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On a locally compact group we introduce covariant quanti-
zation schemes and analogs of phase space representations as 
well as mixed-state localization operators. These generalize 
corresponding notions for the affine group and the Heisenberg 
group. The approach is based on associating to a square inte-
grable representation of the locally compact group two types 
of convolutions between integrable functions and trace-class 
operators. In the case of non-unimodular groups these convo-
lutions only are well-defined for admissible operators, which is 
an extension of the notion of admissible wavelets as has been 
pointed out recently in the case of the affine group.
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1. Introduction
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other settings by replacing the Schrödinger representation of the Weyl-Heisenberg group 
by a unitary representation of a locally compact group, see [41,51] for recent contributions 
to this circle of ideas.

A particular class of pseudodifferential operators has been intensively studied in math-
ematics, quantum mechanics and time-frequency analysis which is known as Toeplitz 
operators, localization operators and anti-Wick quantization or covariant integral quan-
tization in the respective fields, see [31,32,37,45,60,61] for contributions to the non-
Euclidean setting.

In [47] the authors have established a link between the theory of localization operators 
and quantum harmonic analysis on phase space, the latter had been introduced by 
Werner [57]. In [57] a convolution f � S between a Lebesgue integrable function f and 
trace-class operator S, and a convolution, T � S, of two trace-class operators T, S are 
defined and shown to behave in a manner analogous to the convolution of two functions.

In a series of papers Luef and Skrettingland have demonstrated the merits of viewing 
localization operators as the convolution of a function and a rank-one operator [48–50]. 
Furthermore, it has been noticed in [48] that the time-frequency representations associ-
ated to the generalization of localization operators, f �S, are Cohen’s class distributions 
defined in terms of S. The formulation of statements in time-frequency analysis in terms 
of Werner’s convolution has turned out to be very fruitful and has been extended to the 
affine group in [10].

Meanwhile, there has been interest in related problems in the more general setting 
of square integrable representations of locally compact groups. Examples of this include 
coorbit spaces [6,8,25–27,52], localization operators [45,60,61], covariant integral quanti-
zations [31,32,37], reproducing kernel Hilbert spaces [9] and sample reconstruction [30]. 
Consequently, it is the goal of this paper to set up the theory of quantum harmonic 
analysis on locally compact groups, inspired by the construction for the affine group 
in [10] and use it to establish notions and theorems from time-frequency analysis and 
time-scale analysis in the more general case of locally compact groups.

The main objects in quantum harmonic analysis are the function-operator and 
operator-operator convolutions, which we define in this paper for a locally compact 
group G, and a square integrable unitary representation σ on a Hilbert space H as

f � S =
∫
G

f(x)σ(x)∗Sσ(x) dμr(x), T � S(x) = tr(Tσ(x)∗Sσ(x)),

where μr denotes the right-invariant Haar measure on G.
These definitions are motivated by the idea that the mapping αx : S �→ σ(x)∗Sσ(x)

corresponds to a translation of an operator and that the trace measures the size of an 
operator in the same way as the integral measures the size of a function. It turns out that 
many properties of convolutions such as associativity and a version of Young’s inequality 
hold mutantis mutadis for this type of convolutions, too.
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Studying the issue of integrability of operator-operator convolutions leads one to a 
definition of admissibility of operators, generalizing the concept of admissible vectors for 
the wavelet transform. This criterion turns out to be important to applications and is 
the main source of discrepancy from the corresponding theory for the Weyl-Heisenberg 
case where all trace-class operators are admissible.

Most of the novel contributions of this paper are contained in Section 5 including 
an uncertainty principle for Cohen’s class distributions, results on the distribution of 
eigenvalues of mixed-state localization operators for the wavelet transform, Berezin-Lieb 
inequalities for both function-operator and operator-operator convolutions and a version 
of Wiener’s Tauberian theorem giving equivalent conditions for translates of an operator 
to be dense in the Schatten classes Sp for 1 ≤ p ≤ ∞. Hence, we are able to establish a 
theory of quantum harmonic analysis on a locally compact group G, which has just one 
deficiency compared to [57]; the lack of a multiplication theorem for the operator-valued 
Fourier transform.

Outline. In Section 2, we go over some preliminaries on operator theory, time-frequency 
analysis and locally compact groups without discussing quantum harmonic analysis in 
too much depth. This section can be skipped over if the reader is familiar with works 
such as [10,47–49]. Notably, Section 2.4 lists three examples of square integrable repre-
sentations which motivate the generalizations in the paper. In Section 3, we define the 
three convolutions in quantum harmonic analysis; function-function, function-operator 
and operator-operator, and establish some elementary properties. Section 4 is devoted 
to the construction and properties of admissible operators while Section 5 goes through 
applications mainly related to the notion of admissible operators.

Notational conventions. Throughout this article, a general locally compact group will 
be denoted by G with the zero element denoted by 0G, general elements denoted by 
x, y, z and the associated left and right Haar measures written as μ� and μr, respectively. 
Moreover, H will denote a Hilbert space, any norm without a subscript will be assumed 
to be taken in H and for an operator A, A∗ will denote its adjoint. The set U(H) will 
denote the set of all unitary operators on H and the most notable members are unitary 
square integrable representations σ of G. For p < ∞, Sp will denote the Schatten p-class 
of operators with singular values in �p and by S∞ we mean B(H), the set of all bounded 
linear operators on H. We will make extensive use of rank-one operators ψ⊗φ : ξ �→ 〈ξ, φ〉
which we in the bra-ket formalism would write as 〈φ|ξ〉|ψ〉.

2. Preliminaries

In this section we go over some of the preliminaries of quantum harmonic analysis, 
time-frequency analysis and locally compact groups. The exposition is similar to that 
in [10,47,49] and related works. See also [61] for an introduction more focused on the 
setting of locally compact groups.
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2.1. Operator theory

2.1.1. Singular value decomposition
We will frequently make use of the singular value decomposition of a compact operator 

A which has the form

A =
∑
n

sn(A)(ψn ⊗ φn)

where {ψn}n and {φn}n are two orthonormal sets in H, (sn(A))n is a sequence converging 
to zero and ψ ⊗ φ is the rank-one operator, defined by (ψ ⊗ φ)(ξ) = 〈ξ, φ〉ψ. The sum 
converges in the strong topology of B(H) and the numbers sn(A) are the eigenvalues of √
A∗A and are called the singular values of A.
In case A is a positive, compact operator, then we can take φn = ψn and the singular 

values sn(A) agree with the eigenvalues λn(A) of A. Hence, we have the following spectral 
decomposition of A:

A =
∑
n

λn(A)(ψn ⊗ ψn).

2.1.2. Schatten classes of operators
The Schatten class Sp is the space of compact operators with singular values in �p for 

p ∈ [1, ∞]. In particular, the space S1 is referred to as the space of trace-class operators 
and S2 as the space of Hilbert-Schmidt operators. It is a non-trivial fact that Sp is a 
Banach space for any 1 ≤ p ≤ ∞ and that S2 is a Hilbert space with the inner product 
〈S, T 〉S2 = tr(ST ∗). For a trace-class operator S ∈ S1, we define the trace of S as

tr(S) =
∑
n

〈Sen, en〉

where {en}n is an orthonormal basis. This quantity is finite and independent of the 
chosen orthonormal basis. Similarly, it turns out that the Schatten p-norm of S ∈ Sp

can be shown to be equal to ‖S‖pSp = tr(|S|p) for 1 ≤ p < ∞ where |S| is the absolute 
value of S.

In the same way as for Lp-spaces of functions, we define duality brackets for conjugate 
Sp spaces as

〈A,B〉Sp,Sq = tr(AB)

where A ∈ Sp, B ∈ Sq and 1
p + 1

q = 1.

2.1.3. Vector valued integration
In defining convolutions between functions and operators, we will need to integrate 

operator valued functions H : G → B(H) which are of the form H(x) = f(x)F (x) where 
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f ∈ L1
r(G) and F : G → B(H) are measurable, bounded and strongly continuous. The 

operator-valued integral of H is then defined weakly as

〈⎛⎝∫
G

f(x)F (x) dμ

⎞
⎠ψ, φ

〉
=
∫
G

f(x)〈F (x)ψ, φ〉 dμ

for ψ, φ ∈ H where μ is a measure on G. For more on this matter of defining operators 
via integrals, known as Bochner integration, see the discussion in [47, Sec. 2.3].

2.2. Time-frequency analysis

We briefly introduce some of the main objects of time-frequency analysis. For a more 
thorough introduction, see e.g. [20,34].

2.2.1. Short-time Fourier transform
Perhaps the most classical tool of time-frequency analysis is the following time-

frequency representation: Given ψ, ϕ ∈ L2(Rd), the short-time Fourier transform (STFT) 
of ψ with respect to the window ϕ is the function

Vϕψ(x, ω) =
∫
Rd

ψ(t)ϕ(t− x)e−2πiω·t dt

on R2d. It has shown to be useful to consider the STFT to be induced by the (projective) 
representation π(x, ω) = MωTx of the Weyl-Heisenberg group where

Txf(t) = f(t− x), Mωf(t) = e2πiωtf(t).

In this notation we can write the STFT as Vϕψ(x, ω) = 〈ψ, π(x, ω)ϕ〉. The STFT is a 
member of L2(R2d) which can be seen by an application of Moyal’s identity

〈
Vϕ1ψ1, Vϕ2ψ2

〉
L2(R2d) = 〈ψ1, ψ2〉〈ϕ1, ϕ2〉.

Often in applications the square of the modulus of the STFT, the spectrogram, is used 
because it possesses many nice properties such as non-negativity. It is a quadratic time-
frequency representation.

2.2.2. Wigner distribution
Another quadratic time-frequency distribution is the Wigner distribution, introduced 

by Wigner [59] in the 1930’s. Given two functions ψ, φ ∈ L2(Rd), the cross-Wigner 
distribution of ψ and φ is given by

W (ψ, φ)(x, ω) =
∫

ψ(t + x/2)φ(t− x/2)e−2πiω·t dt.
Rd
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When ψ = φ, we simply write W (ψ, ψ) = W (ψ) and call it the Wigner distribution.
The Wigner distribution has numerous applications in engineering, mathematics and 

physics as a time-frequency representation. In addition, it is also the “dual” object to 
Weyl quantization, a well-known quantization scheme that associates operators to func-
tions, via

〈Lfψ, φ〉 = 〈f,W (φ, ψ)〉

and the map f �→ Lf is called the Weyl transform, aka Weyl quantization.

2.2.3. Cohen’s class of quadratic time-frequency distributions
Cohen’s class provides a nice class of covariant quadratic time-frequency distributions, 

including the spectrogram, scalogram and Wigner distribution. It consists of all functions 
of the form

QΦ(ψ, φ) = W (ψ, φ) ∗ Φ

where Φ is a function or tempered distribution. It turns out that many of the properties 
of Cohen’s class distributions are determined by the Weyl transform of Φ and later 
in the paper, we will define Cohen’s class of not just time-frequency distributions but 
distributions with different underlying groups using an operator as a replacement for 
the Weyl transform of Φ. For more on Cohen’s class of time-frequency distributions, see 
[11,49].

2.2.4. Localization operators
Localization operators are classically defined with respect to the short-time Fourier 

transform as the operator valued integral

Aϕ1,ϕ2
f (g) =

∫
R2d

f(x, ω)Vϕ1g(x, ω)π(x, ω)ϕ2 dx dω.

The function f is referred to as the mask, multiplier or filter and is often taken to be the 
indicator function of some compact set. In that case, the localization operator is written 
as Aϕ1,ϕ2

χΩ
= Aϕ1,ϕ2

Ω . Localization operators of the above form were originally introduced 
by I. Daubechies in [19].

