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Abstract

Being able to tailor the thermal properties of a material for a specific application
is a widely desired technological feature. Thermal conductivity (TC), in partic-
ular, measures the ability of a material to conduct or transport heat, and it is
considered an intensive property of the material. Despite the enormous implic-
ations, the thermal transport process is not fully understood yet. Furthermore,
many theoretical and experimental works have reported for quasi-1-dimensional
(1D) objects, an anomalous strong dependence of the thermal conductivity on
the system size, breaking the intensive character of this thermal property. In this
work, I have studied the effect of dimensionality on Graphene. The unusually high
thermal conductivity of Graphene in certain conditions gives it a huge potential
for technological application. In this thesis, I address the dimensionality effect of
Graphene by means of molecular dynamics simulations using the "approach to
equilibrium molecular dynamics" (AEMD) technique. My simulations have been
able to reproduce the data from a reference paper, and have shown that, accord-
ing to some other theoretical and experimental findings, the TC depends on the
shape of the edge-configuration if we reduce the width of the 2D graphene sample
to a quasi-1D object. In general, the TC for graphene low dimensional systems,
such as ribbons, decreases respect to the value measured for the bulk Graphene.
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Sammendrag

Å kunne designe materialer slik at de får optimale termiske egenskaper er svært et-
tertraktet innen mange teknologiske fagfelt. Termisk konduksjon, også kalt varmeled-
ningsevne, er en intensiv egenskap ved et materie, og utnyttes aktivt i mange mo-
derne teknologiske produkter, som for eksmpel i smarttelefoner. Fremskritt innen
varmeledning har store konsekvenser. Tross dette, er ikke termisk konduksjon et
ferdig utviklet fagfelt.

Spessielt når man beveger seg ned mot nano nivå og studerer kvasi-en-dimensjonale
(1D) objekter, blir det klassisket bildet av termisk konduksjon som en intensiv
egenskap, utfordret. Dette fordi varmeledningsevnen til slike objekter ser ut til å
uventet sterkt koblet til systemet størrelse, noe som bryter med at ideen om at det
er en utelukket intensiv egenskap.

I denne masteroppgaven har brukt "Molecular-Dynamics" og en metode some
heter "Approach to Equilibrium Method" til å simulere tynne strimler med grafen
for å finne ut hvor fort de leder varme. Jeg har har studert strimler som har mel-
lom 1 og 9 heksagonale karbon strukturer i bredden. Dette er interssant å utfor-
ske fordi andre målinger av de termiske egenskapene til grafen har vist at dette
materialet har et enormt potensiale til å lede varme. Å kunne utnyttet dette po-
tensiale til det fulle vil kreve mere forskning, og mine arbeider inngår i den videre
kartlegging av hvordan grafen leder varme. Gjennom simuleringene i denne opp-
gaven har jeg klart å gjenskape data fra en referanseartikkel, noe som gir meg en
bekreftelse på at jeg har forstått og implementert metodene jeg bruker korrekt.
Funnen mine peker mot at den termiske konduksjonen i grafen strimler avhenger
av hvordan kanten på lengdreretningen til strimlene ser ut. Generelt er resultatene
for varmeledningsevnen til strimlene lavere enn resultatene for større segmenter
undersøkt i andres arbeider.

Arbeidet har blitt veiledet av Raffaela Cabriolu.
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Chapter 1

Introduction and Background

This chapter gives a brief overview and motivation for the scientific topic I have
explored in my master’s thesis work. Objectives and a description of this thesis are
also included.

1.1 Introduction

Thermal conductivity (TC) is the physical property that measures the rate of heat
transfer through a material by conduction or diffusion process, and, it is one of
the most difficult properties to measure, either experimentally or by computation.
Understanding and manipulating TC is crucial for optimizing performance, effi-
ciency, and overall energy usage in industries and everyday life. Indeed thermal
management of small electronics equipment (i.e. mobile phones laptops, house
appliances, etc..), heat exchange in industrial systems (i.e. chemical, automot-
ive, aerospace industries, etc ...), and insulation in buildings are only a few ex-
amples that testify to the importance of the topic in today’s global climate crisis
solutions for which the minimization of carbon emissions requires the reduction
of abnormal energy consumption and heat waste.[1] Depending on the applica-
tions in mind, high or low-thermal conductivity materials are desirable to move
or block heat. Solid-state lighting, transistors, high-performance optical devices,
batteries, energy storage, and carbon-capture materials require high thermal con-
ductivity to quickly and efficiently dissipate heat that could otherwise damage the
device or impair important physical processes and reactions. On the other hand,
low thermal conductivity materials are widely needed to build thermal coatings
for gas turbine systems, for thermoelectric devices, and to minimize heat transfer
across heat pumps, refrigerators, and air conditioning.[2] Thermal conductivity is
defined by the phenomenological Fourier’s law (section 2) of heat conduction, and
is an intrinsic property of the material, however, for systems with lower dimen-
sions, a surprisingly anomalous thermal conductivity that depends on the sample
size is observed.[3]

Graphene is a two-dimensional (2D) material with extraordinary optical, mech-
anical, chemical, electrical, and thermal conductivity qualities, and it is one of

1



Chapter 1: Introduction and Background 2

the most investigated materials in the previous decades.[4] Since the first time
freestanding graphene was successfully synthesized with the exfoliation or "stick
and pencil method", [5] graphene is used in electronics, energy storage, sensors
coatings, composites for solar cells, biomedical devices and many other. Its high
surface area and biocompatibility make it attractive also as a material for drug
delivery and tissue engineering applications. Graphene has an exceptionally high
thermal conductivity, that has been measured to reach up to 4000W m−1K−1 in
certain conditions.[4] Furthermore, its discovery provided also the possibility to
study experimentally the heat transport in low-dimension systems. As expected
by theoretical predictions, reduced dimensionality systems display very differ-
ent thermal transport behavior compared to the three-dimensional bulk coun-
terpart.[3] Indeed, in a non-metallic system the carriers of heat are phonons,
i.e. quantized lattice vibrations, of which their density is deeply affected by the
symmetry and dimensionality of the system. Furthermore, another signature of
thermal conductivity appears also in quasi-one-dimensional systems, for which a
diverging thermal conductivity is observed.

In this thesis, I have calculated the thermal conductivity of an initial Graphene
sample using the Approach to Equilibrium Molecular Dynamics technique,[6, 7]
and compared my results with data coming from previous literature,[8]. In the
second part of the thesis, I studied the effect of dimensionality on the thermal
conductivity progressively reducing one dimension until the 2D sample would
have reached the quasi-1D system configurations. The results are comparable with
previous literature and findings.

1.2 Motivation of the work

This section contains the main aim and a list with a short description of the ob-
jectives I intended to reach with this master thesis.
The main aim of this study was the investigation of the size effect on the TC of
Graphene. To reach my main aim I have divided my work in different objectives:

• Objective 1: Implementation of AEMD in LAMMPS. To be able to calculate the
thermal conductivity, I had to get acquainted with the Approach to Equilib-
rium Molecular Dynamics (AEMD) method in the LAMMPS MD engine. This
step has not been easy because it contained a series of no trivial subsets. I
have created by myself the Graphene samples and I have implemented the
input files in LAMMPS with the AIREBO potential. After those preliminary
tests and an understanding of the thermal conductivity theoretical back-
ground, I have also implemented the AEMD algorithm in LAMMPS.
• Objective 2: Reproducing MD literature data. I have dedicated a few months

to testing the computation of the TC and finally, I have been able to repro-
duce the value of the Thermal conductivity in the paper by Barbarino et al.
[8]. This step was quite long but give me the confidence that my LAMMPS
input file and the post-processing programs were correct.
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• Objective 3: Production work for the thesis. Finally, I have dedicated most of
my thesis time to performing the core simulation experiments of my thesis.
I have considered an initial Graphene sample with dimension 2030nm ×
2.2nm and decreased the thickness of the 2D initial configuration to create
thinner and thinner samples until I have reached the quasi-1D sample.

1.3 Description of my master thesis

This master project focuses on the investigation of the size effect on the thermal
conductivity considering a 2D layer of Graphene that has been progressively re-
duced to a quasi-1D object stripping the layers of chains from it. This report is
organized as follows: Chapter 1 gives an introduction to this work, outlines the
motivation for it and describes its composition; Chapter 2 presents an introduction
to molecular simulation and the scientific topic; Chapter 3 briefly introduces the
chosen computational method, Molecular Dynamics (MD), and the computational
technique to calculate the TC, i.e. Approach to Equilibrium MD (AEMD), together
with descriptions of some of the challenges, and how I chose to overcome them;
Chapter 4 presents my results compared to the ones of the original papers, and,
the calculation of TC for Graphene and for the quasi-1D sample; Finally, Chapter
5 outlines the conclusions of this thesis.



Chapter 2

Theoretical and Scientific
Background

In the past decades, there has been an incredible fast progress in the design, man-
ufacturing and applications of different electronic device. However, still there is
a lack of theoretically understanding and predicting of how those devices trans-
fer heat, and this impedes the optimal exploitation of them. The main challenge
to understand thermal transport in dielectrics, for example, is due to the fact that
different length and time scales are involved in the process. Indeed, is well known
that the thermal transport in dielectrics is due to "quantized lattice vibrations" or
phonon, while the experiments are conducted in the real space and at the macro-
scale. Therefore, a comprehensive model for those materials would need to refer
to a phonon space (atomistic scale), and, at the same time, to the real space of ex-
periments performed at the macroscopic scale. My thesis concerns thermal trans-
port in low-dimensional materials, such as Graphene. In this chapter, I will briefly
outline the basics of thermal transport conduction in dielectrics that are needed
to investigate the topic of thermal transport in low-dimension materials.

2.1 Heat Transport

Heat is the flow of energy transferred from hot to cold regions in agreement with
the second law of thermodynamics, and by three different processes; radiation,
convection and conduction. With thermal radiation scientists indicate the thermal
energy transferred through electromagnetic waves. Convection instead refers to
the transfer of heat through masses of fluids, i.e. liquid or gas, that moving trans-
fer heat from the different regions. Conduction is the thermal energy being trans-
ferred by the interchanging of kinetic energy between atoms and molecules by
direct contact, and, it requires a medium/matter to happen. Since temperature
at any point is related to the kinetic energy of the particles, the exchange of kin-
etic energy will lead to a transfer of heat between them. In addition, temperature
also affects the translational, rotational and vibrational motion of the atoms and
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molecules [9].
The theory of heat transfer by conduction was first published by Joseph Fourier

in 1822, and it is based on the the following empirical formula:

q⃗ = −k∇T (2.1)

This equation states that the heat flux due to conduction, q⃗, is proportional to
the gradient of the temperature applied to the sample, ∇T , and opposite to it in
sign [10]. The constant of proportionality, k, is called thermal conductivity and it
is a second order tensor. The heat flux, q⃗, or rate of flow per unit area is measured
in S.I. as W/m2, and, for a cubic isotropic material has components:

qx = −kx x
dT
d x

, qy = −ky y
dT
d y

, qz = −kzz
dT
dz

(2.2)

In an isotropic material kx x = ky y = kzz , and the off diagonal components of
the k tensor are approximately null, therefore the thermal conductivity reduces
to a scalar, k, measured in S.I. as W/(mK). However, in a crystal structure with
different axis of symmetry the thermal conductivity depends on the direction to
which the thermal gradient is applied to. Since variations in the internal structure
affects the diffusion of heat, also the temperature and pressure in a material affects
k. Solid materials with a lattice structure often display only small variations in k
over temperature ranges of hundreds of kelvin, however there are differences
between materials. A material like platinum has ∆k < 10W/(mK) over a span
from −200◦C to +1000◦C , while a material like brass will double its thermal
diffusivity from −200◦C to +200◦C [10].

