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Abstract 

 

Cardiovascular monitoring has become ubiquitous with the advent of modern smartwatches and 

smartphones. We can track our heart rates and oxygen saturation through the day, as we sleep, we 

can record our breathing rate and how much we toss and turn. Some devices allow for detection of 

arrhythmia. An additional vital sign has been a high research priority. Tracking blood pressure at 

the same level of ease and high temporal resolution offers to revolutionize diagnosis and 

management of hypertension, as well as ambulatory blood pressure research. 

Bringing about this vision has proven difficult. Developments in sensor systems, physiological 

understanding, and signal processing have brought this technology to the cusp of reliability. This 

thesis presents seven contributions revolving around a central study of a wrist-worn wearable 

sensor intended to investigate novel approaches for blood pressure estimation. Supporting this 

study are several sub-projects contributing to technology development and problem 

understanding. 

The primary results indicate that the use of such sensors, in combination with advanced signal 

processing and deep learning techniques, allows for the non-invasive estimation of blood pressure 

and arterial stiffness even during moderate to high-intensity exercise. The additional contributions 

offer insights into the domain applications, further enriching their respective bodies of literature. 
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Sammendrag 

 
Med moderne smartklokker og smarttelefoner har overvåking av hjerte- og karsystemet blitt 

dagligdags. Vi kan følge hjertefrekvens og oksygenmetning gjennom dagen, mens vi sover kan vi 

logge pustefrekvens og hvor urolige vi er. Noen enheter kan også detektere arytmier. En annen 

parameter har vært en høy forskningsprioritet. Overvåkning av blodtrykk med samme letthet og 

høye tidsoppløsning kan revolusjonere diagnose og behandling av hypertensjon så vel som 

ambulant blodtrykksforskning. 

Å realisere denne visjonen har vist seg å være vanskelig. Utviklinger innen sensorsystemer, 

fysiologisk forståelse og signalbehandling har brakt teknologien til randen av pålitelighet. Denne 

avhandlingen presenterer syv bidrag som bygger opp om en sentral studie av en bærbar sensor 

ment for å undersøke nye metoder for blodtrykksestimering. Støttende for denne studien er flere 

underprosjekter som har bidratt til teknologiutvikling og problemforståelse. 

Hovedresultatene indikerer at bruk av disse sensorene, i kombinasjon med avansert 

signalbehandling og maskinlæringsteknikker som dyp læring, muliggjør ikke-invasiv estimering av 

blodtrykk og arteriestivhet selv under moderat til høy intensitet trening. De ytterligere bidragene 

gir innsikt i respektive domeneapplikasjoner og beriker den respektive litteraturen. 
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What makes it difficult is that research is immersion in the unknown. We just don’t know 

what we’re doing. We can’t be sure whether we’re asking the right question or doing the right 

experiment until we get the answer or the result. 

 

If we don’t feel stupid it means we’re not really trying. 

 
 

Martin Schwartz 
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1 Introduction 

 

Continuous, unobtrusive monitoring of our vital signs is rapidly becoming part of our daily lives. 

Technology is now at a point of maturity where more and more of our vital signs can be 

monitored ubiquitously with reasonable accuracy. The reader might themselves be wearing a smart 

watch continuously recording heart rate (HR), peripheral oxygen saturation, and respiratory rate. 

Another vital sign is becoming ubiquitously measurable through new technologies. Cuffless 

noninvasive blood pressure (BP) measurement is a particularly high priority area of wearable 

sensor research. Regular BP monitoring is key to both diagnosis and management of hypertension 

(Kitt et al., 2019; Stergiou et al., 2014), a leading contributor to global morbidity (H. Wang et al., 

2016). Going beyond the paradigm of regular cuff sphygmomanometer measurement is a vision of 

ubiquitous smartphone or smartwatch-based monitoring, heightening mass awareness, thus 

driving diagnosis. High temporal resolution longitudinal monitoring —often compared to going 

from still photos to video – would offer unobtrusive insight into BP throughout an individual’s 

day to day life, potentially revolutionizing hypertension management. Beyond hypertension 

management, convenient continuous measurement of BP trends in the clinical setting could 

improve detection of hypotension, potentially improving outcomes for patients during post-

surgical recovery (Maheshwari et al., 2018; Sessler & Saugel, 2019). 

This motivation sets the stage for intense research effort in realizing this potential. In this thesis, I 

present my contributions towards this goal.  

1.1 Scope 

The work was done under the PhD program in medical technology at the Faculty of Medicine and 

Health Sciences at the Norwegian University of Science and Technology. The project consisted of 
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a primary study and several supportive sub-projects. The core study focused on the development 

of a wearable sensor, encompassing a process of concept selection and iterative prototyping, 

experimentation and data collection, and extensive data analysis. This involved creating and 

prototyping technology for experiments, from benchtop test rigs to invasive in-clinic 

measurements in healthy volunteers. As such, there was a strong development phase transitioning 

into a human subject measurement phase. 

Complementing the core study were several sub-projects. They either emerged from the work on 

the main study or were initiated to develop the necessary tools, skills, and understanding to 

support the larger study. The tools and methods used have involved rapid prototyping, low-

volume fabrication techniques, electronics design, benchtop testing and human subject research. 

The overarching objectives of this thesis, reflecting the divided nature of the work, are: 

1.  

Primary Research Objective 

Develop wearable technologies that allow for ubiquitous and non-invasive cardiovascular 

monitoring towards enabling close-to beat-to-beat blood pressure monitoring via iterative 

development, benchtop test rigs, and human trials.  

2. Secondary Research Objective 

To achieve the primary objective, generate insights into wearable sensor design and 

development techniques as they apply to cardiovascular monitoring in noisy situations, 

including prototyping and experimental techniques relevant to sensor design. 

 

 

To target the research objectives, the work has been divided into the following research tasks: 

Primary Research Objective: 

Research Task 1. To develop and use lab test rigs to benchmark devices for wearable 

cardiovascular monitoring, focusing on tonometer-derived pulse wave 

analysis and ballistocardiography 
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Research Task 2. To develop devices measuring physiologically relevant variables using 

these techniques to probe central cardiac events distally 

Research Task 3. To test these devices under a broad range of physiological states in 

healthy volunteers against ground truth invasive measurements  

Secondary Research Objective: 

Research Task 4. To develop methods for simulating and benchmarking relevant artifacts 

of the cardiovascular system 

Research Task 5. Develop and apply signal processing methods to obtain usable results in 

high noise scenarios 

Research Task 6. Contribute to an understanding of prototyping methods in the concept 

selection phase of sensor product development. 

The research tasks resulted in 7 contributions, of which 4 have been published in international 

peer-reviewed scientific publications. One article is under review as of this writing.   

The rest of this chapter will present the contributions that are presented as part of this thesis. 

Following this, chapter 2 contains a review of current approaches in wearable and unobtrusive 

cardiovascular (CV) monitoring, with an emphasis on BP estimation. It aims to provide a current 

view of the field of ubiquitous and unobtrusive blood pressure (BP) measurement, focusing on 

underlying sensors and enabling technologies. Chapter 3 presents views and approaches to address 

some general aspects of physiology sensor design problems.  

Chapter 4 will present the main study undertaken in this project, including ethical considerations, 

methods, and preliminary results in BP estimation, intended for further analysis and future 

publication. At the end of the thesis, in chapter 5, I will conclude with a summary of the research 

and my thoughts on the future direction of the field with suggestions for further research. 

1.2 Present contributions 

Individual contributions that have been generated as part of the project work are presented here. 

Seven concrete research contributions have been generated over the course of the project.  
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Figure 1. Relationship between contributions in this thesis. Solid lines indicate direction of 
influence. 
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The contributions comprise scientific papers published in international peer reviewed journals and 

conference proceedings, a patent application, and one abstract describing a manuscript in 

preparation based on the preliminary results presented in chapter 3. 

The contributions are grouped by research objective, as illustrated in Figure 1. Note that there is 

overlap between research tasks addressed by each contribution. For the scientific papers, each 

contribution lists the Norwegian Register for Scientific Journals, Series and Publishers level (“HK-

Dir Level”) for each of the outlets.  

Many of the concepts and abbreviations presented in the following section will be explained in 

greater detail in chapter 2. 
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1.3 Contributions relating to the Primary Research Objective 

1.3.1 Contribution 1 

 

Title: Windows to the Sole: Prototyping Soft Sensors for Wearable Ballistocardiography 

Authors: Simon Gjerde, Torjus Steffensen, Håvard Vestad, and Martin Steinert 

Status: Published 2022. IEEE-EMBS International Conference on Wearable and 

Implantable Body Sensor Networks (BSN). 

Peer reviewed conference article, HK-Dir Level 1. 

Purpose: This paper describes a prototype sensor device for continuously recording the 

whole-body force BCG in a wearable insole, demonstrating that the proposed 

method combining fluid bladders and a distal PPG sensor is capable of recording 

PTT under a physiological intervention.  

Author’s 

contributions: 

Proposed the research, designed the experiment, analyzed the sensor data, outlined 

the paper, revised the manuscript, and presented the paper at the IEEE BHI-BSN 

2022 conference. 

 

Background 

Much of the early work in the revival of ballistocardiography (BCG) around 2010 and to this day 

has focused on recording the force BCG, that is, the direct reaction caused by the movement of 

the body’s center of mass during the cardiac cycle. Yet most wearable techniques for BCG focus on 

recording acceleration at the chest (seismocardiography, or SCG). By capturing the force BCG in 

the form of an insole, we aimed to investigate the potential of this under-investigated technique in 

a wearable setting.  
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Figure 2. Summary illustrations from Contribution 1, illustrating the prototype concept, the 
measurement setup during the experiment and sample data. Adapted from Gjerde et al., 2022.  
See Appendix 1. 

The concept 

At the end of an iterative process the final prototype consisted of an array of fluid-filled bladders 

connected to digital barometric pressure sensors. The prototype was designed to estimate the 

pulse transit time against continuous blood pressure. The soft bladders in the soles of the shoes 

served as a compliant interface between the sensing unit and the body, and the pressure sensor IC 

was de-lidded and a thin layer of silicone was applied in the end of the tube, creating a waterproof 
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interface to the sensor. The prototype was designed to be used in conjunction with a commercial 

fingertip reflectance photoplethysmography (PPG) sensor for the estimation of pulse transit time. 

Research approach 

The research approach in this study was primarily experimental, with the development of a 

prototype sensor system for recording ballistocardiograms in a wearable format. The prototype 

consisted of an array of soft bladders filled with water, which were integrated into the soles of a 

pair of shoes and connected to barometric pressure sensors.  

To assess the ability of the sensor shoe to record physiologically relevant cardiovascular 

information, an experiment was carried out to record pulse transit times (PTT) and BP during a 

cold pressor intervention. 14 healthy volunteers undertook a cold pressor test while wearing the 

sensor shoes and standing on top of a modified bathroom weigh-scale to record comparison BCG 

using a standard literature method. Simultaneous recordings were taken of the sole pressure arrays, 

finger-clip photoplethysmography, and continuous blood pressure via the volume-clamp method. 

 

 

 

Figure 3. Schematic representation of the cold pressor experiment and the results. SBP: Systolic 
Blood Pressure, SVR: Systemic Vascular Resistance, PTT: Pulse Transit Time. 
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Key findings 

The key findings of the study were that the waveform of the ballistocardiograms captured by the 

proposed sensor system corresponded well to the simultaneously collected waveforms from the 

reference weigh-scale. Furthermore, PTT estimated from shoe BCG and PPG showed inverse 

correlation to vasoconstriction-induced BP increase. This demonstrated the potential of 

sensorized insoles as a wearable interface for cardiovascular monitoring. Important insights on 

sensor placement for BCG signal acquisition were also obtained. 

Implications 

The study demonstrated the feasibility of shoes as a vector for PTT measurement, potentially 

facilitating development of new methods of wearable CV monitoring in an under-investigated 

context. Such a device could also be useful for other applications, such as gait analysis. The 

findings suggest that further development is needed to improve the robustness and reliability of 

the sensor system, particularly in terms of the fluid-filled bladders and the placement of the 

sensors. 
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1.3.2 Contribution 2 

 

Title: Embedded Inductive Sensors to Measure Arterial Expansion in Vascular 

Phantoms 

Authors: Torjus Steffensen, Marius Auflem, Håvard Vestad, and Martin Steinert. 

Status: Published 2022. 

IEEE Sensors Journal. 

Peer reviewed journal article, HK-Dir Level 2. 

Purpose: To assess the usability of inductive coils in a weaved pattern to accurately 

record minute diameter changes in vascular simulators of different diameters, 

roughly corresponding to the brachial and radial arteries. 

Author’s 

contributions: 

Wrote the manuscript, co-ideated the research, designed experiments, derived 

and applied the theoretical model, built the phantom test rig and analyzed the 

waveform data. 

 

Background   

This study was conducted to assess the potential of inductive coils arranged in a weaved 

McKibben pattern around a viscoelastic tube for accurately recording minute diameter changes in 

vascular simulators. These simulators were designed to mimic the diameters of the brachial and 

radial arteries and their dilation and constriction over the course of the cardiac cycle.  

The research was driven by the lack of clear understanding of the relationship between the internal 

arterial pressure in the radial artery and the pressure exerted on a pressure-sensitive element in the 

context of wearable tonometry, where complete applanation cannot be assumed. Tubular 

phantoms are commonly used for experiments in vascular mechanical modeling, but to enable 

direct observation are often isolated, outside the tissue that would normally surround arteries. 

 

 



 

11 
 

Methods 

The research involved the development of lab test rigs and the design and execution of a series of 

experiments. These experiments were guided by a theoretical model based on the thin solenoid 

model. The model and the experimental design were aimed at estimating arterial expansion due to 

 

Figure 4. Overview of the vascular phantom with weaved coil surrounding a viscoelastic tube 
representing the radial artery. Ultrasound B-mode (above) and M-mode (below) recording 
under pulsatile pressure (right). Depth was corrected for material speed of sound. 
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pulse pressure via induced changes in coil inductance, compared against an optical deflection 

measurement and an M-mode ultrasound investigation. 

Key findings 

The inductive sensors were very sensitive and proved capable of detecting small changes in 

diameter caused by differences in internal pressure with high fidelity. By applying the thin solenoid 

model, differences in diameter estimate and measurement was low. The sensors exhibited some 

drift and hysteresis, likely due to thermal and viscoelastic effects. Despite these challenges, the 

resolution of the sensors was found to be satisfactory for deformations in the tenths of a 

millimeter range. 

Implications 

The demonstrated potential of the inductive sensors suggests that they could be a valuable 

component of vascular phantoms, where diameter expansion under pressure fluctuations is of 

particular interest as arterial compliance is an important parameter in vascular mechanics. Similar 

structures could also be of interest in other areas where accurate measurement of tubular diameter 

changes is needed, for example mold channel cleaning or in arterial palpation simulators. 

