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ABSTRACT

In junctions between superconductors and ferromagnets, superconducting
correlations may penetrate a short distance into the ferromagnet; this is
the superconducting proximity effect. Heterostructures exhibiting the su-
perconducting proximity effect may under the right conditions generate
spin-polarized superconducting correlations that penetrate far into the ferro-
magnet; these are the long range triplet correlations. Supercurrents carried
by long range triplets carry net spin, and may allow us to manipulate the
magnetic structure of materials without the heat-loss of conventional elec-
tronics.

Introducing curvature to these heterostructures is a candidate for the
generation of long range triplet correlations, and comes with the advantages
that it is in principle dynamically tuneable and not directly dependent on
intrinsic properties of the material.

In this thesis, we investigate the properties of curved superconductor-
ferromagnet heterostructures in the diffusive regime. We reformulate the
Usadel equation with a non-zero spin orbit field for 1D planar curves, as well
as the quantum kinetic equations for investigating the non-equilibrium prop-
erties of the system. Furthermore, we introduce an arc length parametrization
for a class of curves of non-uniform curvature to investigate the effects of
non-uniform curvature on the system.

Analysis of the equilibrium supercurrent predict a curvature-induced
amplification of the total charge current, that depending on the symmetry of
the curved region the addition of curvature could induce a 0− π transition.
The 0− π transition is also indicated to appear at different amplitudes of
curvature depending on the symmetry of the curved region. A curvature
induced 0 − π transition is in principle dynamically tuneable, and thus
promising for spintronic applications.

Analysis of the spin accumulation of a curved wire revealed curvature de-
pendent spin accumulation profiles that could be further manipulated by an
applied voltage bias; this may open new degrees of freedom in manipulating
spintronic devices. The framework may also facilitate further investigation
into non-equilibrium effects in superconductor heterostructures.
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SAMMENDRAG

I strukturer med superledere og ferromagneter kan superledende korre-
lasjoner lekke et lite stykke inn i ferromagneten; dette er den superledende
proksimitetseffekten. Hybridsystemer hvor denne effekten er signifikant kan
ved de rette omstendighetene gi opphav til spinn-polariserte superledende
korrelasjoner som penetrerer et langt stykke inn i ferromagneten. Dette er
lik-spinn triplett korrelasjoner. Superstrømmer av disse lik-spinn triplettene
har netto spinn, slik at de kan la oss manipulere den magnetiske strukturen
til materialer uten varmetapet fra konvensjonell elektronikk.

Å krumme disse hybridstrukturene kan være en måte å generere lik-spinn
triplett korrelasjoner. Krumning har fordelen at den i prinsippet er dynamisk
justerbar, og ikke avhengig av iboende egenskaper i materalet.

I denne avhandlingen undersøkes egenskapene til krummede superleder-
ferromgnet hybridstrukturer i regimet med diffusiv transport. Vi refor-
mulerer Usadel-likningen med et endelig spin-bane juster-felt for endimen-
sjonale kurver i planet, i tillegg til kvante-kinetiske likninger for å undersøke
ikke-likevektsegenskapene til systemet. Videre introduserer vi en buelengde
parametrisering av en klasse kurver, slik av vi kan studere effekten av ikke-
uniform krumning.

Analyse av likevekt-superstrømmene viser en forsterkning av den to-
tale ladningsstrømmen dersom systemet krummes. Avhengig av den ge-
ometriske symmetrien på systemet kan overgangen gjennomgå en 0−π over-
gang. Denne 0− π overgangen skjer ved forskjellige krumningsamplituder
avhengig av symmetrien på den krummede regionen. En krumningsindusert
0− π overgang er i prinsippet dynamisk justerbar, og dermed lovende for
anvendelser i spintronikk .

Analyse av spinn-akkumulering i en krummet ledning indikerer krum-
mingsavhengige spinn-akkumuleringsprofiler, disse kan videre manipuleres
ved å sette en spenning på systemet. Dette kan gi flere frihetsgrader for å
manipulere kretselementer i spintronikk-systemer. Rammeverket kan også
fasilitere videre undersøkelser av ikke-likevektseffekter i hybridstrukturer
med superledere.
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NOTAT ION AND UNITS

Largely, this thesis will adhere to the conventions in physics — and most
mathematical quantities are introduced when they appear in the text.

Scalar quantities are written using a different typeface than the body
copy, as such a,b, c,α,β,γ . Vector quantities are usaually written with a
bold font in the same typeface a,b, c,α,β,γ. The exception is the quantities
in spin-, Nambu ⊗ spin- and Keldysh-space, which are written with · , ·̂
and ·̌ respectively. At times, quantities of incompatible spaces are added,
subtracted of multiplied, in which case the quantity of the lowest dimension
should be raised to the right dimension by means of the Kronecker product
with the relevant identity matrix.

There are some quantities and operations that appear throughout the text.
The Pauli matrices are given as

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 ,

σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 ,

with τ1,2,3 being the corresponding matrices for Nambu space. Furthermore,
we will mark quantities in spin- , Nambu⊗spin and Keldysh space with
· , ·̂ , ·̌ respectively. At times, we will simplify some of this notation as to
not clutter the equations – this will be made clear in the context.

As is convention, we will be using natural units with

c = ε0 = µ0 =  h = kB = 1.

Here, c is the speed of light, ε0 is the vacuum permittivity, µ0 is the vacuum
permeability,  h the reduced Planck constant and kB Boltzmann’s constant.
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1 INTRODUCT ION

At its discovery in the early twentieth century, superconductivity was a
phenomenon right at the fringes of the applied natural sciences; the temper-
atures required for the phenomenon to manifest were impractial and the
phenomenon largely not understood for decades. Today however, supercon-
ductors have found applications as electromagnets[1], integral parts of precise
measurement devices [2] and as a candidate materials in unconventional
computing systems.

Spesifically, we are concerned with superconducting spintronics [3, 4]. Spin-
tronics, in its most general form, considers manipulating the degrees of
freedom of a system related to spin. For a more concrete picture, one might
picture spin currents replacing charge currents in logical circuits.

The effects present in a spintronic system can be enhanced by introducing
superconductivity, e. g. it is possible to spin polarize a supercurrent. These
have the potential to carry net spin — crucially without the heat loss of
a conventional (spin polarized) current. Spesifically, we are in this thesis
concerned with the generation of such spin polarized supercurrent in curved
superconductor-ferromagnet heterostructures.

Taking a step back, superconductivity and magnetism are in some sense
antagonistic phenomena. Superconductors expel weak magnetic fields, and
strong magnetic fields makes materials transition away from the supercon-
ducting state. However, on the mesoscopic scale, the phenomena may coexist.

In junctions between superconductors and ferromagnets, electron pairs
from the superconductor of zero spin may be able to penetrate far into the
ferromagnet if the electron pair is converted to the state where both electron
spins align with the field — we refer to the former configuration as the spin
singlet state, and the latter as the equal spin triplet or long range triplet state.
The equal spin triplets come with a hope of dissipationless net-spin currents;
in turn this may allow us to manipulate the magnetic structure of materials
without the heat-loss of conventional electronics.

There are several conceptual ways of generating the long-range triplets.
Ideally, such a method should be easy to implement experimentally and
allow for precice control of the long range triplet current. Curved structures,
which is the subject of this thesis, may be a candidate to fill some of the gaps
of these other concepts.

1.1 Fundamental concepts

superconductivity In 1911, while measuring the temperature de-
pendence of resistivity in mercury, H. Kamerlingh-Onnes found the sample
resistance to disappear below ∼4 K; this phenomenon is called supercon-
ductivity [5]. More precicely, superconducting materials exhibit no electric
resistivity and expel magnetic flux below a critical temperature, Tc – this is
the Meissner effect.

1
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Figure 1.1: Density of states in a bulk bcs superconductor. The horisontal axis gives
the energy level, ε, with ε = 0 being the Fermi level. The vertical axis
gives the density of states with N0 being density of states in a normal
metal at the Fermi level, N0. In a bulk superconductor, a gap of size 2|∆|
appears around the Fermi level.

We are concerned with conventional bcs superconductors [6]. Here, an
attractive potential between two electrons creates bound electron pairs called
Cooper pairs; these in turn form a condensate. bsc superconductors exhibit
s-wave symmetry, meaning the order parameter is spherically symmetric in
momentum space. Also, the electrons forming a Cooper pair are of opposite
momenta and spin.

Given a condensate of Cooper pairs, we may perform a mean-field ap-
proximation, allowing us to characterize it using a complex order-parameter,
∆ = |∆| · eiφ. We sometimes refer to |∆| as the superconducting gap1 - as a gap
of magnitude |∆| opens at each side of the Fermi level in a bulk superconduc-
tor. We refer to φ as the superconducting phase. For a single superconductor,
the phase may be removed from the Hamiltonian of the system by means
of a U(1) gauge transformation, but a phase difference can give rise to a
supercurrent in a junction [7].

For a more thorough introduction to superconductivity, a textbook like ref.
[7] may be a good place to start.

ferromagnetism In a ferromagnetic material, the magnetic moments
of the materials tend to align; spesifically, the exchange interaction favors the
alignment of the electron spins [8]. Analogous to the superconductor, the
ferromagnetic state can be characterized by an order parameter, h, which we
refer to as the exchange field. As the material is heated to the Curie-Weiss
temperature, ferromagnetic order vanishes and the exchange field becomes
zero [9]. In a mean-field approximation the exchange field couples to the
electron spin, creating spin-dependent energy levels. We refer to this as the
spin-splitting of the (electron) energy levels [8, 10].

proximity effect When a superconductor is placed in proximity to a
(ferromagnetic) metal, the Cooper pairs of the superconductor may in some

1 The term superconducting gap is sometimes used to denote ∆. For clarity, the absolute magni-
tude of the gap is 2∆.
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sense leak into the metal. This induces superconducting-like behaviour in
the metal, and is ultimately the main focus of this thesis.

Spesifically, we can understand the effect in terms of Andreev reflection [11,
12]. Here, on the metal side of the interface, an electron hits the interface and
a hole is retroreflected and a Cooper pair is formed inside the superconductor.
The process is reversible, in the sense that we may consider a Cooper pair
meeting a hole at the interface. The Cooper pair and hole are annihilated,
and the hole retroreflects an electron.

The Andreev reflection induces superconducting like behaviour in the
magnetic region. This is manifested in, e. g., that a small gap opens up in
the density of states – resembling that of a superconductor. Furthermore,
the states induced in the metal by the superconductor, the Andreev states,
may carry e. g. supercurrents. However, over longer distances, these states
decohere and the effects of the superconductor disappears. In the absence of
a spin splitting field, the superconducting correlations decay over a distance
called the (superconducting) coherence length, ξ, which is typically on the order
of ∼ 10− 1000 nm, depending on the material, e. g., the temperature. [8]. With
magnetic order present the spin structure of the superconducting correlations
determine the rate of the decay, and hence the coherence length.

In a conventional bcs superconductor, the induced state is of the spin-
singlet type, given as |↑↓〉− |↓↑〉2; these carry no spin and decohere rapidly in
the presence of an exchange field, h. A simple picture is, as written in the
introduction, that an exchange field tends to align spins – which is ultimately
incompatible with the singlet state. For a more detailed picture, the exchange
field splits the energy levels of the electrons forming the Cooper pair. This in
turn gives the Cooper pair a finite, i. e. non-zero, center of mass momentum,
which is moulated, i. e. it decays, in real space. [13]

Explicitly, the splitting of the energy levels induces an fflo
3-like state,

where each of the terms pick up the opposite phase factor as it penetrates
into the ferromagnet [13]. This generates a superconducting correlation of
the opposite spin or short range triplet, |↑↓〉+ |↓↑〉, state – and converts said state
back to the singlet state oscillatory. We refer to this process as spin mixing.

While the projection of the opposite spin triplet onto the spin quantization
axis is zero, it does have a net spin if projected onto some non-colinear
spin quantization axis. Explicitly, the state |↑↓〉+ |↓↑〉 becomes some linear
combination of |↑↑〉 and |↓↓〉 states along some non-colinear spin quantization
axis. We refer to these states as equal spin triplets or long range triplets. If, e. g.,
the |↑↑〉 state aligns with the exchange field, the energy levels of the electrons
are not split by the exchange field – meaning they are able to penetrate far
into the ferromagnetic regions.

A conceptually simple way to change the spin quantization axis would be a
multilayered structure, with non-colinear magnetization of the ferromagnetic
layers [16, 17]. Another approach is that of refs. [18, 19], utilizing a helical
magnetization of the magnetized region. For a qualitative discussion of the
generation of spin polarized supercurrents from superconductor-ferromagnet
structures, see e. g. ref. [20].

2 These states are to have a normalization factor of 1/
√
2 This is a qualitative discussion, so we

ignore these factors.
3 fflo is an acromym for Fulde, Ferrell, Larkin, Ovchinnikov, who theorised the state [14, 15].



