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Introduction

An election is a process where a group of individuals (the voters) convene and together
make a decision. Each voter somehow casts a ballot and the ballots are somehow counted
to arrive at the decision (or the result of the election). Traditional voting systems, such
as pure paper-based voting, where voters go to a polling station and fill in their choices
on a paper ballot, have certain limitations. First of all, they rely heavily on trust in the
election officials, and voters have limited means of verifying that their ballots were counted.
Additionally, there are issues regarding accessibility, counting errors and timeliness.

These issues can be addressed by making use of voting systems benefiting from elec-
tronic systems support and techniques from cryptography. Broadly speaking, there are
two classes of electronic voting systems. In the first class, voters still go to a polling sta-
tion but fill in their ballots on a machine rather than on paper (or they use a combination
of paper ballots and voting machines to facilitate the tally). In the second class, we find
fully electronic voting systems, or remote electronic voting systems, where voters typically
fill in their ballots on a website or in a dedicated smartphone application and submit the
ballot through the Internet to a voting server maintained by the election officials. In this
thesis we focus on the latter class. As such, any reference to “electronic voting” should be
taken to mean “remote (internet) voting”.

Although electronic voting systems have many attractive properties, there are certain
challenges. The addition of cryptographic mechanisms to the voting systems might make
the systems more complicated, and voting systems must be designed so that they are
easy to use correctly by the voters. Furthermore, they must be easy to implement by
programmers to avoid unintentional programming errors that might leak information about
the votes or make it possible to tamper with the result. Finally, electronic voting systems
are susceptible to a large range of attacks, and care must be taken to ensure that the
systems we use are secure.

Voting systems must satisfy a large range of security properties. First and foremost,
the outcome of the election must correctly reflect the opinions of the voters. This is usually
called integrity. A voting system must provide ballot privacy [2, 11], so that voters are
able to freely express their opinions. It is often desirable that the privacy of the votes is
not only ensured during the election, but for the foreseeable future. This property is often
referred to as everlasting privacy [17]. To avoid coercion and vote-buying, it is desirable
that voting systems provide voters with some strategy for coercion resistance [30]. Another
desirable property of electronic voting systems, that is difficult to achieve in traditional
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voting systems, is verifiability [8, 31]. Verifiable voting systems allow voters to verify
that their ballot was included in the tally, and that the outcome of the election correctly
reflects the submitted ballots. An interesting question arises if a voter files a complaint, for
example claiming that their ballot was not included in the tally: how should one proceed
then? Often, it is not possible to restart the election and have all the voters submit
their ballots again. It might also be the case that the complaining voter is dishonest and
has no reason to complain, but does so only to raise questions about the integrity of the
election. Furthermore, the complaining voter might be honest, but made a mistake in the
verification process, making her believe that her vote was dropped even though that was
not the case. This challenge can at least partially be solved by voting systems providing
accountability [24]. Then, if anything goes wrong, voters are able to produce evidence
that something indeed went wrong, which in turn will cause the misbehaving party to be
blamed for their misbehaviour.

Ensuring that the voting systems we use meet the required security properties is a
non-trivial task. In this thesis, the overall goal is to formally analyse existing electronic
voting systems and the level of security they provide. We identify three important topics
for doing so:

Topic A: Security definitions. Understanding the level of security provided by a voting
system is not possible without a formal definition of what security means, what ca-
pabilities an attacker is assumed to have, and what an attacker would like to achieve.
We aim to provide new security definitions for voting-related security properties and
improve upon existing definitions.

Topic B: Security proofs. To increase the assurance that the voting systems we use meet
the required security properties, it is necessary to provide security proofs. We aim to
develop new security proofs for existing voting systems (and certain primitives that
are used in voting systems) that lack such proofs.

Topic C: Machine-checked proofs. The assurance that a voting system is secure is no
greater than the confidence that the security proofs are correct. We aim to increase
the confidence in our security proofs, by using interactive theorem provers to verify
that our proofs are correct.

The three topics are in some sense different, but they are closely related. To properly
analyse the security provided by a protocol and write a security proof, it is necessary
to first have a proper security definition, and it is impossible to machine-check a proof
without first having a proof. Defining security is an important contribution on its own,
but a security definition on its own still does not mean much without using it to analyse the
security of some construction. Security proofs are important contributions and may well
exist without a machine-checked counterpart, but machine-checking a proof is important
to increase the assurance that the proof is correct.

This thesis consists of four individual research papers that all relate to two or three of
the topics listed above. An illustration of how each paper relates to the three topics can
be found in Figure 1.
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Topic A

Topic B Topic C
I

IV II

III

Figure 1: Relating the individual papers to the various topics in the thesis. Topic A:
Security definitions. Topic B: Security proofs. Topic C: Machine-checked proofs. Roman
numbers refer to the individual papers in the thesis.

Paper I does not introduce any new security definitions, but provides machine-checked
security proofs for existing constructions. Papers II–IV all present new security definitions
for various properties, along with security proofs for existing voting systems. Papers II
and III additionally include machine-checked proofs.

In the remainder of the introduction, we will introduce techniques and tools for building
secure electronic voting systems and for increasing the assurance that the systems are
indeed secure, before discussing a few important security properties. We introduce and
explain the contributions of each paper as we go.

Cryptographic Building Blocks

Separately, the aforementioned security properties might be easy to achieve. For example,
verifiability can be trivially achieved by publishing signed ballots for each voter. However,
this would completely destroy privacy. Privacy, on the other hand, can be ensured by
traditional paper-based voting, but as mentioned, this gives voters no means of verifying
that their ballot was counted. Achieving all security properties at once is a much greater
challenge, but it is possible by using techniques from cryptography. In this section, we
describe some cryptographic primitives that are often used in electronic voting systems,
and briefly explain their roles in building secure electronic voting systems.
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Digital Signatures. Digital signatures are (among other things) used to authenticate
voters to ensure that only eligible voters vote, and that eligible voters only vote once,
to avoid issues like ballot stuffing. A digital signature scheme is a triple of algorithms
S = (Kgens, Sign,Verify). The key generation algorithm Kgens takes no input and outputs
a pair (sk, vk) consisting of a secret signing key sk and a public verification key vk. The
signing algorithm Sign takes as input a signing key sk and a message m and outputs
a signature σ. The verification algorithm Verify takes as input a verification key vk, a
message m and a signature σ and outputs either 0 or 1. We require that a signature
scheme is correct, i.e. we require that for all key pairs (sk, vk) output by Kgens and for
any message m, we have Verify(vk,m,Sign(sk,m)) = 1. Informally, a digital signature
scheme is secure if it is difficult to create forgeries, even after seeing valid signatures on
several messages.

Public Key Encryption. To help protect privacy, ballots are usually encrypted using a
public key encryption system (PKE). A PKE is a triple of algorithms E = (Kgene,Enc,Dec).
The key generation algorithm Kgene takes no input and outputs a pair (ek, dk) of encryp-
tion and decryption keys. The encryption algorithm Enc takes as input an encryption key
ek and a plaintext m and outputs a ciphertext c. The decryption algorithm Dec takes as
input a decryption key dk and a ciphertext c and outputs a plaintext m. As for digital sig-
natures, we require that a PKE is correct, i.e. we require that for any pair of keys (ek, dk)
output by Kgene and any plaintext m, we have Dec(dk,Enc(ek,m)) = m. Informally, a
PKE is secure if it is difficult to learn anything about the underlying plaintext from the
ciphertext, sometimes even when seeing decryptions of several other ciphertexts.

Some public key encryption systems (such as ElGamal [14]) enjoy a homomorphic prop-
erty, so that two ciphertexts can be combined in such a way that the resulting ciphertext
decrypts to either the sum or product of the original plaintexts. This property can be
exploited to re-encrypt ciphertexts. In other words, from one ciphertext, one can compute
a new ciphertext that decrypts to the same message as the original ciphertext. This is
useful for constructing verifiable shuffles, which we discuss further down.

It is often desirable to distribute the decryption key among several parties, so that
some subset of the election officials is needed to decrypt the ballots. This way, privacy is
protected against curious election officials (unless sufficiently many officials collude). This
also helps towards increasing the robustness of the election, as it would still be possible
to compute a result even if some election officials were to become unavailable (except for
cases where all officials are needed to decrypt the ballots).

While distributed decryption is much used in electronic voting systems, there are in-
teresting systems that do not make use of this technique. A notable example is sElect [23],
which we discuss in Paper III. Indeed, sElect only uses very basic cryptographic primitives:
namely plain public key encryption and digital signatures.

Commitment Schemes. A commitment scheme allows a sender to commit to some
value, and reveal the value at a later point in such a way that no one learns the committed
value before the sender chooses to reveal it (this is called hiding), and the sender is unable
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to reveal a different value than the one he committed to (this is called binding).
Formally, a commitment scheme is a triple of algorithms C = (Kgenc,Commit,Open).

The key generation algorithm Kgenc takes no input and returns a commitment key ck.
The commitment algorithm Commit takes as input a commitment key ck and a message
m and returns a commitment ct and an opening op. The opening algorithm Open takes
as input a commitment key ck, a message m, a commitment ct and an opening op and
returns either 0 or 1. As for public key encryption and digital signature schemes we put a
correctness requirement on the commitment scheme, so that for any commitment key ck
output by Kgenc and for any message m, we have Open(ck,m,Commit(ck,m)) = 1.

Commitment schemes have various applications in electronic voting. Examples include
election officials committing to their share of a shared secret key or voters committing to an
encryption of their submitted ballot. Commitment schemes can also be used as building
blocks for more complex systems. For example, Cuvelier et al. [12] use commitments
to construct a cryptographic primitive they call commitment-consistent encryption where
commitments are derived from encrypted ballots to create a perfectly private audit trail,
which in turn is used to achieve everlasting privacy. We discuss this construction further
in Paper I.

Zero-Knowledge Proofs. Zero-knowledge proofs [15] are often used in electronic voting
systems to ensure that certain computations are performed correctly. Examples include
voters proving that they have encrypted a valid ballot and election officials proving that
they have correctly decrypted the submitted ballots (e.g. without removing or tampering
with any ballots).

A zero-knowledge proof is a protocol between two parties called the prover and the
verifier. The prover is tasked with proving statements about some secret data, without
leaking any information about the data. Zero-knowledge refers to the fact that the verifier
only learns that the statement is true, but learns nothing about the secret data. A zero-
knowledge proof must satisfy two additional properties: completeness and soundness. We
say that a zero-knowledge proof is complete if the verifier always accepts a proof for a true
statement. A zero-knowledge proof is sound if the prover is unable to convince the verifier
that a false statement is true.

Verifiable Shuffles. One particular kind of zero-knowledge proof is a verifiable shuffle.
In many electronic voting protocols, encrypted ballots are shuffled to destroy the link
between the ballots and the voters who cast them. This is done to achieve privacy. The
shuffle is performed several times, by a series of mix servers. The first mix server receives
a list of encrypted ballots, re-encrypts each ciphertext and permutes the order of the
ciphertexts in the list. The output of the mix server is a new list of ciphertexts that
decrypt to the same ballots as the ciphertexts in the input list. The resulting list is sent
to the next mix server, which then shuffles the list it receives, sends the resulting list to
the next mix server, and so on.

To ensure that this is done honestly, each mix server must provide a zero-knowledge
proof of correct computation, proving that he did not tamper with the ballots in any way
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(e.g. added new ballots or removed any ballots). The addition of the zero-knowledge
proofs is what makes the shuffles verifiable.

Various verifiable shuffle protocols exist in the literature. Cuvelier et al. [12] propose
using the Terelius-Wikström shuffle [33, 32] to shuffle so-called PPATC ciphertexts used
in a commitment-consistent encryption scheme to provide a perfectly private audit trail
(and hence everlasting privacy). Haenni et al. [16] present a shuffle protocol for shuffling
single ElGamal ciphertexts using an optimised variant of the Terelius-Wikström shuffle.
However, it has not previously been shown that the Terelius-Wikström mixnet is suitable
for shuffling PPATC ciphertexts, leading us to our first paper.

Paper I Efficient Mixing of Arbitrary Ballots with Everlasting Privacy: How to Verifiably
Mix the PPATC Scheme. We build upon the work by Haenni et al. [16] and prove
that PPATC ciphertexts can be shuffled using the optimised Terelius-Wikström shuf-
fle. We prove that the shuffle protocol is complete, sound and zero-knowledge and
verify our proofs in the Coq theorem prover [3].

Provable Security and Proof Assistants

Traditionally, cryptographic systems have been analysed by simply trying to break them.
If a certain amount of time passed without an attack being found, the system in question
was considered secure. This approach is clearly not satisfactory. Even if an attack is
not found, it does not mean that an attack does not exist. One could also imagine that
someone finds an attack, but does not tell anyone.

An approach for increasing assurance that the cryptographic protocols we use are
indeed secure, is the (now standard) approach of provable security. The security of a
cryptographic protocol is often related to some underlying mathematical problem through
a reduction. The idea is to prove that if we are able to efficiently break the security of the
cryptographic system, then we are also able to efficiently solve the underlying problem.
As the underlying problem is assumed to be difficult to solve (efficiently), this leads to
a contradiction. The increased assurance that the protocol is secure comes from the fact
that the underlying mathematical problem typically has been subjected to a large amount
of analysis, and that the hardness of solving it is thus well understood.

However, before writing a security proof, we need a precise definition of what security
should mean: what the capabilities of the adversary should be and what he would like to
achieve.

Security Games

One way of defining security is through a security game, where a benign entity called
a challenger plays against an adversary. A security game specifies what we assume the
adversary is able to do by specifying a set of moves as well as conditions on when and how
many times the adversary is allowed to perform each move. Secondly, the game specifies
the adversary’s goal, i.e. what the adversary would like to achieve. The adversary’s goal
is typically defined as an event E in some probability space. We say that an adversary
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wins the game if he is able to achieve his goal. A system is considered secure if we can
prove that no (efficient) adversary can win the specified game with more than negligible
probability.

To ease the writing and reading of game-based security proofs, one often employs the
technique of game-hopping [28]. The idea is to construct a sequence of games G0, . . . , Gn,
where G0 is the original attack game. If we let Ei be the event that the adversary wins the
game Gi, the idea is to construct the games such that Pr[Ei] is negligibly close to Pr[Ei+1]
for all i = 0, . . . , n − 1 and that Pr[En] is negligibly close to some “target probability”,
e.g. 0, 1 or 1/2. It then follows through a standard hybrid argument that Pr[E0] is also
negligibly close to the target probability. The changes from Gi to Gi+1 should be as small
as possible, to make the analysis as easy as possible.

We note that other approaches exist for defining security, such as simulation-based
security [25] and Dolev-Yao’s symbolic model [13]. In the papers included in this thesis,
however, we focus on the game-based approach when developing new security definitions.

Interactive Theorem Provers

Even with techniques such as game-hopping, cryptographic security proofs tend to be
complicated and error-prone. They are difficult to write, and they are difficult to audit,
and the assurance that a protocol meets the claimed security properties is no higher than
our confidence that the security proof is correct. Over the past decades, several interactive
theorem provers (or proof assistants) have been developed to increase the assurance that
a security proof is correct.

An interactive theorem prover is a piece of software designed to aid in developing formal
proofs. A wide variety of proof assistants exist. Some are designed to help develop and
verify mathematical proofs in general, while others are more specialized towards one single
area, such as cryptographic security proofs.

One particular proof assistant is EasyCrypt, designed for verifying cryptographic
security proofs using games [1]. EasyCrypt is largely based on Hoare logic [18], developed
by Tony Hoare to reason about the properties of computer programs. A core component
of the Hoare logic is the so-called Hoare triple P{Q}R, where P is a precondition, R is a
postcondition and Q is some computer program (for example a security game). The pre-
and postconditions are assertions about the variables of the program, and the Hoare triple
can informally be interpreted as “if the precondition is true before execution of the program,
then the postcondition will be true after the program is completed”. In EasyCrypt, the
Hoare triple is expressed as [Q : P =⇒ R].

Another component of EasyCrypt is a probabilistic Hoare logic, called pHL, used to
reason about the probability of some event happening in a security game. In other words,
the pHL logic is used to reason about judgments of the form [Q : P =⇒ R] ◦ p, where ◦
is either <,>,≤,≥ or = and p is a probability expression.

A central aspect of game-based security proofs is to relate two different games. Easy-
Crypt supports a relational Hoare logic for probabilistic games, called pRHL. This logic
reasons about judgments of the form [Q1 ∼ Q2 : P =⇒ R], where Q1 and Q2 are proba-
bilistic programs (games) and the pre- and postconditions P and R are logical statements



12

relating the variables of the two games.
The pRHL logic does not reason about probabilities directly, but it is possible to derive

certain probability claims from valid pRHL judgments. For example, from the judgment
[Q1 ∼ Q2 : P =⇒ E1 → E2], where E1 and E2 are events occurring in the programs Q1

and Q2, respectively, one can derive that Pr[E1] ≤ Pr[E2]. From the judgment [Q1 ∼ Q2 :
P =⇒ E1 ↔ E2] one can derive that Pr[E1] = Pr[E2].1

EasyCrypt also implements a higher-order classical logic for proving mathematical
statements. The classical logic also enables the use of specialised software (called SMT
solvers) that can be used to automatically prove simple mathematical facts.

EasyCrypt offers a module system which is used to model cryptographic games and
cryptographic primitives. Modules consist of procedures written in a simple imperative
language and may be parameterised by other (abstract) modules. The module system
allows for writing modular proofs and is highly useful for structuring large proofs consisting
of several games and involving multiple primitives or sub-protocols.

Since its birth around a decade ago, EasyCrypt has seen extensive use, and has
been used to verify the security of both basic cryptographic primitives and more complex
protocols. Lately, EasyCrypt has also been used to verify the security of cryptographic
voting protocols (see e.g. [6, 7]). We adopt this approach in our work and machine-check
our proofs in three of the papers included in this thesis (Papers I–III). Most of the proofs
we machine-check in our work are checked with EasyCrypt. The exceptions are the
proofs for the shuffle protocols we present in Paper I, which are checked using the Coq
theorem prover [3].

Security Properties for Voting Systems

In this section, we elaborate on a few central security properties for electronic voting
protocols. We briefly describe past efforts at defining security and explain the contribu-
tions of our thesis work as we go. The security properties we discuss are ballot privacy,
accountability, coercion resistance and coercion mitigation.

Ballot Privacy

Numerous security definitions for ballot privacy exist in the literature. Bernhard et al. [2]
give a thorough analysis of existing game-based definitions up to 2015 and conclude that
none of them are satisfactory. Some definitions are too weak (meaning that there are real
attacks not captured by the definitions), some are too strong (so that no voting system
with any kind of verifiability can be proven secure under the definition) and some are too
limited (meaning that they capture only a narrow class of voting systems).

Bernhard et al. [2] address the issue by presenting a new definition they call BPRIV.
The BPRIV definition captures the idea that no information about the votes should be
leaked, besides what can be inferred from the election result. In BPRIV, the adversary is
tasked with distinguishing between two worlds, called the real world and the fake world.

1Here, we use → and ↔ to denote logical implication and equivalence, respectively.
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In the real world, the adversary gets to see a ballot box containing real ballots, a real result
and a proof of correct tally. In the fake world, the adversary gets to see a fake ballot box,
but he still sees the real result and a simulated proof of correct tally. However, as pointed
out by Cortier et al. [11], the BPRIV definition makes the fairly strong assumption that
the voting server (and hence the ballot box) is honest. As such, it is assumed that once
the ballots are placed in the ballot box, they are not dropped or tampered with in any
way.

Cortier et al. [11] get rid of this trust assumption by introducing a new ballot privacy
definition they call mb-BPRIV, in which the adversary is allowed to tamper with the
ballots in the ballot box. The main idea is similar to BPRIV: the adversary is tasked
with distinguishing between two worlds. As the adversary is allowed to tamper with the
ballot box and gets to see the real result also when he is in the fake world, care is needed
to ensure that distinguishing between the two worlds is not trivial. In particular, it is
necessary to decide which of the real ballots to include in the tally, when we are in the
fake world. Cortier et al. address this by introducing what they call a recovery algorithm,
which detects how the adversary has tampered with the ballots in the fake ballot box. To
avoid making distinguishing trivial, the same “tampering” is performed to the real ballot
box, before tallying the ballots.

The mb-BPRIV definition has one drawback, namely that the adversary gets to see the
tally only if voters who verify that their ballot is included, are happy. In other words, in
the mb-BPRIV definition, tallying must occur after the voters have verified, meaning that
this definition is only applicable to voting systems where verification happens before the
tally is computed. However, there are interesting voting systems such as Selene [27], where
verification must happen after the outcome of the election is made public as a counter-
measure against coercion. Systems like Selene are not accommodated by the mb-BPRIV
definition, indicating that there is still a need for new ballot privacy definitions.

Paper II Machine-Checked Proofs of Privacy Against Malicious Boards for Selene & Co.
We build upon the mb-BPRIV definition and present du-mb-BPRIV, a ballot privacy
definition where the adversary is allowed to tamper with the ballot box, which is also
applicable to voting systems where verification either can or must happen after the
tally has been computed. We model our security definition in EasyCrypt and prove
that Selene is ballot-private. Our definition is also applicable to voting systems where
verification can happen both before and after the tally has been computed, such as
Belenios [9]. We demonstrate the applicability by modelling Labelled-MiniVoting
[6] and Belenios in our framework and prove that they are ballot-private. We verify
all our security proofs using EasyCrypt. Furthermore, we model the mb-BPRIV
definition in EasyCrypt and prove that Labelled-MiniVoting and Belenios satisfy
this definition (also with proofs checked with EasyCrypt). Finally, we prove that
the du-mb-BPRIV definition implies individual verifiability, and we present a few
lessons we learned when modelling our definitions and proofs in EasyCrypt, which
we believe to be useful for future efforts on modelling electronic voting systems and
related security properties in EasyCrypt.
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Accountability

Accountability captures the idea that if anything goes wrong during an election (e.g. if any
ballots are dropped), voters should be able to produce evidence pinpointing which party
misbehaved. Accountability is a property that is not only desirable for electronic voting
protocols, but also for more general security protocols. Several accountability definitions
in the symbolic model exist in the literature (see e.g. [4, 21, 22, 26]). Furthermore,
Küsters et al. [23] put forward quantitative measures of accountability. To the best
of our knowledge, no game-based definition of accountability has been proposed earlier.
Furthermore, no definition of accountability seems to have been widely accepted by the
cryptographic community and the analysis performed by Küsters et al. [23] contains a few
errors that we point out in Paper III. This indicates that existing definitions are difficult
to work with and that there is still a need for workable accountability definitions.

Paper III Machine-Checked Proofs of Accountability: How to sElect who is to Blame. We
propose the first game-based definition of accountability for electronic voting proto-
cols. As a case study, we apply our definition to the sElect voting system [23] and
prove that sElect provides accountability. We model our definition in EasyCrypt,
and verify that our proofs are correct. Furthermore, we uncover and address two
shortcomings in the original analysis of sElect by Küsters et al. [23]. Finally, we
prove (on paper only) that our definition implies the definition by Küsters et al. in
the sense that any voting system that can be proven accountable under our definition
is also accountable under their definition, and we prove that accountability implies
individual verifiability.

Our definition adopts the idea from previous definitions that there are two aspects
of accountability: fairness and completeness. Fairness means that a party following the
protocol should not be blamed for anything and completeness means that if the goal of the
protocol is not met, then someone will be held accountable (i.e. someone will be blamed).
It follows from fairness that the blamed party actually misbehaved.

Coercion Resistance and Mitigation

Coercion resistant voting systems provide voters with a strategy for casting their vote
freely even under observation by a coercer. The first formal definition and the first coercion
resistant electronic voting system (JCJ) was proposed in 2002 by Juels et al. [20]. Since
then, several coercion resistant voting systems have been proposed, e.g. Civitas [5], CHide
[10] and Athena [29].

The typical strategy for achieving coercion resistance is to let voters re-vote at a time
when the coercer is not present. This can be achieved for example by equipping the
voters with two credentials, one true credential and one fake credential. If a voter is
under coercion, she submits her ballot using her fake credential, and she can use her true
credential to cast her intended ballot. In the tally phase, only ballots submitted with true
credentials are counted.



Introduction 15

However, this strategy has certain drawbacks. Re-voting often comes with complicated
procedures for the voters or computationally expensive tallying. Furthermore, there are
countries where re-voting is simply prohibited. Thus, different strategies are necessary to
allow voters to vote freely when they are under coercion.

One interesting voting system that mitigates the coercion threat while also being veri-
fiable and easy to use is Selene [27]. In Selene, voters are equipped with personal tracking
numbers, which are published in the clear along with the votes. This gives the voters a
simple way of verifying that their ballot was included: they simply look up their ballot on
the bulletin board and check that it appears next to their tracker.

Intuitively, this approach increases the danger of coercion as a coercer can demand
that a voter hands over their tracker, allowing the coercer to verify that the voter fulfilled
his demands. However, in Selene, the voters do not gain knowledge of which tracker is
theirs until after all the votes and trackers have been published. This gives the voters an
opportunity to look up a tracker pointing to the coercer’s desired ballot and send over that
tracker.

Although Selene gives voters a way of convincingly lying about which ballot is theirs
after the tally has been computed, they are not protected against a coercer who is present
during the time of ballot submission (in Selene, re-voting is not possible). This is in
contrast to e.g. JCJ, where voters can cast a ballot satisfying the coercer’s demand while
the coercer is present, and then cast a new ballot at a later time when the coercer is not
present. Thus, Selene does not provide full coercion resistance, against a coercer who is
present during ballot submission. However, as voters are able to convincingly lie about
their trackers, Selene intuitively offers good protection against coercers present during
the verification phase or coercers who demand that voters send over any data necessary
to perform verification. We will refer to this property as coercion mitigation. Although
the term coercion mitigation has been used in the literature when describing the security
provided by Selene (see e.g. [19, 27, 34]), no formal definition of coercion mitigation seems
to exist in the literature, and the coercion mitigation property of Selene has (to the best
of our knowledge) not previously been formally analysed.

Paper IV Coercion Mitigation for Voting Systems with Trackers: A Selene Case Study.
We present a framework for modelling verifiable voting systems based on tracking
numbers and propose the first game-based definition of coercion mitigation. Our
security experiment simultaneously captures coercion mitigation, ballot privacy and
verifiability. We present a complete model of Selene in our framework and prove
that Selene satisfies the aforementioned security properties. We end the paper with
a discussion of how different variants of Selene fit into our framework.

Although the ballot privacy property of Selene has been formally verified earlier, we
include this property in Paper IV as well for a more complete analysis of Selene. However,
we define ballot privacy in a slightly different manner than in Paper II. The privacy
definition in Paper II (and other definitions in the BPRIV style) defines privacy based
on how much information is leaked from the casting and tallying processes. In Paper
IV, we define privacy based on the question of which voter cast which particular ballot.
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Privacy is captured through left-or-right challenge queries and the adversary is tasked
with determining if the left or right ballots were tallied (as opposed to the BPRIV style,
where one always computes the result from the left side ballots). Of course, distinguishing
becomes trivial if the left and right ballots produce different outcomes, so we must require
that the challenge queries taken together produce the same outcome on both sides.
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Abstract. The long term privacy of voting systems is of increasing concern as quantum
computers come closer to reality. Everlasting privacy schemes offer the best way to manage
these risks at present. While homomorphic tallying schemes with everlasting privacy are
well developed, most national elections, using electronic voting, use mixnets. Currently the
best candidate encryption scheme for making these kinds of elections everlastingly private is
PPATC, but it has not been shown to work with any mixnet of comparable efficiency to the
current ElGamal mixnets. In this work we give a paper proof, and a machine checked proof,
that the variant of Wikström’s mixnet commonly in use is safe for use with the PPATC
encryption scheme.

Keywords: Everlasting Privacy · E-Voting · Verifiable Shuffles · Coq.

1 Introduction

Traditional paper-based and electronic voting has many good properties, but also lim-
itations. A voter is not able to verify that her vote was counted as she cast it, and
confidentiality of the votes relies heavily on trust in the election officials and procedures.
In addition there are problems regarding for example counting errors and accessibility.
Verifiable electronic voting systems can solve some of these issues. In particular, crypto-
graphic techniques can be used to provide public verifiability of election results and raise
each individual voter’s confidence in the privacy and integrity of her vote.

Electronic voting has been plagued by mistakes, both in implementations but also in
the cryptographic protocols. This means that security proofs are essential, and in partic-
ular it is desirable with automatically verifiable security proofs.

To achieve verifiable elections, encrypted votes are often published on a public bulletin
board, along with sophisticated cryptographic proofs that allow an individual voter to
verify that their ballot was not only listed on the bulletin board, but also included correctly
in the tally.

Mix nets were first introduced by Chaum [2] as a solution to the traffic analysis problem
in which an adversary is able to extract useful information from patterns of communi-
cation, even when that communication is encrypted. The traffic analysis problem can
be thought of, more generally, as the set of problems that arise by the ability to link
the messages between sets of senders and receivers. Mix nets therefore consist of a finite
sequence of authorities (mixers), each of which permutes (shuffles) and hides the relation-
ship between its inputs and its outputs. In the context of elections, mix nets are used to
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transform the set of submitted encrypted ballots (which are linked to the voters) to the
set of decrypted votes in the tally.

The votes are encrypted to provide confidentiality, which is usually considered essential
for a fair vote. Confidentiality requires votes to remain private not only during the time
of the election, but for all foreseeable future. However, due to computers and algorithms
getting faster and the potential introduction of quantum computers, there is no way to
safely predict how long it may take before a ciphertext encrypted today is broken. Thus,
the property of everlasting privacy has been introduced.

Everlasting privacy is a property of electronic voting schemes where the information
released to the public perfectly (or information-theoretically) hides how each voter voted,
up to the outcome of the election. This means that regardless of developments in practical
computing power and algorithm design, individual votes cannot be recovered from the
public record.

Everlasting privacy is a subtle concept. In all systems that are practical for large-scale
voting, functional requirements mean that the voter will have to encrypt their ballot and
transmit this encryption to some infrastructure. The subtlety is that this ciphertext is
not part of the public record. This essentially assumes that the potential powerful future
attacker did not record the network traffic, and is only working with the public record
of the election. This is in many cases a reasonable assumption. We emphasize that it is
only privacy against these potential future attackers that relies on this assumption. Com-
putationally secure cryptography still protects against adversaries with greater network
access. So schemes that provide everlasting privacy are no less secure than conventional
cryptographic voting schemes, but they have greater security against future adversaries
that work only from the public record.

There are various candidate constructions which achieve everlasting privacy while
maintaining verifiability. Most of the schemes are inspired by Cramer et al.’s “Multi-
Authority Secret-Ballot Elections with Linear Work” [3] and Moran and Naor’s “Split-
ballot voting: Everlasting privacy with distributed trust” [11]. In both cases perfectly
hiding commitments are combined with zero knowledge proofs to provide verifiability
without leaking any information. In this work we will focus on schemes in the style of [11]
which are able to handle arbitrary ballots rather than the homomorphic tally supported
by [3]. This style of schemes are less developed than the homomorphic schemes, but
have greater practical implications since mixnet style schemes have been used in many
of countries who have voted electronically (Australia, Estonia, Norway, and Switzerland),
and where homomorphic counting is often hard to do.

