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Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments

Eivind Bøhn, Erlend M. Coates, Dirk Reinhardt, and Tor Arne Johansen

Attitude control of fixed-wing unmanned aerial vehicles (UAVs)
is a difficult control problem in part due to uncertain nonlinear
dynamics, actuator constraints, and coupled longitudinal and
lateral motions. Current state-of-the-art autopilots are based on
linear control and are thus limited in their effectiveness and
performance. Deep reinforcement learning (DRL) is a machine
learning method to automatically discover optimal control laws
through interaction with the controlled system, which can handle
complex nonlinear dynamics. We show in this paper that DRL
can successfully learn to perform attitude control of a fixed-
wing UAV operating directly on the original nonlinear dynamics,
requiring as little as three minutes of flight data. We initially
train our model in a simulation environment and then deploy
the learned controller on the UAV in flight tests, demonstrat-
ing comparable performance to the state-of-the-art ArduPlane
proportional-integral-derivative (PID) attitude controller with
no further online learning required. Learning with significant
actuation delay and diversified simulated dynamics were found
to be crucial for successful transfer to control of the real UAV.
In addition to a qualitative comparison with the ArduPlane
autopilot, we present a quantitative assessment based on linear
analysis to better understand the learning controller’s behavior.

Index Terms—Deep reinforcement learning, Autonomous aerial
vehicles, Attitude control, Sim-to-real, Soft actor critic

I. INTRODUCTION

Many challenging control problems arise during advanced
operation of fixed-wing unmanned aerial vehicles (UAVs),
such as aerobatic maneuvering [1], perching [2], deep-stall
landing [3], recovery from loss of control [4], flying in strong
wind fields [5], or performing VTOL transitions between hover
and forward flight [6]. Fixed-wing UAVs, as illustrated in
Fig. 1, have superior range and endurance when compared
to multirotor UAVs. However, the control of such vehicles
is challenging due to highly coupled, underactuated nonlinear
dynamics, as well as uncertain aerodynamics affected by wind
disturbances that make up a large fraction of the vehicle’s
airspeed.

A class of methods that have shown promising results for
challenging control problems is deep reinforcement learning
(DRL). Reinforcement learning (RL) is an area of machine
learning concerned with learning optimal sequential decision-
making. DRL is the combination of RL algorithms with
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neural networks (NNs) as function approximators, which is
the state-of-the-art approach for many problems requiring
complex decision making over long time horizons such as
game-playing [7], dexterous in-hand robotic manipulation [8],
and object manipulation [9]. It can handle continuous state and
action spaces, highly complex and nonlinear system dynamics,
and in general, does not require a model of the system to
be controlled. Furthermore, the online execution of an RL
controller is often very computationally efficient. This should
make DRL an enticing alternative for problems where accurate
identification of the system is difficult and traditional control
approaches are unable to yield sufficient control performance.
Despite this potential, DRL has yet to be widely adopted for
control and notably lacks demonstrations of control applica-
tions outside of simulations. One of the main contributing
factors to this is the lack of safety guarantees and the ability
to formulate operating constraints, both in the exploration and
exploitation phase, which is further complicated by the data-
intensive nature of DRL. We will in the rest of this paper use
RL to refer to DRL.

An approach to mitigate the challenges of RL for con-
trol is foregoing online exploration entirely and learning the
controller exclusively from historical data with no further
interaction with the system to be optimized, i.e. offline RL
[10]. The latter is a radical alteration of the RL problem
introducing new challenges and necessitating its own set of
learning algorithms. It could nevertheless be an important tool
in the future for problems such as control of UAVs — where
data collection carries a high risk and accurate modeling is
difficult. A more common approach is performing part of
or the whole exploration phase in a simulation of the target
system. A downside of this approach is that while RL in
principle is a model-free optimization framework, the success
of the transfer from the simulated environment to the real
target environment is highly affected by the accuracy of the
simulation model, the lack of which is referred to as the
reality gap in RL. One should therefore take great effort
in minimizing the reality gap through sim-to-real measures,
which aim at robustifying the learned controller and emulating
effects such as latency and measurement noise present in the
real control system. For a recent survey on sim-to-real methods
in the context of control and robotics, see [11].

For the sim-to-real learning approach to be useful for
practical flight control applications, controllers trained in sim-
ulation need to transfer well to control the real UAV. Before
attempting advanced problems like e.g. deep-stall landing, it
makes sense to first attempt simpler problems and identify
what factors are important for controllers to transfer well to
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Fig. 1. The Skywalker X8 fixed-wing aircraft in flight.

reality. In this paper, we consider the attitude control problem
of fixed-wing UAVs. Attitude refers to the orientation of the
aircraft, and control of the attitude constitutes the lowest level
of flight control deciding how the actuators of the UAV are
used to achieve the desired attitude as decided by the guidance
components of the control system. This work is a follow-up to
our previous work [12] in which we demonstrate the efficacy
of DRL for attitude control of fixed-wing UAVs in a simulator
environment. We now target control of the real UAV in the
field and develop a framework to learn attitude controllers with
a focus on data efficiency, yielding flightworthy controllers
with only minutes of learning time. Starting with a UAV
model obtained primarily through wind-tunnel experiments,
we adopt the method of exploring and learning in a simulator
environment and iteratively adjust the model and simulation
environment with insights from flight experiments. We ex-
tensively apply domain randomization and other sim-to-real
measures in order to reduce the reality gap. Moreover, the data
efficiency of our method limits overfitting to the simulation
model, such that the controller transfers better to the field,
and when combined with safe exploration measures the high
data efficiency could enable learning controllers entirely on
the real UAV in the field.