Experience and skills developed over the course of this study contributed to an understanding of 

arterial BP waveform data, used in Contribution 3 and 4. 
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1.3.3 Contribution 3 

 

Title: Wrist ballistocardiography and invasively recorded blood pressure in 

healthy volunteers during reclining bike exercise 

Authors: Torjus Steffensen, Filip Schjerven, Hans Martin Flade, Idar Kirkeby-

Garstad, Emma Ingeström, Fredrik Solberg, and Martin Steinert 

Status: Published 2023. 

Frontiers in Physiology.  

Peer reviewed journal article, HK-Dir Level 1. 

Purpose: To explore wrist BCG under more extreme physiological perturbations 

than had previously been done, to observe morphological evolution with 

increased cardiovascular load, explore relationship between wrist-based 

BCG-PPG PTT and arterial blood pressure (ABP) and explore any 

serendipitous observations. 

Author’s 

contributions: 

Wrote the manuscript, conceptualized the paper, prototyped the sensor 

hardware and software, recruited participants, analyzed the data, revised 

regulatory filing for use of novel medical device and wrote risk assessment. 

 

Background 

The study aimed to assess the feasibility of wrist acceleration BCG during exercise for estimating 

PTT. The study also examined the relationship between PTT, BP, and stroke volume (SV) during 

exercise and posture interventions. 

Methods 

25 participants underwent a bike exercise protocol with four incremental workloads (0 W, 50 W, 

100 W, and 150 W) in supine and semirecumbent postures. BCG, invasive artery BP (ABP) in the 

radial artery, tonometry, photoplethysmography (PPG) and echocardiography were recorded. 
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Ensemble averages of BCG signals, decomposed using ensemble empirical mode decomposition 

(EEMD), determined aortic valve opening (AVO) timings, combined with peripheral pulse wave 

arrival times to calculate PTT. The association between filtered BCG features and AVO was 

confirmed by echo Doppler derived blood flow velocity tracings in the left ventricle outflow tract. 

 

Figure 5. Ensemble averages of various cardiovascular signals from a male participant during eight 
exercise conditions, in both supine and semirecumbent positions. It displays left ventricle outflow tract 
(LVOT) flow velocity, accelerometer readings (raw, filtered, and RMS envelope), arterial blood pressure 
(ABP) alongside the average tonometer signal, and a scalogram of the accelerometer signals. A 
prominent feature between 0.2 and 0.3 seconds in the scalograms, possibly related to rapid ventricle 
ejection, is also observed in the filtered ballistocardiogram (BCG). Illustration from Steffensen, 2023. 
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Key findings 

BCG was successfully recorded at the wrist during exercise. PTT exhibited a moderate negative 

correlation with systolic BP. PTT differences between supine and semirecumbent conditions were 

significant at 0 W and 50 W, less at 100 W and 150 W.  

Although the signal is weak, wrist BCG may allow convenient PTT and possibly SV tracking 

during exercise, enabling studies of cardiovascular response to acute exercise and convenient 

monitoring of cardiovascular performance. Developments in instrumentation and signal 

processing are likely necessary to create a practical measuring system. That the AVO signal 

appeared to become more distinct at higher levels of exercise is intriguing. 
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1.3.4 Contribution 4 

 

Title: Cuffless estimation of continuous blood pressure during recumbent bike 

exercise: comparison of wearable tonometry and PPG against invasive 

ground-truth measurements 

Authors: Torjus Steffensen, Filip Schjerven, Hans Martin Flade, Idar Kirkeby-

Garstad, Emma Ingeström, Fredrik Solberg, and Martin Steinert 

Status: Abstract. Manuscript is in preparation. 

Purpose: To demonstrate methods of noninvasive cuffless BP estimation during 

controlled laboratory exercise setting against gold-standard ground 

truth data in healthy volunteers. To compare performance between 

wearable tonometry and PPG signals for cuffless BP estimation during 

exercise. 

Author’s 

contributions: 

Prototyped the sensor hardware and software, revised regulatory filing 

for use of novel medical device and wrote risk assessment, recruited 

participants, analyzed the data, conceptualized the paper. 

 

Background 

Continuous, noninvasive and cuffless BP estimation during moderate to high intensity exercise 

using convenient wearable sensors is underinvestigated in the literature. CV response to exercise, 

including BP, is known to contain valuable markers of cardiovascular disease (CVD) risk. Personal 

health tracking and longitudinal observational studies also motivate continuous tracking in non-

static conditions. 

Recently, European Society of Hypertension recommendations mandate exercise tests for cuffless 

BP estimating devices whose predictive models are based on population data. Against this 

backdrop, more research is needed on how common machine learning (ML) models perform on 

exercise data. 
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Methods 

The data are from the data collection described in chapter 4 and in Contribution 3. The methods 

are described in chapter 4. 

Key findings and outlook 

Single-source waveform data – both PPG and tonometry – is capable of estimating BP trend 

changes during moderate bicycle exercise. This work adds to the literature demonstrating 

potential of noninvasive waveform data for continuously estimating BP during exercise. We would 

hypothesize that, as tonometry is more directly related to the intraarterial pressure, tonometry 

models ought to outperform PPG models, which is borne out by the results. However, tonometry 

is more reliant on accurate sensor placement, possibly limiting data availability.  

Models combining data from both sources should be investigated as well as different model 

architectures. 
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1.4 Contributions relating to the Secondary Research Objective 

1.4.1 Contribution 5 

 

Title: Ultrasound phantom 

Authors: Torjus Steffensen, Carlo Kriesi, Martin Steinert, Thomas Lafrenz, Jostein 

Brede, and Marius Auflem 

Status: US patent pending. 

Purpose: Commercialization of a developed technology for simulating arterial access 

or other ultrasound-guided medical procedures using a combination of 

easily processed materials whose properties in combination provide a 

superior tactile response as well as realistic representation on normally 

calibrated ultrasound imaging equipment. 

Author’s 

contributions: 

Primary inventor, developed the technology, iteratively implemented the 

technology in commercial products sold to an outside partner, contributed 

to application revisions. 

 

Background 

The simulation of arterial access and other ultrasound-guided medical procedures currently 

involve either virtual methods using synthetic imagery and sham tools or physical trainers built 

from materials with properties similar to human tissue. Although the virtual method has the 

advantage of endless repetition, it lacks the tactile feedback necessary for many procedures. 

Physical trainers, while capable of mimicking the sensation of a needle moving through various 

tissue types, are often hampered by durability concerns. 

Hydrogels like gelatin and silicone polymers, while each offering some advantages, have significant 

drawbacks in either shelf stability or mechanical properties. Yet, with ultrasound-guided 

procedures increasingly becoming a standard of care for radial cannulation, there's a pressing need 

for an improved, more realistic simulation approach. 
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The patent describes a new phantom model that combines the best aspects of both worlds. By 

integrating an acoustically compliant hydrocarbon polymer gel with a protective silicone rubber 

coating, the resulting composite structure that exhibits excellent mechanical properties during 

cannulation and provides a highly realistic ultrasound image.  

Methods 

We combined a hydrocarbon polymer gel with a silicone rubber protective coating. The polymer 

gel melts at around 70 degrees Celsius, allowing it to be poured into a mold. The silicone polymer 

layer solidifies at room temperature and is cast into shape. By adding inclusions in the mold and 

varying the amount of echogenic dopants in the gel and rubber, the resulting composite structure 

can mimic various anatomical features. 

The development process involved iterative physical prototyping with rapid iterations and user 

interaction. This iterative process allowed us to better understand the underlying physical 

principles and to eventually craft a usable product. The phantom's performance was evaluated 

based on feedback from expert users and objective comparisons using real devices. 

 

 

 

Figure 6. From left to right: photo of a phantom module representing part of the groin, 
including a simulated femoral artery and vein. Cross sectional ultrasound image of a 
representative phantom, showing the included structures. In-line view of the artery being 
punctured, verifying correct introduction of a catheter. Ultrasound capture of a real femoral 
artery and vein captured using the same device. Note that while phantom is intentionally 
simple and pedagogical, a wide range of echo can be generated as in the real tissue. Also note 
that imaging gain will be adjusted dynamically during acquisition, affecting brightness and 
contrast. 
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Key findings 

Our phantom showed promising results with an acceptable unit cost, a superior tactile response, 

and a realistic ultrasound image. It was noted by expert users as being superior in tactile and 

ultrasound realism to the leading commercial alternative. Notably this phantom technology has 

been effectively implemented in a training program for prehospital REBOA (Brede et al., 2019), 

and was continually used by the Norwegian Air Ambulance Foundation for maintenance training 

in the REBOA procedure leading up to a larger multi-center study, attesting to its practical 

applicability and potential in clinical training scenarios. 

The skills learned from this project informed work on the vascular benchtop simulator presented 

as part of the work published in Contribution 2. 
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1.4.2 Contribution 6 

 

Title: TrollBOT: A Spontaneous Networking Tool Facilitating Rapid 

Prototyping of Wirelessly Communicating Products 

Authors: Torjus Steffensen, Sampsa Kohtala, Håvard Vestad,  

and Martin Steinert 

Status: Published 2020 in Procedia CIRP.  

Peer reviewed conference paper, HK-Dir Level 1 

Purpose: Develop tools for easier collaboration in mechatronics prototyping in an 

early phase student lab setting 

Author’s 

contributions: 

Wrote the manuscript, contributed to concept development and code 

implementation, presented the paper at CIRP Design 2020. 

 

Summary of the Paper 

The paper presents TrollBOT, an Arduino library developed to facilitate rapid prototyping of 

wirelessly communicating products. The authors developed this tool in response to the need for 

designers to quickly implement and test new functionalities, particularly in the realm of wireless 

communication technologies. 

Methods of Interest 

TrollBOT simplifies the implementation of wireless communication between two or more 

Arduinos, using inexpensive nRF24-based radio transceivers to form nodes in a tree topology. The 

library is designed to minimize the learning of new language syntax, allowing all nodes to be 

programmed from a single master node, reducing the amount of code that needs to be written 

compared to similar existing solutions. 
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Key findings 

The authors found that TrollBOT offers a clear advantage in terms of the required number of 

logic  lines of code needed to program a simple example scenario. The library enables even a 

novice user to establish a wireless network quickly. After the library was made available to other 

lab users, it disseminated to other project groups as an example of in-lab skill sharing, allowing 

these groups to make their own “skill-jumps” as they had an easy-to-use starting point for their 

own applications. 

Implications of the Work 

The TrollBOT library facilitates rapid prototyping and testing of design concepts early in the 

design process, aligning with the research objective of contributing to an understanding of 

prototyping methods in the concept selection phase of product development. The library's user-

friendly design can help lower the barrier to entry for designers and researchers working on 

wireless communication technologies, contributing to the goal of advancing the field of 

mechatronics prototyping. 
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1.4.3 Contribution 7 

 

Title: Playing the pipes: Acoustic sensing and machine learning for performance 

feedback during endotracheal intubation simulation 

Authors: Torjus Steffensen, Brage Bartnes, Maja Fuglstad, Marius Auflem, 

and Martin Steinert 

Status: Under review (2023). 

Frontiers in Robotics & AI.  

Peer reviewed journal article, HK-Dir Level 1. 

Purpose: To demonstrate application of ultrasonic acoustic sensing in combination 

with machine learning techniques to determine the geometry of a complex 

multi-material structure at a distance. Secondarily, to obtain skills in using 

NN models in time series machine learning applications. 

Author’s 

contributions: 

Wrote the manuscript, co-ideated the research, designed the experiment, 

developed the transfer learning pipeline, and analyzed the results. 

 

Background 

This paper explores the application of ultrasonic acoustic sensing combined with machine 

learning techniques to classify the geometry of a complex multi-material structure from a distance. 

The study was conducted in the context of simulated endotracheal intubation, a critical medical 

procedure that requires precise skill. The primary objectives of the research were to develop and 

apply signal processing methods for noisy time series data in challenging scenarios and to 

contribute to understanding of prototyping methods in the sensor product development phase. 

Concept 

In the context of endotracheal intubation, novice learners practice on simulated airways. 

Performance feedback is a crucial aspect of training, but in the case of intubation the procedure is 

not visible from the outside. The simulated airway is a painstakingly accurate model, placing 
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sensing devices in the airway can interfere with the tactile sensations that the trainers are relying 

on. To assess the location of the tube, acoustic sonar is an option, but the highly complex multi-

material geometry of the simulated airway makes this difficult. However, we hypothesized that we 

can sidestep the limitations of traditional sonar by re-framing the problem as a classification 

problem and applying pre-trained sound classification models, which have seen tremendous 

technical advances in recent years. We focus on two critical failure modes that can occur: incorrect 

placement of the tube, either too far or too shallow, and insufficient inflation of the balloon cuff 

surrounding the tube after placement, resulting in 6 distinct geometrical configurations together 

with the ‘correct’ state for each variable. 

Methods 

We designed an experiment using a simulated airway in a commercially available patient simulator. 

Piezo buzzers were used to generate ultrasonic acoustic signals in the airway. These signals were 

 

Figure 7. Preparation of spectrograms used for input to the classifier. 
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captured by microphones in two locations. The combination of different emitter and receiver 

locations let us compare the effects of noise and distance on the model performance, and to make 

concrete recommendations on sensor placement. The audio signals were preprocessed and used to 

train two machine learning models: a Support Vector Machine (SVM) and a Convolutional 

Neural Network (CNN) pretrained on the publicly available YAMNet dataset.  

We developed a transfer learning pipeline to adapt the CNN to the task of classifying the acoustic 

signals according to the geometry of the simulated airway. The performance of the models was 

evaluated based on their ability to accurately classify the signals using a leave-one-group-out cross-

validation scheme. Influence of input sound duration on classifier performance was estimated 

using a bootstrap resampling scheme.   

 

 

 

Figure 8. Bootstrap sensitivity analysis of input size on CNN performance. Adapted from (Steffensen et 
al., Submitted).  
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Key findings 

The CNN model significantly outperformed the SVM model in classifying the acoustic signals. 

The best model performed very well, attaining global accuracy above 97% on a set of 12,000 one-

second clips. The best performance was achieved when the microphone was placed inside the 

closed airway tubing and the buzzer was in the lower airway audio configuration. The higher 

frequency range appeared to be important for classification performance, even with aggressive 

compression and aliasing. 

Implications 

The successful application of acoustic sensing and machine learning techniques to determine 

airway geometry could enhance the quality of feedback and performance metrics in medical 

simulation, potentially leading to better training outcomes. Future work could explore the 

robustness and generalizability of this approach in different training scenarios and environments. 

This study is also a practical example of the application of transfer learning into a mechanical 

engineering design context, adding to the literature on out-of-domain application of ML models. 

The practical experience gained in the development and testing of the system contributed 

necessary experience to develop and train the CNN models described in chapter 4 and 

Contribution 4. 