4

As a final note, the proximity effect is reciprocal; the superconductor is
depleted of Cooper-pairs when placed in contact with, e. g., a metal. We will
not consider this reverse effect, which is negligible for interfaces with low
transparency.

spin orbit coupling In superconductor-ferromagnet sturctures, spin
orbit coupling may also be a candidate for the generation of long range
triplets [21, 22].4

Spin orbit coupling refers to the coupling of the quasiparticle momentum,
p, to its spin σ. A simple picture comes from considering an electron moving
in an inhomogeneous potential. Performing a Lorentz transformation to the
rest frame of the electron creates a term in the electron Hamiltonian that is
linear in both spin and momentum.

There are different mechanisms for having spin orbit interactions. The
examples typically presented in this context are those of Rashba and Dressel-
haus spin orbit coupling. Rashba spin orbit coupling stems from some broken
symmetry along one axis – typically near an interface in a thin structure
[24]. Dresselhaus spin orbit coupling appears in materials where the crystal
structure lacks inversion symmetry, with Dresselhaus’ spesific example being
the zinc blende structure [25].

1.2 Structure and scope

In this thesis, we are considering diffusive superconductor–ferromagnet with
in-plane curvature. More spesifically, we are investigating how curvature
effects density of states, equilibrium and non-equilibrium spin accumulation
and current.

In the second chapter, we are recapitulating quasiclassical theory for
superconductor–ferromagnet systems, arriving at the Usadel equation. The
third chapter introduces curved systems and the necessary notation for
desicribing them, while fourth chapter adapts the Usadel equation to these
systems both in and out of equilibrium. In the fith chapter, we are introducing
the classes of curves we are to study as well as the physical observables
which we are to study. These geometries are, in addition to the straight
default case, a circular arc and some with curvature functions given by linear
combinations of logistic functions, while the physical observables are the
equilibrium current and magnetization in and out of equilibrium. We show
our findings in chapter 6, and summarise in chapter 7.

4 While we will be considering only diffusive structures, this also holds in the ballistic regime
[23].



2 QUAS ICLASS ICAL THEORY FOR SUPERCON-
DUCT ING PROXIM ITY SYSTEMS

This chapter introduces the notation and main assumptions of quasiclassical
theory for superconducting proximity systems.

The motivation is that most observables can be calculated from the Green’s
function of the system – meaning we should be able to estimate observables
by solving the equation of motion for the Green’s function.

Deriving such an equation, and writing it in a tractable form, is ultimately
out of the scope of this thesis. For the brief version, we start with free
electrons, where finding the exact Green’s function is not very difficult. We
may write an equation for first order correction to the Green’s function of the
free electrons, this will be Gor’kov’s equation [26]. However, solving Gor’kov’s
equation is impractical for most systems. The two key assumptions to arrive
at some tractable form of an equation of motion will be the quasiclassical
approximation[27, 28] — where we confine the problem to be close to the
Fermi surface and integrate over the most rapid (spatial) oscillations of
the (exact) Green’s function — and that of diffusive transport. Applying the
quasiclassical approximation gives the Eilenberger equation [29], while the
additional assumption of diffusive transport gives the Usadel equation [30].

2.1 Green’s Functions

For very simple systems, it may be helpful to look at the Green’s function as
the inverse (operator) of the differentiation operator. This picture ceases to
be helpful for more complicated systems. Another, more generally applicable
picture, is to define the Green’s function as the expectation value of a product
of field operatores

Gσ1σ2(x1, x2) = −i〈n|ψ̂σ1(x1)ψ̂
†
σ2

(x2)|n〉. (2.1)

Here, xj is the spatial and temporal coordinates, ψ̂ the field operator, σj a
spin-index and |n〉 some quantum state. The typical way to think about these
is that we inject some particle at x2, have the system propagate in time, and
attempt to remove the particle at x1. This comes with the caveat that particles
are interchangable; we have no guarantee that we are attempting to measure
the same particle. A more accurate picture may be that the Green’s function,
G, is a measure associated with probability of a particle propagating from
x2 to x1.

For superconductor-ferromagnet systems, we chose, analogous to ref. [31],
field operators of the form

Ψ̂j =


ψ̂j↑

ψ̂j↓

ψ̂
†
j↑

ψ̂
†
j↓

 , Ψ̂
†
j =

(
ψ̂
†
j↑ ψ̂

†
j↓ ψ̂j↑ ψ̂j↓

)
, (2.2)

5
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where j is a coordinate index, i. e. ψ̂jσ = ψσ(xj). These act on Nambu⊗
spin space1, meaning ψ̂†jσ is the creation operator for an electron with spin
σ. Note that this is different from e. g. refs. [27, 31], which do not concern
themselves with the spin stucture — meaning the field operators act only on
particle-hole space.

We will not be writing Gor’kov’s equation in terms of eq. (2.1), but rather
in terms of the retarded, advanced and Keldysh Green’s functions, ĜR, ĜA, ĜK

[31–33]. We define them as

ĜR = −iτ̂3

〈
Ψ̂1Ψ̂

†
2 +

(
Ψ̂
†T
2 Ψ̂

T
1

)T 〉
θ(t1 − t2), (2.3a)

ĜA = +iτ̂3

〈
Ψ̂1Ψ̂

†
2 +

(
Ψ̂
†T
2 Ψ̂

T
1

)T 〉
θ(t2 − t1), (2.3b)

ĜK = −i

〈
Ψ̂1Ψ̂

†
2 −

(
Ψ̂
†T
2 Ψ̂

T
1

)T 〉
, (2.3c)

where θ(t) is the Heaviside step function, and ti the temporal coordinate.
The retarded and advanced Green’s functions are causal and anti-causal
respectively, i. e. for the advanced Green’s function we attempt to remove the
particle at a later time than we earlier it, having it propagating backwards
in time. The Keldysh component gives information on the occupancy of the
states, although in a convoluted way. This can be realized from the fact that
each of the terms in eq. (2.3c) look similar to a single particle density operator
if the field operators act at the same time and position.

There is some redundancy in the definition of the Green’s functions,
which relates to the physical interpretation of the components of the Green’s
function. We start by considering eq. (2.2) and the matrix product

Ψ̂1Ψ̂
†
2 =


ψ̂1↑ψ̂

†
2↑ ψ̂1↑ψ̂

†
2↓ ψ̂1↑ψ̂2↑ ψ̂1↑ψ̂2↓

ψ̂1↓ψ̂
†
2↑ ψ̂1↓ψ̂

†
2↓ ψ̂1↓ψ̂2↑ ψ̂1↓ψ̂2↓

ψ̂
†
1↑ψ̂
†
2↑ ψ̂

†
1↑ψ̂
†
2↓ ψ̂

†
1↑ψ̂2↑ ψ̂

†
1↑ψ̂2↓

ψ̂
†
1↓ψ̂
†
2↑ ψ̂

†
1↓ψ̂
†
2↓ ψ̂

†
1↓ψ̂2↑ ψ̂

†
1↓ψ̂2↓

 . (2.4)

Here, the lower half is essentially the conjugate of the top half. This re-
dundancy carries over to eq. (2.3), and we rewrite the Green’s functions,
ĜA, ĜR, ĜK as

ĜR =

 GR FR

(FR)∗ (GR)∗

 , (2.5a)

ĜA =

 GA FA

(FA)∗ (GA)∗

 , (2.5b)

ĜK =

 GK FK

−(FK)∗ −(GK)∗

 . (2.5c)

1 Nambu space is used interchangably with particle-hole space.
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Here ·∗ means elementwise conjugation. The entries are essentially just
encoding the spin-structure with

GA,R,K =

GA,R,K
↑↑ GA,R,K

↑↓

GA,R,K
↓↑ GA,R,K

↓↓

 , (2.6a)

FA,R,K =

FA,R,K
↑↑ FA,R,K

↑↓

FA,R,K
↓↑ FA,R,K

↓↓ .

 (2.6b)

The entries of these matrices can be understood in terms of the "simple"
picture for the Green’s functions presented at the the beginning of the section.
Note that for the F-components, i. e. the off-diagonal block of eq. (2.4), two
creation or destruction operators are paired. We refer to the F-components
as anomalous Green’s functions — this is the part of the Green’s function that
describes the dynamics of the Cooper pairs, i. e. we expect them to be zero
without the presence of superconducting correlations. For a more thorough
derivation of the fundamentals, see refs. [27, 31]. For less detail oriented
explanation of the fundamentals, see refs. [10, 34].

2.2 Quasiclassical Green’s functions

The main approximation to arrive at a tractable form of the equation of
motion for the Green’s function is that of the quasiclassical approximation. For
using the approximation, we make two key assumptions. The first is that the
main contribution to the Green’s function is due to quasiparticles near the
Fermi surface, and the second that the spatial variations of our perturbations,
e. g. scattering potentials, exchange fields or superconducting order, are slow
compared to the Fermi wavelength, λF = 2π/pF – the Fermi momentum is
pF. In this section, we restate these assumptions with more rigour and sketch
the transformation from exact Green’s function, Ǧ, to quasiclassical Green’s
function, ǧ. The section is loosely based on refs. [10, 27, 31, 34].

For a slightly more concrete picture, we want to move from Ǧ(r1, t1, r2, t2)
to ǧ(R, p̂F, ε, t). Here R is the center-of-mass spatial coordinate, p̂F a unit
vector on the Fermi surface, ε the quasiparticle energy and t the center-of-
mass time coordinate.

We start by rewriting the Green’s function in terms of the mixed representa-
tion2 meaning Ǧ(r1, t1, r2, t2)→ Ǧ(R, t, s,u), with

R =
r1 + r2
2,

(2.7a)

t =
t1 + t2
2

, (2.7b)

s = r1 − r2, (2.7c)

u = t1 − t2. (2.7d)

The physical interpretation of the relative variables, s,u, is simpler if we
perform a Fourier transform. For the Green’s function, we have

Ǧ(R,p, ε, t) =
∫
dueiεu

∫
ds e−ip·sǦ(R, s; t,u), (2.8)

2 Sometimes refered to as the Wigner representation in the literature
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with the sign-convention inherited from ref. [27].
This transformation is exact, and we may introduce the approximation,

first assuming the main contribution to the Green’s function is close to the
Fermi surface. Spesifically, introduce

Ǧ = Ǧlow + Ǧhigh, (2.9)

where the subscripts refer to a low and high energy part of the Green’s
function. The assumption becomes that Ǧlow � Ǧhigh and

Ǧlow =

Ǧ if |ξp| < δε

0 otherwise
. (2.10)

Here, δε is some small cut-off energy and ξp = p2/2m− µ is the kinetic
energy relative to the Fermi level. Here, m is the electron mass and µ the
chemical potential. The assumption is a little more subtle, and treated more
rigorously in ref [35]. We have to keep in mind that we are to not only trans-
forming the Green’s function, but also Gor’kov’s equation. This definition,
with δε of eq. (2.10) as just a book-keeping device essentially allows us to re-
trace the steps required for deriving Gor’kov’s equation in the quasiclassical
regime.

We may now define the quasiclassical Green’s function as

ǧ(R, p̂F, ε, t) =
i

π

∫δε
−δε

dξp Ǧ(R,p, ε, t). (2.11)

The prefactor, i/π, is to ensure that the quasiclassical Green’s function is
normalized, with ǧ · ǧ = 1. The conventions vary here, and we have inherited
this one from ref [27]. Common for all choices of transformation is the
introduction of an imaginary prefactor; hence the matrix elements will
change sign under complex conjugation.

The quasiclassical counterpart to eq. (2.5) then becomes

ǧ =

ĝR ĝK

0 ĝA

 , (2.12a)

ĝR =

 gR fR

−f̃
R

−g̃R

 , (2.12b)

ĝA =

 gA fA

−f̃
A

−g̃A

 , (2.12c)

ĝK =

gK fK

f̃
K

g̃K

 . (2.12d)

The ·̃ operator encodes elementwise complex conjugation, i→ −i and energy
ε → −ε. The sign change of the energy can be understood from perform-
ing the Fourier transformation to energy/momentum coordinates on each
element of, e. g. ĜR.
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2.3 Quasiclassical equations of motion

With a quasiclassical Green’s function, we also need a quasiclassical ana-
logue of the Gor’kov equation [26]; this will be the Eilenberger equation [29].
Rigorously deriving the Eilenberger is involved, so we will state Gor’kov’s
equation and point out the approximations.

The Gor’kov equation is given as[
G−1

(0)
, Ǧ
]•

=
[
Σ̌, Ǧ

]•
, (2.13)

with

Ǧ =

ǦR ǦK

0 ǦA

 , (2.14)

where • is an associative binary operator encoding the integral over spatial
and temporal coordinates of the matrix product of the operands and G−1

(0)

is the differential operator of the unperturbed system, i. e. that of a free
quasiparticle. Specifically, we have

G−1
(0)

= +iτ̂3
∂

∂t
+
∇2

2m
+ µ (2.15)

where j is the coordinate index, meaning G−1
(0)j

acts on field operator j, µ and
∇ acting only on the spatial coordinates-3 The factor τ̂3 = diag(1, 1,−1,−1)
appears because the top (left) block in Nambu ⊗spin-space corresponds to
electrons, while the bottom (right) corresponds to holes.

The brief idea is that the transformations of the quasiclassical approxima-
tion will allow us to rewrite G−1

(0)
into a tractable form, which along with the

gradient approximation [27, 35], essentially just the first Taylor-expansion,
and the spatial integrals of the Forier transformation will allow us to simplify
the bullet product, •.

