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Dyp læring i ekkokardiografi: Utfordringer og
muligheter

Ekkokardiografi er den mest brukte avbildningsteknikken for hjerte, med høy
tilgjengelighet, lave kostnader og sanntidsmuligheter. Med mange indikatorer
for hjertets funksjon muliggjør ekkokardiografi nøyaktig diagnose av hjertesyk-
dommer. Imidlertid praktiseres ekkokardiografi primært innad på sykehus
av erfarne operatører og er begrenset av arbeidskrevende tolkninger og høy
operatøravhengighet. På den andre siden har håndholdt ultralyd gjort sin
inntreden i markedet, og tilbyr nye muligheter for bruk utenfor sykehus og i
utviklingsland. Likevel kan nye brukere av håndholdte enheter ha begrenset
ekspertise sammenlignet med sykehusleger, noe som kan hindre bruk av slike
enheter i feltet.

Den overordnede målsetningen med denne avhandlingen er å undersøke
bruken av dyp læring (DL) som en løsning til utfordringer knyttet til ekkokar-
diografi, både i og utenfor sykehuset. Først undersøkte vi utfordringene knyttet
til bruk av DL til å automatisere tolkningen av ekkokardiografiske bilder. Videre
ble potensialet for å bruke DL til å hjelpe operatører ved å veilede dem under
skanning utforsket. Til slutt ble det utført en klinisk studie av den utviklede
veiledningsapplikasjonen.

Resultatene indikerer at bruk av DL til å automatisere tolkningen av bilder
i ekkokardiografi er utfordrende, og at utviklingen av klinisk verdifulle DL-
modeller krever en tverrfaglig kompetanse innen ultralyd, medisin og statistikk.
Disse funnene og de foreslåtte løsningene for å håndtere utfordringene kan
ha implikasjoner for utvikling og evaluering av fremtidige DL verktøy innen
ekkokardiografi. Videre viser den utviklede sanntidsapplikasjonen for veiledning
av operatører at DL gir en utmerket mulighet til å lette og forbedre bildeakkvisisjon.
Den kliniske studien viser at metoden er nyttig i sykehussammenheng, med
mulighet for redusert operatøravhengighet i ekkokardiografi. Videre studier bør
undersøke verdien av sanntidsveiledning for ikke-eksperter utenfor sykehusene.
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Abstract
Echocardiography is the most widely used imaging technique for cardiac
imaging due to its availability, low-cost and real-time capabilities. With
numerous indicators of heart function, it now enables precise diagnosis of
heart diseases. However, echocardiography is primarily practiced within
hospitals by expert operators and has some limitations, such as labor-
intensive interpretations and high operator dependence. On the other
hand, portable echocardiography devices have entered the market, offering
new possibilities for point-of-care applications and increasing access to
echocardiographic assessment in developing countries. Nonetheless, new
operators using portable devices may have limited expertise compared to
hospital residents, which could potentially hinder the full utilization of
portable devices in the field.

The overall goal of this thesis is to investigate the use of deep learning
(DL) techniques to address the limitations of echocardiography, from both
the hospital and point-of-care perspectives. We first investigated the chal-
lenges when using DL to automate the interpretation of echocardiographic
images. Secondly, the potential of using DL to assist operators by guiding
them during scanning is explored. Finally, a clinical study of the developed
guiding application is proposed.

Results indicate that using DL to automate echocardiographic image
interpretation is challenging, and that the development of clinically valuable
DLmodels requires expertise in ultrasound, clinical, and statistical domains.
These findings and the proposed mitigation solutions may have implications
for the development and evaluation of future DL tools for interpretation of
echocardiographic images. Further, the proposed real-time application for
guiding operators demonstrates that DL offers an excellent opportunity to
facilitate and improve image acquisition. The clinical study show that the
developed method is beneficial in the hospital setup, with the possibility
to reduce the operator dependence of echocardiography. Further studies
should investigate the value of real-time guiding for non-expert users in
point-of-care settings.
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1Introduction

According to the 2023 World Heart Report [1], cardiovascular diseases were
the leading cause of death worldwide in 2021, with 80% of these deaths
occurring in low- and middle-income countries. Improving patient care
necessitates a focus on all disease stages, from early diagnosis to follow-up.
In this context, imaging plays a vital role, enabling healthcare professionals
to make informed clinical decisions throughout the entire continuum of
disease management.

Among several heart imaging techniques, echocardiography is the most
used [2]. Based on the propagation of ultrasound waves in the body, it
is today used to examine several hundred thousands patients worldwide
everyday. The reasons for such a large adoption of echocardiography are,
among others, its availability, its relative low cost, no harmful radiation and
its real-time functionality which is invaluable when looking at a moving
organ like the heart. Echocardiography has a wide range of applications,
from quick patient screening in emergency units to quantification of the
heart function and its evolution over time with measurements of clinical
parameters such as left ventricular ejection fraction (LVEF). Today, the
guidelines [2] recommend to perform a large number of quantitative
measurements to assess cardiac function. However, echocardiographic
images can be suboptimal, and, in worst case, only allow for qualitative
measurements and assessments. This can be explained by the high workload
relying on echocardiography laboratories and the lack of skilled clinicians
to carry out these examinations, with large disparities across hospitals and
continents. These challenges are expected to remain in the future with an
increasingly aging population.

Meanwhile, we witness two technological advances with a potential
impact on echocardiography. The first one relates to ultrasound imaging
itself, with the entry of handheld ultrasound devices. A key enabler
for portable ultrasound was the development of three-dimensional (3D)
ultrasound imaging in the 1990s, that made possible to miniaturize
hardware and to place it within the transducer, removing the need for
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external processing units. Today, it is possible to connect an ultrasound
transducer to a regular smartphone and to control it within an application
downloaded from one of the main app stores. The portability of hand-
held devices makes them even more available than cart-based scanners,
opening opportunities for decentralizing echocardiography or using them
in emergency vehicles. Their low price (<10’000€) compared to high-end
cart-based scanners (>100’000€) can also contribute to spread ultrasound
imaging in developing countries. However, out of all the organs that can
be imaged with ultrasound, the heart is among the most difficult to image
due to its complexity, dynamic nature and location within the thoracic cage.
Achieving diagnostic relevant images requires training and practice, and
the lack of skilled operators out of the hospital prevents the technology to
be used to its full potential even though it is available. Lowering the bar
to use the technology is necessary to enable more health personnel perform
echocardiography with portable devices. Making echocardiographic images
easier to acquire and interpret could contribute to redefine the care path
of heart disease, with better prioritization and earlier detection of cardiac
dysfunction.

The second technical change relates to the wide and rapid spread of
methods in Artificial Intelligence (AI). Although the theory behind these
methods was established in 1943 [3], AI became a major research topic
in the 2010s, particularly with deep learning (DL). A key enabler for
the recent advances in the field is the availability of powerful enough
hardware, especially graphic processing units (GPUs). DL has shown to
surpass human performance at some tasks, for example at games [4], and
to be able to automate certain tasks like driving cars. However, AI and
DL development have been accompanied by notorious failure cases, for
example by discriminating people [5] or by being involved in infamous
traffic fatalities [6]. This has raised a legitimate societal concerns about
the use, and possible misuse, of these technologies, also nourished by a
lack of understanding from the general public on how they work. In
medical imaging, DL has successfully been applied to some tasks like skin
disease classification and MRI image reconstruction, but was not free from
failures there either. In a review study [7], it was showed that out of 62
DL algorithms for COVID-19 detection, none were of potential clinical use.
Some methodological failures [8] such as the lack of metrics that reflect the
clinical outcome, the use of biased datasets or unnecessary complex models
could explain this finding.

DLmethods have also been applied to echocardiography with promising
results. They can be used at all stages of the echocardiography workflow:

2



Chapter 1. Introduction

during acquisition to obtain better images [9], after acquisition to automate
image interpretation and reduce echocardiography laboratories workload
[10–14], and finally in the clinical decision path [15]. Another promise of
DL in ultrasound is to reduce the large inter- and intra-observer variability
associated with ultrasound image acquisition and manual interpretation
[16–19]. This could make it possible to detect smaller changes in the mea-
sured clinical indices, which is especially relevant for repeated examinations
and patient follow-up. Finally, in the context of portable echocardiography
at the point of care, DL can be used to emulate the knowledge of an
echocardiography expert, and contribute to breaking the skills barrier of
non-expert users. However, considering the low number of DL solutions
currently available from the main echocardiography equipment vendors,
there are reasons to think that DL for echocardiographic image analysis has
not yet reached its maturity stage.

1.1 Thesis outline

This first chapter introduces the current echocardiography workflow and
its limitations, providing the motivations and aims of this thesis. Each
contribution is briefly summarized, highlighting how DL techniques were
used to achieve the predefined aims. Furthermore, the discussion section
offers additional insights into the presented work and contextualizes the
contributions.

In Chapter 2, the essential background information required to under-
stand this thesis is provided. This chapter offers relevant fundamentals
and terminology related to echocardiography, DL, and statistics, and their
interconnections within the context of this study. Additionally, where
necessary, further elaboration on themethods employed in the contributions
is also presented.

In Chapters 3 and 4, the two technical contributions of this thesis are
included. Finally, Chapter 5 presents a clinical investigation of the method
introduced in Chapter 4.

3



1.2. Echocardiography workflow

1.2 Echocardiography workflow

The workflow of a complete trans-thoracic echocardiography (TTE) exam-
ination in the echocardiography laboratory has three principal steps: the
image acquisition at the bed side, the measurement of clinical indices on
these images, and finally the diagnosis based on both the echocardiography
findings and other inputs. Other forms of echocardiography such as emer-
gency echocardiography or operative echocardiography does not belong to
the workflow described below. The focus of this thesis is TTE, which is
further referred to as echocardiography for simplicity.

Image acquisition

Echocardiography starts with image acquisition, with patients lying on the
bed and the heart being imaged with a transducer placed on their chest,
pointing towards the heart. Image acquisition is a challenging task for the
operators for multiple reasons.

First, they have to deal with an adversarial combination of human
physiology and ultrasound physics, with the heart being placed within
the thoracic cage, behind the ribs and surrounded by the lungs. Given
that the ultrasound waves do not propagate well through bones and the
air contained in the lungs, echocardiography challenges the operators in
finding the acoustic window giving the best possible image quality, with
a high signal to noise ratio and limited occurrence of artifacts such as
reverberations or acoustic shadows.

In addition to the challenge of finding a suitable acoustic window,
operators have to follow guidelines and recommendations on view stan-
dardization to visualize the relevant structures. This is most easy to achieve
using 3D echocardiography where the user have a direct access to the
spatial context, at the cost of a limited image quality and frame rate.
However, low-end and portable echocardiography devices are restricted
to two-dimensional (2D) imaging, relying on numerous standard views,
corresponding to predefined anatomical cut-planes of the heart and the
presence, or absence, of certain structures in the images. Obtaining standard
views is highly important and is a necessary condition for performing
future quantitative interpretation. Protocols define which measurements
should be performed on which standard view, so that they can be compared
with normal values or with measurements from previous examinations.
View standardization is, however, difficult to achieve and require from
the operators a good mental representation of the heart to maneuver the
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Chapter 1. Introduction

transducer towards the optimal imaging plane and the intended standard
view.

In this thesis, image quality and view standardization are considered as
two different concepts, and only the latter is addressed. In practice, they
are interconnected as the operators have to maintain a satisfying image
quality while maneuvering the transducer towards optimized views. The
echocardiographic image acquisition step is consequently dependent on
both operators skills and patient body-habitus.

Image interpretation

Acquired images are often stored in hospital’s PACSs (picture archiving
and communication system) while the patients leave the echocardiography
laboratory. Measurements of clinical indices are performed later on separate
work stations, either by the operator who acquired the images or another
one. From a complete examination, multiple measurement can be obtained,
representing sizes, volumes, blood velocities or tissue velocities. They form
the basis for further clinical decision-making.

Manual interpretation is a labor intensive task that requires multiple
actions from the operator. The most common actions are choosing the
appropriate recording for the measurement to be performed, choosing the
suitable time point within the recording and manually tracing contours
and distances. It is worth noting that some clinical indices like the left
ventricular ejection fraction are obtained from a combination of multiple
measurements, eventually from different ultrasound recordings, increasing
the interpretation time and the number of error sources. Asking multiple
operators to do the same measurements often leads to a large variation
known as inter-observer variability, and there is also even a certain
variability when having the same operator do the measurements multiple
times known as intra-observer variability. A high inter- and intra-observer
variability can lead to high uncertainty of the measurements and thereby
the diagnosis.

Diagnosis

Finally, clinicians use echocardiographicmeasurements tomake a diagnosis,
often in combination with other clinical inputs such as symptoms, family
history, and measurements based on auscultation, ECG or blood samples.
These measurements can be used to both make an initial diagnosis, and to
follow up patients, for example after heart failure to evaluate the reaction to
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1.3. Limitations of the echocardiography workflow

medical treatments and surgery. Another application of echocardiography is
follow up of patients undergoing cardiotoxic cancer treatments, in which a
degradation of the heart function can lead to the decision of stopping cancer
treatment.

1.3 Limitations of the echocardiography workflow

Due to the difficulties inherent to image acquisition, echocardiography
recordings can be suboptimal, both in terms of image quality and image
standardization, which negatively impacts the workflow downstream. Low
image quality makes interpretation more difficult, for example when the
operators trace the border between blood and heart muscles, limiting the
precision of subsequent measurements. Lack of image standardization
can lead to measurements of the wrong heart structures. Together, poor
image quality and the lack of standardization introduce additional errors,
further called acquisition error (ϵacq), causing the measured values to deviate
from their true values. Since the patients have left the examination
room, improved recordings cannot be acquired, resulting in measurements
performed on suboptimal recordings, or not performed at all.

Independent of the error introduced during the acquisition, there is also
some variability introduced at the interpretation step, where the possible
uncertainty sources (choice of recording and timepoint, tracings, etc.)
accumulates. This results in large intra- and inter-observer variability in
the interpretation, which indicates the presence of what is called further
interpretation error (ϵint).

Manual measurements of any clinical indices MCI are therefore an
estimation of the true value TCI rather than the true value itself. MCI can
be expressed as:

MCI = TCI + ϵacq + ϵint (1.1)

According to [19], both the acquisition and the interpretation error
accounts for a large part of the final measurement in echocardiography.
For the LVEF with the Simpson’s method, they reported a 95% upper limit
of the absolute measurement value difference of 7.8% for the acquisition
variability and of 7.1% for the interpretation variability. This suggests that
the variability introduced in the acquisition step and interpretation step
can be of similar magnitude. However, as the variability is not purely
additive, the effect of reducing variability in one step of the workflow can be
hidden by the remaining variability in the other step. To effectively reduce
variability in the echocardiography workflow, one should reduce the errors
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Chapter 1. Introduction

in both the acquisition and interpretation steps.
Despite their high variability, echocardiography measurements forms

the basis for clinical decisions. The variability is particularly challenging
in the case of repeated examinations since it does not allow to detect small
changes in the heart function. For LVEF, the minimum detectable change is
about 8.5% to 10% [20, 21], which is relatively large compared to the range
of physiologically possible LVEF, between 10% and 70%.

1.4 Motivations and aims of the thesis

The overall aim of this thesis is to investigate the use of DL to address the
aforementioned limitations of the echocardiography workflow. Overcoming
these limitations can benefit expert users within the hospital echocardiog-
raphy laboratory and enable non-expert users to perform echocardiography
at the point of care.

From a non-expert user perspective, an aim of this thesis is to make
echocardiography image acquisition easier in order to use the hand-held
devices to their full potential. From an expert user perspective, the aim is to
ensure highly standardized views in order to reduce the acquisition error for
more informed clinical decisions.

Regarding the interpretation step of the workflow, using DL has been
a topic of high interest in the last years. However, recent review studies
[7, 8] invite to moderate the expectations towards the use of DL for
medical image analysis. Identifying the strengths and weaknesses of DL
in the context of automatic echocardiographic measurements is therefore of
utmost importance.

On this basis, the specific aims of this thesis are:

• Aim 1: Investigate the challenges related to the use of DL for
automatic echocardiography measurements, and propose strategies to
mitigate these challenges

• Aim 2: Investigate the use and potential benefits of DL to facilitate
image acquisition and to improve view standardization
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1.5. Summary of the presented work

1.5 Summary of the presented work

This section summarizes the three contributions included in this thesis.
The first contribution is a technical contribution that relates to the use
of DL to automate interpretation of echocardiographic recordings and the
associated challenges. The second and third contributions investigate the
use of DL during echocardiographic image acquisition to improve view
standardization, from technical and clinical perspective respectively.

1.5.1 Challenges and Strategies for Automatic Measurements
with Deep Learning in Cardiovascular Imaging

Deep Learning has shown potential to automate interpretation of echocar-
diographic recordings and to extract measurements from them, by removing
the observer variability [22] and possibly reducing the interpretation error.
However, automatic measurements with DL have not yet fully reached
commercial systems and clinical practice, suggesting that some challenges
remain unsolved.

In this contribution, the left ventricular ejection fraction (LVEF) mea-
surement serves as the use case to investigate the challenges related to the
use of DL to fully automate the interpretation of echocardiographic data
in and end-to-end fashion, where the measurement is directly estimated
from the ultrasound data. First a baseline DL framework is established.
This framework is similar to [23, 24], where the LVEF is estimated from an
apical four chamber recording. The baseline model was then tested on two
additional external datasets to evaluate its relevance in a clinical context.

Performance of the established baseline framework was in line with
the one originally reported in [23, 24] when using the same testing setup.
However, performance on external evaluation datasets was below what
could be expected, suggesting that further investigations were needed.
By analyzing the shortcomings of the baseline framework, three main
challenges related to the use of DL to automate echocardiographic mea-
surements were identified. An overarching challenge was related to the
evaluation of the DL algorithm, where we showed that commonmetrics may
not be robust enough to assess whether a DL algorithm has clinical value.
The second challenge was related to the training data, where imbalance and
lack of diversity resulted in suboptimal performance of the trained model.
The last challenge was related to the generalizability and robustness of DL
models, where we showed that they can perform well on a single dataset
within an initial research setting, but that performance degrades when using
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Chapter 1. Introduction

the models on new datasets, thereby limiting their clinical relevance.
Through the investigation of these shortcomings, some possible miti-

gation solutions emerged. For the evaluation challenge, we proposed an
extended Bland-Altman analysis that is more independent of the test data
demographics, hence allowing the comparison of algorithm performance
across datasets, and that better captures the clinical problem at hand.
To mitigate the training data challenge, we proposed to optimize patient
selection with two strategies: oversampling and enrichment. Finally, the
generalization challenge was addressed by introducing domain knowledge
into the DL framework, mainly in the form of data augmentations. Overall,
this contribution highlights the gap between a proof-of-concept DL model
working in a research setting and a clinically useful measurement method
that is expected to perform properly on all patient populations.

This paper has been submitted for review to Journal of the American College of
Cardiology: Cardiovascular Imaging, and is presented here in its current form.
The candidate was the main contributor to all aspects of the work, except for
acquisition of ultrasound data.

1.5.2 Real-Time Echocardiography Guidance for Optimized Api-
cal Standard Views

Finding the correct 2D cut-plane of the heart represents a cognitive
challenge for the echocardiography operators who do not have access to
the spatial context, but solely rely on a mental representation of the heart.
To simplify the task of apical standard views acquisition, we propose to
use DL to estimate the position of the 2D cut-plane relatively to the heart,
and further guide the echocardiography operators by proposing adequate
transducer movements towards an improved cut-plane. The overall aim of
the method is to optimize the standardization of the structures visualized at
the mitral valve depth.

This second contribution builds upon the method proposed by [11]
which uses 2D slices of 3D ultrasound volumes to generate 2D training
data with a reference position. The strength of this approach is that an
exact reference position for each 2D slice can be obtained directly from
the 3D volume. Extensions from [11] are multiple, with an annotation
method that takes account for variation in the heart morphology and an
improved position feedback that relates to both the rotation and tilt of
the transducer. The trained deep neural networks were extensively tested
on multiple external datasets representative of clinical routine, showing
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robustness to new data and ability to detect minor view standardization
errors. The same deep neural networks were also implemented in a
real-time application, further called scanning assistant, where the current
position of the 2D cut-plane was estimated and recommendations to obtain
better views were displayed on a dedicated user-interface. Preliminary
testing of the scanning assistant showed the potential to detect and quantify
the correct and sub-optimal positioning of apical standard views in real-
time, as well as proposing the correct transducer movements to obtain better
standard views when possible, as shown in Video 4.1.

This paper was published in Ultrasound inMedicine and Biology (UMB), Volume
49, Issue 1, pages 333-346, January 2023. It is presented here in its original
form. The candidate was the main contributor to all aspects of the work, except
for acquisition of ultrasound data.

1.5.3 Real-time Guiding by Deep Learning of Experienced Op-
erators to Improve Standardization of Echocardiographic
Acquisitions

In the previous contribution, we presented the technical building blocks
of a DL based scanning assistant to guide echocardiography users during
the acquisition of apical standard views. This work is a clinical study of
the previously described method, in the context of expert echocardiography
users. In the first inclusion period of the study, sonographers were told to
acquire apical standard views for quantification of heart function, without
knowledge of the actual study aims. After the first inclusion period, the
sonographers were made aware of the study aims and got to familiarize
with the scanning assistant and its user interface on 10 patients each. In
the second inclusion period, each patient got three examinations, a normal
one by a sonographer, one by a sonographer with the scanning assistant and
one by a cardiologist. The latter was used as a reference. This protocol
allowed to compare view standardization for sonographers before they
got informed of the study aims, sonographers who have previously been
trained with the scanning assistant and sonographers actively using the
assistant while scanning. Additionally, this protocol allowed comparison
of sonographers with cardiologists which were considered as the reference
in terms of standardization.