  



 

27 
 

 



28 
 

  



 

29 
 

 

 

 

2 Cardiovascular monitoring 

 

This chapter intends to provide a brief overview of current developments in the field of 

unobtrusive CV monitoring with an emphasis on BP estimation. Theoretical principles and 

approaches are followed by commonly used sensor types and selected signal processing topics. The 

selection of references is not intended to provide an authoritative description of the presented 

technologies, but rather to give a broad overview of current directions. Relevant contributions of 

this thesis are placed into context.  

Here, we use the terms “ubiquitous” and “unobtrusive” to mean the following: 

Ubiquitous collection of CV data is the goal of reliable, continuous data collection regardless of 

location of activity. This is hoped to be enabled by developments in wearable technology. 

Such measurements should be unobtrusive: noninvasive and nondisruptive. A successful 

unobtrusive device should seamlessly integrate in daily life for consistent data collection. 
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2.1 Current approaches in cuffless BP estimation 

Ubiquitous cardiovascular sensing is hoped to enable a breadth of benefits to diverse groups of 

people. For consumers, longitudinal monitoring of cardiovascular health may contribute to early 

detection of cardiovascular disease (CVD) by alerting the user to worrying changes in CV 

parameters, and can be useful in behavior change interventions (Brickwood et al., 2019; Piwek et 

al., 2016). In healthcare, clinically significant applications of wearable monitoring are growing 

while facing a number of technical bottlenecks (Lu et al., 2020). Use in health research is growing 

into an increasingly diverse field with a broad scope of interests (Huhn et al., 2022). Outside of 

wearables, incentives to reduce costs in the healthcare sector motivate non-contacting 

technologies for unobtrusive CV monitoring of patients and care receivers (see e.g. Jung et al., 

2021, 2022; Lydon et al., 2015; Rosales et al., 2017). 

Clinical need and technological opportunity have driven recent developments in unobtrusive CV 

measurement. Primary applications are heart rate monitoring, arrhythmia detection and BP 

estimation. Cuffless BP estimation in particular is a highly active research topic with multiple 

different technologies under investigation, and several devices have recently reached market. As 

yet, however, the accuracy of these devices is doubted and none are yet considered reliable enough 

for clinical use (Stergiou et al., 2022).  

A comprehensive review of cuffless BP technology lays out the fundamental case for the 

technology (Mukkamala et al., 2022): 

 
Eliminating the cuff from noninvasive BP measurement is necessary for addressing the 
following issues: 

1) Hypertension awareness by bringing regular BP monitoring to the masses during 
daily life 

2) Long-term hypertension control by continually monitoring and revealing high BP 
readings to individual patients 

3) Precise hypertension evaluation and diagnosis by affording unobtrusive BP 
monitoring during the day and night 

4) Hypotension surveillance and therapy by providing seamless, continuous BP 
monitoring 
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Furthermore, by furnishing unprecedented BP data during all daily circumstances rather 
than merely providing snapshots of the BP profile (e.g., video versus pictures), the cuffless 
paradigm could revolutionize hypertension evaluation and management altogether. In 
these and other ways, cuffless BP measurement can improve the assessment of BP and 
thereby mitigate the devastating burden of elevated and low BP.  
 

A challenge is the unique difficulties in validation of such devices, which is not addressed by 

existing standards and guidelines for cuff-based BP measuring devices. The first technical standard 

for cuffless BP sensors was published in 2014 and amended in 2019 (“IEEE Standard for Wearable 

Cuffless Blood Pressure Measuring Devices,” 2014). Very recently, the European Society of 

Hypertension released their first recommendations for validating cuffless BP devices (Stergiou et 

al., 2023), demonstrating the rapidly maturing state of the field while pulling attention to areas of 

lacking understanding in current approaches, such as non-resting state conditions. 

While there are significant differences in technical details and implementation, cuffless BP 

estimation depends on a small number of fundamental techniques, implemented using different 

sensor types. Here, we will briefly review two of the major approaches – pulse wave velocity 

(PWV) and pulse wave analysis (PWA) – before reviewing commonly used sensors and their uses 

in the current literature.  

2.2 Timing intervals and pulse wave analysis 

A common application of many of the sensors described thus far in a longitudinal context is 

derivation of timing metrics. Heart rate is the most obvious, many applications also attempt to 

extract the respiratory rate. But by combining more than one sensor we can compare fiducial 

points in the recorded signals to determine timing intervals between events in different parts of 

the cardiovascular system.  

One of the most popularly investigated is the pulse transit time (PTT). Ejection of blood from 

the left ventricle creates a pressure wave moving through the arterial tree. This wave moves 

significantly faster than the blood itself and can be recorded at different locations as it transits.  
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As the PTT is the time difference between a proximal (closer to the origin) and distal (farther) 

site, it is the inverse of the pulse wave velocity (PWV). Figure 9 illustrates this concept. 

The relationship between PWV and the incremental elastic modulus (“stiffness”) of the arterial 

wall, 𝐸 , the blood density 𝜌 and the vessel radius and wall thickness 𝑟 and ℎ is modeled in the 

Moens-Korteweg equation: 

𝑃𝑊𝑉  
𝐸 ℎ
2𝑟𝜌

 (1) 

This proportional relationship means PWV is often used as a non-invasive measurement of arterial 

stiffness. Arterial stiffness is itself valuable as an index of vascular aging and the development of 

age-induced arteriosclerosis (Cecelja & Chowienczyk, 2009; Nichols et al., 2011). Outside the 

aorta, arterial stiffness is also largely affected by contraction and relaxation of arterial smooth 

muscle, i.e., autonomous regulation of the peripheral vascular resistance. There is initial evidence 

 

Figure 9. Illustration of the principle of PTT measurement, along with common reference 
points. 
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to suggest that PTT can be a marker of hypovolemia distinguishable from autonomic pain 

responses, presenting possible clinical monitoring applications in e.g. postoperative observation 

(Djupedal et al., 2022). 

The idea of using pulse transit time as an indicator of blood pressure has been suggested for a long 

time (Geddes et al., 1981), but it has increasingly become seen as the only theoretically sound 

correlate of blood pressure that can be practically recorded. 𝐸  increases with increasing BP due 

to the material properties of the arterial wall. This has led to many recent applications of PTT in 

unobtrusive continuous BP estimation (Barvik et al., 2022; Ganti et al., 2021; Mukkamala et al., 

2015, 2022). Generally, PTT decreases with higher BP as, stiffness of the arterial wall increases 

with BP. The specific relationship between BP and stiffness is complex, and dependent on the 

selection of a material model for the vessel wall. There are several alternatives, resulting in a 

number of theoretically derived models relating BP to PTT (Finnegan et al., 2021). As stiffness is 

also affected by age, PWV based models often attempt to correct for age effects. 

The typical method of measuring PTT is to record the onset of a pulse wave at two different 

locations along the artery and calculate the time difference, as shown in Figure 9.  

PTT recorded in the descending aorta is ideally desired for arterial stiffness studies, and carotid-

femoral transit time is considered the clinical standard (cfPWV). CfPWV is typically recorded 

with two applanation tonometers either simultaneously or referenced to the electrocardiogram 

(ECG). This approach is not convenient for longitudinal monitoring. The methods of recording 

PTT commonly encountered in this space rely on recording the arrival of a pulse wave at two 

locations along the same artery. This can be done by, for example, recording the onset of a 

photoplethysmogram (PPG) or impedance plethysmogram (IPG) wave at two relatively closely 

spaced locations along a peripheral artery. However, as the pulse wave moves fast, on the scale of 6-

10 m/s, the closer the two measurement sites are the higher the sample rate necessary to record the 

PTT. A different approach is by recording a peripheral pulse wave and estimating the time of 

AVO from peripherally recorded signals, as will be discussed further on. 

Note that the arterial pathway in which PWV is measured is not the same in all measurements. 

Wrist based measurements for example record pulse transmission in the peripheral arteries of the 
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arm. In order to improve performance of PTT models, it has been suggested to focus research on 

PWV primarily in the descending aorta (Mukkamala et al., 2022). This might motivate PTT 

measurements via the feet or seated measurements. Table I includes suggestions for wearable 

locations. 

A related measure is the Pulse Arrival Time (PAT), which is the time from the ECG R-peak to 

pulse wave arrival at the distal measurement site. The QRS complex in the normal ECG represents 

atrial depolarization, signifying the onset of the electromechanical systole. The PAT therefore also 

contains the duration of isovolumic contraction, the Pre-Ejection Period (PEP):   

Table I. Body worn sensor locations for unobtrusive CV monitoring 

 

Body location Social acceptance Technical maturity Selected applications 

Sternum Medium High 

PEP (ECG / SCG),  

SV (SCG), 

BP (SCG / PPG PWA), 

Arrythmia (ECG) 

Wrist 

(smartwatch) 
Very high High 

PTT (BCG / PCG),  

BP (PWA). 

SV? (BCG),  

Arrythmia (ECG) 

Upper arm Medium High PTT (IPG) 

Finger (ring) Medium Moderate PTT (IPG), BP (PWA) 

Face Low Low PTT (PPG / BCG) 

Ear High Moderate 
PTT (PPG / Acoustic 

+ BCG) 

Feet Uncertain Moderate 
PTT (PPG + BCG), 

SV? (BCG) 

Social acceptability based on recommendations of Zeagler, 2017. Technical maturity is the author’s assessment 

based on state of current research and OEM adoption. HR monitoring not included. 



 

35 
 

𝑃𝐴𝑇 𝑃𝑇𝑇 𝑃𝐸𝑃 (2) 

As a measure of cardiac contractility, PEP is of interest in its own right. Due to the relative 

reliability and sharply defined QRS features of ECG signals, PAT has commonly been used as a 

proxy for PWV and in studies of BP estimation, although the inclusion of PEP means that it is not 

a true measure of PWV. There remains some disagreement on its interchangeability with PTT in 

this context (see e.g. W. Chen et al., 2000; Finnegan et al., 2021; Heimark et al., 2022; Martin et al., 

2016; Zhang et al., 2011). 

Beyond PTT, the second method of BP estimation attempts to estimate BP or other clinically 

relevant hemodynamic parameters – again often related to estimating vascular aging – via 

empirical modeling. Such approaches typically rely on either pulse wave analysis (PWA), or deep 

learning approaches which can ingest continuous heartbeat sequences. Figure 10 illustrates typical 

applications of this approach. 

PWA is the analysis of the morphology of the pulse wave in question. Techniques range from 

simple geometrical features of the timeseries data to complex theories such as wave separation and 

 

Figure 10. Overview of typical applications of CV signals in the literature. Based on Charlton et 
al., 2022. 
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impedance analysis, which involves combining pressure or PPG waves with blood flow velocity 

curves obtained experimentally (or alternatively estimated using population based models as this 

data is rarely available (Alastruey et al., 2023)).  

Certain PWA-derived metrics are discussed in chapter 4. Output of PWA is used as features in 

regression or classification models, or in deep learning applications. Such “Black box” models are 

discussed in greater detail in chapter 4. 

2.3 Important sensor types and their application 

Improvements over the past few decades in miniaturization, production technology, and 

processing techniques, not to mention battery and power management technology, have vastly 

improved the practicality of small sensor circuits suitable for implementation in wearable formats. 

There are four fundamental sensing principles used in this space: electrical, optical, and 

force/pressure. Each of these fundamental principles has been applied in various applications, and 

each is capable of probing different aspects of the peripheral CV system. Of these, the most 

relevant are electrical, optical, and force systems. Figure 11 shows portions of several CV signals 

that will be discussed and their rough temporal relationship. The definition of the PTT, PAT, and 

PEP are shown. 
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Figure 11. Diagram of different CV measurements and their temporal relation to the systolic 
intervals. ECG: electrocardiogram, LVOT: left ventricle outflow tract, ICG: impedance 
cardiogram, BCG: acceleration ballistocardiogram, BCG HF: high-pass BCG, PCG: 
phonocardiogram, ABP: arterial blood pressure, PPG: photoplethysmogram. 
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2.3.1 Optical 

Photoplethysmography (PPG) is the observed effect that the optical absorption of light in well-

perfused tissues varies in time with the cardiac rhythm (Charlton et al., 2022). The signal recorded 

in this way varies slightly but significantly with the wavelength of the light, and has been used 

extensively in medical devices for estimating oxygen saturation in the peripheral vasculature etc. 

(Allen, 2007). PPG is the predominant method of recording heart rate in wearables, due to the 

small footprint, low cost, and technical maturity of modern PPG sensors (Charlton et al., 2022; 

Charlton & Marozas, 2022).  

The PPG signal consists of a rapid deflection followed by a slower decline, in which a second peak 

and dicrotic notch may or may not be visible, corresponding to systolic and diastolic portions of 

the cardiac cycle. Beyond oxygen saturation, typical wearable applications include deriving HR 

and respiratory rate (Charlton et al., 2017), with interest in estimating BP.  

BP estimation techniques involving the use of PPG can be divided into black-box modeling 

approaches and physiology or physics-based approaches. In black-box models, large feature sets 

such as time-frequency representations (e.g. spectrograms, scalograms, or other image-type 

representations) are derived from PPG pulse trains and are then used to train neural network 

models (see e.g. Kurylyak et al., 2013; Leitner et al., 2022; Wang et al., 2022).  

Physics based approaches will either be based on calibrated PTT models, or via the principle of 

controlled volume: by compressing the tissue while recording the PPG the sudden cessation of the 

pulsatile portion of the PPG denotes when the external pressure has overcome the internal arterial 

pressure. This principle is used together with an oscillometric cuff in the volume-clamp method 

found in the Finapres device to continuously measure BP noninvasively with the help of a high-

frequency pneumatic servo pump and is commonly used in research. More recently it has been 

investigated for on-the-go pressure measurement using consumer devices such as smartphones by 

having the user press a finger against a surface containing a PPG sensor while increasing the 

pressure (Mukkamala et al., 2022). It has been demonstrated that contact pressure between the 

skin and the sensor affects the shape of the waveform, particularly, by delaying the onset or the 
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foot of the PPG wave. This has notable effects on estimation of PAT and PTT measurements 

(Chandrasekhar et al., 2020).  

Given the wide adoption of PPG in both consumer wearables and clinical diagnostic devices it is 

remarkable to note that the origin of the signal is not clearly understood. As PPG has matured 

and become commonplace in clinical use, designers have become particularly interested in other 

applications of the signal beyond oximetry and heart rate estimation, raising the question of what 

other mechanisms are involved in the generation of the shape of the waveform. According to 

Kyriacou & Chatterjee (2022): 

The global acceptance of pulse oximeters in a way has diminished and somewhat 

overshadowed progress toward further fundamental PPG research. The need for such 

research has again gained momentum in the recent past where research endeavors 

were made to extend the application of PPG beyond pulse oximetry, especially for 

the PPG-based wearable technologies, and hence the simple question was raised 

again: “Where is the PPG signal coming from?” 