2.3. Locally compact groups

Much of abstract harmonic analysis is carried out on locally compact groups because 
they possess many of the properties we need to define convolutions and other objects. 
For more on the general theory of harmonic analysis on locally compact groups, see [28, 
Chap. 2] and [29].
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2.3.1. Left and right Haar measures
Given a locally compact group G, there always exist two Radon measures, the left 

Haar measure μ� and the right Haar measure μr. The left (right) Haar measure is left 
(right) invariant, meaning that μ�(xE) = μ�(E) (μr(Ex) = μr(E)) for x ∈ G and E ⊂ G. 
Both measures are equivalent in the sense that they are related via

μr(E) = μ�(E−1), dμr(x) = ΔG(x−1) dμ�(x), dμ�(xy) = ΔG(y) dμ�(x)

where the function ΔG : G → (0, ∞) is called the modular function. If ΔG ≡ 1, the 
group is said to be unimodular. When discussing Lp-integrable functions f : G → C

with respect to the left and right Haar measures, we write

Lp
� (G) = Lp(G, dμ�), Lp

r(G) = Lp(G, dμr)

while for p = ∞, we simply write L∞(G).

2.3.2. Weyl-Heisenberg group
The Weyl-Heisenberg group Hn = (Rn × Rn × R, ·Hn) is equipped with the group 

operation

(x, ω, t) ·Hn (x′, ω′, t′) =
(
x + x′, ω + ω′, t + t′ + 1

2(x′ω − xω′)
)
,

which should be compared with the composition rule for time-frequency shifts

(TxMω)(Tx′Mω′) = e2πix′·ωTx+x′Mω+ω′ . (1)

We are interested in the projective representation

π : R2d → U(L2(Rd)), π(x, ω) = TxMω

of the Weyl-Heisenberg group for which (1) is the Mackey induced representation.

2.3.3. Wavelet transform
The wavelet transform is a time-scale representation based on taking the inner product 

of a signal and translations and dilations of some window function. The dilation operator 
Da is defined for positive a as

Daf(y) = 1√
a
f
(y
a

)

and hence the wavelet transform has the form

Wφψ(x, a) =
〈
ψ, TxDaφ

〉
= 1√

a

∫
ψ(t)φ

(
t− x

a

)
dt.
R



8 S. Halvdansson / Journal of Functional Analysis 285 (2023) 110096
There exists a version of Moyal’s identity for the wavelet transform, often referred to 
simply as the orthogonality relation

〈Vφ1ψ1, Vφ2ψ2〉 = 〈ψ1, ψ2〉〈D−1φ1,D−1φ2〉

where D denotes the Duflo-Moore operator of the affine group and is defined by

D̂−1φ(ω) = φ̂(ω)√
|ω|

;

and φ1, φ2 are two admissible wavelets. The square of the wavelet transform is referred 
to as the scalogram in analogy to the spectrogram and used similarly.

2.3.4. Affine group
The affine group Aff = (R ×R+, ·Aff) has the group operation

(x, a) ·Aff (y, b) := (x + ay, ab)

which coincides with the relation

(TxDa)(TyDb) = TxTayDaDb = Tx+ayDab

between translation and dilation operators. Thus the representation π(x, a) = TxDa of 
the affine group induces the wavelet transform discussed above. Moreover, it is easy to 
see that π(x, a) = TxDa is a unitary representation of Aff on L2(R). Often, when dealing 
with wavelet analysis we are only interested in analytic signals which are L2-functions 
for which f̂(ω) = 0 for ω < 0 because the above representation is irreducible on the 
Hardy space of the real line. Using the Plancherel theorem, we can do everything on the 
Fourier side where our underlying Hilbert space becomes H = L2(R+) which will be the 
case for the remainder of this paper when discussing quantum harmonic analysis on the 
affine group.

A quick calculation shows that the inverse (x, a)−1 of an element (x, a) ∈ Aff is given 
by 
(−x

a , 1
a

)
. The affine group is an example of a non-abelian and non-unimodular group 

since the left and right Haar measures are given by

dμ�(x, a) = dx da

a2 , dμr(x, a) = dx da

a
,

respectively and so in particular, Lp
r(Aff) = Lp

(
R ×R+, dx da

a

)
.

We will have use for dilates of sets in the affine group and so motivated by the group 
operation specified above, we define the scaling function ΓR : Aff → Aff with parameter 
R > 0 as

ΓR(x, a) = (Rx, aR), Γ−1
R (x, a) =

( x
, a1/R

)
, RΩ =

{
ΓR(x, a), (x, a) ∈ Ω

}
.

R
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This scaling relation is natural for the right Haar measure in the sense that it is the 
only one which is the identity for R = 1 and for which dμr(ΓR(x, a)) = C · dμr(x, a) for 
some non-zero constant C. In particular, the constant C has the value R2 which can be 
verified directly and consequently,

dμr(ΓR(x, a)) = R2 dμr(x, a), μr(RΩ) = R2μr(RΩ).

For technical reasons, we will need to discuss convergence of sequences in Aff as well as 
neighborhoods. To that end, we define the following distance function

dAff
r

(
(x, a), (y, b)

)
= |x− y| +

∣∣∣ ln a

b

∣∣∣.
It is chosen mostly for convenience but has the nice property that the distance from 
(x, a) and (0, 1) = 0Aff is given by |x| + | ln(a)| which is the sum of the horizontal and 
vertical distance when integrating with respect to the right Haar measure dx da

a .
Using this distance function, we define the following type of balls in Aff:

BAff
r

(
(x, a), δ

)
=
{
(y, b) ∈ Aff : dAff

r

(
(x, a), (y, b)

)
< δ
}
.

Additional properties of the affine group relevant to quantum harmonic analysis are 
discussed in [10].

2.3.5. Abstract harmonic analysis
The approach for the Weyl-Heisenberg and affine groups described above can be gen-

eralized to the locally compact setting. Here we let σ denote a square integrable unitary 
representation of a locally compact group G and write H for the underlying Hilbert 
space so that σ : G → U(H). This view is more closely connected to quantum mechanics 
and representation theory than time-frequency and time-scale analysis but many of the 
arguments work in the same way. Partly due to this connection to physics, G is referred 
to as phase space.

2.4. Motivating examples of square integrable representations

Since the main contribution of this paper is setting up quantum harmonic analysis 
on general locally compact groups, we present two motivating examples on which the 
results apply and hint at their generalizations to locally compact groups.

2.4.1. Shearlet group
The shearlet group represents an attempt to extend the wavelet transform to two-

dimensional inputs. The dilations and one-dimensional translations of the wavelet trans-
form are here replaced by asymmetric dilations, shears and two-dimensional translations 
using the parabolic scaling matrix Aa and the shear matrix Ss, given by
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Aa =
(
a 0
0

√
a

)
, Ss =

(
1 s
0 1

)
.

The associated square integrable unitary representation can be written as

π(a, s, x)ψ(t) = TxDSsAa
ψ(t) = a−3/4ψ

(
A−1

a S−1
s (t− x)

)
and it induces a group operation on the shearlet group S = (R+ ×R ×R2, ·S),

(a, s, x) ·S (a′, s′, x′) = (aa′, s + s′
√
a, x + SsAax

′).

The left and right Haar measures associated to the shearlet group can be computed to 
be

dμ�(a, s, x) = da ds dx

a3 , dμr(a, s, x) = da ds dx

a
.

For more on the shearlet group as well references for the statements above, see [14,
15,35,42]. The shearlet group and associated transform has been generalized to higher 
dimensions which is also based on a square integrable representation, see [16].

2.4.2. Similitude group
The perhaps most straight-forward generalization of the wavelet transform to two-

dimensional signals comes in the form of what is sometimes referred to as the two-
dimensional wavelet transform which is induced by the unitary representation

π(a, x, θ)ψ(t) = a−1ψ
(
τ−θ

( t− x

a

))

of the similitude group SIM(2) = (R+ × R2 � SO(2), ·SIM(2)) where τθ ∈ SO(2) is a 
rotation which acts as

τθ(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ).

The similitude group SIM(2) is equipped with the group operation

(a, x, τθ) ·SIM(2) (a′, x′, τθ′) = (aa′, b + aτθx
′, τθ+θ′).

Just as for shearlet group, the left and right Haar measures of SIM(2) depend on the 
dilation parameter and are given by

dμ�(a, x, θ) = da dx dθ

a3 , dμr(a, x, θ) = da dx dθ

a
.

More on role of the similitude group in the two-dimensional wavelet transform can be 
found in [2,4,17,54]. Similitude groups can be seen as a specific case of the affine group 
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on Rd which generalizes the affine group by replacing dilations with multiplications by 
matrices in GL(Rd) and normalized by the determinant. This also corresponds to a 
square integrable representation [42].

2.4.3. Affine Poincaré group
Another approach to two-dimensional wavelet transforms comes in the form of the 

affine Poincaré group Paff which consists of translations, zooming and hyperbolic rota-
tions. More specifically, the group law takes the form

(b, a, ϑ) ·PAff (b′, a′, ϑ′) = (b + aΛϑb
′, aa′, ϑ + ϑ′), Λϑ =

(
coshϑ sinhϑ
sinhϑ coshϑ

)

Since we have the same sort of zooming and rotational system as in the shearlet and 
similitude groups, the affine Poincaré group has the same left and right Haar measures 
given by

dμ�(b, a, ϑ) = db da dϑ

a3 , dμr(b, a, ϑ) = db da dϑ

a
.

The natural square integrable representation of PAff is given by

π(b, a, ϑ)ψ(t) = 1
a
ψ

(
1
a
Λϑ(t− b)

)

and it can be decomposed as the direct sum of four irreducible representations on or-
thogonal subsets of L2(R2).

An introduction to the affine Poincaré group can be found in [5, Sec. 7.4] and some 
recent work extending concepts from time-frequency analysis to PAff is available in [18]. 
The group also has applications in physics in the context of Minkowski spacetime [3, 
Sec. 16.2.4].

3. Operator convolutions

In this section we introduce the three types of convolutions we deal with: function-
function, function-operator and operator-operator and prove some elementary properties 
and bounds. All of the definitions generalize those in [10,47,57] and the proofs are similar 
with the exception of Proposition 3.4. The function-function convolutions are standard 
but we write them down to be clear about the right Haar measure convention.

Definition 3.1. For f, g ∈ L1
r(G), the convolution f ∗G g is defined as

f ∗G g(x) =
∫

f(y)g(xy−1) dμr(y).

G
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The following standard estimate follows by Young’s inequality.

Proposition 3.2. Let f ∈ L1
r(G) and g ∈ Lp

r(G) for 1 ≤ p ≤ ∞. Then

‖f ∗G g‖Lp
r(G) ≤ ‖f‖L1

r(G)‖g‖Lp
r(G).

3.1. Function-operator convolutions

Inspired by the notion of a shift for operators of the form

αx(S) = σ(x)∗Sσ(x)

which moves a function in phase space by x, applies S and then moves it back by x−1, 
we have the following definition for function-operator convolutions.

Definition 3.3. Let f ∈ L1
r(G) and S ∈ S1, then the convolution f �G S is defined as the 

operator on H given by

f �G S =
∫
G

f(x)αx(S) dμr(x).

This operator acts weakly in the way described in Section 2.1.3, i.e. as

〈
f �G Sψ, φ

〉
=
∫
G

f(x)〈αx(S)ψ, φ〉 dμr(x)

and we define S �G f = f �G S.

Remark. In an upcoming paper by the author in collaboration with Feichtinger and Luef, 
the function-operator convolution defined above is realized as a special case of measure-
operator convolutions and then the description of the weak action becomes a theorem, 
not a definition.