More spesifically, the differential operator written out in terms of the
mixed representation becomes

G−1
(0)j

= +iτ̂3
(1
2
∂t ± ∂u

)
+

1

2m

(1
4
∇2R ±∇R · ∇s +∇

2
r

)
+ µ, (2.16)

with the ± signs corresponds to which coordinate indices we are acting
on, i. e. which set of field operators. With the Fourier transformation of the
relative coordinates, the operators change with ∂u → −iε,∇s → ip = imp.
Furthermore, we will be neglecting the second derivative with respect to the
spatial center-of-mass coordinate, R. If we also are to neglect the center-of-
mass time derivative, the integration over temporal coordinates of the bullet-
product, •, becomes trivial, and we may simply neglect it. This corresponds
to only considering steady state system. The end result is the Eilenberger
equation [29], which we write as[

Σ̌, ǧ
]
+ ivFp̂F∇Rǧ = 0, (2.17)

where we have made the substitution p → vFp̂F, as the momentum is
confined to the Fermi surface.

3 This glosses over some subtleties regarding which set of coordinates the inverse Green’s function
acts on. This is made clearer in ref. [31]
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We will however be considering systems with diffusive quasiparticle trans-
port. Physically, this corresponds to the effect of elastic scattering on impuri-
ties to be strong. A more precise description is that the mean free path of the
quasiparticles is small compared to the other length scales, except the Fermi
wavelength, λF, in the problem. In making the quasiclassical approximation,
the Green’s function is confined to the Fermi surface, such that ǧ is a function
of p̂F, and not p itself. If the transport is diffusive, this dependence will
be averaged over the whole Fermi surface. From looking at the Eilenberger
equation, eq. (2.17), we should be able to eliminate the two degrees of free-
dom associated with the direction of the momentum, p̂F. We will however
be incurring the "cost" of another gradient operator.

To avoid any confusion relating to the matrix forms, and which space
the operators are acting on, we will be sketching the derivation only for ĝR,
which we will write as ĝ for brevity. The sketch of the derivation is based on
ref. [31] and to a lesser degree ref. [27].

With the assumed short mean field path, we may expand the quasiclassical
Green’s function in momentum, which is essentially an expansion in spherical
harmonics

ĝ(R, p̂F, ε, t) = ĝs(R, ε, t) + p̂F · ĝp(R, ε, t). (2.18)

In this expansion, ĝs is the isotropic part of the quasiclassical Green’s func-
tion, ĝp is the anisotropic part4, where the anisotropy is assumed linear in
the direction of p̂F, i. e. the direction of transport. The vector p̂F is still a unit
vector at the Fermi surface pertaining to our quasiparticle. Implicitly, we are
then assuming ĝ2p to be negligible due to the strong disorder.

It must be stressed that the argument is more nuanced than ĝ → ĝs. It
may be helpful to think about eq. (2.18) as transforming the Eilenberger
equation, eq. (2.17), into two coupled equations for ĝs and ĝp. With some
further assumptions, chiefly that isotropic elastic scattering dominates, we
may write the non-isotropic part of the quasiclassical Green’s function, ĝp, in
terms of the isotropic part, and insert this back into the Eilenberger equation.
The result will be the Usadel equation [30], where only ĝs enters explicitly.

The way the Usadel equation is derived in refs. [27, 31], the part of the
self energy, Σ̂, that depends on elastic scattering is expanded in spherical
harmonics, analogous to eq. (2.18), with

Σ̂scattering = Σ̂s + p̂F · Σ̂p, (2.19)

where Σ̂s,p are the isotropic and non-isotropic part of the (scattering) self
energy function.

Specifically, we are assuming the elastic scattering to happen on a potential
U(p−p ′), where p = p̂F. Making the further assumption that the potential
does not depend on the magnitude of the momentum, p, we may write
U(p · p ′). Then, the self energy function for elastic impurity scattering is
given as [31]

Σ̂imp(p) = niN0

∫
dΩp ′

4π
|U(p−p ′)|2ĝ(p ′), (2.20)

4 The subscripts s and p are used for historic reasons, and corresponds to s- and p- waves.
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where dΩp ′ is the solid angle element. In the Born approximation, we may
define the elastic scattering rate as

1

τ
= 2πniN0

∫
dΩp ′

4π
|U(p ·p ′)|2, (2.21)

where ni is the number of impurities per unit volume, and N0 is the density
of states (per spin) at the Fermi surface. This, along with the observation that

p̂FΣ̂ = p̂FΣ̂s + Σ̂p, (2.22)

allows us to separate the scalar quantities from the vector quantities such that
we may find explicit expressions for Σ̂s and Σ̂p. The details of the calculation
are given in refs. [27, 31], with the end results being

Σ̂s = −
−i

2τ
ĝs, (2.23a)

Σ̂p = −

[
1

τ
−
1

τtr

]
ĝp. (2.23b)

where 1/τ is the elastic scattering rate of eq. (2.21) and τtr is the transport
time, defined by

1

τtr
= 2πniN0

∫
dΩp ′

4π
|U(p ·p ′)|2(1− p̂ · p̂′), (2.24)

where ni is the number of impurities per unit volume, an N0 is the density
of states at the Fermi surface. The introduction of τtr may seem unmotivated,
but does appear in transport theory. For the introduction of the quantity in a
different context, see e. g. the chapter on Fermi liquid theory of ref. [36].

We may now insert these expressions back into the Eilenberger equation,
i. e. we combine eq. (2.17) with

Σ̂total = Σ̂+ Σ̂s + p̂F · Σ̂p, (2.25)

where Σ̂ includes all other self energy terms, like that of superconducting
order or an exchange field. This gives us an expression for the anisotropic
part of the quasiclassical Green’s function, ĝp, in terms of the isotropic part,
ĝs, with

ĝp = −vFτtrĝs∇Rĝs. (2.26)

Explicitly, inserting eq. (2.25) into the Eilenberger equation gives

[
Σ̂, ĝs

]
−
iv2Fτtr

3
∇R · (ĝs∇ĝs) . (2.27)

We may write this more compactly by supressing the subscripts and intro-
ducing the diffusion coefficient5

DF =
1

3
v2Fτtr, (2.28)

5 We spesifically assumed the mean free path to be small compared to the other length scales of
the problem, the mean free path is l = vF · τtr.



12

such that the equation of motion is given as[
Σ̂, ĝ

]
= iDF∇ · (ĝ∇ĝ) . (2.29)

This is the Usadel equation [30]. Note that the self energy function, Σ̂, has
changed compared to eq. (2.17), as we have extracted the term related to
elasic scattering. It is possible to carry out an analogous derivation with
both elastic scattering and spin-flip scattering [27], but this is ultimately
outside our scope. It should also be stressed that only the isotropic part of
the Green’s function enters explicitly into the equation, such that meaning
the ĝ of the Usadel and Eilenberger equation should not be conflated. The
term (ĝ∇ĝ) is called the matrix current, with different conventions on sign,
prefactors and whether or not to include the diffusion coefficient.

For completeness, this is the Usadel equation for the retared Green’s
function, ĝR. For the full Usadel equation in Keldysh space, we make the
subsitution

ĝ→ ǧ =

ĝR ĝK

0 ĝA

 , (2.30)

in eq. (2.29). We may relate the retared and advanced Green’s functions by

ĝA = −τ̂3

(
ĝR
)†
τ̂3, (2.31)

and in equilibrium [37]

ĝK =
(
ĝR − ĝA

)
tanh (ε/2kBT) . (2.32)

As a final note it should be noted that the Usadel equation appear in the
literature with Σ̂→ ετ̂3 + Σ̂. This is more correct, as ετ̂3 corresonds to the
movement of a free quasielectron, while the self energy function encode the
corrections to the movement. Collapsing the terms into a single matrix makes
derivations less cluttered.



3 CURVED PROXIM ITY SYSTEMS

The main focus of the thesis is curved superconductor-ferromagnet proximity
systems. The purpose of this chapter is to more thoroughly motivate why
we are considering these systems, and to present the necessary mathematical
framework and notation to model these systems.

For superconductor-ferromagnet structures, curving the system comes
with two consequences. First, the quasiparticle motion is confined to the
material, and hence a curved path, and second that the curvature may
alter the material properties. More specifically, we are concerned with the
effects of constraining the quasiparticle movement to a spacecurve [38],
how it interacts with the exchange field and the strain induced Rashba
like spin orbit interaction [39, 40]. Before we consider the physics of such
curved systems, we need the necessary mathematical tools and notation for
describing space curves. This will be the parametrization of space curves, the
arc length derivatives of these and the prerequisite tensor notation.

3.1 Tensor notation

In this section we introduce the covariant derivative, and the associated
notation. As the subject matter is slightly outside that of a normal physics
curriculum, it is a self contained introduction to the subject glossing over
some of the subtleties. This section is loosely based on refs. [41, 42], where
the former gives a thorough introduction to the subject.

vectors Given a vector space E with an inner product 〈·, ·〉, we may
represent any vector V ∈ E as a linear combination of a set of basis vectors,{
ej
}
V = Vjej. (3.1)

Similarly, we may represent V by its projection onto the basis vectors – as is
illustrated in fig. 3.1. This is typically done by writing

V = Vje
j. (3.2)

A more intuitive way may be to define
{
ej
}

by

ej (V) = Vj (3.3)

That is, ej is the linear functional that projects V onto ej. We may in turn
make linear combinations of these functionals to represent V. Note that this
is strictly speaking not the vector itself, but the linear functional represented
by 〈V, ·〉, or the covector of V. Accordingly, the basis (co)vectors are defined
by

ej(ei) = δ
j
i, (3.4)

13
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Figure 3.1: Given a set of basis vectors
{
ej
}

, we may determine a vector in terms
of a linear combination of the basis vectors or the orthogonal projection
onto each of the basis vectors. The former corresonds to the dotted lines,
while the latter corresponds to the dashed lines.

and these are themselves linear functionals on E.
We refer to the coefficients, {Vi} and

{
Vj
}

, as covariant and contravariant
components respectively. The coefficients are related by

Vj =
∑
i

Viηij, (3.5a)

Vi =
∑
j

Vjη
ij, (3.5b)

with

η = (ηij), ηij = 〈ei,ej〉 (3.6a)

η−1 = (ηij). (3.6b)

We refer to η as the metric tensor, and ηij as a metric tensor element 1. With the
inner product well defined, η is nondegenerate,2 meaning it has an inverse.

tensors The notion of covariant and contravariant vectors may be gen-
eralized to that of covariant and contravariant tensors. A covariant tensor is a
multilinear functional on tuples of vectors. We have already introduced the
metric tensor, H. Written as a function on a tuple of vectors, we have

H(V,W) = 〈V,W〉 =
∑
ij

ηijV
iWj. (3.7)

This is equivalent to some (square) matrix acting on W. Observe that the
function, i. e. H, is linear in both V and W. Similarly, a contravariant tensor
is a multilinear function on tuples of covectors, with an example being the
inverse of the metric tensor, H−1.

We refer to the length of the tuple as the rank of the tensor, meaning H is a
second rank covariant tensor.

1 Common symbols are G for the tensor, and g for its elements, but these are easiliy confused
with the Green’s functions.

2 We require 〈v,v〉 = ||v|| = 0 ⇐⇒ v = 0.
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covariant derivative The idea of the covariant derivative is to ex-
tend the notion of the derivative, or rather, the gradient into a form that is
independent of the choice of coordinate system.

For a more familiar example to build on, consider the derivative of a scalar
function, f(x), with respect to a vector V3, as such

V(f(x)) = 〈∇f(x), v〉 =
∑
j

∂f

∂xj
vj. (3.8)

Here, x is a set of coordinates in some specific coordinate system {xj}. Now,
in exchanging the coordinate system, {xj}, for a different coordinate system
{zj}, f, V and 〈∇f,V〉 does not change

∂f

∂zj
=
∑
i

∂xj

∂zi
∂f

∂xj
. (3.9)

This naturally extends to vectors, but not directly to their components. With
V = Viei, we have

∂Vi = ∂
(
eiV

)
= ej · (∂V) +V ·

(
∂ei
)

. (3.10)

We may now define the covariant derivative (with respect to coordinate α) as

DαV
j = ej · (∂αV)

= ∂αV
j −V ·

(
∂ei
)

(3.11)

The quantity should be understood as the projection of ∂αV onto ej.
Calculating the last term is however not trivial, but ∂α is necessarily some

linear combination of the chosen basis of covectors,
{
ek
}

. Therefore, we
write

∂ie
j = −Γ jike

k (3.12)

such that we may rewrite eq. (3.11) as

DiV
j = ∂iV

j + Γ jikV
k, (3.13)

where we refer to the coefficients, Γ , as the affine connection coefficients4.
It is possible to do something similar with the covariant components as

well, where the (coordinate) covariant derivative is similar, but with different
affine connection coefficients

∂iej = Γ
k
jiek, (3.14a)

DiVj = ∂iVj − Γ
k
jiVk. (3.14b)

The choice of connection coefficients is not unique, here they are given as
[42]

Γ
µ
νλ =

1

2
ηµκ (∂νηκλ + ∂ληνκ − ∂κηνλ) , (3.15)

which allows us to evaluate the connection coefficients, Γ , and in turn the
covariant derivatives for a particular system.