What is known is that the shape of the observed waveform is the result of several complex 

physiological interactions between the local vasculature and the surrounding tissues. More 

practically, the effects of differences in skin tone has been a recurrent concern, the mitigation of 

which is a topic of ongoing research (Fine et al., 2021; Nowara et al., 2020). 

2.3.2 Electrocardiography 

Electrical biosensing can be divided into passive and active sensing methods. In the passive 

configuration, a time-varying electrical potential is recorded across two or more locations on the 

skin. Depending on the placement of the electrodes, this method can be used to record several 

different signals: the depolarization and repolarization signals traveling outwards from the 

sinoatrial node in the heart, resulting in the electrocardiogram (ECG) in its many forms, the 

electromyogram originating with the electrical activity of the skeletal muscles, the electrical 

activity of the brain in the electroencephalogram, or the local variance in skin resistance resulting 

from sweat gland activity, in the form of electrodermal activity, et cetera. 
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Figure 12 shows an ECG sequence together with radial ABP, recorded from a female volunteer 

(see chapter 4). The morphology of the ECG depends on the arrangement of the electrodes, but 

in most configurations the normal ECG is characterized by a “spiky” sequence of deflections called 

the QRS complex. The distinctive R peak is commonly used in wearable applications of ECG as 

an easy-to-detect reference for the beginning of systole. In this sequence, we can also see “dropped” 

heartbeats around 4 and 10 seconds. While other types of CV signals, like the invasive BP 

waveform, will show the missing systole, the ECG is supremely useful for analysis of the cardiac 

timing system and provides more information for classifying arrhythmias. 

The ECG is a highly important signal modality, primarily in the clinical setting, where affordable 

and reliable devices for wearable monitoring have become available. Clinical wearable ECG 

systems have been demonstrated to be no less capable of detecting arrhythmia compared to 

current standard of care, the 12-lead ECG (Bouzid et al., 2022; Kamga et al., 2022). As perhaps 

the most mature wearable CV monitoring technology with direct clinical relevance, consumer 

level wearable ECG is currently confronting difficult questions on how data from such devices can 

be integrated into existing healthcare infrastructures (Isakadze & Martin, 2020; Sana et al., 2020). 

Beyond its status as the clear benchmark for arrhythmia and heart rate analyses, the ECG is highly 

useful for many CV applications as a reliable timing reference that is relatively robust against 

artifacts. It is also relatively simple to record. ECG is often used in wearable studies involving other 

sensing modalities as a robust timing reference, which is highly useful for some signal processing 

applications, and is therefore often recorded alongside sensor devices that, in an out-of-lab 

 

Figure 12. A sequence of ECG and ABP signals.  
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environment would likely not have access to ECG. The main downside of the ECG for 

unobtrusive recording is the need to have reference contact points across the heart. In the most 

common applications this is achieved via chest contacts or by touching the opposite hand to an 

electrically isolated part of a smartwatch. 

2.3.3 Bioimpedance 

The active counterpart to passive electrical biosignals is the measurement of bioimpedance, or bio-

Z. In a physical system, if resistance is the opposition to a constant flow at a constant potential, the 

impedance of the system is the opposition to flow with a time-varying component. In the context 

of an electrical circuit, we can say that the impedance of the system is the expansion of resistance 

to a non-steady state.0F

1 

Measuring bioimpedance relies on applying an external alternating current between two parts of 

the body and measuring the time-varying change in opposition to the changing current, having 

both a magnitude Z and phase, θ. A problem in bioimpedance measurement is selecting an 

appropriate AC drive frequency for the specific application. 

In the context of CV monitoring bioimpedance is primarily valuable for its ability to record fluid 

movement, as the impedance between two measurement locations varies with the volume fraction 

of water between the two measurement sites. One application of this principle is impedance 

cardiography (ICG), based on impedance in the thorax. As the large bodies of blood in the thorax 

move over the cardiac cycle, a characteristic change in impedance magnitude can be recorded 

corresponding to this difference. Alongside heart rate and respiration rate, ICG has been used to 

estimate SV and to detect the onset of ejection to record PEP together with ECG, although SV 

estimation has been reported to be unreliable by some authors (Borzage et al., 2017; Malmivuo & 

Plonsey, 1995). 

 
1 As an amusing aside, physical impedance experienced by fluids moving in a closed system is central to mechanical models 
of the vascular system as the coupling between the heart and the vasculature. These models often use equivalent electrical 
circuits to equate the flow of blood with the flow of electrical current. Simultaneously, the so-called “hydraulic analogy” of 
electricity is a commonly used analogy for teaching electrical theory by equating electrical flows to the flow of fluid in a 
closed system. 
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In the wearable context, bioimpedance has been used to record pulse waveforms (IPG waves) in 

the distal limbs with an aim towards continuous BP estimation (Kireev et al., 2022; Sel et al., 

2023). Intuitively, given the relationship between bioimpedance and local fluid volume, an 

expectation would be that the waveform should record a similar signal to the PPG, but perhaps 

without the confounding factors associated with PPG waveform synthesis (Kyriacou & 

Chatterjee, 2022), and this does appear to be the case. An insightful comparison of PPG and BioZ 

waveforms across a range of user skin tone scales – a recurring concern in PPG based devices 

(Nowara et al., 2020) – seemed to imply less variation of the IPG signal with skin tone (Sel et al., 

2023). For BP estimation, aside from the different principles from which the waveform is derived, 

the processing techniques and estimation approaches are thus otherwise in line with previous 

work on peripheral PPG. 

The wide use of wearable impedance cardiography wearables is likely some distance out, but 

results like these seem quite promising. The same problem remains as with other bioelectrical 

sensor modes, namely, the quality of the electrode-skin interface. This is a rapidly developing field, 

however, and advances in dry electrodes could be a boon to development of this technique (Fu et 

al., 2020; Kireev et al., 2022; Ma & Soin, 2022). 

2.3.4 Arterial tonometry 

Tonometry is the recording of pressure by means of directly applying to pressure transducer to a 

site of interest. In CV monitoring, this is typically the skin above an artery. Tonometry is typically 

done by a trained operator applying a pen-like device with a pressure sensitive element at the end 

to an artery, typically the radial, femoral, or the subclavian. 

The benefit of tonometry is that when applied correctly, the pressure sensing elements compress 

the radial artery against the underlying radius bone, theoretically eliminating most factors 

effecting the transmission of the pressure wave and thus recording a true representation of the 

intramural pressure of the artery. This concept is usually referred to as applanation tonometry, as 

the artery is flattened or applanated (Figure 13).  
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Use of peripheral tonometry in the past two decades was primarily driven by the derivation of 

mathematical functions that estimate the shape of the central aortic pressure wave from that 

collected peripherally at the radial artery. Several such functions, termed transfer functions, have 

been described. The most well-known are the population averaged generalized transfer functions 

(C. H. Chen et al., 1997; Fetics et al., 1999; Karamanoglu et al., 1993). A clinically validated 

variant of these is used in the SphygmoCor tonometer, and has been validated at rest (Gallagher et 

al., 2004) and investigated during mild exercise (Sharman et al., 2006; Stok et al., 2006, 2011). 

More recent developments include attempts to derive adaptive transfer functions (Gao et al., 

2016; Stok et al., 2011), as well as the notion that a simple N-point moving average filter might be 

sufficient to accurately estimate systolic and diastolic aortic pressures from a calibrated tonometric 

waveform (Shih et al., 2014; Williams et al., 2011; Xiao et al., 2018). 

Being able to estimate the shape of the central aortic pressure was highly valuable to cardiovascular 

researchers as it directly influences the action of the left ventricle (Davies & Struthers, 2003), but 

there are limitations to the use of derived aortic pressure waves in longitudinal monitoring as 

transfer functions validated at rest have not been extensively validated or otherwise in conditions 

out of rest. They also rely on the assumption of complete applanation. 

 

Figure 13. Conceptual schematic of applanation tonometry (not to scale). By squishing the 
artery flat against the underlying radius bone, tangential forces in the lumen are eliminated 
and the transmural pressure becomes equal to the intramural pressure. While complete 
applanation is the goal in traditional tonometry, it is rarely achieved in modern device 
concepts owing to the difficulty of compressing the artery accurately, as well as user 
discomfort when wearing plunger-style sensors over long periods. 
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The development of accurate and inexpensive MEMS pressure sensors have renewed interest in 

wearable tonometry. Commercial devices have existed for some time, older devices have relied 

typically on plunger-style force probes with single points of measurement, typically leading to 

devices that, while accurate, have been uncomfortable and reliant on very precise placement. The 

small footprint and high sensitivity in the relevant pressure domain of modern capacitive sensors 

has led to applications in which several sensing nodes have been arranged at regular intervals, 

increasing the usable area (Kaisti et al., 2019; Mieloszyk et al., 2022; Solberg et al., 2019; Steffensen 

et al., 2023). These devices typically consist of an array of pressure sensing elements bonded to a 

solid or flexible PCB, on top of which is deposited a rubbery skin-safe material like PDMS to 

provide a compliant interface between the skin and the pressure sensors. The shape of the interface 

layer varies significantly between devices, from hemispherical domes covering individual sensor 

elements, to square pads covering the entire grid area, to more complicated structures intended to 

shape the force propagation towards the sensing elements.  

Wearable tonometry applications cannot rely on an experienced operator or correct applanation, 

in pressure pad-type wearable tonometry this will typically not be the case. As such, there will be 

an unknown contribution to the shape of the recorded wave from transmission effects through 

the tissue between the lumen and the surface of the skin as well as through the interface layer. 

These contributions are significant to attempts to create mechanical models or calibration 

techniques to relate the recorded signal directly to the internal blood pressure (Choudhury et al., 

2018; Shimura et al., 2018; Singh et al., 2017). These are so far not very successful. Wearable 

tonometric data is therefore more typically used to estimate BP via a posteriori regression 

modeling. In these applications, particular relevant features from the time or frequency domain 

are extracted from the waveform signal, much in the same way as a PPG signal would be. 

2.3.5 Force ballistocardiography 

The ejection of blood into the aorta results in a reaction force through the body as the center of 

mass of the thorax subtly changes. If recorded over time this force yields the ballistocardiogram 

(BCG). As a record of the mechanical action of the heart, BCG saw significant research efforts 

around the middle of the 20th century but was largely abandoned due to the cumbersome 

equipment necessary and the advent of echocardiography. In the past decade and a half, it has been 



 

45 
 

picked up again as modern sensor and microprocessor technology has made the BCG more 

convenient to record, and as interest in convenient, noninvasive CV monitoring has grown.  

As a force signal, the BCG can be recorded via force plates or load cells such as those found in 

home weigh scales (Campo et al., 2017; Inan et al., 2009), via pneumatic pressure sensors used as 

under mattress inlays (Rosales et al., 2017; Su et al., 2019), smart chairs, toilet seats, and numerous 

other scenarios where the “weight” of the body can be recorded over time at a relatively high 

sample rate. A clear application has been non-contact HR and respiratory monitoring in bedside 

situations, such as in hospitals ( Jung et al., 2021, 2022) or in extended care facilities such as 

nursing homes (Enayati, 2019; Lydon et al., 2015). Several products are commercially available for 

this purpose (e.g., Withings Sleep, Withings, France). 

As the signal is generated by the action of the heart, there is rich information on the mechanical 

performance of the CV system. The association between the amplitude and duration of the main 

systolic complex of the BCG, the so-called IJK complex, with stroke volume has long been noted 

(Starr, 1955; Starr et al., 1939). Unfortunately, the BCG is observed to vary significantly between 

individuals, making consistent identification of morphological features challenging. This is 

hypothesized to be largely due to natural individual variations in anatomy. The origin of the BCG 

waveform remains poorly understood, and mathematical modeling of the BCG is an ongoing 

endeavor (Marazzi et al., 2022). 

An application of the BCG morphology that has been demonstrated repeatedly is the ability to 

use the initial energetic deflection of the systolic complex (the I-wave) as a stand-in for aortic valve 

opening. As a force that moves through the gross structures of the body, the BCG vibration signal 

travels very rapidly (at the local speed of sound), and it can therefore be used as a distal proxy for 

central AVO (Campo et al., 2017; Inan et al., 2015; Kim et al., 2015; Mukkamala et al., 2015, 

2022). This principle is applied in smart bathroom weigh scales, toilet seats et.c. for estimating 

arterial stiffness. Example recordings from a lightly modified (wires were soldered onto the 

transducer amplifier to directly record output from the transducer.) commercially available BCG 

device is shown in Figure 14.  
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Figure 14. Force BCG data recorded with a modified commercial pneumatic under-mattress sensor 
(Withings Sleep). Starting top left, the raw signal is filtered to extract respiratory and cardiac 
frequency signals. Using a second sensor modality, here ECG, sequential beats are segmented and 
averaged. This allows moving average estimation of PEP and PTT. 
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Figure 14 demonstrates recording of PEP and PTT by combining an under-mattress pneumatic 

sensor, a fingertip PPG sensor, and chest pad ECG. Given the proportionality of peripheral PTT 

with BP, tracking trends this way offers possibilities for early detection of the onset of hypotension 

in patients in post-surgical recovery, or for signs of hypovolemia (Djupedal et al., 2022). 

Wearable force BCG requires the sensor to be placed in a location where the force of the body can 

be detected while moving. In contribution 1, we presented a sensorised insole to record the force 

BCG using fluid-filled pneumatic sensors and atmospheric pressure sensors (Gjerde et al., 2022). 

Volunteers undertook a cold pressor test, increasing peripheral resistance and SBP, which should 

result in a decrease in PTT, recorded via finger PPG (future devices should consider implementing 

ankle PPG, to record the central aortic PTT, and consolidate monitoring at a single location). We 

observed a decrease in PTT and a simultaneous increase in SBP recorded using a volume-clamp 

device (ADInstruments NIBP).  

While the signals recorded from the pads were noisy and of fairly low quality, they did record a 

signal that was broadly similar to a reference weigh-scale based device, demonstrating potential.  

2.3.6 Acceleration ballistocardiography 

The same mechanical action that generates the force BCG also results in physical motion in the 

body. This effect is sometimes not distinguished from the force BCG, or conflated with a related 

measure, seismocardiography (SCG). We will refer to it here as acceleration BCG. The total 

movement induced by the acceleration is also sometimes used, termed the displacement BCG. 

For sake of clarity, we will consider SCG as a special case of acceleration BCG, worthy of its own 

discussion. SCG is the record of cardiogenic vibrations at the chest wall. It has been noted to be 

relatively easy to record and to contain rich information about the mechanical action of the heart. 