The following boundedness property of function-operator convolutions is an impor-
tant result which will be used extensively. It is somewhat analogous to the p = 1 case 
of Proposition 3.2 and the corresponding statement for the p > 1 range is proved in 
Section 4.3.

Proposition 3.4. Let f ∈ L1
r(G) and S ∈ S1. Then we have

‖f �G S‖S1 ≤ ‖f‖L1(G)‖S‖S1 .

r
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Proof. We control the trace-class norm of f �GS by bounding |〈f �GS, T 〉| for T ∈ B(H)
with ‖T‖B(H) = 1 as

|〈f �G S, T 〉| = | tr
(
(f �G S)T ∗)|

=

∣∣∣∣∣
∑
n

〈
(f �G S)en, T en

〉∣∣∣∣∣
≤
∑
n

∫
G

|f(x)||〈αx(S)en, T en〉| dμr(x)

=
∫
G

|f(x)|
∑
n

|〈T ∗αx(S)en, en〉| dμr(x)

where we used in the last step Tonelli’s Theorem. For each x, the above sum can be 
bounded by ‖S‖S1 using [12, Thm. 18.11]. Hence

|〈f �G S, T 〉| ≤
∫
G

|f(x)|‖S‖S1 dμr(x) = ‖f‖L1
r(G)‖S‖S1

as desired. �
In the same way that the integral over a function-function convolution can be decou-

pled, the trace of a function-operator convolution may be written as a product in the 
following way.

Proposition 3.5. Let f ∈ L1
r(G) and S ∈ S1. Then

tr(f �G S) = tr(S)
∫
G

f(x) dμr(x).

Proof. We compute

tr(f �G S) =
∑
n

〈(f � S)en, en〉 =
∑
n

∫
G

f(x)〈αx(S)en, en〉 dμr(x).

By Tonelli’s Theorem we have that

∑
n

∫
G

|f(x)〈σ(x)∗Sσ(x)en, en〉| dμr(x) =
∫
G

∑
n

|f(x)〈Sσ(x)en, σ(x)en〉| dμr(x)

≤
∫
G

|f(x)| dμr(x)
∑
n

|〈Sσ(x)en, σ(x)en〉|
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where the first factor is finite by the integrability of f . The finiteness of the second factor 
follows by [12, Prop. 18.9]. We can now finish the computation as

tr(f �G S) =
∫
G

f(x)
∑
n

〈Sσ(x)en, σ(x)en〉 dμr(x)

= tr(S)
∫
G

f(x) dμr(x). �

Lastly we show that function-operator convolutions preserve positivity.

Lemma 3.6. If f ∈ L1
r(G) is non-negative and S ∈ S1 is positive, then so is f �G S.

Proof. We verify this directly as

〈(f �G S)φ, φ〉 =
∫
G

f(x)〈αx(S)φ, φ〉 dμr(x)

=
∫
G

f(x)〈Sσ(x)φ, σ(x)φ〉 dμr(x) ≥ 0. �

3.2. Operator-operator convolutions

A central theme in quantum harmonic analysis is that when replacing functions by 
operators, integrals should be replaced by traces. This motivates the following definition 
of operator-operator convolutions.

Definition 3.7. Let T ∈ S1 and S ∈ B(H), then the convolution T �G S is the function 
on G given by

T �G S(x) = tr(Tαx(S)).

The following lemma is an example of an operator-operator convolution.

Lemma 3.8. For ψ, φ ∈ H and S ∈ B(H) we have

(ψ ⊗ φ) �G S(x) =
〈
Sσ(x)ψ, σ(x)φ

〉
.

Proof. We compute

(ψ ⊗ φ) �G S(x) = tr
(
(ψ ⊗ φ)αx(S)

)
=
∑〈

〈αx(S)en, φ〉ψ, en
〉

n
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= 〈ψ, σ(x)∗S∗σ(x)φ〉
= 〈Sσ(x)ψ, σ(x)φ〉. �

Lemma 3.9. Let S ∈ S1 and {ξn}n be an orthonormal basis of H, then
∑
n

(ξn ⊗ ξn) �G S(x) = tr(S).

Proof. This follows directly from Lemma 3.8 and the fact that {σ(x)ξn}n is an orthonor-
mal basis. �

We also have the following estimate which follows by standard properties of trace 
norms, see [12, Thm. 18.11 (g)] for a proof.

Lemma 3.10. Let T ∈ S1 and S ∈ B(H). Then

‖T �G S‖L∞(G) ≤ ‖T‖S1‖S‖B(H).

As to be expected, operator-operator convolutions preserve positivity in the same 
way as usual function-function convolutions and function-operator convolutions in 
Lemma 3.6.

Lemma 3.11. Let T ∈ S1 and S ∈ B(H) both be positive. Then

T �G S(x) ≥ 0 for all x ∈ G.

Proof. We expand T in its singular value decomposition and compute the trace with the 
same basis to find

T �G S(x) = tr(Tαx(S)) =
∑
n

〈∑
m

λm(em ⊗ em)(αx(S)en), en

〉

=
∑
n,m

λm〈(σ(x)∗Sσ(x))en, em〉〈em, en〉

=
∑
n

λn〈Sσ(x)en, σ(x)en〉 ≥ 0,

where we used that the eigenvalues of a positive operator are non-negative. �
Lastly, we show that all the convolutions introduced in this section are associative in 

an appropriate manner.

Proposition 3.12. Let f, g ∈ L1
r(G), T ∈ S1, and let S be a bounded operator on H. Then 

the following compatibility relations hold
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(f �G T ) �G S = f ∗G (T �G S),

f �G (g �G T ) = (f ∗G g) �G T.

Proof. We proceed by direct computation

f ∗G (T �G S) =
∫
G

f(y) tr
(
Tσ(xy−1)∗Sσ(xy−1)

)
dμr(y)

=
∫
G

f(y) tr
(
σ(y)∗Tσ(y)σ(x)∗Sσ(x)

)
dμr(y)

= tr

⎛
⎝
⎛
⎝∫

G

f(y)αy(T ) dμr(y)

⎞
⎠αx(S)

⎞
⎠

= tr
(
(f �G T )αx(S)

)
= (f �G T ) �G S.

For the other equality, we have

(f ∗G g) �G T =
∫
G

⎛
⎝∫

G

f(x)g(zx−1) dμr(x)

⎞
⎠αz(T ) dμr(z)

=
∫
G

∫
G

f(x)g(zx−1)αz(T ) dμr(z) dμr(x)

and so applying the change of variables y = zx−1, we find

(f ∗G g) �G T =
∫
G

∫
G

f(x)g(y)αyx(T ) dμr(y) dμr(x)

=
∫
G

f(x)αx

⎛
⎝∫

G

g(y)αy(T ) dμr(y)

⎞
⎠ dμr(x)

=
∫
G

f(x)αx (g �G T ) dμr(x)

= f �G (g �G T ). �
We have not established all the mapping properties of function-operator and operator-

operator convolutions between Lp
r(G) and Sp spaces, since this requires some more 

preparation which is contained in the next section, in particular 4.3.
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4. Admissibility of operators

4.1. Integrability of operator-operator convolutions

As seen in [10], to generalize some results on operator convolutions to non-unimodular 
groups, we need to introduce a notion of admissibility of operators. The definition is 
motivated by the desire for T �G S to be integrable. Before stating such a result, we 
recall the following classical theorem from [23] which we write out using the right Haar 
measure convention.

Theorem 4.1 (Duflo-Moore). Let (σ, H) be a square integrable, irreducible, unitary repre-
sentation of a locally compact group G. Then there exists a unique, possibly unbounded, 
densely defined, positive, closed, self-adjoint operator D−1 : H → H with densely defined 
inverse D such that:

(i) The admissible vectors ψ ∈ H are exactly those vectors in the domain of D−1.
(ii) For φ1, φ2 ∈ H and ψ1, ψ2 ∈ Dom(D−1), the following orthogonality relation holds

∫
G

〈φ1, σ(x)∗ψ1〉〈φ2, σ(x)∗ψ2〉 dμr(x) = 〈φ1, φ2〉〈D−1ψ1,D−1ψ2〉. (2)

(iii) The following covariance relation holds

σ(x)Dσ(x)∗ =
√

ΔG(x)D. (3)

We can lift this result to the operator setting by taking the singular value decompo-
sitions of two operators and apply the above result to the rank-one situations.

Theorem 4.2. Let S ∈ S1 satisfy DSD ∈ B(H). For any T ∈ S1 we have that T �GDSD ∈
L1
r(G) with

‖T �G DSD‖L1
r(G) ≤ ‖T‖S1‖S‖S1

and ∫
G

T �G DSD(x) dμr(x) = tr(T ) tr(S). (4)

Proof. The proof consists of two steps.

Step 1: We consider first the case where S = ψ⊗φ for ψ, φ ∈ H. Then DSD = Dψ⊗Dφ

and since DSD is bounded by assumption, it in particular holds that ψ, φ ∈ Dom(D). 
To see this, note that
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DSD(f) = 〈f,Dφ〉Dψ

and so since this is bounded for all f , Dψ and Dφ are also bounded.
We now compute

T �G DSD(x) = tr
(
Tσ(x)∗(Dψ ⊗Dφ)σ(x)

)
=
∑
n

〈
Tσ(x)∗(Dψ ⊗Dφ)σ(x)en, en

〉
=
∑
n

〈σ(x)en,Dφ〉〈Tσ(x)∗Dψ, en〉

= 〈Tσ(x)∗Dψ, σ(x)∗Dφ〉.

Since T ∈ S1, we can expand it using its singular value decomposition T =
∑

n tnξn⊗ηn
which allows us to write

T �G DSD(x) =
∑
n

tn〈(ξn ⊗ ηn)(σ(x)∗Dψ), σ(x)∗Dφ〉

=
∑
n

tn〈σ(x)∗Dψ, ηn〉〈ξn, σ(x)∗Dφ〉.

Now each term is of the form in the Duflo-Moore orthogonality relation (2). We can 
therefore proceed by integrating each term after bounding the result as

∫
G

∣∣〈σ(x)∗Dψ, ηn〉〈ξn, σ(x)∗Dφ〉
∣∣ dμr(x)

≤

⎛
⎝∫

G

|〈σ(x)∗Dψ, ηn〉|2 dμr(x)

⎞
⎠

1/2⎛
⎝∫

G

|〈ξn, σ(x)∗Dφ〉|2 dμr(x)

⎞
⎠

1/2

= ‖ηn‖‖D−1Dψ‖‖ξn‖‖D−1Dφ‖ = ‖ψ‖‖φ‖.

Since T ∈ S1, (tn)n is summable and we can move the integral inside to deduce that

‖T �G DSD‖L1
r(G) ≤ ‖T‖S1‖ψ‖‖φ‖.

We can now establish (4) by moving the integral inside the sum and using the Duflo-
Moore orthogonality relation (2) which yields

∫
G

T �G DSD(x) dμr(x) =
∑
n

tn〈ξn, ηn〉〈φ, ψ〉 = tr(T )〈φ, ψ〉.

Step 2: We now move to considering S as in the theorem. By compactness, we can 
consider its singular value decomposition which is of the form
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S =
∑
n

sn(ψn ⊗ φn).

Hence we have

T �G DSD = T �G D
(∑

n

snψn ⊗ φn

)
D

=
∑
n

snT �G D(ψn ⊗ φn)D

=
∑
n

snT �G (Dψn ⊗Dφn)

where we are allowed to move the sum outside since the outer sum is uniformly convergent 
by Lemma 3.10. We can also estimate the norm as

‖T �G DSD‖L1
r(G) ≤

∑
n

|sn|‖T �G (Dψn ⊗Dφn)‖L1
r(G)

= ‖T‖S1‖S‖S1 .