The general idea in these schemes is to have a publicly verifiable part dealing only with
commitments to ballots. We achieve everlasting privacy by using perfectly hiding commit-
ments. However, somehow the ballots must be recovered by the infrastructure, and this is
done in a private part, typically working on encrypted openings for the commitments. In
this way, we get everlasting privacy. Note that we only get computational integrity.

There are two encryption schemes which are commonly suggested for use in this con-
text, both involve first committing to the message and then encrypting the opening to the
commitment. The schemes fit into a wider everlasting privacy scheme with the perfectly
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hiding commitments being publicly shuffled and then opened providing both verifiability
and everlasting privacy; the encrypted openings are shuffled by the authorities and then
publicly posted. The first is the MN encryption scheme from Moran and Naor [11] which
is built on Paillier encryption [12] and Pedersen commitments [13]. The second is the
PPATC encryption from Cuvelier et al. [4] which uses ElGamal and Abe et al.’s [1] com-
mitment scheme. Since the latter encryption scheme can be instantiated on prime order
elliptic curves, rather than the semi-prime RSA groups of the former, it is significantly
faster.

Simple and efficient zero-knowledge proofs for correct encryption and decryption of
both encryption schemes are known. An efficient mixnet for the MN encryption scheme
was proven by Haines and Gritti [10], but at present the most efficient known mixnet for
PPATC uses the general version of Terelius-Wikström proof of shuffle [14] which proves
statements over the integers using Fujisaki-Okamoto commitments [6], based on an RSA
modulus, which hampers the efficiency of the mixnet. The reason is that every opera-
tion must happen modulo the RSA modulus, which means that basic arithmetic is very
slow. We will use pairing groups, but we arrange it so that most of the group arithmetic
happens in a group where arithmetic is much faster, which means that Fujisaki-Okamoto
commitments will be slow compared to most of our arithmetic. In practice everyone using
the Terelius-Wikström proof of shuffle uses an optimised variant which avoids the use
of Fujisaki-Okamoto commitments. It is folklore that the optimised variant of Terelius-
Wikström works for wide class of encryption schemes but the precise variant for each
encryption scheme should be proven.

1.1 Contribution

We prove a variation of the optimised Terelius-Wikström shuffle [14] for the PPATC
encryption scheme [4]. This is essentially the optimised variation which is widely used,
and which avoids the use of Fujisaki-Okamoto commitments. In addition we show how the
Fiat-Shamir transform can be applied so that the public proofs of correct shuffling can be
trivially derived from the private proofs of correct shuffling, nearly doubling the speed of
mixing.

We provide a machine-checked proof using the interactive theorem prover Coq. The
machine-checked proof relies on recent work which shows that any encryption scheme with
certain properties works with the optimised Terelius-Wikström shuffle. For completeness
and human understanding, we also give a straight-forward traditional paper proof.

2 Notation and Tools

We denote by G1 and G2 cyclic groups of large prime order q, and by Zq the field of
integers modulo q. Let An be the set of vectors of length n, with elements from the set
A. We denote vectors in bold, e.g. a. We denote by ai the ith element of the vector a.
Sometimes, we will work with vectors that have tuples as elements. In such cases, we also
denote by ai the ith element of a, and by ai,j the jth element of the tuple ai. Multiplication
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of tuples is elementwise multiplication, that is, ab is the tuple where the ith element is
aibi. We denote by An×n the set of n×n-matrices with elements from the set A. Matrices
will be denoted using capital letters, e.g. M . We denote by Mi the ith column of M , by
Mi,∗ the ith row of M , and by Mi,j the element in row i and column j. A binary relation
for a set S of statements and a set W of witnesses is a subset of S×W and is denoted by
R.

Matrix Commitments. We now describe how to commit to a matrix using a variation
of Pedersen commitments [14]. We denote by Comγ,γ1(m, t) the Pedersen commitment of
m ∈ Zq with randomness t ∈ Zq, i.e. Comγ,γ1(m, t) = γtγm1 for group generators γ and γ1.
To commit to a vector v ∈ Znq , we compute u = Comγ,γ1,··· ,γn(v, t) = γt

∏n
i=1 γ

vi
i , where t

is chosen at random from Zq, and the γs are random group generators. If the commitment
parameters are omitted, it is implicit that they are γ, γ1, · · · , γn. An n × n matrix M is
committed to column-wise. For a matrix M ∈ Zn×nq and a vector t chosen at random from
Znq , we compute the commitment u of M as

u = Com(M, t) =
(
Com(M1, t1), . . . ,Com(Mn, tn)

)
=
(
γt1Πn

i=1γ
Mi,1

i , . . . , γtnΠn
i=1γ

Mi,n

i

)
.

Abe Commitments. We now describe a perfectly hiding commitment scheme due to Abe et
al. [1], that is used in a a construction of the PPATC encryption scheme that we describe
further down. Let Λsxdh = (q,G1,G2,GT , e, g, h) be a description of bilinear groups, where
g is a generator of G1, h is a generator of G2 and e is an efficient and non-degenerate
bilinear map e : G1×G2 → GT . We assume that the DDH problem is hard in both G1 and
G2. In our notation, an Abe commitment to a message m ∈ G1 is the tuple (hr1hr21 ,mg

r2
1 ),

where r1 and r2 are random elements in Zq and g1 and h1 are random elements of G1 and
G2, respectively. An Abe commitment to m can be thought of as an ElGamal encryption
of m where the first coordinate is hidden in a Pedersen commitment. An opening is of the
form (gr11 ,m) which is valid if e(g, hr1hr21 ) = e(gr11 , h)e(mgr21 /m, h1).

Polynomial Identity Testing. We will make use of the Schwartz-Zippel lemma to analyze
the soundness of our protocol. The lemma gives an efficient method for testing whether a
polynomial is equal to zero.

Lemma 1 (Schwartz-Zippel). Let f ∈ Zq[X1, ..., Xn] be a non-zero polynomial of total
degree d ≥ 0 over Zq. Let S ⊆ Zq and let x1, ..., xn be chosen uniformly at random from
S. Then Pr[f(x1, ..., xn) = 0] ≤ d/|S|.

3 Commitment Consistent Encryption

We now describe commitment consistent encryption (CCE), as defined by Cuvelier et
al. [4]. The key idea is that for any ciphertext, one can derive a commitment to that
ciphertext, and the secret key can be used to obtain an opening to that commitment.
Furthermore, applied in a voting protocol, the idea is that the voters compute a CC
encryption of their ballot, and the authorities derive a commitment to the ciphertext and
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post this commitment on a public bulletin board PB. If the commitments are perfectly
hiding, they can be used to provide a perfectly private audit trail, which allows anyone
to verify the correctness of the count, but does not contain any information about who
submitted which ballots.

Definition 1 (CC Encryption [4]). A commitment consistent encryption scheme Π is
a tuple of six efficient algorithms

Π = (Gen,Enc,Dec,DeriveCom,Open,Verify),

defined as follows:

– Gen(1λ): on input a security parameter λ, output a triple (pp, pk, sk) of public param-
eters, public key and secret key. The public parameter pp is implicitly given as input
to the rest of the algorithms.

– Encpk(m): output a ciphertext c, which is an encryption of a message m in the plaintext
space M (defined by pp) using public key pk.

– Decsk(c): for a ciphertext c in the ciphertext space C (defined by pp), output a message
m using secret key sk.

– DeriveCompk(c): From a ciphertext c, output a commitment d using pk.
– Opensk(c): from a ciphertext c, output an auxiliary value a, that can be considered as

part of an opening for a commitment d.
– Verifypk(d,m, a): On input a message m and a commitment d wrt. public key pk, and

auxiliary value a, output a bit. The algorithm checks that the opening (m, a) is valid
wrt. d and pk.

Correctness. We expect that any commitment consistent encryption scheme satisfies the
following correctness property: For any triple (pp, pk, sk) output by Gen, any message
m ∈ M and any c = Encpk(m), it holds with overwhelming probability in the security
parameter that Decsk(c) = m and Verifypk

(
DeriveCompk(c),

Decsk(c),Opensk(c)
)

= 1.

The above definition does not guarantee that it is infeasible to create honest-looking
CCE ciphertexts that are in fact not consistent. To address this issue, Cuvelier et al. [4] de-
fine the concept of validity augmentation (VA) for CCE schemes. A validity augmentation
adds three new algorithms Expand,Valid and Strip to the scheme.

The Expand algorithm augments the public key for use in the other algorithms. The
Valid algorithm takes as input an augmented ciphertext cva along with some proofs of
validity. It then checks whether it is possible to derive a commitment and an encryption
of an opening to that commitment. The Strip algorithm removes the proofs of validity.

Definition 2 (Validity Augmentation [4]). A scheme

Πva = (VA.Gen,VA.Enc,VA.Dec,VA.DeriveCom,VA.Open,VA.Verify,Expand,Strip,Valid)
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is a validity augmentation of the CCE scheme

Π = (Gen,Enc,Dec,DeriveCom,Open,Verify)

if the following conditions are satisfied:

– Augmentation: VA.Gen runs Gen to obtain (pp, pk, sk) and outputs an updated triple
(ppva, pkva, skva) = (pp,Expand(pk), sk).

– Validity: Validpkva(c
va) = 1 for all honestly generated public keys and ciphertexts. In

addition, for any PPT adversary A, the following probability is negligible in λ:

Pr[Validpkva(c
va) = 1 ∧ ¬Verifypk(Strippkva(cva)) = 1

| c← A(ppva, pkva); (ppva, pkva, skva)← VA.Gen]

– Consistency: The values Strippkva(VA.encpkva(m)) and Encpk(m) are equally dis-
tributed for all m ∈ M, i.e. it is possible to strip a validity augmented cipher-
text into a ”normal” one. In addition, it holds, for all ciphertexts and keys, that
VA.Decskva(c

va) = Decsk(Strippkva(c
va)), that VA.Openskva(c

va) = Opensk(Strippkva(c
va))

and that VA.Verifypkva(c
va) = Verifypk(Strippkva(c

va)). In other words, the decryption,
opening and verification for Πva is consistent with those of Π.

3.1 The PPATC Encryption System

We now describe an augmented CCE system called PPATC (Perfectly Private Audit Trail
with Complex ballots). The different algorithms are defined as follows [4]:

– VA.Gen(1λ) : Generate Λsxdh = (q,G1,G2,GT , e, g, h) and random generators g1 =
gx1 , g2 = gx2 ∈ G1 and h1 ∈ G2. Now, (pp, pk, sk) = ((Λsxdh, h1),
(g1, g2), (x1, x2)). The augmented key pkva = Expand(pk) is computed by adding a
description of a hash function H with range Zq to the public key, resulting in the
triple (ppva = pp, pkva, skva = sk).

– VA.Encpkva(m; r) : Compute the CCE ciphertext c = Encpk(m; r) where c =
(c1, c2, c3, d1, d2) = (gr2 , gr3 , gr11 g

r3
2 , h

r1hr21 ,mg
r2
1 ) and r = (r1, r2, r3) ∈ Z3

q . Then com-

pute the following validity proof. Select s1, s2, s3
r← Zq and compute c′ = (c′1, c

′
2, c
′
3, d
′
1)

= (gs2 , gs3 , gs11 g
s3
2 , h

s1hs21 ). Compute νcc = H(ppva,
pkva, c, c′), f1 = s1+νccr1, f2 = s2+νccr2 and f3 = s3+νccr3. Let σcc = (νcc, f1, f2, f3).
The ciphertext is cva = (c, σcc).

– VA.Decskva(c
va) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return d2/c

x1
1 .

– VA.DeriveCompkva(c
va) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return (d1, d2).

– VA.Openskva(c
va) : Parse cva as (c1, c2, c3, d1, d2, σcc) and return a = c3/c

x2
2 .

– VA.Verifypkva(d1, d2,m, a) : Return 1 if e(g, d1) = e(a, h)e(d2/m, h1) and 0 otherwise.
– Validpkva(c

va) : Parse cva as (c1, c2, c3, d1, d2, νcc, f1, f2, f3) and check if all elements of

cva are properly encoded. Compute c′1 = gf2/cνcc1 , c′2 = gf3/cνcc2 , c′3 = gf11 g
f3
2 /c

νcc
3 and

d′1 = hf1hf21 /d
νcc
1 . Return 1 only if

νcc = H(ppva, pkva, c1, c2, c3, d1, d2, c
′
1, c
′
2, c
′
3, d
′
1, d
′
2).
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– Strippkva(c
va): Parse cva as (c1, c2, c3, d1, d2, σcc) and return the CCE ciphertext c =

(c1, c2, c3, d1, d2) and the commitment d = (d1, d2).

A CCE ciphertext c = Encpk(m; r) = (gr2 , gr3 , gr11 g
r3
2 , h

r1hr11 ,mg
r2
1 ) can be re-encrypted,

by multiplying c with the encryption of 1 using randomness r′ = (r′1, r
′
2, r
′
3) ∈ Z3

q . Thus, a
ciphertext c′, where

c′ = c · Encpk(1; r′) = (gr2 , gr3 , gr11 g
r3
2 , h

r1hr21 ,mg
r2
1 ) · (gr′2 , gr′3 , gr

′
1

1 g
r′3
2 , h

r′1h
r′2
1 , g

r′2
1 )

= (gr2+r
′
2 , gr3+r

′
3 , g

r1+r′1
1 g

r3+r′3
2 , hr1+r

′
1h
r2+r′2
1 ,mg

r2+r′2
1 ),

can be thought of as an encryption of m using randomness r + r′.

4 Shuffling Commitment Consistent Ciphertexts

In this section, we first describe how the PPATC can be used as a building block in a
voting system. We then concrete shuffle algorithms for shuffling PPATC ciphertexts and
their derived commitments, before describing how to apply the Fiat-Shamir heuristic to
make the shuffles non-interactive.

4.1 Using the PPATC scheme in a Voting System

A validity augmented CCE scheme can be applied in an election as follows [4]. First, a
setup phase takes place, where the election authorities generate encryption and decryption
keys, as well as two bulletin boards PB and SB. The public board PB will contain the
public audit trail, while SB will contain encrypted votes, be kept secret by the authorities
and will be used to compute the tally. To produce a ballot, each voter encrypts her vote
using the PPATC scheme, and sends the resulting ciphertext to the authorities. The
ciphertext is stored on SB and the derived commitment is stored on PB.

To preserve privacy, the link between voter and vote must be destroyed, the list of
ciphertexts on SB is shuffled. A shuffle of a list v of ciphertexts is a new list v′, such
that for all i = 1, . . . , n, v′i = vπ(i) · Encpk(1; rπ(i)), where π : {1, . . . , n} → {1, . . . , n}
is a randomly chosen permutation. Thus, the two lists v and v′ contain encryptions of
the same plaintexts in permuted order. To also provide verifiability, we keep track of the
concordance between the ciphertexts on SB and the corresponding commitments on PB.
To achieve this, the list of commitments on PB is also shuffled, using the same permutation
as for SB.

The lists are shuffled several times, by a series of mix servers. It is necessary that each
mix server provides a proof of shuffle, to prove that he follows the protocol, and that the
lists of ciphertexts in fact decrypt to the same plaintexts. For our shuffle algorithms we
will use the optimised version of the Terelius-Wikström shuffle presented by Haenni et al.
[7], where a proof of shuffle consists of proving knowledge of the permutation π and the
random vector r used to re-encrypt the ciphertexts.

Thus, the tally procedure will proceed as follows:
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1. Stripping : Algorithms Valid and Strip are run on the ciphertexts stored on SB to obtain
a vector v of n CCE ciphertexts and a vector d of the corresponding commitments.

2. Performing the shuffles: Each mix server selects a random permutation π :
{1, . . . , n} → {1, . . . , n}, also defining a permutation matrix M , and computes
a commitment u on that permutation matrix, along with a proof of knowl-
edge of the permutation. The mix server then selects a random vector r =
((r1,1, r1,2, r1,3), · · · , (rn,1, rn,2, rn,3)) and computes a new vector v′ where v′i = vπ(i) ·
Encpk(1; rπ(i)), and rπ(i) = (rπ(i),1, rπ(i),2, rπ(i),3). Let the last two components of each
ciphertext v′i form a vector d′. This vector is posted on PB. Finally, the mix server
computes two commitment consistent proofs of shuffle, showing that v′ is a shuffle of
v and d′ is a shuffle of d, with respect to the permutation π.

3. Decryption of openings: The authorities verify the proofs and perform a threshold
decryption of the ciphertexts in v′. In addition, they run the algorithm Open on these
ciphertexts to obtain the auxiliary values for the commitments. The plaintexts and
the auxiliary values are posted on PB.

4.2 Proof of Shuffle on the Private Board

We start with the shuffle on the private board, i.e. the shuffle of the CCE ci-
phertexts. In the following, let Rcom be a relation between the commitment param-
eters γ, γ1, ..., γn ∈ G1 , m,m′ ∈ Znq and t, t′ ∈ Zq which holds if and only if
Comγ,γ1,...,γn(m, t) = Comγ,γ1,...,γn(m′, t′) and m 6= m′. Let Rπ be the relation between
the commitment parameters γ, γ1, ..., γn, a commitment u ∈ Gn

1 , a permutation matrix
M ∈ Zn×nq and a randomness vector t ∈ Znq which holds only if u = Comγ,γ1,...γn(M, t).

Let Rshuf
ReEnc(pk, (v1, ..., vn), (v′1, ..., v

′
n))(π, (r1, ..., rn)), where π is a permutation of the set

{1, ..., n}, be the relation which holds if and only if v′i = vπ(i) · Encpk(1; rπ(i)) for all
i ∈ {1, ..., n}.

Theorem 1. Protocol 1 is a perfectly complete, 4-round special soundness, special honest-
verifier zero-knowledge proof of knowledge of the relation Rcom ∨ (Rπ ∧Rshuf

ReEnc).

It is infeasible under the discrete log assumption to find a witness for Rcom, so Theorem 1
implies a proof of knowledge for (Rπ∧Rshuf

ReEnc). To prove the theorem, we now demonstrate
the completeness of the protocol, as well as the special soundness extractor and the special
honest-verifier zero-knowledge simulator.

Completeness. We now show that Protocol 1 is complete, i.e. that in an honest run, the
verifier accepts the proof. The proof consists of algebraic manipulations.

a1 = γz1 = (γt)−βγz1+βt = (γtΠn
i=1γi/Π

n
i=1γi)

−βγb1 = (Πn
i=1ui/Π

n
i=1γi)

−βγb1 .

a2 = γz2 = (γ t̂)−βγz2+βt̂ = (γ t̂γ
Πn
i=1w

′
i

1 /γ
Πn
i=1wi

1 )−βγb2 = (ûn/γ
Πn
i=1wi

1 )−βγb2 .
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Protocol 1 Interactive ZK-Proof of Shuffle on Private Board
Common Input: A public key pk, a matrix commitment u, commitment parameters

γ, γ1, ..., γn and ciphertext vectors v,v′ ∈ (G1 ×G1 ×G1 ×G2 ×G1)
n.

Private Input: Permutation matrix M ∈ Zn×nq and randomness t ∈ Znq such that u =
Com(M, t). Randomness r ∈ (Zq × Zq × Zq)n such that v′i = vπ(i) · Encpk(1; rπ(i)) for
i = 1, ..., n.

1: V chooses a random w ∈ Znq and sends w to P.

2: P computes w′ = (w′1, ..., w
′
n) = Mw, and randomly chooses t̂ = (t̂1, . . . , t̂n), ẑ =

(ẑ1, ..., ẑn), z′ = (z′1, ..., z
′
n) ∈ Znq , z1, z2, z3 ∈ Zq and z̃ = (z̃1, z̃2, z̃3) ∈ Z3

q . P defines

t = 〈1, t〉, t̃ = 〈t,w〉, t̂ = t̂n +
n−1∑

i=1


t̂i

n∏

j=i+1

w′j


 and

r′ =

(
n∑

i=1

ri,1wi,

n∑

i=1

ri,2wi,

n∑

i=1

ri,3wi

)
,

and sends the following elements to V (for i = 1, . . . , n):

û0 = γ1 ûi = γ t̂i(ûi−1)w
′
i a1 = γz1 a2 = γz2

a3 = γz3Πn
i=1γ

z′i
i a4 = Encpk(1; z̃)Πn

i=1(v
′
i)
z′i âi = γ ẑi(ûi−1)z

′
i .

3: V chooses a random challenge β ∈ Zq and sends β to P.
4: For i ∈ {1, . . . , n}, P responds with

b1 = z1 + β · t b2 = z2 + β · t̂ b3 = z3 + β · t̃
b̃ = z̃− β · r′ b̂i = ẑi + β · t̂i b′i = z′i + β · w′i.

5: V accepts if and only if, for i ∈ {1, . . . , n}

a1 = (Πn
i=1ui/Π

n
i=1γi)

−β · γb1 a2 = (ûn/γ
Πn
i=1wi

1 )−β · γb2

a3 = (Πn
i=1u

wi
i )−β · γb3 ·Πn

i=1γ
b′i
i a4 = (Πn

i=1v
wi
i )−β · Encpk(1; b̃) ·Πn

i=1(v
′
i)
b′i

âi = (ûi)
−β · γ b̂i · (ûi−1)b

′
i
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a3 = γz3Πn
i=1γ

z′i
i = (γ t̃Πn

i=1γ
w′i
i )−βγz3+βt̃Πn

i=1γ
z′i+βw

′
i

i

= (Πn
i=1u

wi
i )−βγb3Πn

i=1γ
b′i
i .

a4 = Encpk(1; z̃) ·Πn
i=1(v

′
i)
z′i = Encpk(1; b̃) · Encpk(1;β · r′) ·Πn

i=1(v
′
i)
z′i

= Encpk(1; b̃) ·Πn
i=1(v

′
i)
b′i · Encpk(1;β · r′) ·Πn

i=1(v
′
i)
−βw′i

= (Πn
i=1v

wi
i )−β · Encpk(1; b̃) ·Πn

i=1(v
′
i)
b′i .

âi = γ b̂iγ−βt̂i(ûi−1)z
′
i = γ b̂i(ûi−1)b

′
iγ−βt̂i(ûi−1)−βw

′
i = (ûi)

−βγ b̂i(ûi−1)b
′
i .

Thus, all verification equations are satisfied.

Special Soundness. We will follow the structure of Terelius & Wikström [14] and split the
extractor in two parts. In the first part, the basic extractor, we show that for two ac-
cepting transcripts with the same w but different β, we can extract witnesses for certain
sub-statements. In the second part, the extended extractor, we show that we can extract
a witness to the main statement, given witnesses which hold for these sub-statements, for
n different w.

Basic extractor. Given two accepting transcripts

(w, û, a1, a2, a3, a4, â, β, b1, b2, b3, b̃, b̂,b
′)

(w, û, a1, a2, a3, a4, â, β
∗, b∗1, b

∗
2, b
∗
3, b̃
∗, b̂
∗
,b′∗)

where β 6= β∗, the basic extractor computes

t = (b1 − b∗1)/(β − β∗) t̂ = (b2 − b∗2)/(β − β∗) t̃ = (b3 − b∗3)/(β − β∗)
t̂
′
= (b̂− b̂

∗
)/(β − β∗) w′ = (b′ − b′∗)/(β − β∗) r′ = (b̃− b̃∗)/(β − β∗)

We will prove that

Πn
i=1ui = Com(1, t), Πn

i=1u
wi
i = Com(w′, t̃), Πn

i=1v
wi
i = Πn

i=1(v
′
i)
w′i · Encpk(1;−r′),

ûi = Comγ,ûi−1
(w′i, t̂

′
i) and ûn = Comγ,γ1

(
Πn
i=1wi, t̂

)
.

The proof consists of algebraic manipulations:

Πn
i=1ui =

(
(Πn

i=1ui)
β · a1

(Πn
i=1ui)

β∗ · a1

) 1
β−β∗

= γ
b1−b∗1
β−β∗ ·Πn

i=1γi = Com(1, t).

Πn
i=1u

wi
i =

(
(Πn

i=1u
wi
i )β · a3

(Πn
i=1u

wi
i )β∗ · a3

) 1
β−β∗

= γ
b3−b∗3
β−β∗ ·Πn

i=1γ
b′i−b

′∗
i

β−β∗
i = Com(w′, t̃).
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Πn
i=1v

wi
i =

(
(Πn

i=1v
wi
i )β · a4

(Πn
i=1v

wi
i )β∗ · a4

) 1
β−β∗

= Πn
i=1(v

′
i)
b′i−b

′∗
i

β−β∗ · Encpk
(

1;
b̃− b̃∗

β − β∗

)

= Πn
i=1(v

′
i)
w′i · Encpk(1;−r′).

ûi = γ
b̂i−b̂∗i
β−β∗ · (ûi−1)

b′i−b
′∗
i

β−β∗ = γ t̂
′
i · (ûi−1)w

′
i = Comγ,ûi−1

(w′i, t̂
′
i).

ûn = γ
b2−b∗2
β−β∗ · γΠ

n
i=1wi

1 = γ t̂ · γΠ
n
i=1wi

1 = Comγ,γ1(Πn
i=1wi; t̂).

Thus, all the equations are satisfied.

Extended Extractor. The extended extractor takes, for one statement, n different witnesses
extracted by the basic extractor, and produces a witness for the main statement. Let
t, t̂, t̃ ∈ Znq , r′ ∈ (Zq × Zq × Zq)n and T̂ ′,W ′ ∈ Zn×nq be the collective output from
the n runs of the basic extractor, extracted from challenges W ∈ Zn×nq . Let Wj be the
jth column of W , i.e. the challenge vector from the jth run of the basic extractor. The
challenge vectors are sampled from a uniform distribution, but since the cheating prover
may not succeed with uniform probability for all challenge vectors, the final distribution of
challenge vectors is non-uniform. However, since the adversary has a significant probability
of success, any set of challenge vectors with a significant success probability must be much
larger than the set of non-invertible matrices. It follows that the columns of W will be
linearly independent with overwhelming probability.

Thus, W will, with overwhelming probability, have an inverse. We call this inverse A.
For such matrix A, we have that WAk is the kth standard unit vector in Znq , where Ak is
the kth column of A. We see that

uk = Πn
i=1u

WAk
i = Πn

i=1

(
Πn
j=1u

Wi,jAj,k
i

)
= Πn

j=1Com(W ′j , t̃j)
Aj,k

= Πn
j=1Com(W ′jAj,k, t̃jAj,k) = Com(W ′Ak, 〈t̃, Ak〉).

Thus, we can open u to a matrix M , where Mk = W ′Ak has been committed to using
randomness 〈t̃, Ak〉.

We expect M to be a permutation matrix. If it is not, we can find a witness breaking
the binding property of the commitment scheme. We extract this witness in two different
ways, depending on whether M1 = 1 or not.

If M1 6= 1, let w′′ = M1. We note that w′′ 6= 1 and that Com(1, tj) = Πn
i=1ui =

Com(w′′, t̃A), meaning that we have found a witness violating the binding property of the
commitment scheme.

Now, assume that M1 = 1. Terelius & Wikström [14] prove that M is a permutation
matrix if and only if M1 = 1 and Πn

i=1〈Mi,x〉 = Πn
i=1xi for a vector x ∈ Znq of inde-

pendent elements. This fact, along with the Schwartz-Zippel lemma and the assumptions
that M1 = 1 and that M is not a permutation matrix, implies that there exists, with
overwhelming probability, some j ∈ {1, ..., n} such that Πn

i=1〈Mi,∗,Wj〉 − Πn
i=1Wi,j 6= 0
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(recall that Mi,∗ is the ith row of M). Since this is true with overwhelming probability,
we assume that it is true and rewind if it is not.

Now, let w′′ = MWj . Note that Πn
i=1W

′
i,j = Πn

i=1Wi,j and that Πn
i=1Wi,j 6= Πn

i=1w
′′
i .

The equality follows from the base statements, and the inequality follows from the
Schwartz-Zippel lemma and the definition of w′′. Together, these facts imply that
w′′ 6= W ′j .

We also see that Com(W ′j , t̃j) = Πn
i=1u

Wi,j

i = Com(w′′, 〈t̃A,Wj〉). Since w′′ 6= W ′j , this
means that we have found a witness violating the binding property of the commitment
scheme. We conclude that either M is a permutation matrix, or the binding property of
the commitment scheme does not hold. We conclude further that we either violate the
binding property of the commitment scheme, or we have that w′′ = Wj , meaning that
W ′j = MWj , for all j ∈ {0, ..., n}.

Extracting the randomness. We now show that we can extract r ∈ (Zq × Zq × Zq)n such
that v′ is a re-encryption of v, i.e. v′i = vπ(i) · Encpk(1; rπ(i)). In the following, recall that
w′ = Mw,Mk = W ′Ak, and that WAk is the kth standard unit vector in Znq . Thus, we
get

vk = Πn
i=1v

WAk
i = Πn

j=1(Π
n
i=1(v

′
i)
W ′i,j · Encpk(1;−r′))Aj,k

= Πn
i=1(v

′
i)
Σnj=1W

′
i,jAj,k · Encpk(1;−〈r′, Ak〉)

= Πn
i=1(v

′
i)
Mk · Encpk(1;−〈r′, Ak〉) = v′π−1(k) · Encpk(1;−〈r′, Ak〉).

This shows that v′π−1(k) = vk · Encpk(1; 〈r′, Ak〉), so rk = 〈r′, Ak〉.

Special Honest-Verifier Zero-Knowledge The zero-knowledge simulator chooses the fol-
lowing values at random: ûi ∈ G1 for i = 1, ..., n, w,b′, b̂ ∈ Znq , b1, b2, b3, β ∈ Zq and

b̃, r′ ∈ Zq×Zq×Zq. The simulator then computes a1, a2, a3, a4 and âi for i = 1, ..., n using
the verification equations in step 5. This is a perfect simulation. To see that, consider the
statistical distribution of the values in the real run and the simulated run:

– w is chosen at random from Znq in both the simulated and the real run.
– The ûi are randomly distributed in G1 in both the real and the simulated run. It is

obvious in the simulated run since the simulator samples the elements at random from
G1. In the real run, we have ûi = γ t̂i(ûi−1)w

′
i , where the t̂i are chosen at random from

Zq. Thus, the ûi will be uniformly distributed in G1.
– β is chosen uniformly at random from Zq in both runs.

– In the simulated run, b1, b2, b3, b̃, b̂ and b′ are chosen uniformly at random from
their respective domains. In the real run, the challenge β defines a bijection between
b1, b2, b3, b̃, b̂,b

′ and z1, z2, z3, z̃, ẑ, z
′ (given by the equations in Step 4 of Protocol

1). Since the latter values are chosen uniformly at random, the former values will be
uniformly distributed as well.

– The above values determine the values of a1, a2, a3, a4 and âi for i = 1, ..., n by the
verification equations in Step 5, in both runs.
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4.3 Proof of Shuffle on the Public Board

A verifiable shuffle for the public board is given in Protocol 2. Note that it is very similar to
the shuffle in Protocol 1. The difference is that on the public board, the shuffle is performed
on the two last components of each ciphertext, rather than on the full ciphertext.

