use the
AT+SBDWT, and if we receive an OK, that means our message is written and
waiting to be sent. So finally with the command AT+SBDIX, we sent our message
that was inside the buffer.

In the class, I mentioned before, we have the next usage for this AT command
idea. We are working with different SBD commands, states, and transitions, to
keep track of our buoy and the state of the communication process. This is ex-
tremely useful for the implementation because we can model our abstract process
into a ruled and categorical functioning of different states, commands, and tran-
sitions as we can see in the appendices on the listing 1.

26 CHAPTER 3. IMPLEMENTATION

Before entering into the main process of how SBD communication works, a simple
explanation of the commands, the states, and the transitions may help in a deep
understanding of all the processes. All of the commands, transitions, and states
are listed in the code that is in the appendices 1. The transitions depend on
the state of the "buoy" because for each state there is a case in the sm_process
function 2, that takes into account what transition we are going through and
does its work depending on that, changing the oldState for the currentSate which
will be updated depending on the transition. The first case is if the modem is
off ST_SBD_OFF, so if our transition is SBD_MODEM_BOOTED, then the
function will update the current state to be on. Likewise, if the transition is
SBD_POWER_OFF_MODEM, the system will send to the main program that
the connection has to be closed. This functioning is the same for all the states and
transitions over the function that can be seen in the appendices. The commands
we are going to use for the communication process, need an encoding so our data is
not vulnerable, and we also used that function to complete the final message that
would be written inside the modem’s buffer. So in the function encode 2, what
we do is allocate memory in an encoded message which takes into account the
rawData that is our not encoded AT& command, and uses 10 additional strings
to encode it. It constructs an AT command by concatenating various components
based on the value of the encode_cmd variable which indicates to us what com-
mand we are using inside our enumeration. Each of the strings created are always
concatenated with the AT string - which is the form of what Iridium needs to
understand the message -. So in that function depending on the command that is
used, a different encoding process is done.

Once we know how all the transitions, states, and commands work inside their
specific functions, a more global look is what is going to be explained next. The
main communication process is enherited by the class DigitalTwins which con-
trols all of the communication processes in the software of Ocean Access. In the
sm_process function to send something to the modem, let’s say, a delete buffer
or to write the message, we use the functions inherited by the class DigitalTwins.
So it works as follows in the function load_and_send, which is the one that we
use to send when transmitting to the modem. We first check for the length of
the message so we have the memory allocated in just the necessary space and
then calculate the number of packets that will be needed for sending the message.
After that, we are going to send each packet so the receiver can reconstruct the
final message. Then we send to the DigitalTwin our start loading messages and
wait for a response. If we receive a response that is not the OK we talked about
in the first stage or SBDNETACQUIRED which means that the network is not
acquired, the loading fails. Otherwise, we take the message in the different pack-
ets and copy the content inside the sending buffer, and all of that is sent to the
modem through the send function of DigitalTwins. After that, we do the same
check of the response of the modem, whether it accepted the command/message
or not. Finally, we empty the buffer if everything went the right way, and tell the
SBD modem to send the payload to the satellite network with the DigitalTwin
function send, with the content of transmit_to_satellite_msg, as in the first step
of the loading messages. Once we receive the response we check if we got an OK
or SBDNETACQUIRED, if not, then we know that our message has not been sent

CHAPTER 3. IMPLEMENTATION 27

to the satellite network and that we have to try again. But if we get an OK or an
SBDNETACQUIRED, then we can be sure that our message has been sent into
the satellite network and will arrive at its destination.

3.1.2 Algorithm Update config file

One of the software applications that Ocean Access wanted to implement was
an algorithm that updates the configuration file of the SBD modem while it is
functioning, without having to restart physically. For this implementation, we
had to take a different approach to what was already implemented, because what
was implemented was that we updated the config file through what was written
inside the SIM card that the modem had, so we could not update it while it
was running. Next, I will show with code snippets what was done to be able to
implement the new algorithm.

1 char config [] = "# Specify which connection to use to
communicate with relay boards\n"

2 "[relays]\n"
3 "i2cNumber = 2\n"
4 "# Communication channel used to send/receive\n"
5 "# data to/from the seabed (or other sensors that

act like the seabed)\n"
6 "# Means , data from this device need to be sent to

the shore\n"
7 "[[inComChan]]\n"
8 "name = \" seabed \"\n"
9 "[inComChan.uart]\n"

10 "uartNumber = 3\n"
11 "baudrate = 115200\n"
12 "# Communication channels used to send/receive\n"
13 "# data to / from the shore\n"
14 "[[outComChan]]\n"
15 "name = \"swarm \"\n"
16 "band = \" narrowband \"\n"
17 "realtime = \"no\"\n"
18 "relayBoardAddress = 24\n"
19 "relayChannel = 4\n"
20 "driver = \" swarmDrv \"\n"
21 "priority = 0\n"
22 "[outComChan.uart]\n"
23 "uartNumber = 2\n"
24 "baudrate = 115200\n"
25 "[[outComChan]]\n"
26 "name = \"lte\"\n"
27 "band = \" broadband \"\n"
28 "realtime = \"yes\"\n"
29 "relayBoardAddress = 24\n"
30 "relayChannel = 3\n"
31 "priority = 1\n"

28 CHAPTER 3. IMPLEMENTATION

32 "[outComChan.eth]\n"
33 "serverAddress = \"192.168.1.40\"\n"
34 "serverPort = 10\n";

Listing 3.2: Config file example

First of all, the communication process that Ocean Access already had was
used. In the class controller.cpp the function that takes the config file and does
the parsing and updates was done. This class is the controller specifically for
communication channels. It manages the sending of processes on all output com-
munication channels, receives data, and chooses where is sent. The function that
was implemented takes the config file and does the corresponding parsing and
updates, or it changes everything overwriting all the file for a new configuration.

1 void Controller :: updateConfigFile(char* newConfig[],
toml_table_t* oldConfig) {

2 char errbuf [100];
3 toml_table_t* conf = toml_parse(newConfig , errbuf ,

100);
4 /**
5 * Build the software architecture with the new

specificiations of the config file or update the old
ones

6 */
7

8 // Create and configure the relay board controller
9 toml_table_t* relaysConf = toml_table_in(conf , "relays

");
10 toml_table_t* oldrelaysConf = toml_table_in(oldConfig ,

"relays");
11 if(! relaysConf)
12 printf("Missing [relays] in configuration file , so

not updating it\n");
13 else if(! oldrelaysConf or oldrelaysConf != relaysConf)
14 configureRelayController(relaysConf);
15 else
16 configureRelayController(oldrelaysConf);
17

18 // Generate output communications channels
19 toml_array_t* outComChanArray = toml_array_in(conf , "

outComChan");
20 toml_array_t* oldoutComChanArray = toml_array_in(

oldConfig , "outComChan");
21 if(! outComChanArray)
22 printf("Missing [[outComChan]] in configuration file

\n");
23 else if(! oldoutComChanArray or oldoutComChanArray !=

outComChanArray)
24 generateComsCh(outComChanArray , true);
25 else

CHAPTER 3. IMPLEMENTATION 29

26 generateComsCh(oldoutComChanArray , true);
27

28 // Generate input communications channels
29 toml_array_t* inComChanArray = toml_array_in(conf , "

inComChan");
30 toml_array_t* oldinComChanArray = toml_array_in(

oldConfig , "inComChan");
31 if(! inComChanArray)
32 printf("Missing [[inComChan]] in configuration

file\n");
33 else if(! oldinComChanArray or oldinComChanArray !=

inComChanArray)
34 generateComsCh(inComChanArray , false);
35 else
36 generateComsCh(oldinComChanArray , false);
37