The study had two end-points. For the primary end-point, an expert
cardiologist scored the standardization of all recordings for both periods,
blinded to inclusion period, operator, and use of the scanning assistant
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or not. The proportion of standardized recordings increased by at
least 80% (depending on the view, p<0.01) when using the scanning
assistant in the second period compared to the first period in which the
sonographers did not used the assistant and were not informed of the
study aims. Considering the primary end point being dependent on the
subjectivity of the cardiologist who scored standardization, we introduced
a secondary end-point, in which the view standardization was measured
on all recordings by the DL method itself. Results from this secondary
end-point also indicated a significant increase (p<0.05) in standardization
when the sonographer used the scanning assistant. Overall, the agreement
between the manual scoring by expert cardiologist and automatic DL
analysis reinforces the conclusion on the ability of the trained deep neural
networks to increase view standardization. It further suggests that the
presented method could be used in real-time to increase standardization of
apical standard views, but also retrospectively as a standardization control
tool.

This paper has been submitted for review to Journal of the American College of
Cardiology: Cardiovascular Imaging, and is presented here in its current form.
The candidate was the second author and contributed to development of the
employed DL method, the statistical analysis, as well as writing the manuscript.
Sigbjørn Sæbø was the first author and primal investigator.

1.6 Discussion of results

This thesis focuses on exploring the challenges and opportunities associated
with utilizing DL to enhance the echocardiography workflow. In the first
contribution, three key challenges related to the translation of DL methods
from research to clinical practice were identified, and corresponding
solutions were proposed. Subsequently, this thesis demonstrates that DL
can effectively aid echocardiography operators during image acquisition,
representing a significant opportunity for workflow improvement.

1.6.1 Challenges and Strategies for Automatic Measurements
with Deep Learning in Cardiovascular Imaging

The contribution presented in Chapter 3 highlighted three of the challenges
of using DL to automate echocardiographic measurements. These chal-
lenges were illustrated with the specific use case of left ventricular ejection
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fraction (LVEF) estimation with end-to-end DL, with focus on the clinical
task of heart failure management. Although the chosen end-to-end learning
approach was potentially amplifying the challenges, it is believed that
the highlighted challenges and their mitigation strategies are also relevant
to other approaches such as multi-step approaches, which automate each
individual step of themanual interpretation. The three identified challenges
are discussed in details in the subsections below.

Evaluation challenge

Regarding the evaluation challenge, the proposed extended Bland-Altman
analysis was an attempt to make metrics more independent on the data,
allowing a more fair comparison of the performance of the DL methods on
multiple datasets and benchmarking of the DL methods themselves. The
proposed analysis does not have the ambition of setting a new standard
for evaluation of the DL. It may have some flaws and is more complex
than a regular Bland-Altman analysis, which limits its understandability.
The main objective of the proposed extended Bland-Altman analysis was
to illustrate that DL measurement methods, especially end-to-end ones,
may not fulfill the assumptions for the regular Bland-Altman analysis and
that there is need for an unified approach to quantify and benchmark the
performance of DLmethods, independently of the data they are being tested
on.

In echocardiography, the evaluation procedure is often limited by the
lack of gold standard for the reference values, making the truemeasurement
value inaccessible. In such situation, it is not straightforward to separate the
error in the human reference values from the error the DL estimated values.
In the worst possible case, one may have an ideal DL model estimating
the exact true measurement values, but observe unsatisfactory performance
metrics due to the error in the human reference values. This makes it
difficult to demonstrate that a DL measurement method can surpass human
performance. Specifically for LVEF estimation, [25] claim superiority of
their DL method compared to sonographers. Their results are however
questionable as DL measurements themselves were used as the reference
for most of the subjects. One approach to obtain better manual references
could be to use multiple observers to analyze the images in order to obtain
a consensus reference values. The limitation of this approach is the amount
of manual work required, which hampers the possibility to evaluate DL
measurement methods on large datasets and multiple patient subgroups.
Another worthwhile approach is to obtain LVEF reference values from MRI

12



Chapter 1. Introduction

images and to compare them to DL estimations from echocardiographic
recordings. MRI measurements of LVEF rely on manual tracing of the
LVEF contour, which also may limit the accuracy of the reference values.
LVEF calculation without manual tracing and potentially better reference
values, could be obtained with multi-gated acquisition (MUGA) scanning,
where the volumes of the left ventricle are obtained by counting radioactive
particles with a gamma camera. This approach however involves the use
of a radiotracer, which limits prospective acquisition of evaluation data.
Retrospective use of MUGA references values is not fully possible either
as MUGA is recommended for only a certain type of pathology (mostly
for patients undergoing cardiotoxic cancer treatment), hence limiting the
diversity in the evaluation data.

Finally, it was observed in our work a correlation between the difference
and average in the Bland-Altman plot, which may be due to a reduced DL
measurement error compared to the manual measurement error. Whether
this is an artifact or a real consequence of reduced measurement error
warrants further investigations, with the possibility to establish a formalism
to demonstrate that onemeasurementmethod has a reduced error compared
to the other.

Training data challenge

The second challenge highlighted by this contribution was related to the
training data, and its lack of diversity. As mitigations for these issues, two
techniques were proposed: data enrichment and data upsampling. The
former is relevant for prospective acquisition or annotation of data, where
one intend to maximize data diversity relatively to the task to be solved. The
latter is relevant for retrospective use of data.

These two techniques intend to make the deep neural network learn the
relevant heart features in the images rather than the underlying statistic
of the training dataset. For the presented use case, both these techniques
contributed to improve the performance of the trained deep neural network,
without increasing the data amount. These two techniques were especially
useful for small dataset sizes, suggesting that increasing the data amount
may not necessarily be the first action to increase DL performance. The
effect of these techniques vanished for larger dataset sizes, but it was not
found that they degraded the performance.

It is also worth noting that end-to-end learning methods are trained
to directly estimate a measurement value. This makes them prone to
learn underlying statistical patterns from of the training data, and may
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introduce issues such as heteroscedasticity. In that case, data resampling
and enrichment strategies were particularly useful to mitigate this type of
issue. On the other hand, in multi-step DL pipelines, each component is
trained to perform a specific action, independently of the measurement
value. Thus, multi-step DL pipelines are less prone to learn the underlying
statistics in the training data, and the value of data resampling and
enrichment strategies can be expected to be less prominent than in end-
to-end learning.

Another approach for increasing training data diversity could be to use
data frommultiple datasets. However, this introduces the risk of the dataset
acting as a confounding factor, in a situation where the DL method learns
shortcuts and associates its output to the dataset rather than to the images
features [26]. Mixing of multiple datasets warrants extreme carefulness and
rigorous testing.

Generalization challenge

Generalizability and robustness of the DL method was the third challenge
investigated in this contribution. To start with, it is worth noting that the
available data in fundamental DL research is much more heterogeneous
than in DL applied to echocardiography. Size of the datasets plays an
important role in heterogeneity. ImageNet [27], one of the largest image
datasets contains >14’000’000 images whereas the largest echocardiography
datasets in 2023 contains around 10’000 recordings [24]. Beyond the size
of the datasets, heterogeneity also depends on the way the datasets are
constructed. ImageNet is constructed with images from the web, compiling
mostly images from individuals taken with their own camera. On the other
hand echocardiography datasets are constructed with images often acquired
within a single hospital and/or with devices from the same manufacturer.
Additionally, echocardiography datasets follow strict privacy regulations.
As a consequence, the data domain is larger for general purpose datasets
than for echocardiography datasets, making generalization to never seen
data a greater challenge for the latter.

Limited generalization capabilities were confirmed in the presented
echocardiography use case, where the initial baseline DL model showed
good performance on internal testing data, but significantly degraded
performance on external testing datasets from other centers acquired with
scanners from other manufacturers. This motivated the use of data
augmentations, a way of introducing echocardiography domain knowledge
into the DL framework, to mitigate the observed generalization issue.
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In practice, these augmentations intended to deconstruct the typical
appearance of an echocardiography image and to remove the image
attributes that could be linked to the manufacturer of the scanner, whereas
they preserved the anatomy of the heart structure. The aim of this was
to increase the focus of the deep neural network on the heart structures,
regardless of the assumptions of what an ultrasound image looks like
and of the post-processing techniques. The improved performance on the
external datasets when using these augmentations suggests the validity of
the approach.

In echocardiography, generalization is a more complex problem than
only the image appearance. For applications using spatiotemporal data
as in the presented use case, it could also have been relevant to consider
the frame rate as a potential generalization issue since the internal and
external datasets had limited overlap in the frame-rate of their respective
recordings. Further, there are differences in the clinical protocols which
may cause generalization issues and may be worth investigating. One
example is the use of apical standard views focused on the left ventricle,
by some centers, whereas other centers also include the left atrium.
Operator experience and variable image standardization across datasets
may also introduce performance disparities. To this regard, indication
of image standardization, for example obtained with techniques such as
those presented in Chapter 4, may help to quantify standardization at
dataset level, and further interpret the generalization results across multiple
datasets. Beyond these possible differences in the input image data, the
precision and accuracy of the reference values plays a role in quantification
of generalization. When comparing generalization across two datasets, if
one have significantly less precise and accurate reference values than the
other, differences in the performance metrics would arise independently of
the image generalization capabilities of the DL model.

Finally, the limited heterogeneity of echocardiographic datasets ques-
tions the common DL practices of using a subset of the internal dataset
to tune model hyperparameters and choose the best model parameters,
independently of other external datasets. This practice relies on the
assumption that the internal validation data is representative of future
data, so that the hyperparameters choice and model parameters are optimal
for future data. In the eventuality where the validation data is not
heterogeneous enough, and consequently not representative of future
clinical data, there is a risk for the DL model to be over-optimized to the
internal data.
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Future work

In the presented work, focus was placed on the challenges related to the
use of DL to automate echocardiographic measurements, with emphasis
on quantifying the improvements allowed by the proposed mitigation
strategies. Establishing state of-the art performance was not the goal of this
work.

In further work, emphasis could be placed on maximizing the perfor-
mance for clinical use of the LVEF predictions. Adding other views than
the apical four chamber to the framework could contribute to make more
informed automatic estimations. Supporting low frame rate is also relevant
to investigate considering that portable echocardiography devices operate
at a limited frame rate and potentially miss the end-diastolic and the end-
systolic times. Beyond the external testing related to new devices presented
in this work, it is also important for clinical use to test thoroughly the
method on different pathology subgroups in order to guarantee satisfying
performance on a wide spectrum of patients.

Another direction worth investigating is to compare the presented end-
to-end DL approach with multi-step approaches similar to [12] for the
estimation of LVEF. Comparison at both the dataset level and of individual
subjects could provide new insights on the strengths and limitations of
each method. Further, end-to-end and multi-step approaches could be
used in parallel to provide a single measurement with an estimation of
the uncertainty. Such a redundant system could help detect failure cases
when the two approaches disagree on the estimated measurement value and
subsequently warn the operator. Ideally, redundant measurement methods
should use different DL approaches, different training data and be designed
by different teams to ensure their independence.

Beyond LVEF estimation, end-to-end DL approaches can also be used
for other echocardiography interpretation tasks. Considering their ability
to deal with spatiotemporal data, a potential use case could be to analyze
aortic or mitral valve movements and the presence of valve insufficiency
(leakage) or stenosis. In current hospital practice, these diseases are usually
screened from a parasternal long-axis view and assigned an initial semi-
quantitative measurement such as healthy, mild, moderate or severe. For
subjects with findings, this semi-quantitative measurement is refined with
the help of a more detailed examination, relying on multiple heart views,
high-end scanners and highly qualified clinicians. From a DL perspective,
this means that there exists data pairs where parasternal long-axis views
are associated with a refined semi-quantitative measurement derived from
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a comprehensive examination. A question worth further investigation
is whether a DL model is able to retrieve the refined semi-quantitative
measurement from a parasternal long-axis view only, using image features
clinicians may not see. If proven possible, this could contribute to enable
screening of valve disease at the point of care, with portable devices and
without the need for expert users. A similar approach has recently been
used to to detect heart failure with preserved ejection fraction from a single
apical four chamber view (A4C) recording [28].

1.6.2 Real-Time Echocardiography Guidance for Optimized Api-
cal Standard Views

The contribution presented in Chapter 4 describes a DL scanning assistant
designed to help the echocardiography operators at the acquisition step
of the echocardiography workflow. The core components of the scanning
assistant are the DL models in charge of analyzing the images. The outputs
of the DL models are then converted into a feedback which is presented to
the operator through an intuitive user interface. The DL models can also
be used independently of the real-time scanning assistant for retrospective
analysis of echocardiographic recordings.

As of 2023, the concept of real-time guiding of echocardiography users
to acquire standardized views of the heart has been addressed by few
technical research publications (clinical publications are discussed later in
Chapter 1). In 2012, [29] used a Kalman filter method to help the operators
acquire the apical four chamber view. However, their approach is limited
by the fact that only this view is studied. In 2019, [30] investigated the
use of DL to guide echocardiography users. Their work was limited by
the lack of prospective testing to demonstrate the validity of the proposed
method. More recently, in 2018, [11] published what forms the base of the
contribution presented in Chapter 4, where the key idea was to use 2D slices
of 3D echocardiography recordings as the training material of a deep neural
network.

The main advantage of using 2D slices from 3D recordings is the
possibility to simulate transducer movements within the volume and to
express these movements directly in a coordinate system attached to the
heart. We believe this is more reliable and more practical than using an
external positional sensor placed on the transducer, where the coordinate
system is attached to the transducer. The use of external sensor is prone
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to errors due to patient body and respiratory movements (the heart moves
within the chest when the patient breathes) and drift of the positional
sensor. For maximal context information in the 2D slices, only 3D
recordings with a large field of view and increased scanning depth were
used.

A consequence of using 2D slices from 3D volumes for the training
is that the slices have a different appearance compared to the 2D data
normally used in the clinic, with differences in the image shape and
the characteristic speckle pattern. Similarly to the contribution from
Chapter 3, generalization from 2D slices to regular 2D recordings was
achieved by using data augmentation deconstructing the appearance of
echocardiography images but preserving the heart structures in order to set
the focus of the DL models onto the heart structures only. Additionally, a
blurring layer was added straight after the deep neural network input as a
way of smoothing the speckle pattern with the aim of making the 2D slices
and regular 2D recordings more similar in appearance. The performance
improvements related to the use of data augmentation and pre-processing
suggests the validity of the proposed techniques, similarly to the previous
contribution.

Another challenge was the evaluation of the deep neural networks as,
for the present use case, 2D slices from 3D volumes were not representative
of clinical use. Metrics obtained on such 2D slices have consequently
limited clinical value. Further, there is a lack of clear guidelines that
define what perfect apical standard views are, and are not, making the
extraction of quantitative performance metrics challenging. Considering
the clinical task - guiding the operator transducer movements towards
optimal apical standard views - it was chosen to create a specific quantitative
metric grasping whether the DL method was able to propose transducer
movements in the correct direction, independently of the definition of
a standard view. In the lack of clear consensus on how the correct
standard views can be defined, the DL method was calibrated using two
large retrospective datasets in which it was assumed that the recordings
were standardized on average. Finally, the calibrated DL models were
wrapped into the scanning assistant, which was shown to be able to detect
both standard and non-standard apical views accurately, providing another
evidence of the method validity.

The main limitation of the presented work lies in the assumptions
that the operator had found the apex of the heart, removing the need for
providing a feedback on transducer translations in the skin plane. This is
a strong assumption knowing that non-expert users may have difficulties to
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find the heart apex and the correct intercostal space. At the time being, the
proposed method appears as more mature to help experienced users like
sonographers rather than to guide non-expert users.

Future work

The limitations of the current method should be addressed in further work
to allow transducer guidance along more degrees of freedom. Finding the
apex of the heart is challenging as it involves out of plane translations of
the transducer, for example from one intercostal space to another. For
such movements, it may not possible to give a continuous feedback to the
operator as the signal quality may fall dramatically when the transducer
comes over a rib, hiding all heart structures and preventing any DL
algorithm to make a consistent prediction. Additionally, it is unsure
whether the approach of using slices from 3D recordings is usable to
predict translations in the skin plane as 3D recordings provide little context
information and have a degraded signal quality at low depth. Apical
foreshortening detection, as proposed by [31] and [32], could help warn the
used when the apex is not below the transducer. These approaches however
do not indicate in which direction the transducer should be translated. It
could also be worth investigating an approach involving classification of
all the possible transducer position errors combined with heuristic rules to
determine the required transducer movements.

Transducer tilt displacements in the imaging plane were not investigated
in the presented work and also warrant further research. Unlike out-of-
plane displacements, the required heart structures are visible, at least partly,
in the image. The objective of the in-plane displacements is to optimize
the position of these structures within the field of view, for example by
aligning the ventricle axis with the transducer axis. The required transducer
movements for such optimizations could for example be derived from the
geometrical transformation between the ideal positioning of some heart
landmarks within the field of view and the current position of these
landmarks estimated by existing 2D segmentation tools of the left ventricle
[33].

Finally, performing a pilot clinical study involving non-expert users
could also be relevant in order to better align the clinical need and the
foreseen necessary improvements of the method.
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1.6.3 Real-time Guiding by Deep Learning of Experienced Op-
erators to Improve Standardization of Echocardiographic
Acquisitions

The contribution presented in Chapter 5 is a clinical study of the technical
methods presented in Chapter 4. From a clinical perspective, guiding
echocardiography users has been a topic of interest, especially for start-up
companies surfing on the DL wave.

In line with the limitations of the technical method, this study targeted
echocardiography expert users who are able to find the correct initial
placement of the transducer. This is a notable difference with other studies
which focused on non-experts users. Another difference is that the scanning
assistant under investigation focuses only on the three apical standard
views, whereas other studies and start-ups products have claims on more
standard views. Our choice for the apical standard views was based on
the high relevance of these views in clinical practice and the difficulty to
acquire them, compared to views from the parasternal window which are
more accessible. To the best of our knowledge, this presented study is the
first using a control group of operators not using the DL tool, and hence
the first in which the actual value of a DL guiding tool is quantified. It
is unfortunate that all three studies investigating the value of the Caption
Health guiding tool [34–36] have the same limitation, namely the absence
of a control group of operators having the same level of experience, but do
not use the tool.

In this work, the view standardization was addressed independently
from the image quality, although they are coupled in practice. It was shown
that, within a single patient, sonographers using the scanning assistant
achieved better standardization than sonographers who did not. This
suggests that there is room for view optimization, independently of the body
habitus of the patients and how challenging they are to scan with regard to
image quality.

A relevant insight gained in this study, confirming observations done
during the technical development of the method, relates to the standard-
ization of the apical two chamber views. The retrospective DL analysis of
all the recordings indicated that operators not using the real-time DL tool,
including cardiologists, had a smaller amount of rotation from apical four
chamber to apical two chamber than sonographers using the real-time DL
tool. Meanwhile, manual retrospective assessment of the recordings did not
show that the amount of standardized recordings acquired by sonographers
using the scanning assistant was significantly different than for recordings
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acquired by cardiologists. These two observations together suggest that
when acquiring the apical two chamber view, rotating the transducer further
away from the apical four chamber view than what is sometimes done
in clinical practice still results in acceptable two chamber views. From a
clinical perspective, this could be interpreted by the fact that the operators,
after having acquired the apical four chamber view, rotate the transducer
until the right ventricle disappears and only two chamber remain visible.
As exemplified in Video 4.2, this can lead to views with a thick septal wall
or a slightly visible right ventricle during part of the heart cycle. Further
rotation from the position where the right ventricle disappears, as suggested
by the scanning assistant, mitigate this issue and lead to more anatomically
correct apical two chamber views. This insight has potential implications for
measurements using the apical two chamber view, especially left ventricle
volumes and ejection fraction measurements. Indeed, the biplane method
of disks to calculate these indices assumes two orthogonal imaging planes.
In situations where the rotational position of the apical two chamber is too
close to the the apical four chamber, this assumption is violated and the
biplane volume calculation regress towards a repeated monoplane volume
calculation. In this context, the proposed scanning assistant can be relevant
to ensure a sufficient amount of transducer rotation between the apical four
chamber and apical two chamber views.

One strength of the presented DL method was to help the operator
acquire the three best cut planes corresponding the three optimal apical
standard views, improving from the common assumption that the views
are separated from each other by 60° transducer rotation. However, some
clinicians rely on the 60° assumption between standard views as it easily
connects to the bulleye plots, which are highly relevant to strain analysis
and coronary perfusion. This illustrates that echocardiography practices
are non-unified, which challenges the development and adoption of generic
tools.

The present clinical study also revealed that sonographers using the
assistant used around three times as much time compared to the sono-
graphers not using the assistant for acquiring the three apical standard
views. This increase in acquisition time could also have contributed to
the increased standardization that was observed, independently of the use
of the assistant. Further, increased acquisition time is not acceptable for
current clinical practice with overloaded echocardiography laboratories. It
is believed that integrating the scanning assistant into the scanner display
rather than using a prototype with an external screen can reduce this time.
Additionally, the inclusions were performed over two short time intervals
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and each sonographer could familiarize with the scanning assistant with 10
patients, allowing for minimal learning only. It is expected that acquisition
time decreases after a longer period as the operators get more familiar with
the scanning assistant.