3 Here, x is some element in the domain of the function f, and should not be conflated with spin
space or the inner product space we are considering, E 3 V .

4 The term Christoffel symbols is often used in the literature, or the terms are used interchangeably.
The Christoffel symbols will be our particular choice affine connection coefficients.
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3.2 Parametrization of curves in curvilinear coordinates

Consider a space curve, C, parametrized by its arc length, s. That is, a function
r(s) traces out C. We may parametrize the neighbourhood, of C, i. e. some
open ball, by

R(s,n,b) = r(s) +nN̂(s) + bB̂(s), (3.16)

where N̂(s) and B̂(s) are the basis vectors normal and binormal to the tangent
vector of C at r(s), i. e. T̂(s) = ∂sr(s).

Given a curve C, we should be able to relate these vectors as a function of
the arc length, s. We will employ the Frenet-Serret frame5 [41, 43], with the
derivation being similar to that of ref. [38].

The Frenet-Serret equations relate the basis vectors as such [43]
∂sT̂(s)

∂sN̂(s)

∂sB̂(s)

 =


0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0



T̂(s)

N̂(s)

B̂(s)

 . (3.17)

In one way, eq. (3.17) simply defines the arc length derivatives, but should
rather be viewed as a way to encode the function r(s) into two scalar func-
tions, κ(s) and τ(s).

We will refer to κ(s) as the curvature, or curvature function, and τ(s) as the
torsion or torsion function. A simple picture is that the curvature function
quantifies how non-straight the curve is, while the torsion quantifies how
non-planar the curve is, with the plane in question being that spanned by the
tangent and normal vector, T̂ and N̂. For a concrete example, a curve with
zero torsion and constant curvature κ traces a circular arc with radius 1/κ. If
the torsion was non-zero, but constant, the curve would trace out a helix.

metric tensor The metric tensor is determined by κ(s) and τ(s). Gen-
erally, we have [41]

ηij =

〈(
∂p

∂ui

)
,
(
∂p

∂uj

)〉
, (3.18)

where
{
∂ui
}

are the basis vectors for some generalized coordinate system
and p the point where we consider the derivatives. We may get the elements
of the metric tensor, ηij, by writing out the total derivatives and considering
their products.

We start with the derivatives of R(s,n,b).(
∂R

∂s

)
=
∂r(s)

∂s
+
∂

∂s

(
nN̂(s)

)
+
∂

∂s

(
bB̂(s)

)
= T̂(s) +n

(
−κ(s)T̂(s) + τ(s)B̂(s)

)
+ b

(
−τ(s)N̂(s)

)
= (1−n · κ(s)) T̂(s) +n · τ(s)B̂(s) − b · τ(s)N̂(s), (3.19a)

(
∂R

∂n

)
=
∂r(s)

∂n
+
∂

∂n

(
nN̂(s)

)
+
∂

∂n

(
bB̂(s)

)
(3.20a)

= N̂(s), (3.20b)

5 The name Serret-Frenet is also used in the literature
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(
∂R

∂n

)
=
∂r(s)

∂b
+
∂

∂b

(
nN̂(s)

)
+
∂

∂b

(
bB̂(s)

)
(3.21a)

= B̂(s). (3.21b)

Explicitly, the elements of the metric tensor are thus given as

ηij =

(
∂R

∂ui

)
·
(
∂R

∂uj

)
, (3.22a)

with
{
∂ui
}
= {∂s ∂n ∂b}. The full metric tensor is then given as

η = (ηij)

=


(1−n · κ)2 + τ2 ·

(
n2 + b2

)
−b · τ n · τ

−b · τ 1 0

n · τ 0 1

 , (3.23)

and its inverse as

η−1 = (ηij) =

(
1

1−n · κ

)2

·


1 b · τ −n · τ
b · τ (b · τ)2 + (κ ·n− 1)2 −bn · τ2

−n · τ −bn · τ2 (n · τ)2 + (κ ·n− 1)2

 , (3.24)

where both the curvature and torsion, κ, τ are still functions of the arc length,
s.

The elements of the metric tensor are prerequisites for computing the
affine connections, which we in turn need for the covariant derivatives of a
spesific system. By eq. (3.15), we had

Γ
µ
νλ =

1

2
ηµκ (∂νηκλ + ∂ληνκ − ∂κηνλ) (3.25)

Note that with a symmetric6 metric tensor, ηij, the connection coefficient
does not change if we permute the two lower indices. We will only be
considering planar curves, meaning τ(s) = 0, as that is sufficient for the
physical phenomena we wish to consider in this thesis.

These expressions may simplify, depending on the choice of κ and τ.
With τ(s) = 0, the metric tensor turns diagonal, such that we may simplify
eq. (3.25) with κ→ µ

Γ
µ
νλ =

1

2
ηµµ

(
∂νηµλ + ∂ληνµ − ∂µηνλ

)
. (3.26)

The non-zero affine connection coefficients are given as

Γsss = −
n · κ ′

1−n · κ
=
1

H
∂sH, (3.27a)

Γnss = κ−n · κ2 = −H∂nH, (3.27b)

Γssn = Γssn = −
κ

1−n · κ
=
1

H
∂nH. (3.27c)

6 In more exotic contexts, the metric tensor does not have to be symmetric, e. g. in nonsymmetric
gravitational theory [44].
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with

H = H(s,n) = 1−n · κ(s). (3.28)

The two last connection coefficients are equal, as the metric tensor is sym-
metric.

3.3 Effects of curvature on electronic systems

With the Frenet-Serret equations in place, we may consider the physical
consequences of curvature. We will sketch how curvature induced strain
may give rise to a spin orbit interaction, and how the Usadel equation and
self energy terms changes when written in terms of arc-length derivatives.
Notation conventions are inherited from refs. [45, 46] for easy reference.

curvature and spin-orbit coupling As a material is curved,
it will strain – which in turn may give rise to spin orbit coupling. With the
spin orbit coupling induced by the curvature, it is in principle both dynamic
and tunable. We will, analogous to ref. [46], demonstrate how a spin orbit
term would appear in the electron Hamiltonian.

The (engineering) strain, ε of a material is defined as its relative change in
length [47]

ε =
Lfinal − Linitial

Linitial
(3.29)

where L is the length of the material. If the length increases we refer to
the strain as tensile, and if the length decreases we refer to the strain as
compressive. The picture complicates somewhat for non-isotropic systems,
e. g. for some general crystal, in which case we may define the strain tensor
[8] relating strained, v ′i, and unstrained, vi as such

v ′i = v+ εijvj. (3.30)

Observe the coefficients, εij to be dimensionless. In the regime with elastic
strain we are typically also assuming ε2ij to be negligible.

Across a thin film, the strain in the tangential direction, εss, is proportional
to the curvature, κ(s), and the depth at which we are considering the strain,
i. e. n [48]. Explicitly,

εss = −n
∂2ζ(s,b)
∂2s

= −nκ(s), (3.31)

where ζ(s,b) is some surface within the film that is postulated to not strain,
assumed to lay midway thorugh the film. With the strain continuous, such
a surface must exist as the two surfaces have strain of opposite sign. The
assumptions here are that the thickness of the film is small compared to the
other dimensions of the film. This is the expression and explanation for the
strain used in e. g. ref. [49].

We will however explicitly be considering curved nanowires, or rods in the
language of ref. [48]. The expression does not immedeately translate to that
of wires. In ref. [48], the authors consider a thin rod such that the axis of the



19

rod is colinear with, ẑ, and that there exist some neutral surface in the rod that
does not strain when the rod is bent. Consider then some element of length
dz a distance x form the neutral surface. If the rod is bent, the length changes
to dz ′. However, there is necessarily some unstrained element of equal length
at the neutral surface that is by assumption bent but not strained. With the
bending corresponding to a curvature of κ, the elements of length dz and
dz ′ lay on circular arcs with radius R = 1/κ and R+ x. We may then relate
dz and dz ′ by

dz ′ =
R+ x

R
dz, (3.32)

meaning the relative change in length, i. e. the strain, is given as

εzz =
dz ′ − dz

dz
=
x

R
= xκ. (3.33)

We may retrive eq. (3.31) with the substitution z→ s, x→ −n.
Note that the neutral surface is not, as was with the thin film, stated to be

in the centre ofthe rod. Instead, ref. [48] argues that is at the (radial) centre
of mass. While this might just seem like a curiosity, it is an assumption
that may break down at the mesoscopic scale. There is of course also a
continuum assumption here as well that could be discussed at length. In any
case, a continuum in the radial direction does in some sense break down
considering, e. g. hollow structures [50, 51].

Furthermore, the substitution z → s is also nontrivial; the arc length, s,
relates explicitly to the length of the rod (segment). Therefore, the substitution
comes with an additional assumption, namely that the arclength derivative
is approximately equal to the derivative with respect to z. Another way of
stating this is that the tangent vector, T̂ , is almost colinear with the z-axis at
the point we are considering. As the strain gives rise to a deformation potential
7 [52],

V(s,n) = aεss(s,n) = −aκ(s)n, (3.34)

where a is some proportionality constant This constant is some function of
the bandstructure of the material in question, which in turn depends on
the crystal structure, i. e. the strain. It should therefore be stressed that the
assumption is that the potential is a linear function of the strain [52]. The
assumption that the tangent vector T̂ is almost colinear with the z-vector
enters in assuming this expression for the deformation potential is only valid
in the low-strain limit.

With a spatially varying potential, we must also have an electric field, with
E = −∇V . In the case with zero torsion, the electric field is given as [46]

E = −∇V =
a ·n

1−n · κ(s)
(∂sκ(s)) T̂ + a · κ(s)N̂. (3.35)

Assuming n << 1/κ, the left term is roughly porportional to n, and disap-
pears if we average over the n-coordinatem resulting in

〈E〉n = aκ(s)N̂. (3.36)

7 Note that we are assuming the other diagonal terms of the strain tensor ε can be neglected. It
can be argued that the other diagonal terms of the stress tensor [48] are zero throughout the rod,
which should be sufficient for a qualitative discussion,
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As mentioned in the introduction, this corresponds to a magnetic field from
the rest frame of a moving electron, and leads to a spin orbit coupling with
strength proportional to the curvature function, κ.

including spin orbit interactions The spin orbit interaction
can be included in the Usadel equation by means of the spin orbit field, A [53,
54].

For a spin orbit coupling that is linear in momentum, the single particle
Hamiltonian picks up a term like

HSO = −p ·A/2m. (3.37)

The components of the spin orbit field, A =
{
Ax,Ay,Az

}
are linear combi-

nations of the Pauli matrices8.
The spin orbit field will enter into the equations of motion by means of

the gauge covariant derivatives [22], with

∇· → ∇̃ = ∇ ·−i
[
Â, ·

]
, (3.38)

where Â = diag (A,−A∗). This can be motivated from reformulating the
Hamiltonian with a spin-orbit term, and retracing the steps deriving the
Usadel equation.

arc length derivatives Similarly to how spin orbit interactions
can be included in the Usadel equation by means of the gauge covatiant
derivative, we transition to the Frenet-Serret frame with arc length derivatives
by means of the coordinate covariate derivative, eq. (3.14a),

∇v = ∂ivi → Divi = ∂ivi − Γ
k
jivk. (3.39)

If we wish to include spin orbit interactions as well, we exchange the "or-
dinary" gradient operator with the gauge covariant derivative – this will
be the coordinate gauge covariant derivative. The focus of chapter 4 is to
write explicit forms of the Usadel equation in terms of the gauge covariant
derivative.

In ref. [46], the system Hamiltonian including spin orbit interaction, is
reformulatied in the covariant form and tuned to a curved 1D wire by "[...]
including a constraining potential in the normal and binormal directions". The final
result is the Hamiltonian [38, 46]

H =−
 h

2m

[
∂2s +

κ2

4
+
τ2

2

]
− i hαN

[
σB∂s − σN

τ

2

]
+ i hαB

[
σN∂s − σT

κ

2
+ σB

τ

2

]
, (3.40)

where we have re-added the torsion dependent terms form [38]. For clarity,
σ{T ,N,B} = σ · {T̂ , N̂, B̂}, are the Pauli matrices in the Frenet-Serret frame, and
α are coefficients determining the spin-orbit field strength. Here, only the
momentum along the tangential direction couples to the spin, corresponding
to the spin orbit field[38, 46]

A = (αNσB −αBσN, 0, 0) . (3.41)

8 In ref. [53], the factor 12 in the denominator is accounted for by scaling the Pauli matrices.
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As mentioned, the curvature induced spin orbit interaction is along the
normal direction, correspond to αN. Rederiving the Usadel equation from
his Hamiltonian is equivalent to replacing the gradient operators with their
gauge-coordinate covariant counterparts.

exchange field in curvilinear coordinates In Cartesian
coordinates, we were able to postulate an exchange field, h, with components
along the x,y and z axes. The corresponding self energy term is [55]

Σ̂FM = h · σ̂, (3.42)

with σ̂ = diag (σ,σ∗). This corresponding to the spin-splitting of the energy
levels, with the electron energy shifting by h ·σ. We transform the term to
the Frenet-Serret frame by writing the dot product in terms of the metric
tensor,

Σ̂FM = ηijhiσ̂j. (3.43)

Raising this self energy term to Keldysh space is done by a Kronecker product
with a 2× 2 identity matrix.