38 // Configuring sensors
39 toml_array_t* sensorConf = toml_array_in(conf , "

sensor");
40 toml_array_t* oldsensorConf = toml_array_in(oldConfig ,

"sensor");
41 if(! sensorConf)
42 printf("configuration file : missing [sensor] \n

");
43 else if(! oldsensorConf or oldsensorConf != sensorConf)
44 generateSensor(sensorConf);
45 else
46 generateSensor(oldsensorConf);
47

48 toml_free(conf);
49 toml_free(oldConfig); // free memory
50 printf("Software architecture creation completed , with

updates\n");
51 }

Listing 3.3: Function for parsing and updating the config file in the controller.cpp
class

This function just takes the information received with the config array and
parses it with the toml format that was already implemented. Once is it all
parsed it takes the different key parts of the config file and updates it depending
on if the new information is different or not from the old config file. If the new
information is different we use it for creating the new software architecture of the
project, and if not we use the old configuration.

After having that function implemented, to be able to "fool" the system that
this is the configuration file, we have to simulate that a message has entered the
system. For this in the message class message.h I will add a command which we
can work with to fool the system. The message class is used to represent a real

30 CHAPTER 3. IMPLEMENTATION

message entering the system, where a message is the only object used to commu-
nicate between threads. These messages are composed of a command, and data,
in our case we will create a command to fool the system and the data will be the
new config file or the updates we want to add. So I will add our new command to
the enumeration of commands that are used for the communication.

1 // Commands that can be exchanged between threads
2 enum Commands{
3 MSGCMD_UNDEFINDED , // Initial state of every message

created
4 MSGCMD_OPEN_CONNECTION , // To open the connection
5 MSGCMD_CLOSE_CONNECTION , // To close the connection
6 MSGCMD_CONNECTIONS_CLOSED ,
7 MSGCMD_START_SPEEDTEST ,
8 MSGCMD_STOP_SPEEDTEST ,
9 MSGCMD_SEND , // To send the data (don’t forget to give

data with)
10 MSGCMD_SEND_FAILED , // When the com choosed failed to

transmit the message
11 MSGCMD_SEND_SUCCESS , // When the com choosed success

to transmit the message
12 MSGCMD_RECEIVED , // When data have been received (by

seabed most of the time)
13 MSGCMD_INIT , // To init a SM (of controller for

example)
14 MSGCMD_SLEEP_TIMEOUT , // Notify that the sleep timer

overflowed
15 MSGCMD_CONNECTION_TIMEOUT , // Notify that the

connection timer overflowed
16 MSGCMD_EXITSLEEP , // Notify controller to exit sleep

state
17 MSGCMD_NO_CHOICE , // No com are in the leaderboard

after the choice algo
18 MSGCMD_NO_MORE_CHOICE , // No com success to transmit
19 MSGCMD_CHOICE_DONE , // When leaderboard is created ,

choice algo done
20 MSGCMD_ENDOFENUM , // Used to check if the message type

is valid
21 MSGCMD_UPDATE_CONFIG_FILE // Used to fool the system

to update the config file
22 };

Listing 3.4: Enum for the different message commands for the communication
processes

After adding the message command to the message.h class, the data needs to
be added. In the controller.cpp class, there is a function the sm_process, which
takes the messages and controls where are they going and their treatment. So in
that switch case, we will add a case for our message command. In this switch case,
the only thing we will do is call the function that parses the data of the message.

CHAPTER 3. IMPLEMENTATION 31

This call to our function will be done inside the ST_WAIT case, where the system
waits for a message to be received. For this to function in the controller.cpp class
a function called ControllerTask that controls everything, has a switch case to be
able to use the sm_process function as the controller of the message commands,
where there I will add the MSGCMD_UPDATE_CONFIG_FILE.

1

2 Message msg;
3

4 case MSGCMD_INIT: case MSGCMD_SLEEP_TIMEOUT: case
MSGCMD_EXITSLEEP:

5 case MSGCMD_CONNECTION_TIMEOUT: case
MSGCMD_NO_CHOICE:

6 case MSGCMD_CHOICE_DONE: case MSGCMD_SEND_FAILED:
7 case MSGCMD_NO_MORE_CHOICE: case

MSGCMD_SEND_SUCCESS:
8 case MSGCMD_CONNECTIONS_CLOSED: case

MSGCMD_UPDATE_CONFIG_FILE:
9 // Give to the SM to process

10 controller ->sm_process (&msg);
11 break;

Listing 3.5: Switch case for the ControllerTask

1 case ST_WAIT :
2 if(msg ->getCmd () == MSGCMD_RECEIVED)
3 {
4 printf("Message received from a channel\n");
5 // Stop the sleep timer (delay before enter sleep

mode)
6 HAL_TIM_Base_Stop_IT(timSleepHandler);
7 // Take the first message to transmit
8 currentData = msgToTransmit.at(0);
9 msgToTransmit.erase(msgToTransmit.begin());

10 currentState = ST_OPENCHAN;
11 }
12 if(msg ->getCmd () == MSGCMD_UPDATE_CONFIG_FILE)
13 {
14 printf("Message to update the config file\n")
15 // Call the function to update the config file
16 updateConfigFile(msg.getData (), oldConfig);
17 }

Listing 3.6: Switch case in the sm_process function

The oldConfig will be an object that controller.cpp can access, this object will
be the actual config file, the one that the modem is using at that moment.

Then in the ControllerTask function, which is the task of the communication
controller, only declare a message from the message class, add the command that

32 CHAPTER 3. IMPLEMENTATION

we created, and add the data that we want to upload to the config file. I will add
it once before the infinite loop, to not add it periodically.

1 void ControllerTask(void* argument)
2 {
3 *** WORK DONE HERE ***
4 Message msg;
5 msg.setCmd(MSGCMD_UPDATE_CONFIG_FILE);
6 msg.setData("New Config File or updates that we want

to make");
7

8 *** INFINITE LOOP HERE ***
9 }

Listing 3.7: ControllerTask function where we add the data needed

With all of this work done, what we do is simulate that a message entered the
system and treat it like any other, but adding the command MSGCMD_UPDATE_CONFIG_FILE,
and implementing the function updateConfigFile(), what we do is that the data
that we receive is the one that we want, updating the configuration file.

CHAPTER 3. IMPLEMENTATION 33

3.2 Certus 100 - Quicksilver QS-100 NAL Research
For the Certus 100, the modem Quicksilver QS-100 from the company NAL Re-
search was picked. The Quicksilver QS-100 is a Wi-Fi-enabled modem that pro-
vides IP-based communications anywhere in the world[2]. It is based on the
Iridium Certus 9770 Transceiver and delivers the latest mid-band service in a
compact, rugged package for globally available connectivity, and is prepared to
be used in harsh environments[3]. The modem is suitable for both standalone
usage and embedded platform integration - what we want in this project, is to be
embedded into the buoy itself - and employs a small detachable passive, low-gain,
Omni-directional antenna, simplifying low[1]. So the Quicksilver QS-100’s flexible
integration architecture makes it the ideal upgrade from narrowband solutions to
provide mid-band throughput performance.