Future work

In this clinical study, the main focus was on evaluating the benefits for
sonographers of using the real-time scanning assistant. Further work
should investigate whether sonographers can improve their standardization
skills over a longer period of time, without systematic use of the scanning
assistant.

As mentioned earlier, studying the effect of the proposed real-time
scanning assistant on non-expert users is relevant to establish preliminary
results and identify directions for future technical developments. Ideally,
such study should be performed using portable ultrasound devices and at
the point of care to capture the clinical value and limitations of the proposed
assistant when used out of the hospital.

Another use case of the presented method that should be investigated
is teaching of echocardiography. For this use case, the method is not
used in a diagnostic process, which reduces the risk in case of failure. It
is believed that the intuitive feedback of the scanning assistant and its
responsiveness can help medical students and doctors in specialization to
learn echocardiography.

The present study also showed that the core deep neural networks
also can provide reliable analysis of view standardization on retrospective
settings. A potential use case of the method could be to generate
retrospective reports of view standardization of individual users within
entities such echocardiography laboratories. By identifying scanning habits
and eventual mistakes of individual operators, standardization reporting
could help to prioritize training for operators who need it the most and
improve performance of echocardiography laboratories in the long run. In
this use case, the risk associated with using the DL method is low as there
is no direct interference with the patient diagnosis or treatment. If the
method is proven working, this way of interacting with clinicians could also
contribute to increase their trust into DL tools for echocardiography.

The last use case of the proposed method is data curation and quantifica-
tion of view standardization of large datasets for research purposes. Better
insights on the data at hand can indeed help to adapt study design and to
interpret the results.
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Finally, it is decisive for the adoption of the proposed method to demon-
strate its added value for further measurements of the heart function. In a
point of care scenario with handheld ultrasound, the method should enable
non-expert operators to record images useful for initial measurements.
In the hospital scenario, acceptance of the method is conditioned by its
ability to reduce the measurement error related to the image acquisition.
Proving this is however challenging due to the additional interpretation
error introduced when the measurements are performed. Future research
should therefore focus on quantifying the acquisition error independently
of the measurement error.

1.7 Concluding remarks

In this thesis, the focus has been to investigate the use of DL in the
echocardiography workflow. Results indicate that echocardiographic image
interpretation with DL is challenging and that addressing these challenges
requires ultrasound, medical and statistical knowledge. When aware of
these challenges, DL represents immense opportunities for echocardiogra-
phy. It has the potential to improve workflow in hospitals echocardiography
laboratories, but also to increase the availability of echocardiography at
the point of care in the context of low-cost handheld devices. This
can contribute to improve patient care and to tackle the burden of
cardiovascular disease worldwide.
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2Background

This chapter provides essential background information required to un-
derstand this thesis, establishing the necessary basis for the subsequent
investigations. It begins with an overview of echocardiography to contextu-
alize the work contained in the thesis and proceeds with an introduction to
deep learning (DL) basics to understand the methodology used in the work.
Additional DL concepts specifically relevant for echocardiographic image
analysis are also presented. Finally, some statistical background is provided
to interpret the results in the context of DL applied to echocardiography.

The concepts described in this chapter are restricted to that necessary
for the understanding of this thesis, with some intentional omissions. A
more extensive background on echocardiography can for instance be found
in Essentials Echocardiography [1]. Regarding the DL concepts, one can
refer to Deep Learning [2] which proposes a theoretical approach and to
Deep Learning with Python [3] for a more practical approach. Finally, some
relevant statistical concepts can be found in Comparing Clinical Measurement
Methods - A Practical Guide [4].

2.1 Echocardiography

As a widely available, portable, non-ionizing and real-time imaging
technique, echocardiography has become the cornerstone of cardiac imaging
modalities, providing valuable information about the heart’s chambers,
valves, blood flow patterns, and overall cardiac function. With different
devices, it is used throughout the whole cardiac care path, in emergency
services, for routine, follow-up, and in the operating room.

The most practiced form of echocardiography, and subject of this thesis,
is trans-thoracic echocardiography (TTE) in which an ultrasound transducer
is placed on the patient’s chest, allowing non-invasive imaging of the
patient. Other invasive forms of echocardiography, mostly used in the
operating room, are outside the scope of this thesis.

Echocardiography uses a transducer to emit sound waves that penetrate
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the body. This wave emission is called transmission. These sound waves are
reflected back by the medium (tissue, blood, bones, etc.) and received by
the same transducer (reception). The received signals are then transformed
into pixel data using beamforming algorithms. Based on this principle of
transmission-reception, echocardiography has evolved throughout the years
to become a versatile imaging technique, allowing real-time visualization of
tissue and blood, in terms of both size and velocity.

According to the current guidelines [5], a typical echocardiography
examination within the echocardiography laboratory involves a large num-
ber of quantitative measurements relying on many ultrasound recordings
acquired from different transducer positions. Such extensive examinations
allow precise quantification of the heart function but are labor intensive.
Furthermore, the availability of skilled operators capable of performing
echocardiography is limited, with the majority of them working within
hospital settings.

The most common modality is brightness mode (B-mode), providing
a grey-scale visualization of the heart structures. Available on most of
ultrasound scanners, from high-end scanners (2.1a) to portable scanners
(2.1b), two-dimensional (2D) B-mode is the central modality in ultrasound
imaging. It is used by the operator to first find the correct cut-plane
of the heart and to further measure the size of the heart structures.
Three-dimensional (3D) B-mode imaging is currently reserved for high-end
scanners. Echocardiography has multiple other modalities, many based
on the Doppler effect to measure blood velocity with continuous wave
Doppler (CW), pulsed wave Doppler (PW) or color flow imaging (CFI), and
to measure tissue velocity with tissue Doppler imaging (TDI). In this thesis,
B-mode is the modality of interest.

2.1.1 TTE B-Mode imaging

Due to the limited space between the ribs to image the heart, TTE B-mode
imaging uses phased-array transducers which fits in between the ribs. To
be able to image a wide region covering the width and depth of the heart
with an array of small size, phased-arrays use electronic beam steering to
send ultrasound waves in different directions. In practice, this is done by
applying transmission and receive delays to the different elements of the
transducer. Once the received signals are processed, the resulting pixel
data is in either polar coordinates in the case of 2D imaging, or spherical
coordinates in the case of 3D imaging. Further conversion to cartesian
coordinates system recovers the physiological appearance and dimensions
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(a) High-end scanner (b) Portable scanner

Figure 2.1: Left: GE Healthcare Vivid E95 cardiac ultrasound scanner, Right: GE
VScan Air SL (GE Vingmed Ultrasound, Horten, Norway)

of the structures that were imaged.

For low-end echocardiography devices, a limitation is the lower available
computational power to process the received signals in real-time, and the
limited battery energy supply and thermal considerations required for
portable devices. Currently, this results in a limited image quality and
frame rate of the images acquired with these devices. Future technological
developments increasing the available computational power for the same
cost can be expected to mitigate this issue.

High-end scanners have more computational power available, allowing
3D imaging capabilities. For these scanners, the limitation in frame
rate is a physical one, related to the maximum speed of (ultra)sound
in human tissue. Similarly to using short aperture time for taking a
clearly defined picture of a moving object with a camera, the time to
take a single frame of the moving heart should be short relatively to the
heart movement. However, and unlike light waves that propagates at
the speed of light, the speed of sound for ultrasonic waves in the body
is approximately c=1540ms-1, which fundamentally limits the temporal
resolution of ultrasound imaging. The time tf to acquire an US frame is
proportional to:

tf ∝ na ·ne ·
2z
c

(2.1)
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where na (resp. ne) are the number of beams in the azimuth (resp. elevation)
directions and z the imaging depth. For 2D imaging, ne = 1, and the limited
speed of sound still allows frame rates >25 FPS, which is considered real-
time for B-mode. However, the number of beams to be transmitted and
received is squared (at constant spatial sampling) in 3D imaging, which
significantly increase the time to acquire a frame. To get an impression,
using 2.1, the time required to acquire a 14cm deep volume with a 60°
field of view width in both the azimuth and elevation directions and a
lateral sampling of 1° would for example be 0.65sec (corresponding to a
frame rate of 1.53FPS), which is too slow considering that a heart beat
typically lasts between 0.5 and 1.5 seconds. This leads to a trade-off
between image quality and image frame rate, as a higher fundamental
image resolution, achieved by increasing the imaging pulse frequency,
bandwidth, and aperture, requires more image lines to result in a properly
sampled image. Another solution is the use ECG gating, which consists
in acquiring multiple sub-volumes through several heart beats, which are
later synchronized and stitched using the ECG signal. However, ECG gating
assumes constant heart rate of the patient (no arrhythmia) and that the
transducer is held still. Deviations from these assumptions causes stitching
artifacts. This limitation of 3D imaging makes that 2D imaging is still the
preferred choice for some measurements such as strain.

2.1.2 Heart anatomy

The heart is the central component of the cardiovascular system, ensuring
the circulation of blood and vital nutrients throughout the body, and the
removal of waste products such as carbon dioxide. The heart has two sides
that work synchronously: the right side and the left side. Each side is
composed of an atria, a ventricle and two valves that ensure unidirectional
flow as illustrated in Fig. 2.2. The apex region of the heart refers to the
pointed tip or bottommost portion of the organ, while the base region
corresponds to the atrium side, which is the top and broader part of the
heart.

The function of the right side is to pump the blood to the lungs. The
right atria receives deoxygenated blood from the body and transfer it to the
right ventricle which eject it towards the lungs where the carbon dioxide
gets filtered out and replaced by oxygen from inhaled air. The function of
the left side is to pump the blood to the whole body. The left atrium then
receives the newly oxygenated blood from the lungs, transfer it to the left
ventricle which further pumps it out to the whole body. Of the two sides,
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Figure 2.2: Cross-section of the heart showing chambers, valves and flow directions.
Adapted from cardofmich.com

the left side is the most powerful and the one which receives most attention
in clinical examinations.

The heart cycle is composed of two main phases: the diastole and the
systole. During the diastole, the mitral and tricuspid valves are open,
whereas the aortic and pulmonary valves are closed, and blood flows into
the ventricles from the atria. The end of the diastole (ED) is marked by
the mitral valve closure. During the systole, the mitral and tricuspid valves
are closed and muscular contraction ejects the blood through the aortic and
pulmonary valves that are open. The end of the systole corresponds to the
closure of the aortic valve. The Wiggers diagram in Fig. 2.3, gives more
details on the heart phases, and relations with pressures and volumes.

Various physiological factors such as age, gender and physical activity
impact the heart function. Pathological factors such as ischemic heart
disease or coronary artery disease can also impair the heart’s ability to
pump blood effectively. Additionally, congenital heart defects and valvular
abnormalities can disrupt the normal flow of blood within the heart.
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Figure 2.3: Wiggers diagram of the healthy heart, showing relation between left
ventricular volume, pressure and valve events. Source: Wikimedia Commons

2.1.3 Apical Standard Views

TTE can be performed by placing the ultrasound transducer in different
positions, called acoustic windows, on the chest of the patient. The four
main windows to image the heart are the apical, parasternal, subcostal and
suprasternal. These are illustrated in Fig. 2.4. In 2D echocardiography,
different rotation, tilt and translation maneuvers from one of these acoustic
windows allow for different cut-planes of the heart. The relevant cut-planes
useful for establishing further measurements are defined as standard-views,
which follow specific rules on which heart structures should or should not
be visible in the images [5].

In this thesis, the focus is placed on the standard views acquired from the
apical window, called apical standard views, from which many quantitative
measurements such as left ventricular ejection fraction (LVEF) are obtained.
The apical standard views are among the most difficult to acquire due to
small intercostal space and respiratory movements. The three main apical
standard views are:
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Suprasternal

Parasternal

Apical
Subcostal

Figure 2.4: The four main acoustic windows for echocardiography. Source:
SonoSim, Inc

• the apical four chamber view (A4C, Fig. 2.5a), in which all four
chamber of the heart should be visible, together with the mitral and
tricuspid valves.

• the apical two chamber view (A2C, Fig. 2.5b), in which only the left
atrium and ventricle should be visible, together with the mitral valve

• the apical long-axis view (ALAX, Fig. 2.5c), in which only the left
atrium and ventricle should be visible, together with the mitral valve
and the aortic valve leaflets.

In the apical views, the transducer is usually placed on the 5th
intercostal space, with the heart apex located near the transducer and the
base further away from it. The left ventricle should ideally be placed at
the center of the field of view (FOV), and the three apical standard views
could theoretically be obtained with a simple rotation of the transducer [1].
Additionally, the transducer position should also be adjusted to maximize
the left ventricle area [5]. However, these definitions of the apical standard
views remain vague, and leave room for preferences, which may induce
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(a) Apical Four Chamber

(b) Apical Two Chamber (c) Apical Long-Axis

Figure 2.5: Examples of the three apical standard views. LV: Left ventricle, LA: Left
atrium, RV: Right Ventricle, RA: Right atrium, Ao: Aorta

subjectiveness and interpretation errors, both at the individual and at the
echocardiography laboratory level.

2.1.4 Left Ventricular Ejection fraction

Left ventricular ejection fraction (LVEF) is an important clinical measure-
ment used to assess the heart function. It quantifies the percentage of blood
ejected from the left ventricle at each contraction, providing information on
cardiac pumping efficiency.
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LVEF relates to the volume of blood ejected during the diastole (stroke
volume) compared to the end diastolic volume and can be expressed as:

LVEF =
Stroke volume

LVVED
· 100 =

LVVED −LVVES

LVVED
· 100 (2.2)

where LVVED (resp. LVVES ) is the left ventricular volume at end diastole
(resp. end systole)

Normal LVEF values typically range between 50% and 70%, and
values below this range are generally indicative of reduced heart function
[6, 7]. LVEF serves as a critical prognostic indicator in several cardio-
vascular diseases, including heart failure, coronary artery disease, and
cardiomyopathies. LVEF can also be used to assess disease progression,
response to interventions or response to cardiotoxic treatments. The current
recommended method for calculating LVEF in 2D echocardiography is the
2D biplane method of disks. LVEF calculation from 3D ultrasound imaging
is also possible, but not available on low-end and portable systems.

Single-plane method of disks

The single-plane method of disks (MOD), also called Simpson’s rule, is used
to estimate the volume of heart chambers from a 2D echocardiographic
frame. Its algorithm is described below:

1. Manual delineation of the endocardial border (Fig. 2.6a). The two
mitral annuluses are joined by a straight line.

2. Automatic detection of the ventricular long axis of length lLA, with
ends at the center of the mitral valve and at the apex (Fig. 2.6b).

3. Automatic tracing of N , typically 30, diameters of length di , equally
spaced along the long axis and orthogonal to it (Fig. 2.6c)

4. Volume calculation following equation (2.3), assuming a circular
shape of the left ventricle.

LVVsingle =
lLA
N

N∑
i=1

π · d2i (2.3)

This single-plane method has several drawbacks. One of them is the
assumption that the disks are circular. In practice, this is not necessarily
the case for the ventricle, and may lead to over- or under-estimation of
the calculated volume. Another drawback is that the possible presence
of apex foreshortening (the 2D imaging plane not cutting the heart at the
apex) [8], which may cause an underestimation of the ventricle length lLA
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(a) Manual delineation of the
endocardium

(b) Automatic tracing of the
ventricle long-axis lLA

(c) Automatic tracing of the
diameters di

Figure 2.6: Method of disks exemplified on an apical four chamber view

and introduce error in the measured volumes. Finally, as the volume is
proportional to the square of the diameters, small errors on the tracing of
the endocardium may result in large volume under- or overestimations.

Biplane method of disks

The biplane MOD intend to mitigate the limitations of the single-plane
MOD and is the current recommended method to calculate the left
ventricular volumes and further establish LVEF from 2D echocardiography
[5]. The biplane MOD uses two orthogonal imaging planes with long
axis lengths lLA,1 and lLA,2 and diameters di,1 and di,2. Biplane volume
calculation improves from single-plane by assuming an ellipsoidal instead
of circular shape of the ventricle, and corrects for foreshortening by taking
the maximum long axis length of the two views:

LVVbiplane =
max(lLA,1, lLA,2)

N

N∑
i=1

π · di,1 · di,2 (2.4)

Although this approach is the recommended for calculating left ventric-
ular volumes, it still suffers from major limitations:

• The correction for foreshortening remains an approximation, and is
inefficient if both imaging planes are foreshortened

• It is assumed that the two imaging planes are orthogonal. This is
however not guaranteed in 2D imaging setups that use the A4C view
for one plane and the A2C or ALAX view for the other plane.
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• The biplane method requires two delineations of the endocardium
at end diastole (ED), and two delineations at end systole (ES). This
procedure is time consuming and has multiple error sources, in the
choice of ES and ED frames and in the endocardium delineations.
These volume errors further add up to each other in the LVEF
calculation (2.2). To reduce these errors and account for interbeat
variability, guidelines [5] recommend to perform LVEF calculation on
three heart cycles, which is rarely done in practice.

These limitations translates to high intra- and inter-observer variability [9–
12] and hamper the possibility to detect slight LVEF changes in repeated
examinations.

2.2 Deep learning for echocardiographic image analy-
sis

In this thesis, the use of DL within the echocardiography workflow is
investigated. The core of DL is deep neural networks, which are algorithmic
models that can learn complex relationships between input and output data
through a training procedure. In the case of medical imaging, this training
procedure can approximate the human learning process that associates
input image data to an output, which can be for example a specific skill,
a measurement or a diagnosis. The training procedure automatically finds
the relevant features that contribute to predicting the correct output from
the images, without the need for human engineered features. This can
be regarded as a strength as DL may be able to discover and learn more
complex features and relationships than a human could handle. On the
other hand, deep neural networks are not as robust as humans with regard
to confounders [13] and may not be easily explainable, which causes trust
issues in the medical community.

The four elements required to train a deep neural network [2] are:
1) training data, 2) a loss function, 3) an optimization procedure and
4) a neural network architecture. Out of the four types of learning
(supervised learning, semi-supervised learning, unsupervised learning and
reinforcement learning), only supervised learning is used within the scope
of this thesis. Supervised learning uses labeled training pairs, which
means that every input x is associated with an output y, the label. In the
training pairs, the output label is often obtained by human interpretation
and reasoning from the input, similarly to how clinicians would think or
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do in their daily clinical practice. The training data hence embed the
human knowledge in the form of many individual pairs. The objective of
supervised learning is to establish a model capable of replicating the human
interpretation and reasoning to be able to automatically predict output
on future input data, as clinicians would have done it, in what is called
inference.

The DLmodel can be regarded as a function f that learns the parameters
θ that ensure the best possible mapping between the input data x and the
associated output label y. For a given input x, the output prediction of the
DL model is denoted ŷ.

ŷ = f (x|θ) (2.5)

In the field of DL, the labels are often referred as ground truth. In this thesis,
the term reference is preferred since human labeling is subject to high intra-
and inter-observer variability in echocardiography [9–12]. This variability
is challenging for both the training and evaluation of DL models.

2.2.1 Neural network architectures

There exists different families of neural network architectures, and a large
amount of variants within each family depending on the task to solve
and on other requirements such as network size or runtime. Modern
families of neural networks used for image analysis include Convolutional
Neural Networks (CNNs), Transformers Neural Networks andGraphNeural
Network. For all these families, the networks are organized in layers, with
input layers, hidden layers and output layers.

In this thesis, only CNNs were used. Understanding the content of their
hidden layers is not necessary for interpreting the results and will not be
pursued here. Regarding a neural network as a function f that maps image
or video data to an output probability vector is sufficient:

f : Rx×y×z×t → R
n (2.6)

where x and y are the number of pixels in the lateral directions, z in the
depth direction, and t the number of frames. y = 1 for 2D imaging, and
t = 1 for single frames without temporal information. The output vector
represents a confidence score for each of the n classes, and all its elements
should sum to 1. This is achieved by using a softmax function as the output
layer. For each output element corresponding to class i, its confidence is
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calculated using the softmax function defined as:

σ(x)i =
exp(xi)∑n
j exp(e

xj )
(2.7)

where x is the output of the second last layer. For pure classification tasks
the predicted class pc is the class having the maximum confidence:

pc = argmax(σ(x)) (2.8)

2.2.2 Loss function and optimization procedure

Training a neural network f consists in searching for the parameters θ that
optimize the mapping between the input x and the reference y. These
parameters θ are refined through an optimization procedure that relies on
a cost-function evaluating the goodness of the mapping. This cost-function
is a function of the reference y and the output ŷ and is referred to as the loss
L(y, ŷ) in the field of DL. This optimization procedure has three steps, which
are repeated iteratively:

1. Loss calculation for iteration i
2. Backpropagation
3. Parameters update for next iteration i +1

Each step is described more in details below. In practice iterations of this
optimization procedure happens every N training pairs. N is called batch
size and commonly ranges from 4 to 256, depending on the application and
the size of each training pair in computer memory.

Loss function

The loss function is a distance measure between the reference y and the
output ŷ. There are many loss functions that depend on the purpose of the
neural network. For classification problems, a common loss function is the
cross-entropy. Specific loss functions used in this thesis are described later
in Chapter 2.
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Backpropagation

Backpropagation consists in computing the gradient of the loss L with
regard to the parameters θ.

dL
dθ

=
Li −Li−1
θi −θi−1

(2.9)

A key enabler for backpropagation is that the DL libraries such as
Tensorflow [14] or PyTorch [15] do not only store the values of the model
parameters θ and loss L, but also their derivatives dθ and dL, which
facilitates backpropagation. This also implies that the loss function must
be differentiable.