Additionally, we will be assuming that the exchange field is colinear with
the tangent vector, h ‖ T̂ . The deviations are in ref. [45] assumed negligible
until the local curvature function reaches some critical value [56]. The Pauli
matrices will however be functions of the curvature, such that the self energy
term undergoes a rotation in spin space. From the symmetry of the inner
product, this equivalent to having a rotating exchange field and fixed Pauli
matrices [45].

superconducting order For completenes, we should also con-
sider the effect of curvature on the superconducting order. Spesific to this
thesis, this is a rather mundane consideration, as we are not considering
curved superconducting regions, and the regions we are considering are
assumed to be bulk regions of conventionals-wave bcs superconductors.
Thus, the superconducting gap undergoes the rather trivial transformation

∆(x,y, z)→ ∆(s,n,b) = ∆, (3.44)

which does not alter the contribution of the superconducting order to the
self energy function

Σ̂SC = ∆̂ = antidiag (−∆∗,∆∗,−∆,∆) , (3.45)

where ∆ is the superconducting gap, and we are subscribing to the convention
of having the antidiagonal run from the bottom left corner to the top right.
Raising this self energy term to Keldysh space is done by a Kronecker product
with a 2× 2 identity matrix.

However, as a sidenote, the superconducting gap is expected to obey a
self consistency equation [57], which for our system with straight supercon-
ducting regions trivially transforms to curvilinear coordinates [46]. This
picture may complicate in the presence of curved superconducting regions or
with a superconducting order parameter with a different type of symmetry
[58] or effects relating to the finite size, or reduced dimentionality of the
superconductor [59].
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validity of the usadel equation In deriving the Usadel equa-
tion, we made the assumption that the self energy terms, or rather the
perturbations to the system Hamiltonian, vary slowly compared to the Fermi
wavelength — this was for the quasiclassical approximation — as well as the
scattering potential being only a function of the direction of the momentum,
and not position. This places limits on, at least, the spatial variations of
the deformation potential of eq. (3.34) and the deformation of the material
should not impact the spatial distribution of impurities to scatter of.

Furthermore, the treatment of strains in ref. [8] assumes the strain to be
infinitesimal, as well as being applied isothemally or adiabatically. As we will
not explicitly consider strained structures, this bears little direct relevance
on our calculations, but could be important considerations in systems where
the curvature is changed dynamically.
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Figure 3.2: Schematic of a unstrained (left) and strained (right) wire. The top of
the wire experiences tensile strain in the tangential direction, with the
density of atoms along the wire being lower than in the unstrained case.
The bottom of the wire experiences compressive strain in the tangenial
direction, with the density of atoms higher than in the unstrained case.
With the assumption that the strain varies continuously, there must exist
some unstrained plane inside the wire.



4 THE USADEL EQUAT ION IN CURVED SYSTEMS

In chapter 2, we had the Usadel equation, eq. (2.29), written as

DF∇ (ǧ∇ǧ) = −i
[
Σ̌, ǧ

]
, (4.1)

where ǧ is the quasiclassical (isotropic) Green’s function, DF the diffusion
constant and Σ̌ the self-energy function in Keldysh space. Considering only (s-
wave) superconducting and ferromagnetic order, raising the Usadel equation
from Nambu⊗spin to Keldysh space is done by raising the relevant terms
to Keldysh space [60], i. e. Σ̌ = diag

(
Σ̂, Σ̂

)
. Again, for compactness, the term

ετ̂3 is included in the self energy function.
In this chapter we will rewrite the Usadel equation in an explicit form

in terms of the arc legnth derivative, ∂s, for a 1D nanowire. This will be
the full equation, which trivialy transforms to equations for the equilibrium
propagators, ĝR and ĝA, as well as a quantum kinetic equation that allows
us to determine ĝK and in turn non-equilibrium properties of the system.

4.1 Including arc-length derivatives

We may rewrite the Usadel equation in curvilinear coordinates as such

iDFη
ijDi

(
ǧDjǧ

)
=
[
Σ̌, ǧ

]
. (4.2)

Where the the gradient operator is replaced with covarient derivatives of
section 3.1 and the inner products are written in terms of the metric tensor,
η = (ηij).

To solve the Usadel equation, we will need it in some tractable form, i. e.
written out explicitly with differentiation operators and coefficients, we start
my writing out the coordinate covariant derivatives, eq. (3.14a),

Divk = ∂ivk − Γ
j
ikvk. (4.3)

To get the Usadel equation in a tractable form, we will need to write explicit
forms of the affine connection coefficients. With the motion constrained along
a 1D wire without torsion, we had from eq. (3.27)

Γsss = −
n · κ ′

1−n · κ
=
1

H
∂sH, (4.4a)

Γnss = κ−n · κ2 = −H∂nH, (4.4b)

Γssn = Γssn = −
κ

1−n · κ
=
1

H
∂nH. (4.4c)

with

H = H(s,n) = 1−n · κ(s). (4.5)

Supressing the scalar prefactors, the left hand side of the Usadel equation is
given as

24
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ηijDi
(
ǧDjǧ

)
= ηijDi

(
ǧ∂jǧ

)
= ηij

[
∂i
(
ǧ∂jǧ

)
− Γkij (ǧ∂kǧ)

]
,

= ηjj
[
∂j
(
ǧ∂jǧ

)
− Γkjj (ǧ∂kǧ)

]
, ηij = 0 for i 6= j

= ηss [∂s (ǧ∂sǧ) − Γ
s
ss (ǧ∂sǧ) − Γ

n
ss (ǧ∂sǧ)]

+ ηnn [∂n (ǧ∂nǧ) + 0] , Γnjj = 0 for j 6= s

+ ηbb [∂b (ǧ∂bǧ) + 0] , Γbjj = 0

=H−2
[
∂s (ǧ∂sǧ) −H

−1∂sH · (ǧ∂sǧ)
+H∂nH · (ǧ∂nǧ)

]
+ [∂n (ǧ∂nǧ) + ∂b (ǧ∂bǧ)] . (4.6)

To further simplify the expression, we calculate some intermediary quantities.
We have

H−2
[
(ǧ∂sǧ) +H

−1∂sH (ǧ∂sǧ)
]

= H−1
[
H−1 (ǧ∂sǧ) +H

−2∂sH (ǧ∂sǧ)
]

= H−1∂s

(
H−1ǧ∂sǧ

)
, (4.7)

and

H−2H(∂nH) (ǧ∂nǧ) + ∂n (ǧ∂nǧ)

= H−1 [∂nH (ǧ∂nǧ) +H∂n (ǧ∂nǧ)]

= H−1∂n (Hǧ∂nǧ) . (4.8)

Inserting these back into eq. (4.6) gives

ηijDi
(
ǧDjǧ

)
=H−1∂s

(
H−1ǧ∂sǧ

)
+H−1∂n (Hǧ∂nǧ) + ∂b (ǧ∂bǧ) . (4.9)

This is an explicit form of the Usadel equation for a region close to a planar
curve that only depends on κ(s). For completeness, the full Usadel equation
then becomes

iDF

{
H−1∂s

(
H−1ǧ∂sǧ

)
+H−1∂n (Hǧ∂nǧ) + ∂b (ǧ∂bǧ)

}
=
[
Σ̌, ǧ

]
. (4.10)

Explicitly limiting the quasiparticle movement to the curve, we ignore the
∂n and ∂b terms, as well as having n = b = 0, such that H = 1. In that case
eq. (4.9) simplifies to

ηijDi
(
ǧDjǧ

)
= ∂s (ǧ∂sǧ) , (4.11)

with the full form being

iDF∂s (ǧ∂sǧ) = [Σ, ǧ] . (4.12)

Note that, compared to eq. (4.1), there are no explicit changes. The curvature
manifests in that the self-energy terms are written in the Frenet-Serret frame,
rather than the xyz-frame. This holds for any (continuously differentiable)
choice of curvature function, κ(s).
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4.2 Including Spin-Orbit Coupling

We include spin-obit coupling by exchanging the coordinate-covariant deriva-
tives with the coordinate-gauge covariant derivatives [46], meaning

Div
j = ∂ivj − Γ

k
ijvk → D̃iv

j = ∂ivj − Γ
k
ijvk − i

[
Âi, vj

]
, (4.13)

where Âi = diag(Ai,−A
∗
i ) is the covariant spin-orbit field in Nambu ⊗ spin

space [22, 53] — it is promoted to Keldysh space with a simple Kronecker
product with a 2× 2 identity matrix. In this section, we rederive the Usadel
equation with non-zero spin-orbit fields, analogous to a derivation carried
out in ref. [46]

Consider first,

ǧD̃jǧ = ǧ
(
Djǧ− i

[
Âj, ǧ

])
(4.14a)

= ǧDjǧ− iǧ
[
Âj, ǧ

]
. (4.14b)

And then what is essentially the full left hand side of the Usadel equation

D̃iǧD̃jǧ =D̃iǧDjǧ− iD̃iǧ
[
Âj, ǧ

]
(4.15a)

=DiǧDjǧ− i
[
Âi, ǧDjǧ

]
(4.15b)

− i
(
Diǧ

[
Âj, ǧ

]
− i
[
Âi, ǧ

[
Âj, ǧ

]])
.

With Dj → ∇, we will retrive the Usadel equation in Cartesian coordinates
with a spin-orbit field [57].

Writing out the above explicitly in terms of the derivatives and connection
coefficients will for each term in eq. (4.15b) give

DiǧDjǧ = Diǧ∂jǧ (4.16a)

= ∂iǧ∂jǧ− Γ
k
ijǧ∂jǧ, (4.16b)

−i
[
Âi, ǧDjǧ

]
= −i

[
Âi, ǧ∂jǧ

]
, (4.16c)

−iDiǧ
[
Âj, ǧ

]
= −i∂i

(
ǧ
[
Âj, ǧ

])
+ iΓkij

[
Âk, ǧ

]
, (4.16d)

where we in the third line interchanged the indices to arrive at a more
readable final result. Combining these, we arrive at

D̃iǧD̃j =∂i
(
ǧ∂jǧ

)
− Γkijǧ∂jǧ

− i
[
Âj, ǧ∂iǧ

]
− i∂i

(
ǧ
[
Âj, ǧ

])
+ iΓkijǧ

[
Âk, ǧ

]
−
[
Âi, ǧ

[
Âj, ǧ

]]
(4.17)

The next step is to evaluate the connection coefficients. While the above does
not depend on the choice of curvature and torsion functions, κ and τ, we will
again limit ourselves to a system without torsion. From eq. (4.9), we already
have the first two terms evaluated, with

ηij
(
∂i
(
ǧ∂jǧ

)
− Γkijǧ∂jǧ

)
= H−1∂s

(
H−1ǧ∂sǧ

)
+H−1∂n (Hǧ∂nǧ) + ∂b (ǧ∂bǧ) . (4.18)
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For the two terms involving "non-trivial" derivatives, we have

ηij
{
− i∂i

(
ǧ
[
Âj, ǧ

])
+ iΓkijǧ

[
Âk, ǧ

]}
=−

i

H
∂s

(
1

H

(
ǧÂsǧ− Âs

))
− iH∂n

(
1

H

(
ǧÂnǧ− Ân

))
− i (∂bǧ) Âbǧ− ǧÂb∂bǧ. (4.19)

Note that we have assumed As,n,b to be constant, and used that the metric
tensor is diagonal, such that j→ i. For the final two terms we have

ηij
{
−i
[
Âi, ǧ∂jǧ

]
−
[
Âi, ǧ

[
Âj, ǧ

]]}
=
1

H

(
−i
[
Âs, ǧ∂sǧ

]
−
[
Âs, ǧ

[
Âs, ǧ

]])
+
(
−i
[
Ân, ǧ∂nǧ

]
−
[
Ân, ǧ

[
Ân, ǧ

]])
+
(
−i
[
Âb, ǧ∂bǧ

]
−
[
Âb, ǧ

[
Âb, ǧ

]])
(4.20)

Analogous to what we did without spin orbit coupling, the equation simpli-
fies with H = 1− nκ(s) → 1 and we may supress the ∂n and ∂b terms. In
that case, the full Usadel equation becomes

iDF

{
∂s (ǧ∂sǧ) − i∂s

(
ǧÂsǧ

)
− i
[
Âs, ǧ∂sǧ

]
−
[
Âk, ǧ

[
Âk, ǧ

]]}
=
[
Σ̌, ǧ

]
,

(4.21)

where Âk =
{
Âs, Ân, Âb

}
. Again, this equation looks as the one in Cartesian

coordinates, but it should be noted that the self-energy matrix, Σ, is written
in the curvilinear coordinates.