Figure 3.2.1: Photo of the modem Quicksilver QS-100, indicating some of the
important components

For this project, we had some specifications that we needed to be covered to be
able to implement the modem into the buoy. We know that the Quicksilver QS-100
modem demonstrates its versatility by accommodating various data types, making
it an excellent choice for clients with diverse monitoring needs like the project we
are working on because as said by Ocean Access the goal of the submersible buoy
is to be able to work on different monitoring projects that could go from if an oil
rig requires periodic updates about its operations - a common practice in Norway
- to monitoring the ecosystem in areas with aquaculture that needs a real-time pH
measurement, the QS-100 can efficiently handle both cases.

Given the project’s submersible buoy nature where the buoy surfaces intermit-
tently to transmit data, the QS-100 modem’s operational pattern is well-suited.
It can handle scheduled data transmissions, conserving power during periods of
submersion and efficiently utilizing energy during transmission.

One of the other big specifications that we need to cover in this project is the
compact design of the buoy, where the modem has to be installed. The QS-100
is of the three modems the biggest, its dimensions are 21.34 cm x 6.86 cm x 3.81
cm, which is a bit big for the buoy itself but it can fit in.

34 CHAPTER 3. IMPLEMENTATION

In the order of power consumption, the QS-100 is also the modem that needs
more power to work, it needs an input voltage of 10-32V DC in order to function
correctly. In the idle mode, it will consume 2.0W and at a full rate, it can consume
in the order of 4.8-9.6W. For that, it is recommended a power supply of 18W or
higher.

On the other hand the rugged design of the QS-100 modem enables it to en-
dure the Arctic Sea’s extreme conditions, with an operational temperature range
of approximately -40°C to +65°C.

As said earlier the QS-100 modem’s global connectivity, facilitated by the Irid-
ium Certus 9770 Transceiver, allows it to transmit data reliably from virtually
anywhere around the world, even in the remote Arctic Sea location where we
wanted to drop off our buoy. This is a very good option to have in the buoy
because not only now but in the future, more extreme projects could be presented
into Ocean Access and this feature would help to not be afraid to go to remote
locations with it and have a reliable connection to the buoy.

Finally we know that the QS-100 supports a mid-band throughput performance
supporting data transmissions ranging from 4kB to 500kB per day, which aligns
with the varying data needs of different applications. For example, if the oil rig
requires a daily status update of around 10kB and the sea region with aquacul-
ture requires hourly pH measurements averaging 50kB per day, the modem could
handle both scenarios effectively.

For the connection with the buoy as said earlier in the previous service imple-
mentation, we use an STM32 micro-controller to connect the hardware with the
functionalities of the buoy. In this case, the Quicksilver QS-100 uses Ethernet to
communicate with the STM32, where it functions as a link between the control
system of the buoy and the Iridium satellite network. As we already know, one of
the key features of the Quicksilver QS-100 is that supports different IP protocols
that we can use such as TCP, UDP, HTTP, HTTPS, etc. As said by the manu-
facturer - NAL Research - the best protocols to use are TCP and UDP when we
are using the Ethernet pin port, that is what we are going to use to implement it.

After knowing all the information about the Quicksilver QS-100, we want to ex-
plore the two cases that Ocean Access brought to the table.

The first case is to see if the modem could be used as an emergency backup
to LTE, for example, if the LTE equipment is broken (trawler, harsh weather, un-
foreseen wear and tear, LTE network downtime). So in this case what is needed,
it would be necessary to send out an SOS containing the location of the buoy and
the battery percentage. For this case, the QS-100 as said earlier has global con-
nectivity around the world so the connection to the buoy would not be a problem,
so it would be suitable for an emergency situation where the LTE may not be
available. The QS-100 has a modular design, so this flexibility we talked about
earlier allows it to be easily integrated into existing systems as an emergency

CHAPTER 3. IMPLEMENTATION 35

backup. The rugged and compact design that the QS-100 has, would make it a
good choice for an emergency solution so it could be functioning although for the
harsh conditions or the unforeseen wear and tear the LTE may not be able to
overcome. In the case of an emergency, the QS-100 is capable of sending an SOS
message containing the location of the buoy and the battery percentage. Because
the Quicksilver QS-100 works with an internet connection, that means that once
installed in the buoy and configured before being deployed, a local server will be
available where you can transmit your data. So you can configure an SOS message
that when the LTE fails or the buoy goes into the emergency state, the modem
could send the location with the GPS that is inside and the battery percentage of
the buoy. All the AT& commands used for the SBD service, here are not needed,
because they were implemented to be backwards compatible with some of the old
products from NAL Research and Iridium, so they are not necessary in order to
make the internet connection.

The second case exposed by Ocean Access is that, if the buoy is placed in ar-
eas too remote for LTE or other types of communication, for example, the buoy
is placed in the Arctic Sea in order to do long-term monitoring of environmental
conditions. In this case, it could be anywhere from 4kB a day on the low end to
500kB a day on the high end. In both cases, sending data once a week would be
necessary so it would be 4*7kB on the low end and 500*7kB on the high end. As
said in the previous case the connectivity would not be a problem thanks to the
modem based on the Certus 9770 Transceiver that enables connection all around
the world also in the Arctic Sea. The Quicksilver QS-100 modem has an upload
data rate of 22Kbps and a download data rate of 88Kbps. To determine if the
modem can handle sending 4kB or 500kB of data a day, we need to calculate the
time it would take to send that amount of data at the given data rates 3.2.1.
Based on these calculations, the modem should be able to handle sending 4kB of
data a day with ease but may struggle with sending 500kB of data a day due to
the longer upload and download times. If data only needs to be sent once a week,
the modem should be able to handle the low and high-end data amounts, but the
high-end amount will take significantly longer to upload and download. These
calculations were based on the upload and download data rates provided by the
manufacturer [36]. But with all these calculations, we can say that the QS-100
will be capable of handling these payload sizes.

Data Amount Upload Time Download Time
4kB/day 0.18 minutes (10.8 seconds) 0.045 minutes (2.7 seconds)

500kB/day 22.73 minutes (1364 seconds) 5.68 minutes (341 seconds)
7*4kB/week 1.27 minutes (76.2 seconds) 0.32 minutes (19.2 seconds)

7*500kB/week 159.09 minutes (9545 seconds) 39.77 minutes (2386 seconds)

Table 3.2.1: Data transfer times for the Quicksilver QS-100 modem

36 CHAPTER 3. IMPLEMENTATION

3.3 RUDICS - A3LA-RG NAL Research

For the RUDICS implementation, the modem A3LA-RG from NAL Research was
picked. This modem enables SBD, SMS, Data Switch, and RUDICS connectivity
to the Iridium network, and it has an internal GPS receiver. It is essentially an
A3LA-RM modem (a different version from NAL Research) with an added GPS.
It also has a comprised of an Iridium 9523 transceiver. The A3LA-RG is a small,
ruggedized satellite tracker with internal antennas and a battery. Is a reliable and
versatile solution for providing connectivity in remote and harsh environments.
Like the Quicksilver QS-100, it is suitable for both standalone usage and em-
bedded platform integration. The A3LA-RG modem works by enabling RUDICS
connectivity to the Iridium network, among other types of connectivity. RUDICS
stands for "Router-Based Unrestricted Digital Internetworking Connectivity So-
lution" and is a protocol that allows for the transfer of IP data over the Iridium
network. The A3LA-RG modem, therefore, uses the Iridium 9523 transceiver to
connect to the Iridium satellite network and enable RUDICS connectivity. Once
connected, the modem can transfer IP data over the network using the RUDICS
protocol.