Parameters updates

Once the gradients are calculated, the parameters θ gets updated. The most
basic way of updating the parameters is to directly use the gradient, in an
optimization procedure called Gradient Descent (GD). The parameters θ for
iteration i +1 can be calculated following:

θi+1 = θi −α · Li −Li−1
θi −θi−1

(2.10)

where α is a positive term called learning rate, that controls the magnitude
of the update. This formula implies that for each iteration, the parameters
θ are updated in the same direction as the loss L, seeking for even better
parameters when the loss improved and trying to reverse the degradation
when the loss function worsened.

The convergence of Gradient Descent is however limited in practice
as it can reach and stay at a local minima and is very dependent on the
original choice of the learning rate. In this thesis, the Adam optimizer
[16] was used in the contribution presented in Chapter 4. Adam is one
of the most common used in the field of machine learning, with around
150’000 citations at the time of writing. It improves the GD method with
an adaptive learning rate and a momentum to account for the gradient from
all earlier iterations instead of the last iteration only. For the contribution
presented in Chapter 3, the Adadelta optimizer [17] was found to converge
faster than Adam and was therefore used. Adadelta addresses the issue
of decaying learning rate during training and ensures that the network
continues learning even after many iterations. This is done in practice
by calculating the momentum and updating the learning rate based on a
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moving window of gradient updates instead of all gradient updates from the
start of the training. Aditionally, Adadelta does not need an initial learning
rate to be specified at start-up, which avoids to start with a suboptimal
learning rate.

Overfitting

According to the universal approximation theorem, there always exists a NN
architecture that can be optimized to learn an optimal mapping between all
the training pairs [18]. Although this is possible, it is not the aim of DL.
DL instead aims to train NNs so that they can be predict the best possible
output on unseen inputs. Performance on the training pairs alone does not
matter from a clinical perspective.

There is therefore a need to find a compromise as to how much the
NN should learn from the training data while keeping a good performance
for unseen data. Over-optimization occurs when the neural network is
optimized too well on training data and thus cannot reliably predict output
on new data. In the field of DL, this over-optimization is called overfitting
[3, Chap. 4]. A common technique to avoid overfitting is to keep part
of the available data into a validation subset, not used for training. The
NN parameters θ are subsequently optimized solely on the training data,
whereas the performance can be monitored throughout the training on both
the training and validation data. In a well posed problem where the training
procedure converges, one can generally observe a first period where both
the training and validation performance improves. This mean that what
the NN learns from the training data is relevant to make predictions on
the unseen validation data. In the second period, the performance on the
training data still improves while performance on the validation data stays
stable or worsens. This means that the NN overfits to the training data by
learning features that are not generalizable to new data. These two periods
are illustrated in Fig. 2.7.

A common way to handle overfitting in practice is to monitor the loss
value on the validation data, and save the model parameters that gives the
best loss value on validation data. This procedure is called early stopping
[3, Chap. 7]. The procedure however assumes that the validation data is
representative of the future data the NN will be used on and that the loss
value is representative of the clinical problem at stake. In both of the
technical contributions presented in this thesis, these assumptions are not
met.

For the LVEF problem in Chapter 3, there was three test datasets, from
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Figure 2.7: Evolution of the performance metric on the training and validation
data throughout the training. Early training shows underfitting, where both the
performance on the validation and training data improves. Overfitting starts when
the validation performance stops improving.

different populations and acquired with different ultrasound machines,
bringing an issue for defining what was representative validation data.
Further, focus was placed on the clinical problem of heart failure man-
agement whereas the NN was optimized with a loss function based on the
LVEF, introducing a discrepancy between the loss and the clinical problem.
There is no guarantee that optimizing the deep neural network for LVEF
performance will lead to improvements in heart failure management.

For the position regression problem in Chapter 4, training data was
made of slices from 3D US volumes whereas the NN was meant to finally
be used on 2D data, here again introducing a discrepancy between the
training data and data representative of the use scenario as shown in Fig. 2.8.
Also the final clinical problem was to propose the operator transducer
displacements whereas the loss function was to predict a relative position
along either the rotation or tilt degree of freedom (DOF). The loss function
was consequently only a proxy for the clinical problem of guiding the
operator, but not directly representative of it.

Both contributions details approaches to measure performance on
representative data and according to the clinical problem.
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(a) Slice from a 3D volume (Training) (b) 2D frame (Inference)

Figure 2.8: Left: Slice from a 3D volume acquired specifically for the purpose of
the study presented in Chap. 4. The field of view is wide and has a skewed shape.
Right: 2D frame acquired with a 2D transducer, showing a triangular field of view
rounded at the bottom.

2.2.3 Automated measurements with deep learning

Deep learning has shown a high potential to automate measurements
from echocardiographic data. Such measurements can be extracted from
one or several recordings, either 1D, 2D or 3D. One of the inherent
advantages of DL is the removed intra- and inter-observer variability from
the interpretation step, meaning that repeated automatic measurements
on the same recording return the same value. However, it is worth
mentioning that, for a given recording, removing human variability is a
necessary but not sufficient condition for removing the measurement error
as the DL method can still have a systematic error with regard to the true
value. Automatic DL approaches also allow real-time (or close to real-
time) measurements, permitting the operators to optimize the recordings
and significantly reducing the interpretation time.

There has been twomain approaches for automating measurements with
supervised DL. The first one can be referred as multi-step approach and the
second one as end-to-end approach.
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Multi-step measurements approach

Multi-step measurement approaches aims to reproduce the manual mea-
surement pipeline by replacing manual actions by DL components. Ex-
amples of manual actions that can be automatized with DL are detection
of standard views [19, 20], cardiac events [21], or cardiac structures [22].
The possibility to visualize the output of each component of the pipeline
benefits interpretability. However, having numerous automatic components
multiplies the number of error sources that add to each other, similarly to
the manual pipeline.

Such fully automatic multi-step approaches have been conceptualized
for left ventricular ejection fraction [23] and left ventricular strain [24].
Multi-step approaches are not considered in this thesis.

End-to-end measurements approach

The other approach to automate measurements can be referred to as end-
to-end. It consists in using a single DL model taking echocardiographic
data as input and providing an estimation of the measurement as output,
without human interaction. This kind of approach is often called "black-
box" as it is not easily explainable, and can be regarded as automatic "eye-
balling". The potential advantage of end-to-end approaches compared to
multi-step approaches is that they do not implement any human a priori and
are particularly suited to discover image features that human operators may
not see. End-to-end measurements is the approach used in the contribution
presented in Chapter 3.

2.2.4 Regression from images

Both contributions in Chapters 3 and 4 are regression problems in a
continuous space of outputs. In Chap. 3, a neural network is used to regress
a clinical measurement, the left ventricular ejection fraction (LVEF), from
echocardiographic cine-loops (2D+time). In Chap. 4, a NN is used to regress
the relative position of the ultrasound transducer relatively to the heart.

The strategy adopted was to use classifiers networks to address these two
regression problems. A similar approach has been used previously for age
estimation from facial pictures [25] or brain MRI [26]. By using classifiers
for regression, one can make the training procedure aware of the continuous
nature of the problem, as well as a possible uncertainty in the reference
values.
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Continuity and uncertainty

Continuity can be introduced in the training procedure by using non-binary
labels that represents a probability distribution. This is also relevant in the
presence of uncertain reference values, which are better represented by a
probability distribution than a single value.

LVEF problem
For the LVEF problem presented in Chap. 3, the manual reference

consists in LVEF values in a continuous space, which physiologically range
between approx. 10% and 70%. To automatically regress these values, a NN
with N = 100 output classes was used, and a continuous space of possible
LVEF between 0% and 100% was discretized into 100 bins of 1% width
each. The chosen bin size was therefore small relatively to the magnitude
of the measurements. The reference values were further transformed into a
Gaussian reference probability distribution, centered on the reference value
and with a standard deviation of 10 LVEF % points, in line with the observer
variability of LVEF measurements [9–12]. The predicted LVEF value was
recovered by using the dot products of the output confidence vector CLVEF,
analogous to a probability distribution, and the corresponding LVEF bins.

Position regression problem
For the position regression problem presented in Chap. 4, not all the

input frames initially had an associated label. Indeed, the 2D training data
was generated by simulating a scanning "swipe" by slicing a 3D US volume
to simulate rotation and tilt movements of the transducer.

For the tilt degree of freedom (DOF), the tilt span, and by extension the
number of slices, was defined by the heart anatomy to obtain constant heart
structures relatively to the slice location within the span. NNs with Ntilt =
11 classes were used for the tilt direction, and labels were automatically
assigned to each slice. The predicted tilt position p̂tilt of any frame X was
then expressed as a value in [0;10] calculated using expression (2.11), where
CX
tilt is the output confidences vector of the tilt NN for the frame X.

p̂tilt(X) =
Ntilt−1∑
n=0

CX
tilt(n) ·n (2.11)

For the rotational DOF, 360 slices were generated with a one degree
rotational increment, simulating a 360° rotation of the transducer. The last
slice hence neighbored the first slice, giving to the problem a circular nature.
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Out of these 360 slices, 12 were manually annotated as Characteristic
Cross Sections (CCSs) related to the presence or absence of specific heart
structures. It was therefore chosen to use a neural network with Nrot = 12
output classes and to label all the slices relatively to these 12 classes, thus
accounting for heart shape variability among patients. This was done by
using linear interpolation relatively to the two nearest manually annotated
CCSs. The predicted rotational position p̂rot of any frame X accounts for
the circular nature of the problem. It is expressed relatively to the 12 CCSs,
taking values in [0;12[ calculated using expression (2.12), where CX

rot is the
output confidences vector of the rotational NN for the frame X.

p̂rot(X) =
Nrot

2π
arctan2

Nrot−1∑
n=0

CX
rot(n) · sin

(
n · 2π
Nrot

)
,
Nrot−1∑
n=0

CX
rot(n) · cos

(
n · 2π
Nrot

)
(2.12)

Specific loss functions

Considering that the output’s confidence vectors C also are probability
distributions, it was chosen to use loss functions that quantify the similarity
between two probability distributions.

Kullback–Leibler divergence
For the LVEF problem presented in Chap. 3, the Kullback–Leibler (KL)

divergence [25] was used to measure the similarity between the predicted
probability function and the reference probability function. The KL
divergence DKL between two discrete probability distributions P and Q of
length N can is expressed as:

DKL(P ,Q) =
N−1∑
x=0

P (x) log
(
P (x)
Q(x)

)
(2.13)

For the use case of LVEF, the loss L was then expressed as:

LLVEF =DKL(refLVEF,CLVEF) (2.14)

where refLVEF represents the probability distribution associated to the
manual reference of LVEF and CLVEF the probability distribution predicted
by the NN. Fig. 2.9 shows two predictions examples.

Squared Earth Mover’s Distance
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Figure 2.9: Illustration of the KL divergence. KL divergence increases with distance
between the two probabilities distributions. In converging training procedures, the
KL divergence decreases throughout the training and the prediction error improves.

For the position regression problem presented in Chap. 4, the Squared
Earth Mover’s Distance was used as the loss function [27]. For normalized
one dimensional distributions, it can be reduced to the Wasserstein metric
which can be expressed in its discrete version as:

W (P ,Q) =
1
N

N−1∑
i=0

∣∣∣∣∣∣∣
i∑

k=0

pk −
i∑

k=0

qk

∣∣∣∣∣∣∣ (2.15)

where P and Q are two discrete probability distributions of length N . For
the rotational case, there was a further need to account for the circular
nature of the problem. This was done by calculating W for different shifts

53



2.2. Deep learning for echocardiographic image analysis

and taking the minimum value:

Wcircular(P ,Q) = min
j∈[0;N [

(W (shiftj (P ),shiftj (Q))) (2.16)

The loss L for the tilt NN was then calculated as:

Ltilt(ref
X
tilt,C

X
tilt) =W (ref X

tilt,C
X
tilt)

2 (2.17)

whereas the loss for the rotational NN was calculated as

Lrot(ref
X
rot,C

X
rot) =Wcircular(ref

X
rot,C

X
rot)

2 (2.18)

where ref X is the reference probability distribution of frame X and CX its
predicted probability distribution.

2.2.5 Data augmentation

Image data augmentation is a widely employed technique in DL to
augment the size of the training dataset artificially. By applying various
transformations to existing images, data augmentation enhances themodel’s
capacity to generalize and achieve better performance on unseen data.

The primary objective of data augmentation is to introduce variations
in the training images that mirror real-world scenarios encountered during
inference. This process strengthens the model’s robustness and mitigates
overfitting, where themodel memorizes the training data without effectively
learning the underlying patterns.

Some classical image data augmentation techniques employed in DL are:

• Rotation: Images can be rotated to simulate different viewpoints
• Flipping: Images can be horizontally or vertically flipped
• Translation: Horizontal or vertical shifts can be applied to images,
simulating object movement within the image. This augmentation
cultivates the model’s invariance to object location.

• Scaling: Images can be scaled up or down, emulating objects at
different distances. Zooming can also focus on specific regions of
interest.

• Cropping and Padding: Images can be cropped or padded to different
aspect ratios or resolutions, simulating variations in image sizes or
aspect ratios within the training data.

• Dropout: Part of images can be removed
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These augmentation techniques can be combined to generate a diverse
range of training examples. In this thesis, flipping, cropping and padding
were not used as flipped images or images with wrong aspect ratio create
physiologically wrong heart structures. On the other hand, rotation,
translation, scaling or dropout preserve the physiological appearance of the
heart structures. It is however worth noting that they break the appearance
of what an US image looks like.

Further augmentations specific to the echocardiography domain were
used in the presented contributions. Among them were augmentations
to simulate changes in scanning parameters such as dynamic range, gain,
or field-of-view width. Augmentations that aims to reproduce acoustics
phenomenons such haze artifacts, shadows or depth attenuation were also
used. Examples of augmented data as used in the position regression
contribution from Chap. 4 are visible in Fig. 2.10.

Original slice

Augmented slices

Figure 2.10: Examples of multiple augmented frames generated from a single
frame. These augmentations are representative of the ones used in the position
regression contribution from Chap. 4
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2.3 Bland-Altman analysis

Bland-Altman analysis is a statistical technique often used to compare
two different measurement methods and conclude on whether they are
interchangeable or not [28]. It was developed by J. Martin Bland and
Douglas G. Altman in 1986 and has since become widely used in various
fields, including medicine, biology, and engineering with their original
article totaling over 50’000 citations.

The purpose of Bland-Altman analysis is to compare two quantitative
measurement methods and determine the level of agreement and bias
between them. It is the reference statistical approach when there is no
ground truth for comparison (i.e. when the true value is not accessible). The
analysis helps identify any systematic differences between the methods and
provides insights into the magnitude and direction of any discrepancies.

The Bland-Altman plot visualizes the agreement between the two
methods on a scatter plot, with the differences between the measurements
plotted on the y-axis and the average of the measurements plotted on the
x-axis. An horizontal line representing the mean difference and two parallel
lines representing the limits of agreement (mean difference ± 1.96 times
the standard deviation of the differences) are also plotted. An example of a
Bland-Altman plot is shown in Fig. 2.11.
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Figure 2.11: Example of a Bland-Altman plot
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By examining the plot, several key characteristics can be observed:

• Fixed bias: The mean difference between the two methods is repre-
sented by the horizontal dashed line on the plot. If this line is close
to zero, it suggests there is no significant bias. A deviation from zero
indicates a systematic difference between the two methods.

• Limits of agreement: The parallel dotted lines on the plot represent
the limits of agreement, which provide a range within which most
differences between the two methods are expected to fall. The wider
the limits, the larger the variability or disagreement between the
methods.

• Outliers: Any data points that fall outside the limits of agreement
or exhibit a substantial deviation from the mean difference are
considered outliers and may warrant further investigation.

Additionally, the correlation between the difference and the average of
the twomethods provides insights on an eventual proportional bias between
the two methods. In this thesis, Bland-Altman plots are completed with a
regression line between the difference and the average to show this possible
proportional bias. The existence of a correlation between the difference
and the average however does not necessarily imply a correlation of the
measurement method with the true values.

Assumptions

Bland-Altman analysis assumes that the differences between the two
methods are normally distributed. Another assumption is homoscedasticity,
meaning that the variability of differences should be constant across the
range of measurements as shown in Fig. 2.12a. Violations of these
assumptions, for example the presence of heteroscedacity (Fig. 2.12b) may
affect the validity of the analysis. In the contribution presented in Chap. 3,
the homoscedasticity assumption in not met, which should be considered
when interpreting the results.

Relation to precision and accuracy

Within the field of machine learning, accuracy and precision are often used
to describe the performance of a model by comparing a true value to the
model predictions, as illustrated in Fig. 2.13. A model can be considered as
valid if it is both accurate and precise.
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(a) Homoscedasticity

0.0 0.2 0.4 0.6 0.8 1.0
1/2 * (Method A + Method B)

0.2

0.0

0.2

M
et

ho
d 

A
 ­

 M
et

ho
d 

B

Mean
0.00

+1.96 SD
0.13

­1.96 SD
­0.12

(b) Heteroscedasticity

Figure 2.12: Bland-Altman analysis showing a) homoscedasticity, the magnitude
of the difference is constant relatively to the average and b) heteroscedacity, with
the magnitude of the differences depending on the average, violating one of the
assumptions for the Bland-Altman analysis

Figure 2.13: Quantification of accuracy and precision of a measurement method
relatively to the true value

In echocardiography, the true value of a measurement is typically not
accessible, leading the DL predicted measurements to be compared to the
manual reference measurements. In this context of uncertainty in both
measurement methods, accuracy can be approximated by the mean error
and correlation between the difference and average from the Bland-Altman
analysis, and precision can approximated by the width of the limits of
agreement. Such approach to quantify accuracy and precision is however
limited by the purpose of the Bland-Altman analysis itself, which is to assess
interchangeability of the two methods.
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Chapter 2. Background

Correlation between the difference and the average

According to [29], the difference and the average of two measurements
methods X and Y can be correlated, without necessarily meaning that there
is a bias between the measurement methods and the true values. In [30], this
correlation between the difference and the average of twomeasurements sets
X and Y can be expressed as:

Corr(X −Y ,
X +Y
2

) =
τ2X − τ2Y√(

τ2X − τ2Y
)2

− 4ρ2τ2Xτ
2
Y

(2.19)

where τ2X and τ2X are the variances of the two measurements sets and ρ the
correlation between X and Y. If one set τ2X = k · τ2Y , the correlation between
the difference and the average becomes:

Corr(X −Y ,
X +Y
2

) =
k − 1√

(k +1)2 − 4kρ2
(2.20)

There is therefore a theoretical correlation between the difference and
average values when the variances of the two sets of measurements are
unequal (k , 1⇔ τ2X , τ

2
Y ).

The variance of the measurements sets τ2X and τ2Y can be decomposed
into the variance of the true values τ2true and the variance of themeasurement
errors τ2err_X and τ2err_Y :

τ2X = τ2true + τ2err_X
τ2Y = τ2true + τ2err_Y

(2.21)

Thus k can be expressed as:

k =
τ2true + τ2err_X
τ2true + τ2err_Y

(2.22)

It appears then that when the range of the true values is much wider
compared to the measurement error (τ2true ≫ τ2err_X and τ2true ≫ τ2err_Y ), k
is close to 1. This is what is expected in realistic circumstances. As noted by
Carstensen [4, Chap. 4], it would otherwise "mean that the study was either
badly designed (too narrow a range of the true values) or that (at least) one
of the methods was so imprecise that it would be clinically useless".
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2.3. Bland-Altman analysis

In the context of DL applied to echocardiography, where X denotes the
set of manual reference values and Y the corresponding estimated values
by DL, two specific aspects should be accounted for when comparing a
manualmeasurement referencemethodwith an automatic DLmeasurement
method:

1. The human measurement error may not be negligible compared to
the range of true values. This is for example the case for LVEF
where the observer variability has the same order of magnitude as the
measurement. This means τ2true ∼ τ2err_X

2. DL effectively reduces measurement error compared to human opera-
tors, such that τ2err_Y < τ2err_X

If the two aspects occur together, k is different from 1 and a correlation
between the differences and the average could appear, even in the absence
of a proportional bias between the DL measurement method and the true
values. Bland-Altman analyses should therefore be interpreted carefully in
the context of echocardiographic measurements and DL.

60



References

[1] S. D. Solomon, Essential Echocardiography. Elsevier, 2019.

[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[3] F. Chollet, “Deep Learning with Python,” Manning, 2018.

[4] B. Carstensen, Comparing Clinical Measurement Methods. Wiley, aug 2010.

[5] R. M. Lang, L. P. Badano, M. A. Victor, J. Afilalo, A. Armstrong, L. Ernande,
F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova, P. Lancellotti,
D. Muraru, M. H. Picard, E. R. Retzschel, L. Rudski, K. T. Spencer, W. Tsang,
and J. U. Voigt, “Recommendations for cardiac chamber quantification by
echocardiography in adults: An update from the American Society of
Echocardiography and the European Association of Cardiovascular Imaging,”
Journal of the American Society of Echocardiography, vol. 28, no. 1, pp. 1–39.e14,
2015.

[6] T. A. McDonagh, M. Metra, M. Adamo, R. S. Gardner, A. Baumbach, M. Böhm,
H. Burri, J. Butler, J. Celutkiene, O. Chioncel, J. G. Cleland, A. J. Coats, M. G.
Crespo-Leiro, D. Farmakis, M. Gilard, and S. Heymans, “2021 ESC Guidelines
for the diagnosis and treatment of acute and chronic heart failure,” European
Heart Journal, vol. 42, no. 36, pp. 3599–3726, 2021.