In addition to the unsurprising ability of the SCG to detect heart rate, it appears to be quite 

capable in accurately denoting AO (Inan et al., 2015; Sørensen et al., 2018). More interestingly 

SCG signals have been shown to have predictive capability for cardiac hemodynamics that may be 

of direct clinical relevance (Hoffmann et al., 2022; Shandhi et al., 2022) (for an analysis of triaxial 

acceleration measured directly in the wall of the heart itself, see for instance Krogh et al., 2021). 

The implementation of SCG is typically in the form of a chest-strap, or otherwise a device 
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attached to the chest wall using a contact adhesive, typically also used to record ECG. As the 

SCG signal is recorded close to the heart, it is not capable of recording the PWV, but eminently 

able to record the duration of PEP and left ventricle ejection time (LVET) when used in 

combination with ECG.   

Wearable SCG has been used to estimate a number of CV parameters of interest, including blood 

pressure, left ventricular stroke volume and oxygen uptake (Ashouri et al., 2018; Etemadi & Inan, 

2018; Shandhi et al., 2021). As the generation of the BCG and SCG signals remains unclear and 

modeling efforts are ongoing (Marazzi et al., 2022), these parameters tend to be estimated using 

feature sets without clear theoretical relationships to physiological phenomena. They nevertheless 

seem effective in intra-individual models, indicating predictive capability. 

The primary weakness of SCG remains the use of a chest-worn device which must be precisely 

located on the sternum, which limits user acceptance (Table I, Gemperle et al., 1998; Zeagler, 

2017).  

Recording acceleration BCG at the wrist is motivated by the presence of accelerometers in all 

modern smartwatches, usually together with PPG. Remarkably, wrist BCG has been 

demonstrated to be able to track AVO at rest, which has been examined with an eye to BP 

estimation via PTT (Shin et al., 2021, 2022; Wiens et al., 2017; Yousefian et al., 2019, 2020). 

However, these signals are extraordinarily noisy, and typically cannot be used on their own, 

requiring a secondary, more robust signal to reference for creating ensemble averages in order to 

improve SNR.  

PTT estimation from wrist BCG during exercise has been demonstrated in contribution 3 of this 

thesis (Steffensen et al., 2023), counterintuitively suggesting that recording AVO might become 

easier with increasing HR as SV increases the amplitude of the systolic complex. 

2.3.7 Acoustics 

After noting the use of acceleration signals recorded at the wrist to capture signals in the 1-100 Hz 

range, it is interesting to note that at least one device has been demonstrated to record acoustic-

frequency (~ 2 KHz) CV signals at the radial artery (Sharma et al., 2019; Sharma & Rodriguez-
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Villegas, 2021). The authors report success in recording heart rate using passive contact 

microphones recording from the radial artery at the wrist. Unfortunately, as the authors’ 

comparator PPG signal was not synchronized, it is difficult to assess the use of this technique for 

timing interval assessment as it is unclear if the recorded sound corresponds temporally to the first 

heart sound of the PCG. In such an event, a hypothetical device could be envisioned in which the 

closing of the mitral valve – and the onset of the first heart sound – can be detected using the 

high-frequency wrist PCG, the opening of the aortic valve via wrist BCG, and the arrival of the 

pulse wave at the distal site via PPG or tonometry, allowing longitudinal recording of PEP and 

PTT at a single point, without requiring an ECG signal. A further advantage of such a device lies 

in noting that the authors report a signal with a sharply delineated onset, potentially making it 

more suitable for segmentation tasks than PPG, which has a smooth morphology. 

Away from the wrist, there are notable ongoing developments using low-frequency microphones 

to record cardiogenic pressure variations in the ear, a technique that has been referred to as 

infrasonic hemodynography (Gilliam et al., 2022; Park et al., 2015; Wheeler et al., 2021). The goal 

is to record BP directly via smart earbuds (“hearables”). This is an area of ongoing research seeing 

rapid development. 

Lastly, there are several efforts to develop wearable ultrasound devices to record e.g. blood flow 

velocity (Hu et al., 2023; C. Wang et al., 2022). These efforts are highly interesting, but while 

leading developments are being made in probe design, the electronics these probes currently need 

to be interfaced to are not yet near fulfilling the aspirations of being ubiquitous or unobtrusive. 

This field has tremendous potential, and developments in miniaturization and probe design 

should be followed. 

2.4 Some points on cardiovascular signal processing 

The sensor methods discussed above, when applied to cardiovascular monitoring, yield time series 

that vary due to the action of the cardiovascular system. Due to the repeating, continuous action 

of the heart, we conceptualize these signals as waves, and talk of them as different waveforms. There 
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are crucial differences between these signals due to the different mechanisms that generate them, 

but many of the methods of processing and analysis are similar. 

The goal in CV signal analysis is normally either diagnostic categorization (e.g., hypertensive, 

young/old, et.c.) or parameter estimation (HR / RR, PWV, AI, BP et.c.). The data processing 

pipeline in each situation will reflect the goal of the analysis, but typically starts out with 

preprocessing to remove high frequency measurement noise and perhaps low-frequency drift or 

motion artifacts, depending on the measurement setup. 

2.4.1 Quality indexes 

Due to the nature of wearable measurement, signal quality is often disrupted by motion artifacts 

or loss of skin contact. If the goal is longitudinal measurement and/or further processing 

techniques rely on ensemble averaging, a common problem is accepting or rejecting sequences of 

waveforms. This is typically done by applying some form of quantifiable metric of beat “quality”. 

Common methods are based on measures of signal-to-noise ratio, signal entropy, or temporal 

autocorrelation, either with the signal itself or with a referent signal. Quality indices are 

commonly combined in practice and will often include some “common sense” metrics such as beat 

duration and signal amplitude (Orphanidou et al., 2015).  

Figure 15 shows an example of a series of pulses recorded with a tonometer. An algorithm 

(Alexandre Laurin & Jona Joachim, 2017) has been used to identify the onset of candidate beats. 

The series includes two areas of motion artifacts resulting in corrupted signals. As we are often 

interested in analyzing individual beats in future processing steps, either sequentially or as 

ensemble averages, the goal of the beat quality assessment is to accept or reject the identified 

candidate beats. In this illustration, a sliding window template autocorrelation assessment is used 

to assign a value between -1 and 1 to each candidate beat. A threshold for acceptance, for example 

Pearson’s ρ > 0.8, will typically be set empirically by weighing tolerance of poor quality beats 

against the need for available data. 

One longitudinal study of wearable tonometry, ECG, and PPG in 548 participants over a rough 

24 hour period reported an average signal “availability”, reported as fraction of successful 

measurement attempts, of between 0.4 and 0.6 for tonometry, compared with 0.4 - 0.9 for PPG 
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and above 95% for ECG (Mieloszyk et al., 2022). It should be noted that this fraction includes 

failure due to device removal etc. alongside poor signal quality. Other reported results from 

similar population sizes and comparable devices are rare, but the reported range seems in line with 

anecdotal evidence. Notably, the authors found that while tonometry data was less available than 

PPG during sleep, the two modalities were broadly comparable during daily activity. 

2.4.2 Filtering, segmentation, and decomposition 

There are both natural and sensor-induced variation in cardiovascular signals. There are low-

frequency fluctuations induced by the respiratory cycle, at around 0.1 to 0.3 Hz, as well as Mayer 

waves, a roughly 0.1 Hz fluctuation caused by the body’s various systems for regulating blood 

 

Figure 15. Quality assessment using a sliding template matching method. The blue triangles are 
tentatively identified systolic feet used to segment individual beats. Red sections are rejected. A 
template consisting of the mean signal of N previous beats is compared to the next candidate beat 
via cross-correlation. If the correlation coefficient is below a threshold, the candidate beat is 
rejected. Autocorrelation is typically used together with “sanity check” markers such as a realistic 
beat length. While the templating window may include low quality beats, typical problems like 
motion artifacts are noisy and chaotic, resulting in a poor correlation between subsequent low-
quality beats as well. There are several autocorrelation techniques, with or without dynamically 
adaptive thresholds. Data from the study described in Steffensen, 2023 and chapter 4. 
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pressure ( Julien, 2006; Nichols et al., 2011). Sensors have some level of inherent measurement 

noise, and sudden motions can influence our readings by adding rapid transients.  

For this reason, waveform data is almost always lowpass filtered. Any number of filtering 

approaches are in common use, both analog and digital. The passband of interest changes with the 

application and sensor type – rapidly fluctuating features in the ECG can be very important, while 

BP waveform data rarely contains interesting information above 30 Hz (see for example Figure 

20).  

BCG and SCG data are special cases. As typical applications rely on accelerometers with relatively 

low SNR these measurements can be very noisy. Dedicated filtering approaches have been 

suggested depending on the intended use case of the signal (Yao et al., 2022). 

Sometimes, even after filtering, physiological mechanisms can cause differences in the signal we 

are interested in. For example, if we want to avoid the amplitude oscillation caused by respiration, 

we can look at the average wave over a longer period, for example 5-10 beats. These ensemble 

averages are also highly useful in the case of highly noise-influenced or weak signals, such as can be 

the case with BCG and SCG.  

The first step of obtaining the ensemble average is to identify a clear reference point in the signal of 

interest. Depending on the signal, this will typically be the systolic peak or the foot of the systolic 

rise. Identifying these points is of large interest in algorithms for determining heart rate, and there 

are various approaches available with specific adaptations for particular signal types (e.g., 

Alexandre Laurin & Jona Joachim, 2017; Charlton et al., 2016; Lin et al., 2018; Pan & Tompkins, 

1985). Several approaches are then available: the simplest approach is to select a window of 

samples before and after the identified point. This approach simplifies dealing with the end effects 

induced by variable length of individual beats and is popular where the resulting signals are used in 

machine learning approaches requiring constant frame size (see e.g. Shandhi et al., 2022). Another 

option is foot-to-foot or peak-to-peak, which require a strategy for dealing with end effects, such 

as cutting to uniform length, padding, or using normalized time windows (e.g. Sel et al., 2023). 

Both approaches are made difficult in situations involving variation in heart rate, such as free living 

or exercise studies.  
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Once the sequence of beats has been thus segmented, the average is creating by taking the average 

value of several beats for each timepoint, resulting in an averaged waveform. It is important to be 

aware of the assumption of relatively steady state signals over the averaging period if the averaged 

beat is intended for further analysis.  

2.4.2.1 Decompositions 

As noted, BCG signals can be particularly challenging to deal with in a wearable scenario due to 

the very high level of noise that can be present. In addition, the BCG is notably variable between 

persons, and we are often interested in particular features, which makes specifying filter passbands 

difficult. One approach is to fit personalized passbands to each participant (Wiens et al., 2017), 

but this requires a posteriori knowledge.  

 

Figure 16. Signal decomposition via EEMD of wrist BCG. A: raw accelerometer data is segmented 
using a reference waveform signal. B: the ensembled signal is decomposed into several basis 
functions using the EEMD algorithm. C: wavelet scalograms of the original signal (top) and two of 
the basis functions, demonstrating the ability of the algorithm to isolate the two main energetic 
features. Adapted from illustrations used in Steffensen et al., 2023.  
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Another approach to isolating accelerometry signals of interest is signal decomposition. 

Decomposition is the process of iteratively creating partial functions that can be linearly 

combined to recreate the original signal. The classic example is the Fourier decomposition, in 

which a continuous signal is represented as a sum of simple sine waves. In applications dealing with 

noisy BCG data, wavelet decomposition and empirical mode decomposition (Wu & Huang, 

2011) have been demonstrated as particularly capable techniques (Enayati, 2019; Gjerde et al., 

2022; Steffensen et al., 2023). Figure 16 shows an example of EEMD applied to BCG data. 

EEMD is primarily noted here as a very useful tool for analysis of highly noisy and complex data. 

Unfortunately, EEMD may be prohibitively computationally expensive for on-line computation.  

Using wavelet of EMD decompositions still require selecting which “level” of the decomposition 

to use, particularly in variable HR situations. However, it may be easier to create “rules” for 

selection based on quality metrics or requirements for each layer. 

2.5 Summary 

In summary, there are several sensor types currently under investigation for ubiquitous, 

unobtrusive BP estimation. Some are more widely used and technologically mature than others, 

such as ECG and PPG. BP estimation techniques often rely on measuring some flavor of PWV, a 

parameter with a strong theoretical connection to BP. This is often achieved by combining more 

than one sensor. Black-box modeling without using PWV will be discussed further in chapter 4. 
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3 Solving physiology sensor problems 

 

 

 

The development side of this project has relied on engineering techniques common to early-phase 

pre-requirement product development (the “fuzzy front end”), such as rapid iteration and 

prototyping and development through convergent and divergent design cycles (Auflem, 2023; 

Sjöman, 2019; Vestad, 2022). This track has involved building sensor devices and supporting 

technologies as well as benchtop test rigs to benchmark performance and assist in method 

development and problem understanding. 

This chapter focuses on sensor design. Following the techniques presented in the previous chapter, 

this chapter is intended to provide a view on how these techniques have to be considered from a 

design engineer’s perspective in order to successfully solve a physiology sensing problem. 
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3.1 Artifacts and target variables 

When it comes to design problems involving sensors, we need a clear-eyed conception of what a 

sensor is and what it does. In this context, we will follow a common definition of a sensor as a 

device that in some way reacts in response to an external physical stimulus by changing some 

characteristic that can be measured electrically (Fraden, 2016). An example is the strain gauge.  

In its simplest form, we can think of a strain gauge as a length of conductive material of uniform 

thickness with a known and consistent electrical resistance. Under certain mechanical loads, the 

conductive material will elastically deform (i.e., it is strained), and as a result, the length of the 

resistor increases. By measuring the voltage across the component, a relative change in resistance 

can be observed. 

In practice, the change in resistance will be very small, as will the resulting voltage difference, and 

circuitry to amplify the voltage will be necessary. In practice, strain gauges will also typically be 

built into devices called load cells, wherein the strain gauge itself will be bonded to a metal 

structure of precisely known dimensions such that the load condition can be controlled for 

calibration purposes. 

3.1.1 Translation 

As an example, let us say that a hypothetical strain gauge, if loaded under flexion with a 1 kg load, 

records a voltage drop of 1 volt. If the load is increased to a 2 kg load, the voltage drop increases to 

2 volts. It is not correct to say that the sensor has measured a change of 1 kg; rather, we need to 

translate the true, recorded change – a difference in electrical characteristics of a circuit – into a 

concept that holds meaning for us. In the case of the load cell, the translation is ideally linear, and 

the entire system will be calibrated empirically – such that a load difference of 0.1 kg results in a 

voltage difference of 0.1 V across a reasonable range, for example – by repeated measures. 

What the sensor is recording is directly caused by the load applied to the load cell, but the crucial 

distinction is that the component is not measuring load, it is measuring the deformation of the 

stressed structure (via change in resistance). In the case of our load cell, we can say that the target 

variable is the mass of the weight. The deformation of the bar is a secondary effect that we can 
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encode electrically. We can apply a model based on our physical understanding of the system (in 

this case, by assuming small, linear deformations in the scale and applying elementary beam 

theory) to estimate the target variable. 