The literature on RL-based attitude control of UAVs is
dominated by quadcopters, and most works operate exclusively
in simulated environments [13, 14, 15, 16, 17]. When it comes
to works presenting real-world flight experiments we have
identified the following: [18, 19, 20, 21, 22, 23, 24]. Of these,
only [21], their follow-up work [22], and [23] use a fixed-
wing UAV design. [21] and [22] study the specific problem
of controlling a perched landing, [23] fixes the aircraft in
a wind-tunnel and limit themselves to controlling the pitch
of the UAV, while we study the attitude control problem
of an unconstrained vehicle in a 3D outdoor environment.
Moreover, the data requirement of their methods is on the
order of millions of samples. The other aforementioned works
also require millions of samples of data, with the notable
exception of [18]. Their method uses model-based RL and
involves learning a forward dynamics model that is used in
a Model Predictive Control (MPC) scheme which controls
the quadrotor. While this method is very sample efficient, the
MPC is too computationally complex to run aboard the UAV
and therefore necessitates continuous communication with an
external computer, while our controller can run on a fraction
of the computational power embedded in the UAV. For a more
general overview of the application of RL to UAVs see [25]

and the related works section of [12].
Other related control methods that have been proposed

for attitude control of fixed-wing UAVs include simple
proportional-integral-derivative (PID) loops [26], the linear
quadratic regulator (LQR) [27], adaptive dynamic program-
ming (ADP) [28, 29, 30], and MPC [31]. ADP is similarly
to RL a data-driven optimal control scheme. In the works
of [28, 29, 30], the cost function is assumed to have a
quadratic form and the optimal control law is derived from
the Hamilton–Jacobi–Bellman (HJB) equation, which is solved
numerically by approximating the cost-function using a value
iteration scheme. Of note is also MPC which has inherent
support for system constraints, multivariate objectives, high
interpretability, and the ability to incorporate domain knowl-
edge in the dynamics model. Motivated by these properties,
the authors of this work have developed an MPC controller
for simultaneous control of the UAV’s attitude and airspeed,
allowing the controller to consider the coupling between
pitch and airspeed dynamics (note that we have previously
demonstrated that RL is also capable of learning this coupled
control problem [12, 32]). Flight experiments with this MPC
were conducted using the same experimental platform as this
work, albeit with a more powerful processing unit. See [31]
for details and experimental results, as well as the discussion
in [33]. Due to the differences in control objective and
hardware platform, an in-depth comparison between MPC and
the RL controller is outside the scope of this paper.

The contributions and novelty of this paper can be summa-
rized as follows:
• To the best of our knowledge, this is the first work to

demonstrate through field experiments the efficacy of
RL for attitude control of fixed-wing UAVs, a class of
UAV design generally considered to be significantly more
complex to control than the multirotor which is common
in the literature.

• The proposed method improves upon the data efficiency
of the existing literature by at least an order of magnitude.
We show that our method can develop flightworthy con-
trollers with only 3 minutes of data from interaction with
the simulation environment, providing an important step
towards enabling the learning of RL controllers entirely
on the real UAV.

• We present an analysis of the RL controller in order to
better understand how it operates, including a comparison
to an industry-standard PID controller.

The rest of this paper is organized as follows: Section II
presents the RL framework used to optimize the controller.
Section III describes our method in detail and presents our
thoughts on what parameters are important for the learning
problem. Section IV presents the main experimental results
obtained in real flight, followed by a discussion and analysis
part in Section V. Finally, Section VI concludes with our
thoughts on the presented work and ideas for future research.

II. REINFORCEMENT LEARNING

The RL optimization framework consists of two main parts,
an environment that is to be controlled, and an agent that
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observes the state of the environment and selects actions to
maximize the rewards it receives. The environment is typically
described as a Markov decision process (MDP), which is
defined by a 5-tuple of components (S,A, T , R, γ): A set of
states, S, a set of actions available to the agent, A, a transition
function T (st, at) = st+1 which describe the evolution of
the states as a function of actions and previous states, a
reward function R(s, a) quantifying the utility of states and
accompanying actions, and finally, a discount factor γ ∈ [0, 1),
weighing the relative value of immediate and future rewards.

We consider in this paper the episodic finite-horizon for-
mulation of RL. An episode is a trajectory of states and
actions τ = (s0, a0, s1, a1, . . . , sT ) of maximum length T
with a distribution of initial states S0. The policy πϑ is a
parameterized function that maps states to actions, describing
the agent’s behaviour (analogous to a control law in control
terminology). The RL objective can then be stated as finding
the optimal parameters ϑ of the policy π∗ϑ that maximizes the
return G over the distribution of the initial conditions of the
episode:

G(τ) =

T∑
t=0

γtR(st, at) (1)

π∗ϑ = argmax
ϑ

Eτ∼T (S0,πϑ) [G(τ)] (2)

where ∼ signifies that the trajectories τ are sampled from
T (S0, πϑ), i.e. the distribution of trajectories given by the
transition dynamics T , the initial state distribution S0, and
the action-distribution of the policy πϑ.

Soft Actor Critic (SAC) [34] is an actor-critic algorithm
whose defining characteristic is its entropy-regularization,
meaning that it is jointly maximizing the expected rewards
as in (2) and maximizing the entropy of the policy:

π∗ϑ = argmax
ϑ

Eτ∼T (S0,πϑ)

[
T∑
t=0

γt (R(st, at) + χH(ϑ|st, at))

]
(3)

ϑnew = ϑold + η∇ϑJSAC(πϑ) (4)

where H(ϑ|s, a) = Ea∼πϑ(a|s) [− log πϑ(a|s)] is the en-
tropy, equal to the negative log probability of the action-
distribution of the policy in the state in question, χ is the
entropy coefficient, and (4) shows the gradient ascent scheme
used to arrive at the optimal policy in which η > 0 is the
learning rate and JSAC is the SAC objective function. For
brevity, we limit our discussion about SAC to the implemen-
tation of the policy and instead refer the reader to the original
paper [34] for details on the objective function. The policy is
implemented as follows:

πϑ(st) = tanh(µϑ(s) + σϑ(s)� ξ), ξ ∼ N (0, I) (5)

here, µϑ and σϑ are two parameterized deterministic func-
tions of the input, representing the mean and covariance of
the output, respectively. The notation � denotes element-
wise matrix-multiplication and ξ is independently sampled

Gaussian noise. The entropy can therefore be controlled in
a state-dependent manner through the σϑ function. Finally,
the output is saturated with the hyperbolic tangent function,
which squashes the Gaussian’s infinite support to the domain
[−1, 1], limiting the adverse effects of extreme noise values
and giving bounded outputs. During field experiments we set
σϑ = 0 as this tends to yield better performance and smoother
outputs [34].