[7] P. A. Heidenreich, B. Bozkurt, D. Aguilar, L. A. Allen, J. J. Byun, M. M. Colvin,
A. Deswal, M. H. Drazner, S. M. Dunlay, L. R. Evers, J. C. Fang, S. E. Fedson,
G. C. Fonarow, S. S. Hayek, A. F. Hernandez, P. Khazanie, M. M. Kittleson, C. S.
Lee, M. S. Link, C. A. Milano, L. C. Nnacheta, A. T. Sandhu, L. W. Stevenson,
O. Vardeny, A. R. Vest, and C. W. Yancy, “2022 AHA/ACC/HFSA Guideline
for the Management of Heart Failure: A Report of the American College of
Cardiology/American Heart Association Joint Committee on Clinical Practice
Guidelines,” Journal of the American College of Cardiology, vol. 79, no. 17,
pp. e263–e421, 2022.

[8] E. Smistad, A. Østvik, I. Mjåland Salte, S. Leclerc, O. Bernard, and
L. Lovstakken, “Fully Automatic Real-Time Ejection Fraction and MAPSE
Measurements in 2D Echocardiography Using Deep Neural Networks,”
in IEEE International Ultrasonics Symposium, IUS, vol. 2018-Octob, IEEE
Computer Society, dec 2018.

61



References

[9] C. Knackstedt, S. C. Bekkers, G. Schummers, M. Schreckenberg, D. Muraru,
L. P. Badano, A. Franke, C. Bavishi, A. M. S. Omar, and P. P. Sengupta, “Fully
Automated Versus Standard Tracking of Left Ventricular Ejection Fraction and
Longitudinal Strain the FAST-EFs Multicenter Study,” Journal of the American
College of Cardiology, vol. 66, no. 13, pp. 1456–1466, 2015.

[10] A. Hovland, U. H. Staub, H. Bjørnstad, J. Prytz, J. Sexton, A. Støylen,
and H. Vik-Mo, “Gated SPECT Offers Improved Interobserver Agreement
Compared With Echocardiography,” Clinical Nuclear Medicine, vol. 35,
pp. 927–930, dec 2010.

[11] R. Hoffmann, G. Barletta, S. von Bardeleben, J. L. Vanoverschelde, J. Kasprzak,
C. Greis, and H. Becher, “Analysis of Left Ventricular Volumes and Function:
A Multicenter Comparison of Cardiac Magnetic Resonance Imaging, Cine
Ventriculography, and Unenhanced and Contrast-Enhanced Two-Dimensional
and Three-Dimensional Echocardiography,” Journal of the American Society of
Echocardiography, vol. 27, pp. 292–301, mar 2014.

[12] C. Morbach, G. Gelbrich, M. Breunig, T. Tiffe, M. Wagner, P. U. Heuschmann,
and S. Störk, “Impact of acquisition and interpretation on total inter-observer
variability in echocardiography: results from the quality assurance program
of the STAAB cohort study,” International Journal of Cardiovascular Imaging,
vol. 34, no. 7, pp. 1057–1065, 2018.

[13] A. J. DeGrave, J. D. Janizek, and S. I. Lee, “AI for radiographic COVID-19
detection selects shortcuts over signal,” Nature Machine Intelligence, vol. 3,
no. 7, pp. 610–619, 2021.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: A system for large-scale machine learning,”
Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, pp. 265–283, 2016.

[15] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang,
Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,
and S. Chintala, “PyTorch: An imperative style, high-performance deep
learning library,” Advances in Neural Information Processing Systems, vol. 32,
no. NeurIPS, 2019.

[16] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 3rd
International Conference on Learning Representations, ICLR 2015 - Conference
Track Proceedings, pp. 1–15, 2015.

[17] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” 2012.

[18] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989.

62



References

[19] A. Østvik, E. Smistad, S. A. Aase, B. O. Haugen, and L. Lovstakken, “Real-
Time Standard View Classification in Transthoracic Echocardiography Using
Convolutional Neural Networks,” Ultrasound in Medicine and Biology, vol. 45,
pp. 374–384, feb 2019.

[20] J. Zhang, S. Gajjala, P. Agrawal, G. H. Tison, L. A. Hallock, L. Beussink-
Nelson, M. H. Lassen, E. Fan, M. A. Aras, C. Jordan, K. E. Fleischmann,
M. Melisko, A. Qasim, S. J. Shah, R. Bajcsy, and R. C. Deo, “Fully Automated
Echocardiogram Interpretation in Clinical Practice,” Circulation, vol. 138,
pp. 1623–1635, oct 2018.

[21] A. M. Fiorito, A. Ostvik, E. Smistad, S. Leclerc, O. Bernard, and L. Lovstakken,
“Detection of Cardiac Events in Echocardiography Using 3D Convolutional
Recurrent Neural Networks,” IEEE International Ultrasonics Symposium, IUS,
vol. 2018-Janua, 2018.

[22] S. Leclerc, E. Smistad, J. Pedrosa, A. Ostvik, F. Cervenansky, F. Espinosa,
T. Espeland, E. A. R. Berg, P. M. Jodoin, T. Grenier, C. Lartizien, J. Dhooge,
L. Lovstakken, and O. Bernard, “Deep Learning for Segmentation Using
an Open Large-Scale Dataset in 2D Echocardiography,” IEEE transactions on
medical imaging, vol. 38, no. 9, pp. 2198–2210, 2019.

[23] E. Smistad, A. Østvik, I. M. Salte, D. Melichova, T. M. Nguyen, K. Haugaa,
H. Brunvand, T. Edvardsen, S. Leclerc, O. Bernard, B. Grenne, and L. Løvs-
takken, “Real-Time Automatic Ejection Fraction and Foreshortening Detection
Using Deep Learning,” IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 67, no. 12, pp. 2595–2604, 2020.

[24] A. Ostvik, I. M. Salte, E. Smistad, T. M. Nguyen, D. Melichova, H. Brunvand,
K. Haugaa, T. Edvardsen, B. Grenne, and L. Lovstakken, “Myocardial Function
Imaging in Echocardiography Using Deep Learning,” IEEE Transactions on
Medical Imaging, vol. 40, no. 5, pp. 1340–1351, 2021.

[25] B. B. Gao, C. Xing, C. W. Xie, J. Wu, and X. Geng, “Deep Label Distribution
Learning with Label Ambiguity,” IEEE Transactions on Image Processing,
vol. 26, no. 6, pp. 2825–2838, 2017.

[26] H. Peng, W. Gong, C. F. Beckmann, A. Vedaldi, and S. M. Smith, “Accurate
brain age prediction with lightweight deep neural networks,” Medical Image
Analysis, vol. 68, p. 101871, 2021.

[27] L. Hou, C.-P. Yu, and D. Samaras, “Squared Earth Mover’s Distance-based Loss
for Training Deep Neural Networks,” no. November, 2016.

[28] J. Martin Bland and D. Altman, “STATISTICAL METHODS FOR ASSESSING
AGREEMENT BETWEEN TWOMETHODSOF CLINICALMEASUREMENT,”
The Lancet, vol. 327, pp. 307–310, feb 1986.

[29] M. A. Mansournia, R. Waters, M. Nazemipour, M. Bland, and D. G.
Altman, “Bland-Altmanmethods for comparing methods of measurement and
response to criticisms,” Global Epidemiology, vol. 3, p. 100045, 2021.

63



References

[30] J. Bland and D. Altman, “Comparing methods of measurement: why plotting
difference against standard method is misleading,” The Lancet, vol. 346,
pp. 1085–1087, oct 1995.

64



3Challenges and Strategies for Automatic Measurements
with Deep Learning in Cardiovascular Imaging

David Pasdeloup1, Andreas Østvik1,2, Sindre H. Olaisen1, Eirik 
Skogvoll1, Håvard Dalen1,3, and Lasse Løvstakken1
1 Dept. of Circulation and Medical Imaging, NTNU, Trondheim, Norway 
2 SINTEF Digital, Medical Image Analysis, Trondheim, Norway
3 Clinic of Cardiology, St. Olav’s Hospital, Trondheim, Norway

 

This paper is awaiting publication and is not included in NTNU Open

 



4Real-Time Echocardiography Guidance for Optimized
Apical Standard Views

David Pasdeloup1, Sindre H. Olaisen1, Andreas Østvik1,2, Sigbjørn
Sæbø1, Håkon N. Pettersen1, Espen Holte1,3, Bjørnar L. Grenne1,3,
Stian B. Stølen3, Erik Smistad1,2, Svein Arne Aase4, Håvard Dalen1,3,
and Lasse Løvstakken1
1 Dept. of Circulation and Medical Imaging, NTNU, Trondheim, Norway
2 SINTEF Digital, Medical Image Analysis, Trondheim, Norway
3 Clinic of Cardiology, St. Olav’s Hospital, Trondheim, Norway
4 GE Vingmed Ultrasound AS, Horten, Norway

Measurements of cardiac function such as left ventricular ejection fraction
and myocardial strain are typically based on 2D ultrasound imaging. The
reliability of these measurements depends on the correct pose of the
transducer such that the 2D imaging plane properly aligns with the heart
for standard measurement views, and is thus dependent on the operator’s
skills. We propose a deep learning tool that suggests transducer movements
to help users navigate towards the required standard views while scanning.
The tool can simplify echocardiography for less-experienced users and
improve image standardization for more experienced users. Training data
was generated by slicing 3D ultrasound volumes, which permits to simulate
the movements of a 2D transducer. Neural networks were further trained to
calculate the transducer position in a regression fashion. The method was
validated and tested on 2D images from several datasets representative of a
prospective clinical setting. The method proposed the adequate transducer
movement 75% of the time when averaging over all degrees of freedom,
and 95% of the time when considering transducer rotation solely. Real-
time application examples demonstrates the direct relation between the
transducer movements, the ultrasound image, and the provided feedback.
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4.1. Introduction

4.1 Introduction

Echocardiography is the cornerstone image modality for measuring and
evaluating cardiac function, today primarily based on 2D image acquisition
following a defined protocol of standard views and measurements used for
subsequent diagnostics [1]. The acquisition of these standard views is chal-
lenging for inexperienced users, and is prone to substantial variation even
among experienced users. This limits the availability of echocardiography
for the patients, and also decreases measurements reproducibility [2].

The acquisition of the three apical standard views, apical four-chamber
(A4C), two-chamber (A2C) and long-axis (ALAX) can be broken down into
three steps, as illustrated in Fig. 4.1. First, the users need to find the correct
intercostal acoustic windowwhere the anatomical apex of the heart is closest
to the transducer. In the second step, users need to rotate and tilt the
transducer around the left ventricular centerline (between the apex and the
center of the mitral valve) to produce the three standard apical imaging
planes with minimal foreshortening. The last step consists in optimizing
the images for both anatomical correctness and image quality to establish a
more detailed cardiac examination. We here define Anatomical Correctness
(AC) to depend only on the location of the 2D imaging plane. AC is not
related to the quality of the ultrasound (US) signal.

Figure 4.1: Procedure steps and experience required for acquisition of the apical
standard views.

The starting point of our work is that the standard apical views acquired
by both inexperienced and experienced users have an operator variability in
AC, influencing the measurements that follow. Two examples of standard
views of different quality are shown in Fig. 4.2. These are recordings
from the echo lab, thus representing clinical practice, where anatomical
landmarks reveal differences in AC.

3D US imaging can be part of a future solution, as volumemeasurements
can be more directly extracted, and standard planes automatically extracted
[3, 4]. However, 3D and multi-plane imaging still suffers from limitations
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Figure 4.2: Example of the inter-operator variability in the imaging plane of clinical
recordings. For a given target view on the same patient, the left recording acquired
by operator A is a suboptimal standard view whereas the right recording from
operator B complies with the guidelines recommendations. Full cine-loops are
available in Video 4.3.

such as a lower frame rate and suboptimal image quality compared to
2D imaging, and optimizing each view is often needed to get good image
quality. Further, 3D US is not readily available for hand-held systems.
We thus believe that 2D echocardiography will remain important for the
foreseeable future.

Some research and development has previously been done to facilitate
the echocardiography procedure described in Fig. 4.1. In step 1, finding a
suitable intercostal space can be seen as minimizing apical foreshortening,
which was previously approached using image segmentation [5]. Finding
the imaging plane in step 2 has been addressed before by both classical and
machine learning (ML) based approaches [6, 7]. However, these methods
were only able to grade the AC, and did not give the user feedback
on the required transducer movements to acquire the standard views.
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In Østvik et al. [7], we proposed an exploratory extension of the view
classification method with 3D data for training to enable feedback to the
user on rotational movement of the transducer. However, the solution was
preliminary, limited to the rotational movement, and struggled to generalize
sufficiently for real-time 2D imaging. To our best knowledge, Toporek et
al. [8] is the only technical description of a DL-based echocardiography
guidance system with training data generated with a 2D transducer and an
external positional sensor. Their approach is, however, limited by a low
number of patients used in the training dataset, the accuracy not being
quantified for the A2C and ALAX views, and lack of prospective testing.
Navigation using an inertial measurement unit could be used to provide
feedback, and thus guide the user. A solution would, however, still be
needed to recognize the target view and the direction to it. Li et al. [9]
used a neural network to calculate the required geometric transformation to
obtain a standard plane within a 3D fetal US volume and Droste et al. [10]
proposed a neural network that predicts an angle to target value given a 2D
fetal image. However, echocardiography introduces additional challenges
such as the ribs limiting the acoustic window or anatomical variability. It is
therefore not straightforward to apply methods from fetal US to heart US.

ML echocardiography assistance is also a topic of interest for several
companies who have developed proprietary solutions. Narang et al.
(Caption Health Inc., Brisbane, CA, USA) [11] showed that their algorithm
can help nurses to acquire recordings of diagnostic quality, but did not
reported results on the correctness of each individual standard view. The
same algorithm was tested on medical students by Schneider et al. [12] who
reported the algorithm being helpful to acquire the A4C and A2C views.
However, these two studies lack a control group of users who scan without
the algorithm assistance. The technical challenge of echocardiography
guidance is therefore not solved in its entirety.

In this work, we propose a real-time guidance method for 2D echocar-
diography which estimates the transducer rotation and tilt in relation to
the cardiac anatomy based only on the 2D image input. The method
provides feedback on how to adjust the transducer position in order to
reach the target standard apical views. This tool can be valuable 1) to
improve image view consistency and help limit subsequent measurement
variability for experienced users in the echo lab, and 2) to unleash
the potential of echocardiography for non-expert users using hand-held
devices, thus unlocking a potential tool for detecting heart disease prior to
hospital referral. Finally, the tool can 3) be used to train novice users in
echocardiography.
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Main contributions

We have developed and evaluated a software-based echocardiography
guidance system based on positional regression directly from 2D images.
The main contributions of this paper with respect from previous work from
Østvik et al. [7] are:

• An improved protocol for defining echocardiographic anatomical
views, including non-standard apical views used for image guiding

• A semi-automated approach for extracting 2D training data from 3D
US recordings with an accurate reference position

• An more robust neural network for estimating the transducer rota-
tional position

• New neural networks for estimating the transducer tilt position
• Extensive validation and test on several representative 2D datasets
from the clinic

• A real-time prototype application that shows evidence of the method
validity

4.2 Methods

Our main approach is to use deep convolutional neural networks to predict
the transducer position relative to the heart in the form of a regression task
based on the 2D US image input, where training data was generated from
3D US volumes, as detailed in the following sections.

4.2.1 Degrees of freedom and problem formulation

Two-dimensional echocardiography involves multiple degrees of freedom
(DOF), with two translation DOFs in the skin plane and three rotation DOFs
(transducer rotation, in-plane tilt, out-of-plane tilt). Additional challenges
can be attributed to the motion of the heart, patient breathing, and the
restricted acoustic window between the ribs, limiting the possibility to
obtain good image quality and aligned cardiac views.

To reduce the complexity of the problem, we initially assumed that
the heart apex is located at a shallow depth and regarded it as an anchor,
meaning that the correct intercostal space is used and that no significant
translations at the skin surface are required. Considering that the out-
of-plane transducer rotations are difficult for the users who lack spatial
representation of the heart, we address in this work the rotation and out-
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of-plane tilt DOFs (referred further as rotation and tilt DOFs) and leave the
in-plane tilt DOF to separate work.

We considered rotation and tilt separately and trained four individuals
models, one for the transducer rotation and three for the transducer tilt in
the different apical views. The approach of using multiple models mimicks
the sonographers’ workflow who iteratively adjust the transducer tilt and
rotation. It is also convenient to isolate method failures, and improves
explainability.

A particular challenge for position regression is the intrinsic variation of
the hearts shape. This is exemplified in Fig. 4.3, which shows the patient
variability in the amount of rotation from the A4C to the A2C and ALAX
views. Due to this variation, we did not design a neural network that outputs
an angle to target value as in Droste et al. [10], but rather a position relative
to the characteristic heart structures defined below.

Figure 4.3: The angle between A4C-A2C and A4C-ALAX standard views obtained
from the manually annotated 3D data.

4.2.2 Training data generation

The 2D training images were generated from 3D US recordings following
the procedure shown in Fig. 4.4. Starting from a 3D US recording, we
automatically extracted the apex and base landmarks and the maximum left
ventricle (LV) radius (steps 1. and 2.). The landmark and radius estimates
were obtained from the segmentation mask of our 3D-Unet [13], and were
quality controlled and corrected by a clinical expert if needed.

Once the LV axis (going through apex and base landmarks) was defined,
360 slices were automatically generated (step 3.) at end diastole (ED)
for each patient to simulate a transducer rotation movement around the
heart’s long axis. A clinical expert annotated 6 of the 360 slices as
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Figure 4.4: Training data generation pipeline. Step 1. takes a 3D US volume at
end diastole (ED) as input and outputs a 3D mask of the LV. Step 2. generates
from the mask the apex and base landmarks which together form the LV geometric
rotational axis. The maximum LV radius is also extracted. The axis and the radius
were manually corrected by a clinical expert. Step 3. automatically generates 360
slices of the volume around the defined rotational axis. At step 4., a clinical expert
annotated six slices as CCSs. Step 5. automatically generates the slices to train the
tilt models based on the ED rotational position (either A4C, A2C or ALAX) and
the LV axis and radius. The annotations (LV axis and CCSs) were made at the ED
frame whereas the training slices were generated from multiple frames throughout
the cardiac cycle.

characteristic cross-sections (CCS) (step 4.). Three were the apical standard
views (Fig. 4.5b), while three were non-standard (Fig. 4.5c), inserting
additional clinical knowledge in the rotation position regression. The
characteristic features of the additional views are termed 1) the A42C view
(mid way between A4C and A2C) which has the presence of a thin right
ventricle (RV) but no tricuspid valve visible, or a thickened inferoseptal
wall, 2) The ANS (Annulus Start) view and 3) ANE (Annulus End) view,
which are recognisable by the left ventricular outflow tract (LVOT) being
slightly visible, while the aorta valve leaflets are not visible. ANS further
typically has a thick anterior wall, whereas ANE has the RV visible.

For the tilt DOF, the corresponding CCSs were extracted automatically
at the rotational position of the standard views (either A4C, A2C or ALAX).
Knowing the LV axis length lLV and the LV radius rLV, as shown in Fig. 4.6a,
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Figure 4.5: (a) Position of the six rotational CSSs in the parasternal short-axis plane.
(b) The three CSSs corresponding to the apical standard views, and (c) for non-
standard views. Characteristic features of the A42C view is the presence of a thin
RV without visible tricuspid valve or a thick inferior septal wall. ANS and ANE are
recognised by LVOT being slightly visible, but the aorta valve leaflets not visible.
ANS typically has a thick anterior wall, whereas ANE has the RV visible.
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the tilt span Sw can be expressed as,

Sw = 2 · tan−1 α · rLV
lLV

. (4.1)

The α is a coefficient chosen larger than 1 so that the slices at the outer
edges of the span neither include the mitral valve (MV) nor the left atrium
(LA). The tilt slices were evenly distributed over the tilt span, which should
correspond to anatomical features derived from any LV size rather than an
absolute tilt angle, thus accounting for patient variability.

Once annotation at ED is done, the training slices are generated from
several frames assuming the LV axis and CCSs annotated at ED are stable
throughout a single cardiac cycle.

4.2.3 Image position regression with Deep Learning

Considering the continuity along the slices for each DOF, the position
can be posed as a regression problem and thus addressed with DL-based
architectures. Continuity was included in the training procedure using
the Earth mover’s distance as the loss function [14], which measures
the distance between the true and predicted positions, and penalizes
predictions with larger distance error. To account for patient variability,
the predicted position p̂ is given relatively to the labeled CCSs and thus to
the characteristic heart structures presented in Fig. 4.5 and 4.6.

Separate rotation and tilt networks were trained. The rotation network
has 12 output categories, corresponding to the 6 rotational CCSs and their
flipped counterparts. Since the different CCSs are not evenly spaced along
the rotational DOF as shown in Fig. 4.3, the number of rotational slices is
sampled to balance the categories.

The tilt network has 11 output categories sampled equidistantly by the
automated tilt annotation procedure described in Fig. 4.4. Since there
are more slices than labelled CCSs for both rotational and tilt DOFs, the
slices in-between are assigned non-binary labels obtained through linear
interpolation of the two closestCCSs so that the models learn the continuous
nature of the task.

The predicted relative position p̂ for any input frame X is obtained by
the dot product of the network output vector C and class index vector as

p̂(X) =
N−1∑
n=0

CX(n) ·n. (4.2)
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Figure 4.6: (a) Description of cross-sections for the A4C tilting (b) A4C tilt samples
(c) A2C tilt samples (d) ALAX tilt samples
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We can then define the categorical distance d of any frame X to the target
CCS by

d(X,CCS) = p̂(X)− p(CCS), (4.3)

where p(CCS) is the index of the target cross-sectional view.
We used our CVCNet topology [7] which is optimized for US image

classification and real-time performance. Other model architectures are
benchmarked in the supplementary material.