The example of the strain gauge is significant in the context of CV sensing. The clinical reference 

method of continuously recording arterial BP (ABP) consists of a fluid filled catheter, inserted 

into the artery, which in turn pushes on a small deformable membrane on which sits one or more 

strain gauges (Ortega et al., 2017). This device, the pressure transducer, is electrically connected to 

a Wheatstone bridge and amplification circuitry in the patient monitor, providing a varying 

electrical signal as the fluid pressure in the system changes. 

In the absence of an a priori model, the measurement our sensor gives us is of limited value. We 

will say that the sensor is recording an artifact of the real world, rather than the real world itself. 

Staying aware of the separation between the output of the sensor and the true target variable is of 

great importance when approaching sensor design problems. In the setting of physiological 

monitoring, we are often interested in some physiological mechanism’s response to a stimuli or 

development of some property of a biological system’s development over time. 

3.2 Hidden artifacts 

In very many situations it will not be possible to directly measure the target variable of interest. In 

these situations, the next step is to identify secondary measurements that we have reason to believe 

are in some way relatable to the target variable.  

As an example, the stiffness of the arterial wall – the lumen – is important increases with age, 

consequently, arterial stiffness is a valuable measure of relative “vascular age”. Directly measuring 

the stiffness of the wall is, however, almost always impractical. But the stiffness of the arterial wall 

is related to the velocity of pressure propagation through incompressible fluid within it (via, for 

example, the Moens-Korteweg equation). We can probe the target variable, the stiffness, via the 

derived metric of pulse wave velocity. 
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What information is necessary for the designer’s system to perform its task? In the cardiovascular 

or physiological setting, we are often concerned with measurement targets that are fairly concrete: 

is the central nervous system of this animal more or less activated? How much blood is being 

moved through the heart per second? How well oxygenated or hydrated is this tissue? But as 

concrete as these questions are, there are no sensors that will answer these questions directly. There 

is no such thing as a blood flow sensor – although there are several methods of determining blood 

flow velocity. The key concept is that all of the methods we can use to determine the target 

measure are indirect. 

3.3 What do we want to measure? 

The first task for a designer is to decide on what information their product ought to be able to 

provide. That is, what is the target variable? This is a question that can have several answers 

depending on the scope and framing of the problem. We can conceptualize three levels of 

information output: an overarching question about physiological state, a second, intermediary 

level in which we combine sensor measurements with established models or existing physiological 

knowledge, and a third and final layer where changes in the physical environment are causing the 

sensor to produce an electrical signal we can measure and pass up through the chain.  

Figure 17 shows a diagram representation of how we can think of this kind of sensor problems. As 

an example, the most common type of automatic blood pressure monitor today is based on the 

oscillometric principle (Geddes, 2013). In an oscillometric device, an inflatable cuff is placed on 

the upper arm, and automatically inflated. A pressure sensor continuously records the air pressure 

in the cuff. The pressure is first increased to a point where the brachial artery is fully occluded, and 

is then allowed to decrease linearly. As the pressure decreases, a characteristic oscillating signal can 

be measured as the brachial artery is partially occluded, roughly coinciding with the Korotkoff 

sounds found in auscultatory techniques. The point of maximum amplitude of the oscillation is 

the mean arterial pressure. The systolic and diastolic pressures will then be extrapolated using any 

number of proprietary methods. 
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In the case of the oscillometric cuff, the large-scale question we want to answer is “what is the 

systolic and diastolic blood pressure?” This makes up the first level of our framework. To answer 

this question we apply knowledge of cardiovascular physiology and empirically based models to 

interpret a record of an electrical signal obtained from the inflation cuff device, making up the 

second, more abstracted layer. To obtain a usable signal that we can reliably interpret, we need to 

apply pressure in a controlled manner to a pressure sensor that is appropriately sensitive in the 

range of interest and be able to calibrate the sensor to provide a true representation of the actual 

pressure it is experiencing. This physical interface is the third level of our model. 

  

Figure 17. Diagram of the conceptual structure of a sensor problem, illustrated using an 
automated oscillometric blood pressure measuring device. From the engineering design 
perspective, each stage is broken up into deeper questions that eventually reach concrete 
technical implementations of sensing devices that react electrically to an external stimulus. This 
signal must be translated back up through the levels of abstraction. The first translation is 
typically transformation to an understandable representation, for example from voltage to 
physical pressure. To obtain an actionable measurement, we apply domain knowledge, 
modeling, and signal processing techniques to combine our recorded signal with other 
contextual information to obtain an actionable measurement at the end. 
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3.3.1 Example application: acoustic sensing 

Without a priori models, modern techniques in signal processing can enable us to extract patterns 

in our indirect measurements that may otherwise be very challenging. In Contribution 7, we 

describe a sensor problem based on determining the placement of an endotracheal intubation 

tube in a simulated human airway using ultrasonic acoustic pulses. The goal is to give performance 

feedback to a user training on the procedure. 

Using the format presented in Figure 17, we can think of the question “what is the location of the 

endotracheal tube?” as our Level 1 question. The constraints of the problem limit our available 

options in Level 2: restrictions on possible sensor locations rules out sensors directly sensing the 

tube’s location, and the complex geometry of the airway makes conventional sonar very 

challenging. In response, we can modify our question: is the tube inserted too deeply, correctly, or 

too shallowly? By using our domain knowledge of what the key parameters of the problem are, we 

rephrase the continuous location sensing problem to a categorical classification problem. 

Level 3 now becomes a question of direct implementation. In our case, ultrasound acoustic sensing 

allowed us to record a signal that would be modulated by the geometry of the airway and keep the 

sensor discreet. Storing the signal as audio, we could apply a neural network transfer learning 

approach to translate our audio recordings into a label assigning the recording to one of a small 

number of states – too shallow, too deep, or correct. We thus ended up with a solution that 

showed high accuracy in the holistic sensor problem (Steffensen et al., 2023, submitted).  

3.4 Solving complex physio sensing problems 

Designers must keep in mind the different levels of the sensing problem and take a holistic 

approach in order to successfully solve the problem. This will often require integrating experience 

and knowledge from different disciplines such as engineering, data science, biology and medicine. 

For example, mechanical engineering and materials science is necessary to design robust sensors 

that are fit to function in their operating environment. Engineering design can make informed 

decisions about human factors in the system, leading to user benefits and possibly user-derived 
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serendipity (see for example Contribution 6).  Electronics and data science enable the conversion 

of physical stimuli into measurable signals and to let us extract meaning from raw data. A grasp of 

the relevant physiology is equally important for interpreting the sensor’s performance during 

development and understanding the sensor’s operating context.  

3.4.1 Prototyping and Expert Users 

No one designer will have all the necessary knowledge. Interaction with key users and domain 

experts can be crucial to extract lessons about the problem (Auflem, 2023). As an example, 

Contribution 5 describes a technology in which the use of sensors designed for humans had to be 

simulated in several crucial ways. The close interaction between designers and users led to a 

product that was both used successfully for its intended purpose (Brede et al., 2019), and 

commercially licensed following the filing of the patent application. 

In essence, solving sensor problems for physio logging isn’t about creating devices that convert 

physical effects into a series of digits. It’s about understanding the target variable, distinguishing it 

from the sensor output, and working with the complexity of the problem. Successful designs are 

highly interdisciplinary and require combining insight from diverse disciplines to build a reliable 

and precise system. 

To attack the complexity in these problems prototyping is a valuable tool (Vestad, 2022). The 

purpose of a sensor prototype varies, but one primary goal in the early phase of development is 

benchmarking and comparison to other methods. Controlled benchtop experiments can be very 

helpful in this regard. For example, to test the tonometer used in the wearable sensor described in 

the next chapter, the benchtop phantom described in Contribution 2 was used to provide a steady, 

repeatable pressure in the “artery”. The phantom, shaped as a wrist with the radial artery running 

over a 3D-printed radius bone, let us attach the wrist worn sensor and probe design aspects like 

probe placement repeatability, logging software, et c. providing valuable opportunity for 

functional prototyping and verification alongside lab-level human tests using noninvasive volume 

clamp data (Finapres).  
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Ultimately the goal is to test our sensors on human subjects in as rigorous a manner as possible. As 

we shall see in the next chapter, testing on human subjects – central to CV sensor problems – can 

be a very involved process, potentially exposing subjects to risks which must be justified. 
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4 Human subject data collection  

 

 

Two data collections took place involving human subjects. The main study involved 25 healthy 

volunteers undergoing radial artery catheterization and performing a bike exercise protocol. This 

study will be discussed here in some detail, alongside unpublished preliminary results. One 

publication, contribution 3, has so far been published based on this data collection. 

The second collection involved in-lab recording of noninvasive CV data and anonymous 

biometrics, approved by Norwegian Agency for Shared Services in Education and Research 

(reference 250185). This study is presented in contribution 1.  
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4.1 Recording blood pressure during recumbent bike exercise 

Work on cuffless BP estimation has primarily focused on rest conditions, which is valuable in the 

context of monitoring hypertension development and treatment response. However, there is little 

work available on exercise estimation, with a few notable exceptions. Cardiovascular responses to 

physical exercise, particularly acute blood pressure (BP) response, are risk markers for 

development of hypertension and overall cardiovascular events (Miyai et al., 2002; Thanassoulis et 

al., 2012). In order to contribute more meaningfully to the field of cuffless BP sensors, we set out 

to conduct data collection in a controlled exercise context. 

4.1.1 Ethical considerations 

Primary data collection for the BP sensor studies took place at St. Olavs hospital in late 2021. The 

study was approved by Regional Committee for Medical and Health Research Ethics Central 

Norway (REK Midt), application number 62226. As a pre-requirement for approval by REK, 

approval for the use of a prototype medical device was applied for and obtained from the 

Norwegian Medicines Agency (Statens Legemiddelverk, SLV) with reference 21/06743. The study 

was registered at ClinicalTrials.gov with identifier NCT05008133. 

As part of the approvals process, I undertook revision work to incorporate feedback from the 

original application, which could not be approved without approval from the Norwegian 

Medicines Agency. My primary contribution was writing the formal risk assessment, with medical 

subject matter assessment from the PI, Dr. Kirkeby-Garstad, completing the device description 

and assessing materials compliance with ISO 10993 standards, revising the documentation to be 

compliant with GCP and EU Medical Device Directives regulation, and overseeing the 

submission process. 

4.1.2 Study design and protocol 

The study was designed as a dual-posture ramping exercise protocol undertaken on a recumbent 

bicycle. Primary measurements were invasive BP collected via radial catheter and transducer, 

LVOT Doppler flow echocardiography, PPG, ECG, and tonometry plus accelerometry via the 

investigational device.  
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Figure 18. Data collection at St. Olav’s hospital. Above: Overview of the experimental protocol 
with a sample BP tracing from the patient monitor. Missing data are due to technical limitations in 
the monitor recording software. Below: photo of a participant during semirecumbent sampling. A: 
location of the tonometer on the participant’s right arm. B: location of the BP transducer fixed to 
the bicep at the midaxillary line. C: sensor schematic. D: sensor location over the radial artery at 
the distal radius. Illustrations from Steffensen, 2023, photo by written consent. 
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An illustration of the experimental protocol is shown in Figure 18. Details of the study are 

available in Contribution 3 (Steffensen et al., 2023).  

As the participants were healthy volunteers, undertaking the risk associated with any invasive 

procedure obliged that risk was minimized as much as possible. Inclusion criteria were enforced, 

and participants screened by the responsible site investigator, a consulting anesthesiologist. 

Exclusion criteria were age (below 18 or over 50), reduced manual circulation as determined via 

Allen test and confirmed under ultrasound, and increased thrombogenic risk. As the data 

collection took place under Covid-19 restrictions in Norway, participants were also required to 

 

Figure 19. Sample sensor data at rest (top) and during exercise (bottom). A, B: simultaneously recorded 
waveforms from two female volunteers aged 33 and 31. Top to bottom: ECG, invasively recorded 
arterial BP in the left radial artery, noninvasive tonometry on the right radial artery, and PPG from the 
left thumb. Note the strongly amplified second systolic peak in the pulse on the left, which might 
otherwise be interpreted as an under-damped fluid line but is also reflected in the tonometric waveform 
as well as the PPG. Under good conditions, the signal recorded with the invasive catheter and non-
invasive tonometer will be almost identical. Commonly, it will be damped. 
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provide proof of vaccination, a recent negative Covid test, or were offered to take a rapid antigen 

test on site before being admitted to the hospital building. 

The design of the study as a multi-posture exercise intervention was influenced by the goal of 

maximizing study value versus risk for the volunteers. The study was set up to allow several projects 

to benefit. There were two core projects, the first intended to map cardiac power across different 

exercise levels in healthy volunteers to form a baseline understanding of this metric. This project 

was anchored at the Clinic of Anesthesia and Intensive Care at St. Olavs and sponsored by the 

Department of Circulation and Medical Imaging at NTNU. The second core project was data 

collection for the CV sensor, formulated as an adjunct to the first study.  

Several other research projects were simultaneously able to collect measurements alongside using 

invasive blood pressure data from the same study, thus maximizing the risk / benefit ratio of the 

study.  

Bike exercise studies are typically performed with a ramp to exhaustion design. However, in this 

study participants were instructed to maintain four distinct power output levels (0, 50, 100, and 

150 W, defined as Watts delivered to the exercise bike). This simplified echocardiographic 

examinations, and moreover provided relatively steady-state conditions allowing an investigation 

of wrist ballistocardiography (Steffensen et al., 2023).  

A weakness of the study was the failure to collect subjective intensity measures such as Borg 

ratings in the absence of the ability to estimate max intensity by exhaustion. However, a 

comparatively large amount of data was collected per participant, and the use of invasive BP 

collected via arterial catheter provides a rare “ground truth” comparison, as opposed to Finapres / 

NIBP devices. 

4.1.3 Effects of increasing heart rate on CV signals 

During exercise, as the oxygen demand of the skeletal muscle groups increases, cardiac output 

must increase to supply oxygen and remove metabolic products. Initially, both HR and SV 

increase, providing a large increase in CO. Eventually, SV plateaus, and subsequent increases in 

CO are primarily driven by HR (Laughlin, 1999). The reduced duration of ejection as cardiac 
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cycle time decreases leads to a large increase in pulse pressure, primarily driven by a large increase 

in SBP as DBP increases very little.  

At high HR, the BP waveform becomes increasingly spiky, as wave reflection becomes completely 

absorbed in the main systolic peak. Figure 20 shows the development of the BP waveform from 

resting state to moderate intensity exercise. The simplification of the frequency content is also 

reflected in time-domain geometric indices. 