Figure 3.3.1: Photo of the A3LA-RG modem, indicating some of the important
components

As for the Quicksilver QS-100, in this project, some goals were specific to be
completed to be able to implement the service in the right conditions so that this
service can make the tasks that Ocean Access needs. As we said in the previous
paragraph the A3LA-RG modem enables SBD, Data Switch, and RUDICS con-
nectivity to the Iridium network. This means that it can transmit different types
of data depending on the usage that the client needs, such as informing an oil
rig of what is happening or measuring the pH of the water in a sea region with
aquaculture.

Because of the compact design of the buoy we need a modem that is capable
of being embedded inside the buoy with ease. In this case, this is not a problem
because the dimensions of the modem are 102 mm x 61 mm x 24 mm, which are
relatively small and can fit easily in the buoy. Also, the weight would not be a
problem because it only weighs about 201g.

In the power consumption ambit, the A3LA-RG needs less power to work than the

CHAPTER 3. IMPLEMENTATION 37

Certus 100, it needs an input voltage of 4.0V to 5.4V in the low end and 5.0V to
32V in the high end, depending on the usage of the modem. In the idle mode, it
will consume 175mA @ 5V, and at a transmitted power it will consume 420mA @
5V. Also, it has a nominal input of 5VDC on the whole circuit. The recommended
power supply is not specified in the documentation of the product but, it will be
less than the one in the Quicksilver QS-100.

Like with the Quicksilver QS-100, the rugged design of the modem makes it is
equipped to withstand the harsh elements that the environment presents, so it
will fit the Arctic Sea project that could be presented. It can function effectively
within a temperature of roughly –30°C to +70°C.

As said before and with all the Iridium services it will have the advantage of
having global connectivity through all the world, so it will be a good option for
future projects where LTE modems and services cannot send information or work
on those extreme conditions.

For the connection with the buoy, it is used a UART connection to transmit data
between the buoy and the modem all connected with the STM32 micro-controller
we are using for all of our implementation. As said earlier the A3LA-RG mo-
dem has different types of connection protocols, it enables SBD, Data Switch, and
RUDICS. If the data plan is the Circuit Switch Data, data is transmitted over
data calls between devices. However, if we have the RUDICS data plan - what we
want to use - the A3LA-RG will send the data to a server using TCP.

After knowing all the information about the A3LA-RG, we want to explore the
two cases that Ocean Access brought to the table the same as the last two services.

The first case is to see if the modem could be used as an emergency backup
to LTE, for example, if the LTE equipment is broken (trawler, harsh weather, un-
foreseen wear and tear, LTE network downtime). So in this case what is needed,
it would be necessary to send out an SOS containing the location of the buoy
and the battery percentage. The A3LA-RG modem would be a suitable option
in this case. It is an A3LA-RM - as said before - with an internal GPS receiver,
which can be useful for sending out the SOS message containing the location of
the buoy and the battery percentage. The modem can be configured to an emer-
gency mode where if something happens - one of the cases above - it can transmit
through any of the data protocols (SBD, Circuit Switch Data, RUDICS) the SOS
message with the location of the buoy, thanks to the built-in GPS and the battery
percentage available with the STM32 micro-controller that is connected to every
hardware on the buoy including the main battery. Also thanks to the rugged and
small modem design it can fit in as an emergency backup, not using much power
and space inside the buoy and overcoming the harsh weather or conditions of the
environment the buoy can be suffering. So it can be a second option of communi-
cation behind the usual LTE services. The configuration will be through a local
server where we can manage all the different states the modem can have. In this
case, we will have an Idle state where it will be sleeping waiting for an emergency

38 CHAPTER 3. IMPLEMENTATION

and then the second state the SOS state will emerge taking control of the data
transmissions of the buoy and sending all the information needed for the company.

The second case exposed by Ocean Access is that, if the buoy is placed in ar-
eas too remote for LTE or other types of communication, for example, the buoy
is placed in the Arctic Sea in order to do long-term monitoring of environmental
conditions. In this case, it could be anywhere from 4kB a day on the low end to
500kB a day on the high end. In both cases, it would be necessary to send data
once a week so it would be 4*7kB on the low end and 500*7kB on the high end.
The A3LA-RG modem can be used for remote data transmission in areas where
LTE or other types of communication are not available, such as the Arctic Sea.
The modem enables SBD, SMS, Data Switch, and RUDICS connectivity to the
Iridium® network, which provides global coverage, making it suitable for remote
locations. The Iridium RUDICS service offers an effective data rate of approx-
imately 10 to 12Kbytes per minute. This data rate applies to both upload and
download data transfers. So approximately it has a data rate of 200Kbps, which
is higher than the Quicksilver QS-100. This is because the A3LA-RG can use
different data protocols such as SBD, Circuit Switch Data and RUDICS, and for
each case of sending data it can use the one that fits the most for that specific
transmission. For example, in the order of small messages, the SBD can be useful,
and for messages that are bigger in size, RUDICS can be a better option. Knowing
that the data transfer rate is quicker than the Quicksilver QS-100, we can assume
that it will be capable of satisfying the needs of sending 4kB or 500kB a day or
sending once a week 28kB or 3.5MB. This assumption is also supported by the
manufacturer - NAL Research - data, which informed us that this modem would
be more than capable of handling these payloads.

CHAPTER

FOUR

RESULTS

In this section, the results from the implementation of each service will be dis-
played. For the services Certus 100 and RUDICS the physical implementation
was impossible due to the high cost of the operation and the time frames in which
the project was compressed. Also, the project was to see if the implementation of
these services would be a good option for Ocean Access in order to be the main
communication service or an emergency backup for the buoy. So the physical/-
software implementation was a part of the project that was considered at first but
ruled out once started.

4.1 SBD
In the first case, a theoretical implementation was done for the SBD where, after
collecting information about satellite communications, from the Iridium satellite
network, and from the modem that was considered, the two cases that Ocean
Access suggested were studied. After collecting all of the important information
the modem that was chosen for the implementation was considered a good choice
for a future implementation in the actual project of Ocean Access. All of the
information considered and the reasoning for this solution was exposed in the im-
plementation part of the Thesis. So in the theoretical field, the Iridium 9603N
modem for the SBD service was a feasible option for the project.

For the SBD a real implementation was done, Ocean Access already started imple-
menting the software and the hardware needed for the connection to the Iridium
network. The software implementation was correct though the connection with
the Iridium network was inaccessible for hardware complications. The implemen-
tation of the AT& commands was carried out according to the specifications of
the ISU AT commands manual, which handles the AT commands for the Iridium
9603N modem [37].