In the real-time application, the target CCS corresponds to the three
standard views A4C, A2C and ALAX. The sign of d then indicate the
direction of the required transducer movement along the corresponding
DOF and low values of d indicate a correct view.

4.2.4 Data augmentation and pre-processing

Rotation, translation, scaling and gamma intensity transformation augmen-
tations form our Baseline set of augmentations used in all experiments.
Additionally, we used several US specific augmentations, termed US
augmentations:

• Gaussian shadows to mimick signal dropouts or acoustic wave propagation
artefacts

• Depth attenuation to add varying depth-dependent dampening of the
acoustic waves

• Haze artifacts to mimick acoustic haze typically originating from reverber-
ations

• Non-linear color-maps to make the models robust to different color
transformations

• Contrast scaling and brightness transform to increase robustness to gain and
dynamic range

• Field of view (FOV) masking to make the models disregard the FOV
shape and avoid unintended effects related to the sector width and depth
settings.

Specifically for our image guiding task, we finally introduced and evaluated
two pre-processing techniques related to the use of 3D volumes as the
training data source:

• Spatial Reference Noise: In the data generation process, we established a
reference LV axis position (Fig. 4.4, step 2.). To increase the robustness
of the networks to minor errors in transducer tilt and translation, we
introduced stochastic deviations to the actual LV axis and rotational
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position before generating the slices. The amount of deviation remains
small compared to the LV dimensions so that the annotations can still be
considered valid.

• Gaussian Blurring: This pre-processing step aims to improve generaliza-
tion from 3D slices to 2D US images at inference. Blurring is implemented
as a Gaussian filter with standard deviation two orders of magnitude
lower than the image size. The goal is to make images more similar
by smoothing details like speckle while preserving the heart structures.
Blurring is applied upstream of the convolutional layers for both training
and inference.

4.3 Datasets

We use datasets of 2D and 3D recordings to train, validate and test our
models. Regional ethics board approval and written consent was obtained
for all studies and patients involved.

4.3.1 Training and internal validation

Three-dimensional recordings were used for training the models and were
also used as part of the validation procedure. The FOV of 3D recordings is
often reduced to achieve higher frame rate in clinical practice. Therefore,
slices from such volumes are not necessarily representative of what is
acquired with 2D echocardiography. Consequently, we only included
3D volumes that cover the whole LV and its surrounding structures (RV
and LA). The 3D recordings acquired using ECG gating with visible
stitching artifacts were excluded. This ensures that we have sufficient
context to generate slices with structures similar to those visible in 2D
echocardiography which is the data used during inference.

We included 3D US recordings from three different datasets, in total
N=162 patients:

• CETUS: An open dataset of N=45 patients [15], both pathological and
healthy. The recordings are acquired with scanners from three different
vendors.

• NTNU 3D A: Recordings from N=36 patients acquired at St Olavs Hospi-
tal, Trondheim, Norway, using a GE E95 scanner and 4Vc transducer (GE
Vingmed Ultrasound, Horten, Norway). The population is representative
of the daily routine at the echo lab, with both healthy and diseased
patients.
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• NTNU 3D B: N=81 recordings acquired with a GE E95 scanner at
institutions spread over six different countries.

20% of the patient data were set aside for internal validation and are not
used for training. Slices from 3D US volumes have generally lower image
quality, especially in the near field. To ensure that the trained models do
not overfit the training data, we also validated the method on an external
dataset made of 2D US images representative of clinical use as described in
the following.

4.3.2 External 2D validation dataset

To validate our method against 2D images, we specifically acquired the
NTNU 2D Guiding dataset, composed of N=47 patients where each include
15 recordings. For each standard view the following was acquired by a
clinical expert:

• The standard view,
• Two views with negative and positive rotation angle compared to the
standard one,

• Two views with negative and positive tilt angle compared to the standard
one.

The non-standard recordings have a position error relative to the standard
recording that is qualitatively known, allowing to evaluate the ordering
metrics given by equations 4.4 and 4.5.

4.3.3 External 2D test datasets

We tested our method on two larger retrospective datasets composed of
standard view recordings, without information on the AC. The CAMUS
dataset (500 patients) [16] which features A4C and A2C views and the
NTNU-LVD (Left Ventricular Disease) dataset (168 patients) [17] which
features in addition the ALAX view. Both datasets are representative of daily
clinical practice in terms of image quality and pathological cases.

Finally, we tested our method on a repeatability study dataset of 88
patients who underwent three consecutive exams containing each of the
three apical views, carried out by a panel of three sonographers and three
cardiologists. We call this dataset NTNU 2D Repeatability.
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4.4 Experimental setup

4.4.1 Training and validation

Our method gives feedback to help users adjust the transducer position
towards a more optimized view. At the end of each training epoch, we ran
two validation procedures:

1. For the first procedure the metric of interest is the validation loss,
calculated on the internal validation subset of the annotated slices from
3D. This validation loss is calculated similarly to the training loss.
Neither Spatial Reference Noise nor US augmentations are applied when
calculating this validation loss.

2. For the second procedure we introduce the Ordering Success Rate (OSR).
This metric is more appropriate for evaluating our models from the user
perspective of 2D image guiding. The procedure uses views from the
NTNU 2D Guiding external validation dataset. For each combination of
patient, standard view, rotation or tilt, we use a set of three recordings
corresponding to three different orientations:

• Recording A: Anatomically correct standard view,

• Recording B: Slight positive transducer angulation along the DOF from
Recording A,

• Recording C: Slight negative transducer angulation along the DOF from
Recording A.

The true ordering is then expressed as:

p(C) < p(A) < p(B), (4.4)

and the ordering success is then defined by:

Outcome =Success, if p̂(C) < p̂(A) < p̂(B)

Fail, otherwise
(4.5)

where p and p̂ are the ground truth and predicted relative positions of
the 2D imaging plane, respectively. The OSR is defined as the ratio of
success cases over all cases.
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We run several experiments using the US augmentations, the Spatial
Reference Noise and the Gaussian Blurring separately and all together. The
performance is compared to using only the Baseline set of augmentations.
For each DOF, the best model is chosen considering the OSR metric, which
reflects the guiding performance on 2D images. The validation loss remains
informative to avoid overfitting to the training data when selecting the
model for further testing.

4.4.2 Measure of image standardization

To test our models at a larger scale, we retrospectively run them on the
CAMUS and NTNU-LVD external test datasets made of 2D standard views
representative of clinical practice. These datasets contain data labelled as
standard views. While the labels do not contain information on the true
AC, this experiment allows us to qualitatively investigate the degree of
standardization of recordings acquired in a clinical setup.

Additionally, we study the inter-operator AC variability in the image
acquisition by quantifying the AC on recordings from the NTNU 2D
Repeatability dataset.

4.4.3 Real-time image guiding application

We designed and developed a prototype application for image guidance
using the FAST framework [18] which combines image streaming from a
GE E95 clinical scanner (GE Vingmed Ultrasound, Horten, Norway), and
real-time DL inference and visualization. In the application, as shown in
Fig. 4.10 and in Video 4.1, the user chooses a standard view to acquire
and a target box corresponding to this view gets displayed on the short-axis
schematic of the heart. The current position of the transducer relative to
the heart is updated in real-time based on the models and shown as a blue
line. When the current view is predicted as anatomically correct by both
the rotation and tilt networks, the blue line is inside the target box which
changes color from red to green to indicate a valid view.
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Video 4.1: Click or scan to watch online

4.5 Results

4.5.1 Patient variability

From the output of step 4 in the annotation procedure in Fig. 4.4, we could
investigate the variability in rotation angle from A4C to A2C and ALAX
views. Results are presented in Fig. 4.3 and demonstrates variability in heart
shapes. This justify the need for a method that calculates the transducer
position relatively to some characteristic heart features rather than an angle
to target value.

4.5.2 Method validation

Transducer rotation estimation

Fig. 4.7a shows the predictions through the cardiac cycle for the six
rotational CCSs and suggests good convergence of the training procedure
on the internal validation set of 3D slices when using only the baseline
augmentations. These predictions are made on 2D slices from 3D volumes,
as for training, and are expected to yield the best case results. As observed,
the rotational model separates the different classes throughout the cardiac
cycle although the LV axis and the rotational positions are annotated at
ED. Fig. 4.8a is made from the same images, but using a model trained
with additional US-augmentations and specific pre-processing. To evaluate
performance on 2D data during training, the OSR was calculated on
recordings from the NTNU 2D Guiding dataset at the end of each epoch.
Results are presented in the left column of Table 4.1 and corresponds to the
average OSR for the three groups of standard views. The best model from
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the baseline experiment ordered the standard and non-standard 2D views
correctly in 92% of the cases, while an improved score of 95% was obtained
when using our additional augmentations and pre-processing steps. This
improvement in the OSR is also visible in Fig. 4.8b, where the predictions
are more accurate and precise through the heart cycle than in Fig. 4.7b.

Table 4.1: Success rate for ordering non-standard views. Values in bold show
improvement using specific augmentations compared to the baseline training
procedure.

Rotation
(all views)

Tilt
A4C

Tilt
A2C

Tilt
ALAX

Baseline 0.92 0.81 0.53 0.44
US augmentations 0.93 0.95 0.53 0.33
Gaussian blurring 0.93 0.81 0.60 0.37
Spatial Ref. Noise 0.90 0.84 0.60 0.42
All 0.95 0.91 0.67 0.47

Figure 4.7: Rotational results - Model with the best validation loss from the baseline
experiment. (a) Model predictions for the annotated CCSs, (b) model predictions
for the NTNU 2D Guiding recordings, (c) density plot of the AC for recordings from
CAMUS and NTNU-LVD

Transducer tilt estimation

On the sliced 3D data (Fig. 4.9, left column), the A4C tilt model predictions
are consistent with the ground truth CCSs, with stable predictions along
the cardiac cycle. Although all three models converge, the variability and
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Figure 4.8: Rotational results - Model with the best OSR on 2D non-standard
views validation data from the experiment featuring all the pre-processing and
augmentations. (a) Model predictions for the annotated CCSs, (b) model predictions
for the NTNU 2D Guiding recordings, (c) density plot of the AC for recordings from
CAMUS and NTNU-LVD

stability are slightly worse for the A2C and ALAX tilt models, with more
classes overlapping. On the 2D validation data (center column), the A4C
tilt model has the best OSR of 91% whereas being 67% (resp. 47%) for the
A2C (resp. ALAX) view. These scores can be compared against a random
choice scenario leading to a 16.6% correct ordering, meaning that all the
models performs significantly better than a random baseline. One can also
note from Table 1 that the improvements obtained with each augmentation
or pre-processing taken separately are not additive when combined.

4.5.3 Real-time image guiding application

In addition to the quantitative offline assessment, we assessed the method
qualitatively using our real-time application. The Video 4.1 shows the real
time application being used to acquire the three apical standard views. To
the best of our knowledge, this video is the first one showing evidence of a
correlation between the transducer movements, the ultrasound image, and
the given feedback for all three apical views throughout a large number
of heart cycles. For all standard and non-standard views, the position of
the blue feedback line on the short axis schematic was responsive to the
transducer movements and consistent with the structures visible on the US
image.

Fig. 4.10a shows a suboptimal A4C view with visible LVOT. The blue
feedback line is consequently moved away from the target towards the
anterior wall. In Fig. 4.10b the operator acquired a good A4C view. This
is confirmed by the application displaying the feedback line into the target
box which consequently switched color to green.
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Figure 4.9: Tilt results - Model with the best OSR on 2D non-std. views validation
data from the experiment featuring all the pre-processing and augmentations.
(left column) Model predictions for the annotated CCSs, (center column) model
predictions for the NTNU 2D Guiding recordings, (right column) density plot of
the AC for recordings from CAMUS and NTNU-LVD

4.5.4 Measure of image standardization

Retrospective assessment of recordings

The predicted view rotation and tilt for recordings from the CAMUS and
the NTNU-LVD datasets are shown in the right column of Figs. 4.8 and 4.9.
The corresponding visual inspection is available in Video 4.2 which shows
that for each standard view, suboptimal recordings are located at the tails
of the distributions whereas standard ones are located at the center of the
distributions. This suggests that our method is robust enough to predict the
correct transducer position over a large number of patients.
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Figure 4.10: Screen captures of the real-time application prototype. Left side of
the screen shows the US image streamed from a GE E95 scanner. Right side of the
screen shows the calculated feedback based on the neural networks output.

Additionally, one can observe that the positional biases for the external
test datasets are consistent with the positional biases on the 2D validation
data from the NTNU 2D Guiding dataset, with for example the A2C
rotational position being shifted towards the A4C rotational position.

Inter-Operator Variability

We evaluated the AC of the assumed optimal apical standard views from the
NTNU 2D Repeatability data set with our method, with predictions showing
significant differences among operators (Fig. 4.11). For the A2C rotational
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Video 4.2: Click or scan to watch online

position the method suggested that operator 3 tends to acquire the A2C
views closer to the A4C view. This was confirmed by the visual inspection
available in Video 4.3 where the RV was typically partly visible. For the
ALAX rotational position, the results suggested that the ALAX views of
operators 1 and 3 are similar to the A4C view with a vertical flip. Visual
inspection from Video 4.3 revealed that these views included four chambers
(RA is not expected in ALAX) and the LVOT (the aorta valve leaflets are
expected to be visible in addition to the LVOT).

Video 4.3: Click or scan to watch online

4.6 Discussion

We developed and evaluated a deep learning-based method capable of
estimating the anatomical orientation of apical views in echocardiography.
Multiple deep neural networks were trained to regress the position of the
transducer using 2D slices generated from 3D US volumes as the training
material. So far we considered the transducer rotation and out-of-plane
tilt movements, assuming the user has already positioned the transducer
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Figure 4.11: Predicted rotational position by operator for 2D recordings for the
NTNU 2D Repeatability dataset

such that the image plane passes approximately through the apex of the
heart. The method was evaluated using 2D ultrasound recordings and
showed promising results in terms of robustness and accuracy. The real-
time implementation of the method showed ability to provide the user
correct feedback on the required movements needed to acquire the valid
standard views.

The method is suitable for real-time inference both on off-the-shelf
GPUs as as well as less powerful hand-held devices. Thus, it may benefit
less experienced users to obtain anatomically correct standard views for
diagnostics, and can contribute to standardize image views acquired in the
echo lab. The method can also be used for quality control, for instance
to help clinicians automatically selecting the recording and cardiac cycle
most suitable for a given measurement within an exam consisting of many
recordings. This can also be highly useful in a research setting, for instance
when data mining large amounts of patient examinations.

For both online and offline use cases, the method can reduce the
measurement variability introduced during image acquisition, and thereby
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contribute to a more accurate patient management. Used retrospectively,
the method can be used as a tool to analyze and improve scanning habits in
individual operators.

An important aspect of our work is the use of 3D US recordings as the
primary data source, which combined with our semi-automatic annotation
procedure allowed us to use data from 162 patients from several echo labs.
Using 3D data, the labelled reference position is given relative to the heart
anatomy. Our method therefore compensate for the heart movements inside
the chest that occurs while breathing, contrarily to Toporek et al. [8] which
uses an external sensor to acquire the reference position.

Using 3D US volumes as the primary data source comes at the price
of a discrepancy between the training data made of 3D slices and the
inference data consisting of 2D recordings. We therefore introduced an
additional validation metric, theOSR, which is directly related to the ability
to detect small transducer movements on 2D data and thus has more clinical
relevance than the traditional validation loss.

The present work divided the method into simpler sub problems, which
allowed us to better identify some of the challenges related to the apical
standard views AC assessment with DL networks. For instance, we found
that the estimated rotational position was more accurate than the estimated
tilt position. The average predictions of the rotational model over the
cardiac cycle on the NTNU 2D Guiding shown in Fig. 4.8b revealed a bias of
the A2C rotation towards the A4C. This bias is also present in the CAMUS
and NTNU-LVD datasets, as shown in Fig. 4.8c. Visual inspection available
in Video 4.2 revealed that many recordings labelled as standard A2C views
partly include the RV or the coronary sinus vein. This suggests that the
rotational position reference is correct and that the A2C 2D recordings from
the NTNU 2D Guiding, CAMUS and NTNU-LVD datasets does not fully
comply with the expected A2C standard view. Our method thus has the
potential to improve AC for experienced users.

Visual inspection of the tilt recordings from the NTNU 2D Guiding
dataset in the A2C and ALAX positions showed that the three recordings are
similar, explaining the lower OSR results for the A2C and ALAX tilt models
compared to the rotational and A4C tilt models. The lower OSR on the 2D
data is also consistent with the results on the 3D slices (Figs. 4.9d and 4.9g)
which have a slightly higher variability than the A4C tilt model (Fig. 4.9a).
This suggests that tilt regression is more difficult to learn in the A2C
and ALAX than for A4C views, although the data generation and training
procedures are identical. Visual inspection of the tilt training data revealed
that the slices in the A4C direction are potentially richer in features than in
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the A2C and ALAX directions.
For the A4C tilt model, one can notice from Figs. 4.9b and 4.9c a

consistent bias for the 2D A4C view compared to the A4C sliced in a 3D
volume. Visual inspection of the training material suggested a bias in the
reference due to the automatically generated LV axis. Indeed, we used the
geometrical LV axis for the rotational axis during training data generation,
whereas the axis used in practice by clinicians crosses the mitral plane
slightly closer to the anterior wall. Nevertheless, such reference biases are
not an issue for our method as they can be quantified from the validation
dataset and compensated in post-processing for further inference.

For all DOFs, the position predictions on both validation slices and the
NTNU 2D Guiding dataset did not significantly vary throughout the cardiac
cycle, suggesting that the annotations made at the ED frame are valid for a
complete cycle.

Using the US-specific augmentations improved or maintained the
accuracy on the OSR. This supports the hypothesis that adding domain
knowledge from US through data augmentation improves the robustness
of the trained networks. Further, the blurring step applied at both training
and inference seems to be beneficial for performance, suggesting that local
image features are less relevant for the present task.

The CVCNet neural network topology was benchmarked against other
topologies (benchmark available in the supplementary material). Neither
smaller networks (MobileNet V2) nor larger networks (Inveption V3,
ResNet50) provided significantly different results. Since carrying a clinical
superiority test as proposed by Varoquaux et al. [19] is not realistic during
early technical development, we assumed our method being topology
agnostic and focused our efforts a careful preprocessing of the data and an
in-depth evaluation on several external datasets to demonstrate robustness.

Although designed to quantify the guiding abilities of our models, the
OSR metric is limited by the fact that we could not control the amount
of positive and negative rotation or tilt introduced by the clinicians who
acquired the NTNU 2D Guiding dataset. This, in addition to the small
size of the NTNU 2D Guiding dataset, makes conclusions on improvements
obtained with data augmentation and pre-processing difficult.

Despite limited quantitative results for our method due to the afore-
mentioned, the Videos 4.1, 4.2, and 4.3 show evidence of the accuracy
and robustness of our method by showcasing the association between the
transducer movements, the US images and the predicted position.

In use, the main limitation of our guidance tool is the need for the correct
intercostal point as a starting point. While this is achievable for experienced
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users, positioning the transducer over the apex can be challenging for non-
experts. Further clinical testing will identify the improvements required
to make the application usable by most users. Future work will address the
explainability of the method as this is required for the method to be adopted
by the medical community. The same approach should be applicable to
make a guiding tool for the parasternal long- and short-axis views. However,
since 3D US is more often performed in the apical window, 3D data might
be less available.

4.7 Conclusion

We have described a method to help ultrasound users acquire apical
standard views of the heart. The backbone of the method is based on
deep neural networks performing regression of the transducer position
relative to the heart. The networks were trained on 2D slices from 3D US
volumes, where reference positions were obtained using a semi-automated
approach. Testing on multiple external datasets of 2D recordings showed
that themethod could detect suboptimal image planes and unveil individual
operators’ scanning habits. This suggests that our method is sufficiently
robust and accurate to be of clinical value. A real-time application that
supports inference of images streamed from a clinical US scanner and
displays an intuitive feedback about view position was developed. Examples
demonstrate the expected relation between the transducer movements, the
ultrasound image and the machine learning calculated feedback. Further
work will quantify the clinical value of the method inside and outside the
echo lab, and map the potential benefit for expert and non-expert users.
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4.8 Supplemental material

This supplemental material provides additional content from the study.
Section 4.8.1 provides a graphical explanation of the OSR metric together
with its formula for the rotational case. Section 4.8.2 provides a comparison
of four different classifier topologies for the guiding task.

4.8.1 Metrics

Graphical explanation of the position calculation is presented in Supple-
mental Fig. 4.1.