It is interesting to understand how the empirical macroscopic theory of Four-
ier reconciles with the an atomistic model of crystal. Heat transport by conduction
happens through electrons, photons, phonons, atoms, or molecules. Specifically
in the case of electrical insulators materials, or dielectrics, such as graphene, the
electronic and photonic contributions can be neglected at low temperature and
the phonon contributions dominates the TC. In solid-state physics, the harmonic
theory of crystal approximates the lattice as a coupled mass and spring system,
following the main assumptions that the mean equilibrium positions of each atom
are the Bravais lattice site and that the displacements of atoms from their equi-
librium positions are small compared with the interionic spacing. The harmonic
approximation is the starting point for all the theories of lattice dynamics arguing
that thermal energy can be stored as excited vibrational normal modes of the
crystal, i.e. phonons [11]. However, the harmonic theory is exact only a zero tem-
perature, therefore cannot describe heat transport, that, according to Fourier’s
Law depends on the gradient of the Temperature. Anharmonicity, or higher-order
terms in the harmonic approximation of lattice must be considered for the heat
transfer to happen by diffusion process. Indeed, in this picture, heat transport by
conduction in dielectrics happens because of different "scattering" mechanisms
among phonons instead of the simple picture of a phonon that ballistically cross
the sample with a straight path without deflections. Three different scattering
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mechanisms are suggested [12], phonon-phonon scattering, phonon-defect scat-
tering and phonon-boundary scattering. The random nature of the conductivity
is described by the temperature gradient, in the Fourier’s law, and, from that law,
it is easy to recover the Debye expression on the thermal conductivity for cubic
materials:

k =
1
3

∫
Cv(ω)v(ω)l(ω)dω (2.3)

where Cv is the phonon heat capacity per unit volume, v is the phonon group
velocity, and l represents the mean free path of the phonon. In the above formula,
the "scalar" thermal conductivity is obtained by summing over each vibration fre-
quency ω. The above formula also assesses the importance of the average mean
free path of phonons, which is described as the distance over which a phonon
travels before the consecutive scattering. To have the intrinsic bulk thermal con-
ductivity, the dimension of the investigated sample must be such to include the av-
erage mean free path of the phonons and avoid an underestimation of the thermal
conductivity. The discussion up to now refers to thermal transport in dielectric
three-dimensional crystals, and, a part of the phonon particle nature, it is mainly
a classical picture. This picture is not valid for all the materials, and over the years,
many alternatives have been suggested to include quantum effects into the picture
[13], however, the transport process is not fully understood and cannot be easily
predicted for all the materials. The intrinsic character of the thermal conductivity,
for example, seems to vanish for low-dimensional materials, such as Graphene
and quasi-1D materials.

2.1.1 Methods to measure Thermal conductivity

Measuring TC has its own intrinsic limitations, especially for crystal insulators,
for which the process, is dominated by phonon scattering. The challenges are
different depending if you use experimental, theoretical or modelling methods.
In this section, I will outline the experimental, theoretical and, only briefly, the
modelling methods. I will treat in details the modelling methods in Chapter 3.

Experiments

Traditionally, direct experimental techniques [3, 10, 14] are based on the applic-
ation of the Fourier law for 1-dimensional system and consist of establishing a
steady-state heat flux through the sample connected from one side to a heat sink
and from the other one to a heat source, see sketch in figure 2.1.

From the resulting constant temperature gradient (∆T) provided by thermo-
couples, the measure of the heat flow (q) and the dimension of the sample, ∆x ,
the TC is directly obtained by Eq.2.2. However, this approach includes inevitably
contributions to the heat transfer by convection and radiation process, while TC
is a parameter that refers only to the pure conduction phenomena. Additionally,
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Figure 2.1: Sketch that models the connection between the experiments and the
Fourier’s law 2.2.

the application of the Fourier law requires a heat flow propagating along one di-
mension, while in practice, during experiments, is almost impossible to limit the
two-dimensional heat flow, and, finally, because TC is temperature-dependent,
particular care is required in the choice of the temperature range of the heat
bath and sink of the setup. The comparative method [14] borrows the idea of
the steady state method described above, and adds a reference material between
the source and sink, and next to test sample. The known properties of the refer-
ence material allow to know the TC the unknown specimen by comparison. Eq.
2.2 still applies, and the comparison of the temperature behavior of the reference
material to the temperature behavior of the test sample provides a more certain
measurement of thermal conductivity [14]. However, the added component to
the stack increases the sources of heat loss to account for, making the accuracy of
the measurement depend more strongly on the certainty of the reference material
properties. Other more complex methods are also available to measure thermal
conductivity, including the radial flow method, the laser-flash diffusivity method,
and the pulse-power method [14]. The radial flow method involves circular or
cylindrical geometry with an internal heat source. This method greatly minimizes
the thermal radiation loss radially, since the supplied heat flow is also radial. The
drawback to this method is that it requires rather large sample sizes which may
not be feasible to obtain for research materials. The laser-flash diffusivity method
calculates the thermal diffusivity of a material. One face of a sample is irradi-
ated by a short laser pulse, and the temperature response of the opposite face is
recorded. The temperature rise versus time profile is used to calculate thermal dif-
fusivity, and if the density and specific heat are known, thermal conductivity can
be calculated. The advantage of this method is the short test time, as waiting for
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steady state is not an issue. However, the sample requirements can be strict, since
the sample surfaces must have a high absorptivity. The pulse-power method uses
a current pulse supplied to a heater through a sample. This is another transient
method, not requiring steady state. This method is commercially used because of
its accuracy.

Theoretical methodes

An alternative way to calculate the thermal conductivity is to solve the exact
"Boltzmann Transport Equation" ( BTE) for phonons using the phonon-phonon
collision rates obtained combining Density Functional Theory (DFT) and lattice
dynamics [15]. The BTE is a non linear integro-differential equation and its solu-
tion is thus a difficult problem. Therefore, scientists have to resort to some simpli-
fication and one of the obvious simplifications is to linearize the BTE to obtain the
phonon heat flux by summing over all the phonon modes. The workflow can be de-
scribed as the following. DFT calculations can provide atomic force constants from
empirical and/or first principle potentials that are fitted to reproduce thermal
transport-related properties. In a second stage, the phonon frequencies from lat-
tice dynamics are used to exactly solve the linear-BTE (LBTE). Fundamental for
this theory is the taking into account of the intrinsic and extrinsic lifetime cal-
culations that are included in the anharmonic lattice dynamic and perturbation
theory that are essential for the solutions of the LBTE. The intrinsic phonon life-
times is measuring the lifetime of a phonon mode, i.e. is related to the scattering
of phonons with other phonons. This fundamental part is calculated based on a
perturbation to the non-interacting harmonic modes. Furthermore, a combination
of the BTE with the empirical Fourier’s law provide a way to calculate directly the
thermal conductivity. Successful calculations have predicted thermal conductiv-
ity of semiconductor and other materials [3, 15] providing that the initial force
constants and/or DFT calculations on potentials fitted to reproduce thermal prop-
erties.

Modelling

On the other hand, molecular simulations are very popular since are the ideal
tool to reveal the mechanism of phonons thermal transport at the atomistic and
molecular scale and can naturally go from the phonon description, i.e. the recip-
rocal space, to the real space in its implementation. TC is determined mainly by
the modes arising from bending and especially torsions, whose energy is compar-
able or less to that one of room temperature, at which a classical description is
enough. These arguments justify the usage of the classical molecular techniques,
such as Molecular Dynamics (MD), to calculate TC respect to electronic-based
modelling methods, i.e. Density Functional Theory (DFT). The two most common
approaches for predicting phonon (i.e. lattice) thermal conductivity using MD sim-
ulation are the Green-Kubo (GK) and direct methods (DMs), i.e. Non-Equilibrium
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Molecular Dynamics methods. In my work I have used a non equilibrium method
that I will explain in more details in Chapter 3.

2.2 Thermal conductivity of low dimensional material

It is known that the dimensionality reduction deeply affect the thermal properties
of materials [3], since the symmetry, the density of phonon states, the boundaries
and the scattering process are very different with respect to the bulk counterpart.
However, the way in which the dimensionality affects the thermal conductivity is
unknown and it remains a debate for different materials. The successful synthesis
of Graphene provides the ideal field-camp to test the theories and understanding
of thermal conductivity in low dimensional materials. Considering that the 2D
and quasi 1-D structures would limit the number of scattering events respect to
the bulk counterpart, one would expect a very large or even divergent thermal
conductivity, on the other hand, the boundary could provide the surface scatter-
ing hampering the thermal transport. Experimental on different systems show a
very complex behavior in which dimensionality reduction can hamper or boost the
thermal conductivity depending on the system and on the experimental technique
used [3]. Very high thermal conductivity has been measured in bulk Graphene
[16–20], and in carbon nanotubes, while a suppression of thermal conductivity
has been, for example, measured in silicon nanowires and membranes [3]. It is
well known that the experimental measures of thermal conductivity on low di-
mensional material are extremely difficult and sensible to the external conditions,
and even if successfully measured the origin of the k suppression or enhancement
respect to the bulk counterpart, is not well understood.

Molecular simulations models the process at atomistic scale (see Sec. 3) and
allows to bridge the phonon space with the real space. Many simulations with
different techniques have tried to probe some experimental findings for 2D or
quasi-1D systems. In molecular simulation method [21], the dependence on the
dimensionality can be associated to the simulation’s cell dimensions which hinders
phonons having mean free path (MFP) greater than the actual cell length, Lx . In
principle, a reliable description of the intrinsic thermal conductivity would need
the phonons’ motion to achieve the diffusive regime by increasing the simulation
cell length up to a critical length called Ldi f f that corresponds to the length at
which the phonons’ transport becomes diffusive as described by Eq.2.2. However,
in different 2D and quasi 1D materials, the intrinsic picture given by Eq.2.2 does
not hold [3]. Despite many modelling investigations, up to now, there is no clear
evidence of any universal beahvior for 2D and quasi-1D materials. In conclusions,
even if both experiments and theory agree on the actual length-dependence for
low dimensional systems, an active debate about a possible universal divergence
of thermal conductivity for quasi-1D system is still open. In the next section, I will
give a scientific background on Graphene and Graphene Nanoribbons thermal
conductivity.
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2.2.1 Graphene and Graphene Nanoribbons

Graphene is a single layer of carbon atoms sp2-bounded in a hexagonal honey-
comb lattice with a bond length equal to 0.142 nanometers. Layers of Graphene
on top of each other with an inter-planar distance equal to 0.335 nanometers form
graphite from which graphene can be "exfoliated" to overcome the van der Waals
forces that held them together.