For (4), the same method used in the first step yields the desired conclusion. �
Because we typically integrate T �GS in applications, this theorem is more useful when 

considering the operator D−1SD−1 which leads us to make the following definition.

Definition 4.3. Let S �= 0 be a bounded operator on H that maps Dom(D) into 
Dom(D−1). We say that S is admissible if the composition D−1SD−1 is bounded on 
Dom(D−1) and extends to a trace-class operator D−1SD−1 ∈ S1.

We can now restate Theorem 4.2 using the above definition.

Corollary 4.4. Let S be an admissible operator and T ∈ S1. Then T �G S ∈ L1
r(G) with

‖T �G S‖L1
r(G) ≤ ‖T‖S1‖D−1SD−1‖S1

and ∫
G

T �G S(x) dμr(x) = tr(T ) tr(D−1SD−1).

Example 4.5. As hinted at by the proof of Theorem 4.2, we can recover the orthogonality 
relation (2) by choosing S and T as rank-one operators. To make this explicit, choose

T = φ1 ⊗ φ2, S = ψ2 ⊗ ψ1
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where ψ1, ψ2 are admissible vectors in the sense of Theorem 4.1, i.e. ψ1, ψ2 ∈ Dom(D−1). 
Then S is admissible since

‖D−1SD−1‖S1 = ‖D−1ψ2 ⊗D−1ψ1‖S1 ≤ ‖D−1ψ2‖‖D−1ψ1‖ < ∞.

Corollary 4.4 combined with Lemma 3.8 now allows us to compute T �G S(x) as
∫
G

T �G S(x) dμr(x) =
∫
G

〈φ1, σ(x)∗ψ1〉〈φ2, σ(x)∗ψ2〉 dμr(x)

= tr(φ1 ⊗ φ2) tr(D−1ψ2 ⊗D−1ψ1)

= 〈φ1, φ2〉〈D−1ψ1,D−1ψ2〉

which is exactly (2).

By demanding stronger conditions on both S and T we can deduce the following 
corollary.

Corollary 4.6. Let S and T be admissible trace-class operators on H, then the convolution 
T �G S satisfies T �G S ∈ L1

r(G) ∩ L1
�(G) and

∫
G

T �G S(x) dμr(x) = tr(T ) tr(D−1SD−1),

∫
G

T �G S(x) dμ�(x) = tr(S) tr(D−1TD−1).

Proof. The first equality and T �G S ∈ L1
r(G) is the statement of Corollary 4.4. The 

two corresponding statements for the left Haar measure follow by making the change 
of variables x �→ x−1 and using that σ(x−1)∗ = σ(x), dμr(x−1) = dμ�(x) and T �G
S(x−1) = S �G T (x). �
4.2. Conditions for admissibility

In this section we go over some useful conditions for admissibility, all of which are 
generalizations of results in [10]. The first result shows how admissible functions are 
related to admissible operators.

Proposition 4.7. A rank-one operator S = ψ ⊗ φ for non-zero ψ, φ ∈ H is an admissible 
operator if and only if ψ and φ are admissible functions.

Proof. If S = ψ⊗φ is admissible, then D−1SD−1 is trace-class and in particular bounded. 
Hence for ξ ∈ Dom(D−1)
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‖D−1SD−1ξ‖ = |〈D−1ξ, φ〉|‖D−1ψ‖ = |〈ξ,D−1φ〉|‖D−1ψ‖ < C‖ξ‖

which implies that both ψ and φ are in Dom(D−1). The converse was shown in Exam-
ple 4.5. �

The next proposition characterizes positive admissible operators.

Proposition 4.8. Let S be a non-zero positive compact operator with spectral decomposi-
tion

S =
∑
n

sn(ξn ⊗ ξn).

Then S is admissible if and only if each ξn is admissible and

∑
n

sn‖D−1ξn‖2 < ∞.

Proof. We first treat the case where S is admissible. Let ξ ∈ H with ‖ξ‖ = 1. Then by 
Lemma 3.8 and linearity,

(ξ ⊗ ξ) �G S(x) =
∑
n

sn
〈
(ξn ⊗ ξn)σ(x)ξ, σ(x)ξ

〉
=
∑
n

sn|〈σ(x)ξ, ξn〉|2.

By integrating the above and using the monotone convergence theorem we find
∫
G

ξ ⊗ ξ �G S(x) dμr(x) =
∑
n

sn

∫
G

|〈σ(x)ξ, ξn〉|2 dμr(x)

=
∑
n

sn‖ξ‖2‖D−1ξn‖2

where we used the Duflo-Moore relation (2) in the last step. This sum is finite since the 
integral can be bounded using Corollary 4.4, the fact that S is admissible and ‖ξ‖ = 1.

For the other direction, assume that each ξn is admissible and 
∑

n sn‖D−1ξn‖2 < ∞. 
It is then clear that

∑
n

sn(D−1ξn) ⊗ (D−1ξn) (5)

is trace-class by an application of the triangle inequality. It is however not clear that the 
above is equal to D−1SD−1 and that S maps Dom(D) into Dom(D−1) when the sum 
defining S is infinite. For a fixed ψ ∈ H, the partial sums
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(Sψ)M =
M∑
n=1

sn〈ψ, ξn〉ξn

converge to Sψ as M → ∞ by definition and moreover, (Sψ)M is admissible for each M .
The corresponding sequence of partial sums D−1(Sψ)M also converges in H since

∑
n

sn|〈ψ, ξn〉|‖D−1ξn‖ ≤
(∑

n

|〈ψ, ξn〉|2
)1/2(∑

n

s2
n‖D−1ξn‖2

)1/2

≤ C(S)‖ψ‖
(∑

n

sn‖D−1ξn‖2

)1/2

where C(S) is some constant depending only on S. By Theorem 4.1, the Duflo-Moore 
operator D−1 is closed and hence Sψ is admissible with

D−1Sψ =
∑
n

sn〈ψ, ξn〉D−1ξn. (6)

Now to show that D−1SD−1 is bounded on Dom(D−1), let φ ∈ Dom(D−1) and note 
that by (6),

D−1SD−1φ =
∑
n

sn〈D−1φ, ξn〉D−1ξn

=
∑
n

sn〈φ,D−1ξn〉D−1ξn

=
(∑

n

sn(D−1ξn) ⊗ (D−1ξn)
)
φ

which we recognize as (5). This equality can be extended from the dense subspace 
Dom(D−1) to all of H by density since

‖D−1SD−1φ‖ ≤
∑
n

sn‖φ‖‖D−1ξn‖2 ≤ ‖φ‖
∑
n

sn‖D−1ξn‖2 < ∞

by Cauchy-Schwarz and assumption. �
As a corollary, we have the following converse of Corollary 4.4.

Corollary 4.9. Let T be a non-zero positive trace-class operator and let S be a non-zero 
positive compact operator. If

∫
T �G S(x) dμr(x) < ∞,
G
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then S is admissible with

tr(D−1SD−1) = 1
tr(T )

∫
G

T �G S(x) dμr(x). (7)

In particular, if S is a non-zero, positive trace-class operator, then S is admissible if and 
only if S �G S ∈ L1

r(G).

Proof. Since T and S both are positive trace-class operators, we can expand them in 
their singular value decompositions with S =

∑
n snξn ⊗ ξn and move the sum outside 

the integral using Tonelli’s theorem to obtain
∫
G

T �G S(x) dμr(x) = tr(T )
∑
n

sn‖D−1ξn‖2 < ∞

where we used the Duflo-Moore orthogonality relation (2) to compute the resulting inner 
integral. By Proposition 4.8, we conclude that S is admissible. Lastly Corollary 4.4 yields 
the equality (7). �

Admissibility of S does not automatically imply admissibility of f �G S for f ∈ Lp
r(G)

as illustrated by the following proposition.

Proposition 4.10. Suppose f ∈ L1
�(G) ∩ L1

r(G) be a non-zero and non-negative function. 
If S is a positive, admissible trace-class operator on H, then so is f �G S with

tr(D−1(f �G S)D−1) =
∫
G

f(x) dμ�(x) tr(D−1SD−1). (8)

Proof. That f �G S is trace-class follows from Proposition 3.4 while positivity follows 
from Lemma 3.6. Equation (8) follows if we can show that for T non-zero, positive and 
trace-class,

∫
G

T �G (f �G S)(y) dμr(y) = tr(T )
∫
G

f(x) dμr(x) tr(D−1SD−1) (9)

by applying Corollary 4.9 to f �G S which also yields admissibility of f �G S. To show 
(9), we note that

T �G (f �G S)(y) = tr

⎛
⎝Tαy

⎛
⎝∫

G

f(x)αx(S) dμr(x)

⎞
⎠
⎞
⎠

=
∫

f(x) tr
(
Tαxy(S)

)
dμr(x)
G
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=
∫
G

f(x)T �G S(xy) dμr(x).

From here we can integrate T �G (f �G S) to find
∫
G

T �G (f �G S)(y) dμr(y) =
∫
G

∫
G

f(x)T �G S(x) dμr(xy) dμr(y)

=
∫
G

f(x)
∫
G

T �G S(xy) dμr(y) dμr(x)

=
∫
G

f(x) dμ�(x) tr(T ) tr(D−1SD−1)

where we used the change of variables z = xy and the relations between the left and 
right Haar measure from Section 2.3.1. �
4.3. Interpolated convolution mapping properties

With the machinery of admissible operators in place, we can establish the remaining 
promised mapping properties from Section 3 and generalize the inequalities

‖f �G S‖S1 ≤ ‖f‖L1
r(G)‖S‖S1 ,

‖T �G S‖L∞(G) ≤ ‖T‖B(H)‖S‖S1

from Proposition 3.4 and Lemma 3.10 to all Sp and Lp-spaces. These results are gener-
alizations of [10, Prop. 4.16, Lem. 4.17, Prop. 4.18] which treat the affine case and [47, 
Prop. 4.2] in the Weyl-Heisenberg case.

Proposition 4.11. Let 1 ≤ p ≤ ∞ and let q be its conjugate exponent given by 1
p + 1

q = 1. 
If S ∈ Sp, T ∈ Sq and f ∈ L1

r(G), then the following holds:

(i) f �G S ∈ Sp with ‖f �G S‖Sp ≤ ‖f‖L1
r(G)‖S‖Sp .

(ii) T �G S ∈ L∞(G) with ‖T �G S‖L∞(G) ≤ ‖S‖Sp‖T‖Sq .

Proof. The first inequality follows from [36, Prop. 1.2.2] for p < ∞ while the p = ∞ case 
can be deduced by an elementary estimate on the weak action 〈f �G Sψ, φ〉. Meanwhile 
the second inequality follows from [55, Thm. 2.8]. �

Item (i) above should be seen as a version of Young’s inequality for function-operator 
convolutions and shows that Sp is a Banach module over L1

r(G) via the mapping (f, S) �→
f�GS. We now turn our attention to the case where f and operator-operator convolutions 
are in Lp

r(G) for p �= 1. For interpolation purposes, we will first need the following lemma.
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Lemma 4.12. Let S ∈ S1 and f ∈ L∞(G). Define the operator f �G DSD weakly for 
ψ, φ ∈ Dom(D) by

〈f �G DSDψ, φ〉 =
∫
G

f(x)〈SDσ(x)ψ,Dσ(x)φ〉 dμr(x).

Then f �G DSD uniquely extends to a bounded linear operator on H satisfying

‖f �G DSD‖B(H) ≤ ‖f‖L∞(G)‖S‖S1 .

In particular, if R is an admissible operator, then f �G R ∈ B(H) with

‖f �G R‖B(H) ≤ ‖f‖L∞(G)‖D−1RD−1‖S1 .