Supplemental Figure 4.1: Position estimation calculation from networks output for
the (a) rotation DOF and (b) the tilt DOF

For the rotational model, the predicted relative position p̂rot accounts for
the circular nature of the problem. Form the network output vector Crot of
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length N , the predicted position of any frame X can be expressed as:

p̂rot(X) =
N
2π

arctan2(
N−1∑
n=0

CX
rot(n) · sin(

n · 2π
N

),

N−1∑
n=0

CX
rot(n) · cos(

n · 2π
N

))

(4.6)

We can then define the categorical distance d to the target CCS by:

d(X,CCS) = p̂rot(X)− prot(CCS), (4.7)

where p(CS) here is the index of the target cross-sectional view in Lrot.
Finally, we account for the circular nature of the problem and define the

minimal categorical distance drot to the target CS by:

drot(X,CCS) =


d(X,CCS)−N, if d(X,CCS) > N/2

d(X,CCS) +N, if d(X,CCS) < −N/2

d(X,CCS), otherwise

(4.8)

4.8.2 Comparison of Neural Network topologies

We investigated the performance of four model topologies (MobileNet V2,
CVCNet, Inception V3 and ResNet50) for the ordering accuracy for the non-
standard views (Fig. 4.2). Main findings was that larger networks slightly
improved the OSR for the rotational and A4C tilt models. However, none
of the network topologies performed significantly better than others for the
A2C and ALAX tilt DOFs. This suggests that the neural network topology is
not a key factor for the method performance.
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Supplemental Figure 4.2: Comparison of the best ordering score on 2D non
standard-views for different network topologies
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5Real-time Guiding by Deep Learning of Experienced
Operators to Improve Standardization of
Echocardiographic Acquisitions

Sigbjørn Sæbø1,3, David Pasdeloup1, Håkon N. Pettersen1, Erik
Smistad1,2, Andreas Østvik1,2, Sindre H. Olaisen1, Stian B. Stølen1,3,
Bjørnar L. Grenne1,3, Espen Holte1,3, Lasse Løvstakken1, and Håvard
Dalen1,3
1 Dept. of Circulation and Medical Imaging, NTNU, Trondheim, Norway
2 SINTEF Digital, Medical Image Analysis, Trondheim, Norway
3 Clinic of Cardiology, St. Olav’s Hospital, Trondheim, Norway

Background Impaired standardization of echocardiograms may increase
inter-operator variability.

Objectives We aimed to study whether real-time guiding of experienced
sonographers by deep learning (DL) could improve standardization of apical
recordings.

Methods Patients (n=88) in sinus rhythm referred for echocardiography
were included. All participants underwent three echocardiograms, whereof
two were performed by sonographers, and the third by cardiologists. In
the first study period (Period 1), the sonographers were instructed to
provide echocardiograms for analyses of left ventricular (LV) function.
Subsequently, after brief training, the DL guiding was used in Period 2 by
the sonographer performing the second examination. View standardization
was quantified retrospectively by a human expert as the primary endpoint
and the DL algorithm as the secondary endpoint. All recordings were
scored in rotation and tilt both separately and combined, and categorized
as standardized or not.

Results Sonographers using DL guiding hadmore standardized acquisitions
for the combination of rotation and tilt than sonographers without guiding
in both periods (all p<.05) when evaluated by the human expert and DL
(except for A2C by DL evaluation). When rotation and tilt were analyzed
individually, A2C and ALAX rotation and A2C tilt were significantly
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improved and the others were numerically improved when evaluated by the
echocardiography expert and all, except for A2C rotation, were significantly
improved when evaluated by DL (p<.01).

Conclusion Real-time guiding by DL improved standardization of echocar-
diographic acquisitions by experienced sonographers. Future studies should
evaluate the impact with respect to improved reproducibility andwhen used
by less experienced operators.
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Chapter 5. Real-Time Echocardiography Guidance - Clinical Study

5.1 Introduction
Echocardiography provides essential information about cardiacmorphology
and function, making it a central tool for clinical decision-making in car-
diology [1]. However, echocardiographic measurements have considerable
operator variability, even in the hands of experienced operators [2, 3].
This reduces the sensitivity to detect subtle changes in cardiac function.
Impaired view standardization is an important source of measurement vari-
ability, as standardized views form the basis of obtaining reliable analyses.
It has been shown that the variability introduced by the recordings is equal
to that of the analyses formost left ventricular functionmeasurements [4–6].
Thus, expert consensus emphasizes the importance of reporting image
quality and improving standardization of recordings for optimal diagnostics
and treatment in cardiology [1, 7]. However, until now, evaluation of
view standardization has been subjective and rarely quantified in the clinic
and research. Novel ultrasound imaging analysis by deep learning (DL)
techniques can process echocardiographic images in real-time [8,9]. Beyond
measurements of cardiac size and function, such methods have shown the
potential to improve view standardization of echocardiographic recordings
during scanning [10, 11]. Thus, we aimed to study whether the use of a
DL based scan assistant to guide experienced sonographers in real-time
during scanning could optimize the three standard apical views to better
comply with the current recommendations. This was first evaluated using
retrospective assessment of view standardization by a human expert as
reference. Secondly, the effect of the scan assistant was evaluated using
retrospective DL standardization assessment as the reference.

5.2 Methods

5.2.1 Study population

Patients with mixed cardiac pathology were prospectively included from
the St. Olavs University Hospital echocardiography laboratory (Figure 5.1).
Inclusion criteria were 1) referral with indication for comprehensive
echocardiography and 2) ability to provide written informed consent.
Patients with non-sinus rhythm or indication for contrast echocardiography
were excluded. Inclusion was restricted to predefined dates based on
the availability of location and personnel. The study was approved by
the regional ethical committee (REC Central Norway 2019/7160) and
performed according to the Helsinki Declaration. All participants provided
their written informed consent.
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5.2. Methods

Central illustration: Study design, core results and the DL scan assistant
Left: characteristics of the two study periods and the repeated examinations of each
patient by different sonographers. Plots depict spread of view standardization of
apical views in rotation and tilt, as evaluated retrospectively by the DL algorithm.
Right: Setup during patient examination and the scan assistant’s feedback to cases
of incorrect versus correct apical four-chamber view acquisitions.
DL: deep learning, US: ultrasound, LV: left ventricle, RV: right ventricle

5.2.2 Study design

All participants underwent three consecutive echocardiographic examina-
tions without leaving the examination bench. The participants stayed in
supine position between the examinations, and the time delay between
examinations was minimized to the change of operators only. The first
and second examinations were performed by two (of three) sonographers,
and the third examination by one (of four) experts in echocardiography
(all cardiologists). Operators were only present during their respective
examinations and blinded to all information made available by the others.
The selection of operators for the different examinations was random.

The data collection was divided into two separate periods (Figure 5.1).
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Sonographer 1 
Full echocardiogram  

including 2D  
apical views 

Sonographer 2 
(no DL scan assistant) 
Focused exam including  

2D apical views 

Period 1, n=41

15 patients excluded: 
Non-sinus rhythm (n=8) 

Contrast echocardiography (n=7)

Eligible patients  
(n=103)

Patients included 
(n=88)

P1 - E1 P1 - E2

Sonographer 1 
Full echocardiogram  

including 2D  
apical views 

Sonographer 2 
(with DL scan assistant) 

Focused exam including  
2D apical views 

Cardiologist 
 

Focused exam including 
2D apical views  

Period 2, n=47
P2 - E1 P2 - E2 P2 - E3

Cardiologist 
 

Focused exam including 
2D apical views  

P1 - E3

Figure 5.1: Flowchart of the study population
The same color coding for operator groups are also used in Figures 5.3 to 5.5 and
Tables 5.2 and 5.3.
DL: deep learning, E1: Examination 1, E2: Examination 2, P1: Period 1, P2: Period
2

In the first period (Period 1), the sonographers were instructed to provide
optimal echocardiograms for comparative analyses of left ventricular (LV)
function. However, they were not explicitly informed about the aim of
the study, the content of the training period, or the second data collection
period. After Period 1 of data collection, the sonographers were introduced
to the real-time DL scan assistant and trained on ten patients each. In the
second period (Period 2), the sonographer performing the first examination
(Sonographer 1) did this similarly as in Period 1, except for now being
aware of the study aims and recently being trained in the use of the
real-time DL scan assistant. The sonographer who performed the second
examination (Sonographer 2) used the real-time DL scan assistant during
scanning. The three sonographers participating in the study were randomly
allocated to the role of Sonographer 1 or 2, ensuring that the sonographer
examination with guiding was not performed by the same individual in all
inclusions. This design was chosen to account for inter-operator differences
in standardization of acquisitions.

5.2.3 Echocardiographic image acquisition

Examinations were performed with the patient in a left lateral decubitus
position using a Vivid E95 scanner (version 202, GE Vingmed Ultrasound,
Horten, Norway) with a phased array transducer (4Vc). For each recording,
three consecutive cardiac cycles were obtained. The first examination was
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5.2. Methods

a comprehensive echocardiogram according to ASE/EACVI guidelines [1].
The second and third exams were focused to the study aims and included
among others two-dimensional (2D) B-mode (grayscale) apical two-chamber
(A2C), four-chamber (A4C), and long-axis recordings (ALAX) for analyses
of LV size and function. All study-specific recordings were blinded and de-
identified before storing on the hospital’s imaging server.

5.2.4 Real-time DL scanning assistant

The technical aspects of the real-time DL scan assistant used in this study
has previously been described in detail [10]. It has two main components:
a core DL algorithm automatically analyzing the images and a software
application with a graphical user interface running the DL algorithm in
real-time while interacting with the operator (Central Illustration). The
core DL algorithm estimates the position of the 2D imaging plane relative
to the heart for the rotation and tilt degrees of freedom (DOFs), where
rotation indicates the rotational movement of the transducer, e.g., from
A4C towards A2C or ALAX. Similarly, tilt indicates the tilting movement
of the imaging plane away from the centerline, like anterior or posterior
movement in A4C and lateral or septal movement in A2C. Both tilt and
rotation are exemplified in Figure 5.2. As the heart anatomy varies from
patient to patient, the position of each 2D image plane is calculated relative
to the position of predefined and invariant 2D imaging planes, including
the planes corresponding to three apical standard views (Supplemental
Figure 1). Unlike traditional classification DL methods, which are only
trained on standard views [8, 12,13], this method is also trained using non-
standard views to enhance spatial understanding. This approach allows
to 1) estimate the deviation from the target standard view and 2) suggest
transducer tilt and rotation movements to achieve the respective standard
view. The core DL algorithm is implemented in the FAST framework [14], to
form a complete real-time application that receives ultrasound images from
a commercial ultrasound scanner and generates intuitive feedback on how
to move the transducer to obtain the standardized view. A screen capture
of the application is shown in the Central Illustration, and Video 5.1 shows
an example of the method used in real-time, with both standardized and
non-standardized apical views.
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D) Feedback indicating incorrect 
transducer rotation and tilt

C) Feedback indicating 
incorrect transducer tilt

A) Feedback indicating a 
correct standard view

B) Feedback indicating incorrect 
transducer rotation

Figure 5.2: Rotation and tilt degrees of freedom in correct and incorrect apical
four-chamber imaging planes
The imaging plane orientation is illustrated on a mid-ventricular parasternal short-
axis cross-section.
LV: Left ventricle, LVOT: Left ventricular outflow tract, RV: Right ventricle

Video 5.1: Click or scan to watch online
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5.2. Methods

5.2.5 Retrospective view standardization evaluation by a human
expert

One echocardiography expert cardiologist (H. D.) manually evaluated view
standardization in all recordings blinded to the study period, operator
details, and whether the scan assistant was used or not. Rotation and tilt
deviations were evaluated individually on a continuous scale from –3 to 3
in all three cycles for A2C, A4C, and ALAX recordings (Figure 5.3). A score
of 0 indicated a perfect view, and negative or positive values reflected the
direction and amount of deviations from optimal alignment of angle and
tilt (Supplemental Table 5.1). Correct view standardization was arbitrarily
predefined as a score between -0.5 and 0.5. The human expert who
performed retrospective evaluation was not involved in the development
of the scan assistant.

5.2.6 Retrospective view standardization evaluation by DL

All recordings were retrospectively analyzed by the core DL algorithm,
which assigned them a relative tilt and rotational position on a continuous
scale. We defined correctly standardized recordings for the automatic DL
standardization evaluation to be within the center 80% along the relative
positional axis of the cardiologists’ recordings (Figure 5.3). The 80%
position interval was arbitrarily predefined.

5.2.7 Statistics

Following the study aim, four null hypotheses were tested for evaluation of
the effect of real-time DL guiding:

• H0-A: The proportion of standardized recordings is the same for
sonographers before and after learning to use the scan assistant.

• H0-B: The proportion of standardized recordings is the same for
sonographers actively using the scan assistant and those who have
never used the scan assistant.

• H0-C: The proportion of standardized recordings is the same for
sonographers who are actively using the scan assistant and those with
training in, but not actively using the scan assistant.

• H0-D: The proportion of standardized recordings is the same for
sonographers actively using the scan assistant and for cardiologists not
using the scan assistant.
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H0-A

H0-C

H0-D

H0-B

Figure 5.3: Visualization of
the standardization assessment
according to examinations, study
periods and null hypotheses
Here exemplified by the rotational
transducer position of apical
long-axis view recordings. The
distribution of DL algorithm scores
is shown along the x-axes, while
the distribution of expert’s manual
scores is shown along the y-axes.
The color-coded left panel indicates
operators, periods, whether the
DL guiding algorithm was used
or not, and relation to the four
null hypotheses. The reference
interval for the DL standardization
evaluation was based on the
center 80% of the cardiologists’
distribution and is shown by the
light green colored interval.
A4C: apical four chamber view,
A2C: apical two chamber view,
ALAX: apical long-axis view, E:
Examination, H0-X: Null hypotheses
tested, P: Inclusion period.
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5.3. Results

We investigated these null hypotheses according to the primary and
secondary endpoint. The primary endpoint for hypotheses A-D was
improvement in view standardization as evaluated in the human expert
image analysis, and the secondary endpoint was similar but based on the
DL image analysis. All hypotheses were tested in the rotational DOF, tilt
DOF, and combination of rotation and tilt DOFs. Data obtained by the
cardiologists in Period 1 were not included in these analyses. Statistical
testing for differences in proportions between groups were calculated
using the chi-squared tests. Bootstrapping (10 000 resamples) was used
for both the manual and automatic analyses to estimate 95% confidence
intervals (CI) for proportions of standardized recordings. All analyses
were performed with Python 3.9 using Scipy 1.10.10. P-values <0.05 were
considered statistically significant. Using SamplePower (version 3; IBM
Statistics, NY, USA), inclusion of 38 individuals in each group provided 80%
power to detect an increase in the proportion of standardized recordings
from 50% to 80% (α 0.05) by use of the scan assistant. To account for
potential drop-outs 15% more individuals were finally included.

5.3 Results

5.3.1 Study population

Of 103 recruited participants, those not in sinus rhythm (n=8) or with
indication for contrast echocardiography (n=7) were excluded. Thus, a total
of 88 patients (54% women) were included. Baseline characteristics of the
study population and the key echocardiographic measurements are shown
in Table 5.1. In short, the mean (SD) age was 61 (17) years, 34 (38%)
had heart failure or previous myocardial infarction, while 16 (18%) had
moderate or severe valvular disease. Only 3 (3%) had chronic obstructive
pulmonary disease. Sonographers using the scan assistant usedmore time to
obtain the three apical views, with a mean of 175.7 seconds per examination
compared to 61.7 seconds in sonographers without assistance (p<.001).

5.3.2 Primary endpoint: Impact on view standardization evalu-
ated by a human expert

The proportions of standardized recordings as evaluated by the human
echocardiography expert are presented in Table 5.2 and visualized in
Figure 5.4. For rotation and tilt combined, sonographers using the scan
assistant had significantly more standardized recordings than sonographers
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Table 5.1: Basic characteristics of the study population according to study
periods.

Period 1 Period 2

Included study participants 41 47
Age 62 (18) 61 (15)
Women 19 (45%) 29 (38%)

Clinical characteristics:
Heart failure 8 (20%) 8 (17%)
Acute myocardial infarction 10 (24%) 8 (17%)
Moderate or severe valvular disease 7 (17%) 9 (19%)
Chronic obstructive pulmonary disease 2 (5%) 1 (2%)
Body mass index, kg/m² 26 (4) 26 (3)
Heart rate, beats per minute 66 (13) 69 (10)
Systolic blood pressure, mmHg 143 (25) 136 (23)

Echocardiographic characteristics
Left ventricular ejection fraction, % 54 (13) 55 (11)
LV end-diastolic volume, biplane, ml 124 (53) 120 (49)

Values are presented as mean (SD) or numbers (proportions)

without assistance in Period 1 for all three apical views (p<.01). Similar
results were also found for individual DOFs for A2C tilt, A2C rotation,
and ALAX rotation (p<.01), and also A4C rotation and A4C tilt (p=.069
and p=.065, respectively). ALAX tilt was numerically improved, but the
difference was not statistically significant (p=.192).

Compared to cardiologists, sonographers using the scan assistant were
not significantly less standardized in A4C and A2C views for combined
rotation and tilt (p=.239 and p=.182, respectively). In ALAX combined
rotation and tilt, cardiologists were significantly more standardized than
sonographers using the scan assistant (p<.05).

5.3.3 Secondary endpoint: Impact on view standardization evalu-
ated by DL

The proportions of recordings with correct standardization as evaluated
by the core DL algorithm are presented in Table 5.3. Figure 5.5 provides
a qualitative visualization of the distribution of the estimated position

151



5.3. Results

Tab
le

5.2:P
rop

ortion
of

stan
d
ard

ized
acqu

isition
s
accord

in
g
to

h
u
m
an

exp
ert

evalu
ation

Period
1

Period
2

p
-valu

es
1:P

1-E
1&

E
2

2:P
2-E

1
3:P

2-E
2

4:P
2-E

3
1
vs.2

1
vs.3

2
vs.3

3
vs.4

H
0-A

H
0-B

H
0-C

H
0-D

R
otation

A
4C

71.6
[61.7,81.5]

74.5
[61.7,87.2]

87.2
[76.6,95.7]

83.0
[72.3,93.6]

0.885
∆

0.069 ∗
0.190 ∗

0.772 ∗§

A
2C

56.8
[45.7,67.9]

85.1
[74.5,93.6]

85.1
[74.5,93.6]

83.0
[72.3,93.6]

<
.005

∆
<
.005 ∗

1.000
1.000 ∗§

A
L
A
X

36.2
[26.2,46.2]

42.6
[27.7,57.4]

70.2
[57.4,83.0]

87.2
[76.6,95.7]

0.606
∆

<
.001 ∗

<
.05 ∗

0.078 §

Tilt
A
4C

30.9
[21.0,40.7]

40.4
[25.5,55.3]

48.9
[34.0,63.8]

76.6
[63.8,87.2]

0.366
∆

0.065 ∗
0.534 ∗

<
.05

A
2C

71.6
[61.7,81.5]

68.1
[53.2,80.9]

100.0
[100.0,100.0]

85.1
[74.5,93.6]

0.826
<
.001 ∗

<
.001 ∗

<
.05 ∗§

A
L
A
X

81.2
[72.5,88.8]

91.5
[83.0,97.9]

91.5
[83.0,97.9]

97.9
[93.6,100.0]

0.192
∆

0.192 ∗
1.000

0.358 §

R
otation

and
tilt

A
4C

12.0
[7.9,16.2]

23.4
[16.3,30.5]

44.7
[36.9,53.2]

59.0
[50.4,67.6]

0.153
∆

<
.001 ∗

0.050 ∗
0.239 §

A
2C

39.1
[32.9,45.3]

61.0
[53.2,68.8]

85.1
[79.4,90.8]

71.6
[63.8,78.7]

<
.05

∆
<
.001 ∗

<
.05 ∗

0.182 ∗§

A
L
A
X

35.1
[29.3,41.0]

40.4
[32.6,48.9]

63.8
[56.0,71.6]

85.8
[80.1,91.5]

0.686
∆

<
.005 ∗

<
.05 ∗

<
.05

D
ata

show
n
as

p
rop

ortion
[95%

confi
d
ence

interval]%
of

correctly
stand

ard
ized

view
s.