Figure 2.2: Graphene layer from ref. [22].

Graphene is the thinnest and lightest material known, 0.77mg per m2, it is
stronger than steel, i.e. tensile strength 130 GPa, it has exceptional heat and elec-
tricity conduction performances, with electron mobility of over 200cm2/(V · s−1),
and, it has outstanding optical properties. Since the first "mechanical obtainment"
of graphene [5], applications within different scientific disciplines have exploded,
particularly in high-frequency electronics, bio, chemical and magnetic sensors,
ultra-wide bandwidth photodetectors, and energy storage and generation.

It should be said that, a part of Graphene, very few materials are purely 2D
in nature, and for this it constitutes the ideal material to test the heat transport
in low-dimensional systems. A finite termination of Graphene makes a quasi-1D
material or ribbon also called Graphene Nanoribbon (GNR) that can have two
different edge geometries, known as zigzg and armchair, as shown in picture 2.3:

There are various theoretical, modelling and experimental studies on those
promising GNR. Contrary to the Armchair edge Graphene Nanoribbons (AGNRs),
the semiconducting Zig-Zag edge Graphene Nanoribbons (ZGNRs) have been found
to have interesting magnetic properties, as the "half-metallicity", according to
which the material acts as a conductor or an insulator depending on its spin ori-
entation [23]. This interesting observation stimulated new ideas to achieve metal
free magnetism in this class of materials. AGNRs do not show magnetic proper-
ties, but their electronic structure can be tuned by various means for better device
integrations.

Recently, many attempts have been done to fabricate GNR field effect tran-
sistors with possibilities of tuning their properties by selective doping of ZGNRs
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Figure 2.3: Zizag and Armchair edge
geometries from ref. [23]

and there exist a few experimental studies demonstrating successful fabrication
of GNR based devices. All these experimental results show very good agreement
with the theoretically predicted band gap values and their width dependence [23].
However, the thermal properties of GNR are still matter of disagreements.

Suspended Graphene has a debated experimental thermal conductivity estim-
ation in the range from 2000 to 8000 W m−1K−1 [3, 16, 22]. GNR have been
investigated by modelling and experiments, considering hydrogen passivation in
both, ZGNR and AGNR, because theoretical calculations predict saturating graphene
edges with hydrogen having a lower energy and form a more stable structure
[16]. However, different experimental investigations of whether graphene edges
are always hydrogen-terminated were also conducted, and, it has been shown
that both graphene edges produced by sputtering in vacuum can exist in a non-
functionalized state [24]. Density functional theory revealed similar conclusions,
and confirmed the experimentally observed bond contractions attributed to the
absence of hydrogen functionalization.

Furthermore, theoretical and modelling work are also showing wide range
of values for TC for graphene and graphene nanoribbons. The work from Bar-
barino et al. [8, 22] studied the thermal conductivity length dependence in pristine
graphene (graphene without hydrogen passivation) using "Approach to Non Equi-
librium Molecular Dynamics" (AEMD) technique with a "Reactive Empirical Bond
Order" (REBO) potential (See Chapter 3). Using a fitting procedure to save com-
putational time, they are providing TC estimation for graphene pristine samples
that reach 100µm size in the direction of the Temperature gradient. The final con-
clusion is that the TC is upper limited, and there is not diverging TC for graphene
pristine. In the paper, the ballistic and diffusive regime are analyzed. In general,
the REBO description underestimates the TC of graphene, however, the normal-
ized data of the paper, shows that the obtained TC are in very good agreements
with the exact BTE and other previous literature results. This work has been a
reference for my thesis, and, I will discuss more thoroughly in chapter 4 where I
will show that I have been able to reproduce their data.

In the paper [25] a steady state molecular dynamics approach were used to
calculate the thermal conductivity of graphene nanoribbons (GNRs) of several
nanometers in size (up to 4 nm wide and 10 nm long). The calculated thermal
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conductivity for the zigzag GNR was estimated 2000 W/m-K at 400 K that is a sim-
ilar order of magnitude of the experimentally measured value for bulk graphene.
Furthermore, it was found that nanoribbons with zigzag edges have larger thermal
conductivity than nanoribbons with armchair edges, and, that defects as vacan-
cies and edge roughness in the nanoribbons can significantly decrease the thermal
conductivity.

More recent experiments [26], reported heat conduction properties of graphene
nanoribbons deposited on a silicon carbide substrate. In this study, the graphene
nanoribbons have dimensions comparable to or smaller than the phonon mean
free path.

Figure 2.4: In-plane thermal conductivity of graphene nanoribbons at different
temperatures from ref. [26]. The dimension of the graphene nanoribbons are
about 380 nm in length, and the width varies from 40 to 280 nm.

This was done intentionally to investigate the transition from the diffusion
to the ballistic thermal transport of the graphene nanoribbons both, experiment-
ally and theoretically. The results indicated that the transport mode of phonons
depends grealty upon the length scales of the graphene nanoribbons, and as the
dimensions of the graphene nanoribbons decrease, a transition from the diffus-
ive transport mode to the ballistic transport mode was observed. In graph 2.4
from ref.[26], an upper theoretical limit and different results referring to differ-
ent Nanoribbons width and length are shown. From the graph, it evinces that,
as the width of the graphene nanoribbons increases, there is an increase in the
thermal conductivity. In this paper, the theoretical values of thermal conductiv-
ity were determined on the basis of an equation which defines its dependence
on the measured electrical resistance of the opposite thermometer probes. The
graph present also the experimental results, which are available from the liter-
ature [27], obtained for much longer graphene nanoribbons are also presented
for comparison. Also, according to the same reference, the thermal conductivity
of graphene nanoribbons depends strongly upon their length and decreases with
decreasing the length due to phonon-boundary, as also established in other refer-
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ences [28, 29]. Interestingly, there are different papers that found that steady-state
or non equilibrium methods applied to GNR exhibit a ballistic transport phenom-
ena, meaning that the scattering to edges or cell boundaries have a dominant
contribution for limited sample. Those methods can be applied to study bulk TC
if coupled with extrapolation approaches [30]



Chapter 3

Computational Methods

To measure the lattice contributions, i.e. phonons, to the thermal conductivity,
Molecular Dynamics (MD) simulations constitute the ideal tool because they are
able to reveal the mechanism of thermal transport at the atomistic and molecular
scale. By simulating graphene at 200−400K , far below the Debye temperature, the
low frequency modes are the dominant contributors to thermal conductivity both
in graphene and in GNR’s. This justifies the choice of using the classical approach,
instead of quantum approaches, in this work.

In the following section I present different computational methods that can be
used to obtain the thermal conductivity of graphene. I have only briefly covered
the methods that I have not used, i.e. Non-Equilibrium Molecula Dynamics (NEMD)
and Green-Kubo method; while I describe in more detail the MD technique and
the Approach to Equilibrium MD (AEMD) method that I have used for my thesis.

3.1 Molecular Dynamics

Molecular Dynamics (MD) is a statistical mechanics method that integrates New-
ton’s equations of motion to obtain the positions and velocities of atoms and mo-
lecules in a system at a given time t [31]. The integration procedure allow for
the retrieval of dynamical information as well as the time evolution of the sys-
tem, something that would otherwise be very hard, or impossible, to obtain at
atomistic scale. A typical three-dimensional (3D) simulation system is defined by
N particles in an initial configuration at time t such that, for every particle i, the
corresponding velocity vi(t0) and position ri(t0) are specified inside a simulation
box. The velocities are usually set after a Maxwell-Boltzmann distribution such
that the total kinetic energy Ekin(t) matches a given temperature T according to
the following formula:

Ekin(t) =
N∑

i=1

mi[vi(t)]2

2
=

3NkB T
2

,

[vi(t)]
2 = v2

x ,i(t) + v2
y,i(t) + v2

z,i(t), i = (1,2, ..., N).

(3.1)

14
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Here the velocity vector vi is specified by its components, vx ,i , vy,i and vz,i ,
the mass of particle i is given by mi , the total number of particles are N and kb is
Boltzmann’s constant.

To evolve the system forward in time from t to t + ∆t, the forces on each
particle i are derived as the gradients of the potential V (r1, ..., rN ). This potential
is a function of the particles positions according to

Fi = −∇ri
V (r1, ..., rN ), i = (1,2, ..., N). (3.2)

The model for the potential energy defines the interaction between the particles
in the simulation cell, and the results depend on the potential we use. There exists
different potentials, like the Lennard-Jones potential, Coulomb potential, Morse
potential, Buckingham potential, and many more, each with its own strengths and
weaknesses. The potential I used is called the Reactive Bond-Order (REBO) po-
tential, that has been shown to be reliable in representing covalent materials, such
as silicon and carbon, that form strong directional bonds. I will cover the details
of the REBO potential in section 3.5.

Once the total force on each particle has been calculated for the time t, the
Newton’s equations of motion must be solved to obtain the positions and velocities
of all the particles at the next time step, t +∆t. By iteratively solving Newtons
equations for each time step, the system evolves forward the desired length in
time. The most commonly used integration algorithm in MD is the Verlet algorithm
[31, 32] that was introduced in the historical papers [33, 34]. To briefly describe
this algorithm, let us consider the evolution of a system by ∆t time steps. The
basic idea of the algorithm is to use the Taylor expansion to express the position
r(t) forward in time, r(t +∆t), and backward in time, r(t −∆t), then adding
them together to obtain the following expression;

r(t +∆t) = 2r(t)− r(t −∆t) +
F(t)
mi
∆t2 +O(∆t4) (3.3)

It should be said that, when starting at time t, the algorithm requires the know-
ledge of the backward position, i.e. r(t −∆t). This can be obtained by Taylor ex-
pansion of degree two, generating an error on the first time step of order O(∆t3),
that is a negligible error. This algorithm is simple to implement, while also accur-
ate and stable to run. One could calculate the velocity considering the positions
and the mean value theorem [31, 32]; according to

v(t +∆t) =
r(t +∆t)− r(t)

∆t
+O(∆t), (3.4)

which is a way to approximate the velocity at the cost of accuracy. Some vari-
ants of this algorithm have been developed to improve the accuracy issue, i.e.
velocity Verlet and leap frog algorithms [32].

To get good results from a molecular dynamics experiment it is important to
choose a method that helps explore the phenomena in question. When predicting
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phonon (i.e. lattice) thermal conductivity using MD, the two most common ap-
proaches are the equilibrium methods, such as Green Kubo, and the Direct Meth-
ods (DM) also known as non-equilibrium methods. These will be covered in the
next section.