Proof. Using equation (3), we can rewrite 〈f �G DSDψ, φ〉 as

〈f �G DSDψ, φ〉 =
∫
G

f(x)〈Sσ(x)Dψ, σ(x)Dφ〉 dμ�(x)

=
∫
G

f(x−1)〈Sσ(x)∗Dψ, σ(x)∗Dφ〉 dμr(x)

=
∫
G

f(x−1)(S �G (Dψ ⊗Dφ))(x) dμr(x).

To bound this, we note that Dψ⊗Dφ is an admissible operator and so by an elementary 
estimate of the integral and the use of Corollary 4.4, we deduce that

|〈f �G DSDψ, φ〉| ≤ ‖f‖L∞(G)‖S‖S1‖D−1(Dψ ⊗Dφ)D−1‖S1

= ‖f‖L∞(G)‖S‖S1‖ψ‖‖φ‖.

That f �G DSD extends uniquely follows from the denseness of Dom(D) in H. �
Proposition 4.13. Let 1 ≤ p ≤ ∞ and let q be its conjugate exponent given by 1

p + 1
q = 1. 

Suppose S ∈ S1 is admissible, T ∈ Sp and f ∈ Lp
r(G).

(i) f �G S ∈ Sp with ‖f �G S‖Sp ≤ ‖f‖Lp
r(G)‖S‖1/p

S1 ‖D−1SD−1‖1/q
S1 .

(ii) T �G S ∈ Lp
r(G) with ‖T �G S‖Lp

r(G) ≤ ‖T‖Sp‖S‖1/q
S1 ‖D−1SD−1‖1/p

S1 .

Proof. Item (i) follows by complex interpolation between the p = 1 case from Proposi-
tion 3.4 and the p = ∞ case which follows from Lemma 4.12.

Similarly, item (ii) follows by interpolating between the p = 1 case from Corollary 4.4
and the p = ∞ case of Lemma 3.10. �
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With the interpolation results established, we can prove a generalization of [47, Thm. 
4.7], previously also noted in [57] and [7] in the Weyl-Heisenberg case.

Proposition 4.14. Let S ∈ S1 be admissible and define the maps

AS : Lp
r(G) → Sp, f �→ f �G S,

BS : Sp → Lp
r(G), T �→ T �G S

for 1 ≤ p ≤ ∞. Then both maps are bounded and the adjoint of AS : Lp
r(G) → Sp is given 

by (AS)∗ = BS : Sq → Lq
r(G) where 1

p + 1
q = 1 while the adjoint of BS : Sp → Lp

r(G) is 
given by (BS)∗ = AS : Lq

r(G) → Sq.

Proof. Boundedness of the mappings follows from Proposition 4.13. We compute the 
adjoint of AS by considering the duality brackets

〈
(AS)∗T, f

〉
Lp

r(G),Lq
r(G) =

〈
T,ASf

〉
Sp,Sq

for T ∈ Sp and f ∈ Lq
r(G). The statement in the other direction for (BS)∗ will then 

follow by the same argument.
First, assume that T ∈ S1 and f ∈ L1

r(G). It then holds that
〈
T,ASf

〉
= tr

(
TASf

)
=
∑
n

〈
T (f �G S)en, en

〉

=
∑
n

∫
G

f(x)
〈
Tαx(S)en, en

〉
dμr(x).

To justify the use of Fubini’s Theorem on the above, we use Tonelli’s Theorem to note 
that

∑
n

∫
G

∣∣f(x)
〈
Tαx(S)en, en

〉∣∣ dμr(x) =
∫
G

|f(x)|
∑
n

∣∣〈Tαx(S)en, en
〉∣∣ dμr(x).

The operator Tσ(x)∗Sσ(x) is trace-class and the Hilbert-Schmidt norm of αx(S) is 
independent of x and so the proof of [12, Prop. 18.9] yields that the sum is uniformly 
bounded. By the integrability of f , we deduce that the entire quantity is finite. We can 
hence apply Fubini’s Theorem to obtain

〈
T,ASf

〉
Sp,Sq =

∫
G

f(x)
∑
n

〈
Tαx(S)en, en

〉
dμr(x)

=
∫
G

f(x)T � S(x) dμr(x) =
〈
BST, f

〉
Lp

r(G),Lq
r(G).
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By the density of S1 and L1
r(G), this result can be extended to all of Sp and Lq

r(G) while 
for p = ∞ the result holds by duality. �

Lastly we show how we can weaken the conditions on Proposition 3.4 but still get 
that the function-operator convolution is a compact operator which generalizes part of 
[50, Lem. 2.3]. We remind the reader that L0(G) is the set of all L∞(G) functions which 
vanish at infinity while K is the set of compact operators.

Corollary 4.15. Let f : G → C and S ∈ B(H) satisfy one of the following

(i) f ∈ L0(G) and S ∈ S1 is admissible,
(ii) f ∈ L1

r(G) and S ∈ K.

Then f �G S ∈ K.

Proof. Both alternatives follow by approximating the less well behaved object and show-
ing that the approximations are compact and converge to f �G S in the operator norm. 
For (i), let fn = fχB(0,n) so that fn has compact support and ‖fn − f‖L∞(G) → 0 as 
n → ∞. Then fn ∈ L1

r(G) which implies that fn �G S ∈ S1 by Proposition 3.4 and so 
fn �G S is compact. Lemma 4.12 then yields that

‖f �G S − fn �G S‖B(H) ≤ ‖f − fn‖L∞(G)‖D−1SD−1‖S1 → 0

as n → ∞, which yields the desired conclusion.
For (ii), since S is compact, it is the limit in operator norm of a sequence of finite rank 

operators (Sn)n ⊂ S1. By Proposition 3.4, f �G Sn is compact. Thus by Proposition 4.11
with p = ∞,

‖f �G S − f �G Sn‖B(H) ≤ ‖f‖L1
r(G)‖S − Sn‖B(H) → 0

as n → ∞ and so f � S is also the limit in operator norm of a sequence of compact 
operators, hence it is compact. �
5. Applications

5.1. Cohen’s class distributions

Cohen’s class of time-frequency distributions have a clear generalization to locally 
compact groups via quantum harmonic analysis and their integrability will in this section 
be shown to be connected to admissibility of an associated operator. In [48] it was 
shown that, with the Weyl-Heisenberg group as the underlying group, any Cohen’s class 
distribution can be written as in the following definition using the Weyl transform from 
Section 2.2.2.
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Definition 5.1. A bilinear map Q : H × H → L∞(G) is said to belong to the Cohen’s 
class if Q = QS for some S ∈ B(H) where

QS(ψ, φ)(x) = (ψ ⊗ φ) �G S(x) = 〈Sσ(x)ψ, σ(x)φ〉. (10)

We write QS(ψ, ψ) = QS(ψ).

Cohen’s class distributions should be thought of as generalizations of the spectrogram 
and scalogram as illustrated by the following example.

Example 5.2. When S is the rank-one operator S = ξ ⊗ η,

QS(ψ, φ)(x) = 〈ξ, σ(x)φ〉〈η, σ(x)ψ〉.

In particular, when S = ξ ⊗ ξ,

QS(ψ)(x) = |〈ξ, σ(x)ψ|2 = |〈ψ, σ(x)∗ξ〉|2

which reduces down to the spectrogram in the Weyl-Heisenberg case and the scalogram 
in the affine case after replacing x with x−1. Note also that by the linearity of the 
mapping S �→ QS , if S had been a finite rank operator, QS would have been a sum of 
functions of the above form.

Example 5.3. Because of the formalism we have set up, we can easily compute the Cohen’s 
class distribution corresponding to the operator f �G S using Proposition 3.12 as

Qf
GS(ψ, φ) = (ψ ⊗ φ) �G (f �G S) = f ∗G ((ψ ⊗ φ) �G S) = f ∗G QS(ψ, φ).

From here we can deduce some elementary properties of QS, generalizing the results 
in [10, Prop. 6.9] and [48, Prop. 7.2, 7.3, 7.5].

Proposition 5.4. Let S ∈ B(H). Then for ψ, φ ∈ H the following properties hold:

(i) The function QS(ψ, φ) satisfies

‖QS(ψ, φ)‖L∞(G) ≤ ‖S‖B(H)‖ψ‖‖φ‖.

(ii) If S is admissible, then QS(ψ, φ) ∈ L1
r(G) and

∫
QS(ψ, φ)(x) dμr(x) = 〈ψ, φ〉 tr(D−1SD−1).
G
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(iii) If S is trace-class and ψ, φ are admissible, then QS(ψ, φ) ∈ L1
�(G) and

∫
G

QS(ψ, φ)(x) dμ�(x) = 〈D−1ψ,D−1φ〉 tr(S).

(iv) We have the covariance property

QS(σ(x)ψ, σ(x)φ)(y) = QS(ψ, φ)(yx) (11)

for all x, y ∈ G.
(v) The function QS(ψ) is (real-valued) positive for all ψ ∈ H if and only if S is (self-

adjoint) positive.

Proof. Item (i) is a direct consequence of Lemma 3.10 or alternatively the Cauchy-
Schwarz inequality while item (ii) follows from Corollary 4.4 and item (iii) follows by an 
argument similar to that in the proof of Corollary 4.6. Item (iv) follows by a straight-
forward calculation. Item (v) is clear from the definition (10). �
Remark. In [48], Cohen’s class distributions QS on the Weyl-Heisenberg group are said 
to have the correct total energy property if they satisfy

∫
R2d

QS(ψ, φ)(x, ω) dx dω = 〈ψ, φ〉.

This corresponds to S being admissible with admissibility constant tr(D−1SD−1) = 1
by item (ii) above.

It also turns out that under rather loose conditions, any bilinear map on H×H is a 
Cohen’s class distribution as shown in the following proposition generalizing [34, Thm. 
4.5.1] in the Weyl-Heisenberg case and [10, Prop. 6.11] in the affine case.

Proposition 5.5. Let Q : H×H → L∞(G) be a bilinear map. Assume that for all ψ, φ ∈ H
we know that Q(ψ, φ) is a continuous function on G that satisfies the covariance property 
(11) and the estimate

|Q(ψ, φ)(0G)| ≤ C‖ψ‖φ‖

for some constant C. Then there exists a unique bounded operator S ∈ B(H) such that 
Q = QS.

Proof. By the Riesz representation theorem, there exists a bounded operator S such 
that
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〈Sψ, φ〉 = Q(ψ, φ)(0G)

and that Q = QS now follows from the covariance relation (11). �
In [48, Thm. 7.6], positive Cohen’s class distributions with the correct total energy 

property were characterized as (possibly infinite) convex combinations of spectrograms 
in the Weyl-Heisenberg case. An analogous result holds in the locally compact setting.

Theorem 5.6. If S ∈ S1 is positive, then there exists an orthonormal basis {ϕn}n and a 
sequence {λn}n of non-negative numbers with 

∑
n λn = tr(S) such that

QS(ψ)(x) =
∑
n

λn|〈ψ, σ(x)∗ϕn〉|2

where the convergence in the sum is uniform for any ψ ∈ H.

Proof. Since S is trace-class and positive, it can be expanded in its singular value de-
composition

S =
∑
n

λn(ϕn ⊗ ϕn)

where 
∑

n λn = tr(S) by a theorem due to Lidskii [55]. This allows us to write

QS(ψ)(x) = (ψ ⊗ ψ) �G
∑
n

λnϕn ⊗ ϕn

=
∑
n

λn(ψ ⊗ ψ) �G (ϕn ⊗ ϕn)

=
∑
n

λn|〈ψ, σ(x)∗ϕn〉|2.

That the convergence is uniform follows by Lemma 3.10 applied to (ψ ⊗ ψ) �G (ϕn ⊗
ϕn). �

The following proposition highlights a connection between the operator f �G S and 
the Cohen’s class distribution QS. It is a straight-forward generalization of the Weyl-
Heisenberg situation described in [48, Prop. 8.2] and the affine case considered in [10, 
Prop. 6.12].