∆
:P

rop
ortion

of
stand

ard
ized

view
s
nu

m
erically

higher
after

sonograp
hers

got
aw

are
of

stu
d
y
aim

s
and

trained
w
ith

the
scanning

assistant
*:P

rop
ortion

of
stand

ard
ized

view
s
nu

m
erically

higher
w
hen

u
sing

the
scanning

assistant
§:Sonograp

her
record

ings
not

signifi
cantly

less
stand

ard
ized

com
p
ared

to
card

iologists

152



Chapter 5. Real-Time Echocardiography Guidance - Clinical Study

3

2

1

0

1

2

3
M

an
ua

l s
co

re
 ti

lt 
(0

 b
es

t)

A4C
P1

E1
 &

 E
2

So
no

gr
ap

he
r n

ot
 a

w
ar

e
of

 s
tu

dy
 a

im
s

1.2%

1.2%

1.7%

3.7%

5.4%

12.0%

40.7%

11.2%

2.5%

1.2%

1.7%

3.3%

10.0% 2.5%

3 2 1 0 1 2 3
Manual score rotation (0 best)

3

2

1

0

1

2

3

M
an

ua
l s

co
re

 ti
lt 

(0
 b

es
t)

P2
E2

So
no

gr
ap

he
r a

ct
iv

el
y 

us
in

g
th

e 
sc

an
ni

ng
 a

ss
is

ta
nt

2.1%

3.5%

3.5%

14.9%

44.7%

22.7%

1.4%

2.1% 4.3%

A2C
P1

E1
 &

 E
2

So
no

gr
ap

he
r n

ot
 a

w
ar

e
of

 s
tu

dy
 a

im
s

1.6%

9.9%

5.3%

20.2%

1.2%

17.7%

39.1% 1.2%

1.2%

1.2%

3 2 1 0 1 2 3
Manual score rotation (0 best)

P2
E2

So
no

gr
ap

he
r a

ct
iv

el
y 

us
in

g
th

e 
sc

an
ni

ng
 a

ss
is

ta
nt

2.8% 6.4% 85.1% 2.1% 2.1%

ALAX
P1

E1
 &

 E
2

So
no

gr
ap

he
r n

ot
 a

w
ar

e
of

 s
tu

dy
 a

im
s

1.3%

7.1%

1.3%

35.1%

3.8%

15.9%

2.1%

18.4%

1.7%

1.3%

5.4%

3.3%

3 2 1 0 1 2 3
Manual score rotation (0 best)

P2
E2

So
no

gr
ap

he
r a

ct
iv

el
y 

us
in

g
th

e 
sc

an
ni

ng
 a

ss
is

ta
nt

7.8%

5.0%

63.8% 11.3% 7.1%

2.1%

1.4%

Figure 5.4: Blinded view standardization evaluation by an echocardiography
expert
Rotation is presented along the x-axis and tilt along the y-axis. The percentages
inside the boxes indicate the proportions of recordings with a given score.
A2C: Apical two-chamber view, A4C: Apical four-chamber view, ALAX: Apical long
axis view, E1: Examination 1, E2: Examination 2, P1: Period 1, P2: Period 2.

along each DOF. For rotation and tilt combined, sonographers using
the scan assistant in Period 2 significantly improved standardization
of A4C and ALAX acquisitions compared to sonographers in Period 1
(p<.001). For A2C combined rotation and tilt, the difference was not
statistically significant (p=.936). However, A2C tilt was significantly
improved (p<.001), while A2C rotation had a significantly lower proportion
of correct recordings (p=.002). For other views and DOFs individually,
sonographers using the scan assistant significantly improved proportions of
correct acquisitions compared to sonographers in Period 1 in A4C andALAX
rotation (p<.001) and all three views for tilt (p<.05). Figure 5.6 illustrates
operator-specific distributions for the rotational DOF in ALAX recordings.
Similar distributions for the other apical views and DOFs are included in
Supplemental Figure 5.2. Compared to cardiologists, sonographers using
the scanning assistant were not significantly less standardized in combined
rotation and tilt for all the three apical standard views (p>.099)

153



5.3. Results

Tab
le

5.3:P
rop

ortion
of

stan
d
ard

ized
acqu

isition
s
accord

in
g
to

th
e
core

D
L
algorith

m
an

alysis

Period
1

Period
2

p
-valu

es
1:P

1-E
1&

E
2

2:P
2-E

1
3:P

2-E
2

4:P
2-E

3
1
vs.2

1
vs.3

2
vs.3

3
vs.4

H
0-A

H
0-B

H
0-C

H
0-D

R
otation

A
4C

66.7
[56.8,76.5]

70.2
[57.4,83.0]

97.9
[93.6,100]

80.0
by

d
esign

0.827
∆

<
.001 ∗

<
.001 ∗

0.116 ∗§

A
2C

80.2
[71.6,88.9]

72.3
[59.6,85.1]

53.2
[38.3,68.1]

80.0
by

d
esign

0.417
<
.005

0.088
<
.01

A
L
A
X

36.2
[26.2,47.5]

27.7
[14.9,40.4]

93.6
[85.1,100]

80.0
by

d
esign

0.425
<
.001 ∗

<
.001 ∗

0.073 ∗§

Tilt
A
4C

81.5
[72.8,90.1]

83.0
[72.3,93.6]

95.7
[89.4,100]

80.0
by

d
esign

1.000
∆

<
.05 ∗

0.094 ∗
0.094 ∗§

A
2C

72.8
[63.0,82.7]

78.7
[66.0,89.4]

100.0
[100,100]

80.0
by

d
esign

0.597
∆

<
.001 ∗

<
.005 ∗

<
.005 ∗§

A
L
A
X

71.2
[61.3,81.2]

66.0
[53.2,78.7]

93.6
[85.1,100]

80.0
by

d
esign

0.671
<
.01 ∗

<
.005 ∗

0.199 ∗§

R
otation

and
tilt

A
4C

49.8
[43.6,56.0]

50.4
[42.6,58.9]

85.8
[80.1,91.5]

80.0
by

d
esign

1.000
∆

<
.001 ∗

<
.001 ∗

0.217 ∗§

A
2C

54.3
[48.1,60.9]

47.5
[39.0,56.0]

56.7
[48.9,64.5]

80.0
by

d
esign

0.576
0.936 ∗

0.491 ∗
0.944 §

A
L
A
X

30.5
[24.7,36.4]

19.9
[13.5,26.2]

85.8
[80.1,91.5]

80.0
by

d
esign

0.268
<
.001 ∗

<
.001 ∗

0.099 ∗§

D
ata

show
n
as

p
rop

ortion
[95%

confi
d
ence

interval]%
of

correctly
stand

ard
ized

view
s.

∆
:P

rop
ortion

of
stand

ard
ized

view
s
nu

m
erically

higher
after

sonograp
hers

got
aw

are
of

stu
d
y
aim

s
and

trained
w
ith

the
scanning

assistant
*:P

rop
ortion

of
stand

ard
ized

view
s
nu

m
erically

higher
w
hen

u
sing

the
scanning

assistant
§:Sonograp

her
record

ings
not

signifi
cantly

less
stand

ard
ized

com
p
ared

to
card

iologists

154



Chapter 5. Real-Time Echocardiography Guidance - Clinical Study

 Rot. twd. flipped ALAX Rot. twd. A2C  

 In
fe

rio
r t

ilt
An

te
rio

r t
ilt

 
 

AI
 e

st
im

at
ed

 ti
lt 

po
si

tio
n

A4C
P1

E1
 &

 E
2

So
no

gr
ap

he
r n

ot
 a

w
ar

e
of

 s
tu

dy
 a

im
s

 Rot. twd. flipped ALAX Rot. twd. A2C  
AI estimated rotational position

 In
fe

rio
r t

ilt
An

te
rio

r t
ilt

 
 

AI
 e

st
im

at
ed

 ti
lt 

po
si

tio
n

P2
E2

So
no

gr
ap

he
r a

ct
iv

el
y 

us
in

g
th

e 
sc

an
ni

ng
 a

ss
is

ta
nt

 Rot. twd. A4C Rot. twd. ALAX  

 L
at

er
al

 ti
lt

Se
pt

al
 ti

lt 
 

A2C
P1

E1
 &

 E
2

So
no

gr
ap

he
r n

ot
 a

w
ar

e
of

 s
tu

dy
 a

im
s

 Rot. twd. A4C Rot. twd. ALAX  
AI estimated rotational position

 L
at

er
al

 ti
lt

Se
pt

al
 ti

lt 
 

P2
E2

So
no

gr
ap

he
r a

ct
iv

el
y 

us
in

g
th

e 
sc

an
ni

ng
 a

ss
is

ta
nt

 Rot. twd. A2C Rot. twd. flipped A4C  

 A
nt

er
o-

la
te

ra
l t

ilt
In

fe
ro

-s
ep

ta
l t

ilt
 

 

ALAX
P1

E1
 &

 E
2

So
no

gr
ap

he
r n

ot
 a

w
ar

e
of

 s
tu

dy
 a

im
s

 Rot. twd. A2C Rot. twd. flipped A4C  
AI estimated rotational position

 A
nt

er
o-

la
te

ra
l t

ilt
In

fe
ro

-s
ep

ta
l t

ilt
 

 

P2
E2

So
no

gr
ap

he
r a

ct
iv

el
y 

us
in

g
th

e 
sc

an
ni

ng
 a

ss
is

ta
nt

Figure 5.5: Retrospective automatic view standardization estimated by the DL
core models
The green box indicates the standardization reference, as defined by the center 80%
of view orientation in the cardiologist recordings.
A2C: Apical two-chamber view, A4C: Apical four-chamber view, ALAX: Apical long
axis view, E1: Examination 1, E2: Examination 2, P1: Period 1, P2: Period 2, Rot.
twd.: Rotation towards.

5.4 Discussion

This study investigated the effect of a real-time scanning assistant to opti-
mize apical views standardization by experienced sonographers. The effect
was quantitatively evaluated using retrospective human expert analysis and
DL analysis. The main finding was that experienced sonographers using the
scanning assistant significantly improved the proportion of standardized
apical recordings.

5.4.1 Comparison to prior studies of real-time guiding

To the best of our knowledge, this is the first study to quantify standard-
ization of recordings by experienced echocardiographers. Furthermore, it
is the first study to show the distribution of view standardization and the
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P1 E1 & E2
Sonographer not aware of study aims

Op 1
Op 2
Op 3

P2 E2
Sonographer actively using the scanning assistant

Op 1
Op 2
Op 3

 Rot. twd. A2C Rot. twd. flipped A4C  
AI estimated view plane

P2 E3
Cardiologist reference

Op 4
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Figure 5.6: Operator specific distributions for relative view standardization with
respect to transducer rotation in the apical long axis view
The green box indicates the standardization reference, as defined by the center 80%
of view orientation in the cardiologist recordings.
A2C: Apical two-chamber view, A4C: Apical four-chamber view, E1: Examination
1, E2: Examination 2, E3: Examination 3, Op: Operator, P1: Period 1, P2: Period 2,
Rot. twd.: Rotation towards.

potential benefits of real-time guiding of experienced echocardiographers to
optimize standardization of apical views. Even though comparative studies
are lacking, previous studies from our center and elsewhere do not show
poorer standardization of recordings at our center [5, 15, 16], indicating a
potential to improve the quality in echocardiographic laboratories across
the world.

Some studies have presented DL-based software for real-time guiding
of operators. Narang et al. [17] and Schneider et al. [18] assessed guiding
of inexperienced operators (nurses or medical students without any prior
echocardiographic experience). In comparison, the experienced sonogra-
phers in the presented study had more than five years of echocardiographic
experience with a minimum of >2,000 comprehensive echocardiograms
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performed each. In the studies by Narang and Schneider, machine learning-
based metrics were used to evaluate image quality and shown as a single
parameter displayed as a bar on the screen. In the presented study, the
real-time scan assistant guided the operator by visualizing the view plane in
real-time and intuitively suggested adjustments of the transducer position
to obtain the well standardized imaging plane. Narang and Schneider
also evaluated image quality retrospectively concerning its applicability for
qualitative estimation of cardiac volumes and systolic parameters, whereas
the retrospective human scoring in the presented study evaluated view
standardization based on predefined parameters related to the presence
of specific heart structures in the images. Thus, the previously published
studies differed from the presented by evaluating more liberal endpoints
in less experienced operators. Furthermore, Narang [17] and Schneider
[18] did not randomize the operators to the use of guiding, but used
an experienced sonographer without guiding as reference. Thus, these
two studies did not fully evaluate the isolated effect of guiding itself, as
performed in the presented study.

5.4.2 Improving view standardization by real-time guiding

For experienced sonographers using the scan assistant, the proportion
of standardized recordings as evaluated by the blinded human expert
(primary endpoint) was significantly improved for the combination of tilt
and rotation in all three apical views compared to sonographers not using
the assistant. Thus, the proposed real-time scan assistant contributed
to better standardization. This finding adds to previous studies by
showing the effect of the guiding procedure itself and by proving that
it is possible to improve view standardization even among experienced
operators. Importantly, this also strengthens the possibility of reducing
test-retest variation in clinical echocardiography performed across high-
standard echocardiographic laboratories. In line with the results from
manual expert analyses, the retrospective DL analyses (secondary endpoint)
showed that sonographers using the scan assistant had significantly higher
proportions of well standardized acquisitions than those without the
assistant in all views and DOFs, except for A2C rotation and A2C combined
rotation and tilt. The finding of similar results using the DL analysis
and the human expert as reference indicates the robustness of the DL
method to assess image standardization. Furthermore, it concludes that
the results were not provided by methodological concerns as the automatic
retrospective DL image analysis used the same core algorithm as the
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Video 5.2: Click or scan to watch online

real-time DL guiding scan assistant. As shown by the operator-specific
distributions presented in Figure 6 and Supplemental Figures 2-6, the
individual view-specific preferences in echocardiographic imaging planes
were distinct in Period 1 where the scan assistant was not used. In contrast,
the distributions were narrower and more consistent across the operators in
Period 2 where the scan assistant was used. This effect was most pronounced
for the rotational position of the transducer in the ALAX view.

For the A2C view, the DL standardization analysis revealed a reduced
proportion of recordings with correct rotational alignment for sonographers
using the scan assistant compared sonographers in Period 1 and cardiol-
ogists. At first glimpse, this could indicate that the scan assistant had a
negative effect on standardization in the A2C view. However, as shown by
the distributions across and within operator groups, the sonographers using
the scan assistant were the most consistent in the rotational DOF. The choice
of reference method used in this study, based on the central 80% of the
cardiologists’ distribution, could explain the reduced proportion of images
classified as standardized. The cardiologists’ A2C recordings were rotated
more towards A4C compared to what was proposed by the DL algorithm as
a correctly standardized A2C (Figure 5.5 and Video 5.2). This finding could
indicate that optimizing alignment is equally important among experienced
cardiologists and that the sonographers using the scan assistant obtained
more standardized recordings than the reference by cardiologists.

5.4.3 Clinical implications

Slight variations in angulation and position of the ultrasound transducer
may influence the recorded view, and thus, cause variations in mea-
surements from repeated recordings [3]. The recommended strategy has
been to use the same operator for patient follow-up to reduce test-retest
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variability. However, ensuring the same operator during follow-up is
logistically challenging in hospitals, and intra-operator variability is also
significant [19]. Thus, ensuring optimal standardization of acquisitions
is of the highest interest for echocardiographic laboratories worldwide
and may improve test-retest variability of measurements and in-hospital
workflow. The presented study shows that the proposed scan assistant has
the potential to improve standardization of echocardiographic recordings
across experienced users.

Diagnostic ultrasound bymedical residents with basic echocardiography
training has been shown to improve in-hospital diagnostic quality [20], and
improving standardization of acquisitions by inexperienced operators may
broaden the clinical benefits of echocardiography. Currently, the learning
structure in ultrasound training is based on feedback from human mentors,
which may have different subjective preferences. A consistent feedback like
the one provided by the DL scan assistant could improve acquisition habits
and aid in echocardiographic training. The impact of such training should
be evaluated in future studies.

Large echocardiographic databases are commonly used for research
purposes and training of novel DL tools [13,21]. The quality of such datasets
has usually been evaluated without objective quantitative evaluation and
assumed to be of sufficient quality by citing the source or addressing
the experience of the operators. Automatic standardization assessment
could provide a quantitative and objective insight on the quality of
echocardiographic databases, and the consistent results between the human
expert’s and the DL algorithm’s view standardization analyses in this
study shows the robustness of the DL algorithm for this purpose. In a
recent study, our group also showed the high validity of fully automatic
quantification of LV foreshortening [22], another key parameter indicating
the standardization of echocardiographic recordings. Several vendors and
developers have created methods that automatically recognize the different
echocardiographic views. Together, such methods form the basis for a
standardized evaluation of the quality of echocardiographic databases used
for research purposes. Hopefully, this may aid interpretation across studies
in the future.
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5.4.4 Strengths and limitations

The study has some noticeable strengths. Firstly, the operators in our
study were experienced sonographers and cardiologists working in an
echocardiography laboratory accredited by the European Association of
Cardiovascular Imaging. As most echocardiograms are performed in well-
qualified echocardiography laboratories, this adds to the generalizability
of the study results. Secondly, the use of two different endpoints to
evaluate view standardization and similar findings across these endpoints
strengthens the results.

The study also has some limitations. Firstly, the DL scan assistant
assumes correct positioning of the transducer at the apical LV point,
indicating no LV foreshortening. LV foreshortening is a common problem
in echocardiography [23], but a recent study from our research group
showed that experienced sonographers had little foreshortening (2-5 mm)
[22]. Nevertheless, future development of the DL scan assistant should
also include foreshortening guidance to further optimize the anatomical
orientation of apical views. Secondly, the study sample was modest, and
including a larger population could have made minor differences between
operator groupsmore evident. Only patients with non-sinus rhythm or need
for contrast echocardiography were excluded, and inclusion was planned
to restricted dates based on the availability of operators to serve both the
clinical needs and align with the study methodology. Thus, despite the
modest sample size, we believe the results are generalizable to populations
commonly found in echocardiography laboratories.

The nature of the real-time scan assistant implies that learning to use
the software increases attention to view standardization, which could have
biased the results. To anticipate this issue, we performed inclusions in
Period 1 before the sonographers were informed about the study aims
and trained in using the scan assistant. Furthermore, sonographers were
randomized at each patient inclusion to use the scan assistant in Period 2.
This enabled us to differentiate the learning effect, the direct guiding effect,
and the combined learning and guiding effect. However, accounting for the
learning effect resulted in different patients being included across the two
periods. Furthermore, a slight variation in the proportion of recordings for
each sonographer between periods constitutes a limitation. Nevertheless,
analyses within Period 2 (i.e., learning effect vs. direct guiding effect)
showed significant improvements in standardization in sonographers with
the scan assistant, indicating a positive effect of real-time guiding on top of
the learning effect.
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Furthermore, sonographers who used guiding used approximately two
minutes more to obtain the three apical views. However, the sonographers
were trained on just ten patients each, and we expect that the time spent
using the scan assistant will be reduced with long-term use. Lastly, the
thresholds of -0.5 to 0.5 for manual and 80% interval for DL analysis were
arbitrarily predefined before analyzing the results, and other thresholds
could have influenced the results.

5.4.5 Future perspectives

Future studies should evaluate the clinical impact of real-time guiding
of operators at different levels of experience and patient populations in
multicenter studies. Additionally, future studies should assess the effect
of guiding combined with automatic measurements to reduce test-retest
variability of echocardiographic measurements. With the refinement of DL
methods able to both guide operators and quantify view standardization
of stored data there is a need for a broad consensus on correct view
standardization and how to report such findings. Ultimately, guiding of
experienced operators in high quality echocardiography laboratories may
improve standardization and the sensitivity to detect subtle changes in
cardiac anatomy and function.

5.5 Conclusion

Sonographers using the proposed real-time DL scan assistant to optimize
recordings of the three standard apical views had significantly higher
proportions of standardized acquisitions than those not using the scan
assistant. Our findings show that real-time guiding by DL can improve
standardization of echocardiographic acquisitions when used by experi-
enced personnel in high-quality echocardiographic laboratories. The impact
on test-retest variability of measurements, the performance of the scan
assistant in less experienced operators and the clinical impact must be
addressed in future studies.
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5.6 Clinical Perspectives

Clinical Competencies

Standardization of acquisitions is a core competency component in echocar-
diographic training. Real-time guiding of operators could lead to improved
standardization, and possibly reduce test-retest variability of measure-
ments. Furthermore, it could also aid in training of less experienced opera-
tors in echocardiography and improve quality control in echocardiography
laboratories.

Translational Outlook

Guiding of experienced operators using DL could improve quality of
recordings, optimize workflow and aid training in the future of echocardio-
graphy. Continuous inter-disciplinary innovations to improve accuracy of
deep learning methods and multicenter studies are needed before full-scale
clinical implementation.
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5.7 Supplemental material

5.7.1 Supplemental Figures
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Supplemental Figure 5.1: Degree of rotation and tilt for the human expert
scoring system
The scoring corresponds with the contents of Supplemental Table 5.1. The arrow
marked with the + sign indicates the direction of the scoring scale.
A4C: Apical four-chamber, A2C: Apical two-chamber, A42C: rotational position
where the right ventricle appears/disappears, ALAX: Apical long-axis, ANE: Aortic
valve annulus end, ANS: Aortic valve annulus start, MVA: Mitral valve annulus
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Supplemental Figure 5.2: Operator-specific distributions for relative view
standardization with respect to transducer rotation and tilt degrees of freedom
A2C: Apical two-chamber view, A4C: Apical four-chamber view, ALAX: Apical long
axis view, E1: Examination 1, E2: Examination 2, E3: Examination 3, Op: Operator,
P1: Period 1, P2: Period 2, Rot. twd: Rotation towards.
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Supplemental Figure 5.3: Percentage of examinations per sonographer according
to study period and examination
E1: Examination 1, E2: Examination 2, Op: Operator, P1: Period 1, P2: Period 2.
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5.7.2 Supplemental Tables

Supplemental Table 5.1: Scoring system for the human expert evaluation of
standardization

Rotational DOF Tilt DOF

Apical four-chamber view:
3 > A42C 3 Apical five-chamber
2 A42C 2 Anteriorly, AV visible
1 < A42C 1 Anteriorly, LVOT visible
0 A4C 0 Correct tilt
-1 < ANE flipped -1 Shortened MVA
-2 ANE flipped -2 Almost closed MVA
-3 > ANE flipped -3 Closed MVA

Apical two-chamber view:
3 > ANS 3 Closed MVA, open AV
2 ANS 2 Almost closed MVA
1 < ANS 1 Shortened MVA/LVOT
0 A2C 0 Correct tilt
-1 < A42C -1 Lateral, some anterior PM
-2 A42C -2 More lateral, more PM
-3 > A42C -3 Closed MVA

Apical long-axis view:
3 > ANE 3 Closed MVA
2 ANE 2 Almost closed MVA
1 < ANE 1 Shortened MVA
0 ALAX 0 Correct tilt
-1 < ANS -1 Some anterolateral, shortened AV
-2 ANS -2 More anterolateral, no AV
-3 > ANS -3 Closed MVA, no AV

The integers are landmarks, but the scale was continuous. The rotational and tilt
direction and landmarks are illustrated in Supplemental Figure 5.1
A4C: Apical four-chamber, A2C: Apical two-chamber, A42C: rotational position
where the right ventricle appears/disappears, ALAX: Apical long-axis, ANE: Aortic
valve annulus end, ANS: Aortic valve annulus start, MVA: Mitral valve annulus
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