III. METHOD

The control objective of the RL controller is to control the
attitude of the aircraft to the desired reference attitude. We use
standard aircraft nomenclature and coordinate systems [26],
as well as a roll-pitch-yaw Euler angle parameterization of
attitude. The heading/yaw angle is typically not controlled di-
rectly, but rather through banked-turn maneuvers [26]. There-
fore, the natural choice of controlled states are the roll angle
φ, and the pitch angle θ. We assume that the UAV is equipped
with control surfaces such that the roll and pitch angles are
controllable (an assumption that is satisfied by most UAV
designs). The Skywalker X8 seen in Fig. 1 is used in our
field experiments. It has two elevon control surfaces, one on
each wing, which can be driven together to produce a pitching
moment, or driven differentially to produce a rolling moment.
In addition, it has a propeller that can produce a thrust force
along the longitudinal axis of the UAV. In the simulation
environment, a PI-controller is used to control airspeed using
the propeller throttle [12].

As a general approach, we tested new ideas in the simulation
environment and made extensive use of sim-to-sim experi-
ments where we studied how the controller transferred from
simulation with one set of parameters to a simulation with
another set of parameters. We then tested the most promising
controllers in flight experiments in the field and adjusted our
approach based on the insight we gathered from the flight
experiments. The simulation environment software is made
open-source and is available at [35].

A. Controller Architecture and State Design

We identified in our previous work that limiting the state
vector to only the most useful information and reducing
redundancy is important for the rate of convergence, and to
prevent the controller from learning spurious relationships.
This has also been observed in other research [17]. At every
time step we measure the following information:

mt =
[
pt, qt, rt, αt, βt, Va,t, δr,t−1, δl,t−1,

Iφ,t, Iθ,t, φt, θt, eφ,t, eθ,t
]> (6)

I∗,t = γII∗,t−1 + e∗,t, γ
I = 0.99, I0 = 0, ∗ ∈ {φ, θ} (7)

where t is the time index, ωt = [pt, qt, rt]
> is the angular

velocity in the body-fixed frame, αt is the angle-of-attack, βt
is the sideslip-angle, Va,t is the airspeed, δ{r,l},t−1 represent
the previous output of the RL controller, in this case the
commanded deflection angles of the right and left elevons,
e∗,t = ∗t − ∗r,t is the state tracking error where subscript r
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denotes the state reference, I∗ is the integrator of the state
error and γI is the integrator decay rate. The integration
decay scheme follows [19], and facilitates boundedness of the
integrator state. Lastly, because NNs are known to converge
faster given normalized inputs, the measurements are normal-
ized using running estimates of mean and variance for each
component before being fed to the controller.

Due to unmeasured effects such as turbulence and the sim-
to-real measures described in Section III-D, the attitude control
problem is partially observable. Furthermore, to enable the
controller to adapt to the dynamics of the field experiments, we
wish to enhance the controller with the capability of inferring
the dynamics around the current state. A common approach to
achieve this effect is to use a recurrent neural network (RNN)
[23, 36]. However, we found that using a one-dimensional
convolution over the time dimension as the input layer yielded
similar control performance, and therefore prefer it since it is
significantly less complex than the RNN. We therefore include
the h last measurements (6) in the state vector, where m̂t

indicates a noisy measurement to be defined in Section III-D:

st = [m̂t, m̂t−1, . . . , m̂t−h]
> (8)

[δr,t, δl,t]
>

= πϑ(st) + [δr,trim, δl,trim]
> (9)

such that the total size of the state vector is |st| = |mt| · h.
The convolutional input layer scales favorably in number of
learned parameters compared to a fully-connected (FC) layer:
it scales linearly in |mt| as opposed to multiplicative for the FC
layer, and it is constant for h. The convolutional layers’ output
size is F ·|mt| where F is the number of learned convolutional
filters, and each filter has size h. The memory capacity of the
state vector can therefore be increased as required to give
sufficient history to infer the dynamics, with only a slight
increase in the number of parameters. Through a small grid
search using rate of learning and asymptotic performance as
metrics we found F = 8 and h = 10 to work well. The
complete RL controller architecture is shown in Fig. 2.

The output of the RL controller is the commanded states of
the controlled system’s actuators relative to the trim-point (9).
The nominal elevon deflection angles δr,trim = δl,trim = 0.045
are calculated using a standard trim routine for horizontal,
wings-level flight based on the model in Section III-C [26].
The target UAV for the field experiments, the Skywalker
X8, has elevon actuators and we therefore chose to have the
controller output the desired deflection angles of these directly,
in order to provide RL with as direct control as possible. This
choice is fairly arbitrary, however, and experiments showed
that outputting virtual elevator and aileron angles (the sum and
difference, respectively, of the elevon angles defined by (27)-
(28)) instead yield similar performance.

B. Reward and Objective Design

We found sparse rewards to yield better results than shaped
rewards, both in terms of rate of learning and in terms
of asymptotic performance. A sparse reward is one that is
nonzero only for some subset of the state space. It has
the benefit that it is easier to formulate than hand-crafted

Fig. 2. Architecture of the RL controller, superscript ∼ signifies normalized
states.

shaped rewards, and would therefore be more transferable to
other UAVs with fewer adjustments necessary. The reward is
formulated as follows:

R(st, at) = λφB(eφ,t) + λθB(eθ,t) + λφ̇B(φ̇t) + λθ̇B(θ̇t)

(10)

B(·) =

{
1 if |·| ≤ ·b

0 otherwise
(11)

ebφt
= 3◦, ebθt = 3◦, φ̇bt = 4.3◦/s, θ̇bt = 4.3◦/s (12)

λφ = 0.5, λθ = 0.5, λφ̇ = 0.167, λθ̇ = 0.167 (13)

where superscript b refers to the goal-bound on the variable
and the λs are weighting factors. This reward ensures that the
controller tracks the setpoints with accuracy as specified by the
bound, while the rewards on the derivatives of the controlled
states discourage high rates. Our method is not very sensitive
to the size of the bound, but generally larger bounds accelerate
learning at the expense of tracking accuracy.