Let Rshuf
ReRand(pk,d,d

′)(π, r′), where π is a permutation on {1, . . . , n}, be the relation
which holds if d′i = ReRand(dπ(i); r

′
π(i)) for all i ∈ {1, . . . , n}, where ReRand(di; r

′
i) =

(hri,1+r
′
i,1h

ri,2+r
′
i,2

1 ,mg
ri,2+r

′
i,2

1 ) for di = (hri,1h
ri,2
1 ,mg

ri,2
1 ) and random r, r′ ∈ (Zq × Zq)n.

Let Rπ and Rcom be as in Section 4.2.

Theorem 2. Protocol 2 is a perfectly complete, 4-round special soundness, special honest-
verifier zero-knowledge proof of knowledge of the relation Rcom ∨ (Rπ ∧Rshuf

ReRand).

The proof is very similar to the proof of Theorem 1 and will be omitted.

4.4 Applying the Fiat-Shamir Heuristic

We now describe how we can make the shuffle non-interactive, by applying the Fiat-
Shamir heuristic [5]. The main idea is to replace the challenges sent by the verifier (in
step 1 and 3) by a call to some hash function, making the challenges look random. This is
straight-forward, but we do not want to run the argument twice, once for the public board
and once for the private board. We want to have only one computation. It is easy to see
that the interactive public board argument can be extracted from the interactive private
board argument, but applying Fiat-Shamir is not straight-forward now, since different
knowledge is available in the two cases.

The idea is to use a nested hash function for the private board argument, and then
provide the inner hash value as part of the public board argument. This allows us to
extract the public board argument from the private board argument by replacing the
knowledge that is not present on the public board by their hash value. In order to ensure
that no knowledge leaks, we actually commit to the hash of the private values, so that we
can prove that the hash value does not contain any information about the private values.
This is safe, since commitments are binding.

To obtain w, we first hash the parts of the common input on the private board that is
not part of the common input on the public board, i.e. the first three components of the
CCE ciphertexts. We then commit to this hash, and hash the commitment along with the
part of the common input that is also present on the public board. The challenge w is set
to be this second hash value. The commitment is posted on the public board and opened
on the private board.

The challenge β is obtained in a similar manner. We first hash the information on
the private board that is not present on the public board, commit to this hash, post the
commitment on the public board and then open the commitment on the private board.
Further, the commitment is hashed along with the information on the private board that
is also present on the public board. This hash is set to be the challenge value β.
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Protocol 2 Interactive ZK-Proof of Shuffle on Public Board
Common Input: A public key pk, a matrix commitment u, commitment parameters

γ, γ1, ..., γn and vectors d,d′ ∈ (G2 ×G1)
n.

Private Input: Permutation matrix M ∈ Zn×nq and randomness t ∈ Znq such that u =
Com(M, t). Randomness r ∈ (Zq × Zq)n such that d′i = ReRand(dπ(i), rπ(i)) for i =
1, ..., n.

1: V chooses a random w ∈ Znq and sends w to P.

2: P computes w′ = (w′1, ..., w
′
n) = Mw, and randomly chooses t̂ = (t̂1, . . . , t̂n), ẑ =

(ẑ1, ..., ẑn), z′ = (z′1, ..., z
′
n) ∈ Znq , z1, z2, z3 ∈ Zq and z̃ = (z̃1, z̃2) ∈ Z2

q . P defines

t = 〈1, t〉, t̃ = 〈t,w〉, t̂ = t̂n +
n−1∑

i=1


t̂i

n∏

j=i+1

w′j


 and

r′ =

(
n∑

i=1

ri,1wi,
n∑

i=1

ri,2wi

)
,

and sends the following elements to V (for i = 1, . . . , n):

û0 = γ1 ûi = γ t̂i(ûi−1)w
′
i a1 = γz1 a2 = γz2

a3 = γz3Πn
i=1γ

z′i
i a4 = (hz̃1hz̃21 , g

z̃2
1 )Πn

i=1(d
′
i)
z′i

âi = γ ẑi(ûi−1)z
′
i .

3: V chooses a random challenge β ∈ Zq and sends β to P.
4: For i ∈ {1, . . . , n}, P responds with

b1 = z1 + β · t b2 = z2 + β · t̂ b3 = z3 + β · t̃
b̃ = z̃− β · r′ b̂i = ẑi + β · t̂i b′i = z′i + β · w′i.

5: V accepts if and only if, for i ∈ {1, . . . , n}

a1 = (Πn
i=1ui/Π

n
i=1γi)

−β · γb1 a2 = (ûn/γ
Πn
i=1wi

1 )−β · γb2

a3 = (Πn
i=1u

wi
i )−β · γb3 ·Πn

i=1γ
b′i
i

a4 = (Πn
i=1d

wi
i )−β · (hb̃1hb̃21 , gb̃21 ) ·Πn

i=1(d
′
i)
b′i

âi = (ûi)
−β · γ b̂i · (ûi−1)b

′
i

36 K. Gjøsteen, T. Haines and M. R. Solberg



5 Machine Checked Proof

Having given a paper proof of the mixnet we now turn our attention to the machine checked
proof. The obvious approach would be to codify the above paper proof in an interactive
theorem prover. However, codifying such proofs is a complex process, so instead we reuse
previous work. The idea is that our variant of the mixnet has a machine checked proof.
The gap is that the mixnet is not proved for our particular encryption scheme. But the
existing proof applies to a large class of encryption schemes. We need only prove that our
scheme is in this class, after which we know that the general results also apply to our
concrete mixnet.

For the machine checked proof we will make use of the interactive theorem prover
Coq. Our work expands upon Haines et al. [9]; who demonstrated how interactive theorem
provers and code extraction can be used to gain much higher confidence in the outcome
of elections; they achieved this by using the interactive theorem prover Coq and its code
extraction facility to produce verifiers, for verifiable voting schemes, with the verifiers
proven to be cryptographically correct. They also showed that it was possible to verify
the correctness (completeness, soundness and zero-knowledge) of a proof of correct shuffle.
Their work was subsequently expanded upon by [8] who removed a number of limitations in
the original work and expanded the result. Specifically they proved that for any encryption
scheme that falls within a class, which they formally defined, it can be securely mixed in
the optimised variant of Wikström’s mixnet. We exploit this result by proving that PPATC
falls within this class and hence can be verifiably mixed by Wikström’s mixnet. Note that
the mixnet generated in the Coq code is equivalent to Protocol 1.

In the rest of this section we will present our work in standard notation. Interested
readers can find the Coq code at https://github.com/gerlion/secure-e-voting-with-coq.
We begin by proving that the ciphertext space is a group. Let G1 and G2 represent the
elements of the two groups of the bilinear pairing both of which are of prime order p. We
let the set S of the ciphertext space equal G1 × G1 × G1 × G2 × G1. All operations are
performed pairwise and the group axioms are satisfied trivially.

We then show that the ciphertext group is isomorphic to a vector space over the field
of integers modulo p. This follows directly from the fact that two groups of the same order
are themselves isomorphic to vector spaces over the field of integers modulo p. We are now
ready to define the encryption scheme. Beyond the groups already mentioned we denote
the field of integers modulo p as F.

Let PPATC denote the encryption scheme.

Key generation space := G1 ×G2 ×G2 × F× F.
Public key space := G1 ×G2 ×G2 ×G1 ×G1.
Secret key space := F× F.
Message space := G1.
Randomness space := F× F× F.
Key generation := On input (g, h, h1, x1, x2) from key generation space output public

key (g, h, h1, g
x1 , gx2) and secret key (x1, x2)

Encryption := On input public key (g, h, h1, y1, y2), message m, and randomness
(r1, r2, r3) and output ciphertext (gr1 , gr2 , yr22 g

r3 , hr3hr11 , y
r1
1 m).
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Decryption := Given secret key (x1, x2) and ciphertext (c1, c2, c3, c4, c5) and return
c5/c

x1
1

To show that the encryption scheme can be correctly mixed we need to prove three
theorems which are stated below. We will also require the vector space properties for the
spaces defined above, see the Coq code for a formal definition of these properties.

Lemma correct : forall (kgr : KGR)(m : M)(r : Ring.F),

let (pk,sk) := keygen kgr in

dec sk (enc pk m r) = m.

Theorem 3. Correctness: ∀kgr ∈ Key generation space,m ∈ Message space,
r ∈ Randomness space,
(pk, sk) = Key generation(kgr)
Decryption(sk Encryption(pk m r)) = m.

The correctness of PPATC follows directly from the correctness of ElGamal.

Lemma homomorphism : forall (pk : PK)(m m’ : M)(r r’ : Ring.F),

C.Gdot (enc pk m’ r’)(enc pk m r) =

enc pk (Mop m m’) (Ring.Fadd r r’).

Theorem 4. Homomorphism: ∀pk ∈ Public key space, m m′ ∈ Message space,
r r′ ∈ Randomness space,
Encryption(pk m r)× Encryption(pk m′ r′) = Encryption(pk (m ·m′) (r ∗ r′))

The homomorphic property of PPATC follows from the homomorphic properties of ElGa-
mal and Abe et al.’s commitments.

Lemma encOfOnePrec : forall (pk : PK)(a : Ring.F)(b: F),

(VS.op (enc pk Mzero a) b) = enc pk Mzero (MVS.op3 a b).

Theorem 5. Encryption of one preserved: ∀pk ∈ Public key space,
r r′ ∈ Randomness space,
Encryption(pk 1 a)b = Encryption(pk 1 (a ∗ b))

To see that this property holds, first consider a PPATC ciphertext encrypting
zero: (gr1 , gr2 , yr22 g

r3 , hr3hr11 , y
r1
1 ). Now observe that raising it to any power a is

an encryption of one with randomness (r1a,r2a,r3a), (gr1 , gr2 , yr22 g
r3 , hr3hr11 , y

r1
1 )a =

(gr1a, gr2a, yr2a2 gr3a, hr3ahr1a1 , yr1a1 ).

Conclusion This suffices for a proof that the PPATC scheme can be safely mixed by the
optimised variant of the Wikström’s mixnet.

Readers will have noted that we proved the scheme for any pair of groups with the
same prime order. Technically, we didn’t even require that there exists a billinear pairing
between them, though this would be required to get the verifiable component of the
Abe et al. commitments to work. The current work could be extracted into OCaml code
and appropriate groups provided to check election transcripts. However, further work is
ongoing in Coq to allow these groups to be instantiated within Coq.
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6 Conclusion

We have given a paper proof for a variant of the optimised Wikström’s mixnet for the
PPATC encryption scheme. This is a useful result for anyone wanting to build an efficient
e-voting scheme with everlasting privacy which can handle arbitrary ballots. In addition
we provide a machine checked proof of the mixnet.

Acknowledgments. This work was supported by the Luxembourg National Research
Fund (FNR) and the Research Council of Norway for the joint project SURCVS.
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6 CNRS, LORIA, Université de Lorraine, Nancy, France peter.roenne@loria.fr

Abstract. Privacy is a notoriously difficult property to achieve in complicated systems
and especially in electronic voting schemes. Moreover, electronic voting schemes is a class of
systems that require very high assurance. The literature contains a number of ballot privacy
definitions along with security proofs for common systems. Some machine-checked security
proofs have also appeared. We define a new ballot privacy notion that captures a larger class
of voting schemes. This notion improves on the state of the art by taking into account that
verification in many schemes will happen or must happen after the tally has been published,
not before as in previous definitions.
As a case study we give a machine-checked proof of privacy for Selene, which is a remote
electronic voting scheme which offers an attractive mix of security properties and usability.
Prior to our work, the computational privacy of Selene has never been formally verified.
Finally, we also prove that MiniVoting and Belenios satisfies our definition.

1 Introduction

Confidence in the validity of the outcome and privacy of the votes is supremely important
for elections. We build confidence in elections by using carefully selected methods, routines,
and election officers. In particular, extensive use of various forms of auditing helps build
confidence.

For the analysis of a voting mechanism, we need to know what security means and why
the mechanism is secure. The former requires a so-called security notion, while the latter
is best achieved with a security proof, a mathematical argument for why the mechanism
satisfies the security notion.

It is easy to have an intuitive notion of what security should mean, but defining
privacy for voting mechanisms is non-trivial, as shown by the many attempts to do so in
the literature. (Bernhard et al. [5] has a good overview of privacy definitions.)

One problem is that many security notions are highly specialised for a particular class
of voting mechanisms. But there are a large number of cryptographic voting mechanisms
and they exhibit great variety in their form and shape. Defining security notions that
usefully and uniformly capture a larger class of voting mechanisms is a good thing in
principle, but it is also an essential task if existing security notions do not cover the
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voting mechanism of interest. We need security notions that capture a larger class
of voting mechanisms.

Once we have a security notion, we return to the problem of creating and auditing a
security proof. Machine-checked proofs is a good way to increase assurance for security
proofs. One system designed for handling security proofs is EasyCrypt. A large set
of security notions, cryptographic constructions and corresponding security proofs have
been written in EasyCrypt, and the system has seen extensive use. We need machine-
checked security proofs for voting mechanisms.

Selene [21] is a voting mechanism designed to provide a simple method for verification,
while at the same time mitigating the threat of coercion. The key idea in Selene is that
every voter is assigned a personal tracking number, and when the election period is over
and everyone has cast their vote, the tracking numbers and the votes are published in
plaintext on a web bulletin board. This gives the voters a direct and easy to understand
way of verifying that their vote was correctly included in the tally. The key innovation
in Selene is how to give the voter a tracking number so that no single party know what
tracking number was given to the voter (other than the voter themselves) and the voter
can plausibly lie about which tracker they received. The first property is achieved by
mixing the trackers as part of the setup.

There is a danger of coercion here, namely that a coercer requires a voter to hand
over her tracking number, so that the coercer himself can verify that the voter fulfilled
his demands. However, the coercer has a limited window of opportunity, because he needs
the coerced voter to hand over her tracker before the trackers and the votes are published.
Otherwise, the coerced voter could simply find a vote corresponding to the coercer’s
demand, and give the coercer the tracker next to this vote. This observation is used in
Selene to counter the threat of coercion: the voters first learn their tracking numbers after
the trackers and votes are published on the web bulletin board.

Abstractly, Selene has a different order of operations than many existing voting mech-
anisms. Schemes like MiniVoting (which in some sense models a large class of voting
mechanisms including variants of Helios) do voter verification before tallying. For Selene
voter verification must happen after tallying, since the personal tracking numbers do not
appear until after tallying. This means that Selene does not fit very well into existing
security notions for voting mechanisms. This is also true for a number of other systems
where voters or their delegates first can (or choose to) verify after tally. The Selene ver-
ification mechanism has also been trialled with a commercial partner [22]. We need a
high-assurance security proof for Selene.

1.1 Our Contribution

This paper extends upon the work by Drăgan et al. [14], where we define the new security
notion delay-use malicious-ballotbox ballot privacy (du–mb–BPRIV) to capture the security
of schemes that delay the use of verification information to a post-tallying verification step.
This is necessary for tracker based schemes (like Selene [21], Electryo [20] and sElect [19]),
for in-person voting schemes where the verification is first done later at home, but further it
also applies to e-voting schemes where the verification step is not made mandatory before
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tallying, or often happens after tally, e.g. when verification is delegatable. To construct
our definition, we build upon a recent ballot privacy definition called mb–BPRIV [13].

We model our new security notion in the proof assistant EasyCrypt [1] (https:
//github.com/easycrypt/easycrypt), and to validate our security notion, we also model
the Labelled-MiniVoting scheme [10] and Belenios [12] and verify that these schemes
satisfy ballot privacy both under our new definition and under the original mb–BPRIV.
Furthermore, we model the Selene voting system, and prove that this scheme satisfies
ballot privacy under our new security definition. The EasyCrypt code is available at
https://github.com/mortensol/du-mb-bpriv.

Here, we extend the original work by investigating the relation between our ballot
privacy definition and the notion of individual verifiability, as well as the corresponding
relation for the mb–BPRIV definition (Sec. 6). Furthermore, we highlight a few lessons that
we learned during our effort to formalise the security definitions and proofs in EasyCrypt
(Sec. 7), and which we believe will be useful for future efforts on formalising security
notions and security proofs in EasyCrypt. In particular, we discuss the following:

– Lesson 1: how to properly restrict adversarial access to an oracle’s internal state, to
avoid vacuously true results due to false axioms;

– Lesson 2: dealing with random oracles in EasyCrypt;
– Lesson 3: how small changes in definitions can lead to large changes in proofs; and
– Lesson 4: why it is necessary to split the voters’ internal states into two parts when

formalising voting systems (and related proofs) where voter verification happens after
the tally has been computed, for security definitions using recovery algorithms.

1.2 Related Work

Many authors have tried to capture the notion of ballot privacy using standard crypto-
graphic games. Bernhard et al. [5] gives a good general overview of such notions. We give
an overview of the history leading up to the recent definition of mb–BPRIV in Section 2.7,
directly preceding our new security notion.

The need for assurance with respect to voting systems makes cryptographic voting
schemes a natural target for formalized security proofs, either through symbolic models
and automatic verification or via proof assistants. While symbolic models have histori-
cally yielded good insights into the analysis of cryptographic protocols, see e.g. [8,25] for
symbolic analysis of Selene, we prefer a cryptographic analysis.

EasyCrypt [1] is a proof assistant focused on formalizing computational security
proofs in the style of Shoup’s Sequences of Games [24]. EasyCrypt supports constructive
proofs of concrete security—leaving the complexity analysis of the constructed reduction
to be done by hand. For simplicity in the rest of this paper, we discuss asymptotic notions.
The formalized proof is concrete.

Cortier et al. use EasyCrypt to prove that Helios is BPRIV-secure [10], and that
Belenios is BPRIV-secure and verifiable [11]. Our proof builds upon their framework—we
in fact prove that Labelled MiniVoting and Belenios meet our new privacy definition, and
further formalize their security in mb–BPRIV.
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2 Background

In this section, we first introduce some basic cryptographic models, primitives and algo-
rithms that make up a voting system, before we move on to describe earlier definitions of
ballot privacy.

2.1 Random Oracle Model

In our analysis, we model hash functions as random oracles [2]. That is, to compute
the value of a hash function at a point x, any party can make a call to an oracle O,
implementing a random function from some domain D to some range R. The oracle O
maintains an initially empty table T , and whenever someone calls O(x) for some x ∈ D,
the oracle O checks if there is an entry (x, y) in T for some y ∈ R. If so, it returns y; if not,
O randomly generates a y′ ∈ R, adds (x, y′) to T and outputs y′. We will use the Random
oracle model implicitly below when modelling the non-interactive zero-knowledge proofs
that help ensure privacy in e-voting.

2.2 Public Key Encryption

Public key encryption systems are often used in voting protocols, to help protect the
privacy of the votes, and possibly other things. In Selene, for instance, both the votes
and the voter’s personal tracking numbers are encrypted using some form of public key
encryption. Formally, a public key encryption system (PKE) is defined as follows:

Definition 1. A public key encryption scheme (PKE) is a triple of algorithms E =
(kgen, enc, dec); where

kgen is a probabilistic algorithm that takes as input a security parameter λ and outputs
a key pair (pk, sk),

enc is a probabilistic algorithm that on input a public key pk and a plaintext m outputs
a ciphertext c,

dec is a deterministic algorithm that on input a secret key sk and a ciphertext c outputs
either a plaintext m or a special error symbol ⊥ indicating that something went wrong.

We require that decryption “undoes” encryption, i.e. for any key pair (pk, sk) output by
kgen, and any plaintext m, we have that dec(sk, enc(pk,m)) = m.

A labelled public key encryption scheme (LPKE) extends the notion of a “regular”
PKE by adding some additional, non-malleable data called a label [23]. One important
property for a labelled PKE is that decrypting a ciphertext using a different label than the
one used for encryption, should not reveal anything about the original plaintext. Formally,
a labelled PKE is defined similarly to how we define a PKE in Definition 1, but a label `
is given as additional input in the encryption and decryption algorithms.

The security of the schemes we analyze rely on a security notion for labelled public
key encryption called indistinguishability under chosen ciphertext attack with one parallel
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decryption query (IND–1–CCA) [3]. Informally, this notion captures that any efficient ad-
versary is unable to distinguish between encryptions of two messages of the same length,
when given access to a batch decryption oracle that can be called once.

A similar security notion, namely poly–IND–1–CCA, allows the adversary to make up to
n challenge queries, for some polynomially bounded integer n. This notion is formalized
in Figure 1, where an adversary B is given access to an encryption oracle Oenc and a
decryption oracle Odec. The adversary can make n challenge queries to Oenc, who encrypts
one of two plaintexts, depending on the bit β. The adversary can query Odec at most
once, and the oracle then decrypts a list of ciphertexts. For any ciphertexts created by
the encryption oracle, the decryption oracle returns ⊥.

The advantage of a poly–IND–1–CCA adversary B against a labelled public key en-
cryption scheme E is defined as

Advpoly–ind1ccaB,E,n (λ) =
∣∣∣Pr
[

Exppoly–ind1cca,0
B,E,n (λ) = 1

]
− Pr

[
Exppoly–ind1cca,1

B,E,n (λ) = 1
]∣∣∣ ,

and we say that the labelled PKE E is n-challenge poly–IND–1–CCA-secure if the advantage
defined above is negligible in λ for all efficient adversaries B.

As noted in [10], if n = 1, poly–IND–1–CCA security is essentially reduced to
IND–1–CCA security. Indeed, it is possible to prove, through a hybrid argument, that
a labelled PKE is IND–1–CCA secure if and only if it is poly–IND–1–CCA secure. This fact
was also verified in EasyCrypt [10], and we were able to reuse this framework in our
formalization of the ballot privacy of Selene.

Exppoly–ind1cca,β
B,E,n (λ)

1 : encL← [ ]

2 : (pk, sk)← kgen(λ)

3 : β′ ← BOenc,Odec(pk)

4 : return β′

Oenc(`,m0,m1)

1 : c← ⊥
2 : if |encL| < n then

3 : c← enc(pk, `,mβ)

4 : encL← encL + [(c, `)]

5 : return c

Odec(cL)

1 : mL← [ ]

2 : for (c, `) ∈ cL do

3 : if (c, `) /∈ encL then

4 : mL← mL+ [dec(sk, `, c)]

5 : else mL← mL+ [⊥]

6 : return mL

Fig. 1. Security experiment for poly–IND–1–CCA [10]

2.3 Commitment Protocols

A commitment protocol allows a prover P to commit to some value b, and send the com-
mitment to a verifier V. The verifier can ask the prover to open the commitment at some
later point and verify the output value. Two important properties of a commitment proto-
col is that it should be binding and hiding. The first property informally means that once
P has committed to a value, he should not be able to open the commitment to another
value. The second property informally means that before the commitment is opened, V
should not be able to determine what was committed to.
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More formally, a commitment protocol is defined as follows:

Definition 2 (Commitment protocol). A commitment protocol is a triple of algo-
rithms CP = (gen, commit, open), where

gen takes as input a security parameter λ and returns a pair (upk, usk) of user public
and secret keys,

commit takes as input a user public key upk and a value we want to commit to, and
returns a commitment ct and an opening key d,

open takes as input a commitment and an opening key and returns the committed value.

Commitments are an important part of the coercion mitigation strategy in Selene,
where the election officials make commitments to personal tracking numbers for each voter.
These commitments are opened by the voters at the end of the election, allowing the voters
to verify that their vote was included in the tally, without being able to hand over their
tracker to a coercer before all votes and trackers are published. For coercion-resistance,
Selene actually employs trapdoor commitments and the voters have secret trapdoor keys
that allow them to open the commitment to a tracker satisfying the coercer.

2.4 Proof Systems

We now describe proof systems which are used in Selene to ensure that various operations
are performed correctly. We say that a binary relation R is a subset R ⊆ X ×W , where
X is a set of statements and W is a set of witnesses. A proof system for the relation R
is a pair of efficient algorithms (P,V), where P is called the prover and V is called the
verifier. The prover and verifier work on a common input x ∈ X, and the prover has some
additional input w ∈W . In a non-interactive proof system, P uses his input to compute a
proof Π. He sends the proof to V, who, on input (x,Π) produces a verification output in
{0, 1}.

A proof system is said to be complete if the prover can produce a valid proof whenever
the statement is true. More formally, for any (x,w) ∈ R, if Π is a proof output by P(x,w),
then V(x,Π) outputs 1 with probability 1.

A proof system is sound if a prover is unable to convince a verifier that a false statement
is true.

A proof system is zero-knowledge if the proof leaks no information beyond the fact
that the relation holds. More formally, we demand the existence of an efficient algorithm
Sim, called the simulator, that produces valid-looking proofs for a statement x ∈ X with-
out access to the witness w. Formally, we consider a zero-knowledge adversary B in the
following experiments:

48 C. C. Drăgan et al.



Expzk,0B,P,R(λ)

1 : (x,w, state)← B(λ)

2 : Π ← ⊥
3 : if (R(x,w)) then

4 : Π ← P(x,w)

5 : β′ ← B(state, Π)

6 : return β′

Expzk,1B,Sim,R(λ)

1 : (x,w, state)← B(λ)

2 : Π ← ⊥
3 : if (R(x,w)) then

4 : Π ← Sim(x)

5 : β′ ← B(state, Π)

6 : return β′

The advantage of the zero-knowledge adversary B over the proof system (P,V) and sim-
ulator Sim is defined as

AdvzkB,P,Sim,R(λ) =
∣∣∣Pr
[

Expzk,0B,P,R(λ) = 1
]
− Pr

[
Expzk,1B,Sim,R(λ) = 1

]∣∣∣ ,

and we say that a proof system is zero-knowledge if, for any adversary B, there exists a
simulator Sim such that the advantage defined above is negligible.

2.5 Voting Systems

We define a voting system as being built upon a tuple of algorithms

V = (Setup,Register,Vote,ValidBoard,Tally,VerifyVote,VerifyTally,Publish),

where the different algorithms informally work as follows:

Setup(1λ) : Returns a pair (pd, sd) of public and secret data, typically including a public
encryption key and a secret decryption key, respectively, but this data might also
contain other things.

Register(id, pd, sd) : Takes as input a user identity and some public and secret data and
returns a public credential pc and a secret credential sc for that user.

Vote(pd, pc, sc, v) : Takes as input some public data, a user’s public and secret credentials,
and a vote, and returns the user’s public credential, a ciphertext encrypting the vote
and a state that the voter later can use for verification.

ValidBoard(BB, pd) : Checks the validity of the ballot box BB.
Tally(BB, pd, sd) : Computes the result r of the election, along with a proof Π of correct

tallying.
VerifyVote(id, state,BB, pc, sc) : Run by a voter to check whether or not her ballot was

included in the tally.
VerifyTally((pd, pbb, r), Π) : Checks that Π is a valid proof of correct tally, with respect

to the result r and the public part pbb of the ballot box BB.
Publish(BB) : Returns a public part pbb of the ballot box BB.

2.6 Voting Friendly Relations

In the voting systems we analyze in this paper, proof systems are used to compute and
validate proofs of correct tally. In our analysis and EasyCrypt formalization, we keep
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the relation R abstract, and thus, we need to ensure that the relation is compatible with
the result of the election. For this, we adopt the notion of voting friendly relations, as
defined by Cortier et al. [10] and generalize it a bit, so that it also accommodates schemes
like Selene. Very informally, a relationship is voting friendly if for any adversarially chosen
bulletin board it is possible to find a corresponding tally such that the pair (bulletin board
and tally) are in the language.

The relation being compatible with the result of the election means that if V is a
voting system, (pd, sd) is the public and secret data generated by the Setup algorithm,
the result r of the election corresponds to the tally of the votes obtained by decrypting
the ciphertexts in the ballot box BB, and if pbb is the public part of BB, then the relation
R((pk, pbb, r), (sk,BB)) holds. In other words, it is possible to prove that r is the correct
result. More formally, a voting friendly relation is defined as follows:

Definition 3 (Voting friendly relation [10]). Let V be a voting system and let ΣR
be a proof system for some relation R. We say that R is a voting friendly relation if, for
any efficient adversary B, the following experiment returns 1 with negligible probability:

Expvfr
B,V,ΣR(λ)

1 : (pd, sd)← V.Setup

2 : BB← B(pd)

3 : dbb← dec∗(sd,BB)

4 : r ← ρ(dbb)

5 : pbb← V.Publish(BB)

6 : return ¬R((pd, pbb, r), (sd,BB))

In the above experiment, the algorithm dec∗ decrypts the ballot box BB line by line using
the secret data sd, and returns a list [(a1, v1), . . . , (an, vn)] of votes vi and some additional
information ai, e.g. voter identities as in MiniVoting or tracking numbers as in Selene.
We say that ρ is a counting function that takes in a list of the form described above, and
returns a result.

2.7 Early Definitions of Ballot Privacy

In 2015, Bernhard et al. [5] conducted a survey of existing game-based ballot privacy
definitions and found that they were all unsatisfactory. Some of the definitions were too
weak, declaring protocols that intuitively did not have ballot privacy to be secure. Some
definitions were too strong, making any voting protocol with even minimal verifiability
impossible to prove private. Finally, some definitions were too limited, restricting the class
of captured voting protocols and privacy breaches too much.

Based on this survey, Bernhard et al. [5] proposed a new definition of ballot privacy
which was named BPRIV. The BPRIV definition captures the idea that a voting system
should not leak any information about the votes that are cast, beyond what can be derived
from the result of the election. This is formalized by having an adversary attempting to
distinguish between two worlds. In one world, the adversary gets to see a ballot box

50 C. C. Drăgan et al.



containing real ballots submitted by honest voters, as well as any ballots the adversary
has submitted on behalf of dishonest voters. The adversary then gets to see the result
corresponding to these ballots and a proof of correct tally. In the other world, the adversary
gets to see a fake ballot box, but he still gets to see the result as tallied on the real
ballot box. It is also assumed that there exists a simulator that can simulate a proof of
correct tally corresponding to the real result, but with respect to the fake ballot box. The
adversary also gets to see this simulated proof.

As the name suggests, ballot privacy BPRIV only captures the privacy of the ballots
and not of the tally. To account for this Bernhard et al. say that any scheme satisfying
BPRIV should also satisfy a property called strong consistency which captures the idea
that the tally produced by the scheme should not leak more information than an idealised
tally function. The exact idealised tally function is a parameter of the definition. We have
proved the strong consistency of Selene as part of our work.

To avoid having to trust the voting server, the strategy in many voting systems is
to encrypt the votes under a key for which the corresponding decryption key is split
into several parts and distributed among several authorities. However, as is pointed out
in [13], this trust assumption is not properly captured in the BPRIV definition. In BPRIV,
the adversary plays a game where he can control the votes cast by honest parties, but he
cannot control the resulting ballots once they are put in the ballot box. This means that
BPRIV assumes that every ballot that is put in the ballot box stays in the ballot box and
is not tampered with in any way.

To address this, Cortier et al. introduced a new definition, which they called mb–BPRIV
[13]. The main idea in mb–BPRIV is similar to BPRIV: the adversary has to try and
distinguish between two worlds: one where he sees real ballots and the real result, and one
where he sees fake ballots, but still sees the real result. The difficulty is that an adversary
who is in control of the ballot box is able to remove or tamper with any ballots submitted
by honest voters. Since we perform the tally on the real ballots in both situations, we need
to somehow determine which of the real ballots to perform the tally on. A bad choice would
make distinguishing trivial for the adversary.