3.2 Equilibrium methods for Thermal Conductivity in Mo-
lecular Dynamics

The most reliable and rigorous method to calculate Thermal Conductivity in MD
simulation is the Green-Kubo (GK). The GK method is an equilibrium MD simu-
lation technique based on the fluctuation-dissipation theorem. According to this
theorem, the thermal conductivity tensor is predicted using the fluctuations of the
heat flux in equilibrium conditions, or, in other words, calculating the integral of
the "Heat Current Auto Correlation Function", HCAC F(t), during a standard MD
simulation on a cubic cell with periodic boundary conditions. Unfortunately, two
aspects make this method challenging. The first one, purely technical, is due to
the difficulty of accurately specifying a converged value of the HCAC F(t), which
often, after a converged region, begins to drift due to noise. For statistical reasons,
the accuracy of the HCAC F(t) degrades steadily with the increasing value of its
argument t. It is difficult to separate, a priori, the interval over which HCAC F(t)
is computed accurately from the range in which noise is so important to affect the
result of the t-integration. Statistical analysis of the error bar is also somewhat
uncertain, because of the role of long-time correlations in the MD trajectories.
For these reasons, the actual simulation time must greatly exceed the longest life-
time of phonon modes. To force convergence, previous GK computations of TC
in crystals resort to running averaging and/or other smoothing methods, which,
although very effective, may introduce a bias on the final result whose size is not
yet clear. The second challenge is related to the size of the simulation cell, which
limits the wavelength of the phonons that reside in the sample, and might affect
the estimate of TC in a size dependent manner. This issue is usually addressed
by increasing the simulation cell size until the TC becomes size-independent, but
this threshold size is not known a priori. On the other hand, the GK method is
exact, it is the most rigorous approach up to now, and it allows for the decompos-
ition of the thermal conductivity into contributions associated with acoustic and
optical phonons. However, Green-Kubo (GK), requires exceedingly good statistics
to give reliable results, and considering the time ahead the GK method is not a
good choice of method for the work in my masters thesis, because it would be
very computationally demanding.
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3.3 Non equilibrium methods for Thermal Conductivity
calculations

3.3.1 Non Equilibrium MD: (NEMD)

The Non Equilibrium MD (NEMD) method is also called a direct method (DM) it
recalls the traditional experimental techniques to calculate the thermal conduct-
ivity based application of the Fourier law (2.2). A typical implementation of the
NEMD method will consist of two themrostat, one at hot tempreature and one at
cold temperature, separated by another domain or region. During the MD simula-
tion the temperatures of the thermostats are fixed, while a non equilibrium steady
state or temperature gradient is reached in the region between them. Considrineg
the temperature T at distance x in the in-between region, both ∂ T

∂ x and the average
energy transported, qx , are extracted and then used to find the thermal conduct-
ivity k according to the Fourier law 2.2. Despite its intuitive appeal, this method
normally carries strong non-linear response behaviour, and significant size effects,
such that large atomic systems are typically required to obtain an accurate predic-
tion of the bulk phase thermal conductivity. For complex crystals with large unit
cells, the computational demands would be enormous. Therefore this ends up not
be the choice for my work either.

3.3.2 Approach to Equilibrium Molecular Dynamics (AEMD)

A different method to find the thermal conductivity is the Approach to Equilib-
rium MD method (AEMD). This method was inspired by the flash method, first
described in 1960 in [35], where a thin, thermally insulated sample is hit by a laser
pulse, while the thermal response, ∆T (t), is measured on the opposing side. The
shape of the curve of the measured∆T (t) determines the thermal diffusivity, and
the thermal conductivity is calculated as the product of the diffusivity, heat capa-
city and density. The heat capacity can be calculated by knowing the volume of the
sample, the temperature before the pulse hits, the max temperature the sample
reaches, and the total energy delivered by the laser pulse. The AEMD protocol
exploit a similar approach.

In AEMD the sample is divided into two identical regions, left and right region
as in fig. 3.1, each region is separately equilibrated at a different temperature, i.e.
left region at Thot and right region at Tcold . In the sketch, the gradient of tem-
perature is applied to the x direction. After the two regions are separately well
equilibrated, they are set into contact and the difference of temperature between
them,∆T = Tle f t−Tri ght , or the profile temperature, is monitored during a stand-
ard equilibrium (nve) simulation as the whole sample equilibrate to a common
temperature T determining the condition ∆T = 0.
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x = 0 x = Lx =L
2

Figure 3.1: First stage of AEMD approach, the sample is divided into two identical
regions and equilibrated at two different temperature, Tle f t = Thot and Tri ght =
Tcold .

One of the advantages of the AEMD method is that the thermal equilibrium
between the two regions is typically reached after 10ps to 100ps, depending on the
size of the simulated sample, making this method less computationally demand-
ing than GK and NEMD methods. Another advantage is that there are in general
less noise in the results. This is because the temperature is calculated over larger
regions, and because the absolute energy flux does not need to be calculated. Heat
transport along the x-direction is described by the heat equation

∂ T (t, x)
∂ t

= k̄
∂ 2T (t, x)
∂ x2

(3.5)

where

k̄ = k/ρcv =
kCv

V
. (3.6)

Here k̄ is the thermal diffusivity of the simulated sample with number density ρ
[m−3], thermal conductivity k [W K−1m−1], and specific heat cv [JK−1]. Cv is the
heat capacity for temperatures above the Debye temperature and V is the volume.
We assume that neither k, ρ or cv are dependent on x or t during the duration
of the simulation. Using the above equations as a starting point, it is possible to
derive ([6][7]) the following equation

∆T (t) =
∞∑
n=1

Cne−α2
n k̄t (3.7)

where

cn = 8(TH − TC)
[cos (αn L/2)− 1]2

α2
n L2

(3.8)

Here TH and TC are the temperatures of the hot and cold region respectively,
αn = 2πn/L, L is the dimension of the sample to which I apply the gradient (see
fig 3.1), k̄ is the thermal diffusivity and t is the time.

By fitting the recorded values for ∆T (t) to equation 3.7, the thermal diffus-
ivity k̄ can be calculated, and the thermal conductivity extracted using equation
3.6. This approach works well if we consider temperatures higher than the Debye
temperature of the material. However, if the simulated temperature is lower than
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the Debye temperature, then a quantum correction factor, q̄, has to be introduced
into equation 3.6, giving it the final form

k = q̄
k̄3NKB

V
(3.9)

Here k is the thermal conductivity, k̄ is the thermal diffusivity, N is the number
of atoms, KB is the Boltzmann constant, V is the volume and q̄ is the quantum
correction. In the formula, the Dulong-Petit law has been used to write the heat
capacity in terms of N and KB. This is because in classical MD simulations all the
vibrational degrees of freedom are excited at any temperature since the energy
is distributed by the Maxwell-Boltzmann distribution instead of the Bose-Einstein
distribution. Therefore the MD simulations only represents reality well when the
temperature simulated is close to or above the Debye temperature of the material.
To make results of MD simulations below the Debye temperature more realistic,
the quantum correction has to be calculated and factored in. For graphene simu-
lated at 300K the quantum correction is q̄ = 0.213 [22].

3.4 LAMMPS

There are different software that implement the MD algorithms, each with its own
strengths and drawbacks. In this master thesis the choice of software fell on LAM-
MPS, acronym of "Large-scale Atomic/Molecular Massively Parallel Simulation".
LAMMPS is an open source software solution that can be used to model a wide
range of systems, from simple molecules, to large complex structures. Through
the support of many different potentials, LAMMPS can be used to study solid
state matter, soft matter, mesoscopic materials and more. LAMMPS uses the ve-
locity Verlet algorithm to integrate Newton’s equations of motion for systems of
particles, where the particles can be clumps of materials, molecules, atoms or elec-
trons. An input script is needed to start a MD simulation in LAMMPS. This script
defines all the parameters of the simulation such as units, what potential is to be
used, number of steps in the simulation, the size and content of the simulation
box, temperature, etc. After the input script is read by LAMMPS the simulation
begins, and it keeps running either until it has completed all the time steps, or un-
til one error is met. Typical errors in my experience are "atoms being lost" and/or
syntax errors.

The more atoms a MD simulation in LAMMPS has, the more time is needed to
complete a simulation. Fortunately LAMMPS has been optimized to be executed in
parallel so that the usage of multiple CPU’s decreases the total simulation time. By
using for example a HPC-cluster (High-Performance Computing), the simulation
times can be drastically reduced. The computational time does not only depend
on the number of atoms, but also on the algorithms we use to describe the system
and on the performance of the machine. It is common practice before performing
the production MD simulations, to start off with a benchmarking study to under-
stand how the system scale with more CPU’s and what is the optimal choice of the
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resources. Those results are then used to argue what amount of computational
power it is reasonable to request for a simulation.

3.5 Reactive Bond-Order Potentials (REBO)

One of the early struggles of MD was the development of a potential model able
to describe the interactions in covalent materials like silicon and carbon. Standard
potentials, such as Lennard-Jones (LJ) or embedded atom method (EAM), only
describe the interaction between atoms as a function of the distance between
them, without considering any directional components in the bond.

One of the first potentials that approached the directionality in the bonds was
the Stillinger-Weber (SW) potential, developed to simulate silicon in its solid and
liquid state. However in all the family of potentials originating from the SW idea,
the connections between the atoms had to be set before to start the simulation, and
in general bonds would neither be broken nor created during a simulation. The
first potential to incorporate the structural chemistry of covalent bonded systems
into empirical potential energy functions [36], was the Tersoff potential, built on
work by Abell [37]. The general form of the Tersoff potential is

E =
∑

i

Ei =
1
2

∑
i ̸= j

Vi j (3.10)

Vi j = fc[VR(Ri j)− Bi jVA(Ri j)] (3.11)

where the total energy is E, the site energy for site i is given by Ei , Vi j is the
interaction energy between atoms i and j, and the distance between these atoms
is Ri j . fc is a cutoff function to limit the range of the potential. VR(R) and VA(R)
are pair-additive repulsive and attractive interactions respectively, and their terms
are represented by the Morse-type functions [36]

VR = Aexp (−λ1Ri j) (3.12)

VA = B exp (−λ2Ri j) (3.13)

where A, B, λ1 and λ2 are all positive constants with λ1 > λ2. The bonding
strength of a pair of atoms in the Tersoff potential is described as a monotonically
decreasing function dependent on the number of competing bonds, the strength
of these bonds, and the angles between them. Bi j has the form

Bi j = (1+ β
nξn

i j)
−1/2n (3.14)

ξi j =
∑
k ̸=i, j

fc(rik)g(θ jik)exp[λ3
3(ri j − rik)

3] (3.15)

g(θ ) = 1+
c2

d2
− c2

d2 + (h− cosθ )2
(3.16)
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The bond angle between bond i j and ik is given by θ jik, while g(θ ) is a global
angular function that has to be fit to solid structures of different coordination. c,
d, λ3, β and h are all positive constants that are fitted to a certain element. In
the original paper from 1988 [38], Tersoff had a list of suggested parameters for
silicon, and later extended his model for silicone to include germanium, carbon
and combinations of them. Donald W. Brenner took inspiration from the Tersoff
potential and developed an empirical bond-order expression that described both
hydrocarbon molecules and solid-state carbon that he published in 1990 [39].
This was the first generation of the REBO potential where bonds could break and
form with changes in hybridization. It was very similar to the Tersoff potential,
with the primary difference being the way bond order is handled for hydrocarbon
molecules. The total bond order in first generation REBO is

B̄i j =
Bi j + B ji

2
+ Fi j(N

t
i , N t

j , N con j
i j (3.17)

where

Bi j = [1+
∑

Gi(θ jik) fc(rik)e
α[(ri j−RE

i j)−(rik−RE
ik)] + Hi j(N

H
i , N C

i )]
−δ (3.18)

Here N C
i and N H

j are the total number of carbon and hydrogen atoms bounded

to atom i, and the total number of neighbours, N t
i , of atom i is N C

i +N H
j , and N con j

i j
depends on whether a bond between carbon atoms i and j is part of a conjugated
system. G(θ ) is a function of the angle between bonds i− j and i− k, and has the
same form as in the Tersoff potential [36]. The first generation REBO potential
had four main weaknesses:

1. There was one set of parameters that would reproduce structural energies,
and another set of parameters that would reproduce force constants. How-
ever, because the functional form of the pair potentials was not flexible
enough, no set of parameters could be used that would simultaneously re-
produce both structural energies and force constants.