4.3 Boundary conditions

As mentioned in section 2.2, we are assuming the quasiclassical Green’s
function to vary slowly compared to the length-scales of the physical system.
This assumption breaks down at interfaces, and there are several choices for
boundary conditions to resolve this.

transparent boundary conditions The most naive choice of
boundary conditions is that of transparent boundary conditions, meaning
we require

ǧL = ǧR, (4.22)

with L,R denoting the Green’s function on the left and right side of the
interface. We will use these boundary conditions briefly in looking at normal
metal - normal metal interfaces out of equilibrium.

kupriyanov -lukichev boundary conditions We will use
the Kupriyanov -Lukichev boundary conditions [61] here given as

ǧnDiǧn =
1

2Lnζn
[ǧL, ǧR] , (4.23)
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where n is an index denoting one side of the interface, Ln is the length of
said region and ζn the ratio of the interface resistance to the bulk resistance
of the region n. This particular formulation is adapted from [57].

Written explicitly with a non-zero spin-orbit field for our one dimensional
systems, we get [57]

ǧj∂sǧi =
1

2Liζi
[ǧL, ǧR] + iǧi

[
Âz, ǧi

]
(4.24)

For the Riccati parametrization, the derivation is presented in ref. [57], but
for real spin-orbit fields. We restate the (general) end result as

∂sγL =
1

LLζL
(1− γLγ̃R)NR (γR − γL) + iÂsγL + iγLÂ

∗
s, (4.25a)

∂sγR =
1

LRζR
(1− γRγ̃L)NL (γR − γL) + iÂsγR + iγRÂ

∗
s. (4.25b)

We may of course apply the ·̃ conjugation to the above expressions to get
boundary conditions for γ̃.

Note how in section 2.3, we had written the non-isotropic part of the
Green’s function as

ǧp = DFǧs∇Rǧs, (4.26)

where we compared to eq. (2.26) have written the expression in Keldysh
space, rather than Nambu⊗spin space. The Kupriyanov -Lukichev does, as
we have stated them here, estimate the tunneling probability of the matrix
current ǧp.

It should be noted that more general boundary conditions exist. These are
suitable to incorporate effects like spin active interfaces, and contributions
from reflection as well as tunneling [62].

4.4 Keldysh Component

Looking at the whole Usadel equation, there is some redundancy. Given
the retarded component, ĝR, we may find the advanced component ĝA =

−τ̂3
(
ĝR
)†
τ̂3 [31]. For the Keldysh component, ĝK, the picture is slightly

more complicated. We do however have the ansatz [27]

ĝK = ĝRĥ− ĥĝA, (4.27)

where we refer to ĥ as the distribution matrix. With this ansatz, and the
normalization condition ĝRĝR = ĝAĝA = 1, we also achieve ǧǧ = 1 as was
mentioned in section 2.2. The choice of ĥ is however not uniquely defined
[35], even though ĝK is for a given ĝA and ĝR.

With this ansatz for the Keldysh component, it is in principle sufficient to
derive equations explicitly for ĝR and ĥ to fully describe a system We will
see that the equation for ĝR does not depend on ĥ — meaning we may first
solve the Usadel equation for ĝR and then for ĥ. This picture does however
complicate if we need to solve the Usadel equation self-consistently for the
superconducting gap ∆.

To solve the equation for the distribution matrix, ĥ, numerically, we will be
employing a scheme decomposing the distribution matrix in (block) diagonal
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Nambu(⊗spin) space. The notation is inherited from ref. [60], but similar
approaches are used in e. g. [31, 63].

parametrization of the distribution matrix We start by
assuming the distribution matrix to be diagonal in Nambu space [] which is
a valid assumption at low frequencies [31, 64]. We may then decompose the
distribution matrix, h, in terms of a set of basis matrices spanning the block
diagonal Nambu⊗spin space as such

ĥ = hnρ̂n, (4.28)

with

ρ̂0,1,2,3 = τ̂0σ̂0,1,2,3, (4.29a)

ρ̂4,5,6,7 = τ̂3σ̂0,1,2,3, (4.29b)

τ̂0 = I4, τ̂3 = diag (1, 1,−1,−1) (4.29c)

σ̂j = diag
(
σj,σ

∗
j

)
. (4.29d)

We may determine the coefficients, hn, from traces with the basis matrices
as such

hn =
1

4
Tr
{
ρ̂nĥ
}

. (4.30)

As we have selected a real vector space with a real field of scalars,we may
the treat {hm} as a real vector of length 8.

Starting from eq. (4.21), we may rewrite the full Usadel equation for our
1D wire as

DF
{
∂̃s
(
ǧ∂̃sǧ

)}
= −i

[
Σ̌, ǧ

]
, (4.31)

where we compared to eq. (4.21) have written the equation in terms of a
gauge covariant arc length derivative. We may write the equation even more
compactly in terms of the gauge covariant matrix current

∂̃sǏ = −i
[
Σ̌, ǧ

]
, (4.32)

with

Ǐ = DF
(
ǧ∂̃sǧ

)
. (4.33)

To arrive at an equation for the matrix current, we may apply the parametriza-
tion of the distribution matrix to the Keldysh component of these two equa-
tions, differentiate the latter and set them equal to each other. We start with
the matrix current,

Ǐ =DF
(
ǧ∂̃sǧ

)
=DF (ǧ∂sǧ) − iDFǧ

[
Â, ǧ

]
=DF (ǧ∂sǧ) − iDF

(
ǧÂǧ− Â

)
(4.34)

with the Keldysh component

ÎK =DF

{(
ĝR∂sĝ

R
)
ĥ− ĥ

(
ĝA∂sĝ

A
)}

+DF

{
∂sĥ− ĝR

(
∂sĥ

)
ĝA
}

− iDF

{
ĝRÂĝRĥ− ĥĝAÂĝA

}
. (4.35)
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We now make the substitution ĥ→ ρ̂mhm

ÎK =DF

{(
ĝR∂sĝ

R
)
ρ̂m − ρ̂m

(
ĝA∂sĝ

A
)}
hm

+DF

{
ρ̂m − ĝRρ̂mĝ

A
}
∂shm

− iDF

{
ĝRÂĝRρ̂m − ρ̂mĝ

AÂĝA
}
hm. (4.36)

The next step is mulitplying from the left with ρ̂n, taking the trace and
mulitplying by 1/4 and introducing

In =
1

4
Tr
{
ρ̂nÎ

K
}

. (4.37)

Then, eq. (4.36) becomes

In =
DF
4

Tr
{(
ρ̂nĝ

R∂sĝ
R
)
ρ̂m − ρ̂nρ̂m

(
ĝA∂sĝ

A
)}
hm

+
DF
4

Tr
{
ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝ
A
}
∂shm

−
iDF
4

Tr
{
ρ̂nĝ

RÂĝRρ̂m − ρ̂nρ̂mĝ
AÂĝA

}
hm. (4.38)

Note that the entries of the traces are permuted in ref. [60]. We may write
this more compactly as

In = Qnmhm +Mnm∂shm − iSnmhm, (4.39a)

Qnm =
DF
4

Tr
{
ρ̂nĝ

R∂sĝ
Rρ̂m − ρ̂nρ̂mĝ

A∂sĝ
A
}
hm (4.39b)

Mnm =
DF
4

Tr
{
ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝ
A
}

(4.39c)

Snm =
DF
4

Tr
{
ρ̂nĝ

RÂĝRρ̂m − ρ̂nρ̂mĝ
AÂĝA

}
. (4.39d)

Returning to the Usadel equation itself, we may apply the parametrization
to the right hand side with{

−i
[
Σ̌, ǧ

]}K
= −i

[
Σ̂, ĝK

]
→ −

i

4
Tr
{
ρ̂n

[
Σ̂,
(
ĝRρ̂m − ρ̂mĝ

A
)]}

hm

= −Vnmhm, (4.40)

where we have used ĝK →
(
ĝRρ̂m − ρ̂mĝ

A
)
hm and introduced the short-

hand

Vnm =
i

4
Tr
{
ρ̂n

[
Σ̂,
(
ĝRρ̂m − ρ̂mĝ

A
)]}

. (4.41)

For the left hand side of the Usadel equation, we have

∂̃sǏ = ∂sǏ− i
[
Â, Ǐ

]
, (4.42)

meaning we may write the arc length derivative of the matrix current as

∂sǏ = −i
[
Â, Ǐ

]
+ i
[
Â, Ǐ

]
. (4.43)

We are however interested in the Keldysh component; and consider first the
last term[[

Â, Ǐ
]]K

=
[
Â, ÎK

]
= ÂÎK − ÎKÂ. (4.44)
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Substituting ĥ→ ρ̂mhm, multiplying form the left by ρ̂n/4 and taking the
trace gives[

Â, ÎK
]
→ DF

4
Tr
{
ÎKρ̂nÂ

}
−
DF
4

Tr
{
ρ̂nÎ

KÂ
}

, (4.45)

where we have used that the trace is invariant under a cyclic permutation of
the elements in the last term. Writing out the first term in terms of hm gives

DF
4

Tr
{
ÎKρ̂nÂ

}
=
DF
4

Tr
{
ĝR∂sĝ

Rρ̂mρ̂nÂ− ρ̂mĝ
A∂sĝ

Aρ̂nÂ
}
hm

+
DF
4

Tr
{
ρ̂mρ̂nÂ− ĝRρ̂mĝ

Aρ̂nÂ
}
∂shm

−
iDF
4

Tr
{
ĝRÂĝRρ̂mρ̂nÂ− ρ̂mĝ

AÂĝAρ̂nÂ
}
hm,

(4.46)

while we for the second term have

DF
4

Tr
{
ρ̂nÎ

KÂ
}
=
DF
4

Tr
{
ρ̂nĝ

R∂sĝ
Rρ̂mÂ− ρ̂nρ̂mĝ

A∂sĝ
AÂ
}
hm

+
DF
4

Tr
{
ρ̂nρ̂mÂ− ρ̂nĝ

Rρ̂mĝ
AÂ
}
∂shm

−
iDF
4

Tr
{
ρ̂nĝ

RÂĝRρ̂mÂ− ρ̂nρ̂mĝ
AÂĝAÂ

}
hm.

(4.47)

We write this more compactly with[
Â, ÎK

]
=
(
QLnm −QRnm

)
hm +

(
MLnm −MRnm

)
∂shm

− i
(
SLnm − SRnm

)
hm, (4.48a)

QLnm =
DF
4

Tr
{
ĝR∂sĝ

Rρ̂mρ̂nÂ− ρ̂mĝ
A∂sĝ

Aρ̂nÂ
}

, (4.48b)

QRnm =
DF
4

Tr
{
ρ̂nĝ

R∂sĝ
Rρ̂mÂ− ρ̂nρ̂mĝ

A∂sĝ
AÂ
}

, (4.48c)

MLnm =
DF
4

Tr
{
ρ̂mρ̂nÂ− ĝRρ̂mĝ

Aρ̂nÂ
}

, (4.48d)

MRnm =
DF
4

Tr
{
ρ̂nρ̂mÂ− ρ̂nĝ

Rρ̂mĝ
AÂ
}

, (4.48e)

SLnm =
DF
4

Tr
{
ĝRÂĝRρ̂mρ̂nÂ− ρ̂mĝ

AÂĝAρ̂nÂ
}

, (4.48f)

SRnm =
DF
4

Tr
{
ρ̂nĝ

RÂĝRρ̂mÂ− ρ̂nρ̂mĝ
AÂĝAÂ

}
. (4.48g)

We can now construct an expression for the arc length derivative of the
modes of the Keldysh component of the matrix current, In, with

∂sIn = −Vnmhm + i
{
QLRnmhm +MLRnm∂shm − iSLRnmhm

}
, (4.49)

where we have introduced the shorthand XLRnm = XLnm −XRnm. This is to be
set equal to the arclength derivative of eq. (4.39a), with

∂sIn =Mnm∂
2
shm

+ (Qnm + ∂sMnm − iSnm)∂shm

+ (∂sQnm − i∂sSnm)hm (4.50)
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Combining the above equations, we finally arrive at an equation for hm

Mnm∂
2
shm =− (Vnm + ∂sQnm)hm

− (Qnm + ∂sMnm)∂shm

+ i
(
QLRnm − iSLRnm + ∂sSnm

)
hm

+ i
(
MLRnm + Snm

)
∂shm. (4.51)

We may completely isolate hm by multiplying both sides by the inverse of
Mnm.

The advantage of this parametrization is, as observed in ref. [60], not only
the explicit form of the equation — see e. g. ref. [65] where the equation is only
implicit — but all quantities except for hm can be determined beforehand.

Furthermore, it is observed in ref. [60] from the expression for the Keldysh
component of the matrix current, eq. (4.39a), that Qnm corresponds to
contributions from the supercurrent, as the hm terms can be non-zero in
equilibrium. A spatially varying distribution matrix implies resistive current,
and hence Mnm corresponds to the resistive contribution. The argument
extends to the terms that depend on the spin-orbit field.