Proposition 5.7. Let S be a positive, compact operator on H and let f ∈ L1
r(G) be a 

non-negative function. Then f �G S is a positive, compact operator. Denote by (λn)n its 
eigenvalues in non-decreasing order with associated orthogonal eigenvectors (φn)n. Then

λn = max
‖ψ‖=1

⎧⎨
⎩
∫

f(x)QS(ψ)(x) dμr(x) : ψ ⊥ φk for k = 1, . . . , n− 1

⎫⎬
⎭ .
G
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Proof. Positivity of f �G S follows from Lemma 3.6 while compactness follows from 
Corollary 4.15 (ii). The eigenvalue equality can be seen as a consequence of Courant’s 
minimax theorem [43, Thm. 28.4] upon noting that

〈f �G Sψ, ψ〉 =
∫
G

f(x)QS(ψ)(x) dμr(x)

which can be seen as a consequence of (10). �
Since we have an L∞ bound on QS(ψ) from Proposition 5.4, we can formulate an 

uncertainty principle in the same way as [48, Cor. 7.7] and [34, Prop. 3.3.1] does for the 
Weyl-Heisenberg situation which says that if much of the mass of QS is concentrated in 
a subset Ω ⊂ G, Ω cannot be too small.

Corollary 5.8. Let S ∈ B(H) and Ω be a compact subset of G such that
∫
Ω

|QS(ψ)(x)| dμr(x) ≥ (1 − ε)‖S‖B(H) (12)

for some ψ ∈ H with ‖ψ‖ = 1. Then,

μr(Ω) ≥ 1 − ε.

Proof. Using (12), an elementary integral estimate and property (i) of Proposition 5.4, 
we obtain

(1 − ε)‖S‖B(H) ≤
∫
Ω

|QS(ψ)(x)| dμr(x)

≤ ‖QS(ψ)‖L∞(G)μr(Ω)

≤ ‖S‖B(H)μr(Ω)

which yields the desired inequality upon dividing out ‖S‖B(H). �
Example 5.9. Consider the case where H = L2(R2) and G = S, the shearlet group. If we 
let SHϕψ denote the shearlet transform of ψ ∈ L2(R2) with respect to the normalized 
window ϕ, the above corollary applied to a subset Ω ⊂ S reads as

∫
Ω

|SHϕψ(a, s, x)|2 da ds dx

a3 ≥ 1 − ε =⇒
∫
Ω

da ds dx

a
≥ 1 − ε

where we used the result of Example 5.2 and the left and right Haar measure relations 
from Section 2.3.1.
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5.2. Mixed-state localization operators

The localization operators introduced in Section 2.2.4 have an equivalent formulation 
using quantum harmonic analysis for which the generalization to locally compact groups 
is clear.

Definition 5.10. Let f ∈ L1
r(G) and ϕ1, ϕ2 ∈ H. We then define the localization operator

Aϕ1,ϕ2
f on H as the operator

Aϕ1,ϕ2
f = f �G (ϕ1 ⊗ ϕ2).

By Proposition 3.4, all localization operators are trace-class operators.

Remark. The rank-one case of the interpolation results in Section 4.3 can be found 
stated for localization operators in [61, Chap. 13] which notably investigates localization 
operators on locally compact groups.

Borrowing some terminology from quantum mechanics, the operator ϕ1 ⊗ϕ2 = ϕ ⊗ϕ

describes a pure state of a system while a positive trace-class operator which does not 
have rank one describes a mixed state since it is the limit of a linear combination of pure 
states. This leads us to the following two definitions, discussed in more depth in [48,49]
for the Weyl-Heisenberg case.

Definition 5.11. A positive trace-class operator that is admissible with tr(D−1SD−1) = 1
is said to be a density operator.

Definition 5.12. Let S be a density operator and f ∈ L1
r(G). Then the mixed-state local-

ization operator corresponding to S and f is defined as f �G S.

Remark. It is possible to view localization operators as induced by a broader class of 
functions and operators and investigate the properties of those localization operators as 
in [13]. For the purposes of this paper we restrict our attention to localization operators 
as specified by the definitions above.

Remark. Mixed-state localization operators show up as the natural analogue of local-
ization operators for the operator wavelet transform defined in Section 5.4 below where 
the density operator condition is equivalent to the operator wavelet transform being an 
isometry.

We are especially interested in the case where f = χΩ where Ω is a compact subset 
of G and S is a density operator in which case we refer to χΩ �G S as the mixed-state 
localization operator corresponding to S and Ω. By the positivity and compactness of 
χΩ �G S, we can write the singular value decomposition as
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χΩ �G S =
∑
k

λΩ
k (hΩ

k ⊗ hΩ
k )

where the eigenvalues (λΩ
k )k are ordered decreasingly.

In [49], we have the following result on the distributions of the eigenvalues of mixed-
state localization operators in the Weyl-Heisenberg case, essentially saying that the 
number of eigenvalues of χΩ �G S close to 1 scales as the size of the compact subset 
Ω provided S is a density operator. This was originally proved in the rank-one case in 
[24].

Theorem 5.13 ([49, Thm. 4.4]). Let S be a density operator on L2(Rd), let Ω ⊂ R2d be a 
compact domain and fix δ ∈ (0, 1). If 

{
λRΩ
k }k are the non-zero eigenvalues of χRΩ �Hn S, 

then

#
{
k : λRΩ

k > 1 − δ
}

|RΩ| → 1 as R → ∞.

The proof of this theorem uses of approximate identities which show up as a conse-
quence of the scaling RΩ. In the locally compact setting we cannot consider dilations 
and therefore settle for proving the corresponding statement for the affine group.

Theorem 5.14. Let S be a density operator on L2(R+), let Ω ⊂ Aff be a compact domain 
and fix δ ∈ (0, 1). If 

{
λRΩ
k

}
k

are the non-zero eigenvalues of χRΩ �Aff S, then

#
{
k : λRΩ

k > 1 − δ
}

tr(S)μr(RΩ) → 1 as R → ∞. (13)

Note that the scaled set RΩ is defined as in Section 2.3.4 using the scaling function

ΓR : Aff → Aff, ΓR(x, a) = (Rx, aR), Γ−1
R (x, a) =

( x
R
, a1/R

)

where RΩ = {ΓR(x, a), (x, a) ∈ Ω}.
Before starting the proof, we will need to establish some auxiliary lemmas, some of 

which we state in the locally compact setting for the sake of generality.

Lemma 5.15. Let S be a density operator and Ω ⊂ G a compact domain. Then the 
eigenvalues 

{
λΩ
k

}
k

of χΩ �G S satisfy 0 ≤ λΩ
k ≤ 1.

Proof. All of the eigenvalues are non-negative and real-valued since χΩ �GS is a positive 
operator by Lemma 3.6. For the upper limit, we have

λΩ
k =

〈
(χΩ �G S)hΩ

k , h
Ω
k

〉
=
∫

χΩ(x)
〈
σ(x)∗Sσ(x)hΩ

k , h
Ω
k

〉
dμr(x)
G
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≤
∫
G

QS(hΩ
k )(x) dμr(x) =

〈
hΩ
k , h

Ω
k

〉
= 1

where we used Proposition 5.4 (ii). �
Lemma 5.16. Let S be a density operator, then the function S̃ = S �G S is non-negative, 
nonzero at 0G and has total integral 1 with respect to both the left and right Haar measure.

Proof. Non-negativity of S̃ follows from Lemma 3.11 and plugging in T = S and x = 0G
in its proof yields

S̃(0G) =
∑
n

λ2
n > 0

where (λn)n are the eigenvalues of S. Meanwhile the last statement follows from Corol-
lary 4.6 and S being a density operator. �

The following technical lemma on approximations of the identity is standard in the 
Weyl-Heisenberg case but requires some work in the affine case. Note that the interior 
in the formulation below refers to the ball defined in Section 2.3.4 as

BAff
r

(
(x, a), δ

)
=
{
(y, b) ∈ Aff : dAff

r

(
(x, a), (y, b)

)
< δ
}

where

dAff
r

(
(x, a), (y, b)

)
= |x− y| +

∣∣∣ ln a

b

∣∣∣.
Lemma 5.17. Let φ ∈ L1

r(Aff) be non-negative, have total integral 1 with respect to both 
the left and right Haar measure and be nonzero at (0, 1). Moreover, let Ω ⊂ Aff be 
compact and (y, b) be a point in the interior of Ω, then

lim
R→∞

R2
∫
Ω

φ
(
(ΓR(x, a))(ΓR(y, b))−1) dμr(x, a) = 1.

Proof. Using the change of variables (z, c) = ΓR(x, a) and (w, u) = ΓR(y, b) and the 
elementary observation Ω ⊂ Aff, we see that

lim
R→∞

R2
∫
Ω

φ
(
(ΓR(x, a))(ΓR(y, b))−1) dμr(x, a) ≤

∫
Aff

φ
(
(z, c)(w, u)−1) dμr(z, c) = 1.

We devote the remainder of the proof to showing that the limit is greater than or equal 
to 1 also. Choose δ so small that BAff

r

(
(y, b), δ

)
⊂ Ω, then
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lim
R→∞

R2
∫
Ω

φ
(
(ΓR(x, a))(ΓR(y, b))−1) dμr(x, a)

≥ lim
R→∞

R2
∫

BAff
r ((y,b),δ)

φ
(
(ΓR(x, a))(ΓR(y, b))−1) dμr(x, a)

= lim
R→∞

∫
{(z,c):Γ−1

R (z,c)∈BAff
r ((y,b),δ)}

φ
(
(z, c)(w, u)−1) dμr(z, c),

where we once again used the change of variables (z, c) = ΓR(x, a) and (w, u) = ΓR(y, b). 
We claim that for each point (z, c), there exists an R so large that Γ−1

R ((z, c)) ∈
BAff

r ((y, b), δ) meaning that the region we are integrating over grows to all of Aff as 
R → ∞. The desired conclusion will then follow by the monotone convergence theorem. 
Indeed, a quick computation using that Γ−1

R (x, a) =
(
x
R , a1/R) yields

Γ−1
R (z, c) ∈ BAff

r

(
Γ−1
R (w, u), δ

)
⇐⇒ dAff

r

(
Γ−1
R (z, c),Γ−1

R (w, u)
)
< δ

⇐⇒
∣∣∣∣z − w

R

∣∣∣∣+
∣∣∣∣ln c1/R

u1/R

∣∣∣∣ = 1
R

(
|z − w| +

∣∣∣ln c

u

∣∣∣) < δ

which clearly is true for large enough R. Hence

lim
R→∞

∫
{(z,c):Γ−1

R (z,c)∈BAff
r ((y,b),δ)}

φ((z, c)(w, u)−1) dμr(z, c) =
∫
Aff

φ(zw−1) dμr(z, c) = 1

which yields the desired conclusion. �
The following lemma generalizes [48, Prop. 6.1] and [49, Lem. 4.2].

Lemma 5.18. Let Ω be a compact subset of G and let S ∈ S1 be a positive operator. Then

(i) tr(χΩ �G S) = tr(S)μr(Ω).
(ii) tr((χΩ �G S)2) =

∫
Ω
∫
Ω S̃(xy−1) dμr(x) dμr(y).

(iii) If 
{
λΩ
k

}
k

are the eigenvalues of χΩ �G S counted with algebraic multiplicity, then

∑
k

λΩ
k = tr(S)μr(Ω).

Proof. (i) This follows from Proposition 3.5.
(ii) By an argument analogous to that in the proof of Proposition 3.12 and properties 

of the Haar measure,

S �G (χΩ �G S)(x) =
∫

S̃(yx) dμr(y).