2. Zero-Kelvin elastic constants C11, C12 and C44 for diamond were not in-
cluded in the fitting database and are thus not accurately reproduced by
the potential.

3. The values for both the attractive and repulsive forces at zero distance is
finite. This can lead to atoms passing through each other without being
repulsed in high energy environments.

4. The derivatives of the cutoff function is not realistic and can, in certain
structures, lead to spurious minima in the energies.

In 2002, 12 years after the initial paper on REBO, Brenner et al. published
a new paper [40] where they presented the second generation REBO potential.
Many of the shortcomings of the first generation had been improved upon or fixed.
For example, the terms for the attractive and repulsive pairs now had new forms

VR(r) = fc(r)(1+Q/r)Ae−αr (3.19)
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and
VA(r) = fc(r)
∑

n=1,3

Bne−βnr (3.20)

where A, Q, α, Bn and βn are fitting parameters. With these new forms the repuls-
ive forces goes to infinity as the distance between the atoms goes to zero, and the
attractive term is now flexible enough to simultaneously fit parameters for bond
properties that was unfittable in the Morse-type terms. In addition the Bi j terms
are changed significantly from what they where in the first generation:

b̄i j =
1
2[b

σ−π
i j + bσ−πji ] + bπi j (3.21)

The values for the functions bσ−πi j and bσ−πji depends on the local coordination
and bond angles for atoms i and j respectively. The function bπi j is written as a
sum of two terms:

bπi j = Π
RC
i j + bDH

i j (3.22)

where the value of ΠRC
i j depends on the whether or not a bond between atom i

and j has radical character and is part of a conjugated system, while the value
of bDH

i j is dependent on the dihedral angle for carbon-carbon double bonds [40].
These new terms makes the second order REBO potential also solves the problems
with the elastic constants in diamond.

This second generation REBO potential is implemented in LAMMPS. Since this
potential is well calibrated to simulate covalent carbon-carbon bonds, as well as
larger structures of atoms, it was chosen as the potential to be used to simulate
the graphene nano ribbons investigated in this thesis.

3.6 My AEMD setup and problems

3.6.1 Reproducing results from previous work

Barbarino et al. works study the dependence of the graphene thermal conductivity
on the graphene sample size, [8, 22]. Their work is a relevant starting point for my
masters thesis. From her thesis [22] I have chosen some data points to reproduce
since her work has been performed with the AEMD technique coupled with the
REBO potential. My prior experience with MD simulations was the computational
study of Argon using the Lennard-Jones potential; I have fully expected to en-
counter a learning curve and that I would do some mistakes on the way. Knowing
this, and that MD simulations often require a non-insignificant time to complete, I
chose to reproduce the data from her smallest graphene sample, since this should
give me the simulations that would run the fastest. The first simulations I have
performed to reproduce her data took 2-3 days to be completed. However, I have
learned how to optimize the code, utilizing the HPC server better and getting more
familiar with the methods I used. My experience shortened further the completion
time of similar cases down to 3 hours per simulation.
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Apart from the obvious challenges of comprehending her work and supple-
menting it with journals detailing the methods used, the biggest challenge was to
decide how to deal with descriptions sometimes not being detailed enough, lead-
ing to multiple procedures having to be considered. For instance, when calculating
the thermal conductivity from the thermal diffusivity, part of the calculation in-
volves dividing on the volume of the simulated sample, 3.9. Since the thickness of
the simulated graphene was not defined, sensible choices could be made of values
ranging from 1Å and 3.35Å, something that would drastically change the results.
Also, it was not clear if the length of the graphene were given as the initialized
length, or as the length it had at the start of the nve simulation where ∆T (t) was
recorded.

The way I resolved these questions was by brute force. First I calculated the
distance from the "center of atom" on one side to the "center of atom" on the
opposing side. This is one way the length could be defined. Lets call this method
A. Another way would be to take length in method A but add either the van der
Whaal radius of carbon to each side, lets call this method B, or add one bond
lenght, method C. Looking at figure 3.2 method A is represented as the blue line
and method C is represented as the blue + green lines inside one box. Option B is
not in the figure, it would be the blue line plus 2× van der Whaal radius of carbon.

Figure 3.2: In this figure the length is measured as a "center of outer atom" to
"center of outer atom on opposing side" represented by the blue line. The green
lines represent "half the bond length" and by adding them we now have the length
of the repeating structure.

When deciding how to measure the thickness of the graphene plane, method A
would not work since it would just be zero. Method B and C could work and would
be 1.41Å or 2× van der Whaal radius of carbon. However, it was possible that
Barbarino had just set thickness to 1Å to get the units of the calculation correct,
or that she used the length between graphene layers in graphite, 3.35Å.

In total this adds up to 27 different ways to define the volume. By requiring the
same methods to be made in both directions in the graphene plane, this was cut
down to 9 different options. So I calculated the thermal conductivity k̄ 18 times,
9 times for the initialized dimensions of the graphene, and 9 more times for the
dimensions the graphene had at the start of the nve simulation where ∆T (t) was
recorded. The best fit with the results Barbarino reported, were achieved when
measuring the size of the graphene plane by using method C, while using 1 as the
planes thickness. And the data giving the best fits was the positions the atoms had
at the start of the nve simulation where ∆T (t) was measured.

Another thing that was not clear to me was how the periodic boundary con-
ditions (PBC) had been used in the work I wanted to reproduce. Since the work
explores the length dependency of the thermal conduction, it would make sense if
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the length dimension was fixed. If not, the simulation would represent an infinite
plane of graphene in all directions. I have recorded the temperature profile while
simulating each option. By plotting the profiles and then comparing them to the
profile presented in Barbarino’s work, [22], it was clear that the PBC were used
for monitoring the temperature profile. To be sure, I also ran full simulations with
fixed x-dimension, but the results from those simulations where not anywhere
close to the results reported.

Having settled on how I think Barbarino had done her simulations, I performed
the final simulations to reproduce the data five times. Each run had slight differ-
ences in the number of MD-steps used in the different parts of the equilibration of
the graphene sample. The random number seeds were also changed in the inde-
pendent simulations. The average of the five runs were calculated and the results
agree well with the one presented in Barbarino’s work4.

3.6.2 Protocol to simulate hydrogen-free (pristine) GNRs with AEMD

My implementation of the AEMD method ended in an input script that could be
divided in seven steps:

1. Initialization: In this part all parameters annd simulation box are set, the
potential and the initial data file of the GNR are read.

2. NPT equilibration: The sample is equilibrated with a Nose-Hover thermostat
and barostat set to T = 300K and P = 1bar. During this step the volume
of the simulation box can change as the system reaches equilibrium.

3. NVT equilibration: Nose-Hover thermostat is used to keep the temperature
at 300K while the system is kept at a fixed volume to allow the system to
reach the correspondent pressure.

4. Definition of two separate regions: The left and right regions are defined
separately as in figure 3.1, and different computes are set to calculate the
temperatures in them.

5. Thermal equilibration of the "left" region. The right region is not integrated,
while the velocity rescaling is applied to the left region in order to set in-
stantaneously Tle f t = 400K . A Nose-Hover thermostat further equilibrate
the temperature of the left region at 400K for a certain number of MD steps.

6. Thermal equilibration of the "right" region. The left region is now kept at
Tle f t = 400K and not integrated, while the velocity rescaling is applied to
the right region in order to set instantaneously Tri ght = 200K . A Nose-Hover
thermostat further equilibrate the temperature of the right region at 200K
for a certain number of MD steps. Up to this stage left and right regions are
separated.

7. NVE simulation for the whole sample: both regions are put in contact and
free to interact. The thermal equilibration starts and∆T (t) is recorded dur-
ing this part of the simulation. When ∆T reaches a value close to 0, the
AEMD simulation is completed and the post processing stage starts.

While reproducing results from Barbarino, these steps worked well since the
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PBC meant that the simulated graphene sample was in a sense "infinite", so when
oscillations in the graphene pushed a carbon atom out of the simulation box on
one side, it just reappeared on the other side. By setting the dimensions of the
simulation box correctly compared to the size of the graphene sample, the carbon
bonds stayed intact across the boundary and these jumps had no real impact on
the results of the simulation.

However, when doing simulations of hydrogen-free nano ribbons of graphene,
the dimensions of the simulation box needs to be set a lot bigger than the size of
the graphene sample in the y and z direction (x-direction being the direction to
which the heat gradient is applied), else the ribbon will act as a plane instead of
a ribbon. This makes step 2 of the simulation challenging 3.6.2, since when the
simulation box changes during the NPT run, it tends to become smaller than the
initialized box where the ribbon is straight, thus leading to the ribbon curling up
and the reactive edges of the ribbon binding to other parts of the ribbon as seen
in figure 3.3.

Figure 3.3: Hydrogen-free GNR that curls up and reacts with itself during the
equilibration steps of AEMD simulation.

To overcome this challenge I chose to build my GNR and initial simulation
box just as I had done when reproducing results. This meant that for steps 1 to 3
in the simulation, my GNR would be simulated as an infinite sheet of graphene.
Then, in step 4, I would rescale the simulation box in the y and z directions, such
that there would be a lot of empty room between my sample and the simulation
box in the yz-plane. I would not do any scaling in the x direction since the AEMD
method calls for PBC [6][7]. However, there was still one problem; the carbon
atoms that jump across the boundaries. As explained earlier, this is not a problem
when simulating a plane of graphene, but it is a problem when simulating rib-
bons. Figure 3.4 show some typical edge defects that the ribbons ended up with
following this method of running the first few steps as a simulation of a "plane of
graphene". The effect of these defects is that the thermal conductivity of the rib-
bon goes down, and since the defects seem a bit random they affect the different
size ribbons differently, leading to a lot of noise in the results of the calculated
thermal conductivity.
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Figure 3.4: Typical edge defects on the GNR after being equilibrated as a sheet
of graphene. These defects can scatter phonons.

By changing the length of the time steps from 1 f s to 0.1 f s during step 2 and
3 of the simulations, while also letting these steps run for a total of only 200ps,
the defects went away. I inspected each ribbon in OVITO (software) from start
to end, to verify that they had no defects. When I found defects, I changed to
equilibration to a smaller value and also changed the random number seeds and
ran it again until I got defect free ribbons. The lowest I had to go on equilibration
time to achieve this was 100ps.