The AT commands that were used were the +SBDWT which we used to write the
message to the modem buffer - Exec Command: +SBDWT=[<text message>] -,
the +SBDIX which is used to specify the location of the modem and has an im-
plementation of 6 integers to disaggregate the information of that specific remote
location - Exec Command: +SBDIX[A][=<location>] -. All of these commands

39

40 CHAPTER 4. RESULTS

are implemented as intended in the ISU AT commands manual. The implemen-
tation can be verified in the appendices code, where that code is explained in the
implementation part for the SBD. For all of the other implementation parts, the
communication process was done before this Thesis so there is no problem for the
connection there.

4.2 Certus 100 and RUDICS
In this section, I am going to talk about Certus 100 and RUDICS like one, they are
on the same page as they were not implemented in a practical way. The process of
this project made the practical implementation impossible, so only the theoretical
implementation was conducted. Which was about knowing and investigating if
both of the services with each modem were a feasible option for Ocean Access in
their projects, specifically on the communication buoy.

After all the information gathering for both of the services and the review of
the two cases that Ocean Access presented, both of the services each with its
specific modem were evaluated as good options to be a representative in the com-
munication process for the buoy project. As said in the SBD result section all
of the information about how was the theoretical implementation conducted is in
the implementation section for both the Certus 100 with the Quicksilver QS-100
from NAL Research, and the RUDICS with the A3LA-RG from NAL Research.

CHAPTER

FIVE

DISCUSSION

In this section, a future work discussion will be presented in order to give some
hints on how I would approach this project in the future or how I would carry the
following Thesis out.

5.1 Future work
The present research has laid the foundation for the implementation and evaluation
of Iridium satellite communication services within the context of the submersible
buoy project Ocean Access is developing. While some progress was made, there ex-
ist several avenues for future exploration and enhancement, ensuring the project’s
continuous development and adaptability to emerging challenges and opportuni-
ties.

First of all a software implementation for the SBD was revised, but the connection
with the satellite was not ensured. So, in a future project, the connection with
the satellite and revision of the software implementation could be done, in order
to reduce power consumption and enhance data transfer rates. Also, other func-
tionalities of SBD could be investigated in order to ensure a better communication
system. Also, to develop protocols for better data encryption, authentication, and
protection to safeguard sensitive information could be done.

For both the Certus 100, and RUDICS an availability plan was made in order
to know if they were suitable for the buoy project. If they manage to be the best
option, the logical step would be the implementation of them into the real-world
buoy. So a Thesis project could be the implementation and testing of those tech-
nologies. Conducting the feasibility test to asses the real suitability for the main
project.

Another option would be, a Hybrid Service Implementation of all of three ser-
vices, to create a comprehensive communication system. So the work could be to
develop a communication strategy that optimizes the strengths of each service for
various aspects of the project and ensure the system’s robustness and flexibility
in adapting to changing project requirements and environmental conditions.

41

42 CHAPTER 5. DISCUSSION

Once the project of the submersible body got to the point of experimenting in
real cases, a project that could be desirable is to develop data analysis and vi-
sualization tools to process and interpret the incoming data streams effectively.
This could be key in the decision-making processes and could be a new product
that Ocean Access could offer to their clients, so they just need to receive the
information and not treat it.

In the context of potentially sensitive deployment areas, a Thesis could consider
conducting an assessment of the project’s environmental impact. This Thesis
could assess how project operations and communication may affect local ecosys-
tems and propose mitigation strategies if necessary.

In conclusion, this Future Work section outlines various directions for further re-
search and development, each with the potential to enhance the submersible buoy
project’s capabilities and impact. These suggestions reflect the dynamic nature
of the field and the need for ongoing innovation to address emerging challenges
and opportunities in environmental monitoring and satellite communication. Fu-
ture research in these areas will contribute to the continuous advancement of the
project’s objectives.

CHAPTER

SIX

CONCLUSIONS

For this Thesis, research was done on three of the Iridium services - SBD, Certus
100, and RUDICS - which gave us an insight into which of the three services could
be more suitable for the submersible buoy project Ocean Access is developing.

In this research, apart from the review of the software implementation of the
SBD done in the last Thesis and implementing an algorithm that updates the
config file, an availability plan was made for each of the services in order to know
which of them was the one that could fit the most inside the specifications from
Ocean Access. After the research and the theoretical implementation of the ser-
vices, all of them were found suitable to do the job Ocean Access needed. But
some conclusions were made.

First of all, the Iridium 9603N SBD modem was the first and simplest modem
to be researched, this modem fitted perfectly in the capabilities of the project,
and also was the cheapest so to make different experiments was the first to be
acquired. This modem had the difficulty that had to be implemented in order
to be able to communicate the buoy’s microcontroller and the Iridium satellite
network. Also, the transfer rate that Ocean Access needed was superior to the
one that the modem could handle - but could be a suitable option for different
projects, for projects that may need more transfer rates, this modem could not be
the most suitable for the project-. However, the small size and the rugged design
made him a suitable option to be implemented in the real project.

Secondly, the Quicksilver QS-100 from NAL Research for the Certus 100, offered
everything the project needed. The transfer rate was perfect for the communica-
tions Ocean Access was expecting in their different sample cases, and the imple-
mentation is simple as it had a local server connection granted by Iridium with a
guided GUI where you could make all the possible changes to the modem without
implementing any code into the codebase. The only downside of the Quicksilver
is that out of the three is the biggest modem and could be a problem in order to
fit inside the buoy’s small capacity.

Finally, the A3LA-RG from NAL Research for the RUDICS service is the most
balanced modem out of the three. It has also the simple implementation of the

43

44 CHAPTER 6. CONCLUSIONS

Certus 100, where almost any code might be implemented. Everything should
be configured throughout the local server that Iridium grants. It also can handle
the payload sizes that Ocean Access needs for its usual communication processes
and could solve the scalability problem for projects with needs that may exceed
the common communication processes. Not as the Quicksilver, the A3LA-RG
meets the conditions to be a small-sized modem that could fit with any problem
inside the buoy’s capacity. To conclude, the A3LA-RG, apart from the RUDICS
service can offer different communication connectivity such as SBD itself, SMS,
and Circuit Data Switch, which can bring different types of connectivities that
may upgrade the communication system expanding the research horizons of the
project.

In conclusion, all of the services were attested as suitable for the project needs.
But if I had to pick one of them, after the research, for this project I would choose
the A3LA-RG from NAL Research. Because it has the opportunity to expand the
project needs and horizons, in order to be a more complete product that can fit
more complex research and scenarios. Therefore, I suggest studying this modem
further and trying to implement it physically for the final project.

REFERENCES

[1] Marcin Frąckiewicz. “The Role of Satellite Communication in Today’s World ”.
In: TS2 (Mar. 2023). url: https : / / ts2 . space / en / the - role - of -
satellite-communication-in-todays-world/.

[2] John Coykendall et al. “Riding the exponential growth in space. Higher in-
vestment, improved infrastructure, and digital technologies could unlock po-
tential across the space ecosystem”. In: Deloitte Insights (Mar. 2023). url:
https://www2.deloitte.com/za/en/insights/industry/aerospace-
defense/future-of-space-economy.html.

[3] Qian Wang et al. “An Overview of Emergency Communication Networks”.
In: Remote Sensing 15.6 (2023). issn: 2072-4292. doi: 10.3390/rs15061595.
url: https://www.mdpi.com/2072-4292/15/6/1595.