Cortier et al.’s solution is to parameterize their security definition by a recovery al-
gorithm, an approach we also adopt in our definition. Informally, the idea is to use the
recovery algorithm on the adversary’s board in the fake world, to determine how the
adversary has tampered with the ballots on the fake board. We then perform the same
transformation on the real board, and tally the resulting board.

Formally, Cortier et al. define the aforementioned transformation as a selection func-
tion, and recovery algorithm as the process of finding the transformation.

Definition 4 (Selection function [13]). For integers m,n ≥ 1, a selection function for
m and n is any mapping

π : {1, . . . , n} → {1, . . . ,m} ∪ ({0, 1}∗ × {0, 1}∗) .

The selection function π represents how the adversary constructs a bulletin board BB with
n ballots, given a bulletin board BB1 with m ballots. For i ∈ {1, . . . , n},

Machine-Checked Proofs of Privacy Against Malicious Boards 51



– π(i) = j, with j ∈ {1, . . . ,m} means that this is the jth element in BB1,
– π(i) = (pc, c) means that this element is (pc, c).

The function π associated to π maps a bulletin board BB0 of length m to a board π(BB0)
of length n such that

π(BB0)[j] =

{
(pc, c) if π(j) = i and BB0[i] = (id, (pc, c))

(pc, c) if π(j) = (pc, c)

for any j ∈ {1, . . . , n}.

Definition 5 (Recovery algorithm [13]). A recovery algorithm is any algorithm
Recover that takes as input two bulletin boards BB and BB1 and returns a selection function
π for |BB1| and n for some integer n.

We will sometimes abuse notation and write BB′ ← Recover(BB,BB0,BB1) to de-
note the process of determining the transformation from BB1 to BB, and applying this
transformation to BB0, to get the board BB′.

In mb–BPRIV, the tally occurs only if the adversary’s board is valid, and if none of
the voters are unhappy after they perform some kind of verification. This means that the
verification process needs to occur before the tally, so mb–BPRIV does not accommodate
voting systems like Selene. Indeed, in Selene, the tally occurs before the verification as a
way of mitigating the threat of coercion. Therefore, there is still need for a new privacy
definition, that both allows for the voting server (and thus the ballot box) to be dishonest,
and that accommodates voting protocols where the verification phase happens only after
the tally has been computed.

3 New Security Notion

In this section, we present a new definition of ballot privacy against a malicious ballot box,
which we call delay-use malicious ballotbox ballot privacy (du–mb–BPRIV). This definition
essentially extends the range of applicable voting schemes to include those where the
verification can be delayed, i.e. happening after tallying, and also includes schemes where
a secret key is needed in the verification step. Our new definition is similar to mb–BPRIV,
the most notable difference being that in our definition, the adversary gets to see the tally
after we check if his board is valid, and then he gets to see the result of the verification
phase. A formal description of the security game for du–mb–BPRIV is found in Figure 2.
The relation between du–mb–BPRIV and mb–BPRIV is studied in more detail in Section
3.2.

In the following, let I = H ∪ D be a set of voter identities, partitioned into a set H of
honest voters and a set D of dishonest voters. Furthermore, let H be partitioned into the
set Hcheck of voters who we assume will perform some verification check and the set Hcheck
of voters who we assume will not verify.

The security experiment begins with the generation of some public and secret data pd
and sd (which typically includes the public and secret keys used to encrypt and decrypt
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Expdu–mb–BPRIV,Recover,β
A,V,Sim (λ)

1 : Checked,Happy← ∅
2 : V,PU,U,CU← empty

3 : (pd, sd)← Setup(λ)

4 : for id in I do

5 : (pc, sc)← Register(id),

6 : U[id]← sc,PU[id]← pc

7 : if id ∈ D then CU[id]← U[id]

8 : BB← AOvoteLR,Oboard(pd,CU,PU,Hcheck)

9 : if Hcheck 6⊆ V then d←$ {0, 1}; return d

10 : if ValidBoard(BB, pk) = ⊥ then

11 : d←$ {0, 1}; return d

12 : d∗ ← A();

13 : (r∗, Π∗)← AOtallyBB,BB0,BB1 ,Oboard()

14 : if VerifyTally((pd, pbb, r∗), Π∗) = ⊥ then

15 : d←$ {0, 1}; return d

16 : d← AOverify()

17 : if Hcheck 6⊆ Checked then

18 : d←$ {0, 1}; return d

19 : if Hcheck 6⊆ Happy then return d∗

20 : return d

Oboard

1 : return Publish(BBβ)

OvoteLR(id, v0, v1)

1 : if id ∈ H then

2 : (pc, b0, statepre,0, statepost,0)← Vote(pd, pc, v0)

3 : (pc, b1, statepre,1, statepost,1)← Vote(pd, pc, v1)

4 : V[id]← V[id]‖(statepre,β , statepost,0, v0)

5 : BB0 ← BB0‖(id, (pc, b0))

6 : BB1 ← BB1‖(id, (pc, b1))

OtallyBB,BB0,BB1
for β = 0

1 : (r,Π)← Tally(BB, pd, sd)

2 : return (r,Π)

OtallyBB,BB0,BB1
for β = 1

1 : BB′ ← Recover(BB,BB0,BB1)

2 : (r,Π)← Tally(BB′, pd, sd)

3 : Π ′ ← Sim(pd,Publish(BB), r)

4 : return (r,Π ′)

Overify for id ∈ Hcheck

1 : Checked← Checked ∪ {id}
2 : if VerifyVote(id,V[id],BB,PU[id],U[id]) = > then

3 : Happy← Happy ∪ {id}
4 : return Happy

Fig. 2. The new security notion for ballot privacy against a dishonest ballot box.

the votes). Then, a number of voters in a set I are registered. In the registration phase,
public and secret credentials pc and sc are generated for each voter, and stored in finite
maps PU and U, respectively. Furthermore, we store the secret credentials of a set D of
dishonest voters in a finite map CU.

The adversary is now given pd,PU and CU as input. In addition, he gets access to a
vote oracle, that on input (id, v0, v1) computes two ballots for this user. The first ballot
is stored in a list BB0 and the second ballot is stored in a list BB1. The vote oracle also
records a state, containing any information the voter later needs to verify that her vote was
correctly cast and counted; we split the state into two components. The first component
(statepre) covers information checked which is generated before tallying and the second
component (statepost) covers information generated after tallying; this is necessary due to
recovery which ensures that information after tallying (including the tally) always acts as
if β = 0. The adversary may also call on a publish oracle, allowing him to see, essentially,
BBβ for a secret bit β.

Using this information, the adversary creates a public bulletin board BB. If the board
is invalid, we output a random bit. If the board is valid, we allow the adversary to make
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an initial guess at the secret bit β, based on the information he has seen so far. This guess
is stored in a variable d∗, possibly to be returned by the experiment at a later point.

The adversary now gets access to the tally, and is allowed to add some extra informa-
tion to the bulletin board, namely a result r∗ and a proof Π∗ that this result corresponds
to the votes. If this result and proof fails to pass verification, we output a random bit.

Otherwise, the adversary gets to make a guess d, given access to a verification oracle
Overify. The verification oracle records the users who have verified in a set called Checked,
and the users who are happy with the verification are recorded in the set Happy. If anyone
who we expect should verify actually does not verify, we output a random bit. If a voter is
unhappy with the verification process, we output the initial guess d∗ the adversary made
before seeing the tally. Otherwise, the experiment outputs the guess d that the adversary
made after calling the verify oracle.

When given access to the tally oracle, the adversary can call this oracle only once, and
the behavior of the tally oracle depends on whether we are in the left world (β = 0) or
in the right world (β = 1). If we are in the left world, the tally is performed directly on
the board BB created by the adversary. The adversary then gets to see a real result and a
proof of correct tally. In the right world, however, we first run the recovery algorithm to
detect how the adversary has tampered with the ballots in BB1, to create BB. We then
change the ballots on BB0 accordingly, yielding a new board BB′, which we tally. The
adversary then gets to see the result r corresponding to BB′ and a simulated proof Π ′ of
correct tally, with respect to r and the adversarial board BB.

Definition 6. Let V be a voting system, and let Recover be a recovery algorithm. We say
that V satisfies du–mb–BPRIV with respect to Recover if there exists an efficient simulator
Sim, such that for any efficient adversary A,

Advdu–mb–bpriv
A,V,Sim (λ) =

∣∣∣∣Pr
[

Expdu–mb–BPRIV,Recover,0
A,V,Sim (λ) = 1

]

−Pr
[

Expdu–mb–BPRIV,Recover,1
A,V,Sim (λ) = 1

]∣∣∣∣,

is negligible in the security parameter λ, where Expdu–mb–BPRIV,Recover,β
A,V,Sim is the game defined

in Fig. 2.

mb–BPRIV with the recovery functions originally suggested implies the satisfying
scheme is equivalent to some ideal functionalities. Future versions of du–mb–BPRIV may
wish to prove similar results in which a different recovery function is likely necessary.

3.1 Recovery function

The mb–BPRIV definition is well defined for many recovery functions, but three are sug-
gested in the body of [13]. All three recovery functions when used with mb–BPRIV are
only satisfied by schemes which fulfil strong constraints on their verification procedure,
and two of them presumes that voters are authenticated, see also discussion in Sec. 6.
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We introduce a simple new recovery function (Fig. 3) which we call Recoverdel,reorder’U

which is essentially identical to Recoverdel,reorderU and Recoverdel,reorder,changeU in [13], but does
not require ballot authentication and without explicit constraints on the verification pro-
cedure. mb–BPRIV with the recovery functions originally suggested implies the satisfying
scheme is equivalent to some ideal functionalities. Future versions of du–mb–BPRIV may
wish to prove similar results in which a different recovery function is likely necessary. In
Sec. 6 below, we will discuss the precise relation between du–mb–BPRIV and verifiability,
depending on the chosen recovery function.

Recoverdel,reorder’U (BB1,BB)

1 : L← [ ]

2 : for (pc, c) ∈ BB :

3 : if ∃j, id : BB1[j] = (id, (pc, c)) :

4 : L← L ‖ j (if several such j exist, pick the first one)

5 : else :

6 : L← L ‖ (pc, c)

7 : return (λi. L[i])

Fig. 3. The Recoverdel,reorder’U algorithm.

3.2 Comparison of du–mb–BPRIV to mb–BPRIV

In this section we briefly analyse the differences between the mb–BPRIV definition and
our new du–mb–BPRIV definition. As mentioned above, the main difference is that the
verification oracle is first available after the tally oracle has been called. This accommo-
dates schemes where the verification first happens after tally and allows a secret key to be
used for the verification process, however, it naturally also applies to schemes with early
verification. We have changed some parts of the definition to adapt to the delayed use of
the verification, but also to make it optimised and precise enough for EasyCrypt.

The main differences are:

– We only have one voter map V but the state stored depends on secret bit β, see line 4
in the definition of OvoteLR in Figure 2. However, the state is split into a part relevant
before tally and a post-tally part (only relating to β = 0 which is the board used for
tallying). This is necessary for the state handling in EasyCrypt oracles, and was not
necessary in mb–BPRIV since the stateful verification happened before tallying.

– If the adversary does not output a valid board, the experiment outputs a random
guess bit, whereas mb–BPRIV allows the adversary to output a guess but without tally
access. In both cases this corresponds to real life, where a board will not be tallied if it
is not valid. Outputting a random bit makes our proofs in EasyCrypt slightly easier,
and it is actually equivalent to mb–BPRIV unless the ValidBoard algorithm always
outputs ⊥.
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– In our definition the experiment also outputs a random guess bit if the verification of
the tally fails via the algorithm VerifyTally. Again, this corresponds to not allowing
any adversarial advantage when the tally fails publicly. This case was not explicitly
considered in mb–BPRIV, but is natural in our case where the verification step will not
proceed on an invalid tally output.

– In du–mb–BPRIV the verification status of the honest voters contained in Happy is
directly output to the adversary. In mb–BPRIV this is not defined precisely. In both
definitions the appearance of failed verifications inside the set of checking honest voters
Hcheck will in any case imply that the guess bit has to be determined without knowing
the tally result. This is to punish the adversary for creating a board with verifications
failing which would cause complaints in real life protocols.

Consider a voting scheme where the verification step does not depend on a secret
key and can be done before the tally. For such schemes both privacy definitions can
be applied to the scheme. We claim that under reasonable conditions our definition is
stronger. Further, for voting schemes where the outcome of the individual verifications
can be computed by the adversary using the data from the bulletin board, as e.g. happens
in Helios, we have equivalence of the two definitions. We now sketch why this is the case.

We show that du–mb–BPRIV privacy implies mb–BPRIV assuming that ValidBoard
does not constantly output ⊥, and that VerifyTally never fails on an honestly computed
tally. Finally, we also assume that the verification status Happy is not output to the
adversary in mb–BPRIV or that the verification status can be computed using public
data, as e.g. happens in Helios. To prove the implication we assume that we have an
attack algorithm for mb–BPRIV. We use the vote choices from the mb–BPRIV algorithm.
If the attack algorithm outputs an invalid board, we change the board that is being output
to a valid board which we have assumed exists. Since the tally also does not fail we are
allowed to output a guess and we use the one from the attack algorithm and will win
with the same advantage since in this case no verification will be done in mb–BPRIV. If
the attack algorithm outputs a valid board, we use the same board in the du–mb–BPRIV
experiment. In du–mb–BPRIV line 12 the adversary has to output a guess bit d∗ which
will be used if a verification fails for the honest verifier set Hcheck. Here we use what
will be output from the mb–BPRIV attack algorithm in case of failed verifications, which
by assumption either does not depend on Happy, which we do not yet have access to
at this stage in the du–mb–BPRIV experiment, or it can be computed from the public
data on the board. In the experiment du–mb–BPRIV line 13 we now get the tally before
verification (and the tally verifies by assumption) but we ignore this at first and choose
the same verifying voters as in the attack algorithm. At this point the two experiments
will be equivalent. If the verification fails we are forced to go back to d∗ but this was
from the attack algorithm and will be equivalently successful. If no verification fails in
Hcheck then we output the guess from the attack algorithm using the tally result we got
earlier as input. The advantage will be the same as for the mb–BPRIV attack algorithm.
This was the important implication direction since it demonstrates that our definition is
not too weak, i.e. if an early verification scheme is declared du–mb–BPRIV then it is also
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Setup(λ)

1 : (pd, sd)← kgen(λ)

2 : return (pd, sd)

Register(id)

1 : pc←$ Flabel(id)

2 : return (pc,⊥)

Vote(id, pc, v, pd)

1 : c← enc(pk, pc, v)

2 : return (pc, c)

Tally(BB, sd)

1 : dbb = ∅
2 : for (pc, c) ∈ BB do

3 : dbb← dbb ∪ {(pc, dec(sk, pc, c))}
4 : r ← ρ(dbb)

5 : pbb← Publish(BB)

6 : Π ← P((pd, pbb, r), (sk,BB))

7 : return (r,Π)

VerifyTally((pd, pbb, r), Π)

1 : return V((pd, pbb, r), Π)

ValidBoard(BB, pd)

1 : e1 = e2 = true

2 : for (pc, c) in BB

3 : e1 ← e1 ∧ ¬(∃pc′, pc′ 6= pc ∧ (pc′, c) ∈ BB)

4 : e2 ← e2 ∧ ValidInd(pc, c, pd)

5 : return (e1 ∧ e2)

VerifyVote(id, pc, c,BB)

1 : return (pc, c) ∈ BB

Fig. 4. Algorithms defining the Labelled-MiniVoting scheme for the labelled PKE E = (kgen, enc, dec),
and the proof system Σ = (P,V).

mb–BPRIV private which in turn has ideal functionality implications under assumptions
such as strong consistency [13].

Considering whether mb–BPRIV privacy implies du–mb–BPRIV, the main problem is
that the choice of verifying voters in du–mb–BPRIV could depend on the tally output.
However, for voting schemes where the outcome of the honest voters’ individual verification
can be computed by the adversary, we can prove the implication. We thus assume we have
an attack algorithm for du–mb–BPRIV with non-negligible advantage. In the experiment
mb–BPRIV we use the votes and output the board from this attack algorithm. If the
board is not valid, we simply output a random bit in the experiment mb–BPRIV, which
is equivalent to what happens in du–mb–BPRIV. If the board is valid, the next step in
mb–BPRIV is to use the verification oracle. Here we simply let all the required honest
voters Hcheck perform verifications. These will also all have to verify in the attack against
du–mb–BPRIV to get an advantage since the experiment will otherwise output a random
bit. If a verification fails we will use the output d∗ in the attack algorithm which was
computed without tally access. If none of the verifications fail, we will get tally access in
the experiment mb–BPRIV. If more voters were chosen to verify in the attack algorithm we
can compute the outcomes by assumption. If we encounter a failure in the verification here,
we again output d∗, otherwise the output from the attack algorithm. The experiments will
be equivalent at this point.

4 Labelled-MiniVoting and Belenios

The MiniVoting scheme was first introduced by Bernhard et al. [6] as an abstraction meant
to capture several existing constructions in the literature. It is based on two building
blocks: public key encryption and a zero-knowledge proof system, and assumes the ballot
has the form (id, c), for a voter’s identity id and for a ciphertext c - that simply encrypts
the voter’s choice (or vote) v.

This scheme was later refined by Cortier et al. [10], resulting in the Labelled-MiniVoting
scheme. Here, the class of captured voting schemes was broadened by introducing some
public information associated to the users, called labels, and creating a strong link between
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a voter identity in a particular election and its ciphertext - now parameterized by this label
via the use of labelled public key encryption. The labels can be used to represent generic
information about the election (as in the case of Helios) and/or information pertaining to
a voter’s public persona: pseudonym or public verification key (as in Belenios). The ballot
in Labelled-MiniVoting takes the form (id, `, c) with id the voter’s identity and (`, c) the
label-ciphertext pair created by the labelled public key encryption scheme.

A predominant feature of the MiniVoting class of schemes is the enforcement of
unique label-ciphertext pairs, via a procedure called weeding [12]. This step, done by
the ValidBoard algorithm, prevents trivial attacks on privacy, where an adversary can cast
copied ciphertexts (and their label) and observe the changes in the election result.

In Figure 4 we refine Labelled-MiniVoting to align with the voting notations from
previous sections, such that we treat the public credential pc as the label and consider the
following ballot format (pc, c). The removal of id doesn’t have a significant impact, as we
use the operation Flabel to model the link between identity and public credential:

pc← Flabel(id).

Typical instantiations for this operator depend on the assumptions over the voter’s identity
and the degree of separation we want to capture in the public credential. Here, we consider
the voter’s identity a pseudonym or a public encryption key and as such we implement
Flabel as the identity function Flabel(x) = x; an approach also taken by Selene. Other
options may consider the real voter’s identity (e.g. email, name) as input and create a
pseudonym or a public credential (especially if signatures are considered). In all cases,
there has to be an injectivity assumption over Flabel, which is trivially satisfied by the
identity function.

Labelled-MiniVoting is further parameterized by three other classic operators:

ValidInd(pc, c, pd) : {0, 1}. Checks if the label-ciphertext pair (pc, c) is well-formed.
ρ((pci, vi)i). This function returns the election result in a predefined format, e.g. lexico-

graphic order for mixnet tally or a value for homomorphic tally. This is done by first
deciding which votes to keep using Policy, and then computing the result over the
votes kept by Policy using Count.
– Policy is fixed to “last vote counts” for a particular voter, in the modelling of both

Labelled-MiniVoting and Selene.
– Count is left abstract for Labelled-MiniVoting, and made concrete for Selene.

Publish(BB) : {0, 1}∗. This is an abstraction of the public bulletin board, and most of the
times it is identical to the ballot box.

Definition 7. Let E be a poly–IND–1–CCA secure labelled PKE, and Σ = (P,V) be a zero-
knowledge proof system. Given the operators Flabel,ValidInd, ρ,Publish defined as above,
we define the Labelled-MiniVoting scheme

MiniVoting(E, Σ,Flabel,ValidInd, ρ,Publish) =

(Setup,Register,Vote,ValidBoard, Tally,VerifyVote,VerifyTally,Publish)

as the single-pass voting scheme whose algorithms are presented in Figure 4, and which
we informally present below:
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Setup(λ) : (pd, sd). Given the security parameter λ it returns the output (pd, sd) of the
key generation algorithm for the encryption scheme.

Register(id) : (pc, sc). It applies Flabel over id to build the public credential pc, and does
not consider a secret credential, i.e. sc← ⊥.

Vote(id, pc, v, pd) : (pc, c). Encrypts a vote v using the public credential pc as the label,
and outputs the ciphertext together with the voter’s public credential. The secret
credential sc is omitted from the input just for simplicity as it is unused.

ValidBoard(BB, pd) : {0, 1}. Returns true if all ballots (pc, c) are well-formed, according
to ValidInd, and that each ciphertext is always used with the same public credential
(weeding property is respected); and false otherwise.

Tally(BB, sd) : (r,Π). Computes the result r of the election by applying the counting
function ρ over the list of (pc, v⊥), where v⊥ is the decryption of (pc, c) from the
ballot box. It also provides a proof of correct decryption Π using the P algorithm of
the proof system Σ.

VerifyVote(id, pc, c,BB) : {0, 1}. It checks if its last ballot (pc, c) is in the ballot box BB.
The voter may have a state with all cast ballots, but the verification is done with
respect to the last vote that was cast.

Verifytally((pd, pbb, r), Π) : {0, 1}}. Run the V algorithm of the proof-system to check if
the tally proof is valid w.r.t the given statement.

Publish(BB) : Calls the Publish operator over the ballot box BB.

We prove in EasyCrypt that MiniVoting satisfies du–mb–BPRIV under standard cryp-
tographic assumptions for the encryption scheme E and proof system Σ. We also consider
the identity function for Flabel, and “last vote counts” for Policy. The following theorem
corresponds to lemma du_mb_bpriv in the MiniVotingSecurity_mb.ec file.

Theorem 1. Let V = MiniVoting(E, Σ,Flabel,ValidInd, ρ,Publish) be defined as in Defini-
tion 7. Then, for any du–mb–BPRIV adversary A, there exists a simulator Sim and three
adversaries B, C and D, such that

Advdu–mb–bpriv
A,V,Sim (λ) ≤ 2 · Pr

[
Expvfr

D,V,Σ(λ) = 1
]

+ AdvzkB,P,Sim,R(λ) + Advpoly–ind1ccaC,E,n (λ).

4.1 du–mb–BPRIV for Belenios

We have used Labelled-MiniVoting to validate our privacy definition, and to infer proof
strategies and assumptions that then can be applied to other e-voting systems, e.g. Bele-
nios [12] and Selene. Belenios can be viewed as an instance of Labelled-MiniVoting with
some concrete decisions for operators and algorithms. This translates into directly apply-
ing the EasyCrypt proof developed for MiniVoting to Belenios without the need to re-do
it - as highlighted in Belenios.ec.

We take the labelled encryption scheme E and realize it by combining the ElGamal
encryption scheme EB with a zero-knowledge proof system ΣB. As the public credential pc
is included in the statement for the proof system ΣB we use π[pc] to express this fact. En-
crypting the vote v under some public credential pc by E becomes (pc, c) = (pc, (cB, π[pc])),
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and decrypting by E returns the decryption of cB by EB only if the proof π[pc] verifies,
and ⊥ otherwise.

This form of the ciphertext also has an impact on the ValidInd algorithm that now
uses π[pc] to decide if a ciphertext is well-formed.

For the result of the election, we only need to instantiate the Count operator, as we
already consider the last vote policy. We can model any type of ideal counting function
that can be performed over votes, and instantiate it to lexicographic order lex-order to
model an ideal verifiable shuffle.

In Belenios, the public bulletin board computed by Publish shows only the last bal-
lot cast by a voter (policy applied over the public credential) together with a hash of
that ballot. With verification done against the hash compared to the entire ballot. How-
ever, nothing prevents voters from checking their full ballot against the ballot box (as
we have modelled in Labelled-MiniVoting). Moreover Cortier et al. [11] have modelled in
EasyCrypt different options of Publish for Belenios and as one would expect the two
approaches are equivalent modulo hash collisions.

Definition 8. Let E = (EB,ΣB) be a poly–IND–1–CCA secure labelled PKE, and Σ be
a zero-knowledge proof system. Given the operators Flabel,ValidInd, ρ,Publish defined as
above, we define Belenios(EB,ΣB, Σ) as

MiniVoting(E, Σ,Flabel,ValidInd, ρ,Publish).

The privacy result for Belenios follows directly by simply applying Theorem 1 with
the concrete values highlighted here.

Theorem 2. Let V = Belenios(EB,ΣB, Σ) be defined as in Definition 8. Then, for any
du–mb–BPRIV adversary A, there exists a simulator Sim and three adversaries B, C and
D, such that

Advdu–mb–bpriv
A,V,Sim (λ) ≤ 2 · Pr

[
Expvfr

D,V,Σ(λ) = 1
]

+ AdvzkB,P,Sim,R(λ) + Advpoly–ind1ccaC,E,n (λ).

Both Theorem 1 and 2 are proven with respect to the recovery algorithm described in
Section 3.1.

4.2 mb–BPRIV for MiniVoting and Belenios

We also stated the original mb–BPRIV definition [13] in EasyCrypt and proved that
Theorem 1 and 2 also hold with respect to this privacy definition. The proof strategy was
essentially the same, but the proofs had to be re-worked due to the differences between the
definitions, especially when the verification happens. This constitutes the first machine-
checked proof of mb–BPRIV. The corresponding EasyCrypt lemma mb_bpriv is found in
the MiniVotingSecurity_omb.ec and Belenios_omb.ec files.
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5 Selene

Although Selene offers properties such as verification and coercion mitigation, we focus—in
this paper—on formalizing its ballot privacy properties. Like Cortier et al. [10, 11], we
abstract away the verifiable shuffles (assuming they are non-interactive) and the ElGamal
+ PoK construction (assuming instead an abstract IND–1–CCA-secure labelled PKE).

More precisely, we replace the verifiable shuffle—which is used in the tally phase to
mix the encrypted votes and trackers while erasing connections between the votes and the
voters—with a parametric Multiset distribution, which takes as parameters a list of vote/-
tracker pairs (vi, tri)i, calculates all possible permutations of the original list, and defines
the uniform distribution over the result. Sampling in Multiset(`) captures the semantics
of a perfect shuffle on `, with a proof of correct shuffle computed separately.1 Formal-
izing proofs for interactive protocols, such as verifiable shuffles, in EasyCrypt remains
a complex task, and is somewhat orthogonal to our contributions here. In particular, in
a setting—like ours—in which the tallier is honest, the shuffle is indeed indistinguish-
able from our idealization. Prior work [16, 17] has proved that the interactive variants of
the verifiable shuffles suggested for use with Selene are zero-knowledge proofs which leak
no information; this would suffice to prove equivalence with our idealisation. However,
this has not been machine checked for the interactive variant due to issues the currently
available tools have with handling random oracles.

Before being cast, the votes in Selene are encrypted using the ElGamal public key en-
cryption system [15], and a non-interactive proof of knowledge of the underlying plaintext
is appended to the ciphertext. In our EasyCrypt formalization, we abstract away details
of the underlying cryptosystem, and encrypt the votes using an abstract labelled PKE
that we assume is IND–1–CCA secure. The ElGamal with proof of knowledge construction
used in Selene has in fact been proven to be IND–1–CCA secure [4,7]. This proof remains
out of reach of machine-checking due to its use of the rewinding lemma.

In addition, since we focus on privacy in this paper, we also remove the signatures Se-
lene2 includes on cast ballots to prevent ballot stuffing. The signatures cannot compromise
privacy: The signing keys are independent of the encryption of the ballot, the ciphertexts
that are signed are public, and the signatures are anyway stripped before shuffling, so
they cannot be correlated to any plaintext ballot.

These simplifications, taken together, yield the following model for Selene.

Definition 9. Let Ev be a poly–IND–1–CCA secure labelled PKE, let Et be an IND–CPA
secure PKE, let ΣR = (P,V) be a proof system for a relation R and let CP =
(gen, commit, open) be a commitment protocol. We define

Selene(Ev,Et, ΣR,CP,ValidInd)

as the voting system built upon the algorithms given in Figure 5, which we informally
describe below.
1 We note that Multiset itself is not probabilistic polynomial time. We treat it as an ideal functionality

for verifiable shuffles, whose complexity would normally be probabilistic polynomial time.
2 We also have an EasyCrypt proof for Selene with signatures. This is available with the other proofs at
https://github.com/mortensol/du-mb-bpriv.
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Setup(1λ) for set I of voters

1 : trL, tpTr, Πc ← [ ]

2 : pTr, pPk, pCo, pOp← empty

3 : (vpk, vsk)← kgenv(1
λ)

4 : (tpk, tsk)← kgent(1
λ)

5 : for i ≤ |I| do
6 : tri ←$Group

7 : tpTr← tpTr‖enct(tpk, tri)

8 : (pTr, Πt)← ReencryptionShuffle(tpTr)

9 : for i ≤ |I| do
10 : id← I[i]

11 : (upk, usk)← gen(1λ)

12 : pPk.[id]← upk

13 : for i ≤ |I| do
14 : id← I[i]

15 : t←$Field

16 : et1←$ enct(tpk, pPk[id]t)

17 : et2←$ enct(tpk, gt)

18 : pCo[id]← dect(tsk, et1 · pTr.[id])

19 : Πc ← Pco((pCo, pPk, pTr, tpk), tsk))

20 : pd← (vpk, tpk, tpTr, pTr, pPk, pCo, Πt, Πc)

21 : sd← (pOp, vsk, tsk)

22 : return (pd, sd)

Register(id, pd, sd)

1 : d← pOp.[id]

2 : upk ← pPk.[id]

3 : ct← pCo.[id]

4 : return ((id, upk, ct), d)

Vote(pd, id, pc, sc, v)

1 : ev ← encv(vpk, id, v)

2 : b← (pc, ev)

3 : return b

ValidBoard(BB, pd)

1 : for ((id, upk, ct), ev) in BB :

2 : e1 ← ¬(∃id′, id′ 6= id

3 : ∧ ((id′, upk, ct), ev) ∈ BB)

4 : e2 ← ValidInd((id, upk, ev), vpk)

5 : e3 ← (PU.[id] = (id, upk, ct))

6 : return (e1 ∧ e2 ∧ e3)

VerifyTally((pk, pbb, r), Π)

1 : return V((pk, pbb, r), Π)

Tally(BB, pd, sd)

1 : rL = [ ]

2 : for i in 1..|BB| do
3 : (vpk, tpk,PTr)← pd

4 : (trL, π, vsk, tsk)← sd

5 : ((id, upk, ct), ev))← BB[i]

6 : v ← decv(vsk, id, ev))

7 : tr← dect(tsk,PTr.[id])

8 : rL[i]← (v, tr)

9 : r ← Multiset(rL)

10 : pbb← Publish(BB)

11 : Π ← P((pd, pbb, r), (sd,BB))

12 : return (r,Π)

VerifyVote(id, v, r, pc, sc)

1 : (id, upk, ct)← pc

2 : (usk, d)← sc

3 : tr← open(upk, ct, d)

4 : return (v, tr) ∈ r

Publish(BB)

1 : return BB

Fig. 5. Algorithms defining the Selene[Ev,Et,C, Σ,ValidInd] voting scheme, given an IND–1–CCA secure
labelled PKE scheme Ev = (kgenv, encv, decv), an IND–CPA secure homomorphic encryption scheme Et =
(kgent, enct, dect), zero-knowledge proof systems Σta = (Pta,Vta), Σtsh = (Ptsh,Vtsh) and Σco = (Pco,Vco)
for the tally proof, the tracker shuffle proof and the proof that commitments are correctly formed, respec-
tively, a commitment scheme CP = (gen, commit, open), and the abstract operator ValidInd.