For graphene nano ribbons built in the zigzag orientation (3.7), ZGNR, this
method only works for the ribbons consisting of an even-number of strips, since
the odd-numbered configurations does not represent a graphene plane when sim-
ulated with PBC. To simulate the odd-numbered configurations I saved the con-
figuration of the even-numbered systems after step 3 in their simulation was com-
plete. Then I manipulated those data files by removing one strip from the edge
of the ribbon. The manipulated data files would then be the initial configurations
read into the simulations of the ZGNR’s with an odd-number of strips, and the
AEMD run for these ribbons would ignore step 2 and 3 and instead go straight
from step 1 to step 4 in the MD simulation (3.6.2). These simulations got double
the time to equilibrate in step 5 and 6 compared to the ZGNR’s with an even
number of strips.

3.6.3 Measuring the size of a GNR

As mentioned in the section 3.6.1, when using the AEMD method, the calculations
of the volume of the simulated sample has a big impact on the resulting thermal
conduction k̄. Since this work is exploring what happens as the width of the GNR’s
gets smaller and smaller, the choices made will have a higher and higher impact
on the calculated k̄, until we are at the mono-atomic carbon chain. I will therefore
go trough my choices of how I have measured my GNR’s in each direction.

x-direction

For the x direction I decided the most sensible measurement is to measure it from
the center of the first atom to the center of the last atom, then adding the length
of one bond. This is done because the ribbon is simulated with PBC so it is in sense
a part of an infinite ribbon, and the measurement would not properly reflect this
if one bond length was not added. Since the x-length is on the order of 2 ∗ 104Å
this choice has minimal, if any, impact on the result. However, something that has
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a great impact is at what point in the simulation the length is measured. In figure
3.5 the starting configuration of 1 strip in the armchair configuration is shown,
and it is obvious that the length in of the sample is identical to the length of the
simulation box.

Figure 3.5: This is the starting configuration of the 1 strip in the armchair con-
figuration. The lines represent the initialized simulation box. Because of the reg-
ularity, the dimensions of this shape is fairly simple to describe precisely.

However, after the sample has had time to equilibrate, all the bonds have
slightly different lengths, and for the 1 strip case the structure of the sample has
also broken down. In addition to this the simulation box have changed its size and
the ribbon is now coiled up in a more complex pattern, part of which can be seen
in figure 3.6. Finding the length of this sample is no longer an easy task. The 1 strip
armchair case is of course an extreme example since the structure breaks down
and it forms a mono-atomic chain, but it is also true for the 2 to 10 strip GNR’s
that they change their orientations and that they will no longer just be straight
lines after equilibration.

Figure 3.6: This is a small part of the final configuration of the 1 strip armchair
configuration after the structure has broken down. The dimensions of this shape
is no longer fairly simple to calculate or describe precisely. The whole figure can
be found in the appendix A.4.

My solution to this problem was to use clever numbering of the atoms in the
initial configuration of each GNR, save a data file with the initial configuration,
and save another file with the configuration at the start of the 7th step of the sim-
ulation (3.6.2). Assuming that atoms belonging to the center strip of the GNR still
belonging to the same strip after the equilibration, I now used the atom numbers
to isolate a "dimer line" of atoms close to the center of the ribbons. All atoms on
the same dimer line shares y-coordinate in the starting configuration as shown in
figure 3.7.
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Figure 3.7: Each color represent a "dimer line" through the graphene sample. In
its initial configuration all atoms on a dimer line can be identified by having the
same y-coordinate as the rest of the atoms on the same dimer line. When the GNR
has equilibrated the atoms on a dimer line will no longer share y-coordinate, but
their ID number will still be the same.

Lastly I wrote a python code that would calculate the vector distance between
the atoms along the dimer line, and then give the sum of these distances as an
output. With this code I could get a sensible length of the 1 strip armchair shown
in figure 3.6 and I could also get accurate lengths of the GNR’s, no matter how
they moved through the simulation box. What I do not cover with this method is
how rotations and twists of the GNR affects the lengths, but it seems clear that a
twisted GNR in general will have a larger surface area and thus x , y or both will
get higher values. The result of this is that the thermal diffusivity will be divided
on a larger volume when the thermal conduction is calculated, leading to a lower
thermal conductivity than the non-twisted case, an observation that agrees with
other work [41].

y-direction

For measurement of the y-direction I choose to use the distance between center-
of-atom on one side, to the center-of-atom on the opposing side, and then add a
bond length, a method I called method C in section 3.6. This method was only
used for the case of 2 to 10 strip GNR’s. Since the 1 strip case is not a GNR, it
has no rigidity and looses its initialized structure, becoming a mono-atomic chain
where the y and the z directions are indistinguishable. This must be reflected in
the same choice of measurement being chosen for both directions.

z-direction

The measurement of the z direction and the y-direction, in the one strip case,
was set to a value of 3.35Å since this is the interlayer distance in graphite. For the
GNR cases (2-10 strips), the z-direction was also set to 3.35Å. This was done to
be in line with the suggestion of a standard choice of thickness when calculating
thermal conductivity in single-layer materials presented in [42]. This will lead to
my calculations of thermal conductivity having lower values than in some other
papers like for example [8]. However, since I have seen at least 4 different thick-
nesses used in the journals I have read, I choose to follow the standardisation in
[42] to try to be part of the solution.
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3.7 Building the graphene

Thermal transport in graphene has the exotic feature that it is dependent on both
the length [22] and on the width [26] of the material. A consequence of this fact
is that the length of the graphene nano ribbon’s, GNR’s, simulated in this work
should be chosen with some care. This is because the length of the simulated
GNR’s will change as they are heated up in the simulation, and in case there are
variations in how much the different ribbons expand, the effect this has on the
thermal diffusivity should be minimized. At the same time, the computational
cost of the simulations has to be kept in mind. In [22] it is found that the increase
in thermal diffusivity as the samples length increases, is flattening out over the
span from 1µm to 100µm. Therefore the simulated GNR’s should be as long as
possible. However this quickly requires too much computational costs and time,
something that is especially important since I expect to do mistakes as I learn, and
thus will have to rerun the simulations multiple times. Therefore a length of 2µm
was chosen.

Figure 3.8: The two axis of symmetry in graphene shown by a blue and a green
arrow. The green arrow points in the "armchair" direction while the blue arrow
points in the "zigzag" direction.

To probe what happens as a GNR’s width decreases down to a quasi one di-
mensional string of carbon atoms, the ribbons need to be divided into similar parts
that can be removed one by one. As can be seen in figure 3.8, graphene has two
axis of symmetry. When building a GNR with length in the armchair direction,
the task of finding similar parts that can be removed one by one is easy. In this
work these parts will be referred to as "strips" and in figure 3.9 the different strips
are show in different colors. Each strip is built up by two dimer lines (3.7). For
strips building ribbons in the armchair orientation, all the strips can be identical
and stacked on top of each other until the desired width is reached. In this work
the widths of 1 to 10 strips will be investigated. In the 1 strip case its important
to notice that this is no longer a graphene sample since there are no completed
hexagonal structures present. For the 2 to 10 strip cases the strips form hydrogen
free graphene nano ribbons, GNR’s, either in the armchair orientation, AGNR, or
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the zigzag orientation, ZGNR.

Figure 3.9: A section of a 5 strip AGNR (GNR built in the armchair direction).
The different strips have different colors so that they are easy to see. Every strip
has the exact same structure and are stacked on top of each other to make up the
ribbon.

When it comes to the other direction of symmetry, the zigzag direction, a
slightly different approach has to be used. This is because every other strip is
mirrored along the width axis. This means that odd numbered strips look the
same, the even numbered strips looks the same, but the odd and even strips are
mirrored. How this looks can be seen in figure 3.10.

Figure 3.10: A section of a 5 strip ZGNR (GNR built in the zigzag direction). The
different strips have different colors so that they are easy to see. Here the black,
blue and brown strips are the exact same structure, and the green and red strips
are the exact same structure. The two structures are mirrored version of each
other.
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Results and discussion

In the following sections, the most important findings and results will be presen-
ted. Because of other previous works, I have decided to investigate hydrogen-free
graphene nanoribbons. For a 1 chain-strip of carbon atoms, I observe collapse
and anomalous behavior as expected. That configuration is indeed an extreme
one where the system loose the graphene character. I have not presented the 1
strip cases in this chapter but in the appendix. However, I am referring here to the
1-strip case to study the bond length variation.

31
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4.1 AEMD implementation tests

I have spent the initial time of my master thesis to implement the AEMD method
described in section 3. Among the numerous tests I have done, I am discussing and
comparing here the temperature profiles and the fitting procedure of the AMED
implementation on my system. As explained in more detail in Chapter 3, the AEMD
procedure implies the definition of two separate regions of equal volume, regions
1 and 2. Those two regions are individually and separately equilibrated at two dif-
ferent Temperatures, T1 and T2, such that T1 > T2. I refer to t = 0ps as the time at
which the two regions are separated and fully equilibrated at two different tem-
peratures. This initial stage determines a gradient of temperature ∆T = T1 − T2
with respect to the x-dimension. In a second stage, the two separate regions are
set in contact, and I have monitored the temperature profile at different time snap-
shots. The evolution of the difference in temperature, ∆T = T1− T2, between the
two regions is also observed. From the fitting of time evolution of the temperature
gradient, the diffusivity is extracted, and, the thermal conductivity k is calculated
from the diffusivity as explained in Section 3.

4.1.1 Temperature profile

In figure 4.1 the temperature profile from my implementation of the AEMD method
is presented at three different MD time snapshots for the case of a graphene
sample with dimension (500 × 2.4 × 0.3)nm containing 48000 atoms during an
NVE simulation.

I have monitored the temperature profile during the temperature equilibra-
tion of the two regions set in contact, i.e. from time t = 0ps to t = 500ps. Figure
4.1 shows the Temperature (K) for three different time steps along the length of
the sample, i.e. x (nm), to which the gradient of Temperature ∆T is applied. The
timestep 0ps, red line in the graph, refers to the temperature profile at the time
in which the two regions at different temperatures, T1 = 400K and T2 = 200K ,
are put in contact. The red line appears close to a step function. After 20ps, the
blue line in the figure, the temperature profile assumes a sinusoidal shape with an
amplitude. The sinusoidal shape decreases its amplitude over time until the tem-
perature in both regions reaches the same value, i.e. 300K . This plot agrees well
with similar plots found in [6] and [7] guaranteeing the correct implementation
of the AEMD protocol.
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Figure 4.1: Temperature profiles during an AEMD simulation at the beginning of
the NVE equilibration (red), after 20ps (blue), 100ps (green), and finally 500ps
(yellow). The dashed lines represent sine fits of the temperature profile at 20ps
and 100ps.