To illustrate the time-domain changes during exercise, we can define a few metrics of particular 

interest. The first is the radial Augmentation Index (Kohara et al., 2005): 

𝑟𝐴𝐼  
𝑆𝐵𝑃2 𝐷𝐵𝑃
𝑆𝐵𝑃1 𝐷𝐵𝑃

 (3) 

The rAIx describes the augmentation of the SBP due to the reflected peripheral pulse wave. The 

above equation calculates the difference between the second, reflected wave (SBP2) and the first 

systolic peak (SBP1), dividing it by the pulse pressure. rAIx has been used as a measure of arterial 

stiffness. Automated rAIx measurement can be challenging due to the difficulty of reliably 

detecting the reflected peak. This is particularly problematic during exercise, as we have seen how 

Figure 20. Waveform development with increasing exercise load. Top: waveforms collected from 
a participant during bike exercise, with increasing heart rate from left to right. BPM: heartbeats 
per minute, Ton: wearable tonometer data, IBP: invasive blood pressure. Bottom: frequency 
content of the average waveforms, calculated by taking the fast Fourier transform of the 
waveform series. Note the decrease in signal complexity. As heart rate increases the reflected wave 
merges completely with the systolic peak and the resulting waveform gets “spikier”, with a 
simpler frequency content. 
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the reflected peak is largely absorbed. Here, we average 15-25 tonometry and catheter beats to 

obtain an average heartbeat. We then attempt to define the location of SBP2 via the zero crossing 

of the second derivative of the waveform following the main systolic peak.  

Figure 21 demonstrates the idea of this procedure. Note that, while a peak may be detectable in 

the invasive waveform, the tonometer signal does seem to lose the ability to discern the precise 

location of the relevant inflection with increasing HR. This implementation can certainly be 

improved upon, however. There is also a valid question to ask about whether or not rAIx is even a 

valid metric at elevated HR, or should at least be normalized against HR (Stoner et al., 2014).  

The Form Factor is the ratio of the height of the MAP above the DBP to the pulse pressure 

(Nichols et al., 2011): 

𝐹𝐹  
𝑀𝐴𝑃 𝐷𝐵𝑃
𝑆𝐵𝑃 𝐷𝐵𝑃

 (4) 

We estimate the area under the curve (AUC) as the integral of the normalized beat waveform: 

𝐴𝑈𝐶 𝑧  (5) 

To compare the two differently scaled waveforms, 𝑧 is the beat waveform, 𝑦,normalized via z-

scoring and then translated to be strictly positive. 

𝑧
𝑦 𝜇
𝜎

min 𝑧  (6

) 

Figure 22 shows values for rAIx, FF, and AUC in averaged heartbeats at each exercise 

condition. The difference between conditions is illustrative of the reason why exercise 

conditions challenges assumptions of typical cuffless BP estimation approaches.  

There are large differences in time domain morphology, alongside signal frequency 

content as shown in Figure 19 and Figure 20. Note the generally elevated tonometer 

values, indicative of the smoother signal. This is likely due to the incomplete applanation 

that is typical of wearable tonometry. It’s also possible that it’s due to underdamping of 

the fluid line (Nichols et al., 2011; Saugel et al., 2020), but this is hard to say without 

frequency response tests of the system, and as this data was recorded via a commercial 
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patient monitor we do not have insight into the conditioning and filtering steps that were 

performed on the raw transducer output.  

 

Figure 21. Second systolic peak detection for radial AI determination. Ton: tonometer,  
IBP: invasive BP. 
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4.2 Noninvasive blood pressure estimation during exercise 

4.2.1 Black-box estimation 

Apart from physics-based modeling approaches, an increasingly popular approach is the so-called 

black box regression model, wherein there is little or no insight into the inner decision functions 

of the model. The approach is to collect a dataset containing the target variable, for example SBP 

 

Figure 22. Development of three characteristic shape metrics during exercise. Top: Radial 
augmentation index (rAIx,) middle: form factor (FF), and bottom: area under the curve 
(AUC). 
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or DBP, alongside concurrently recorded data from some type of sensor, usually waveform data in 

one of the forms previously discussed. Any number of regression models are then let loose on 

predictor features extracted from the sensor data. The models range in complexity from the 

parsimonious and interpretable, e.g. ridge regression, to the highly complex and opaque, e.g. neural 

networks.  

Many different features have been extracted from pulse waveforms and used in this way, with and 

without any underlying physiological reasoning. Commonly used features include heart rate and 

PWV-type measures alongside various PWA indices and metrics. Neural networks may also be 

used to train on sequences of time series data. 

For our use, we can broadly divide CV parameter regression models in two categories: the 

calibrated or intra-individual model (personalized model), or the uncalibrated inter-individual or 

population model. 

In the case of the intra-individual model a ML regression algorithm is trained on both target 

variable (BP) and estimator variable (e.g., waveform features) data from the same individual as the 

model is later tested on. These models typically perform better than the inter-individual models 

and are inherently sensitive to individual differences in cardiovascular dynamics. However, they 

require access to ground-truth data that is often difficult or impossible to obtain out of the lab. In 

the case of continuous, calibrated waveform data they require expensive equipment such as the 

Finapres device or cuff measurements, which are sparse and subject to all the accuracy concerns 

inherent in commonly available consumer oscillometric devices. 

In an ideal BP estimation environment, the estimator should not need to have access to high 

resolution continuous BP data from the target individual. The ideal wearable BP estimation device 

ought to function much in the same way as a heart rate monitor. To avoid the need for high 

quality ground-truth waveform data in our model, we are left with population based models. 

These models are trained on target and estimator data from as large a number of other individuals 

as possible. If we are lucky, and have estimator data that does contain some predictive value for our 

target variable, we can apply the population model to our target individual’s estimator data and 

obtain a reasonable estimate of the target variable.  
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The limitation of this approach is that by focusing on population trends the model may lose 

sensitivity to individual-specific variations, resulting in a loss of predictive power. Population 

models typically need a very large number of individuals to cover enough of the data variance to 

respond to new individuals. Building these large models requires a large investment in data 

collection. Additionally, when collecting population data there is a risk of introducing bias by 

focusing solely on specific demographics for model training data, potentially limiting the validity 

of the model outside the demographics used for training. 

In short, intra-individual models may better capture individual idiosyncrasies or hemodynamic 

characteristics but require individual training data that is usually impractical to obtain. Population 

models overcome the need for individual data but can fail to capture individual differences in 

unseen populations and can fail to generalize. The intra-individual model, although it can have 

limited generalizability, can still be used to demonstrate whether or not the estimator variables in a 

collected dataset has predictive power for the target variable, and can motivate further research 

efforts in gathering larger datasets. A combined approach can be imagined, wherein a population-

based model is informed by discontinuous individual features as part of a larger modeling 

environment. 

4.2.2 Neural Network Regression Model 

Using data collected during the study, we trained a 1-dimensional CNN multi-input network with 

a single value regression output layer. The architecture consisted of an input layer with four inputs: 

a sequence of length 34, and three single-feature inputs.  

The CNN inputs were individual beat sequences, segmented, resampled to 30 Hz and zero-padded 

to an even length of 34 to reduce the dimensionality of the model to a manageable level. In 

addition, three features were separately calculated and input to the model as separate inputs: beat 

duration (foot to foot), beat amplitude, and beat width at half prominence of systole. Models were 

separately trained on tonometer data and thumb PPG to compare performance. 
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The model and input features were inspired by by Sel et al (2023), although their customized loss 

function was not used as the reference implementation was deemed to have potential data leakage 

issues between the training and test data set. 

Model input data were beats passing a windowing self-similarity quality indexing check as 

described in chapter 3. To simplify processing, tonometry was used for the quality check, and 

PPG beats corresponding to failed tonometry beats were also discarded. For each beat, SBP was 

set as the peak value of the corresponding arterial BP beat, MAP as the arithmetic mean, and DBP 

as the minimum value. A total of 118498 beats from 24 participants were used. The mean number 

of beats per participant was 4973. Separate models were trained for target variables SBP, MAP and 

DBP. SBP had the highest variance in response to exercise, if the model performance were 

unacceptable in the “best case” scenario, this would indicate serious weaknesses of the modeling 

approach.  

Models were trained and tested using a leave-one-subject-out (LOSO) scheme, training using data 

from 23 participants and then testing on the 24th to assess its performance on unseen data.  
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Figure 23. Diagrammatical representation of the CNN structure. 
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This was repeated for each of the 24 participants. During the training step, 5 groups from the 

training set were used at a time for validation in a group hold-out scheme, and model training was 

stopped when validation loss stopped increasing. 

4.3 Results 

4.3.1 Performance metrics 

Results per participant are presented visually in Figure 25 and table II. To assess the performance 

of the model, we define the following metrics: 

𝑀𝐴𝐸  
∑ |𝑦 ŷ |

𝑛
 (7) 

The Mean Absolute Error (MAE) is simply the mean of the absolute errors between the true value 

at a point, 𝑦, and the model prediction ŷ. The MAE is less sensitive to outliers than a related 

commonly used metric, the Root Mean Square Error (RMSE): 

𝑅𝑀𝑆𝐸
∑ 𝑦 ŷ

𝑛
 (8) 

To assess the ability of the model to capture trends in the BP series, we also use a correlation 

metric. We use Spearman’s rank-correlation coefficient: 

𝜌  
𝑐𝑜𝑣 𝑅 𝑦 ,𝑅 ŷ

𝜎 𝜎 ŷ
 (9) 

Here R(x) are the ranks of vector x, 𝑐𝑜𝑣 𝑅 𝑦 ,𝑅 ŷ  is their covariance, and 𝜎 , 𝜎 ŷ  are the 

standard deviation of the rank vectors. Using rank correlation can provide a better assessment of 

nonlinear trends in the underlying data than Pearson’s correlation coefficient, which uses the same 

formula but applied to the raw data instead. 

4.3.2 Individual variation 

Figure 24 A shows the best and worst participants for SBP according to MAE and 𝜌. The range in 

MAE between participants is broad (7.6 to 27.9 mmHg, mean 15.2 mmHg). This could be the 

result of differences in physiological response to exercise being captured unequally by the model  
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because of the small number of participants in the training data set. It might also be explained by 

differences in data quality between participants. Interestingly, however, there was no clear 

relationship between number of available beats and any of the performance metrics.  

For the participant with the fewest available beats (N = 1279) the model managed to estimate the 

resting SBP reasonably well, but fails to follow the subsequent rise in SBP, likely due to low 

availability. This example serves to illustrate the importance of reliable data acquisition as even in a 

controlled lab environment data quality from tonometry can be poor. 

Figure 24 B shows scatterplots of the total collected dataset and the model predictions as well as 

the residual plot. While there appears to be a good overall correlation between the ground truth 

and the predictions, the residual plot shows that within participants many participants’ 

predictions are clearly skewed, implying overestimation in the low BP regime and underestimation 

in the high BP regime. Figure 27 shows the mean error versus distance from mean value.  

Table II. Overview of performance metrics for CNN estimation of SBP per participant. 
Participant N beats MAE RMSE ρ Participant N beats MAE RMSE ρ 

1 4195 18,45 22,34 0,78 13 4455 18,98 24,67 0,78 

2 4892 8,81 10,9 0,77 14 3058 10,61 12,25 0,86 

3 1279 11,93 16,26 0,39 15 5530 19,06 22,54 0,76 

4 5374 11,96 14,51 0,92 16 4412 14,9 17,98 0,81 

5 5877 26,12 30,71 0,82 17 5168 14,46 19,81 0,68 

6 5070 26,54 32,45 0,96 18 3610 20,19 26,63 0,73 

7 2943 12,43 15,88 0,86 19 6617 7,60 9,67 0,93 

8 6451 12,18 15,64 0,74 20 5447 17,74 21,9 0,85 

9 6457 16,42 19,39 0,87 21 6339 9,89 12,96 0,79 

10 5423 8,51 11,21 0,89 22 2980 12,34 14,97 0,82 

11 6699 27,94 30,90 0,90 23 4495 11,36 14,39 0,85 

12 3964 9,23 11,86 0,90 24 7763 17,01 19,61 0,45 

     ∑ 118498 15,57 20,19 0,81 
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While there is variation between individuals as well, the average correlation is reasonably high 

(ρMean = 0.79). From visual inspection of the individual trend plots the models seem to have 

reasonable ability to capture the contour of drastic changes in SBP during exercise.  

 

 

 

 

Figure 24. A: Best and worst cases from SBP estimation during acute exercise. Correlation 
between the estimated trend curves can be in good agreement with the actual ground truth even 
in the case of the worst absolute error estimation: the highest correlation has one of the worst 
absolute errors. When correlation is low, the estimation trends towards the mean value of the 
series, resulting in a lower-than-expected absolute error. B: scatter and residual plots of 
estimated SBP vs. true SBP. Each point is one beat. Colors represent separate participants. The 
participant residuals are clearly skewed, although the total data set is zero-centered and broadly 
symmetric. 
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Figure 25. SBP estimation per participant. A: true and predicted SBP timeseries plotted against each 
other. Vertical axis is mmHg, horizontal axis is time (mm:hh:ss). Missing data points are due to 
missing measurements or low quality waveforms. There is large variation in data availability over the 
stages of the protocol. B: histograms of performance metrics. Each count is one participant. SBP: 
Systolic Blood Pressure, MAE: Mean Absolute Error, RMSE: Root Mean Square Error. 
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Table IV. Aggregated per-participant performance metrics across SBP, MAP, and DBP 
between tonometer and PPG. 

 MAE  RMSE  ρ  

 Mean Median Mean Median Mean Median 

SBP       

Ton. 15,19 (5,81) 13,45 (7,73) 18,73 (6,64) 17,12 (8,77) 0,81 (0,13) * 0,83 (0,13) 

PPG 15,53 (5,09) 14,60 (5,86) 19,20 (6,41) 18,26 (7,00) 0,73 (0,17) 0,77 (0,17) 

MAP 
      

Ton. 6,20 (2,41) * 5,15 (1,92) 7,70 (2,65) 6,61 (2,07) 0,77 (0,13) * 0,82 (0,14) 

PPG 7,05 (2,72) 6,27 (1,65) 8,59 (2,98) 7,64 (2,10) 0,66 (0,20) 0,70 (0,16) 

DBP 
      

Ton. 3,75 (0,85) 3,69 (0,99) 4,70 (0,99) 4,55 (1,14) 0,47 (0,26) ** 0,52 (0,43) 

PPG 4,14 (1,04) 3,98 (1,51) 5,10 (1,16) 4,78 (1,67) 0,30 (0,28) 0,37 (0,44) 

Ton.: tonometer. Numbers in parentheses are standard deviation for mean values and inter-quartile range for 
median values. *: significant difference between tonometer and PPG derived models at α < 0.05 with 
Bonferroni-Holm correction for repeated measures. **: corrected α < 0.01. Two-tailed Wilcoxon test. 
 