When transferring from a simulator environment to the field,
it is important to consider how the actuation system impacts
the effects of actions. That is, while high-gain bang-bang
control may be an optimal strategy in the simulator, frequently
changing the setpoints of the actuators introduces considerable
wear due to the high currents generated as a result of the
switching. In our previous work [12] (and indeed in other
works [13]) this problem is addressed through a term in the
reward that discourages changing the setpoints. We now take
a different approach to this problem, using the conditioning
for action policy smoothness (CAPS) method [37]:

JTS(πϑ) = ||πϑ(st)− πϑ(st+1)||2 (14)

JSS(πϑ) = ||πϑ(st)− πϑ(ŝt)||2, ŝt ∼ N (st, 0.01) (15)

This method adds two regularization terms to the loss, a
temporal smoothness term (14) and a spatial smoothness term
(15). As the authors demonstrate, this method is more success-
ful in generating controllers that yield smooth control signals
compared to the action reward-term approach. Additionally,
removing the action term from the reward simplifies the prob-
lem of learning the action-value function since the reward now
contains fewer disparate parts, thereby accelerating learning.
Instead, the gradient ascent scheme calculating the parameter
updates is conditioned towards policies that are smooth in
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the output. Finally, we add a regularization term on the pre-
activation πPA

ϑ (that is, before applying the hyperbolic tangent
in (5)) of the output:

JPA(πϑ) = ||πPA
ϑ (st)||2 (16)

This helps in reducing the gain of the controller, especially
for small errors, as it essentially tells the controller that it
needs to have a strong benefit to move the actuators away from
the trim-point. Additionally, we find it accelerates learning
as the controller is biased towards non-aggressive control,
which in conjunction with hindsight experience replay (HER)
means the controller quickly discovers how to achieve the
sparse stabilizing objective. Thus, the objective we optimize
is defined as:

J(πϑ) = JSAC(πϑ) + λTSJTS(πϑ) + λSSJSS(πϑ) +

λPAJPA(πϑ)
(17)

λTS = 5 · 10−2, λSS = 10−1, λPA = 10−4 (18)

C. UAV Model

For the simulated environment, we use a model of the
Skywalker X8 UAV based on previous modeling efforts [38,
39, 40, 41]. The model structure is standard in the litera-
ture [26, 42] and is based on a single rigid body Newton-
Euler formulation affected by forces and moments due to
gravity, aerodynamics, and propulsion effects. An estimate
of the inertia matrix is provided in [41] based on bifilar
pendulum experiments. Results from wind-tunnel experiments
are provided in [38] for aerodynamic coefficients, and in [39]
for the propulsion system model. This data is complemented
by computational fluid dynamics (CFD) simulations from [38,
40]. For a more detailed description of the simulation model,
see our previous work in [12].

We collected a short data series to assess the quality of
the dynamic model. To excite the system dynamics, we used
the actuator signals from the baseline attitude controller and
perturbed them with chirp signals before mapping them to
the elevon deflections. The start and end frequencies of the
chirp signals were 8 Hz and 12 Hz, respectively. A dynamic
mode analysis of the model indicates that this is the dominant
frequency spectrum of the X8. The signal duration was 15
seconds and we used a peak-to-peak amplitude of 20 degrees.

The aerodynamic coefficients that are calculated based on
recorded sensor data and the inertia matrix of the vehicle
are shown in Fig. 3. Following [26], the coefficient subscript
L,D, Y, l,m, n denotes lift, drag, side force, roll moment,
pitch moment and yaw moment, respectively. These results
show that despite the modeling efforts, there are still signifi-
cant discrepancies between the predicted and measured data,
particularly in the pitching moment coefficient, Cm.

D. Sim-to-Real Measures

The main sim-to-real measure employed in the method is
domain randomization. As shown in Section III-C, there is
a significant reality gap, and as such we want to avoid the
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Fig. 3. The aerodynamic coefficients of the UAV in a longitudinal (top three)
and a lateral (bottom three) chirp signal test sequence for elevator and aileron,
respectively, based on IMU data (blue) and model prediction (orange).

RL controller overfitting to the simulation environment. The
intuition behind the domain randomization technique is that
learning over a distribution of possible UAV models should
robustify the controller. To this end, we assess the uncertainty
in the estimate of every parameter of the UAV model and use
this uncertainty to construct a probability distribution over its
range of probable values (see [35] for details). The coefficients
of the rate-dependent terms of the UAV model have larger
sampling ranges since these are not estimated based on wind
tunnel data but rather on uncertain CFD simulations [38]. The
sampled values are also clipped as indicated to avoid extreme
unrealistic values. At the start of every episode, we sample
a value for each parameter from its distribution, together
constituting one realization of the UAV model.

The UAV sensor suite is subject to noise in its measure-
ments. To model these, we first estimated the real hardware’s
noise characteristics, then we emulated this in the simulator
environment. We model the measurement noise as an Ornstein-
Uhlenbeck (OU) process (19), which in addition to white noise
gives rise to effects like measurement drift:

m̂t = mt + wt, wt ∼ OU(µm, σm, θm), µm = 0, θm = 1

σm = 0.005 · [1.5, 1.5, 1.5, 1, 1, 15, 0, 0, 0, 0, 1, 1, 0, 0]
> (19)

where µm, σm, θm are the mean, variance, and rate of mean-
reversion parameters of the measurement noise. Note that we
do not add noise to the error and integrator states, as these are
already affected by the noise in the measurement of the state
that is used to calculate the error, while the previous output
of the controller is by nature free of noise. The sensor suite
has an update rate of 50Hz, and we therefore chose this as the
control frequency as well. In the simulation environment we
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add exponentially distributed noise on top of the fixed control
frequency in order to simulate sensor timing-variability:

∆t = ∆0 + zt, zt ∼ Exp(κ), κ ∼ U(250, 1000) (20)

where ∆t is the simulation step size at step t, ∆0 = 0.02 s is
the base control frequency, and zt is exponentially distributed
noise whose parameter κ is drawn uniformly at the start of
every episode.

Although not strictly sim-to-real measures, the adjustments
to the RL objective described in Section III-B in the form
of CAPS and the pre-activation term also serve to improve
the transferability from simulation to reality, as they en-
courage less aggressive lower-gain control. Another major
effect present in the field is atmospheric disturbances such as
wind and turbulence. We model turbulence with the Dryden
turbulence model [26], and a steady wind component whose
direction and magnitude between 0 ms−1 and 15 ms−1 is
sampled at the start of each episode. The last effect we found
was highly impactful for successful transfer was the actuation
delay, i.e. the time it takes before the output of the controller
is applied to the system, a result which was also found in
[23]. The simulator contains a constant actuation delay of
100 ms, while we believe this is a significant overestimation
of the delay of the real system, we motivate this choice in
Section V-B.