4.1.2 Fitting temperature equilibration

As already explained, according to AEMD, the thermal diffusivity is obtained by
the fit of the ∆T = T1 − T2 data coming from the NVE simulation of the system
made of the two regions at Temperature T1 and T2, that are now in contact. Figure
4.2 shows the plot relative to my 9 strips ribbon in the armchair orientation. The
fitted function fits the plotted data well.
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Figure 4.2: ∆T time evolution for the armchair 9 strips AEMD simulation, blue
line, and fit-function, cyan line, that was used to find a value for the thermal
diffusivity. The dashed black line shows the reference ∆T = 0

In figure 4.3 there are two plots of data from a simulation of a 2 strips ribbon
in the armchair orientation. The top plot shows the calculated thermal diffusivity
k as a function of the time simulated, while the bottom plot shows the evolution
of∆T as a function of time simulated. Together these plots shows that in the case
of this specific AEMD simulation, nothing is gained from running the simulation
after the point where ∆T = 0. It also shows that, in this particular simulation,
the k calculated after 280ps, with ∆T = 7.4K , is 98% of the full k value that is
reached after a 600ps long simulation, with ∆T = 0K . If this relation between
simulated time and calculated k holds for all the simulations, it means that the
computational cost of the simulations can be reduced by sacrificing 2% in the
precision. To conclude, for very time consuming simulations, I have confidently
considered to calculate k where the ∆T has reached a value around 5K .



Chapter 4: Results and discussion 35

Figure 4.3: Data comes from an AEMD simulation of a 2 strips armchair ribbon .
Top plot shows the k value as a function of simulation time; Bottom plot shows the
corresponding temperature difference between the hot and cold region against
the simulated time. The "largest k" mentioned in the legend, is the value of k
when it stops changing. In the plot this is where the blue line becomes just a
horizontal line.
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4.2 Potential benchmarking

In this section, I am presenting the preliminary study I have done to understand
the optimal requests of CPU’s and nodes while using the REBO potential. As
already stated, I have used the HPC facilities at the physics department in NTNU
to carry out my simulations. There is a SLURM scheduler in the HPC system, and
to start my simulation I have used a standard submission script where I could
request the necessary computational resources, as number of nodes and CPU’s.
In the first part of this section, I present the performance of the simulation in
term of nanoseconds per day for different combinations of tasks per node (ntask)
and CPU’s per task (omp). Furthermore, the strong scaling and efficiency of the
potential per number of CPU’s, and per node, are also presented.

4.2.1 Performance

Figure 4.4 shows the performance for the same initial system simulated with dif-
ferent settings in the SLURM job submission script. I used the same sample settings
as I would to perform my work, and ran a NPT simulation simulating a 2µm long
8 strip AGNR, consisting of a total of 151680 atoms, for 2000 MD-steps with 1 f s
time units. The plot shows that the fastest way to complete this particular simu-
lation is achieved by using the SLURM job settings of "ntask = 40" and "CPU’s per
task = 1", with the omp flag enabled in LAMMPS1.

1Too see the impact of omp flag vs no omp flag see appendix A.6
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Figure 4.4: Nanoseconds per day against number of nodes for different combin-
ation of Ntask (number of tasks per node) and omp (number of CPU’s per task).
All runs were done with the omp flag enabled in LAMMPS, and the number of
omp set in SLURM matched the number that was also set in LAMMPS.

4.2.2 Strong scaling and efficiency

The strong scaling results were obtained by running a NPT simulation of a 2µm
long 8 strips AGNR for 2000 MD-steps, totaling 2ps, on the "norma2" partition
of the physics departments HPC server. This partition consists of 6 nodes, each
with two 20-core CPU’s with Hyper-Threading. However, initial testing showed
that use of Hyper-Threading when simulating with the REBO potential2 made the
simulations run slower, therefore, I did not enable Hyper-Threading when running
simulations, and it was not used for the strong scaling benchmark simulations
either.
The strong scaling graphs are based on the calculation of the speedup factor for
different number of CPU’s or nodes

Speedup = t(1)/t(N), (4.1)

where t(1) is the time it takes to run the task on 1 CPU and t(N) is the time it
takes to run the task on N -CPU’s.

The left plot of figure 4.5 shows the speedup against the CPU’s number on
a single node. Up to 10 CPU’s the real speedup, blue symbols, coincides with

2See appendix A.5
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the ideal speedup, red dashed line. After this limit, the real speedup is reduced
with respect to the ideal case, with a final speedup of 26 compared to the ideal
speedup of 40. The right plot of figure 4.5 shows the speedup against the number
of nodes. From the first to the third node the speedup is linear, then it deviates
for three to four nodes, to appear again linear for four nodes. The final speedup
is 120 compared to the ideal speedup of 240.

Figure 4.5: In the left plot, strong scaling against CPU’s on a single node. In the
right plot, strong scaling for 1 to 6 nodes. Since the nodes have 40 CPU’s each, the
plots cover the strong scaling from 1 to 240 CPU’s. The red dashed lines represent
the ideal speedup, while the blue lines represent the real speedup.

Figure 4.6 shows the efficiency corresponding to the strong scaling graphs in
figure 4.5. The left plot shows the efficiency against the CPU’s on a single node,
while the right plot shows the efficiency against the number of nodes. Between 1
and 3 nodes the efficiency stays close to 0.6 before it drops down to 0.5 for four
to six nodes. This shows that going from three to six nodes, thus doubling the
computational power, only leads to an increase of 2

3 . Depending on the demand
and cost of the added computational power, it could therefore be better to run the
job on 3 nodes only.
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Figure 4.6: These plots shows the efficiency of the simulations used to create the
strong scaling plot in figure 4.5. The left plot shows the efficiency against number
of CPU’s used on a single node, while the right hand plot shows the efficiency
against nodes’ number. Each node has 40 CPU’s so in total the plots show the
efficiency running the same simulation on 1 to 240 CPU’s.
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4.3 Thermal conductivity of Graphene by AEMD

In this section I am explaining the main thesis results. In the first subsection I am
showing how my simulation settings have successfully reproduced the data from
previous works [8, 22]. The second subsection is dedicated to the calculation of
thermal conductivity for different graphene nanoribbons samples.

4.3.1 Reproduction of the previous literature

The reference literature for my thesis were the work of Barabarino and others
[8, 22]. The results and conclusion of their investigations have been presented in
Chapter 2. Figure 4.7 has been extracted from the paper [8], and it presents their
thermal conductivity prediction for different length of the sample. The length of
the sample is also the direction of the applied gradient by AEMD approach. In par-
ticular, I have considered the thermal conductivity prediction for a 830nm long
and 0.7nm wide Graphene sample. According to the graph, k = 547.55 W K−1m−1

[22]. I have performed five distinct simulations for an identical starting sample,
and, I have obtained a thermal conductivity k = 550.727 W K−1m−1 with a stand-
ard deviation of 12.527. This result is in very good agreement with Barbariano’s
result, and gives good reason to believe that my implementation of the AEMD
method has been done correctly.
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Figure 4.7: Modification of Figure 4.6 in [22]. Respect to the original data, I have
added my simulation point, blue cross. The red squares and the green triangles
are the points from the original Barbarino’s figure.
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Figure 4.8: A single layer of the honeycomb structure of graphene. In this work
this specific one is called a 2 strip zigzag graphene nano ribbon, or 2 strip ZGNR
for short.

4.4 Thermal conductivity of quasi-1D system

In this section I am presenting my simulation study to investigate the dimensional-
ity effect on the thermal conductivity. I have calculated the thermal conductivity
for a 2D Graphene sample and I have stripped out "a line of carbon atoms" se-
quentially reducing the width of the sample to reach the limit configuration that
contained only one hexagonal honeycomb lattice series as in figure 4.8. The start-
ing strip for the armchair ribbons contains 18960 atoms and has a dimension of
2016nm× 0.3nm, while the starting strip for the zigzag ribbons contains 16320
atoms and has a dimension of 2004nm× 0.2nm. There are 9 ribbons for each of
the armchair and zigzag configurations, and they consist of 2 to 10 strips. The
data discussed in this section have been obtained post-processing the data from
AEMD simulations at T = 300K as discussed in section 2 and 3.

4.4.1 From 2D to 1D

I have decided to simulate hydrogen-free graphene ribbon, since experimental and
theoretical calculations [24, 43] provided confirmation the non-functionalized
edges can exist. I have noticed that for the limit sample consisting of 1 strip, the
armchair and zigzag orientation of the carbon atoms breaks down. This happens
because there is little rigidity in a single strip, so as the atoms vibrate and the
bonds stretch or contract, the bonds reorient themselves until they end up on op-
posite sides of the carbon atom, forming a long chain of carbon atoms. This long
chain has a lot higher values for k than the 2 strip ribbons, leading to plots of k
not showing other features than the difference between 1 and 2 strips as can be
seen in figure A.1 in the appendix. The following plots of k values presented in
this section will therefore not include the 1 strip results.

In figure 4.9 there is a plot of k values for 2µm long hydrogen-free graphene
ribbons built up by 2 to 10 strips. The ribbons that are built in the armchair config-
uration has carbon-carbon bonds that are parallel to the direction of the heatflow,
while the ribbons built in the zigzag configuration has no carbon-carbon bonds
that are parallell to the heatflow.

Figure 4.9 shows the comparison of the thermal conductivity for Armchair
Graphene Nano Ribbons (A-GNR)and Zizag Graphene Nano Ribbons (Z-GNR)
configurations against the number of strips. The calculation have been performed
with the AEMD approach as explained in Section 2. The graph clearly shows that
the thermal conductivity of Z-GNR is higher for than the A-GNR configurations,
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the same conclusion was reached by another Non equilibrium MD study [43], that
applied NEMD with the Tersoff potential. However, the study is referring to much
wider samples, and this could maybe justify the absolute value of their TC pre-
dictions higher then mine, despite the fact the order of magnitude is consistent.
Furthermore, the order of magnitude of k is also in well agreement with the ex-
perimental data presented in figure 2.4, and in papers [24, 26] that are discussed
in section 2.

Figure 4.9: The decrease in k when strips are removed in the armchair configur-
ation, is a lot smaller than the increase in k in the zigzag direction.

In figure 4.10 the average length of bonds in the direction of heat flow is
plotted for the different ribbons. These bond lengths have been calculated by the
distances between atoms in a strip close to the center of a ribbon, and therefore
does not tell us anything about the bond length in the other directions. As strips
are removed from the ribbons, the bond lengths starts to increase. For the 1 strip
case the zigzag and armchair structure of the strips collapses, and they end up as
long strings of carbon that coil around in the simulation box. At this point there is
no difference between zigzag and armchair, something that is underlined by the
bond lengths becoming identical.
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Figure 4.10: Bond length at different equilibrated zigzag and armchair edge-
configurations containing different number of strips.

This change in bond length leads to the overall length of the samples, chan-
ging, from the initial configuration of 2004.14nm for the zigzag and 2016.4nm
for the armchair before the simulations begin, to some higher value that has to
be calculated. The final calculated lengths of the samples are presented in figure
4.11.

The largest change in length going from 10 strips to 2 strips happens for the
armchair orientation. This is because the armchair orientation has 18960 atoms
per strip while the zigzag orientation only has 16320 atoms per strip, so when
the two different orientations undergo an identical growth in bond length, the
armchair orientation changes the most.
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Figure 4.11: In this figure the total length expansion of the different ribbons is
plotted. The red dotted line represent the initialized length of the ribbons. The
blue and the green line represent how much the ribbons have grown in length
during the simulation.