As a final note, in decomposing ĥ, ref. [60] notes that the traces ρ̂nÎK

are proportional to spectral charge, spin, heat, and spin-heat currents. This does
not hold in our case, as we selected the matrices spanning spin-space, σ̂i,
such that they did not depend on position. Only the modes relating to
quasiparticle energy and charge, ρ̂0ÎK and ρ̂4ÎK respectively, carry a direct
physical interpretation. We may of course extract the relevant traces with,
e. g. σ̂T , after calculating the distribution matrix to, e. g. compare with the
uncurved case.

boundary conditions The Kupriyanov -Lukichev boundary condi-
tions of section 4.3 can be applied to this particular parametrization of the
equation in a similar manner. These will also depend only on equilibrium
quantities [60].

Spesifically, we will be voltage-biasing a normal-metal reservoir, which
is done mathematically by having the distribution matrix of the normal
metal, ĥN, given as diag (h+,h+,h−,h−) with h± = tanh (ε± eV/2T). The
framework allows for spin-dependent voltages and temperatures, as well as
temperature gradients, but this is outside the scope of this thesis.



5 PHYS ICAL SYSTEMS

This chapter will bridge the gap between the mostly general considerations
of the previous chapter, to sloving the Usadel equation for spesific geometries
with spesific parameters.

The physical observables we will be considering are those of the equilib-
rium supercurrent, and the magnetization of the wire. Introducing curvature
into the system, we may alter the spin-structure of the charge flowing through
the juncton, and in turn generate long range triplets for long range currents
[45]. The magnetization profile of our wire is a manifestation of the anisotripic
behaviour of the long range triplet correlations. The magnetizatio profile is
also tunable by applying a voltage bias.

5.1 Classes of curves

In this section, we will introduce the arc-length parametrization for some
classes of curves for which we solve the Usadel equation in chapter 6. As
a simple example, we will consider at a circular arc, while the focus is
on curves where the curvature function are different linear combiations of
logistic function, which we in this context should think of as a generalization
of a the step function. This way we can investigate geometries that are curved
in one end, and where the curvature function is symmetric or antisymmetric
around the middle of the ferromagnetic regions.

circular arc For a circular arc, the curvature is constant, κ(s) = κ;
this can be shown fairly simply by solving the Frenet-Serret equations. This
is the system that was studied in ref [45], and we will for easy reference use
the same parametrization of the curves.

Superconductor

s=₀

s=₁

Superconductor

Ferromagnet

T

N

B

Figure 5.1: Schematic of an sfs system where the ferromagnetic region is curved in
a circular arc. The unit vectors are given as a function of the arclength, s.
With the circular arc, the curvature is constant with κ(s) = κ
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We have our arc run counter clockwise in the xy-plane, and set at s = 0,{
T̂ , N̂, B̂

}
= {ŷ,−x̂, ẑ}. Then, by eq. (3.17) we have a parametrization for the

tangentent vector and its (bi)normal given by

T̂ (s) = −sin (κ · s) x̂+ cos (κ · s) ŷ (5.1a)

N̂(s) = −cos (κ · s) x̂− cos (κ · s) ŷ (5.1b)

B̂(s) = ẑ (5.1c)

This corresponds to the arc given by

r(s) = κ−1(1− cos (κ · s))x̂+ κ−1sin (κ · s) ŷ (5.2)

where we have chosen r(s = 0) to be the origin.
Transforming the Pauli-matrices to the Frenet-Serret-frame is done by,

σT ,N,B(s) = σ ·
{
T̂ (s), N̂(s), B̂(s)

}
, (5.3)

meaning

σT = −sin (κ · s) · σx + cos (κ · s)σy =

 0 −ieiκs

ieiκs 0

 , (5.4a)

σN = −cos (κ · s)σx − cos (κ · s)σy =

 0 −eiκs

eiκs 0

 , (5.4b)

σB = σz =

1 0

0 −1

 . (5.4c)

Considering the expression we had for the exchange field contribution to the
self energy, eq. (3.43), we have

Σ̂FM = ηijhiσ̂j, (5.5)

which is similar to having the exchange field rotate at constant rate in space.

logistic curvature functions The main focus is on curves with
curvature functions we build from logistic curvature functions. We should
think of the logistic functions as smoother version of step-functions, which
is suitable to describe diffusive systems in the quasiclassical regime, where
it is a prerequisite that the self energy terms varies slowly compared to the
Fermi wavelength.

The physical interpretation is that we curve some section of the wire. THe
conceptually simplest thing to do is to curve only one end; this will be a
starting point for considering an anisotropic geometry without symmetry. If
we curve both ends, we have the choice of curving the two ends in the same
or opposite direction; this corresponds to having a curvature function that is
symmetric or anti-symmetric around the midpoint, and allows us to study
anisotropic systems with some symmetry.

We name these curves from their shapes, with the wire curved in only one
end as J-like, and the two others as S- and C-like curves.
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K

K

0.5S = 0 1.0

a = 10
a = 50
a = 100
a = 500

Figure 5.2: Logistic functions with different shape parameters, a. Here, the offset is
fixed at s = 0.5 and scaled by a factor,K, representing the magnitude of
the curvature.

b = 0.00
b = 0.25
b = 0.50
b = 0.75
b = 1.50

Figure 5.3: Curves generated from eq. (5.6), meaning κ(s) = K(1− l(s;a,b)), with
s ∈ [0, 1] – meaning the curve length is fixed as well. Here we have fixed
the shape parameter, a = 50, and magnitude parameter K = π, and vary
the offset b. The offset controls how long the curve follows the circular
arc.
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j-like curve A starting point is what we will refer to as a J-like curve.
Here

κ(s) = K (1− l(s;a,b)) , (5.6)

l(s;a,b) =
ea(s−b)

1+ ea(s−b)
, (5.7)

where we refer to K as the curvature amplitude, l as a logistic function with
shape parameter a and offset b. The function is plotted for different values of
the shape parameter, a, in fig. 5.2.

Picking the same intital values of T̂ , N̂, B̂ as with the circular arc, the basis
vectors are given as

T̂ (s) = −sin
[
K

a
(as+ L(s;a,b))

]
x̂,

+ cos
[
K

a
(as+ L(s;a,b))

]
ŷ (5.8a)

N̂(s) = −cos
[
K

a
(as+ L(s;a,b))

]
x̂,

− sin
[
K

a
(as+ L(s;a,b))

]
ŷ (5.8b)

B̂(s) = ẑ. (5.8c)

with

L(s;a,b) = ln
(
1+ e−ab

1+ ea(s−b)

)
. (5.9)

The relationship between the curvature function, κ(s) and the curve, r(s), is
a little opaque. Mathematically,

r(s) = r(0) +

∫s
0
T̂ (σ)dσ, (5.10)

meaning there are two sets of integration between κ(s) and r(s). The rela-
tionship is especially opaque with this particular choice of κ(s) — as there
exist no analytical function for r. For a fixed shape parameter a = 50 and
magnitude of curvature K = π, some curves, r(s), with different offsets are
shown in fig. 5.3.

One way to think of these curves are that they follow the path of some
circular arc of radius 1/K for an arclength of b, and then follow a straight
path. As to not change curvature instantaneously, the shape parameter a
determines the length scale over which the "decoupling" from the circu-
lar arc happens, with the limit a → ∞ corresponding to leaving the arc
instantaneously.

The J-like curve is in some sense a building block for the S- and C- curves
which we will consider. It is also in the limit, b > L, a circular arc. This allows
us continuously traverse the parameter space, e. g. from a straight wire to a
circular arc, with the curvature never being spatially uniform.

s- and c-like curves As we are studying sfs-junctions, we may also
consider geometries where both ends of the ferromagnetic region is curved.
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To do so with our logistic functions, we could consider curvature functions
that are symmetric and antisymmetric if we invert them by the junction
midpoint; this will be the S- and C-like curves respectively.

Here the curvature functions are

κ(s) = κ(s) = K
(
1− l(s;a,b)∓ l(s;a ′,b ′)

)
, b ′ > b, (5.11)

l(s;a,b) =
ea(s−b)

1+ ea(s−b)
, (5.12)

the − corresponds to a S-like curve, and the curvature function κ(s) is
antisymmetric when b ′ = 1− b and a = a ′. The + branch corresponds to
a C-like curve where the curvature function is symmetric under the same
conditions.

The equations for the Frenet-Serret basis vectors are similar to eq. (5.8),
but with an extra L term, and similarly for the Pauli matrices.

Translated to real space, these curvature functions correspond to curves
with a S- and C- like shape in the sense that there is a straight section with
ends that curve in the opposite or same direction. With b ′ = 1−b and a = a ′,
the S-like curve has twofold rotation symmetry, with rotations around the point
r(s = 0.5), while the C-like curve has a mirror plane spanned by N̂ and B̂ for
s = 0.5. Apart from some complications regarding the shape parameter, the
C-like curves turns to a smooth circular with radius of curvature equal to
R = 1/K, while the S-like curve gets

With b > b ′ ' 0.5, the C-curve turns unhelpful, as the tails of the logistic
function will overlap and increase the local curvature beyond K. This does
not mean that the curve necessarily intersects itself, but the picture of two
curved regions separated by a straight region breaks down.
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K

K

SJ C

r(s)

κ(s)

a = 10Figure 5.4: Schematic of J-, S- and C like curves, r(s), with their associated curvature
function, κ(s).
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5.2 Equilibrium Current

As menitoned in section 1.1, a phase difference, φ = ϕR −ϕL between the
superconductors of a, e. g. sfs, junction [13, 66]. In our constext, we should
understand this as succesive Andreev reflections leading to a net transport
of Cooper pairs from one superconductor to the other. With the reflections
being a phase coherent process, so is the transport. In the tunneling limit, i. e.
our interfaces are relativly opaque, the current varies sinusoidaly with the
phase difference,

I(φ) = Ic sin(φ), (5.13)

where we refer to Ic as the critical current.
Introducing magnetic order will also introduce spatial modulation of the

wave function, which may shift the ground state of the system from φ = 0

to φ = π. This in trun shifts the sign of Ic [66], with current running in
the opposite direction. Control over the junction ground state may be an
important part of spintronic circuit elements [67, 68].

The charge current in our 1D wires without spin orbit coupling, given as
[65]

IQ = IQ0

∫∞
−∞ dεTr {τ̂3 [ǧ∂zǧ]} , (5.14)

where IQ0 = N0DFA|∆|e/4L, with N0 the density of states at the Fermi level
in the absence of an exchange field and superconducting correlations, DF the
diffusion constant, A the area we are considering, |∆| the magnitude of the
bulk superconducting gap, e the electron charge and L the length of the wire
we are considering.

In equilibrium, the expression simplifies to

IQ = IQ0

∫∞
−∞ dεTr

{
τ̂3

(
ĝR∂sĝ

R − ĝA∂sĝ
A
)}

tanh
(

ε

2kBT

)
, (5.15)

where we have used the ansatz from ,

ĝK =
(
ĝR − ĝA

)
tanh

(
ε

2kBT

)
. (5.16)

By writing out the retared and advanced Green’s functions, ĝR,A, it is possible
to show that the current depends only on the anomalous Green’s function, f,
i. e. the off-diagonal blocks from eq. (2.12), as such

IQ = 2IQ0

∫∞
−∞ dεTr

{
f̃∂sf− f∂sf̃

}
(5.17)

where we have supressed the · to not clutter the equation too much. We may
in further decompose the anomalous Green’s function in terms of a singlet
and triplet component as such [69]1

f = (f0 +d ·σ) iσ2, (5.18)

1 Generally, we have f =
(
f0+η

ijdiσj
)
iσ2. The fact that σ2 appears and is independent of

the Frenet-Serret basis vectors is a result of the inner product being independent of the choice
of coordinate system.
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with d = (dT ,dN,dB) as the d-vector and f0 as the singlet component. With
the anomalous Green’s function f, decomposed, we may also decompse the
the current, IQ, into singlet and triplet components. This is conventionally
done as such [45, 69]

I0
IQ0

= −8

∫∞
0
dεRe

{
f̃j∂sf0 − f0∂sf̃0

}
tanh

(
ε

2kBT

)
,

Ij

IQ0
= 8

∫∞
0
dεRe

{
d̃j∂sdj − dj∂sd̃j

}
tanh

(
ε

2kBT

)
,

(5.19a)

with Ij corresponding to triplets aligned with the j-direction. Crucially, these
current components only sum to the total charge current if d · ∂sσ = 0. This
is illustrated by considering

∂sf = (∂sf0 + (∂sd) ·σ+d · ∂sσ) iσ2. (5.20)

Considering only our planar curves with τ(s) = 0

d · ∂sσ = dT∂sσT + dN∂sσN + dB∂sσB,

= dTκ(s)N̂− dNκ(s)T̂ , (5.21a)

where the derivatives are determined from eq. (3.17). This term will in term
give rise to an additional current contribution [45, 69]

Iκ = 16κ(s)

∫∞
0
dεRe

{
d̃NdT − d̃TdN

}
tanh

(
ε

2kBT

)
, (5.22)

which should be understood as a function of the (energy dependent) differ-
ence in (complex) argument of the elements of the d-vector [45]. That is, we
require the d-vector to rotate in spin-space for Iκ to be non-zero. For clarity,
rotation of the d-vector will convert short range triplet correlations, dT , to
long ranged ones dN. The last component, dB, is zero with ∂sσB = 0. For a
more physical interpretation, the term decribes an inverse Edelstein effect [69].