Setup : Takes as input a security parameter λ and returns a key pair (vpk, vsk) used to
encrypt and decrypt votes, a key pair (tpk, tsk) used to encrypt and decrypt trackers, a
list tpTr of encrypted trackers, finite maps pTr, pPk, pCo and pOp from voter identities
to encrypted trackers, public commitment keys, tracker commitments and openings,
respectively, as well as a proof Πt of correct shuffle of the trackers and a proof Πc that
the tracker commitments are correctly formed. The public data is

pd = (vpk, tpk, tpTr, pTr, pPk, pCo, Πt, Πc)

and the secret data is
sd = (pOp, vsk, tsk).

Register : Takes as input a voter identity and a pair (pd, sd) of public and secret data,
and returns the voter’s public commitment key, the commitment to her tracker and
an opening to the commitment.

Publish : Outputs the public part of the ballot box.
Vote : Encrypts a vote v and outputs the ciphertext together with the voter’s public

credential.
VerifyTally : Run the V algorithm of the proof-system to check if the tally proof is valid.
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lemma du_mb_bpriv &m : BP.setidents{m} = BP.setH{m} `|` BP.setD{m} =>

(* The du-mb-BPRIV advantage of some adversary A upper bounded by the sum of: *)

`|Pr[DU_MB_BPRIV_L(Selene(Et,Ev,P,Ve,C,CP),A,HRO.ERO,G).main() @ &m: res]

- Pr[DU_MB_BPRIV_R(Selene(Et,Ev,P,Ve,C,CP),A,HRO.ERO,G,S,Recover').main() @ &m: res]|

(* - the advantages of BVFR(G) and BVFR(S) in breaking the voting friendly relation *)

<= Pr[VFRS(Et,Ev,BVFR(Selene(Et,Ev,P,Ve,C,CP),A,CP),R,HRO.ERO,G).main() @ &m: res]

+ Pr[VFRS(Et,Ev,BVFR(Selene(Et,Ev,P,Ve,C,CP),A,CP),R,HRO.ERO,S).main() @ &m: res]

(* - the ZK advantage of adversary BZK against the underlying NIZK, and *)

+ `|Pr[ZK_L(R(Et,Ev,HRO.ERO),P,BZK(Et,Ev,P,C,Ve,A,CP,HRO.ERO),G).main() @ &m: res]

- Pr[ZK_R(R(Et,Ev,HRO.ERO),S,BZK(Et,Ev,P,C,Ve,A,CP,HRO.ERO)).main() @ &m: res]|

(* - the IND1-CCA advantage of adversary BCCA against the ballot-encryption scheme *)

+ `|Pr[Ind1CCA(Ev,BCCA(Selene(Et,Ev,P,Ve,C,CP),Et,CP,A,S),HRO.ERO,Left).main() @ &m: res]

- Pr[Ind1CCA(Ev,BCCA(Selene(Et,Ev,P,Ve,C,CP),Et,CP,A,S),HRO.ERO,Right).main() @ &m: res]|

Fig. 6. EasyCrypt lemma establishing that Selene satisfies du–mb–BPRIV. HRO.ERO and G are inde-
pendent random oracles. S is the ZK simulator.

ValidBoard : For each element in the ballotbox BB, we perform three checks: every ballot
contains a unique voter identity, every ballot is well-formed, and every public credential
corresponds to the correct identity.

Tally : Decrypts every encrypted vote in the ballot box BB and the tracker for each voter.
Returns the multiset of all vote/tracker pairs (v, tr).

VerifyVote : To verify, a voter opens her tracker commitment and checks if her vote v
and tracker tr is in the list of vote/tracker pairs returned by Tally.

The following theorem establishes that Selene satisfies du–mb–BPRIV.

Theorem 3. Let V = Selene(Ev,Et, ΣR,CP,ValidInd), where ValidInd(pc, vpk) = > for
c ← encv(vpk, id, v) and any public encryption key vpk, identity id, public credential pc
and vote v. For any du–mb–BPRIV adversary A, there exists a simulator Sim and four
adversaries B, C,DS and DG, such that

Advdu–mb–bpriv
A,V,Sim (λ) ≤ Pr

[
Expvfr

DG,V,ΣR(λ) = 1
]

+ Pr
[

Expvfr
DS ,V,ΣR(λ) = 1

]

+ AdvzkB,P,Sim,R(λ) + Advpoly–ind1ccaC,Ev,n
(λ).

Theorem 3 corresponds to lemma du_mb_bpriv in SeleneBpriv.ec. Figure 6 displays the
EasyCrypt formulation of Theorem 3. The lemma itself is inside a section which quanti-
fies over all core components: Et and Ev denote the encryption schemes used for the trackers
and the votes, respectively, P and Ve denote the NIZK’s prover and verifier, C denotes the
ValidInd algorithm, CP denotes the commitment protocol. A is the adversary. The zero-
knowledge simulator S and the random oracles for tracker encryption (HRO.ERO) and for the
NIZK proof system (G) are defined concretely in the code, but not fully displayed in this
paper. The VFR, zero knowledge and poly–IND–1–CCA security experiments are denoted
by VFRS, ZK_L, ZK_R and Ind1CCA, respectively, while the respective reductions are denoted
by BVFR, BZK and BCCA. These are also given concrete definitions. Also note that the Ind1CCA

module is parameterized by a left-or-right module, representing the case where β = 0 and
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the case where β = 1, respectively. The du–mb–BPRIV security experiment is parameter-
ized by a recovery algorithm, and we use the concrete recovery algorithm described in
Section 3.1.

We now sketch the proof of Theorem 3. The EasyCrypt formalization of the full proof
is found in the file SeleneBpriv.ec. Unless explicitly stated, all the modules and lemmas we
refer to in the following are also found in this file.

In our EasyCrypt formalization, we split the experiment Expdu–mb–BPRIV,Recover,β
A,V,Sim into

two different games, one for β = 0 and one for β = 1. The difference between the two
games is, as described earlier, what the tally algorithm does. These games are modeled
in the modules DU_MB_BPRIV_L and DU_MB_BPRIV_R, respectively, which are found in the file
VotingSecurity_mb.ec.

Starting out from the left side security experiment, the first step is to replace the tally
proof produced by the prover in the proof system, by a simulated proof produced by the
simulator Sim. This change is modeled in the game G1L. Provided that the proof system
is zero-knowledge, the adversary cannot distinguish between the original game and the
game where we simulated the proof, except with negligible probability.

We then define a new game, G2L, where we stop decrypting honestly created cipher-
texts, and instead use the ciphertexts stored in V (as described in Section 3). Ciphertexts
submitted by the adversary are decrypted as usual. We also remove one of the bulletin
boards from the vote oracle, so that only the left-side votes are stored. We prove that
G1L and G2L are equivalent. The equivalence follows from the correctness property of the
encryption scheme used to encrypt the votes, and the fact that the adversary only gets to
see BB0 in the left side security experiment.

Starting out from the right side security experiment (DU_MB_BPRIV_R), we first stop
decrypting honest ciphertexts, and prove that the resulting game (G1R) is equivalent to
DU_MB_BPRIV_R. The intuition is the same as for the equivalence between G1L and G2L.

We then define a game G2R where we stop performing recovery on the adversarially
created ballot box, and simply perform the tally on the ballot box the adversary outputs.
We prove that G1R and G2R are equivalent. Intuitively, this holds because the honest votes
no longer come from the adversary’s board, but from V, and the ballots submitted by the
adversary are present both on the adversary’s board BB and on the recovered board, by
definition of our recovery algorithm.

In the final game, G3R, we remove one of the bulletin boards in the vote oracle. This is
similar to what we did in G2L, but now only the right side votes are stored. We prove that
G2R and G3R are equivalent. This also shows that the final game on the right side, G3R, is
completely equivalent to DU_MB_BPRIV_R.

Finally, we show that the probability in distinguishing between the games G2L and G3R

is equivalent to the probability of winning the IND–1–CCA game.

6 Verifiability

In this section we will consider the relation between du–mb–BPRIV and individual ver-
ifiability. Indeed, in [13] it was proven that a scheme satisfying mb–BPRIV and strong
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consistency will satisfy a special form of individual verifiability which depends on the
chosen recovery function in mb–BPRIV.

We will here shed more light on this relation both for mb–BPRIV and du–mb–BPRIV,
in particular, the relation is hardcoded into the recovery function and it is instructive to
understand this in more detail.

Actually, the recovery function not only defines which attacks are allowed by the
adversary, it also determines which properties the individual verification has to verify, by
directly allowing attacks if the verification fails to check for this. Consider the two recovery
functions Recoverdel,reorderU in Fig. 7 and Recoverdel,reorder,changeU in Fig. 8. In Recoverdel,reorderU
the attacker is allowed to delete and reorder votes of honest non-checking voters, and in
Recoverdel,reorder,changeU to delete, reorder and replace ballots of honest non-checking voters.
For both it is hardcoded that if an honest checking voter’s ballot is deleted, replaced or
changed3 in any way there will be different tally results in the two worlds. Reordering
would not cause different results. Thus if the verification procedure does not detect these
changes, the adversary will be able to tally and win the game. In turn, this hardcoding of
what the verification should achieve will also give the relation to verifiability, as we will
prove below. However, what we define for the verifying voters, may not be related to what
is defined to be legal actions for the attacker for the honest non-verifying voters, which
makes the definition somewhat opaque.

Following the argument of [13] e.g. deleting votes does have implications for privacy,
basically reducing the remaining anonymity set – in the extreme case an attacker could
delete all votes except one to reveal that vote with the tally. However, above we did not
demand that verification detects vote re-ordering which could potentially have just as
large consequences for privacy, e.g. in the case where all voters cast two ballots and the
attacker knows all the first ballots. Swapping ballots in a last-vote-counts policy then
decreases privacy just as deleting votes would do.

In our recovery function Recoverdel,reorder’U we do not put a constraint on what veri-
fication should do, but treat all honest voters equally. This means that replacement of
voter ballots is allowed for verifying voters, contrary to Recoverdel,reorder,changeU where it
would lead to an attack. This, in principle, allows us to model attacks where the adver-
sary learns the outcome of a plaintext verification after submitting a ballot with a given
candidate on behalf of the voter. As an example, if the adversary submits a ballot for
candidate A on behalf of a voter and observes that the verification is successful, then the
adversary can deduce that the voter voted for A. This does not mean that mb–BPRIV
with Recoverdel,reorder,changeU is too weak, because replacement is ruled out for verifying vot-
ers, but it does mean that this high precision privacy attack would be overlooked, due to
concerns of less privacy-violating attacks.

On the other hand, since Recoverdel,reorder’U does not give an explicit constraint on the
verification, this also means that the du–mb–BPRIV with our recovery function is not

3 We note that all the proposed recovery functions are too strong, in the sense that if a ballot is modified
in any way but without changing the plaintext, this would give an attack, but the vote result would
be unchanged and hence this does not constitute an attack. E.g. Belenios-RF [9] or Selene would not
detect this during verification, but would still be private in practice.
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Recoverdel,reorderU (BB1,BB)

1 : L← [ ]

2 : for (pc, c) ∈ BB :

3 : if ∃j, id : BB1[j] = (id, (pc, c)) :

4 : L← L ‖ j (if several such j exist, pick the first one)

5 : elseif Extractid(U, pc) /∈ H

6 : L← L ‖ (pc, c)

7 : L′ ← [i|BB1[i] = (id, (pc, c)) ∧ id ∈ Hcheck ∧ (pc, c) /∈ BB]

8 : L′′ = L‖L′

9 : return (λi. L′′[i])

Fig. 7. The Recoverdel,reorderU algorithm from [13]. Here Extractid(U, pc) extracts the voter identity id from
the public credential pc.

Recoverdel,reorder,changeU (BB1,BB)

1 : L← [ ]

2 : for (pc, c) ∈ BB :

3 : if ∃j, id : BB1[j] = (id, (pc, c)) :

4 : L← L ‖ j (if several such j exist, pick the first one)

5 : elseif Extractid(U, pc) /∈ Hcheck

6 : L← L ‖ (pc, c)

7 : L′ ← [i|BB1[i] = (id, (pc, c)) ∧ id ∈ Hcheck ∧ (pc, c) /∈ BB]

8 : L′′ = L‖L′

9 : return (λi. L′′[i])

Fig. 8. The Recoverdel,reorder,changeU algorithm from [13]. This is identical to Recoverdel,reorderU from Fig. 7, except
that votes from Hcheck are also considered as cast.

in general directly implying verifiability. On a technical level: A verifiability attack that
changes ballots would in most cases be seen as cast ballots by the recovery function and
hence be both on the left and right world boards. Hence the tally would not change.

To investigate the relation to verifiability, we will thus focus on the recovery functions
from [13]. We note that in [13] the implication to individual verifiability was proven by first
using that strong consistency and mb–BPRIV implies an ideal functionality (depending on
the chosen recovery function) which in turn implies individual verifiability. It is however
instructive to prove this relation directly, which also allows a comparison of the advantage.

We note that a privacy definition can only ever imply a weak kind of verifiability, since
the adversary is not allowed to know the secret key. Normally, we want to ensure all types
of verifiability even if there are inside attackers. There are several examples of e-voting
systems not being secure when the adversary knows the election secret key. We thus label
this as weak individual verifiability.
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Expdu–mb–verif,Rver
A,V (λ)

1 : Checked,Happy← ∅
2 : V,Vcheck,Vcheck,PU,U,CU← empty

3 : (pd, sd)← Setup(λ)

4 : for id in I do

5 : (pc, sc)← Register(id),

6 : U[id]← sc,PU[id]← pc

7 : if id ∈ D then CU[id]← U[id]

8 : BB← AOvote,Oboard(pd,CU,PU,Hcheck)

9 : if Hcheck 6⊆ V; return ⊥
10 : if ValidBoard(BB, pk) = ⊥; return ⊥
11 : (r∗, Π∗)← AOtallyBB,Oboard()

12 : if VerifyTally((pd, pbb, r∗), Π∗) = ⊥; return ⊥
13 : AOverify()

14 : if Hcheck 6⊆ Checked; return ⊥
15 : if Hcheck 6⊆ Happy; return ⊥
16 : if r 6= ⊥ ∧ ¬Rver(r,Vcheck,Vcheck)

17 : then return 1

18 : else return 0

Ovote(id, v)

1 : if id ∈ H then

2 : (pc, b, state)← Vote(pd, pc, v)

3 : V[id]← V[id]‖(state, v)

4 : if id ∈ Hcheck then

5 : Vcheck ← Vcheck‖(id, v)

6 : if id ∈ Hcheck then

7 : Vcheck ← Vcheck‖(id, v)

8 : BBint ← BBint‖(id, (pc, b))

Overify for id ∈ Hcheck

1 : Checked← Checked ∪ {id}
2 : if VerifyVote(id,V[id],BB,PU[id],U[id]) = > then

3 : Happy← Happy ∪ {id}
4 : return Happy

OtallyBB for β = 0

1 : (r,Π)← Tally(BB, pd, sd)

2 : return (r,Π)

Oboard

1 : return Publish(BBint)

Fig. 9. Weak individual verifiability with post-tally verification for maliciously generated board and tally.

In Fig. 9 we define the experiment Expdu–mb–verif,Rver

A,V (λ) for weak individual verifia-
bility with post-tally verification as an updated and stronger version of the individual
verifiability in [13]. We here use Oboard to control the information the adversary gets
from vote casting, just as in du–mb–BPRIV, whereas in [13] the adversary gets the output
of the vote casting algorithm. Vcheck and Vcheck are the list of identity-vote pairs (id, v)
from the checking and non-checking honest voters, respectively. The relation Rver defines
the property on the honestly cast ballots that the verifiability should protect.

The reason that our individual verifiability definition is stronger than [13] is that their
definition assumes an honestly created tally, however, in our case the adversary can output
the tally result and proof, but we will check whether the proof is valid using VerifyTally.

Definition 10 (Weak individual verifiability). Let V be a voting system and
Rver a relation. We say that that V fulfills weak individual verifiability w.r.t. Rver

against a malicious board and tally if for any polynomial adversary A we have that

Pr
[

Expdu–mb–verif,Rver

A,V (λ) = 1
]

is negligible in λ.

Further, we need strong consistency. We here refer for App. A in [13] for the precise
definition. However, what it says is that there exist extractors which extract an identity
and a plaintext vote from a general ballot. The extractors are denoted Extractid from
the identity, which was already used in the recovery functions above, and Extractv for
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extracting the vote, which may use the secret election key in sd. When applied to honestly
generated ballots the extractors are correct with overwhelming probability. In general,
the extractors can return ⊥ on invalid ballots. Further, with overwhelming probability,
the tally of a bulletin board submitted by the adversary is the result function on the
votes extracted from the ballots. That is, if the submitted bulletin board is of the form
[(pc1, b1), . . . , (pck, bk)] then if the board is valid we will with overwhelming probability
have that the result is the result function computed on the extracted votes:

r = ρ(Extract(sd,PU, pc1, b1), . . . ,Extract(sd,PU, pck, bk)),

where we have combined the two extractors into one.
The recovery function used in du–mb–BPRIV will decide which relation Rver is secured

in the weak individual verifiability. We will only focus on the two recovery functions above.
Following [13], also for the notation, the relation corresponding to Recoverdel,reorder,changeU
is

Rdel,reorder,change
ver (r,Vcheck,Vcheck) =

∃Va ≈ Vcheck.∃Vc.(∀(pc, b) ∈ Vc.id /∈ Hcheck) ∧ r = ρ(Va‖Vc).

Here ≈ means that the list is the same up to ordering, i.e. they are the same in a set-
sense. As discussed above, the recovery function does not recover the order for the checking
voters. In words, each verifying voter will have one of their votes counted.

For Recoverdel,reorderU the relation is

Rdel,reorder
ver (r,Vcheck,Vcheck) =

∃Va ≈ Vcheck. ∃Vb v Vcheck ∃Vc.(∀(pc, b) ∈ Vc.id ∈ D) ∧ r = ρ(Va‖Vb‖Vc).

Here v means inclusion in a set-sense. In words, the verifying voters will have one of their
votes counted and the non-verifying voters can have their votes deleted, but not changed
(in practice this would have to be ensured via authentication). In both cases, we assume
that the result function is stable in the sense of [13], namely is independent of the ordering
of votes, as long as the votes for each id appear in the same order.

We are now ready to state our theorem that du–mb–BPRIV and strong consistency
implies weak individual verifiability with the corresponding relation function. Since we go
directly from privacy to verifiability, and not via an ideal functionality as in [13], we can
directly relate the adversarial advantages, and further, as discussed above, we descend to
a stronger version of verifiability with non-honest tally. For the proof there is a technical
obstacle in that the verification in the right world still uses the state from the left world
for the post-tally verification, a fact that we will discuss in lesson 4 in the next section.
This gives a degradation factor 1/2.

Theorem 4. Let V be a strongly consistent voting system satisfying du–mb–BPRIV with
respect to the recovery function Recoverdel,reorderU respectively Recoverdel,reorder,changeU and let
the result function be stable, then V satisfies weak individual verifiability w.r.t. to the rela-
tion Rdel,reorder

ver respectively Rdel,reorder,change
ver . We here assume that these relations are com-

putable in polynomial time. Given an adversary A with advantage Advdu–mb–verif
A (λ) against
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weak verifiability, we can build an adversary B with Advdu–mb–bpriv
B,V,Sim (λ) ≥ 1

2Advdu–mb–verif
A (λ)

against du–mb–BPRIV.

Proof. LetA be an adversary against individual verifiability w.r.t. to the relationRdel,reorder
ver

and advantage Advdu–mb–verif
A (λ). We then take a challenge from du–mb–BPRIV and feed it

to A against the verifiability experiment. When A calls Ovote(id, v) we call Ovote(id, v, v)
in the privacy experiment, and we answer A’s calls to Oboard by calling it in the privacy
experiment. For d∗ we output a random value. In the same way we answer OtallyBB
from the privacy experiment, and we get a result and proof from A. If we are in the
left world, VerifyTally will succeed with probability greater than Advdu–mb–verif

A (λ). We can
now again feed queries to Overify from the privacy experiment. In the left world the two
games are aligned and with probability Advdu–mb–verif

A (λ) the individual verification will
succeed, but the result will not fulfill the relation. On the other hand, if we are in the right
world, the recovery function will make sure that the board always fulfils the relation: For
Recoverdel,reorder,changeU it will make sure that all votes from verifying voters will appear on
BB′ (but might be reordered). By strong consistency the tally result will thus contain the
votes from the honest voters and fulfil the relation. For Recoverdel,reorderU , the votes from the
checking voters will likewise be added back in by the recovery function. For the ballots for
the honest non-verifying voters, they will either be kept if they were untouched or thrown
away if they were changed in any way. Again by strong consistency, the result will contain
all votes from checking voters, and a subset from non-checking honest voters, and hence
fulfil the relation. Since we assume that the relation can be computed in polynomial time,
we can let the adversary B output 1 if the relation does not hold, and 0 if it holds. Since
the recovery function changes the ballots to the left hand ballots, and we use the left
state for verification, the VerifyVote algorithm will most likely work, however, this cannot
be guaranteed. Hence we do not know in the right world how often the board will pass
verification. However, when we reach a verified board, we can distinguish the two worlds
using the relation, in all other cases the outputs are manifestly random. We thus have
that

Advdu–mb–bpriv
B,V,Sim (λ) =

∣∣∣∣Pr
[

Expdu–mb–BPRIV,Recover,0
B,V,Sim (λ) = 1

]

− Pr
[

Expdu–mb–BPRIV,Recover,1
B,V,Sim (λ) = 1

]∣∣∣∣

≥ Advdu–mb–verif
A (λ) +

(
1− Advdu–mb–verif

A (λ)
)

1
2 − 1

2

= 1
2Advdu–mb–verif

A (λ)

up to negligible contributions.

We note that a weaker form of strong consistency would have been sufficient for this
proof, but might be needed for more general recovery functions and relations.

We note that the fact that our proof of the implication from privacy to verifiability
is direct means that it should be possible to formalise the proof in EasyCrypt. This is
in contrast to the proof in [13] which relies on the intermediate ideal functionality, which
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would be much harder to formalise in EasyCrypt. We leave such a formalisation as future
work.

7 Lessons learned

In this section we highlight and discuss a few important lessons that we learned in the
process of formalising the du–mb–BPRIV security definition and the security proof of Selene
in EasyCrypt. We believe that these lessons will be useful to develop and evaluate future
efforts on formalising both security proofs for electronic voting protocols and other security
proofs in EasyCrypt.

7.1 Lesson 1: Vacuity in adversary quantifications

EasyCrypt has proved useful in formalising—and sometimes spotting issues in—existing
security proofs, related to standard security notions. This work and the series of work on
the security of electronic voting that precedes it also make definitional contributions,
which are developed in parallel with their formal counterparts.

In a setting where any change is costly, having definitions and proofs evolve together
is a risky proposition, and can very easily lead to very complex proofs of vacuous results.
Such issues can obviously arise, from stating trivially false axioms under which the results
are proved to hold. But EasyCrypt proofs also offer less obvious pitfalls in the form of
universal quantification over adversaries.

Our top-level results, expressed on paper, are simply of the form

∀A,Adv(A) ≤ Adv(B(A)) + ε

In EasyCrypt, the universally-quantified adversary A above very often needs to be
further restricted to:

1. Not share memory with other parts of the system—often the security experiment and
related oracles; and

2. Terminate with probability 1 when run with access to oracles that terminate with
probability 1.

The first restriction accounts for a convenience feature of EasyCrypt’s memory
model, which makes all global variables visible to all modules—an issue when trying
to hide their value from an adversary, but a convenience when writing a reduction that
peeks into an oracle’s state.

The second restriction accounts for the fact that termination cannot be either assumed
(because it is possible to write a non-terminating adversary) or discharged automatically.
Making the assumption explicit where needed gives some flexibility in instantiating com-
plex arguments. It is possible to write—in intermediate proof steps that hold regardless
of the adversary’s termination status—non-terminating adversaries (or adversaries whose
termination is hard to prove, such as those that make use of rejection sampling). But in
places where termination is needed, a termination proof must be provided.
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As we discovered after completing our proof, it is very easy to state these restrictions
too strongly—and sometimes strongly enough as to be vacuous.

More concretely, let us consider the case of some adversary A that expects oracle
access to some oracle O. A natural way of expressing restriction 2 above on some fixed
adversary A would be as follows.

∀O.Pr[O : >] = 1⇒ Pr
[
AO : >

]
= 1

This natural expression is, however, too strong: it expects that A should terminate
even if the oracles she can query can interfere with her memory (and even if she, in turn,
can interfere with her oracles’ internal memory). This would, pathologically, prevent a
theorem proved under this restriction from applying to an adversary who calls its oracle
inside a simple while loop—where the oracle could simply bump the loop index back every
time it is called to prevent the adversary from terminating. The correct way of stating the
restriction above in EasyCrypt is (in prettified syntax) as follows, taking care to prevent
O from interfering with the execution of A.

∀O {−A} .Pr[O : >] = 1⇒ Pr
[
AO : >

]
= 1

Spotting such missing restrictions is not easy: our first proof fell prey to one of them.
Such assumptions are often present in top-level statements, which are not immediately
instantiated. As a consequence, the hypothesis is not discharged—which would reveal
it as too strong—and simply remains as a “hidden axiom” which severely limits the
applicability of the formal result.

This issue is one of a few issues with EasyCrypt’s approachability to new users which
may cause more than frustration, and we have fed it back to the development team. We
will keep in touch with them to design and develop new ways of expressing adversary
constraints that are less vacuity-prone.

7.2 Lesson 2: How to deal with random oracles in EasyCrypt

EasyCrypt already provides a library for working with Random Oracle Models (ROM)
that formalizes non-programmable eager and lazy models, bounded eager and lazy models,
and programmable lazy models. Moreover, they also provide a lemma that shows that
eager and lazy ROM can be used interchangeable within a non-programmable model. This
result proves to be invaluable, especially when dealing with modules that have access to a
random oracle, like the non-malleable encryption scheme EO we had to deal with in our
formalisation and proofs.

As EasyCrypt does not allow one to write invariants using modules we had to in-
troduce operators to capture the same behavior while taking care to model exactly how
these modules interact with the random oracles. For example, on paper one may write the
following invariant independent of the type of ROM O considered:

∀(id, pc, c) ∈ BB0, V[id].v = EO.dec(sd, id, pc, c),
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to express that for any ballot (id, pc, c) that we have in BB0 we store the plaintext v0 in
V[id].v when the adversary has called the oracle OvoteLR(id, v0, v1). However, to do this
in EasyCrypt we had to introduce an operator dec cipher vo that is equivalent to the
EO.dec call as long as the state (or map) of the random oracle O.m has not changed or
O is an eager random oracle. Thus, we used the following invariant:

∀(id, pc, c) ∈ BB.
V[id] = dec cipher vo(sd, id, pc, c,O.m).

As an additional benefit of this formalisation and using the non-programmable eager
ROM, we could start using these type of invariants as soon as calls to OvoteLR(id, v0, v1)
are made and reason on the outputs of EO.enc and maintain that invariant until we need
to discharge it later in the tally phase.

Another important lesson was on understanding that e-voting protocols can use more
than one ROM, and the adversary and proof strategy may rely on having different as-
sumptions over them. This is where the lesson on ROM from [10] proved invaluable as
we had to model the following ROM for our e-voting protocols Selene, MiniVoting and
Belenios:

H - the ROM that the encryption scheme Ev used,
G - the ROM used by the zero-knowledge proof ΣR = (P,V) of correct tally, and
Sim.O - the ROM defined by the simulator Sim.

This separation allowed to accurately model the cryptographic primitives that require
specific ROM access, and to have efficient proof reduction steps, e.g., replacing the zero-
knowledge proof system ΣR withe the simulator Sim also implied replacing ROM G with
the ROM of Sim.O. That meant, for example in the case of Selene going from this definition

Selene(EHv ,Et, Σ
G
R,CP,ValidIndH)

to this type of definition undetected by the adversary

Selene(EHv ,Et,Sim,CP,ValidIndH).

7.3 Lesson 3: Small changes lead to large changes

Proofs in EasyCrypt are tied to exact module and type formats, and even trivial changes
can have drastic impact. One such example was when we adapted the proof of Selene to
work for ”Selene with signatures”. More precisely, we enriched the ballot considered by
Selene b = (id, pc, c) to b = (id, pc, c, s) by including a signature s verifiable using the
public credential pc of the voter id providing the encryption c of the vote v. That meant,
given the signature scheme S we changed the Selene from Definition 9 to

Selene(Ev,Et, ΣR,CP,ValidInd, S),
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and updating all previous steps to handle the signature. However, it still amounted to
definitions and proof changes of 2500 line out of 7070 lines for the Selene proof 4.

The main reason for this significant number of updated lines is due to the fact all Easy-
Crypt proofs are manually produced. EasyCrypt only provides automatic guarantees
on the proof verification. For example, any modification in an invariant (independent of
the scale, e.g. b = (id, pc, c) to b = (id, pc, c, s)) leads to re-proving all statements involving
that invariant.

Additionally, the experience of previous EasyCrypt development [10,11] has helped
in avoiding making direct assumptions even when we were confident on the statements,
e.g., non-malleability (or IND-1-CCA) over the entire ballot b compared to just (id, pc, c).
As an alternation to that ballot form to b = (id, pc, c, s) makes this malleable due to the
presence of the signature.

7.4 Lesson 4: Split the voter state into two parts in the presence of a
recovery algorithm

In Section 3 we briefly mention that we split the voter state into two different parts,
statepre and statepost. We now discuss this further and elaborate on the reason why this is
necessary.

First, recall that in the du–mb–BPRIV definition, the adversary gets access to a vote
oracle OvoteLR when creating the ballot box. The vote oracle records, among other things,
a voter state, which is used for verification later on. The state can for example be a
ciphertext encrypting the voter’s ballot (as in Labelled-MiniVoting) or a plaintext ballot
(as in Selene). The reason why we need to split the state into two parts is partly due to the
fact that we want to accommodate schemes where post-tally verification is not enforced
(e.g. Labelled-MiniVoting) and schemes where verification can only happen after the tally
has been computed (e.g. Selene), and partly due to the presence of the recovery algorithm.

For schemes where post-tally verification is not enforced, i.e. schemes where it is typ-
ically possible to do verification both before and after tally, the information needed to
verify is typically a ciphertext, which the voter checks whether or not is included in the
ballot box. In other words, the voter state is checked against some data that is available
prior to tallying. On the other hand, in schemes where verification has to happen after
tally, the verification check is typically performed on data that is produced by the tally
algorithm (e.g. a list of plaintext ballots).