[4] Kateryna Sergieieva. “Types Of Satellites: Different Orbits Real-World Uses”.
In: EOS Data Analytics (Mar. 2023). url: https://eos.com/blog/types-
of-satellites/#ref-1.

[5] “Communications satellite”. In: Wikipedia (July 2023). url: https://en.
wikipedia.org/wiki/Communications_satellite.

[6] Virgil Labrador. “Satellite communication - Orbit, Signals, Relay | Britan-
nica”. In: Britannica (May 2023). url: https://www.britannica.com/
technology/satellite-communication/How-satellites-work.

[7] European Space Agency. “Types of orbits”. In: EnablingSupport - ESA (Mar.
2020). url: https://www.esa.int/Enabling_Support/Space_Transportation/
Types_of_orbits.

[8] Thomas G. Roberts. “Popular Orbits 101 ”. In: CSIS (Nov. 2017). url:
https://aerospace.csis.org/aerospace101/earth-orbit-101/.

[9] “Satellite Communication - Quick Guide”. In: Learn Satellite Communica-
tion - artificial satellite (). url: https://www.tutorialspoint.com/
satellite_communication/satellite_communication_quick_guide.
html.

[10] Dick McClure. “Overview of Satellite Communications”. In: GMU (). url:
https://olli.gmu.edu/docstore/800docs/0909-803-Satcom-course.
pdf.

[11] “Satellite Communication”. In: Wordpress (). url: https://elearningatria.
files.wordpress.com/2013/10/ece-vi-satellite-communications-
10ec662-notes.pdf.

45

46 REFERENCES

[12] Michael Komara. “Translator for time division multiple access wireless sys-
tem having selective diversity circuits”. In: Google patents (Dec. 1999). url:
https://patents.google.com/patent/US5970406.

[13] Cadence PCB Solutions. “Satellite Frequency Allocation and the Band Spec-
trum”. In: Cadence (). url: https://resources.pcb.cadence.com/blog/
2023-satellite-frequency-allocation-and-the-band-spectrum.

[14] “Satellite Frequency Bands: L, S, C, X, Ku, Ka-band – UPSC ”. In: Lotus
Arise (Dec. 2020). url: https://lotusarise.com/satellite-frequency-
bands-upsc/.

[15] “Satellite frequency bands”. In: The European Space Agency (). url: https:
//www.esa.int/Applications/Connectivity_and_Secure_Communications/
Satellite_frequency_bands.

[16] “NASA - 9.0 Communications”. In: NASA (). url: https://www.nasa.
gov/smallsat-institute/sst-soa/communications.

[17] “How satellite communication works”. In: Ovzon (). url: https://www.
ovzon.com/en/how-satellite-communication-works/.

[18] “The Pros and Cons of Ka-Band Applications”. In: Cadence (). url: https:
//resources.pcb.cadence.com/blog/2022-the-pros-and-cons-of-ka-
band-applications.

[19] “Iridium main website”. In: Iridium (). url: https://www.iridium.com/.

[20] “Iridium network site”. In: Iridium (). url: https://www.iridium.com/
network/.

[21] “Iridium satellite constellation”. In: Wikipedia (). url: https://en.wikipedia.
org/wiki/Iridium_satellite_constellation.

[22] Marcin Frąckiewicz. “The Role of Iridium Satellites in Internet of Things
(IoT) Connectivity”. In: TS2-Space (Mar. 2023). url: https://ts2.space/
en/the-role-of-iridium-satellites-in-internet-of-things-iot-
connectivity/.

[23] “Iridium Communications Network ”. In: Roadpost (). url: https://www.
roadpost.com/iridium-satellite-network.

[24] “Iridium-NEXT ”. In: Space Flight 101 (). url: https://spaceflight101.
com/spacecraft/iridium-next/#google_vignette.

[25] “Iridium Short Burst Data® (SBD®)”. In: Iridium (). url: https://www.
iridium.com/services/iridium-sbd/.

[26] “Short Burst Data (SBD) Services”. In: Beam (). url: https : / / www .
beamcommunications.com/services/short-burst-data-sbd.

[27] “Iridium Burst®”. In: Iridium (). url: https : / / www . iridium . com /
services/iridium-burst/.

[28] “Iridium Certus® 100 ”. In: Iridium (). url: https://www.iridium.com/
services/iridium-certus-100/.

[29] “Iridium Certus 100 Equipment”. In: Ground Control (). url: https://
www.groundcontrol.com/us/products/iridium/iridium-certus-100-
range/.

REFERENCES 47

[30] “Iridium Certus® 100 ”. In: Skytrac (). url: https://www.skytrac.ca/
iridium-certus-plans/certus-100/.

[31] Iridium Inc. “Groundbreaking Iridium Certus® 100 Service Launches with
Partner Products for Land, Sea, Air and Industrial IoT ”. In: Cision PR
Newswire (Nov. 2021). url: https://www.prnewswire.com/news-releases/
groundbreaking-iridium-certus-100-service-launches-with-partner-
products-for-land-sea-air-and-industrial-iot-301420816.html.

[32] “Iridium RUDICS ”. In: Iridium (). url: https://www.iridium.com/
services/iridium-rudics/.

[33] “RUDICS Solution Overview ”. In: Uplogix (Nov. 2011). url: https : / /
uplogix.com/docs/pdf/RUDICS%20Summary%204.4.pdf.

[34] “Iridium® RUDICS Service”. In: Git Satellite Communications (). url:
https://gitsat.com/products/Iridium_RUDICS_Service- 118- 79.
html.

[35] “Iridium RUDICS ”. In: Dynautics (). url: https : / / www . dynautics .
com/products-unmanned-surface-vehicle/communications-systems/
iridium-rudics/.

[36] “Quicksilver QS-100 ”. In: CLS Telemetry (). url: https : / / www . cls -
telemetry . com / iridium - solutions / iridium - products / hardware /
quicksilver-qs-100/.

[37] “MAN0009 ISU AT Command Reference”. In: Iridium (). url: https://
www.groundcontrol.com/en/wp-content/uploads/2022/02/IRDM_ISU_
ATCommandReferenceMAN0009_Rev2.0_ATCOMM_Oct2012.pdf.

48 REFERENCES

APPENDICES

SBD Software code - C++
In this section of the appendices, I am going to show the code that was used for
the implementation in the SBD case. Including the both header file and the cpp
file.

iridium_sbd_drv.h

1

2 #ifndef INC_IRIDIUM_SBD_DRV_H_
3 #define INC_IRIDIUM_SBD_DRV_H_
4

5 #include "iDriver.h"
6 #include <stdio.h>
7 #include <cstring >
8 #include <string.h>
9

10 enum SBD_CMD{
11 DC_LOAD ,
12 DC_INIT ,
13 DC_INIT_LONG ,
14 DC_LOAD_LONG ,
15 DC_SEND
16 };
17

18 enum SBD_STATES {
19 ST_SBD_OFF ,
20 ST_SBD_ON ,
21 ST_SBD_READY ,
22 ST_SBD_ENC_START_SEND ,
23 ST_SBD_TRANSMITING ,
24 ST_SBD_DELETE ,
25 ST_SBD_POWER_OFF_1 ,
26 ST_SBD_POWER_OFF_2
27 };
28

29 enum SBD_TRANSITION {
30 SBD_MODEM_BOOTED ,
31 SBD_MODEM_CONNECTED ,
32 SBD_ENCODE_START_SEND ,
33 SBD_CMD_OK ,
34 SBD_CMD_ERROR ,