5.3 Magnetization

In the superconductor-ferromagnet junctions, the proximity effect induces
a non-uniform distribution of triplet correlations. This distribution can be
tuned by applying a voltage bias [65].

To better understand the effects of applying the bias, and hence the non-
equilibrium properties of the system, we may want to decouple the proximity
induced equilibrium magnetization from the spin accumulation induced by
the voltage bias.

We consider first the total magnetization, Ms. With the Keldysh Green’s
function ĝK = ĝRĥ− ĥĝA, we can determine the magnetization in direction
û, as [65, 70]

Mu(s) =M0

∫∞
∞ dεTr

{
ûdiag (σ,σ∗) ĝK

}
. (5.23)

Here, M0 = gµBN0|∆|/16, with g being the g-factor of electrons, µB the Bohr
magneton, N0 the density of states at the Fermi level in the absence of an
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exchange field and |∆| the superconducting gap. Similarly to ref. [65], we
refer to eq. (5.23) as the total spin accumulation.

The non-equilibrium contribution is given as

M ′u(s) =M0

∫∞
∞ dεTr

{
ûdiag (σ,σ∗)

(
ĝK − ĝKeq

)}
, (5.24)

with ĝKeq =
(
ĝR − gA

)
tanh (ε/2kBT).

The magnetization in eq. (5.23) includes the spin accumulation directly
induced by the proximitized superconductor as well a contribution that is
induced by the applied voltage bias, which we refer to as an equilibrium and
nonequilibrium contribution respectively. The equilibrium contribution



6 NUMER ICAL RESULTS

6.1 Equilibrium current

choice of parameters We consider a superconductor-ferromagnet-
superconductor (sfs) structure. For the simulations, we select the temperature
T = 0.005Tc. We assume Kuprianov-Lukichev boundary conditions, with the
additional assumption of the bulk superconductor solution to the Usadel
equation on the superconducting side of the interface. The interface resistance
parameter is set to ζ0 = ζL = 3 for both interfaces. For the parametrization
of the S- and C-like curves, we set the offset b ′ = 1− b, and shape parameter
a = 30. The Usadel equation is solved in the ferromagnetic region which has
length L, such that s ∈ (0,L). We pick the convention for the superconducting
phase difference, φ, such that will be such that the superconductor at s = 0
has "absolute" phase ϕ0 = −φ/2 and that at s = L has ϕ1 = +φ/2.

The available parameter space is then the length of the ferromagnetic
region, L, the exchange field h and the offset, b, and choice of curve shape.

numerical results In ref. [45], a 0− π transition was induced by
having a by curving a wire of fixed length along circular arcs of smaller
and smaller radii. These results are replicated in fig. 6.1 (a). We may trace a
different path in the parameter space with the same endpoints by means of
the J-shaped curve. This is shown in figure 6.1 (b), where we plot the current
components at s = L/2 as a function of the offset, b. Keep in mind that the
total charge current is constant throughout the ferromagnetic region, the
current components vary. This might be especially misleading at low offsets
for the J-like curves, as e. g. the long range triplet component, IN, and the
Edelstein component Iκ, decays relatively quickly as the curvature function,
κ(s) goes to zero.

With the C-like curve, figure 6.1c, we also follow a path in parameter space
with similar starting and endpoints as for the J-like curve and circular arc.
With b = 0.5, the C-like curve is exactly equal to the circular arc with κ = π.1

One of the findings of [45], was that the curvature at which the 0 − π
transition took place depended on the length of the junction. Similarly, the
transition depends on the symmetry of the junction. Observe that the 0− π
that it happens at different offsets for the J and C-like curves. This is even
if we account for the fact that at equal offsets, twice the length of the C-
like curve is non-straight. Thus, geometric configurations where the critical
current disappears depend not only on the curvature magnitude, but also
the shape of the curvature function.

The symmetries of the S- and C-like curves are in some sense opposite.
As discussed in section 3.2 the curvature function, κ(s), is symmetric and
anti-symmetric during inversion around the point s = L/2 for C- and S-
like curves respectively. Geometrically this translates to two-fold rotation

1 This does not hold for for b = 0, as the tail of the logistic function is within the ferromagnetic
region.
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Figure 6.1: Current components, IX as a function of (a) curvature amplutide, κ,
and (b,c,d) offset at s = L/2 at critical current. The geometries are (a) a
circular arc, (b) J-, (c) S-, and (d) C-, like curves, with L = 2.0ξ,h = |∆|T̂ .
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symmetry for the for the S-like curve, and a mirror plane for the C-like curve.
Physically, in the S-like curve, the d-vector is rotated in one direction on one
side, and the opposite direction on the other side. For the C-like curve, it is
rotated in the same direction in both curved regions.

The spatial variations of the different current compoents, IX, for different
choice of junction length,L, and curvature amplitude, K, for S- and C- like
curves are given in fig. A.1. The most striking difference is that the (spatial)
derivatives of singlet, I0, and short range triplet, IT , components changes
signs multiple times for the C-like curves, but only once for the S-like curves.
This corresponds to the derivatives of the curvature function being an even
function around s = L/2 for the S-like curve, and an odd function for the
C-like curve. This picture complcates somewhat with longer curves, as the
spin-mixing goes through multiple cycles.

The current-offset relation for the S-like curve, fig. 6.1, is more curious
than its J- and C-like counterparts; the charge current changes very little as
a function of the offset. As we will get back to, this is in general not true
for S-like curves, but corresponds to a choice of parameters in which the
effects of spin-mixing and the rotation of the d-vector do not interact, i. e.
they do in conjunction not display an effect on the charge current. The rate
of rotaion of the d-vector scales with the local curvature function, while the
rate of the spin mixing depends on the strength of the exchange field. With
these parameters, the introduction of curvature does rotate the d-vector, but
at such a speed to not meaningfully affect the triplet-to-singlet spin mixing.

Notably, the introduction of curvature may for the S-like curves enhance
the total charge current, IQ. In fig. 6.2, we are considering an S-like curve,
where we have, compared to fig. 6.1, increased both the length and curvature
amplitude to, L = 4.0ξ and K = 2π. Both parameters are doubled, and in the
limit b = 0.5, this geometry roughly corresponds to two semi-circles curving
in the opposite direction. Here the effects of spin mixing and the rotation of
the d-vector interact constructively to both enhance the charge current, IQ,
but also the long range triplet component, IN, in the centre of the junction.

In ref. [45], it was also predicted that the introduction of curvature could
increase the equilibrium current by a similar magnitude for the same material
parameters, including the length of the junction. However, as discussed
earlier, the system of ref. [45] underwent a 0 − π transition as curvature
was introduced, with the π state carrying a larger critical current, whereas
ours underwent no such transition. The explanation given in ref. [45] is that
as curvature is introduced, the triplet component changes sign while the
singlet component does not. This is further illustrated in the phase-current
relationship, fig. 6.2 (c) and (d), in which the singlet component disappears
with the introuction of curvature.

In the region with the offset b ∼ 0.5 of figure 6.2 a, the equilibrium
current decreases as b is increases. This is the region where the tails of
the logistic functions overlap, and should not be intrepreted to mean there
is some optimal curvature for the generation of long range triplets. We
would expect such an optimum to correspond to parameters where our
physical assumptions break down, e. g. where the junction curves enough to
intersect itself; although not shown here, the critical current increases with
the curvature amplitude in the system of figure 6.2(a).
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6.2 Magnetization

choice of parameters To study the the magnetization, we will con-
sider an sfn junction, such that the system in a steady state when voltage
biased [71]. We select interface resistance parameters ζ0 = 3, ζL = 15, with
the superconductor at the s = 0 interface; this ensures that the superconduct-
ing proximity effect dominates in the voltage biased system. We also set the
temperature T = 0.005Tc.

We consider only circular arcs, with κ(s) = κ, and limit ourselves to having
the exchange field in the tangential direction, h‖T̂ , and fix the length of the
ferromagnetic region to L = 0.8ξ. With this choice of the length L, we ensure
that superconducting correlations are present throughout the ferromagnetic
region, and that the voltage drop largely happens at the interfaces.

numerical results Briefly limiting ourselves to equilibrium, the
introduction of spin orbit coupling to the system can alter the magnetization
of the ferromagnetic region, which is shown in section 6.2 (a). As can be seen
in section 6.2(b), the introduction of curvature gives a similar effect. Notably,
for circular arcs, the geometric considerations limit us to the region κ 6 π.

Applying a voltage bias to the system, the magnetization varies along
the curve. The open question is how or if the curvature effects this altered
magnetization. section 6.2 shows how the total spin accumulation depends
on the applied bias for curvatures of κL = 0 and κL = π.

While both values of κ allows for the inversion of the magnetization with
applied bias, the total spin accumulation of the curved structure is more
anisotripic and consentrated in one region. Here, it is important to note the
curvature of lines in the plot at constant voltage, and to observe that the
non-equilibrium magnetization, section 6.2 (c) and (d), exhibits this peaked
behaviour in the curved system. This is an indication that the effects of
curvature and voltage bias interact.

At low biases, the equilibrium contribution dominates, with the non-
equilibrium contribution, M ′s, close to zero. The bias at which the non-
equilibrium contribution becomes significant does not seem to depend di-
rectly on curvature. This is further corroborated in figure A.2, where increas-
ing the curvature does not change the bias where magnetization changes
significantly, but increasing the magnitude of the exchange field does. This
observation is in line with [65], in which [...] a smalll increase in the [exchange]
field strength may either shift the maximal magnetization towards higher bias values,
or enhance magnetization without a bias shift, [...], although the systems studied
are slightly different.

To summarise, the findings do demonstrate curvature controlled spin
accumulation profiles, that can be tuned by a voltage bias and exchange field.
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7 SUMMARY AND OUTLOOK

The generation of long-range spin triplet correlations from superconductor-
ferromagnet heterostructures may be a candidate for spintronic applications,
offering the prospect of supercurrents carrying net spin. Introducing curva-
ture to such systems may, through the introduction of a quantum geometric
potential and strain induced spin orbit interactions, generate these spin
triplet correlations.

In this thesis, we rederived the Usadel equation for planar curves with
a non-zero spin orbit field in terms of the arc-length derivate. We also
parametrized the quantum kinetic equations to study non-equilibrium prop-
erties of the system.

We found the equilibrium current to be tuneable by means of curvature.
The equilibrium current could be enhanced, and the junction could undergo
a 0− π transition depending on the (geometric) symmetry of the junction.
Furthermore, we found curvature dependent spin-accumulation profiles that
could be further tuned by applying a voltage bias to the system or altering
the exchange field strength. Increasing the curvature resulted in increasingly
peaked distributions of spin accumulation. It should be stressed that the
curvature affected both the equilibrium and non-equilibrium properties of
the system.

future work In addition to more thoroughly exploring the parame-
ter(s) spaces we have investigated, there are some additonal questions close
to the subject matter that have yet to be investigate. Chiefly the effect of
curvature on the conductance in the voltage biased system, as well as the
spin accumulation in geometries of non-uniform curvature. The numerical
framework we have used is directly applicable to explore these question.

Another, although less related question, is the relationship between the
critical temperature and curvature. In ref. [46], it was shown that introducing
curvature could tune the critical temperature; only 1D wires curved along
some circular arc were assesed. A next step may be to assess the critical
temperature in structures with anisotropic curvature amplitude, e. g. the
S-like curves we have studied. To study the critical temperature requires us
to solve the Usadel equation self consistently in both the superconducting
and ferromagnetic region.

A less related, but open, question is the effect of curvature on the con-
verision from resistive to supercurrent in voltage biased junctions; this also
requires us to solve the Usadel equation (self consistently) on the supercon-
ducting side of the interface as well as the ferromagnetic side. It is assumed
in ref. [60] that the converision chiefly happens inside the superconductor
and in some sense as a function of the superconducting contribution to the
self energy.

In this thesis, we limited ourselves to 1D planar curves, which comes with
the restriction that they are not to intersect. For the spesific geometries we
considered, this placed a limit on the magnitude of curvature. Considering
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a spiral wire [72] instead, we could investigate the properties of wires with
multiple windings.

Adding torsion or another dimention of transport to the Usadel equation
gives additional geometric degrees of freedom. Without torsion, we are
limited to planar curves, placing limis on how to make curves such that
they do not intersect. The requirement that curves cannot intersect can also
be relaxed with additional dimentions of transport, where we may join or
proximitize different junctions.

Adding a non-zero torsion function requires us to rederive the Usadel
equation and alter the implementation of the slover, whereas we should
be employing some finite difference scheme [73, 74] for systems with 2- or 3

dimension of transport.
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a.1 Equilibrium current
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Figure A.1: Spatial variation of the equilibrium current components, IX, at critical
current, φ = π/2 for (a,c,e) S- or (b,d,f) C- like sfs-junctions with b = 0.25.
The interface resistance parameters are, ζ0 = ζ1 = 3, the temperature
T = 0.005Tc and exchange field h = ∆T̂ .
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a.2 Non-equilibriummagnetization
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Figure A.2: Total magnetization, Ms, and non equilibrium contribution to the mag-
netization, M ′s along the tangential direction as a function of position
s/L and voltage bias V . The junctions are curved along a circular arc
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