E. Simulator Episode Design

The standard design of episodes for UAV control in the
literature seems to be short episodes with a single constant de-
sired attitude [13, 17]. We found that having constant setpoints
accelerates learning, however, the operation of the UAV in the
field typically sees the navigation system continuously update
the desired attitude. To align these considerations, we employ
fairly long episodes of length 900 steps (18 s) where setpoints
are kept constant but resampled every 150 steps. To ensure
sufficient diversity of the state trajectories and transitions used
to update the parameters of the RL controller, we sample
initial conditions as shown in Table I. Considering that the
main objective of the simulation environment is to ready the
controller for the field, we sample initial conditions mostly
from the linear region of the model, as this is where the UAV
model is assumed to have the most validity. Note that while
the range of initial conditions is somewhat limited, there is
nothing stopping the controller from exploring the full state
space. Furthermore, since the initial states of the actuators are
also randomized the sampled initial conditions could cause
instability, such that the controller must learn to recover.

F. Reinforcement Learning Algorithm

To develop the RL controller we use the SAC algorithm
and augment the collected data using HER [43], see [35]
for hyperparameters and code. We chose the SAC algorithm
because it is off-policy, and therefore has comparatively high
data efficiency among RL methods, and furthermore the policy
is explicitly trained to handle perturbations from the inherent
randomness, which tends to yield more robust policies that

TABLE I
INITIAL CONDITIONS FOR THE EPISODES ARE UNIFORMLY SAMPLED

FROM THE INDICATED RANGES.

Variable Range Unit Variable Range Unit

φ -40, 40 degrees φr -60, 60 degrees
θ -15, 15 degrees θr -25, 20 degrees
Va 13, 26 m/s α -8, 8 degrees
ω -60, 60 degrees β -10, 10 degrees
δr,l -30, 30 degrees

transfer better than non-entropy-regularized algorithms. Note
that we employ the technique of initializing the replay buffer
of the algorithm with 5k data samples (corresponding to 100
seconds of flight at 50Hz), which is a common technique in RL
to help the policy with the initial exploration phase. This data
is entirely independent of the learning controller being trained
and is obtained by uniformly sampling random actions from
the set of possible actions in the simulator environment. This
data could also stem from other sources such as historical data
gathered by a human pilot or another controller, which might
be more suitable when performing exploration exclusively
in the field. Since this data is independent of the learning
controller, we do not count it towards the data requirement of
our method and do not include it in the learning curve graphs.

G. Experimental Platform

Our custom avionics stack is based on the low-level con-
trol architecture developed at the NTNU UAV-lab [33]. It
consists of a Cube Orange flight controller running the (in-
dustry standard) ArduPlane open-source autopilot [44], and
a Raspberry Pi 4 running the DUNE Uniform Navigation
Environment [45]. During experiments, the total flight weight
of the Skywalker X8 is 3.8 kg.

The RL controller is implemented as a DUNE task in
C++ with the NN implemented in TensorFlow. Sensor data
and state estimates from ArduPlane are sent through a serial
connection to the Raspberry Pi, providing all necessary data
for the RL controller. The NN controller output is converted
to PWM duty cycle and sent to the elevon servos using
a PCA9685 servo driver, interfaced through I2C from the
Raspberry Pi. A PWM multiplexer supports switching between
the RL controller output and ArduPlane. This enables the
pilot to always take control during testing, either through
manual controls, or through ArduPlane’s standard autopilot.
This switching mechanism enables us to safely engage the RL
controller in flight, while takeoff and landing are performed
by the pilot operating our tried and tested avionics stack [46].

IV. EXPERIMENTAL RESULTS

This section presents the main experimental results, col-
lected during two days of flight experiments at Agdenes
Airfield, Breivika, Norway in September 2021. During the
first day, we enjoyed calm weather and perfect flight condi-
tions, with a mean wind speed (as estimated by ArduPlane’s
Kalman Filter) of less than 4 m s−1. The second day of flight
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tests, however, presented challenging weather conditions, with
frequent gusts and a mean wind speed of approximately
12.5 m s−1 (70% of the Skywalker X8’s cruise speed of
18 m s−1).

We present three types of data, differing mainly by how roll
and pitch angle references are provided:

1) References are given by the pilot, mimicking Ardu-
Plane’s fly-by-wire-A (fbwa) mode (Section IV-A).

2) References are provided by ArduPlane’s guidance sys-
tem, which is set to track a rectangular waypoint pattern
(Section IV-B).

3) References are set by a predefined, automated series
of steps (Section IV-C). Similar maneuvers are also
performed with an implementation of the ArduPlane PID
attitude controller, with the response compared to that
of the RL controller.

In contrast to the training phase, where the throttle actuator
used to control airspeed is operated by a PI controller (see [12]
for details), the throttle is either under manual control by the
pilot (fbwa) or controlled by ArduPlane (auto/steps). In figures
presenting flight results, the dashed orange line corresponds to
state reference, while in the elevon plots, the blue and orange
lines correspond to the right and left elevon, respectively, with
minimum and maximum deflections of −30◦ and +30◦.

A. FBWA Mode
Fig. 4 shows an excerpt from the flight experiments where

a human pilot decides the desired attitude of the UAV. The
RL controller is able to closely track the desired attitude
even for the most difficult and aggressive maneuvers, while
producing smooth outputs for the actuators. We do however
note a consistent steady-state error. Towards the end of the
maneuver, we observe that the roll response is non-symmetric,
that is, rolling to the left (towards negative roll angles) is
slower than rolling in the opposite direction. We investigate
and discuss this matter, as well as the steady-state error, in
Section V.
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Fig. 4. Fbwa mode using references (dashed orange line) from the pilot,
showing the attitude states and right (blue) and left (orange) elevon signals.

B. Auto mode
Fig. 5 shows the results for the RL controller operating with

references provided from the ArduPlane guidance system, set
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Fig. 5. Position plot showing how the RL controller is able to take references
from ArduPlane’s guidance system in Auto mode, and effectively follow
prescribed paths. First, a loiter, then a square waypoint pattern.

to track a square waypoint pattern. Before tracking the square,
the UAV loiters in a circular pattern for a while. Despite
some steady-state offset, especially for the roll angle error,
the UAV successfully completes the specified mission. This
is because the outer-loop guidance controller can compensate
for this error, and still achieve convergence when faced with
disturbances such as wind and offset in inner-loop control.
This is similar to how a pilot supplying manual references
would offset the references to keep the intended course.