49

35 SBD_MSG_SEND_SUCCEDED ,
36 SBD_MSG_SEND_FAILED ,
37 SBD_POWER_OFF_MODEM ,
38 SBD_MODEM_OFF
39 };
40

41

42 class IridiumSBDDrv : public IDriver{
43 public:
44 IridiumSBDDrv ();
45 ~IridiumSBDDrv ();
46

47 // Functions inherited from interface
48

49 virtual char* getTestMsg ();
50 virtual void send(const char *raw_data);
51 virtual char* decodeAndProcess(char *enc_data);
52 virtual void disconnect ();
53 //start messaging to modem
54

55

56

57 private:
58 // Private function specific to Swarm modem
59 virtual char* getConnectedMsg ();
60 virtual char* getSendMsg ();
61

62 //check if we can see satelite
63 char* checkConnectivity ();
64

65

66 virtual char* encode(char *raw_data);
67 virtual char* decode(char *data);
68 void load_and_send ();
69

70 void sm_process(SBD_TRANSITION tr);
71 // Variables for state machine
72 SBD_STATES currentState = ST_SBD_OFF;
73 const char* currentData = nullptr;
74 uint8_t attempt = 0;
75 bool waitForBootMsg = true;
76

77 size_t max_msg_len =340U;
78 SBD_CMD encode_cmd = DC_INIT;
79

80 const char* start_loading_msg="AT+SBDWT\r\n";
81 const char* transmit_to_satelite_msg="AT+SBDIX\r\n";
82 const char* boot_modem = "AT+CIER=1,0,1\r\n";
83 const char* clearSBDmessageBuffer="AT+SBDD0\r\n";
84 const char* SBDOK="OK\r\n";
85 const char* SBDNETACQUIRED="+CIEV: 1,1\r\n";
86

87

88 };
89

90

91 #endif /* INC_IRIDIUM_SBD_DRV_H_ */

Listing 1: IridiumSBDDrv.h code

50

iridium_sbd_drv.cpp

1 #include "iridium_sbd_drv.h"
2 #include <string >
3 #include "iComChan.h"
4 #include <algorithm >
5 /*
6 * Constructor
7 */
8 IridiumSBDDrv :: IridiumSBDDrv () {
9 setName("IridiumSBDDrv"); // Name to precise in the

configuration file
10 // to get access to this driver
11 }
12

13 /*
14 * Destructor
15 */
16 IridiumSBDDrv ::~ IridiumSBDDrv () {
17 delete getName (); // Release memory allocated to save the name
18 }
19

20

21 void IridiumSBDDrv ::send(const char *raw_data) {
22 currentData = raw_data;
23 sm_process(SBD_ENCODE_START_SEND);
24 }
25

26 /*
27 * Function called by a digital twin using this driver
28 * to encode data.
29 */
30 char* IridiumSBDDrv :: encode(char *raw_data) {
31 // We will add 4 bytes for cmd , 3 bytes for the checksum ,
32 // a space , a line return and the end char term in the worst

case
33

34 //TODO check in \n serves as <CR><LF> in c++ as it does in
python

35

36

37 char* encData = new char[strlen(raw_data)+10];
38 memset(encData , ’\0’, strlen(encData));
39 if(encData) // Check if memory as been allocated
40 {
41

42 strcat(encData , "AT"); // Char before all commands
43 switch(encode_cmd){
44 case DC_LOAD:
45 strcat(encData , "+SBDWT"); // Write to modem command
46 strcat(encData , "="); // = before data
47 strcat(encData , raw_data);//this method only gives us 120

bytes of message
48 strcat(encData ,"\r\n");
49 //If any data is currently in the mobile originated buffer ,

it will be overwritten
50 delete raw_data; // Release memory allocated for the raw

data

51

51 return (encData);
52 break; // Should never come here
53 case DC_INIT_LONG:
54 strcat(encData , "+SBDWT\r\n");
55 delete raw_data;
56 return (encData);
57 case DC_LOAD_LONG:
58 encData=new char[strlen(raw_data)+4];
59 strcat(encData , "\r");
60 delete raw_data;
61 return (encData);
62 case DC_SEND:
63 strcat(encData , "+SBDIX\r\n");
64 delete raw_data;
65 return (encData);
66 break;
67 case DC_INIT: //TODO implement this into ComChanAT ?
68 strcat(encData , "+CIER"); // Write to modem command
69 strcat(encData , "="); // = before data
70 strcat(encData , "1,0,1,0\r\n");
71 delete raw_data;
72 return (encData);
73 break;
74 default:
75 // Command not implemented
76 printf("%s : cmd asked , not implemented\n", getName ());
77 delete raw_data;
78 return (nullptr);
79 }
80 }
81 else
82 {
83 printf("%s : memory not allocated\n", getName ());
84 delete raw_data; // Release memory allocated for the raw data
85 return nullptr;
86 }
87 if (true){ //TODO implement
88

89 }
90 }
91

92 /*
93 * Called by a digital twin using this driver to decode
94 * received data.
95 *
96 * Return nullptr if the data received are not used by
97 * our program.
98 * Return data decoded if it’s pure data to transmit or
99 * to send to someone else. We can imagine , maybe later

100 * send it to the buoyancy controller.
101 */
102 char* IridiumSBDDrv :: decode(char *data) {
103 //TODO fix this function to decode iridium
104 bool processed = false;
105 //std:: string temp(data);
106 //char * dataResult;
107 switch(data [0]){ //TODO maybe rewrite to one huge switch?
108 case ’+’:

52

109 if (strstr(data ,"+SBDIX: 0")){
110 processed=true;
111 //if +SBDIX: 0 exists in the string , we know sending the

data was successfull
112 return data; //TODO check if this makes sense
113 }
114 else if(strstr(data ,"+SBDIX:")){
115 processed=true;
116 //if it does contain +SBDIX: but not +SBDIX: 0, the sending

failed
117 return (nullptr);
118 }
119 else{
120 processed=true;
121 return (nullptr); // default return nullptr
122 }
123

124 case ’O’:
125 if (strstr(data ,"OK")){
126 processed=true;
127 return (data);
128 }
129 else{
130 processed=true;
131 return (nullptr);
132 }
133 case ’R’:
134 if (strstr(data ,"READY")){
135 processed=true;
136 return (data);
137 break;
138 }
139

140 default:
141 return (nullptr); //in case we have no idea what is coming in ,

we just say "fuck it"
142

143 }
144 if(! processed){
145 return nullptr;
146 }
147 else{
148 printf("%s : Critical error! Should not reach this line!",

getName ());
149 return nullptr;
150 }
151

152

153 }
154

155 char* IridiumSBDDrv :: decodeAndProcess(char *enc_data){
156 return ((char*) IridiumSBDDrv :: decode(enc_data));
157 }
158 void IridiumSBDDrv :: disconnect (){
159 sm_process(SBD_POWER_OFF_MODEM);
160 }
161

162

53

163 char* IridiumSBDDrv :: getSendMsg (){
164 return ("AT+SBDIX");
165 }
166

167

168 /*
169 * Return a test message
170 * To test if there is somebody (a modem) connected at the
171 * other side of the connection.
172 */
173 char* IridiumSBDDrv :: getTestMsg () {
174 //TODO delete
175 return "$CS *10\n";
176 }
177