One very interesting observation can be made when looking at figure 4.11 and
4.10 and taking note of the fact that the bond-length in the length direction de-
creases dramatically at the same time as the lenght of the ribbons increases when
going from 3 strip ribbons to 2 strip ribbons. This is true for both configurations of
the ribbon. This can only happen if the honeycomb structures becomes deformed,
and the angles of the bonds change.
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Conclusion

In this thesis, Molecular Dynamics (MD) technique with the Approach to Equilib-
rium Method (AEMD) have been used to investigate how the thermal conduct-
ivity of graphene is affected by dimensionality, specifically, the effect of reducing
the width dimension, L y , of a 2D graphene nanoribbons (GNR) of side length,
Lx , equal to 2µm until a quasi 1-dimensional sample is reached, i.e. Lx >> L y .
Throughout the work of this thesis more than 300 independent Molecular Dy-
namics simulations have been completed, more than 50 gigabytes of unique data
has been generated, 4037 lines of python code has been written, and most of the
figures I have used have been created by myself using Inkscape. In addition to
this, every Molecular Dynamics simulation of graphene nanoribbons presented in
the results of this thesis, have had their output data files inspected using OVITO
(Open VIsualization TOol), to verify that there are no defects along the edges of
the ribbons. In the thesis, there are the results for 20 GNR , 10 A-GNR and 10-GNR.
However, I have also inspected many ribbons that turned out to have defects and
other technically problems, so the real number of simulation performed is actually
much larger.

I have learned how to use the Approach to Equilibrium method to run Mo-
lecular Dynamics simulations of graphene that successfully reproduced data from
previous work by Barbarino [8][22]. In addition to successfully reproducing the
data, I have also been able to reproduce the temperature profile of AEMD simu-
lations as it is reported in [6][7][22]. I have optimized the simulation-time from
the 2-3 days it took at the start of this thesis work, to now being able to run them
in 3 hours using the full performance available on NTNU’s physics departments
server called HPC-2.

The first part of the main result of this thesis is that the thermal conductivity
of A-GNR, see 3.9, is decreasing as the graphene ribbon strips are ripped out from
the initial 9 hexagonal layers or 10 strips configuration of hexagonal structures
to just the 1 hexagonal layer (2 strips) configuration. This is not a simple linear
function, but this could be due also to average issue. The thermal conductivity
decreases by 27.7% from the 10-strips configuration to the 2-strip.

The second part of the main result of this thesis is that for nanoribbons in the
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zigzag configuration 3.10, the thermal conductivity increases as the ribbon goes
from 9 hexagonal layers in the lateral direction (10 strips) to 1 hexagonal layer (2
strips). However, it is slightly decreasing from 9 layers to 5 layers, before it slowly
increases so that 3 layers only has 3.4% lower thermal conductivity than the 9
layers. From 3 to 1 layers the thermal conductivity increases drastically, such that
1 layer has 99.0% higher thermal conductivity than the 9 layers ribbon.

Figure A.1 shows the comparison of the thermal conductivity for Armchair
Graphene Nano Ribbons (A-GNR)and Zizag Graphene Nano Ribbons (Z-GNR)
configurations against the number of strips. The graph clearly shows that the
thermal conductivity of Z-GNR is higher than for the A-GNR configurations, sim-
ilar conclusions and order of magnitude are presented into another Non equilib-
rium MD study [43] and mentioned in different experimental studies [24, 26].

I have also observed that both the configurations of the graphene nanorib-
bons increases in the direction of the gradient applied as the number of layers
of hexagonal structures is reduced. This is an effect of the average length of the
carbon-carbon bonds that increases when going from 9 layer ribbons to 2 layer
ribbons. Drastically, the thermal conductivity decreases from 2 layer ribbons to the
single layer ribbon. The only way both of these facts can be true is if the angles of
the carbon-carbon bonds also changes a lot from the 2 layer ribbon to the 1 layer
ribbon. Exactly how this change in angles happens, and why, could be something
to explore in further work.
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Appendix

A.1 k plotted for 1-10 strips of both armchair and zigzag.

Figure A.1 shows the comparison of the thermal conductivity for Armchair Graphene
Nano Ribbons (A-GNR)and Zizag Graphene Nano Ribbons (Z-GNR) configura-
tions against the number of strips. The 1 strip cases looses their structure since
they have no complete hexagonal structures, and thus limited rigidity. The mono-
atomic chains they turn into, have a lot higher k values than the ribbons, thus
blowing up the y-axis and making other details of the plots hard to see. Because
of this it is only presented in the appendix.
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Figure A.1: Thermal conductivity against number of strips. Those data have been
extracted from simulations of 2µm long ribbons of graphene in the armchair and
the zigzag edge-configuration.
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A.2 Thermal diffusivity k̄ for armchair simulations

The initialized length of all strips in the armchair configuration was 2016.4nm.
As the system is heated up and equilibrated, this length changes. The numbers
presented in this table are the lengths calculated along the ribbons in its final
configuration at the end of the simulation. Details of how this was done is covered
in chapter 3.6.3.

# of strips k̄[m2s−1] Uncertainty Length [nm]

1 131.432 ±0.2506 2532.38
2 4.6156 ±0.0013 2074.10
3 4.4942 ±0.0008 2049.68
4 4.5208 ±0.0008 2042.63
5 5.1227 ±0.0009 2036.74
6 5.2176 ±0.0006 2034.07
7 5.2327 ±0.0007 2031.72
8 5.6187 ±0.0007 2030.95
9 5.9389 ±0.0008 2030.27
10 6.2477 ±0.0007 2029.67

Each strip in the armchair configuration consists of 18960 atoms.
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A.3 Thermal diffusivity k̄ for zigzag simulations

The initialized length of all strips in zigzag configuration was 2004.1nm. As the
system is heated up and equilibrated, this length changes. The numbers presented
in this table are the lengths calculated along the ribbons in its final configuration
at the end of the simulation. Details of how this was done is covered in chapter
3.6.3.

# of strips k̄[m2s−1] Uncertainty Length [nm]

1 105.577 ±0.2176 2158.35
2 18.0216 ±0.0196 2096.50
3 11.001 ±0.0062 2065.27
4 8.5462 ±0.0031 2049.22
5 8.4928 ±0.0018 2044.68
6 7.8155 ±0.0023 2031.50
7 7.9321 ±0.0016 2025.85
8 8.1643 ±0.0016 2022.35
9 8.6489 ±0.0017 2029.94
10 8.7147 ±0.0019 2018.41

Each strip in the zigzag configuration consists of 16320 atoms.
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A.4 Final configuration of 1 strip armchair ribbon

In figure A.2 the final configuration of the 1 strip armchair configuration can be
seen. Since this strip is only 1 atom wide and 18960 atoms long, it is hard to see
the details when it is this small. However, it is still possible to get some idea of the
general shape. There are no places where a carbon atom is bound to more than
2 atoms. Some places where it looks like this is the case, it is just an artifact of
the shape moving in or out of the plane of the paper. This has been verified by
examining the strip in 3 dimensions by use of the visualisation software OVITO.

Figure A.2: This is a screenshot from OVITO showing the end configuration of
a single armchair strip after a full AEMD simulation. The details are very hard
to see with this resolution, however it is possible to get some idea of the general
shape
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A.5 REBO performance on hybrid architecture CPU

At the time of writing this masters thesis hybrid architecture CPU’s is a fairly new
technology in x86 based systems. Hybrid architecture in Intel based systems cur-
rently has the CPU built up by two different types of cores, the performance cores
(P-cores) and the efficiency cores (E-cores).

The P-cores are physically larger than the E-cores, runs at higher clock speed
and supports turbo, i.e. they clock to higher clock speeds if there is thermal head-
room. In addition the P-cores have support for Hyper-Threading, which means
they are able to run 2 threads at once. In short the P-cores are designed to max-
imize instructions per cycle inside the thermal limits of the CPU.

E-cores are built different and are smaller on the chip, run lower clocks and
are in general designed to maximize performance per watt. This means they are
a lot slower than E-cores, but they can still help accelerate workloads that are
core-hungry.

To test how well MD simulations of the REBO potential runs on a hybrid ar-
chitecture CPU, I built a 8 strip AGNR that was 2µm long, and ran the first 5000
steps of my implementation of the AEMD method on a Intel 13900KS CPU. As of
writing this thesis, the 13900KS is the highest performance consumer CPU offered
by Intel. This CPU can run up to 32 threads at once, so I had to repeat the test
32 times, using the omp flag in LAMMPS to add one extra CPU-thread each time
I ran the simulation.

The results can be seen in figure A.3. It is clear that the simulation speed
scales well while adding the 8 P-cores. Adding the next 16 E-cores has roughly the
same scaling as adding 4 P-cores, so scaling on E-cores is not great. The scaling is
negative when adding extra threads to the P-cores by utilizing Hyper-Threading.
This is due to the threads doing very similar calculations, thus ending up waiting
for the same resources on the P-core instead of being simulated at the same time.
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Figure A.3: Simulation of a 8 strip AGNR consisting of 151680 atoms using the
REBO potential and the omp accelerator package, on an Intel 13900KS processor.
P-cores are the performance cores in the CPU while E-cores are the efficiency
cores. Hyper-Threading is the second thread that can be run in each of the P-
cores.

A.6 Effect of using the "omp" flag in LAMMPS when run-
ning simulations with SLURM

The HPC-2 server I used for most of my simulations ran the SLURM workload
manager. To run a job on this server a job script has to specify the partition the
job is to be run on, how many of the partitions nodes should be used, how many
tasks should be run per node, how many CPU’s should be used per task, what file
should be run, and so on.

It is the Message Passing Interface (MPI) standard that is used when the num-
ber of tasks per node is set. This divides the nodes resources equally among the
tasks, i.e a node with 20 CPU’s and 100 GB memory running 2 tasks will be set up
in such a way that each task always has 10 CPU’s and 50 GB memory available.

When "CPU’s per task" is set, this is set by the OpenMP standard which shares
the resources between the running threads. If we continue the last example and
say that the job script asking for "2 tasks per node" also asks for "8 CPU’s per task"
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then the 20 CPU, 100GB memory node will be divided into two groups of 10 CPU’s
and 50GB, and each of the task will use 8 out its 10 available CPU’s. These 8 CPU’s
will share the 50GB of memory that is allocated to the task by the MPI.

When all of this can be set in the job script in SLURM a natural question (at
least for someone learning this) is what effect does the omp flag in LAMMPs
have when running jobs where the number of CPU’s per task (omp), and
number of tasks per node (ntask), is already defined?

Figure A.4: The lines of the same color was run with the same settings for ntask
and "cpu per task" (omp) in the SLURM job script. The difference between them
is that the dashed lines are from LAMMPS inputs without the omp accelerator
package activated, while the solid lines have omp flag in their LAMMPS script.
Other than that they are identical.

The answer can be seen in figure A.4 which tells us that if a job in SLURM is
set to run as multiple tasks, then LAMMPS will run in parallel without the need
for any flags in the input script. However, if the job in SLURM also asks that each
task should use more than 1 CPU, then the presence of the omp flag in LAMMPS
has a massive impact on the performance. When the omp flag is activated in a
LAMMPS input script, it should always be set to ask for the same number of omp
as the SLURM job script asks for in the "CPU’s per task" line.
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