During turns, a certain altitude drop is seen from the right
part of Fig. 5. This is caused by the aggressive turn radius
accompanied by drops in the pitch angle. This effect can be
reduced by tuning the guidance system to be less aggressive
(e.g. by increasing the turn radius) or reducing the maximum
allowable roll angle setpoint, which is set to be 55 degrees. A
similar drop in pitch angle is also seen when using the default
ArduPlane attitude controller.

C. Step sequences and Comparison with ArduPlane PIDs

Step responses for the RL controller, as well as the Ardu-
Plane PID controller, are displayed in Fig. 6. The RL controller
shows comparable transient performance to that of ArduPlane,
the main difference being the steady-state error of the RL con-
troller. Additionally, the pitch response of the PID controller
is slightly more aggressive. However, this could be changed
by tuning the controller.

The control signals generated by the RL controller are
relatively smooth and well-behaved but include some high-
frequency components not seen in the PID response. Apart
from that, the control input looks qualitatively similar, with
similar magnitude. For a quantitative comparison we employ
the smoothness metric defined in [37] which jointly considers
the amplitudes and frequencies of the control signals:

Sm =
2

nfs

n∑
i=1

Mifi (21)

where Mi is the amplitude of the i′th frequency component
fi, and fs is the sampling frequency. On this metric the PID
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measures at 6.20 · 10−4, 6.30 · 10−4 for the roll and pitch
maneuvers in Fig. 6, respectively, while RL measures 2% and
44% higher at 6.30 · 10−4, 9.05 · 10−4. This metric shows that
RL has comparable smoothness in its output with the PID
controller, but also indicates the higher frequency components
of the RL controller’s output in Fig. 6. It is not clear why
there is such a discrepancy between the two maneuvers for
the RL controller, but this data is as mentioned subjected
to considerable turbulence and wind, and could therefore be
caused by transient gusts.

While the former results were gathered on a calm day
with virtually no wind, these maneuvers are executed in harsh
wind conditions on day two. The UAV also suffered structural
damage (not while under RL control) after collecting the PID
data, before redoing the experiments with RL. The vehicle
had to be repaired with a new wing and duct tape, causing a
change in the UAV’s trim point. Thus, the presented results
demonstrate the RL controller’s robustness towards model
mismatch and varying wind conditions, including heavy gusts.

To achieve a fair comparison, the ArduPlane PID is im-
plemented in the same software stack and ran with the same
hardware architecture as the RL controller (described in Sec-
tion III-G). In particular, this means that any increased signal
latency introduced in our setup does not affect the comparison.

V. DISCUSSION

The experimental results of Section IV show that the RL
controller performs well compared to a state-of-the-art open-
source autopilot, and is robust to disturbances caused by
harsh wind conditions. The control performance of the RL
controller across the various flight modes speaks to its ability
to generalize further than just the maneuvers encountered
during training. In particular, no guidance controller was
present during training.

Despite the promising results, there is room for improve-
ment. In this section, we further discuss how performance can
be improved, the iterative development process, and training,
and we perform a linear analysis to gain further insight into
the behavior of the RL controller.

As noted in Section IV-A, the roll response of the RL
controller is non-symmetric, meaning that rolling towards
the left wing is slower than rolling to the right. This is
supported by the pilot’s qualitative assessment during flight.
We found that this effect was caused by an overestimation of
the simulated propeller torque, which was found to be less
prominent on the physical UAV than expected, presumably
due to the mechanical mounting of the propeller. This causes
a bias in the RL controller, which has learned to counteract
the propeller torque. To remedy this, we trained a new RL
controller in a simulation model without propeller torque,
which was briefly tested in the field to verify our hypothesis.
The new controller exhibited a more symmetric roll response,
as expected.

A. Steady-State Errors
We experimented with several techniques in order to address

the steady-state error of the RL controller observed in flight ex-
periments: pure integrator (no decay), higher decay factor (e.g.

0.999), having integration separate from the NN controller
with learned integration gains, shaped rewards, and training
with input disturbances. Whereas some of these measures
reduced the steady-state error to some degree, none were
successful in entirely eliminating it.

We note that there is no consistent steady-state error in the
simulator in the same way we observe in field experiments,
i.e. consistently over or under the reference with a consistent
magnitude. The controller has learned to use integral action to
reduce steady-state error from disturbances in the simulator,
but not in a way that transfers to the field. This could be
because the controller is overfitting to the simulator, thus the
larger tracking errors in the field combined with the hyperbolic
tangent saturating functions of the NN causes the integrator
states’ effect on the output to saturate prematurely.

An effective way to address this problem is to estimate
the steady-state error and then add the estimated value to
the references provided to the RL controller, as was done in
the flight experiment shown in Fig. 7. As can be seen, this
simple technique can fully compensate for the steady-state
error and may also be automated using an integrator in an
outer loop to estimate the steady-state error [47]. Furthermore,
there are compelling arguments for not having integral action
in the inner-loop attitude controller, as adding integral action
to the controller necessarily reduces the phase margins and the
achievable bandwidth [26].

B. Oscillations: Illustration of Iterative Development

Initial field experiments were characterized by excessive
oscillations in the attitude response of the UAV, especially
in pitch, necessitating halving the RL controller’s outputs in
order to keep the aircraft airborne. These oscillations were
not present in the simulator, as such, we suspected that this
was (at least in part) caused by the simulator overestimating
the natural damping present in the aircraft. Therefore, we
reduced the Cmq

(pitch damping) parameter by a factor of
10. While this reduced the oscillations somewhat, there were
still significant oscillations in the response, see Fig. 8.

We estimated a typical actuation latency for the system
of 10 ms−1. In sim-to-sim experiments, where we raised the
latency of the control system during the exploitation phase of
a controller trained with 10 ms−1 latency, we observed similar
oscillatory responses as in the flight experiments and noted its
relationship with increasing latency. We then trained an RL
controller where the latency was set to 100 ms−1 during the
learning phase. This controller trained with higher latency al-
most entirely eliminated the oscillations to the levels shown in
the field experiment figures. Favoring robust controller design,
we increased the base latency of the simulation environment
to 100 ms−1, even though we believe that this is a significant
overestimation of the true latency of the real system.