Now, one could imagine that it would be sufficient to only have one voter state, as
this state would (for example) be a ciphertext in schemes where post-tally verification is
not enforced. It would still be a ciphertext that is checked against some available data,
independent of whether or not the voter actually performs the verification check before
or after the tally. However, due to the recovery algorithm, it is indeed necessary to split
the state into two parts.

4 Our EasyCrypt formalization has 19340 lines of code with 1310 line for CORE (e.g., ElGamal, LPKE,
proof system, hybrid argument), 7070 line for the Selene proof, 6860 lines for Selene with Signature
proof, and 4100 lines for Belenios and MiniVoting proof.
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The first part of the state, statepre, should depend on the secret bit β. Since this part
of the state is used in schemes where verification could occur before tallying, the voter
should verify against the ballot box created by the adversary, both in the real world and
in the fake world. For example, in Labelled-MiniVoting, if we are in the real world, the
voter should check that the left side encrypted ballot b0 is a member of the left side ballot
box BB0, and if we are in the fake world, the voter should check that the right side ballot
b1 is a member of the right side ballot box BB1.

However, for schemes with post-tally verification, the situation is slightly different.
Recall first how the recovery algorithm works, and what the goal of the adversary is. The
adversary is tasked with distinguishing between two different worlds. In the real world,
the adversary gets to see real ballots and the real result as well as a proof of correct tally.
In the fake world, the adversary gets to see fake ballots, but he still gets to see the result
as tallied on the real ballots, as well as a simulated proof of correct tally. As the adversary
is allowed to tamper with the ballot box, the recovery algorithm is needed to decide which
of the honest ballots to include in the tally. Thus, for schemes where post-tally verification
is enforced, the voter should always verify against data as if she was in the real world. For
this reason, the vote oracle should always record the second part of the state as if it was
in the real world.

In summary, in the presence of a recovery algorithm, it is necessary to split the voter’s
state into two parts: one for where verification occurs on the bulletin board, and one for
where verification occurs on data produced during the tally. As the state should depend
on the secret bit β when verification happens with respect to information produced before
tallying and it should be independent of β when verification happens with respect to
information produced by the tally algorithm, the vote oracle records (statepre,0, statepost,0)
when β = 0, and (statepre,1, statepost,0) when β = 1.

Note that we discuss state splitting only for electronic voting protocols. Examining
the applicability of this approach to other kinds of protocols is out of scope for this paper,
but an interesting area of future research.

8 Concluding Remarks and Future Work

In this work we presented a refined version of the mb–BPRIV privacy definition which we
call delay-use malicious-ballotbox ballot privacy (du–mb–BPRIV). Our new definition al-
lows the modeling of schemes (such as Selene) where verification occurs after tallying. The
security claim is also more explicit. We formalised our new definition in the interactive
theorem prover EasyCrypt and showed that labelled MiniVoting, Belenios and Selene
all satisfy the definition. We also proved that MiniVoting and Belenios satisfy the orig-
inal mb–BPRIV privacy definition. Furthermore, we have discussed the relation between
du–mb–BPRIV and individual verifiability (and the corresponding relation for mb–BPRIV)
and proved that a voting system satisfying du–mb–BPRIV and a property called strong
consistency, also satisfies a form of individual verifiability which depends on the choice
of recovery function. Finally, we have highlighted and discussed a few important lessons
that we believe will be useful for future efforts on formalising electronic voting protocols
and related security properties in EasyCrypt.
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While we have encoded Selene correctly in what we firmly believe is the most ap-
propriate privacy definition in literature, our work highlights certain defiances in privacy
definitions which future work should address. The defiances are fairly deep and address-
ing them is far out of scope for this work. We will, however, briefly mention two principal
defiances of mb–BPRIV and related definitions. First, the definition, while handling a
malicious bulletin board, assumes honest setup. Secondly, du–mb–BPRIV and related def-
initions are highly calibrated to schemes where the auxiliary data produced by tally to
be used in verification are zero-knowledge proofs. In particular, schemes like Selene which
output trackers to use for verification are difficult to express in these definitions.

Further, the BPRIV style of definition implies certain restrictions. As an example, the
adversary can only see the result and verification from the left side board which constrains
the attacker model. In particular, this means that we cannot detect privacy attacks relying
on inducing candidate-specific errors for an observed voter while giving the adversary
access to whether the corresponding voter verification fails or not, see e.g. [18] for such a
style of attack. Of course, such attacks can be ruled out by considering recovery functions
preventing any changes to honestly cast votes as in [13], but it is not the case in general.
An important line of future research is thus to find alternative definitions capturing both
more general and more transparent attacker models, e.g. by decreasing the generality of
the definition or to consider simulation based security.
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12. Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Election verifiability
for helios under weaker trust assumptions. In Miroslaw Kutylowski and Jaideep Vaidya, editors,
ESORICS 2014, Part II, volume 8713 of LNCS, pages 327–344. Springer, Heidelberg, September
2014.
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Abstract. Accountability is a critical requirement of any deployed voting system as it
allows unequivocal identification of misbehaving parties, including authorities. In this paper,
we propose the first game-based definition of accountability and demonstrate its usefulness
by applying it to the sElect voting system (Küsters et al., 2016) – a voting system that relies
on no other cryptographic primitives than digital signatures and public key encryption.
We strengthen our contribution by proving accountability for sElect in the EasyCrypt proof
assistant. As part of this, we identify a few errors in the proof for sElect as presented by
Küsters et al. (2016) for their definition of accountability.
Finally, we reinforce the known relation between accountability and verifiability, and show
that it is still maintained by our new game-based definition of accountability.

1 Introduction

A system is accountable if, when something goes wrong, it is possible to judge who is
responsible based on evidence provided by the system participants. For a voting system,
this means that if we do not accept the outcome of an election, the honest parties should
be able to produce evidence that pinpoints who is to blame, in the sense that they have
not followed the protocol. This is in principle trivial for some voting systems, such as the
Helios voting system where each party proves their correct behaviour using zero knowledge
arguments. This is, however, not trivial for every reasonable voting system, in particular
voting systems with complex ballot submission procedures, such as the Swiss Post voting
system [20]; in the Swiss Post case the system involves a complicated protocol between
half a dozen participants to decide if a ballot was cast by a valid voter and well-formed
and hence should be counted.

The sElect voting system [17] is an interesting case for accountability. Unlike Helios,
the system does not use any advanced cryptography, relying entirely on secure public key
encryption. The system uses nested public key encryption to allow a very simple mixnet
decryption. The voter creates a nested encryption of their ballot and a random check value,
each layer encrypted with a mix server public key. Each mix server decrypts one layer of
encryption, sorting the result lexicographically to effect mixing. The last mix server simply
outputs decrypted ballots, together with the voter-specific check value. Voters verify that
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their ballot is included in the count by checking that the ballot appears together with the
voter’s check value.

Informally, the sElect system is accountable because voters can reveal the randomness
used in the nested encryption, thereby enabling tracing of the encrypted ballot through
the mixnet, which will pinpoint which mix server did not correctly decrypt.

Accountability might seem to be a fairly simple notion, but it is technically difficult
to find a definition that both captures accountability and is easy to work with. This can
be seen from the fact that no definition of accountability seems to have been broadly
accepted in the community. Also, when Küsters et al. [17] apply the definition from [18]
to sElect, there are a number of errors in the result they claim; we will discuss these in
greater length in Sec. 1.2. These errors suggest that the existing accountability definitions
are hard to work with. In other words, there is a need for a workable general definition of
accountability.

The simplicity of sElect comes at a cost, which is that the system is only private for
voters that accept the election outcome. This problem can be mitigated using the final
cryptosystem trick from [12]; with this trick, “a sender first encrypts her message under
the “final” public key and uses this encrypted message as an input to the protocol as
described so far. This innermost encryption layer is jointly decrypted only if the protocol
does not abort. If the protocol does abort, only the encrypted values are revealed and
privacy is protected by the final layer of encryption.” However, using this mitigation in
sElect would require the voters’ devices to check the mix before the result is decrypted
which substantially complicates the protocol and delays the tally result, which would be
unacceptable in most cases.

Privacy is of course essential for voting systems, but we note that we are not studying
privacy in this paper, only accountability, since the privacy of sElect is well-understood.

1.1 Our Contribution

This paper contains two main contributions: The first game-based definition of account-
ability, and a proof of accountability for the sElect [17] voting system. A variant of the
latter proof has been formalised in the EasyCrypt [3] proof assistant.

This game-based definition is significant because this style of definitions are often
easier to understand and work with. For security proofs, ease of understanding and use is
a significant factor in getting things right and later verifying that things are indeed correct.
Further, it allows us to use existing tools for game-based proofs, specifically EasyCrypt,
to formally verify security.

The accountability proof for sElect is significant, first because it demonstrates that
our new definition of accountability works. Second, the sElect voting system is interesting
because it is so simple, requiring no other primitives than digital signatures and public
key encryption. Proving security properties for interesting voting systems is intrinsically
interesting.

As we have seen, informal arguments sometimes contain errors. A proof formalised in
EasyCrypt is significant, in that it ensures that we have no errors in arguments, making
the overall security proof easier to verify.
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In addition to the main contribution, we also make the relation between verifiability
and accountability precise, in the sense that accountability implies verifiability (when
suitably defined). This is a significant result, suggesting that future system designers
should focus on achieving accountability.

1.2 Related Work

To the best of our knowledge, no game-based definition of accountability has been proposed
earlier. However, several definitions of accountability (for general security protocols, not
only electronic voting protocols) have been proposed in the symbolic model. Bruni et al.
[5] propose a general definition amenable to automated verification. Künnemann et al. [16]
give a definition of accountability in the decentralised-adversary setting, in which single
protocol parties can choose to deviate from the protocol, while Künnemann et al. [15]
give a definition in the single-adversary setting, where all deviating parties are controlled
by a single, centralised adversary. Morio & Künnemann [19] combine the definition from
[15] with the notion of case tests to extend the definition’s applicability to protocols
with an unbounded number of participants. Furthermore Küsters et al. [18] put forward
quantitative measures of accountability both in the symbolic and computational model.
Similar for all these definitions is that they clearly distinguish between dishonest parties
and misbehaving parties. Even though a party is dishonest (controlled by an adversary),
it does not necessarily deviate from the protocol and cause a violation of the security
goal. In such cases, the party is not misbehaving and should not be held accountable for
anything.

While no game-based definition of accountability has been proposed, game-based def-
initions for other voting-related security properties do exist in the literature. Some of
these definitions have also been formalised in the proof assistant EasyCrypt [3], with
related machine-checked proofs for a variety of voting protocols. Cortier et al. [6] for-
malise a game-based definition of ballot-privacy called BPRIV [4] in EasyCrypt and
give a machine-checked proof that Labelled-MiniVoting [6] and several hundred variants
of Helios [2] satisfy this notion of ballot privacy. Cortier et al. [7] build on work from [6]
and also formalise a game-based definition of verifiability in EasyCrypt, in addition to
giving a machine-checked proof that Belenios [9] is ballot-private and verifiable. Drăgan
et al. [10] formalise the mb-BPRIV ballot privacy definition [8] in EasyCrypt and give a
machine-checked proof that Labelled-MiniVoting and Belenios satisfy this definition. They
also propose a new game-based ballot privacy definition called du-mb-BPRIV, which is
applicable to schemes where voter verification can or must happen after the election result
has been computed, and give a machine-checked proof that Labelled-MiniVoting, Belenios
and Selene [21] all satisfy this definition.

Problems in the Küsters et al. [17] Accountability Proof. In carefully analysing sElect we
became aware of two errors in the Accountability theorem which we detail below; to our
knowledge these errors have not previously been documented in the literature. There is a
significant complexity in the parameters used in Theorem 3 (Accountability) in the full
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version of sElect [17], but fortunately this is largely orthogonal to the points we need to
discuss.

Ballot Stuffing The goal for which accountability is proven (see Definition 1 in [17])
somewhat implicitly requires that the multiset containing the election result contains
at most n elements, where n is the number of voters. However, no argument is made in
the proof that the judge will hold anyone accountable if there are more than n ballots.
Both the pen-and-paper description and the implementation of sElect omit any checks
which would catch the addition of ballots by the mix servers, and it seems that the
authentication server could also stuff ballots though this would be more involved. As
significant as this vulnerability is, it is easy to fix and we have done so in the version
of sElect we prove accountability for.

Honest Nonce Collision A described above, the goal the theorem aims for uses multi-
sets and hence if multiple honest voters vote for the same choice we expect to see at
least that many copies of the choice in the output; this is somewhat complicated in
sElect by the augmentation of voter choices with nonces. The mechanism which sElect
uses to detect ballots being removed relies on the plaintext encrypted by the honest
voters being unique; however, this does not happen when the nonces and choices of the
honest voters collide. The chance of such collision should appear in the security bound
of accountability for sElect unless it is explicitly negligible in the security parameter.
Strangely, sElect will drop these votes even with no adversarial involvement since the
protocol specifies that the final mix server (like all others) should filter its output for
duplicates. We note that the probability of collisions does appear in the verifiability
theorem and proof.

2 Game Based Accountability

In this section we present our game based definition of accountability for electronic voting
protocols, and we start by presenting the parties and their roles.

2.1 Parties

We consider the following parties and their role in the election process.

Voting Authority VA that sets up the election process, generates public parameters,
defines voter eligibility, etc. The election secret keys are managed by separate parties,
called decryption and mixnet authorities.

Decryption and Mixnet Authorities MSi(mski,mpki) that manage together the de-
cryption process, and each party has been allocated a part of the decryption key/elec-
tion secret key. This is typically done by decryption or re-encryption together with
shuffling of ballots/votes to break the link between recorded ballots and the votes.

Authentication Server AS(ask, apk) issues confirmation tokens that ballots were recor-
ded as cast, typically under the form of signatures.

Judge J assigns blame to misbehaving parties based on publicly available data and voter
reported evidence. We model this by having an algorithm Judge.
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Voters idi that cast their vote vi. The voting process is facilitated by a voting supporting
device VSD that builds ballots for the user and then casts them.

Bulletin board BB stores publicly verifiable information relevant to an election, e.g.
ballots, mixnet outcomes, and election outcome. The bulletin board may be divided
into subcomponents such as a list of submitted ballots or the election outcome.

2.2 Voting System

The election process is defined by the following tuple of algorithms.

Setup(): This algorithm produces the public election data pd and the secret election data
sd. This is done by interaction between VA, MS0, . . . ,MSk, and potentially AS.

Vote(pd, v): This algorithm builds the ballot b based on the vote v and public data pd. Ad-
ditionally, it produces the internal state of the voter, state, to facilitate the verification
process later.

ASCreate(ask, b): This algorithm produces a token σ that the ballot b has been received
and accepted by the authentication server AS(ask, apk).

ASVerify(pd, b, σ): This algorithm verifies if the token σ is valid for the ballot b and public
data pd.

Tally(sd,BB): This algorithm models the sequence of calls to the mixnet and decryption
authorities to produce the election outcome.

VSDVerify((state, b, σ), pd,BB): Checks if the system has followed the required processes
for this user’s vote and ballot, and it outputs ⊥ if no misbehaving party has been
identified. Otherwise, it returns the misbehaving party and the corresponding evidence.

Judge(pd,BB,E): It checks that the publicly available data is valid with respect to some
predefined metrics and against the list of evidence E. It returns the error symbol ⊥ if
no misbehaving party has been identified; otherwise, it outputs the misbehaving party
B. As all checks can be replicated publicly, it does not need to return evidence.

The following algorithm is unbounded and is hence only part of the experiment and
will not be run during an election.

Bad(pd,BB,E,V): This unbounded algorithm serves to provide a ground truth of which
parties misbehaved. By the requirements of our definition, it always blames a party
when the election result does not reflect the votes of voters - given the public data pd,
the bulletin board BB, the list of evidence E, and the internal state of honest voters
V. Optionally, it may detect whether a party has deviated from the protocol in a way
which does not change the election result. It should never blame an honest party.

2.3 Accountability

We consider that the adversary has full control over all parties introduced in Section 2.1,
except the Judge. The adversary can also incorporate their own evidence to Judge. If a
party deviates from the protocol steps, then that party becomes misbehaving and could
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ExpGBA
A,V(λ)

1 : pd← A();

2 : (BB, tL)← AOvote();

3 : es ← true;

4 : foreach id ∈ V :

5 : (state, b)← V[id];σ ← tL[id];

6 : if ASVerify(pd, b, σ) = ⊥ :

7 : es ← false; break;

8 : E← Verify();

9 : E← E ∪ A(E);

10 : B ← Judge(pd,BB,E);

11 : ef ← (B 6⊂ Bad(pd,BB,V,E));

12 : ec ← (¬(Nv ≥ |BBvote| ≥ |BBdec| ∧ V ⊆ BBdec) ∧B = ⊥);

13 : return es ∧ (ef ∨ ec);

Ovote(id, v)

1 : (state, b)← Vote(pd, v);

2 : V[id]← (state, b);

3 : return b;

Verify()

1 : E = ∅;
2 : foreach id ∈ V :

3 : (state, b)← V[id];

4 : σ ← tL[id];

5 : blame← VSDVerify((state, b, σ), pd,BB);

6 : if blame 6= ⊥ then E← E ∪ {blame};
7 : return E;

Fig. 1. The new game-based security notion for accountability. BBvote and BBdec denote different subcom-
ponents of the bulletin board, respectively ballots submitted through Ovote and information produced by
tallying.

be identified and blamed by either Judge or Bad. However, if the party follows exactly the
protocol steps we call that party behaving, independent of them being honest or dishonest
(corrupted by the adversary).

The formal accountability definition is found in Fig. 1. The first step for the adversary
is to start the election process and provide the public data pd. Then, the adversary runs
the voting and tally phase and commits to the current state of the bulletin board BB,
together with a list of all authentication tokens tL. During the voting phase, the adversary
can make use of the oracle Ovote to replicate the behavior of behaving voters and build
their ballot b and internal state state.

To capture the natural behavior of behaving and honest voters that would check
their tokens and complain before the tally is provided, we incorporate an automatic lose
condition for the adversary if any of the provided tokens for those voters cannot be verified
by ASVerify; this approach is similar to that taken by Küsters et al. [17] in their (non-game
based) accountability proof of sElect.

Verification is done as a two-stage process, first by collecting evidence E from all honest
voters (those that used Ovote and whose internal states are stored in V) and from the
adversary A(E); and secondary by calling Judge to check the public data together with
that evidence. The Judge is responsible for providing either a misbehaving party B if there
is enough evidence to do so, or ⊥ if nothing could be detected. The adversary wins if one
of the following happens:

Fairness: Judge wrongly blames a party B when it did not misbehave. This is checked
by running the Bad algorithm to identify all misbehaving parties in the system and
check whether B has been included, or

Completeness: the result is not consistent with the honest votes but no one is blamed.
This is done by Judge producing ⊥ when an honest voter’s ballot was dropped, or
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there are more submitted ballots than there are voters, or more ballots in the election
outcome than the number of ballots that were cast in the first place.

Definition 1 (Game-Based Accountability). Let V be a voting system as defined in
this section. We say that V satisfies GBA if for any efficient adversary A their advantage
is negligible in λ:

AdvgbaA,V(λ) = Pr
[

ExpGBA
A,V (λ) = 1

]
.

Our adversary winning conditions aligns our definition with the one from Küsters et
al. [17], such that any voting system that satisfies our accountability definition will also
satisfy the one by Küsters et al. [17] (with the goal used for sElect), with some possible
caveats about the casting of schemes between the two definitions. We expand on this in
Section 4.

3 sElect

In this section we introduce sElect [17] using the format of Section 2; we focus on the
elements with are important for accountability and omit some orthogonal details. The
formal description is in Figure 2. We denote by BBvote,BBmix and BBdec the different
subcomponents of BB: respectively the submitted ballots, data produced by the mixnet
and the election outcome, which is a list of plaintext votes.

3.1 Cryptographic primitives

The voting system sElect relies on two basic cryptographic primitives: an IND-CCA2
encryption scheme E = (KeyGen,Enc,Dec) and an EU-CMA signature scheme S =
(KeyGen,Sign,SigVerif). To make the encryption scheme compatible with decryption mix-
nets it needs to allow nested encryptions. Typically, this is done through a hybrid cryp-
tosystem [1], by combining hybrid ElGamal and AES in a suitable mode such that each
encryption contains an AES encryption of the message under a random AES key and an
ElGamal encryption of the AES key.

As part of the formalisation for the shuffling done by the mixnet servers MS0, . . . ,MSk,
we consider the operators lex for sorting a list in lexicographic order, and undup for
removing duplicates. We additionally have that the authentication authority AS runs S.

3.2 sElect Algorithms

Setup(): The authentication server key pair (apk, ask) is generated by S.KeyGen, and
the mixnet servers key pairs (mpki,mski) are computed by E.KeyGen. The algo-
rithm returns the public data pd = (apk,mpk0, . . . ,mpkk) and secret data sd =
(ask,msk0, . . . ,mskk).

Vote(pd, v): The algorithm samples a supporting device verification code n such that it can
be used later by the voter to ensure their vote was counted. sElect also considers a short
voter verification code nvoter that has no security assumptions (for accountability);

Machine-Checked Proofs of Accountability 87



Notations

pd = (apk,mpk0, . . . ,mpkk)

sd = (ask,msk0, . . . ,mskk)

BB = (`−1, (`0, . . . , `k−1), `k) = (BBvote,BBmix,BBdec)

for MSi with (mpki,mski) and i ∈ {0, . . . , k} we have

`i−1 = list of inputs; `i = list of outputs

for Voter i with αk+1 = (n, v) we have

state = (αk+1, rk, αk, . . . , r0, α0)

Let N be the set of all possible nonces

that can be chosen by the voter’s device

Setup()

1 : // Authentication server

2 : (apk, ask)← S.KeyGen();

3 : // Mix servers

4 : foreach i ∈ {0, . . . , k} do
5 : (mpki,mski)← E.KeyGen();

6 : // Public and secret parameters

7 : pd← (apk,mpk0, . . . ,mpkk);

8 : sd← (ask,msk0, . . . ,mskk);

9 : return (pd, sd);

Vote(pc, v)

1 : // Sample VSD nonce

2 : n←$ N;

3 : // Build ballot

4 : r0, . . . , rk ←$Zp;

5 : αk+1 ← (n, v);

6 : foreach i ∈ {k, . . . , 0} do
7 : αi ← E.Enc(mpki, αi+1; ri);

8 : state← (αk+1, rk, αk, . . . , r0, α0);

9 : return (state, α0);

Judge(pd,BB,E)

1 : // Check pd

2 : if (apk,mpk0, . . . ,mpkk) /∈ G then B← VA;

3 : // Check ballot box

4 : if Nv < |BBvote| ∨ BBvote 6= lex ◦ undup(BBvote)

5 : then B← AS;

6 : // Check mixnets

7 : foreach i ∈ {0, . . . , k} do
8 : if |`i−1| < |`i| ∨ `i 6= lex ◦ undup(`i)

9 : then B← MSi;

10 : // Check evidence

11 : foreach (AS, (α0, σ)) ∈ E

12 : if ASVerify(apk, α0, σ) ∧ α0 /∈ BBvote

13 : then B← AS;

14 : foreach (MSi, (αi+1, ri)) ∈ E do

15 : if E.Enc(mpki, αi+1; ri) ∈ `i−1 ∧ αi+1 /∈ `i then B← MSi;

16 : return B;

ASCreate(ask, α0)

1 : σ ← S.Sign(asd, α0);

2 : return σ;

ASVerify(pd, α0, σ)

1 : e← S.SigVerif(apk, α0, σ);

2 : return e;

Mixnet(i,mski, `i−1)

1 : `i ← ∅;
2 : if `i−1 6= lex ◦ undup(`i−1) then return ⊥;

3 : foreach b ∈ `i−1 do

4 : `i ← `i ∪ {E.Dec(mski, b); }
5 : `i ← lex ◦ undup(li);

6 : return `i;

Tally(sd,BB)

1 : `−1 ← BBvote;

2 : `0, . . . , `k ← ∅;
3 : foreach i ∈ {0, . . . , k} do
4 : `i ← Mixnet(i,mski, `i−1);

5 : BBmix ← (`0, . . . , `k−1);

6 : BBdec ← `k;

7 : return (BBmix,BBdec);

VSDVerify((state, α0, σ), pd,BB)

1 : B← ⊥;

2 : foreach i ∈ {k, . . . , 0} do
3 : // input αi is in `i−1, but output αi+1 is not in `i

4 : if αi ∈ li−1 ∧ αi+1 /∈ li then B← (MSi, (αi+1, ri));

5 : if α0 /∈ BBvote then B← (AS, (α0, σ));

6 : return B;

Bad(pd,BB,E,V)

1 : // Check pd

2 : if (apk,mpk0, . . . ,mpkk) /∈ G then B← B ∪ {VA};
3 : // Check ballot box

4 : if Nv < |BBvote| ∨ BBvote 6= lex ◦ undup(BBvote)

5 : then B← B ∪ {AS};
6 : // Recompute sd

7 : sd← Extract(pd);

8 : // Re-run the mixnets

9 : `′−1 ← BBvote;

10 : foreach i ∈ {0, . . . , k} do
11 : `′i ← Mixnet(i,mski, `i−1);

12 : // Check mixnets

13 : foreach i ∈ {0, . . . , k} do
14 : if `i 6= `′i then B← B ∪ {MSi};
15 : // Check evidence

16 : foreach (AS, (α0, σ)) ∈ E

17 : if ASVerify(apk, α0, σ) ∧ α0 /∈ BBvote then B← B ∪ {AS} :

18 : return B

Fig. 2. Algorithms defining the sElect voting scheme with an IND-CCA2 secure public key encryption
system E = (KeyGen,Enc,Dec) and an EU-CMA secure signature scheme S = (KeyGen, Sign, SigVerif).
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we have included that code together with the voter’s candidate choices c as part
of the vote v = (nvoter, c). The algorithm sets αk+1 = (n, v) and uses a series of
encryptions αi ← Enc(mpki, αi+1, ri) to build the ballot α0 and internal state state =
(αk+1, αk, rk, . . . , α0, r0), given some random coins r0, . . . , rk ∈ Zp.

ASCreate(asd, α0): It returns a signature σ by calling S.Sign over the ballot α0.
ASVerify(pd, α0, σ): This algorithm calls S.SigVerif to check if the signature σ is valid for

the ballot α0.
Tally(sd,BB): Given the ballot box `−1 = BBvote, this algorithm runs each mixnet MSi

over `i−1 to produce `i, for i ∈ {0, . . . , k}. Each mixnet MSi, ensures first that the
inputs are in lexicographic order and contain no duplicates, before decrypting all ci-
phertexts received as inputs, and finally outputting them in lexicographic order and
without duplicates. The last mixnet server produces the election outcome BBdec = `k.
The algorithm returns the mixing info BBmix = (`0, . . . , `k−1) and election outcome
BBdec.

VSDVerify((state, α0, σ), pd,BB): Voters check the output of each mixnet server by using
their internal state (αk+1, αk, rk, . . . , α0, r0). The voter blames a mixnet server MSi if
they see that their ciphertext αi+1 is in the input list of that server, but the ciphertext
αi is not in the output list. Recall that αi has been created by encrypting αi+1 under
that server’s public key mpki: αi ← Enc(mpki, αi+1, ri); thus, (αi+1, ri) can be used as
evidence of misbehaviour of MSi. The voter also checks that their ballot α0 has been
included in the ballot box BBvote, and blames the authentication server AS if that has
not happened, using the signature σ the user received during voting as evidence. This
step can be done at any point in the election if one considers an ideal bulletin board,
or at the end of an election under weaker trust assumptions over the bulletin board
[11].

Judge(pd,BB,E): This algorithm does an initial round of checks over the public data
before evaluating the collected evidence E. The verification of public data consists of
– Ensuring that the public data is valid - that is, the public keys are group elements.

If this is not true, then the voting authority VA is blamed as it allowed the election
to run.

– Checking that the size of the ballot box does not exceed the number of voters and
that the ballot box has been ordered lexicographically and duplicates have been
removed. Otherwise, the authentication server AS is blamed.

– Checking that each mixnet server output is in lexicographic order and has no
duplicates, and that the size of the output list does not exceed the size of the
input list. If these properties do not hold for mixnet server MSi then the algorithm
blames this mixnet server.

Once all the public data has been verified, the algorithm looks at the evidence collected
by voters from their VSDVerify algorithm:
– Evidence (α0, σ) against AS. If the evidence contains a valid signature σ for a ballot
α0 not in the ballot box, then the authentication server AS is blamed.

– Evidence (αi+1, ri) against MSi. If the evidence shows that αi ← Enc(mpki,
αi+1, ri) is in the input list of this server, but αi+1 is not in the output, then
this mixnet server is blamed.
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Bad(pd,BB,E,V): This algorithm uses a computationally unbounded algorithm sd ←
Extract(pd) to obtain the secret keys of all authorities sd from their public data pd;
similar to the vote extraction algorithm from [13] and [14]. Extract will never fail to
return something as it will see any bitstring in the public data as a group element.
However, it may not produce meaningful data or the real secret keys if these do not
exist.

Bad uses the secret data from Extract to re-run the election tally and perform all
verification steps to identify misbehaving parties. It looks at the validity of the public
data pd and ballot box BBvote using the same methods employed by Judge. Then, it
re-creates for each mixnet server MSi its estimated output `′i and blames that party if
their estimated output `′i is different from the declared output `i. This type of check
already includes the checks on the evidence submitted by voters against mixnet servers.
Finally, it performs the checks on the evidence against the authentication server AS.

3.3 EasyCrypt Proof

Informally, we prove that the probability that the adversary is able to produce valid public
data, a valid bulletin board and valid signatures, while at the same time violating either
fairness or completeness, is negligible. We assume throughout the proof that the public
key encryption scheme used to encrypt and decrypt ballots is perfectly correct, i.e. if
we let E = (KeyGen,Enc,Dec) be the (IND-CCA2 secure) PKE used in sElect, then we
assume that for all key pairs (pk, sk) output by KeyGen and for all plaintexts m in the
message space, we have Dec(sk,Enc(pk,m)) = m. As we assume that sElect is implemented
with hybrid encryption of ElGamal and AES (cf. Section 3.1), this assumption holds.
Under this assumption, the probability that the adversary violates the fairness aspect of
accountability is in fact 0. The probability that the adversary violates the completeness
aspect of accountability, is related to whether or not nonce collisions occur, i.e. whether
or not the devices of two or more honest voters sample the same nonce.

Theorem 1. Let sElect(E,S) be defined as in Figure 2 for an IND-CCA2 encryption
scheme E and an EU-CMA signature scheme S. Then, for all PPT adversaries A against
GBA, we have

AdvgbaA,sElect(λ) ≤ Pr[Col ] ,

where Col is the event that a collision occurs in the nonces chosen by the voters’ devices.

The proof sketch can be found in App. A.