178

179 /*
180 * modem.
181 * It’s mean that the modem acquire a connection.
182 * In this case
183 * Send AT
184 * Get OK
185 *
186 */
187 char* IridiumSBDDrv :: getConnectedMsg () {
188

189

190

191

192 }
193

194

195 /*
196 * State machine of the SWARM driver
197 */
198 void IridiumSBDDrv :: sm_process(SBD_TRANSITION tr) {
199 SBD_STATES oldState = currentState;
200 printf("in the SBD drv SM \n ");
201 // Exit and while instruction
202 switch(currentState)
203 {
204 case ST_SBD_OFF:
205 if(tr == SBD_MODEM_BOOTED)
206 currentState = ST_SBD_ON;
207 if(tr == SBD_POWER_OFF_MODEM)
208 // Update state of the digital twin
209 getDigitalTwin ()->connectionClosed ();
210 break;
211 case ST_SBD_ON:
212 if(tr == SBD_MODEM_CONNECTED)
213 currentState = ST_SBD_READY;
214 else if(tr == SBD_POWER_OFF_MODEM)
215 currentState = ST_SBD_POWER_OFF_1;
216 break;
217 case ST_SBD_READY:
218 if(tr == SBD_ENCODE_START_SEND)
219 currentState = ST_SBD_ENC_START_SEND;
220 else if(tr == SBD_POWER_OFF_MODEM)

54

221 currentState = ST_SBD_POWER_OFF_1;
222 break;
223 case ST_SBD_ENC_START_SEND:
224 if(tr == SBD_CMD_OK)
225 currentState = ST_SBD_TRANSMITING;
226 else if(tr == SBD_CMD_ERROR)
227 {
228 // Re-encode data (try again)
229 //const char * enc_data = encode(currentData);
230 // Call Send callback function of the digital twin
231

232 load_and_send ();
233 }
234 break;
235 case ST_SBD_TRANSMITING:
236 if(tr == SBD_MSG_SEND_SUCCEDED)
237 {
238 // Notify the digital of the success through his callback

function
239 getDigitalTwin ()->sendSucceded ();
240 currentState = ST_SBD_READY;
241 }
242 else if(tr == SBD_MSG_SEND_FAILED)
243 {
244 if(attempt >= 5)
245 {
246 currentState = ST_SBD_DELETE;
247 }
248 else
249 {
250 // Need some improvement here
251 // osDelay (2000);
252 // // Ask modem if remain unsent messages
253 // callbckFctSend(msgAskCountRemainUnsent);
254 // attempt ++;
255 }
256 }
257 break;
258 case ST_SBD_DELETE:
259 if(tr == SBD_CMD_OK)
260 currentState = ST_SBD_READY;
261 else if(tr == SBD_CMD_ERROR)
262 // Send delete all unsent message cmd
263 getDigitalTwin ()->send(clearSBDmessageBuffer , true);
264 break;
265 case ST_SBD_POWER_OFF_1:
266 if(tr == SBD_CMD_OK)
267 currentState = ST_SBD_POWER_OFF_2;
268 else if(tr == SBD_CMD_ERROR)
269 // Send power off cmd
270 getDigitalTwin ()->send(nullptr , true);
271 break;
272 case ST_SBD_POWER_OFF_2:
273 if(tr == SBD_MODEM_OFF)
274 {
275 // Update driver state
276 currentState = ST_SBD_OFF;
277 // Update digital twin state

55

278 getDigitalTwin ()->connectionClosed ();
279 }
280 break;
281 }
282

283 if(oldState != currentState)
284 {
285 // Entry instruction
286 switch(currentState)
287 {
288 case ST_SBD_OFF:
289 /*
290 * Don’t care about received command except
291 * $M138 BOOT ,RUNNING *2a <- Which means , modem is ON
292 */
293 waitForBootMsg = true;
294 break;
295 case ST_SBD_ON:
296 // Now we can care about all received commands
297 waitForBootMsg = false;
298 break;
299 case ST_SBD_READY:
300 attempt = 0;
301 // Call Ready callback function of the digital twin
302 getDigitalTwin ()->setState(COMCHAN_READY);
303 printf("%s : ready to transmit\n", getName ());
304 break;
305 /*case ST_SBD_ENC_START_SEND:
306 // Call Send callback function of the digital twin
307 getDigitalTwin ()->send(encode(currentData), true);
308 break; */
309 case ST_SBD_TRANSMITING:
310 // Need some improvement here
311 // osDelay (2000);
312 // // Ask if the msg has been sent
313 // callbckFctSend(msgAskCountRemainUnsent);
314 // attempt ++;
315 load_and_send ();
316 break;
317 case ST_SBD_DELETE:
318 // Send delete all unsent message cmd
319 getDigitalTwin ()->send(clearSBDmessageBuffer , true);
320 // Notify the digital twin that the send failed
321 getDigitalTwin ()->sendFailed ();
322 break;
323 case ST_SBD_POWER_OFF_1:
324 // Send power off cmd
325 getDigitalTwin ()->send(nullptr , true);
326 break;
327 case ST_SBD_POWER_OFF_2:
328 // Nothing to do on entry here
329 break;
330 }
331 }
332 }
333

334 void IridiumSBDDrv :: load_and_send (){
335 // verbose feedback

56

336 printf("we are in the load and send function");
337 printf("the message is %s", currentData);
338 //check for msg len
339 size_t msg_len = sizeof (* currentData)/sizeof(currentData [0]);
340 // calculate the number of packets needed
341 size_t num_msg = (msg_len + max_msg_len - 1) / max_msg_len;
342

343 // send each packet
344 char buf[max_msg_len];
345 for (size_t i = 0; i < num_msg; i++) {
346 size_t start_index = i * max_msg_len; //find the index in msg

we start at
347 size_t end_index = std::min(start_index + max_msg_len , msg_len

); //find the index in msg that we end at
348

349 //tell the SBD modem that we are about to load it with data
350 getDigitalTwin ()->send(start_loading_msg ,true);
351 // TODO probably should get some form of feedback from iridium

modem
352 char* response = getDigitalTwin ()->receive ();
353 printf("%s", response);
354 if (response != SBDOK or response != SBDNETACQUIRED){
355 printf("the iridium modem refuses to accept the command");
356 }
357

358 //send the payload to the SBD modem
359 std::copy(currentData+start_index ,currentData+end_index , buf);
360 getDigitalTwin ()->send(buf ,true);
361 // TODO probably should get some form of feedback from iridium

modem
362 response = getDigitalTwin ()->receive ();
363 printf("%s", response);
364 if (response != SBDOK or response != SBDNETACQUIRED){
365 printf("the iridium modem refuses to accept the command");
366 }
367 std:: memset(buf ,0,sizeof(buf)); // empties the buffer
368 //tell the SBD modem to send the payload to the satelite

network
369 getDigitalTwin ()->send(transmit_to_satelite_msg ,true);
370 // TODO probably should get some form of feedback from iridium

modem
371 response = getDigitalTwin ()->receive ();
372 if (response != SBDOK or response != SBDNETACQUIRED){
373 printf("the iridium modem refuses to accept the command");
374 }
375 }
376

377 }

Listing 2: IridiumSBDDrv.cpp code

57