Ω
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Hence,

tr((χΩ �G S)2) = (χΩ �G S) �G (χΩ �G S)(0G)

= χΩ ∗

⎛
⎝∫

Ω

S̃(y ·) dμr(y)

⎞
⎠ (0G)

=
∫
Ω

∫
Ω

S̃(xy−1) dμr(x) dμr(y).

(iii) This follows from the fact that the sum of the eigenvalues counted with algebraic 
multiplicity is equal to the trace [55] and Proposition 3.5. �

From here we can follow the proof in [49], which in turn follows the proof in [1], by 
first generalizing [49, Lem. 4.3] to the locally compact setting.

Lemma 5.19. Let S be a density operator, Ω ⊂ G be compact and fix δ ∈ (0, 1). Then
∣∣∣#{k : λΩ

k > 1 − δ
}
− tr(S)μr(Ω)

∣∣∣
≤ max

{
1
δ
,

1
1 − δ

} ∣∣∣∣∣∣
∫
Ω

∫
Ω

S̃(xy−1) dμr(x) dμr(y) − tr(S)μr(Ω)

∣∣∣∣∣∣ .
Proof. Define the function

G(t) =
{
−t if 0 ≤ t ≤ 1 − δ,

1 − t if 1 − δ < t ≤ 1

and consider the operator

G(χΩ �G S) =
∑
k

G(λΩ
k )hΩ

k ⊗ hΩ
k

which is well defined since 0 ≤ λΩ
k ≤ 1 by Lemma 5.15. The sequence 

{
G(λΩ

k )
}
k

is 
absolutely summable since 

{
λΩ
k

}
k

is summable and |G(λΩ
k )| = λΩ

k for large enough k. It 
therefore follows that

tr(G(χΩ �G S)) =
∑
k

G(λΩ
k ) = #

{
k : λΩ

k > 1 − δ
}
− tr(S)μr(Ω)

using Lemma 5.18 (iii) and the above. Hence
∣∣∣#{k : λΩ

k > 1 − δ
}
− tr(S)μr(Ω)

∣∣∣ = | tr
(
G(χΩ �G S)

)
| ≤ tr

(
|G|(χΩ �G S)

)
.



S. Halvdansson / Journal of Functional Analysis 285 (2023) 110096 37
To bound this, we need an estimate on |G(t)|. We wish to decide the constant A such 
that the polynomial At(1 − t) is always greater than |G(t)|. Note that it suffices to make 
sure that this is the case around t = 1 − δ by the concavity of At(1 − t) and so we can 
set

A = sup
t∈[0,1]

|G(t)|
t(1 − t) = max

{
1
δ
,

1
1 − δ

}

yielding

|G(t)| ≤ max
{

1
δ
,

1
1 − δ

}
(t− t2).

With the bounds on |G(t)| established, it follows that

∣∣∣#{k : λΩ
k > 1 − δ

}
− tr(S)μr(Ω)

∣∣∣ ≤ max
{

1
δ
,

1
1 − δ

}
tr
(
χΩ �G S − (χΩ �G S)2

)
and we obtain the desired conclusion by applying Lemma 5.18 to the right hand side. �
Proof of Theorem 5.14. By Lemma 5.19, we have the bound∣∣∣#{k :λRΩ

k > 1 − δ
}
− tr(S)μr(RΩ)

∣∣∣
≤ max

{
1
δ
,

1
1 − δ

} ∣∣∣∣∣∣
∫
RΩ

∫
RΩ

S̃
(
(x, a)(y, b)−1) dμr(x, a) dμr(y, b) − tr(S)μr(RΩ)

∣∣∣∣∣∣ .
Hence by dividing by tr(S)μr(RΩ) and setting φ = S̃/ tr(S) which has total integral 1 
by Corollary 4.4 and the fact that S is a density operator, we get∣∣∣∣∣#
{
k : λRΩ

k > 1 − δ
}

tr(S)μr(RΩ) − 1

∣∣∣∣∣
≤ max

{
1
δ
,

1
1 − δ

} ∣∣∣∣∣∣
1

μr(RΩ)

∫
RΩ

∫
RΩ

φ
(
(x, a)(y, b)−1) dμr(x, a) dμr(y, b) − 1

∣∣∣∣∣∣
= max

{
1
δ
,

1
1 − δ

} ∣∣∣∣∣∣
∫
RΩ

1
μr(RΩ)

⎛
⎝∫
RΩ

φ
(
(x, a)(y, b)−1) dμr(x, a) − 1

⎞
⎠ dμr(y, b)

∣∣∣∣∣∣
≤ max

{
1
δ
,

1
1 − δ

} ∫
RΩ

1
μr(RΩ)

∣∣∣∣∣∣
∫
RΩ

φ
(
(x, a)(y, b)−1) dμr(x, a) − 1

∣∣∣∣∣∣ dμr(y, b).

We now focus on showing that this approaches zero as R → ∞. The change of variables 
(x, a) = ΓR(z, c) and (y, b) = ΓR(w, u) yields
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∫
RΩ

1
μr(RΩ)

∣∣∣∣∣∣
∫
RΩ

φ((x, a)(y, b)−1) dμr(x, a) − 1

∣∣∣∣∣∣ dμr(y, b)

= R2
∫
Ω

1
μr(RΩ)

∣∣∣∣∣∣R2
∫
Ω

φ
(
(ΓR(z, c))(ΓR(w, u))−1) dμr(z, c) − 1

∣∣∣∣∣∣ dμr(w, u).

From here we can move the R → ∞ limit inside the integral by the compact-
ness of Ω and the bound 

∣∣R2 ∫
Ω φ((ΓR(z, c))(ΓR(w, u))−1) dμr(z, c) − 1

∣∣ ≤ 2. To 
conclude that the outer integral is zero, we need to make the integrand small 
even when making the change of variables back to (x, a), (y, b) which requires that ∣∣R2 ∫

Ω φ((ΓR(z, c))(ΓR(w, u))−1) dμr(z, c) − 1
∣∣ vanishes as R → ∞. This is the contents 

of Lemma 5.17 and so we are done. �
Remark. The formulation of Theorem 5.14 can be generalized to the locally compact 
setting as

#
{
k : λΩn

k > 1 − δ
}

tr(S)μr(Ωn) → 1 as n → ∞

where (Ωn)n is an exhausting sequence of G. Unfortunately, the proof does not fully 
carry over to this formulation but as long as an approximate identity lemma analogous 
to Lemma 5.17 can be proved the full statement should follow as well. We therefore 
expect generalizations of Theorem 5.14 to homogeneous groups or stratified Lie groups 
to hold.

For an example of how density operators can be constructed, see the following propo-
sition.

Proposition 5.20. Let ψ be an admissible vector such that ‖Dψ‖ = 1. Then S = ψ⊗ψ is 
a density operator. Moreover, if f ∈ L1

�(G) is non-negative with ‖f‖L1
�(G) = 1 and S is 

a density operator, then f �G S is also a density operator.

Proof. The first part is clear from the definition of density operators and the second 
part follows by Lemma 3.6 and Proposition 4.10. �

Density operators can also be constructed from linear combinations of admissible 
functions as in Proposition 4.8.

Remark. The construction carried out for the affine group in this section can just as 
easily be applied to the shearlet group by defining the dilation function

ΓR : S → S, ΓR(a, s, x) =
(
aR,

s
,
x )

,

R R
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which has the property μr(RΩ) = R4μr(Ω), and the distance function

dSr ((a, s, x), (b, t, y)) =
∣∣∣ln a

b

∣∣∣+ |s− t| + |x− y|.

The proof in Lemma 5.17 then works in the same way with obvious modifications.

5.3. Covariant integral quantizations

Covariant integral quantizations on G are maps ΓS given by

ΓS(f) = f �G S

which include mixed-state localization operators as a special case. They have been stud-
ied by Gazeu and collaborators, motivated by applications in physics [31–33].

The following result generalizes [57, Prop. 3.2 (3)] and [10, Prop. 6.4].

Proposition 5.21. Let T be a trace-class operator on H. Then

ΓDTD(1) = 1 �G DTD = tr(T )IH.

Proof. Let ψ, φ ∈ Dom(D), then using Lemma 4.12,

〈1 �G DTDψ, φ〉 =
∫
G

〈TDσ(x)ψ,Dσ(x)φ〉 dμr(x)

=
∫
G

(ψ ⊗ φ) �G (DTD)(x) dμr(x)

= tr(ψ ⊗ φ) tr(T )

= 〈ψ, φ〉 tr(T )

by Lemma 3.8 and Theorem 4.2. �
From the above proposition we see that when tr(T ) = 1, ΓDTD(1) is the identity 

operator which has the following resolution of identity as a consequence

IH =
∫
G

αx

(
DTD

)
dμr(x) =⇒ 〈ψ, φ〉 =

∫
G

〈
DTDσ(x)ψ, σ(x)φ

〉
dμr(x)

It turns out that this property together with a few more uniquely determines linear 
maps from L∞(G) to B(H) which is the contents of the following theorem from [39]
which generalizes the formulations in [48, Thm. 6.2] and [10, Thm. 6.5].

Theorem 5.22. Let Γ : L∞(G) → B(H) be a linear map satisfying
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(1) Γ sends positive functions to positive operators,
(2) Γ(1) = IH,
(3) Γ is continuous from the weak∗ topology on L∞(G) (as the dual space of L1

r(G)) to 
the weak∗ topology on B(H),

(4) σ(x)∗Γ(f)σ(x) = Γ(R−1
x f).

Then there exists a unique positive trace-class operator T with tr(T ) = 1 such that

Γ(f) = f �G DTD.

Remark. That Γ(f) = f �G DTD satisfies all of these properties can be verified directly.

Proof. The proof is a matter of translating our situation to one described in a remark in 
[37] which references [39] for the full proof. This follows by first considering the bijection 
Γ �→ Γl where Γl(f) = Γ(f̌) and f̌(x) = f(x−1). To translate the result back into the 
form f �G DTD we can use equation (3) from Theorem 4.1. �

By Proposition 4.14, the adjoint of ΓS = AS is given by the map T �→ T �G S and so 
covariant integral quantizations can be seen as inducing operator-operator convolutions 
as well.

Remark. Werner refers to mappings of the kind discussed above as positive correspon-
dence rules in [57].

5.4. Operator wavelet transforms

In [56], the STFT of an element of L2(Rd) with respect to a Hilbert-Schmidt operator 
is defined and a generalization of Moyal’s identity is proved which mirrors the Duflo-
Moore theorem. Later in [21], this approach was generalized by letting the STFT also 
act on operators in what they call the operator STFT. In this section we generalize both 
of these constructions to the locally compact setting.

5.4.1. Wavelet transform with operator window

Definition 5.23. Let S be a bounded operator on H such that S∗S is admissible and 
ψ ∈ H. Then the wavelet transform with operator window WS(ψ) of ψ with window to 
S is defined as the function

WS(ψ)(x) = Sσ(x)ψ ∈ H

for x ∈ G.
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Remark. Our definition differs from that in [21,56] in that we don’t take the adjoint of 
σ to stay in line with the right Haar measure convention of this paper. Note also that 
the condition that S∗S is admissible corresponds to S being a Hilbert-Schmidt operator 
in the unimodular case.

The wavelet transform with operator window should be considered as an element of 
the Hilbert space L2

r(G, H) of equivalence classes of elements Ψ : G �→ H such that

‖Ψ‖L2
r(G,H) =

⎛
⎝∫

G

‖Ψ(x)‖2
H dμr(x)

⎞
⎠

1/2

< ∞

where Ψ ∼ Φ if Ψ(x) = Φ(x) in H for μr-a.e. x ∈ G. The inner product in this space is 
given by

〈Ψ,Φ〉L2
r(G,H) =

∫
G

〈
Ψ(x),Φ(x)

〉
H dμr(x).