C. Linear Analysis

In order to better understand how the RL attitude controller
operates, we analyze its sensitivity to the input variables. In
Fig. 9 we have plotted the open-loop response of the controller
as a function of a single perturbed input. The rest of the state
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Fig. 6. Comparison between the RL controller and the ArduPlane PID controller for steps in the roll (top) and pitch (bottom) references (dashed orange line).
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Fig. 7. Response of the RL controller where the steady-state error has been
estimated and references (dashed orange line) adjusted to compensate.

vector is kept constant at the steady-flight value, i.e. zero for
all variables except the airspeed Va which is set to the cruising
speed of 18 m s−1, and the angle-of-attack α and pitch angle θ,
which are kept at the trim values necessary to generate lift for
level flight, while the input values for previous time steps are
kept constant in the time dimension. To be able to compare
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Fig. 8. Oscillatory attitude response of initial flight experiments, for one
controller trained with original (left) and one with reduced (right) Cmq .

the results with ArduPlane, we translate the elevon outputs
into virtual elevator and aileron commands using the inverse
of (27)-(28). The figures and tables are presented in terms of
these virtual commands, which also have a more intuitive and
straightforward effect on the roll and pitch angles.
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TABLE II
LINEARLY APPROXIMATED GAINS AT LEVEL-FLIGHT, WHERE EACH INPUT

IS PERTURBED IN ISOLATION.

Controller
∂δa

∂eφ

∂δe

∂eθ

∂δa

∂Iφ

∂δe

∂Iθ

∂δa

∂p

∂δe

∂q

RL 1.268 -3.320 -0.005 0.006 -0.008 0.223
PID 1.630 -1.081 0.052 -0.052 -0.024 0.031

The saturating effect of the hyperbolic tangent nonlinearity
on the RL controller is distinctly present in the responses. This
is a desired effect as we know that any input should have a
bounded effect on the output, which gives robustness towards
possible measurement errors or misalignment of the dynamics
of the simulation and real environments. The controller makes
use of all its inputs, with the previous outputs of the controller
having the most significance for the current output (the typical
values for most states in Fig. 9 are close to the level-flight
value in the center and will thus use a limited range of the
response curve, while the previous output of the controller
frequently employs the full range). This makes sense as the
controller is conditioned towards smooth outputs, as described
in Section III-B, which means that a reasonable initial guess
of any action is to be similar to the previous action. Moreover,
the fact that the previous output (left and right elevons)
do not have a symmetric effect on the subsequent output
(there is no mechanism enforcing symmetry in the learning
controller) could be a motivating factor to instead employ
(virtual) elevator and aileron as outputs of the RL controller.

Since the control authority of the actuators increases with
airspeed, we investigated if the RL controller has learned to
scale its outputs depending on airspeed, an effect that is in-
cluded in the ArduPlane controller. With no further documen-
tation (due to space constraints), we state that this is not the
case. However, it has learned to bias the response, essentially
shifting the curves in Fig. 9 up, as airspeed increases in order
to compensate for the change in trim-point with airspeed.

To estimate sensitivities wrt. an input we take a linear
approximation of its response curve by using the slope of
the tangent line at level-flight conditions. The result is shown
in Table II, and compared to the ArduPlane PID controller
gains (see Appendix A). The RL controller is noticeably more
aggressive in the pitch error, while simultaneously introducing
more damping through the angular velocity component q.
This is evident in Fig. 6 where the RL controller exhibits
less oscillation in the pitch response. The estimated gains for
the integrator states in Table II are not representative of the
response curves for these states, as the response curve exhibits
cubic characteristics with a small opposing region around the
level-flight value. Thus, for these states, a linear approximation
over a larger region would be more descriptive. Overall, the
gains of the RL controller are similar to those of the PID
controller, which increases the trust in the RL controller. On
the other hand, the dynamic aspect caused by integral states
and data from previous time steps increases the complexity of
the analysis and thus limits the conclusions that can be drawn
from it.
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Fig. 9. Open-loop level-flight response of the RL controller when perturbing
one input at a time. The x-axis is in the units of the corresponding state. The
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D. Data Requirements
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Fig. 10. The learning phase of the proposed RL controller, showing nor-
malized mean episode reward and error-proportional gains. The solid line
represents a rolling average mean value while the shaded region represents one
standard deviation over three randomly seeded controllers. Base refers to the
method as presented in Section III, the FC version replaces the convolutional
layer with an FC layer, and the h1 version has no history in the input.

In this section, we attempt to quantify the data efficiency
of our method. We start by presenting the learning phase of
the controller in the simulation environment (Fig. 10), demon-
strating that our method produces proficient controllers with a
number of data samples on the order of 10s of thousands, and
then demonstrate that the learning controllers are flight-worthy
in the field after experiencing only three minutes of real-
time flight data (Fig. 11). It is difficult to compare this result
directly to the existing literature, for reasons outlined in the
literature review of Section I, that is, no other reported work
study the full attitude control problem of fixed-wing UAVs
using RL. Other works study either a limited version of the
attitude control problem, or consider other aircraft designs (e.g.
quadcopters) whose dynamics are more linear and controllable
than the dynamics of a fixed-wing UAV. Nonetheless, works in
the existing literature report a data requirement on the order
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Fig. 11. An RL controller that has trained for only 3 minutes of real-time
flight in the simulation environment is airworthy, able to track references
(dashed orange line) reasonably well.

of 100s of thousands or millions of data samples, meaning
our result presents a significant improvement in terms of data
efficiency. Further, we would argue that this improvement in
data efficiency is significant because it suggests that learning
the controller entirely in the real world (i.e. no simulation
required) is possible. Collecting data for a few minutes of
flight seems reasonably achievable through some form of safe
exploration or guided learning where, for instance, the learning
controller is monitored by a pilot or other proficient controller
that can assume control should dangerous situations arise.

The evolution of the learning phase for the RL controller
as a function of time steps is shown in Fig. 10. For every
version in Fig. 10, we train three controllers each with a
different initial random seed and average the results over the
controllers. The rewards are normalized so that 1 corresponds
to attaining the maximum reward as defined in (10) at every
step (although this is not physically achievable) and 0 corre-
sponds to obtaining no rewards at all. Base refers to the RL
controller as presented in Section III that was used in the field
experiments. To assess the contribution of the convolutional
input layer, we trained one version where the input layer is
replaced with an FC layer, and further to test the importance
of the history of states in the state vector we train one model
with an FC input layer and with h = 1 (labeled FCh1).