Differences between our paper proof and EasyCrypt proof. The main difference in the
above proof and the proof formalised in EasyCrypt1 is that in EasyCrypt we let the
adversary choose both the plaintext vote and the verification nonce and compress this
into a single plaintext. Under the assumption that the choices made by the adversary are
unique, this allows us to use sets rather than multisets in EasyCrypt which is technically

1 The EasyCrypt code can be accessed from https://github.com/mortensol/acc-select
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easier. In some sense this is however also a stronger result than above since it proves ac-
countability even in the case where the nonces are adversarially chosen, but still unique.
What is not proven in EasyCrypt is the probability of a collision happening, but for
uniform distributions of nonces this is the well-known birthday paradox which is not in-
teresting for the present paper to verify in EasyCrypt. Finally, keeping a general collision
probability for the full plaintext consisting of device-generated nonce, voter-chosen nonce
and plaintext vote is more general, and cannot be assumed to be uniformly random in
practice, but can be bounded by the birthday probability on the device-generated nonces.

4 Relation to the Küsters et al. Definition

In this section we relate the above presented definition of accountability, GBA, to the one
by Küsters et al. [18], which we denote AccKTV . More precisely, we sketch a proof that for
the class of voting schemes expressible in our definition, if they satisfy GBA for a certain
definition of Bad then they must be accountable under AccKTV with a standard goal.

Consider a voting scheme as defined in Section 2, consisting of a voting authority
VA, decryption authorities DA, mixnet authorities MS, authentication server AS, voters
idi with voter supporting devices VSDi, and bulletin board BB. We assume there are
authenticated channels from the VSDs to the AS. We assume that each VSD has one
authenticated and one anonymous channel to the BB. We assume that all communication
is authenticated with signatures with the exception of the anonymous channel and for
simplicity omit the description of this occurring from the exposition below.

4.1 Modeling

A voting scheme of this kind can be modeled in the framework of [18] in a straightforward

way as a protocol P(n,m, q, µ, pverifvoter , p
verif
abst ). We refer to [18] for the notation used. We

denote by n the number of voters and supporting devices, by m the number of mix servers,
by q the number of decryption servers. By µ we denote the probability distribution on
the set of candidates/choices, including abstention. We denote by pverifvoter and pverifabst the
probability that the voting voter will verify and an absenting voter will verify respectively.2

We define Φk as the accountability property consisting of the constraints:

χi → dis(idi) ∨ dis(AS), χ′i → dis(idi) ∨ dis(AS)

¬γk ∧ ¬χ→ dis(VA)|dis(AS)|dis(DAi)
q
i=1|dis(MSj)

m
j=1

where

γk contains all runs of the protocol where at most n votes are in the result and where
at most k of the honest votes are not included in the result. See [17] for a formal
definition and discussion of this goal.

χi contains all the runs of P where the voter i complains they did not get a receipt.
χ′i contains all the runs of P where the voter i complains they did not vote but a vote

was cast on their behalf.
χ contains the union of all runs in χi and χ′i for all i ∈ [1, ..., n]
2 Absenting voters verify that their identifier is not included on the list published by the AS.
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4.2 Result

Let Bad be defined as follows: Bad returns all parties whose output is not in the co-domain
of the honest algorithms. When parties are called multiple times on different algorithms
and pass states, we take the co-domain over all possible states consistent with their early
public output.

Let the JudgeKTV algorithm for AccKTV in [18] be constructed as follows:

(J1) first it runs Judge (from our definition) and if this outputs blame, then JudgeKTV
blames the party returned by Judge.

(J2) If no valid complaints were made by the voters causing blame, the judge checks the
complaints posted by the voters. If there is any such complaint then JudgeKTV blames
(disjunctively) both the party accused and the voter accusing.

Definition 2 (Voter Verification Correct). For a scheme π we say that it is voter
verification correct if for all runs of the protocol the party blamed by VSDVerify is in the
set output by Bad or it blames the AS after receiving an invalid confirmation.

Theorem 2 (GBA implies AccKTV ). Let the judge JudgeKTV and algorithm Bad be de-
fined as above. Then for any scheme which has GBA and voter verification correctness,
JudgeKTV ensures

(
Φk, δ

k(pverifvoter , p
verif
abst )

)
-accountability for P(n,m, q, µ, pverifvoter , p

verif
abst ),

where
δk(pverifvoter , p

verif
abst ) = (1−min(pverifvoter , p

verif
abst ))k+1.

Due to space constraints, we detail this in App. B. The proof relies on analysing
fairness and completeness for the two definitions.

5 Verifiability

In this section we show that our definition of accountability implies verifiability; a relation
already shown in the framework of Küsters et al [18]. To prove this implication here, we
introduce a new game-based definition of verifiability, that we formalize via the experiment
ExpVer

A (λ) in Fig. 3.3 Our definition of verifiability ensures individual verifiability and no
ballot stuffing during tally, and is appropriate for lightweight voting systems like sElect.
Our definition is modular, and can be enhanced to model stronger notions of verifiability
(e.g., universal verifiability or no ballot stuffing at submission time); however, to achieve
them voting systems will require heavier cryptographic primitives, likes zero-knowledge
proofs for correct tallying or shuffling.

We consider I the set of eligible voter IDs, and we introduce algorithm VoterVerif that
enables voters to verify their vote. We keep track of voters that successfully verified using
the set Checked and we raise the flag Complain when verification fails. The adversary can
choose which voters verify via the oracle OVerify(id). Additionally, the adversary uses the
vote oracle OVote to model honest voters (re-)casting their votes; we focus on the last
vote counts policy, but this can easily be generalized for any policies.

3 In the game, we use the notation “Require” for if · · · else return ⊥.
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ExpVer
A (λ)

1 : Complain = false;

2 : pd← A();

3 : BB, stateA ← AOvote();

4 : A(stateA)OVerifyi ;

5 : Require Complain = false;

6 : Require UniversalVerification(pd,BB);

7 : return ¬ResultConsistency(BB,Checked, . . .);

Ovote(id, v)

1 : (b, state)← Vote(pd, v);

2 : V[id]← (state, b);

3 : return b;

OVerify(id)

1 : Require(∃V[id]);

2 : (state, b)← V[id];

3 : if VoterVerif((state, b), pd,BB);

4 : Checked = Checked ∪ {id};
5 : else Complain = true;

Fig. 3. Verifiability assuming uncorrupted vote-casting.

The adversary also controls the bulletin board BB, however anyone can per-
form UniversalVerification(pd,BB) to universally verify this state. We further use
ResultConsistency(BB,Checked, . . .) to model the consistency relations on the bulletin
board, and can depend on the different subcomponents of BB: list of submitted ballots
BB|submit, the election result BB|res and extra info BB|extra.

Consider the election result function ρ : Cand∗ 7→ Res as a symmetric function from
the set of plaintext votes, chosen from the space of candidates Cand, to a given result set
Res. Using V[S] the corresponding list of plaintext votes from the vote oracle, we model

– Individual Verifiability: Intuitively this should ensure that the verified votes are all
included in the tally. Using the verification oracles OVerifyi, i = 1, . . . , k we denote
the successful verifiers Checked. The constraint from ResultConsistency is ∃v1, . . . , vi ∈
Cand, i+ |Checked| ≤ |I|:

ρ(v1, . . . , vi,V[Checked]) = BB|res
where we have slightly abused notation for readability. We have included a constraint
on the number of malicious votes since if the result function allows cancelling votes the
inclusion of the honest votes would make little sense if the adversary can add malicious
votes arbitrarily.

– No Ballot Stuffing at Tally Time: |I| ≥ |BB|submit| and ∃i ≤ |BB|submit|
∃v1, . . . , vi ∈ Cand : ρ(v1, . . . , vi) = BB|res, i.e. there is at most as many submit-
ted ballots as eligible voters and the result is consistent with a number of votes that
is less than or equal to the submitted ballots.

In the case of schemes where all the decrypted votes are displayed individually in
BB|res, especially this holds for the mixnet-tally schemes, the slightly stronger statement
can be made that

|I| ≥ |BB|submit| ≥ |BB|res| ∧ V[Checked] ⊆ms BB|res , (1)
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where we use V[Checked] and BB|res as multisets.
We define verifiability given a chosen ResultConsistency if any efficient adversary has

negligible advantage in ExpVer
A (λ). In particular, we define verifiability for voting systems

with the result being the plaintext votes as:

Definition 3. We say that a voting system V, with result function being the set of votes,
satisfies individual verifiability and no ballot stuffing at tally time if for any efficient adver-
sary A their advantage AdvverA,V(λ) = ExpVer

A,V(λ) is negligible in λ, where ResultConsistency
checks Eq. 1.

We note that there are some verifiability properties that sElect does not fulfill but
could be easily captured by the ResultConsistency or separate games, namely

– Tally Uniqueness: The adversary cannot produce two boards both satisfying
UniversalVerification and individual verifications but with different tally results and
having the same submitted ballots BB|submit.

– Universal Verifiability: Here ResultConsistency requires that the result is the same as
the result from votes extracted from the valid ballots in BB|submit given only that the
board satisfies UniversalVerification(pd,BB).

5.1 Accountability implies Verifiability

We will now prove that the GBA accountability definition implies verifiability for individ-
ual verifiability and no ballot stuffing as defined in Def. 3. However, in order to do so, we
need to relate the Judge and the VSDVerify algorithms used in ExpGBA

A,V (λ) with the algo-

rithms UniversalVerification and VoterVerif used in ExpVer
A,V(λ). Especially, the verifiability

definition does not consider the authentication server AS and its signatures, since it is not
relevant for defining verifiability. To this end we make the following definition for a voting
system V fitting both the accountability and the verifiability framework:

Definition 4. We call a voting system V accountability-verifiability-correct if the
signature part for AS is an independent part that can be removed to give a re-
duced system valid for the verifiability framework, or correspondingly added. Fur-
ther, the Judge will never output blame if all verification checks by the veri-
fying voters using VSDVerify does not output blame and UniversalVerification =
>. Further, VSDVerify((state, b, σ), pd,BBvote,BBmix,BBdec) will not output blame if
ASVerify(pd, b, σ) = > and VoterVerif((state, b), pd,BB) = >.

Theorem 3. Given an accountability-verifiability-correct voting system, then accountabil-
ity as defined in Def. 1 implies individual verifiability and no ballot stuffing at tally time
as defined in Def. 3 assuming the AS signature scheme is perfectly correct and we have a
constant number of voters. More precisely for any efficient adversary A against ExpVer

A,Vr(λ)
with advantage AdvverA,Vr(λ) in the reduced system Vr without signatures, we can construct

an adversary B against ExpGBA
A,V (λ) with advantage at least 1

2|I|
AdvverA,Vr(λ).

Due to space constraints the full proof is in App. C.
It follows from Thm. 1 and Thm. 3 that sElect fulfills individual verifiability and no

ballot stuffing at tally time as defined in Def. 3.
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6 Concluding Remarks

We study notions of accountability for electronic voting, and produce the first game-based
notion of accountability for mix-based electronic voting schemes. We relate our notion
to Küsters et al’s quantitative notion, arguing that they coincide at the extremes of the
parameter range.

We demonstrate the value of such a game-based notion by formalising it in Easy-
Crypt, and produce a machine-checked proof of accountability—as we define it—for
Küsters et al.’s sElect protocol, discussing issues with previous accountability results for
sElect as we go. Finally, we use our new game-based definition of accountability to study
the relationship between accountability, verifiability, demonstrating in particular that ac-
countability implies verifiability.

Generalisation beyond sElect We framed our discussions, and our definitions, with sE-
lect. However, our definitions would also somewhat trivially apply to other voting schemes.
In particular, as mentioned in the introduction, any scheme making judicious use of sound
zero-knowledge proofs for verifiability can be trivially argued to be accountable: an adver-
sary who is able to break accountability with sound zero-knowledge proofs does so either
by breaking soundness of the zero-knowledge proof systems, or by breaking accountability
of a scheme in which verification for the zero-knowledge proofs is idealised to reject any
proof that was not produced as is by the prover—relying then only on the correctness of
the encryption scheme as in our sElect proof. Although this argument is easy to make on
paper, formalising it in EasyCrypt on existing formal definitions for Helios (for example)
would involve effort incommensurate to its scientific value as part of this specific paper.

Beyond Accountability Capturing accountability as a game-based notion is not just
useful to allow a more precise analysis of accountability. By doing so, we hope to open the
way to the study of privacy and security properties of voting schemes with dispute resolu-
tion. Formally taking into account dispute resolution requires a precise understanding of
the individual and overall guarantees offered by verifiability in terms of the accuracy of
the election result.
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19. Morio, K., Künnemann, R.: Verifying accountability for unbounded sets of participants. In: Küsters,
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Appendix A Sketch of Proof of Theorem 1

We now sketch the proof of Theorem 1. We begin by defining two new games: a fairness
game Gf and a completeness game Gc. These games are almost identical to the original
security game, with the exception that in Gf , we remove the variable ec from the ex-
periment and only consider the fairness aspect of accountability, while in Gc, we remove
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the variable ef and only consider the completeness aspect of accountability. Let Ef resp.
Ec be the event that the game Gf resp. Gc returns 1. It is straightforward to see that
Pr
[
ExpGBA

A,sElect(λ) = 1
]
≤ Pr[Ef ] + Pr[Ec ]. Thus, the adversary has two possibilities to

win. Either Judge has blamed an innocent party, or it has blamed no one, but the result
is inconsistent with the honest votes. We analyze the fairness and completeness aspects
separately, and argue that the adversary has zero probability of winning the fairness game
and negligible probability of winning the completeness game.

We begin with fairness. We will consider each way in which the judge may blame
a party and show that it will never blame a party that did not misbehave. Recall the
various checks performed by the judge: The judge first checks that the public keys used
by the authentication server and the mix servers are valid. If not, it will blame the voting
authority as it allowed the election to run with invalid keys. Note that Bad will also blame
the voting authority if the keys are invalid (but not otherwise), meaning that the voting
authority will only be blamed by the judge if it indeed misbehaved. As invalid keys will
result in the voting authority being blamed by both the judge and by Bad, we assume for
the remainder of the proof that all the public keys are valid.

The judge then checks that the bulletin board BBvote is valid, i.e. that it contains at
most Nv elements and that its contents are in lexicographic order and duplicate-free. If
this check fails, the judge blames the authentication server. If this is the case, the authen-
tication server will also be blamed by Bad, ensuring that if AS is blamed for producing an
invalid board, it must indeed have misbehaved. Next, the judge checks that the output
of each mix server contains at most as many elements as in its received input and that
the output of each mix server is duplicate free and in lexicographic order. Since an honest
mixer filters out duplicates and sorts the output list, it will always pass this check.

The judge then checks, for all ciphertext and signature pairs in the evidence list
whether or not there is a ballot with a valid signature that is not present on BBvote.
Since an honest authentication server only authenticates the first ballot from each voter,
and posts all these on the bulletin board, it will always pass this check. Note that if a dis-
honest voter blames the authentication server with valid evidence, the Bad algorithm will
also blame the authentication server, and thus the judge will not blame the authentication
server unless it is also blamed by Bad. Finally, Judge checks, for any triple (mpki, αi+1, ri),
whether or not Enc(mpki, αi+1; ri) is in the input to the ith mix server, but αi+1 is not in
its output. Since the encryption system is correct, Enc(mpki, αi+1; ri) will decrypt to αi+1

and since an honest mix server does not remove any ciphertexts other than duplicates,
it will always pass this check. In summary, Judge will never blame an honestly behaving
party, and thus, the adversary has zero probability of winning the fairness game.

We now move on to completeness and bound the adversarial advantage in the com-
pleteness game, i.e. that if extra ballots are added or honest voters’ ballots are dropped,
the judge will, with overwhelming probability, hold someone accountable. Fairness ensures
that the blamed party actually misbehaved.

We begin with the first criterion for completeness, i.e. that the number of ballots on
BBvote is not greater than the number of eligible voters. This follows from the second check
of the Judge algorithm, where it checks if the bulletin board is valid. The second criterion
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(that the number of votes on BBdec is not greater than the number of cast ballots) follows
from the judge checking that the output of each mix server contains at most as many
elements as its input.

Now consider the criterion that says that all honest votes are in the multiset of votes
output by the last mix server (i.e. BBdec). Every honest voter checks, using VSDVerify,
that their ballot appears in BBvote. If not there, they output the token σ given to them by
the authentication server. This, in turn, causes the authentication server to be blamed by
the judge. If AS was not blamed, we know that all honest ballots were present in BBvote. If
any honest ballot is dropped by one of the mix servers, this will be detected by VSDVerify,
which will output some evidence that this mix server misbehaved, which in turn causes
this mix server to be blamed by the judge.

Now, the adversary has one possibility of winning the completeness game, namely if
two (or more) voters have cast the same vote, and their sampled nonces happen to be
equal. In this case, the adversary may drop all but one of these ballots without it being
detected. To analyze this situation, we slightly modify the completeness game. We call the
new game G′c and let E′c be the probability that G′c returns 1. The difference from Gc to
G′c is that in G′c, we keep track of the nonces that are sampled when the adversary calls
the vote oracle, and only sample new nonces from the set of nonces that have not been
used earlier. The two games are equivalent unless there is a collision in the first game,
hence |Pr[Ec ]− Pr[E′c ] | ≤ Pr[Col ] .

In G′c, as there are no collisions in the nonces, any ballot that is dropped by the
adversary will be detected by VSDVerify, which in turns causes the judge to blame the
misbehaving party. In other words, in G′c, the adversary will have zero probability of
winning, so Pr[E′c ] = 0. Thus, the probability that the adversary wins the completeness
game is bounded by Pr[Col ]. As the adversary has zero probability of winning the fairness
game, and the probability of winning the accountability game is bounded by the sum of
winning the fairness game and the completeness game, we arrive at the conclusion of
Theorem 1 that the advantage is bounded by the collision probability. By the birthday
paradox the collission probability is bounded by qv(qv−1)

2·|N| , where qv is the number of queries
vote oracle queries and N is the nonce space.

Appendix B Proof for Theorem 2

The proof of the theorem follows from analyzing Fairness and Completeness.

Lemma 1 (Fairness). The judge J is computationally fair in P(n,m,

µ, pverifvoter , p
verif
abst ).

Proof. The proof is essentially the same as for sElect in [17] for the voting phase but relies
on GBA in the mixing and decryption phases.

Consider what happens if the voter makes a complaint and the judge blames both the
party accused and the voter (J2). Since the bulletin board is honest and the channel is
authenticated the voter must really have made the complaint. There are two cases. If the
voter is dishonest the verdict is clearly true. If the voter is honest, the correctness of the
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verdict follows from the voter verification correctness of the protocol either because the
person it blamed has misbehaved or because the authentication server did not send a valid
confirmation. (J2) covers both the case where the voter’s ballot is dropped and when it is
added.

Case (J1) is covered by GBA. Since the scheme has GBA it follows that the adversary
cannot make either of these conditions trigger when the party ran its honest program,
otherwise GBA would not hold.

Lemma 2 (Completeness). For every instance π of P(n,m, µ, pverifvoter , p
verif
abst ), we have

Pr
[
π(1l)→ ¬(J : Φk)

]
≤ δk(pverifvoter , p

verif
abst ) =

(
1−min

(
pverifvoter , p

verif
abst

))k+1

with overwhelming probability as a function of l.

Again, the proof is essentially the same as for sElect in the voting phase but relies on
GBA in the mixing and decryption phases. We need to show that the following probabilities
are bounded for every i:

a) Pr
[
π(1l)→ (χi ∧ ¬dis(vi) ∧ ¬dis(AS))

]
,

b) Pr
[
π(1l)→ (χ′i ∧ ¬dis(vi) ∧ ¬dis(AS))

]
,

c) Pr
[
π(1l)→ (¬γk ∧ ¬χ→ dis(VA)|dis(AS)|dis(DAi)

q
i=1|dis(MSj)

m
j=1)

]
.

The first two probabilities are equal to zero as noted in the sElect proof [17]. The last
probability is δk bounded by the completeness component of GBA. This is immediate when
pverifvoter is equal to one since our definition assumes all honest voters vote and verify; when

pverifvoter is lower this is more complicated and requires guessing ahead of time which voters
will verify. This can be achieved using standard techniques from complexity leveraging.

Appendix C Proof for Theorem 3

Proof. Consider an adversary A against ExpVer
A,Vr(λ). We start by running A getting the

output pd which we use for B in addition to an honestly generated signing keypair for
AS. We then make a random guess about which voters A is going to ask to verify. The
probability of guessing correctly is at least 1/2|I|. Now, we keep running A to choose
honestly cast votes and creating the bulletin board BB. Every time the vote oracle is
called and we guessed the voter is going to verify, we let B query the same and forward
the output to A. If we guessed that the voter is not going to verify, we simply honestly
generate the ballot and send it to A without B querying the vote oracle. We use the board
BB output by A in addition to honestly generated signatures for AS. Since the signature
scheme is perfectly correct, the signatures will verify in lines 4-7 of ExpGBA

A,V (λ).

We now run OVerify for B which will call verification for all voters used in the or-
acle calls in ExpGBA

A,V (λ). We can use the outputs to A’s calls to the verification oracle.
Here we assume that we guessed the verifiers correctly and, further, in this case the
two sets of verifying voters will be the same in the two experiments. For the sake of

Machine-Checked Proofs of Accountability 99



the proof, we will abort if they do not match, hence the degradation factor in the ad-
vantage. Now with probability 1

2|I|
AdvverA,Vr(λ) in ExpVer

A,Vr(λ) we will have no complaints
from the individual verification, the universal verification will be successful and we have
¬(|I| ≥ |BB|submit| ≥ |BB|res| ∧ V[Checked] ⊆ms BB|res). Using that the scheme is
accountability-verifiability-correct in ExpGBA

A,V (λ) all individual verification will also pro-
duce no blame since the signatures will verify by perfect correctness, and, finally, again by
accountability-verifiability-correctness and successful universal verification, no blame will
be output by Judge, i.e. |B| = 0. Since the votes from the verifying voters, V[Checked],
in ExpGBA

A,V (λ) exactly corresponds to the votes from the oracle vote calls in ExpGBA
A,V (λ)

and |BB|submit| = |BBvote| and BB|res = BBdec we exactly get the winning condition
(¬(n ≥ |BBvote| ≥ |BBdec| ∧ V ⊆ BBdec) ∧B = ⊥) in ExpGBA

A,V (λ).
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Abstract. An interesting approach to achieving verifiability in voting systems is to make
use of tracking numbers. This gives voters a simple way of verifying that their ballot was
counted: they can simply look up their ballot/tracker pair on a public bulletin board. It
is crucial to understand how trackers affect other security properties, in particular privacy.
However, existing privacy definitions are not designed to accommodate tracker-based voting
systems. Furthermore, the addition of trackers increases the threat of coercion. There does
however exist techniques to mitigate the coercion threat. While the term coercion mitigation
has been used in the literature when describing voting systems such as Selene, no formal
definition of coercion mitigation seems to exist. In this paper we define what privacy, verifi-
ability and coercion mitigation mean for tracker-based voting systems, we model Selene in
our framework and we prove that Selene satisfies the aforementioned properties.

1 Introduction

Electronic voting has seen widespread use over the past decades, ranging from smaller
elections within clubs and associations, to large scale national elections as in Estonia. It
is therefore necessary to understand the level of security that electronic voting systems
provide. In this paper, we define precisely what verifiability, privacy and coercion mitiga-
tion means for voting systems using so-called trackers, and we prove that Selene provides
these properties.

Verifiability is an interesting voting system property, allowing a voter to verify that
their particular ballot was counted and that the election result correctly reflects the verified
ballots. One example of a system with verifiability is Helios [2], which is used in the
elections of the International Association for Cryptologic Research [1], among others.
However, the Benaloh challenges used to achieve verifiability in Helios are hard to use for
voters [25].

Schneier [33] proposed using human-readable tracking numbers for verifiability. Each
voter gets a personal tracking number that is attached to their ballot. At the end of
the election, all ballots with attached trackers are made publicly available. A voter can
now trivially verify that their ballot appears next to their tracking number, which gives
us verifiability as long as the trackers are unique. Multiple voting systems making use of
tracking numbers have been proposed and deployed. Two notable examples are sElect [26]
and Selene [31]. Tracking numbers intuitively give the voters a simple way of verifying that
their ballot was recorded and counted. However, other security properties must also be
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considered. In particular, it is necessary to have a good understanding of how the addition
of tracking numbers affects the voters’ privacy.

Verifiable voting may exacerbate threats such as coercion, in particular for remote
electronic voting systems (e.g. internet voting) where a coercer might be present to “help”
a coerced voter submit their ballot. Coercion resistant voting systems [24, 8] have been
developed. Coercion resistance typically involves voters re-voting when the coercer is not
present, but this often complicates voting procedures or increases the cost of the tallying
phase. Furthermore, re-voting might not always be possible and may even be prohibited
by law.

Like verifiability in general, tracking numbers may make coercion simpler: if a coercer
gets access to a voter’s tracker, the coercer may also be able to verify that the desired ballot
was cast. While tracking numbers complicate coercion resistance, it may be possible to
mitigate the threat of coercion. For instance, if the voter only learns their tracking number
after the result (ballots with trackers) has been published, as in Selene, they may lie to
a coercer by observing a suitable ballot-tracker pair. Coercion mitigation is weaker than
coercion resistance, but may be appropriate for low-stakes elections or where achieving
stronger properties is considered to be impractical.

1.1 Related work

Privacy Bernhard et al. [5] analysed then-existing privacy definitions. They concluded
that previous definitions were either too weak (there are real attacks not captured by the
definitions), too strong (no voting system with any form of verifiability can be proven
secure under the definition), or too narrow (the definitions do not capture a wide enough
range of voting systems).

The main technical difficulty compared to standard cryptographic privacy notions is
that the result of the election must be revealed to the adversary. Not only could the
result reveal information about individual ballots, but it also prevents straight-forward
cryptographic real-or-random definitions from working. Roughly speaking, there are two
approaches to defining privacy for voting systems, based on the two different questions:
“Does anything leak out of the casting and tallying prosesses?” vs. “Which voter cast
this particular ballot?” The first question tends to lead to simulation-based security no-
tions, while the second question can lead to more traditional left-or-right cryptographic
definitions.

Bernhard et al. [5] proposed the BPRIV definition, where the adversary plays a game
against a challenger and interacts with two worlds (real and fake). The adversary first
specifies ballots to be cast separately for each world. In the real world, ballots are cast
and then counted as usual. In the fake world, the specified ballots are cast, but the ballots
from the left world are counted and any tally proofs are simulated. The adversary then
gets to see one of the worlds and must decide which world it sees. The idea is that for
any secure system, the result in the fake world should be identical to what the result
would have been in the real world, proving that – up to the actual result – the casting
and tallying processes do not leak anything about the ballots cast, capturing privacy in
this sense.
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Bernhard et al. [5] proposed MiniVoting, an abstract scheme that models many voting
systems (e.g. Helios), and proved that it satisfies the BPRIV definition. Cortier et al.
[9] proved that Labelled-MiniVoting, an extension of MiniVoting, also satisfies BPRIV.
Belenios [12] also satisfies BPRIV [10].

The original BPRIV definition does not attempt to model corruption in any part of
the tally process. Cortier et al. [13] proposed mb-BPRIV which models adversarial control
over which encrypted ballots should go through the tally process. Drăgan et al. [16] pro-
posed the du-mb-BPRIV model which also covers systems where verification happens after
tallying.

The other approach to privacy is a traditional left-or-right game, where the adversary
interacts with the various honest components of a voting system (voters, their computers,
shuffle and decryption servers, etc.), all simulated by an experiment. Privacy is captured
by a left-or-right query, and the adversary must determine if the left or the right ballots
were cast. The game becomes trivial if the left and the right ballots would give different
tallies, so we require that the challenge queries taken together yield the same tally for
left and right. In the simplest instantiation, the left and right ballots contain distinct
permutations of the same ballots, so showing that they cannot be distinguished shows that
the election processes do not leak who cast which ballots. Smyth [36] and Gjøsteen [20]
provide examples of this definitional style. As far as we know, no definition in this style
captures tracker-based voting systems.

The advantage of the traditional cryptographic left-or-right game relative to the BPRIV
approach is that it is easier to model adversarial interactions with all parts of the protocol,
including the different parts of the tally process. In principle, the BPRIV requirement that
the tally process be simulatable is troublesome, since such simulators cannot exist in the
plain model, which means that the definition itself technically exists in some unspecified
idealised model (typically the random oracle model). In practice, this is not troublesome.

Verifiability Verifiability intuitively captures the notion that if a collection of voters verify
the election, the result must be consistent with their cast ballots. For voters that do not
verify or whose verification failed, we make no guarantees.

Several definitions of verifiability have appeared in the literature, see e.g. [11] or [37]
for an overview. Furthermore, the verifiability properties of Selene have been thoroughly
analysed both from a technical point of view (e.g. [31, 3]) and with respect to the user
experience (e.g. [38, 15]).

Coercion Coercion resistance models a coercer that controls the voter for a period of time.
We refer to Smyth [35] for an overview of definitions. A weaker notion is receipt-freeness,
where the coercer does not control the voter, but asks for evidence that the voter cast
the desired ballot. This was introduced by Benaloh and Tuinstra [4], while Chaidos et al.
[6] gave a BPRIV-style security definition. Selene, as generally instantiated, is not receipt-
free. Coercion mitigation is a different notion, where we assume that the coercer is not
present during vote casting and is somehow not able to ask the voter to perform particular
operations. This could allow the voter to fake information consistent with following the
coercer’s demands. While the term coercion mitigation has been used to describe the
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security properties provided by Selene (e.g. in [31, 22, 38]), there seems to be no formal
definition of coercion mitigation in the literature.

Selene Selene as a voting system has been studied previously, in particular with respect
to privacy [17]. But a study of the complete protocol, including the tally phase, is missing.
The coercion mitigation properties of Selene have also been extensively discussed [31, 22],
but have not received a cryptographic analysis.

1.2 Our contribution

We define security for cryptographic voting systems with trackers, capturing privacy, veri-
fiability and coercion mitigation. A unified experiment models the adversary’s interaction
with the honest players through various queries.

To break privacy, the adversary must decide who cast which ballot. Our definition is
based on a similar definition by Gjøsteen [20, p. 492], adapted to properly accommodate
voting systems using trackers. To break verifiability, the adversary must cause verifying
voters to accept a result that is inconsistent with the ballots they have cast. To break co-
ercion mitigation, the adversary is allowed to reveal the verification information of coerced
voters and must decide if the coerced voter lied or not. Selene is vulnerable to collisions
among such lies; e.g. multiple coerced voters claim the same ballot. We do not want this
fact to clutter up the cryptographic analysis, so we require that the coercer organises the
voting such that collisions do not happen. For schemes that are not vulnerable, we would
remove the requirement.

Our definitions are easy to work with, which we demonstrate by presenting a complete
model of Selene (expressed in our framework) and prove that Selene satisfies both privacy,
verifiability and coercion mitigation. Selene has seen some use [32], so we believe these
results are of independent interest.

We developed our definitions with Selene in mind, but they also accommodate other
tracker based voting systems such as sElect [26] and Hyperion [30]. Furthermore, our
models also capture voting systems that do not use trackers.

2 Background

2.1 Notation

We denote tuples/lists in bold, e.g. v = (v1, . . . , vn), and the length of the tuple by |v|. If we
have multiple tuples, we denote the jth tuple by vj and the ith element of the jth tuple by
vj,i. We denote the element-wise multiplication of two tuples u and v (i.e. (u1v1, . . . , unvn))
by u · v, with similar notation for element-wise addition u + v. We will also use similar
notation for exponentiation, where va denotes the tuple (va1 , . . . , v

a
n), av denotes the tuple

(av1 , . . . , avn) and vu denotes the tuple (vu11 , . . . , vunn ). For a list v = (v1, . . . , vn) and a
permutation π on {1, . . . , n}, we denote by vπ the list (vπ(1), . . . , vπ(n)).