We are now ready to prove the following orthogonality relation, which in particular shows 
that the transform indeed is an element of L2

r(G, H).

Proposition 5.24. Let S1, S2 ∈ B(H) be such that S∗
2S1 is admissible and ψ1, ψ2 ∈ H. 

Then

〈
WS1ψ1,WS2ψ2

〉
L2

r(G,H) = 〈ψ1, ψ2〉〈S1D−1, S2D−1〉S2 .

In particular, WSψ ∈ L2
r(G, H) for S ∈ B(H) such that S∗S is admissible and ψ ∈ H.

Proof. By writing

〈
WS1ψ1(x),WS2ψ2(x)

〉
=
〈
S1σ(x)ψ1, S2σ(x)ψ2

〉
=
〈
αx(S∗

2S1)ψ1, ψ2
〉

= ((ψ1 ⊗ ψ2) �G S∗
2S1)(x)

using Lemma 3.8, we see that this can be integrated using Corollary 4.4 to yield

〈
WS1ψ1,WS2ψ2

〉
L2

r(G,H) = tr(ψ1 ⊗ ψ2) tr(D−1S∗
2S1D−1)

= 〈ψ1, ψ2〉 tr(S1D−1(S2D−1)∗)

= 〈ψ1, ψ2〉〈S1D−1, S2D−1〉S2

as desired. �
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Remark. Note that when S1 = ξ ⊗ φ1, S2 = ξ ⊗ φ2 and ξ is normalized, we recover the 
familiar Duflo-Moore relation

〈
WS1ψ1,WS2ψ2

〉
= 〈ψ1, ψ2〉〈D−1φ1,D−1φ2〉.

Moreover, when

S1 =
N∑

n=1
ξ ⊗ φn, S2 =

M∑
m=1

ξ ⊗ ηm

for some normalized ξ, S∗
2S1 is admissible precisely when φn and ηm are admissible for 

each n, m since

S∗
2S1 =

N∑
n=1

M∑
m=1

ηm ⊗ φn

by Proposition 4.7 characterizing admissible rank-one operators.

5.4.2. Operator wavelet transform

Definition 5.25. Let S be a bounded operator on H such that S∗S is admissible and 
T ∈ HS, then the operator wavelet transform of T with respect to S is defined as

WST (x) = Sσ(x)T.

Note that WST maps elements of G to operators on H. In fact, we will show that WST

is an element of the Hilbert space L2
r(G, HS) provided S satisfies the same admissibility 

criterion as for the wavelet transform with operator window. The inner product in this 
space is given by

〈A,B〉L2
r(G,HS) =

∫
G

〈A(x), B(x)〉HS dμr(x).

As in the wavelet transform with operator window case, we still have a version of Moyal’s 
identity which generalizes [21, Prop. 3.4].

Proposition 5.26. Let S1, S2 be such that S∗
2S1 is admissible and T, R ∈ HS. Then

〈
WS1T,WS2R

〉
L2

r(G,HS) = 〈T,R〉HS〈S1D−1, S2D−1〉HS .

In particular, WST ∈ L2
r(G, HS) for S ∈ B(H) such that S∗S is admissible and T ∈ HS.
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Proof. We compute

〈
WS1T,WS2R

〉
L2

r(G,HS) =
∫
G

〈
WS1T (x),WS2R(x)

〉
HS dμr(x)

=
∫
G

tr
(
S1σ(x)TR∗σ(x)∗S∗

2
)
dμr(x)

=
∫
G

((TR∗) �G (S∗
2S1))(x) dμr(x)

= tr(TR∗) tr(D−1S∗
2S1D−1)

= 〈T,R〉HS〈S1D−1, S2D−1〉HS

where we in the second to last step used Corollary 4.4. �
Remark. More structure such as the Toeplitz operators discussed in [21] carry over to 
the locally compact setting with similar modifications as in the above but in the interest 
of brevity we leave this be.

5.5. A Berezin-Lieb inequality

The Berezin-Lieb inequality as investigated in [40,46,57] can be seen as a generalization 
of Corollary 4.4. We present here a generalization to locally compact groups with the 
proof partially based on a proof for the Weyl-Heisenberg case in [22].

Theorem 5.27. Fix a positive T ∈ S1 and let S ∈ S1 be admissible. If Φ is a non-negative, 
convex and continuous function on a domain containing the spectrum of tr(S)T and the 
range of T �G S, then

∫
G

Φ ◦ (T �G S)(x) dμr(x) ≤ tr
(
Φ(tr(S)T

) tr(D−1SD−1)
tr(S)

where Φ(S) is defined by the functional calculus. Similarly, if S ∈ S1 is positive and 
admissible, f ∈ L∞(G) is non-negative and Φ is a non-negative, convex and continuous 
function on a domain containing the spectrum of f �GS and the range of tr(D−1SD−1)f , 
then

tr(Φ(f �G S)) ≤ tr(S)
tr(D−1SD−1)

∫
G

Φ
(
tr(D−1SD−1)f(x)

)
dμr(x).

Proof. Expanding T in its singular value decomposition and using Lemma 3.8, we obtain

(T �G S)(x) =
∑

λn((ξn ⊗ ξn) �G S)(x)

n
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=
∑
n

λn〈Sσ(x)ξn, σ(x)ξn〉

=
∑
n

tr(S)λn
〈Sσ(x)ξn, σ(x)ξn〉

tr(S) .

Since {ξn}n is an orthonormal basis, so is {σ(x)ξn}n and so for each x we can view the 
above as the integral over (tr(S)λn)n with respect to a discrete probability measure. 
Applying Jensen’s inequality, we find that

Φ ◦ (T �G S)(x) = Φ
(∑

n

tr(S)λn
〈Sσ(x)ξn, σ(x)ξn〉

tr(S)

)

≤
∑
n

Φ(tr(S)λn) 1
tr(S) 〈Sσ(x)ξn, σ(x)ξn〉

for each x. Integrating both sides yields∫
G

Φ ◦ (T �G S)(x) dμr(x) ≤
∫
G

∑
n

Φ(tr(S)λn) 1
tr(S) 〈Sσ(x)ξn, σ(x)ξn〉

=
∑
n

Φ(tr(S)λn) 1
tr(S)

∫
G

(ξn ⊗ ξn) �G S(x) dμr(x)

=
∑
n

Φ(tr(S)λn) tr(D−1SD−1)
tr(S)

where we used Tonelli, Lemma 3.8 and Corollary 4.4.
For the function statement, we use that f �G S is a positive operator by Lemma 3.6

to expand f �G S as f �G S =
∑

n λn(ξn ⊗ ξn) which yields

Φ(f �G S) =
∑
n

Φ(λn)ξn ⊗ ξn.

Now before taking the trace of this, note that by the above,
〈
Φ(f �G S)ξn, ξn

〉
= Φ(λn) = Φ

(
〈(f �G S)ξn, ξn〉

)
and so

tr(Φ(f �G S)) =
∑
n

〈
Φ(f �G S)ξn, ξn

〉
=
∑
n

Φ
(
〈(f �G S)ξn, ξn〉

)

=
∑
n

Φ

⎛
⎝∫ f(x)〈Sσ(x)ξn, σ(x)ξn〉 dμr(x)

⎞
⎠

G
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=
∑
n

Φ

⎛
⎝∫

G

tr(D−1SD−1)f(x) 〈Sσ(x)ξn, σ(x)ξn〉
tr(D−1SD−1) dμr(x)

⎞
⎠ .

Now for each n, 〈Sσ(x)ξn,σ(x)ξn〉
tr(D−1SD−1) dμr(x) can be viewed as a probability measure since the 

inner product 〈Sσ(x)ξn, σ(x)ξn〉 integrates to tr(D−1SD−1) by Lemma 3.8 and Corol-
lary 4.4. We can therefore apply Jensen’s inequality to get

tr(Φ(f �G S)) ≤
∑
n

∫
G

Φ
(
tr(D−1SD−1)f(x)

) 〈Sσ(x)ξn, σ(x)ξn〉
tr(D−1SD−1) dμr(x)

=
∫
G

Φ
(
tr(D−1SD−1)f(x)

)∑
n〈Sσ(x)ξn, σ(x)ξn〉
tr(D−1SD−1) dμr(x)

= tr(S)
tr(D−1SD−1)

∫
G

Φ
(
tr(D−1SD−1)f(x)

)
dμr(x)

where we used Tonelli to change the order of integration and summation. �
Remark. A result similar to the rank-one case of the second inequality in the above 
theorem can be found in [61, Thm. 14.11].

5.6. Wiener’s Tauberian theorem

In this section we extend a theorem originally proved in [38] which can also be found 
in [47]. It can be viewed as a descendant to Wiener’s classical Tauberian theorem [58] and 
is similar in spirit to the ideal formulation in [44]. To state it, we first need to introduce 
the concept of regular functions and operators.

Definition 5.28. A function g ∈ Lp
r(G) is said to be p-regular if

span
{
g(·x−1)

}
x∈G

= Lp
r(G).

Similarly, an operator S ∈ Sp is said to be p-regular if

span
{
σ(x)∗Sσ(x)

}
x∈G

= Sp.

We now state the theorem before a short discussion.

Theorem 5.29. Assume that there exists an admissible operator R ∈ S1 such that R�GR

is regular, let S ∈ Sp be admissible, 1 ≤ p ≤ ∞ and let q be the conjugate exponent of p. 
Then the following are equivalent:

(1) S is p-regular,



46 S. Halvdansson / Journal of Functional Analysis 285 (2023) 110096
(2) If f ∈ Lq
r(G) and f �G S = 0, then f = 0,

(3) Sp �G S is dense in Lp
r(G),

(4) If T ∈ Sq and T �G S = 0, then T = 0,
(5) Lp

r(G) �G S is dense in Sp,
(6) S �G S is p-regular,
(7) For any regular T ∈ S1, T �G S is p-regular.

Since for 1 ≤ p ≤ p′ ≤ ∞, we have the inclusion Sp ⊂ Sp′ , it suffices to find an 
admissible 1-regular operator to establish existence of p-regular operators for any p ≥ 1. 
In the Weyl-Heisenberg case, the operator S = ϕ0⊗ϕ0 where ϕ0 is the standard Gaussian 
is a regular operator as is verified directly in [47]. It is not as easy to find such an operator 
in the locally compact case as the closest we have is the indicator function on a compact 
neighborhood of the origin for which the proof method does not translate.

Apart from the existence of a regular operator, the proof in the Weyl-Heisenberg case 
from [47] carries over with minimal modifications to account for the use of the right Haar 
measure as opposed to the left Haar measure, the change of the underlying group and 
the requirement of admissibility. We show three implications in detail, the first of which 
is notable because it requires Proposition 4.14 and motivates the requirement for S to 
be admissible, and leave the remaining required modifications from the proof in [47] to 
the reader.

Proof. (2) ⇐⇒ (3): By Proposition 4.14, the mapping AS : f �→ f � S is adjoint to 
BS : T �→ T �G S and by [53, Thm. 4.12], denseness of the image of a mapping is 
equivalent to injectiveness of its adjoint.

(4) ⇐⇒ (5): This follows by the same argument as the above but with the roles of AS

and BS reversed.

(2) =⇒ (4): Assume that T �G S = 0 for some T ∈ Sq, then A �G T �G S = 0 for any 
A ∈ S1 which implies that A � T = 0 for all A ∈ S1 by (2). In particular,

A �G T (0) = tr(AT ) = 〈A, T ∗〉 = 0 for all A ∈ S1

and hence T = 0 as desired.
Again, the remainder of the implications follows with similar small modifications from 

[47] which we leave to the interested reader. �
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