The base version learns fast, reaching convergent perfor-
mance after around 40k time steps. This corresponds to about
13 minutes of real-time flight or 16 minutes of wall-clock
training time when trained entirely on an i7-9700 Intel CPU
with a single data-generating-agent in the simulator1. We
verified in the field that the RL controller is flightworthy
long before this point: The controller shown in Figure 11
exhibits decent and stable performance (although unable to
follow the most aggressive maneuvers) after only 10k time
steps of training in the simulator (corresponding to three
minutes of real-time flight). We conjecture that the data
efficiency of our method limits overfitting to the simulation

1Note that the wall-clock training time can essentially be made arbitrarily
short with parallelization of more agents and more powerful computing
hardware

environment and therefore transfers better to the field, although
this statement requires further evidence such as a bench of
learning controllers with varying time in simulation to verify.

We find that our training method is stable in the sense that
the performance differences between controllers with different
seeds are small, within a few percent. The FCh1 version
without state history is never able to learn to consistently
stabilize the UAV at the desired attitude in the time frames we
considered. The FC version with state history on the other hand
achieves comparable rewards to the base version, showing the
importance of history in the RL input state. The base version
reaches peak performance slightly faster than the FC version,
and further its proportional gains are considerably lower. This
is also evidenced by the smoothness metric (21) for which the
base version scores 50% lower than the FC version. The lower
gains and the smoothness metric indicate that the convolutional
input layer provides a superior ability to predict the system
response and thus provide smoother responses in attitude and
control signals, while the FC version is more reactive and
oscillatory.

VI. CONCLUSION

This paper has presented a data-efficient method for learn-
ing attitude controllers for fixed wing UAVs using RL. The
learning controller is able to operate directly on the nonlinear
dynamics, and therefore could extend the flight envelope
and capabilities of autopilots. The high data efficiency of
the presented method facilitates transfer to control of the
real UAV by limiting overfitting to the simulated model.
We demonstrate that the learned controller has comparable
performance to the existing state-of-the-art ArduPlane PID
autopilot, and is capable of tracking prescribed paths from
a guidance system while generating smooth actuation signals
and attitude responses. Key factors behind the success of the
method were robustifying the controller through increasing its
phase margins by learning with significant actuation delay and
diversifying the simulated dynamics, as well as incentivizing
non-aggressive control through sparse rewards and additional
objective terms enforcing temporal and spatial smoothness in
the controller outputs.

Further work in this direction should investigate if RL
solutions to more complex flight control problems also transfer
well to the field, e.g. deep-stall landings or end-to-end path
following. The problem of limited integral action should also
be further investigated. Moreover, learning from real data, be it
historical or generated online by the learning controller, is an
intriguing research direction that would alleviate the need for
accurate nonlinear models. The data efficiency of our method
shows that this should in fact be feasible.
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APPENDIX A
THE ARDUPLANE ATTITUDE CONTROLLER

This section presents the main equations used for attitude
control in ArduPlane [44], which is a state-of-the-art open-
source autopilot for fixed-wing UAVs. This controller is used
as a baseline to compare the RL controller against and to
support the discussion in Section V-C. The equations are based
on ArduPlane, Release 4.0.9, which is the most recent stable
release (as of August 2021).

The ArduPlane attitude controller consists of two cascaded
single-input-single-output (SISO) feedback loops. The elevator
controls pitch angle, while the ailerons are used for roll
control. The outer loop consists of proportional controllers,
where desired roll and pitch rates pr, qr ∈ R are calculated
according to

pr = kφ (φr − φ) (22)
qr = kθ (θr − θ) + qct, (23)

where kφ, kθ > 0 and qct is the pitch rate offset needed to
maintain a constant pitch angle during coordinated turns, given
by

qct = sin(φ) cos(θ)
g

Va
tan(φ). (24)

The rate setpoints are inputs to the inner loop, which con-
sists of proportional-integral (PI) controllers with feedforward

https://github.com/eivindeb/rluav
https://github.com/eivindeb/rluav
https://ardupilot.org/
https://ardupilot.org/
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action:

δa = kp,pν
2 (pr − p) +

∫ t

0

ki,pν
2 (pr − p) dτ + kff,pνpr

(25)

δe = −kp,qν2 (qr − q)−
∫ t

0

ki,qν
2 (qr − q) dτ − kff,qνqr,

(26)

where kp,∗, kki,∗ and kff,∗ are proportional, integral and
feedforward gains, respectively. The variable ν = V ∗/Va,
where V ∗ is some constant reference airspeed, provides air-
speed scaling of the controller parameters, accounting for the
fact that larger airspeeds give greater aerodynamic control
authority. The negative sign in the control law for δe is
introduced to account for the convention that positive elevator
deflections yield a negative pitch moment [26].

For UAVs equipped with a rudder, additional control loops
utilize the extra control surface for turn coordination. However,
as the Skywalker X8 considered in this paper is rudderless, this
part of the control algorithm is not relevant here.

For an elevon plane like the Skywalker X8, the aileron and
elevator deflection angles are virtual control signals that are
mapped to elevon control actions using the linear map

δl = δe + δa (27)
δr = δe − δa. (28)

By assuming a constant airspeed Va = 18 m s−1 and
inserting parameters used for the Skywalker X8 UAV at the
NTNU UAV-lab, we get the following sensitivities for the
elevator and aileron control signals:

∂δe
∂eθ

∣∣∣∣
θ=φ=0

= −1.0813
∂δa
∂eφ

= 1.6299 (29)

∂δe
∂q

∣∣∣∣
θ=φ=0

= 0.0312
∂δa
∂p

= −0.0243 (30)

∂δe
∂Iθ

∣∣∣∣
θ=φ=0

= −0.0521
∂δa
∂Iφ

= 0.0521 (31)

∂δe
∂θ

∣∣∣∣
θ=φ=0

= 0.0104
∂δa
∂φ

= −0.0104, (32)

where Iφ =
∫ t
0
eφdτ and Iθ =

∫ t
0
eθdτ correspond to the

(unbounded) integrator states of the RL controller.


	Introduction
	Reinforcement Learning
	Method
	Controller Architecture and State Design
	Reward and Objective Design
	UAV Model
	Sim-to-Real Measures
	Simulator Episode Design
	Reinforcement Learning Algorithm
	Experimental Platform

	Experimental Results
	FBWA Mode
	Auto mode
	Step sequences and Comparison with ArduPlane PIDs

	Discussion
	Steady-State Errors
	Oscillations: Illustration of Iterative Development
	Linear Analysis
	Data Requirements

	Conclusion
	Appendix A: The ArduPlane Attitude Controller