4.3.3 SBP, MAP, and DBP: tonometer vs PPG 

Table IV compares model performance on SBP, MAP, and DBP for both tonometer and PPG 

derived features. The values are aggregates from each individual model performance (n = 24 

models). As the data has outlying low-performing individual models (Fig. 25 B), both mean and 

median are reported.  

To assess differences between tonometer and PPG models, the two-tailed Wilcoxon signed rank 

test was used at significance level α = 0.05. Tests were MAE and ρ between tonometer and PPG for 

SBP, MAP, and DBP, resulting in 6 total tests; Bonferroni-Holm correction was applied to the p-

values. No hypotheses changed due to correction. Significant differences are noted in Table IV 

using asterisks. 

Overall, the values are broadly comparable, but the tonometer-trained models appear to 

consistently give slightly better outcomes. Tonometry consistently resulted in models with 

significantly better correlation to the ground truth data. For MAP, the difference in total 

estimation error was also significant. Neither model appears to be able to satisfactorily predict 

DBP, presumably due to the lower total variance in DBP during exercise. 

Table V presents the total model error for all predictions. Figure 26 presents residual plots for SBP, 

MAP, and DBP using tonometer and PPG models. 
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Table V. Comparison of total model error. 

Tonometer SBP MAP DBP 

MAE 15,6 6,4 3,8 

SD 20,1 8,4 4,9 

PPG SBP MAP DBP 

MAE 15,7 7,2 4,2 

SD 20,4 9,4 5,3 

    
The results imply that while the modeling approach does not provide a satisfactory generalization, 

reasonably effective estimation of SBP and MAP during exercise is possible. Tonometry slightly 

but significantly outperforms PPG. Poor generalization is likely primarily due to the small sample 

size of this pilot study, as well as the crude modeling approach. 

Without accurate calibration, the ability to track trends and relative changes from baseline could 

still be quite valuable in situations like post-surgery recovery or to alert at risk individuals of 

orthostatic drop (postural hypotension). Relative increase in BP from baseline could also be used 

to track individual response to exercise, providing opportunities for e.g., sports performance 

monitoring. 

 

Figure 26. Residual plots for SBP, MAP, and DBP estimates from tonometer and PPG sources. 
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4.3.4 Relation to similar work, limitations, and outlook 

These results should be considered preliminary and primarily illustrative for the potential 

application of noninvasive waveform data to BP estimation during exercise. Exercise conditions 

challenge assumptions about cuffless BP estimation. The perturbation from baseline can be very 

dramatic compared to the reference range (increases of more than 100 mmHg are not unusual in 

moderate intensity exercise), and it is not clear that models that perform well in rest or low work 

states will work during higher work states.  

Landry et al. (2022) used a combination of ECG and PPG to estimate MAP during a ramp 

exercise protocol using both time series models and PAT models in a data set of 21 minutes of 

measurements from 11 participants. While the methodology may not be directly comparable, the 

reported correlation coefficients around 0.6-0.8 and mean error standard deviation of around 11 

mmHg MAP is in line with our results. We observe a mean σErr = 8.4 mmHg for MAP using 

tonometer-derived models and 9.4 using PPG-derived features (Table V). Given that our deep 

learning architecture is relatively simple, a fair hypothesis to explain our lower error is the larger 

size of our dataset. 

Interestingly, Landry et al observe an effect on MAE of the model based on the range of BP 

changes in the training set. They report worse model performance with inclusion of more extreme 

values in the training set, by omitting the max intensity training data, the model performs better 

overall (lower total MAE) but is significantly worse predicting the highest intensity values.  

In our results, training on all available data, we observe an increasing MAE with higher BP (Figure 

 

Figure 27. Relationship between prediction error and offset from data mean. Data is all 
predictions, binned per 10 mmHg distance from mean. Note that the mean is higher than 
resting SBP. 
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27). This effect could be due to the relatively high rate of low-quality beats in this range in the 

dataset, lowering the models’ predictive ability in this range. Separate models might be needed for 

exercise BP prediction as compared to resting or long-term prediction. 

The time duration of the data available does not allow for a longer-term assessment of model 

performance over time. Drift and the need for regular calibration are noted problems in cuffless 

longitudinal BP devices. Perhaps the highest quality data on this problem currently available is the 

report by Han et al. (2023) where 760 participants wore a PPG device including a BP estimation 

algorithm (Samsung Galaxy Watch 3 or Active 2) for 30 days. The device estimated SBP and DBP 

intermittently (on average 1.5 times per day) and was calibrated against a cuff device. Users 

obtained the cuff measurements themselves using a validated cuff device and calibrated the model 

by reporting the cuff readings into a smartphone app. Users were instructed to calibrate the device 

against cuff BP once in a 30-day period. The authors investigated periods with data from at least 7 

days before and 7 days after calibration and found an average pre-post calibration error of 6.8 ± 5.6 

mmHg. Individuals with hypertensive BP values had significantly higher errors.  

The error in estimation is significant, noting that it is clear that even if the calibrated device output 

estimates within cuffless BP validation guidelines (Stergiou et al., 2023), the device fell out of 

compliance after about 10-15 days. Still, with improved calibration techniques, this is perhaps the 

clearest evidence that cuffless BP devices can function practically in a real-world ambulatory 

setting. It must be noted that this study does not demonstrate the ability to track changes in BP 

within the same individual, either due to changes in physiology or due to non-static measurement 

conditions (see commentary by Avolio, 2023).  

Validation guidelines involving testing during non-static rest conditions, such as exercise, have 

only very recently been formulated for cuffless devices (Stergiou et al., 2023). The ESH guidelines 

lay out the rationale for testing cuffless BP devices during exercise: 

Rationale: [Exercise test] shall be used for cuff-calibrated or demographic-calibrated 

cuffless BP devices (…). It assesses the ability of the cuffless device to track physiological 

BP increases (…). It will also show whether the cuffless device can provide accurate BP 

measurements under some motion (similar to what may be encountered in daily life). 
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Submaximal cycling, which has limited risks for subjects, will be employed to induce 

substantial, short-term but steady (for a couple of minutes) BP increases. 

Given the need to understand BP estimation models during exercise conditions, we hope that the 

preliminary work presented here and the dataset that is hopefully to be made publicly available 

may contribute to improved reliability of these devices, and perhaps towards enabling truly 

continuous BP measurement, opening opportunities in research and clinical practice.  

The limitations of this study lie in the small sample size, motivating larger studies with more 

diverse demographics, and in the processing and modeling approach. In particular, the exclusion 

of PPG beats associated with low-quality tonometry beats potentially excludes viable PPG beats, 

which might have improved PPG model performance. On the other hand, it does provide a fair 

assessment of two equally sized feature sets.  

A future publication should compare different modeling approaches and model architectures, 

particularly more explainable models, and should investigate metrics derived by combining 

multiple sensors. Each sensor was treated separately in this analysis. With the addition of 

additional sensors, particularly the ability to track PTT during exercise, the shape of the 

relationship between each variable might be valuable on its own as a marker of CVD risk (Liu et 

al., 2014).  

To address these limitations and to build on the initial findings presented, a more detailed paper is 

being planned. Although the complete paper is beyond the present thesis, an abstract outline has 

been prepared as Contribution 4 based on the results presented here. 
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5 Conclusions and future work 

 

 

 

 

 

  



90 
 

5.1 Addressing the Primary Research Objective 

The Primary Research Objective was stated as: 

3. Primary Research Objective 

Develop wearable technologies that allow for ubiquitous and non-invasive cardiovascular 

monitoring towards enabling close-to beat-to-beat blood pressure monitoring via iterative 

development, benchtop test rigs, and human trials.  

To address the Primary Research Objective, we defined three Research Tasks: 

Research Task 1. To develop and use lab test rigs to benchmark devices for wearable CV 

monitoring, focusing on tonometer-derived pulse wave analysis and 

wearable ballistocardiography. 

Research Task 2. To develop devices measuring physiologically relevant variables to probe 

central cardiac events distally. 

Research Task 3. To test these devices under a broad range of physiological states in 

healthy volunteers against ground truth invasive measurements. 

Addressing Research Task 1, Contribution 2 (Embedded Inductive Sensors…) demonstrates our 

wrist phantom, encompassing a sensorised radial artery compressible against a 3D-printed radius 

bone. By building in a novel braided coil, we showed how we can accurately record the diameter 

change of the artery in response to a controlled pressure pulse.  

Addressing Research Task 2, in Contribution 1 (Windows to the Sole…), we have presented a 

novel implementation of pneumatic sensors and advanced signal processing to enable wearable 

force BCG sensing in a potentially out-of-lab environment. We were able to use the BCG to 

estimate central AVO and calculate PTT, thus addressing Research Task 2. This study further 

included a lab test rig in the form of a modified bathroom weigh scale, implementing known 

techniques from the literature to benchmark our sensor’s performance, further contributing to 

Research Task 1.  
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Research Task 3 has been addressed in the study described in Chapter 4, Contribution 3 (Wrist 

ballistocardiography…), and the planned Contribution 4 (Cuffless estimation…), describing an 

invasive human trial. We have shown, to our knowledge for the first time, that the acceleration 

BCG can be recorded at the wrist during exercise, pushing this technology into new areas. Using 

the BCG we calculated PTT during exercise, which decreased as expected with increasing HR 

and BP. Using the tonometer waveform data, we trained deep learning models to estimate BP 

against clinical reference invasive BP during exercise, to our knowledge for the first time. We thus 

contribute to an increasingly important field of study in the context of cuffless BP monitoring. 

Together, the contributions generated in addressing the Research Tasks have resulted in a valuable 

contribution towards the Research Objective of enabling high resolution unobtrusive and 

ubiquitous cuffless BP monitoring. 

5.2 Addressing the Secondary Research Objective 

The Secondary Research Objective was formulated to support activities in pursuit of the Primary 

Research Objective: 

4. Secondary Research Objective 

To achieve the primary objective, generate insights into wearable sensor design and 

development techniques as they apply to cardiovascular monitoring in noisy situations, 

including prototyping and experimental techniques relevant to sensor design. 

The associated Research Tasks were: 

Research Task 4. To develop methods for simulating and benchmarking relevant artifacts 

of the cardiovascular system 

Research Task 5. Develop and apply signal processing methods to obtain usable results in 

high noise scenarios 

Research Task 6. Contribute to an understanding of prototyping methods in the concept 

selection phase of sensor product development. 
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Research Task 4 is addressed by Contribution 5 (Ultrasound Phantom), presenting a patent 

application for our vascular simulation phantom. Methods learned from the development of the 

technology in Contribution 5 contributed directly to Contribution 2 (Embedded Inductive 

Sensors…), in which we directly simulate pulsating BP in a radial artery phantom, thus addressing 

the Research Task and contributing to Research Task 1.  

Addressing Research Task 5, signal processing methods for dealing with very noisy data were 

demonstrated in Contribution 1 (Windows to the Sole…) and Contribution 3 (Wrist 

ballistocardiography…), where advanced methods such as EEMD are applied together with more 

standard methods such as bandpass filtering, segmentation, and averaging to address low SNR 

data. Research Task 5 thus contributed to addressing Research Task 2.  

Contribution 7 (Playing the Pipes…) presents an application of machine learning including 

support vector machines and deep learning / transfer learning to acoustic timeseries data. 

Techniques learned in Contribution 7 directly applied to the results presented in Chapter 5 and 

outlined in Contribution 4 (Cuffless estimation…), thus contributing to the goal of Research Task 

3. 

Finally, Contribution 6 (TrollBOT) and Contribution 7 (Playing the Pipes…) address Research 

Task 6 by sharing lessons from addressing commonly encountered challenges in applied sensor 

problems such as sensor placement, data processing considerations, wireless communication in 

early product development contexts, and sharp learning curves. 

The tasks addressed in undertaking the Secondary Research Objective have thus contributed to 

enabling the contributions addressing the Primary Research Objective, which was the goal of the 

Secondary Objective. 

5.3 Outlook and implications 

The August 2022 consensus statement of the European Society of Hypertension (ESH) Working 

Group on Blood Pressure Monitoring and Cardiovascular Variability warned that “cuffless BP 

devices have specific accuracy issues”, rendering established validation protocols for cuff BP 



 

93 
 

devices inadequate (Stergiou et al., 2022). As of this writing, the ESH has just published its 

recommendations for the validation of such devices (Stergiou et al., 2023). Testing during exercise 

is prescribed as one of six possible tests. 

These recommendations clearly distinguish between continuous and intermittent measurement 

devices. Yet, the development of clear recommendations for cuffless BP devices, testing standards, 

and acceptance criteria demonstrates the maturation of this field. Looking back, the challenges of 

BP estimation during exercise and the prescription of exercise tests for these devices calls urgent 

attention to the lack of high-quality data on wearable BP estimation during dynamic exercise. By 

the continuing work of my collaborators in presenting our results in this area, and ideally to be 

able to share our dataset openly, it is to be hoped that we can contribute in some slight way to a 

clearer understanding of this field. 

5.4 Directions for future work 

I would pose the following suggestions as promising avenues of future work: 

1. Effectiveness of cuffless BP estimation devices during moderate to high intensity exercise and 

other significant CV perturbations is underexplored. To develop robust calibration methods, 

large, openly available data sets from a diverse demographic is required. These should ideally 

contain commonly used sensor types, e.g., PPG, tonometry, and ECG, alongside a 

continuous BP measurement. Invasive measurements, while ideal, are often impractical, 

difficult, and expensive to obtain. Continuous volume-clamp BP data can be an acceptable 

substitute. 

 

2. The use of ballistocardiography as a marker of central cardiac activity, particularly onset of 

rapid ejection, could be a valuable tool for longitudinal monitoring of post-surgery 

convalescence. Combined with ECG, systolic timing intervals can be recorded beat-by-beat 

alongside peripheral pulse wave velocity, providing both cardiac and vascular metrics 

continuously, providing venues for monitoring cardiovascular coupling, onset of sepsis et c. 
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3. Cardiac vibration monitoring is currently focused on chest vibrations recorded via sternum-

mounted devices. Underexplored opportunities remain in wearable applications outside the 

chest-mounted device. In particular, the smart insole / smart shoe appears undeveloped in 

the context of ballistocardiography, pulse transit time, and pulse wave analysis. 

5.5 Final reflections 

Engineers working on questions relating to cardiovascular functionality need to maintain an 

awareness of fundamental principles of the circulatory system, fundamental sensor technologies – 

their applications, strengths, and limitations – as well as methods of application: diagnostic 

classification, parameter estimation, and trend tracking. The engineer working in this field also 

must maintain a critical view of the field with a view to judge not only what is technically feasible, 

but also what is worth doing.  

CV monitoring is a field that has rarely stood still in the past century. New technology displaces 

the most promising of the old approaches, only for developments in other fields to make the old 

ideas relevant again in a different context. If I am to offer any advice to others who would look to 

this thesis for direction, all I can offer is to maintain an open mind and to not dismiss anything out 

of hand.  
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