106 K. Gjøsteen, T. Haines and M. R. Solberg



2.2 Cryptographic Building Blocks

We briefly introduce some cryptographic primitives we need for our work. Due to space
constraints we omit much of the details.

To protect voters’ privacy, ballots are usually encrypted. Selene makes use of the
ElGamal public key encryption system [18], which is used to encrypt both ballots and
trackers. Throughout this paper, we will denote an ElGamal ciphertext by (x,w) :=
(gr,m · pkr), where g is the generator of the cyclic group G (of prime order q) we are
working in, m is the encrypted message, pk = gsk is the public encryption key (with
corresponding decryption key sk) and r is a random element in Zq (the field of integers
modulo q).

Cryptographic voting systems typically make use of zero-knowledge proofs to ensure
that certain computations are performed correctly. We refer to [14] for general background
on zero-knowledge proofs. In particular, we use equality of discrete logarithm proofs and
correctness proofs for shuffles of encrypted ballots. The former ensures correctness of
computations. The latter preserves privacy by breaking the link between voters and their
ballots. It is necessary that the shuffles are verifiable to ensure that no ballots are tampered
with in any way. We refer to [21] for an overview of verifiable shuffles. In Selene it is
necessary to shuffle two lists of ciphertexts (ballots and trackers) in parallel. Possible
protocols are given in [29] and in Appendix A.

Furthermore, in Selene, the election authorities make use of Pedersen-style commit-
ments [28] to commit to tracking numbers.

3 Voting Systems with Trackers

We model a voting protocol as a simple protocol built on top of a cryptographic voting
scheme in such a way that the protocol’s security properties can be easily inferred from
the cryptographic voting scheme’s properties. This allows us to separate key management
(who has which keys) and plumbing (who sends which message when to whom) from the
cryptographic issues, which simplifies analysis.

Due to space limitations, we model a situation with honest setup and tracker genera-
tion, as well as a single party decrypting. The former would be handled using a bespoke,
verifiable multi-party computation protocol (see [31] for a suitable protocol for Selene),
while the latter is handled using distributed decryption.

3.1 The Syntax of Voting Systems with Trackers

A voting system S with trackers consists of the following algorithms:

– Setup: takes as input a security parameter and returns a pair (pk, sk) of election public
and secret keys.

– UserKeyGen: takes as input an election public key pk and returns a pair (vpk, vsk) of
voter public and secret keys.
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– TrackerGen: takes as input an election public key pk and a list (vpk1, . . . , vpkn) of
voter public keys and returns a list t of trackers, a list et of ciphertexts, a list ct of
commitments, a list op of openings and a permutation π on the set {1, . . . , n}.

– ExtractTracker: takes as input a voter secret key vsk, a tracker commitment ct and an
opening op and returns a tracker t.

– ClaimTracker: takes as input a voter secret key vsk, a tracker commitment ct and a
tracker t and returns an opening op.

– Vote: takes as input an election public key pk and a ballot v and returns a ciphertext
ev, a ballot proof Πv and a receipt ρ.

– Shuffle: takes as input a public key pk and a list evt of encrypted ballots and trackers,
and returns a list evt′ and a proof Πs of correct shuffle.

– DecryptResult: takes as input a secret key sk and a list evt of encrypted ballots and
trackers and returns a result res and a result proof Πr.

– VoterVerify: takes as input a receipt ρ, a tracker t, a list evt of encrypted ballot/tracker
pairs, a result res and a result proof Πr and returns 0 or 1.

– VerifyShuffle: takes as input a public key pk, two lists evt, evt′ of encrypted ballots
and trackers and a shuffle proof Πs and returns 0 or 1.

– VerifyBallot: takes as input a public key pk, a ciphertext ev and a ballot proof Πv and
returns 0 or 1.

– VerifyResult: takes as input a public key pk, a list evt of encrypted ballots and trackers,
a result res and a result proof Πr and returns 0 or 1.

We say that a verifiable, tracker-based voting system is ns-correct if for any
(pk, sk) output by Setup, any (vpk1, vsk1), . . . , (vpknv , vsknv) output by UserKeyGen,
any lists t, et, ct,op and permutations π : {1, . . . , nv} → {1, . . . , nv} output by
TrackerGen(pk, sk, vpk1, . . . , vpknv), any ballots v1, . . . , vnv , any (evi, Π

v
i , ρi) output by

Vote(pk, vi), i = 1, . . . , nv, any sequence of ns sequences of encrypted ballots and trackers
evti and proofs Πs

i output by Shuffle (pk, evti−1), and any (res, Πr) possibly output by
DecryptResult (sk, evtns), the following hold:

– DecryptResult(sk, evtns) did not output ⊥,
– VoterVerify(ρi, ti, evtnsres, Πr) = 1 for all i = 1, . . . , nv,

– VerifyShuffle
(

pk, evtj−1, evtj , Π
s
j

)
= 1 for all j = 1, . . . , ns,

– VerifyResult (pk, evtns , res, Πr) = 1,
– VerifyBallot(pk, evi, Π

v
i ) = 1 for all i = 1, . . . , nv, and

for any voter key pair (vpk, vsk), ct in ct and tracker t in t, we have that

ExtractTracker(vsk, ct,ClaimTracker(vsk, ct, t)) = t.

We will describe later how Selene fits into our framework, but we note that this frame-
work also captures voting systems that do not use trackers for verification. Such protocols
are simply augmented with suitable dummy algorithms for TrackerGen, ExtractTracker and
ClaimTracker.
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3.2 Defining Security

We use a single experiment, found in Figure 1, to define privacy, integrity and coercion
mitigation. Verifiability is defined in terms of integrity. The experiment models the cryp-
tographic actions of honest parties.

The test query is used to model integrity. The challenge query is used to define privacy.
The coerce and coercion verification queries are used to model coercion, again modified
by freshness. The coerce query specifies two voters (actually, two indices into the list of
voter public keys) and two ballots. The first voter is the coerced voter. The first ballot is
the coerced voter’s intended ballot, while the second ballot is the coercer’s desired ballot.
The second voter casts the opposite ballot of the coerced voter. In the coercion verification
query, the coerced voter either reveals an opening to their true tracker, or an opening to
the tracker corresponding to the coercer’s desired ballot, cast by the second voter, thereby
ensuring that the coerced voter can lie about its opening without risking a collision (as
discussed in Section 1.2).

We make some restrictions on the order and number of queries (detailed in the caption
of Figure 1), but the experiment allows the adversary to make combinations of queries
that do not correspond to any behaviour of the voting protocol. Partially, we do so because
we can, but also in order to simplify definitions of certain cryptographic properties (such
as uniqueness of results).

The adversary decides which ballots should be counted. We need to recognise when
the adversary has organised counting such that it results in a trivial win. We say that a
sequence evt of encrypted ballots and trackers is valid if

– Ls contains a sequence of tuples (evtj−1, evtj , Π
s
j )nsj=1, not necessarily appearing in

the same order in Ls, with evtns = evt;
– Lv contains tuples

(i1, j1, v0,1, v1,1, ev1, Π
v
1 , ρ1), . . . , (inc , jnc , v0,nc , v1,nc , evnc , Π

v
nc , ρnc)

such that evt0 = (ev1, . . . , evnc); and
– for any k, k′ ∈ {1, . . . , nc} with k 6= k′, we have ik 6= ik′ (only one ballot per voter

public key).

In this case, we also say that evt originated from evt0, alternatively from

(i1, j1, v0,1, v1,1, ev1, Π
v
1 , ρ1), . . . , (inc , jnc , v0,nc , v1,nc , evnc , Π

v
nc , ρnc).

Furthermore, we say that a valid sequence evt is honest if at least one of the tuples
(evtj−1, evtj , Π

s
j ) comes from a shuffle query. A valid sequence is balanced if the ballot

sequences (v0,1, . . . , v0,nc) and (v1,1, . . . , v1,nc) are equal up to order.
An execution is fresh if the following all hold:

– If a voter secret key, a receipt or a tracker is revealed, then any challenge query for
that voter contains the same ballot on the left and the right side.

– For any result query evt that does not return ⊥, evt is balanced and honest.
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The experiment proceeds as follows:

– Sample b, b′′ r← {0, 1}. Let Lr, Lv, Ls, Ld be empty lists.
We denote by (vpki, vski) the ith entry in Lr.

– Compute (pk, sk)← Setup and send pk to the adversary.
– On a register query, compute (vpk, vsk)← UserKeyGen(pk), append (vpk, vsk) to Lr

and send vpk to the adversary.
– On a chosen voter key query vpk, append (vpk,⊥) to Lr.
– On a tracker generation query, compute

(t, et, ct,op, π)← TrackerGen(pk, vpk1, . . . , vpknr) where vpk1, . . . , vpknr are the
public keys from Lr, and send (t, et, ct) to the adversary.
We denote by ti, eti, cti and opi the ith entries in the corresponding lists.

– On a chosen ciphertext query (i, ev,Πv), if VerifyBallot(ev,Πv) = 1, append
(i,⊥,⊥,⊥, ev,Πv,⊥) to Lv.

– On a challenge query (i, v0, v1), compute (ev,Πv, ρ)← Vote(pk, vb), append
(i,⊥, v0, v1, ev,Πv, ρ) to Lv and send (ev,Πv) to A.

– On a coerce query (i, j, v0, v1), compute (evi, Π
v
i , ρi)← Vote(pk, vb) and

(evj , Π
v
j , ρj)← Vote(pk, v1−b), append (i, j, v0, v1, evi, Π

v
i , ρi) and

(j, i, v1, v0, evj , Π
v
j , ρj) to Lv, and send (evi, Π

v
i ) and (evj , Π

v
j ) to A.

– On a shuffle query evt, compute (evt′, Πs)← Shuffle(pk, evt), append
(evt, evt′, Πs) to Ls and send (evt′, Πs) to A.

– On a chosen shuffle query (evt, evt′, Πs), if VerifyShuffle(evt, evt′, Πs) = 1, append
the query to Ls.

– On a result query evt, compute (res, Πr)← DecryptResult(sk, evt), send (res, Πr) to
A and append (evt, res, Πr) to Ld.

– On a voter verification query (k, evt, res, Πd) with (i,⊥, v0, v1, ev,Πv, ρ) being the
kth entry in Lv, compute t← ExtractTracker(vski, opi, cti) and
d← VoterVerify(ρi, t, evt, res, Πr) and send d to A.

– On a coercion verification query k, with (i, j, . . . ) being the kth entry in the Lv list,
then if b = 0 send opi to A, otherwise compute op← ClaimTracker(vski, cti, tπ(j)) and
send op to A.

– On a test query (evt, res, Πr), compute d← VerifyResult(evt, res, Πr) and send d to
A.

– On a voter key reveal query i, send (vpki, vski) to A.
– On a tracker reveal query i, compute t← ExtractTracker(vski, cti, opi) and send t to
A.

– On a receipt reveal query k, where the kth entry of Lv is (·, ·, ·, ·, ·, ·, ρk), send ρk to A.
– On an election key reveal query, send sk to A.

Eventually, the adversary outputs a bit b′.

Fig. 1. Security experiment for privacy, integrity and coercion mitigation. The bit b′′ is not used in the
experiment, but simplifies the definition of advantage. The adversary makes register and chosen voter key
queries, followed by a single tracker generation query, followed by other queries. If there are coerce or
coercion verification queries in an execution, every challenge query must have v0 = v1.
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– For any voter verification query (j, evt, res, Πr), evt contains an encryption of vb,j
and VerifyResult(pk, evt, res, Πr) evaluates to 1.

– For any encrypted ballot returned by a coerce query, if it is in an origin of any result
query, the other encrypted ballot returned by the coerce query is also in the same
origin of the same result query.

– There is no election key reveal query.

We define the joint privacy and coercion mitigation event Ep to be the event that after
the experiment and an adversary has interacted, the execution is fresh and b′ = b, or the
execution is not fresh and b′ = b′′. In other words, if the adversary makes a query that
results in a non-fresh execution of the experiment, we simply compare the adversary’s
guess to a random bit, giving the adversary no advantage over making a random guess.

In the integrity game, the adversary’s goal is to achieve inconsistencies:

– The count failure event Fc is that a result query for a valid sequence of encrypted
ballots and trackers results in ⊥.

– The inconsistent result event Fr is that a test query (evt, res, Πr) evaluates to 1, evt
originated from

(i1, ·, v0,1, v1,1, ev1, Πv
1 , ρ1), . . . , (inc , ·, v0,nc , v1,nc , evnc , Πv

nc , ρnc)

and there is no permutation π on {1, . . . , nc} such that for i = 1, . . . , nc, either vb,i = ⊥
or Dec(sk, evπ(i)) = vb,i.

– The no unique result event Fu is that two test queries (evt, res1, Π
r
1) and (evt′, res2, Π

r
2)

both evaluate to 1, evt and evt′ have a common origin, and res1 and res2 are not equal
up to order.

– The inconsistent verification event Fv is that a sequence of voter verifica-
tion queries {(kj , evt, res, Πr)}nj=1 all return 1, evt is valid, and with Lv =(
(i1, ·, v0,1, v1,1, ev1, Πv

1 , ρ1), . . . , (inc , ·, v0,nc , v1,nc , evnc , Πv
nc , ρnc)

)
there is no permuta-

tion π on {1, . . . , nc} such that Dec
(

sk, evπ(kj)

)
= vb,kj for all j = 1, . . . , n, i.e. that

all the specified voters think their ballots are included in the tally, but at least one of
the ballots is not.

We define the advantage of an adversary A against a voting system S to be

AdvvoteS (A) = max {2 · |Pr[Ep]− 1/2| ,Pr[Fc ∨ Fr ∨ Fu ∨ Fv]} .

3.3 The Voting Protocol

The different parties in the voting protocol are the nv voters and their devices, a trusted
election authority (EA) who runs setup, registration, tracker generation and who tallies
the cast ballots, a collection of ns shuffle servers, one or more auditors, and a public
append-only bulletin board BB. There are many simple variations of the voting protocol.

In the setup phase, the EA runs Setup to generate election public and secret keys pk
and sk. The public key pk is posted to BB.
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In the registration phase, the EA runs UserKeyGen(pk) to generate per-voter keys
(vpk, vsk) for each voter. The public key vpk is posted to BB and the secret key vsk is sent
to the voter’s device.

In the tracker generation phase, the EA runs TrackerGen(pk, sk, vpk1, . . . , vpknv) to
generate trackers, encrypted trackers, tracker commitments and openings to the commit-
ments. To break the link between voters and their trackers, the trackers are encrypted
and put through a re-encryption mixnet before they are committed to. Each encrypted
tracker and commitment is assigned to a voter public key and posted to BB next to this
key. Plaintext trackers are also posted to BB.

In the voting phase, a voter instructs her device on which ballot v to cast. The voter’s
device runs the Vote algorithm to produce an encrypted ballot ev and a proof of knowledge
Πv of the underlying plaintext. The encrypted ballot and the proof are added to the
bulletin board next to the voter’s public key, encrypted tracker and tracker commitment.

In the tallying phase, the auditors first verify the ballot proofs Πv
i , subsequently ignor-

ing any ballot whose ballot proof does not verify. The pairs (evi, eti) of encrypted ballots
and trackers are extracted from the bulletin board and sent to the first shuffle server.
The first shuffle server uses the shuffle algorithm Shuffle on the input encrypted ballots
and trackers, before passing the shuffled ballots on the next shuffle server, which shuffles
the ballots again and sends the shuffled list to the next shuffle server, and so on. All the
shuffle servers post their output ciphertexts and shuffle proofs on the bulletin board, and
the auditors verify the proofs. If all the shuffles are correct, the EA runs DecryptResult
on the output from the final shuffle server, to obtain a result res and a proof Πr. The
auditors verify this too and add their signatures to the bulletin board.

In the verification phase, the EA tells each voter which tracker belongs to them (the
exact details of how this happens depends on the underlying voting system). The voters
then run VoterVerify to verify that their vote was correctly cast and counted. For vot-
ing systems without trackers (such as Helios [2] and Belenios [12]), voters simply run
VoterVerify without interacting with the EA.

Security Properties It is easy to see that we can simulate a run of the voting protocol
using the experiment. It is also straight-forward for anyone to verify, from the bulletin
board alone, if the list of encrypted ballots and trackers that is finally decrypted in a run
of the protocol is valid.

For simplicity, we have assumed trusted setup (including tracker generation) and no
distributed decryption. We may also assume that any reasonable adversary against the
voting scheme has negligible advantage.

It follows, under the assumption of trusted tracker generation, that as long as the
contents of the bulletin board verifies, we have verifiability in the sense that the final
result is consistent with the ballots of voters that successfully verify.

If at least one of the shuffle servers is honest and the election secret key has not been
revealed, and the adversary does not manage to organise the voting to get a trivial win,
we also have privacy and coercion mitigation.
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4 The Selene Voting System

We provide a model of Selene and analyse it under our security definition. Relative to the
original Selene paper, there are three interesting differences/choices: (1) We do not model
distributed setup and tracker generation, nor distributed decryption. (2) The voter proves
knowledge of the ballot using an equality of discrete logarithm proof. (3) We assume the
shuffle from Appendix A is used. The latter two simplify the security proof by avoiding
rewinding. The first is due to lack of space (though see [31] for distributed setup protocols,
and [20] for how to model distributed decryption).

4.1 The Voting System

Let G be a group of prime order q, with generator g. Let E = (Kgen,Enc,Dec) be the
ElGamal public key encryption system. Let Σdl = (Pdl,Vdl) be a proof system for proving
equality of discrete logarithms in G (e.g. the Chaum-Pedersen protocol [7]). We abuse no-
tation and let Σs = (Ps,Vs) denote both a proof system for shuffling ElGamal ciphertexts
and a proof system for shuffling pairs of ElGamal ciphertexts. Our instantiation of Selene
works as follows:

– Setup: sample hv
r← G and compute (pkv, skv)← Kgen(1λ) and (pkt, skt)← Kgen(1λ).

The election public key is pk = (pkv, pkt, hv) and the election secret key is sk =
(skv, skt).

– UserKeyGen(pk): compute (vpk, vsk)← Kgen(1λ).
– TrackerGen(pk, vpk1, . . . , vpkn): set t← (1, . . . , n). Choose a random permutation π on

the set {1, . . . , n}. For each i, choose random elements ri, si
r← {0, . . . , q−1}, compute

ElGamal encryptions eti ← (grπ(i) , pkt
rπ(i)gtπ(i)) and commitments cti ← vpksii · gtπ(i) .

Set opi = gsi . The public output is the list of trackers t, the list of encrypted trackers
et and the list of tracker commitments ct. The private output is the list of openings
op to the commitments and the permutation π.

– ExtractTracker(vsk, ct, op): compute gt ← ct · op−vsk.
– ClaimTracker(vsk, ct, gt): compute op← (ct/gt)1/vsk.
– Vote(pk, v): sample r r← {0, . . . , q − 1} and compute x ← gr, x̂ ← hrv and w ← pkrvv.

Compute a proof Πdl ← Pdl((g, hv, x, x̂), r) showing that logg x = loghv x̂ = r. Output

c = (x,w), Πv = (x̂, Πdl) and ρ = v.
– Shuffle(pk, evt): sample two lists rv, rt

r← {0, . . . , q − 1}n and a random permuta-
tion on the set {1, . . . , n}. For each ((xv,i, wv,i), (xt,i, wt,i)) ∈ evt, compute x′v,i ←
grv,π(i)xv,π(i), w

′
v,i ← pk

rv,π(i)
v wv,π(i), x

′
t,i ← grt,π(i)xt,π(i) and w′t,i ← pk

rt,π(i)
t wt,π(i). Com-

pute a proof Πs ← Ps((evt, evt′), (rv, rt, π)) of correct shuffle and output (evt′, Πs).
– DecryptResult(sk, evt): for each ((xv,i, wv,i), (xt,i, wt,i)) ∈ evt, compute
vi ← Dec(skv, (xv,i, wv,i)), ti ← Dec(skt, (xt,i, wt,i)) and proofs Πdl

v,i ←
Pdl((g, xv,i, pkv, wv,i/vi), skv) and Πdl

t,i ← Pdl((g, xt,i, pkt, wt,i/ti), skt), proving
that logg pkv = logxv,i(wv,i/vi) = skv and logg pkt = logxt,i(wt,i/ti) = skt. Set res ← v

and Πr ← ({Πdl
v,i}, {Πdl

t,i}, t) and output (res, Πr).
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– VoterVerify(ρ, t, evt,v, Πr): parse Πr as ({Πdl
v,i}, {Πdl

t,i}, t) and check if ρ ∈ v, and
t ∈ t, and that if t = ti then ρ = vi, i.e. the ballot appears next to the correct tracker.

– VerifyShuffle(pk, evt, evt′, Πs): compute d← Vs(pk, evt, evt′, Πs).
– VerifyBallot(pk, ev,Πv): parse Πv as (x̂, Πdl) and compute d← Vdl((g, h, x, x̂), Πdl).
– VerifyResult(pk, evt, res, Πr) : parse Πr as ({Πdl

v,i}, {Πdl
t,i}, t) and compute dv,i ←

Vdl((g, xv,i, pkv, wv,i/vi), Π
dl
v,i) and dt,i ← Vdl((g, xt,i, pkt, wt,i/ti), Π

dl
t,i) for all i =

1, . . . , n, where ((xv,i, wv,i), (xt,i, wt,i)) ∈ evt, vi ∈ res, ti ∈ t.

The correctness of Selene follows from the correctness of ElGamal, the completeness of
the verifiable shuffles and the straight-forward computation

ExtractTracker(vsk, ct,ClaimTracker(vsk, ct, gt)) = ct ·
((
ct/gt

)1/vsk)−vsk
= gt.

Note that in the original description of Selene [31], the exact manner of which the
voters prove knowledge of their plaintext in the voting phase is left abstract. However,
several different approaches are possible. One may, for example, produce a Schnorr proof
of knowledge [34] of the randomness used by the encryption algorithm. We choose a
different approach, and include a check value x̂ and give a Chaum-Pedersen proof that
loghv x̂ = logg x. Both are valid approaches, however our approach simplifies the security
proof by avoiding rewinding.

4.2 Security Result

We say that an adversary against a voting scheme is non-adaptive if every voter key reveal
query is made before the tracker generation query.

Theorem 1. Let A be a non-adaptive (τ, nv, nc, nd, ns)-adversary against Selene, making
at most nv registration and chosen voter key queries, nc challenge and coerce queries, nd
chosen ciphertext queries, and ns shuffle/chosen shuffle queries, and where the runtime
of the adversary is at most τ . Then there exist a τ ′1-distinguisher B1, a τ ′2,1-distinguisher
B2,1, a τ ′2,2-distinguisher B2,2 and a τ ′3-distinguisher B3, all for DDH, τ ′1, τ

′
2,1, τ

′
2,2, τ

′
3 all

essentially equal to τ , such that

AdvvoteSelene(A) ≤ AdvddhG,g(B1) + 2ns(AdvddhG,g(B2,1) + AdvddhG,g(B2,2))
+ AdvddhG,g(B3) + negligible terms.

4.3 Proof of Theorem 1

We begin by analysing the integrity events. Count failures cannot happen. If we get an
inconsistent result, then either the equality of discrete logarithm proofs used by the de-
cryption algorithm or the shuffle proofs are wrong. The soundness errors of the particular
proofs we use are negligible (and unconditional), so an inconsistent result happens with
negligible probability. The same analysis applies to non-unique results as well as incon-
sistent verification.
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We now move on to analysing the privacy event. The proof is structured as a sequence
of games. We begin by simulating the honestly generated non-interactive proofs during
ballot casting. This allows us to randomize the check values x̂v in honestly generated bal-
lot proofs, so that we afterwards can embed a trapdoor in hv. The trapdoors allow us to
extract ballots from adversarially generated ciphertexts. The shuffle we use also allows us
to extract permutations from adversarially generated shuffles by tampering with a ran-
dom oracle. This allows us to use the ballots from chosen ciphertext queries to simulate
the decryption, so we no longer use the decryption key. The next step is to also simu-
late the honest shuffles, before randomising the honestly generated ciphertexts (including
encrypted trackers) and the re-randomisations of these ciphertexts. Finally, we sample
tracker commitments at random and compute the openings from tracker generation using
the ClaimTracker algorithm. This change is not observable, and makes the computation of
tracker commitments and openings independent of the challenge bit. This makes the entire
game independent of the challenge bit, proving that the adversary has no advantage.

We now give a more detailed description of each game in the security proof. In the
following, let Ep,i be the event that b = b′ (i.e. that the adversary’s guess b′ is equal to
the challenge bit b) in Game i, given that the execution is fresh.

Game 0. The initial game is the adversary A interacting with the original security exper-
iment. Thus,

AdvvoteS (A) = max {2 · |Pr[Ep,0]− 1/2| ,Pr[Fc ∨ Fr ∨ Fu ∨ Fv]} .

We have already bounded the integrity event terms, so all that remains is to bound the
privacy term.

Game 1. In this game we simulate the proof of equal discrete logarithms when responding
to challenge or coerce queries. The simulation is perfect, but the change is still detectable
if the adversary already has queried the random oracle on one of the commitments made
by the prover in the proof of discrete logarithm equality. This happens with probability
nh(nr + nc)/q. Thus, we get

|Pr[Ep,1]− Pr[Ep,0]| ≤
nh(nr + nc)

q
. (1)

Game 2. In this game, we first change the response to challenge or coerce queries so that
the experiment encrypts ballots using the secret key, i.e. instead of computing x← gr and
w ← pkrv · v, we compute x as before and then w ← xskv · v. This change is not noticeable
by the adversary. Furthermore, when responding to challenge or coerce queries, we sample
x̂v

r← G instead of computing it.

Lemma 1. There is a τ ′1-distinguisher B1 for Decision Diffie-Hellman, τ ′1 essentially
equal to τ , such that

|Pr[Ep,2]− Pr[Ep,1]| ≤ AdvddhG,g(B1) + 1/q.
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Proof. In Game 1, when making a challenge or coerce query, the adversary gets to see a
tuple (x, hv, x̂v) = (gr, gs, grs) where r is the randomness used to encrypt and s is some
random number in {0, . . . , q − 1}. This is a DDH-tuple. In Game 2, the adversary gets to
see the random tuple (gr, gs, gt), where r, s, t are all chosen uniformly at random.

Using random self-reducibility, it is trivial to build a DDH distinguisher B1 that per-
fectly simulates Game 1 when given a DDH tuple and perfectly simulates Game 2 when
given a non-DDH tuple. The term 1/q comes because not all random tuples are non-DDH
tuples. ut

Game 3. First, challenge and coerce queries again encrypt ballots as usual (though x̂v
is still just a random element). Instead of sampling hv

r← G, the experiment samples
b0

r← {0, . . . , q − 1} and computes hv ← pkb0v . For a hash query for the non-interactive
shuffle of ciphertexts to get (ζ, β), we sample ω r← {0, . . . , q − 1} and compute ζ ← gω

and record ω together with ζ.

For a chosen ciphertext query (i, (x,w), (x̂v, Π
dl
v )) that is accepted, we compute v ←

wx̂
−1/b0
v and append (i, v, v, (x,w), (x̂v, Π

dl
v ), v) to Lv.

When A makes a shuffle query evt, we append (evt, evt′, Πs, π) to Ls, where π is the
permutation used by the non-interactive shuffle algorithm.

When A makes a chosen shuffle query (evt, evt′, Πs) that is accepted, we use the value
ω that we recorded for the relevant hash query to extract the permutation π that is used.
The extraction proceeds as follows. By computing ζ as described, we get v̂i = ζλπ(i) =

gωλπ(i) (cf. Protocol 2). Since the v̂′is are public, we can compute v̂
1/ω
i = gλπ(i) = uπ(i). Since

the list u is also public, we can compare the u with the list uπ to recover the permutation.
If the extraction fails for any reason (e.g. if the elements of u are not unique), we let π be
the identity permutation. Finally, we append (evt, evt′, Πs, π) to Ls.

These changes are not observable to the adversary, so

Pr[Ep,3] = Pr[Ep,2]. (2)

Game 4. In this game, we simulate the decryption proofs in the tally. The get the correct
decryption, we first find an origin for the list evt of encrypted ballots and trackers. We
can then recover a list of ballots v from Lc. We then compose the permutations recorded
in Ls into a single permutation π and give the vπ(i) as inputs to the simulator. This list
of ballots may be incorrect if any of the accepted ballot proofs or chosen shuffle proofs
are incorrect, which happens only with negligible probability. The simulator is perfect,
but this might still be detectable if the random oracle has been queried on any of the
commitments computed by the prover in the non-interactive proofs of discrete logarithm
equality. This happens only with probability nh(nr + nv)/q. Thus, we get

Pr[Ep,4]− Pr[Ep,3]| ≤ negligible terms. (3)

Note that at this point, we no longer use the secret key.
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Game 5. In this game, we simulate the proofs of the honest shuffles. The following claim
is immediate.

Lemma 2. There exists τ ′2-distinguishers B2,1 and B2,2 for DDH, τ ′2 essentially equal to
τ , such that

|Pr[Ep,5]− Pr[Ep,4]| ≤ 2ns(AdvddhG,g(B2,1) + AdvddhG,g(B2,2)). (4)

Game 6. In this game, we encrypt a random message when responding to challenge and
coercion queries, and we let the output ciphertexts of shuffle queries be encryptions of
random messages instead of re-randomizations of the input ciphertexts. We also encrypt
random group elements instead of encrypting the actual tracker when responding to a
tracker generation query, with the exception that we need to use the proper trackers for
voters who have had their keys revealed to avoid making distinguishing trivial for the
adversary. Again, the following claim is immediate by random self-reduction.

Lemma 3. There exists a τ ′3-distinguisher B3 for DDH, τ ′3 essentially equal to τ , such
that

|Pr[Ep,6]− Pr[Ep,5]| ≤ AdvddhG,g(B3). (5)

Game 7. In this game, we respond to coercion verification events when b = 0, as well
as tracker reveal queries, by computing the tracker opening as ClaimTracker(vsk, cti, g

tπ(i))
instead of fetching the opening from op or using ExtractTracker. This change is not ob-
servable, so

Pr[Ep,7] = Pr[Ep,6]. (6)

Note that the openings are never used after this.

Game 8. In this game, we sample cti
r← G instead of computing cti during the tracker

generation query. Since the openings are never used or revealed, this is unobservable and
we get

Pr[Ep,8] = Pr[Ep,7]. (7)

Conclusion. In Game 8, everything the adversary sees is independent of the challenge bit
b, so we get that

Pr[Ep,6] = 1/2. (8)

5 Other Variants of Selene

There are [30, 31] some challenges tied to the use of trackers in Selene. First, if the coercer
is also a voter, there is a possibility that a coerced voter points to the coercer’s own tracker
when employing the coercion evasion strategy. Second, publishing the trackers in the clear
next to the ballots might affect the voters’ perceived privacy, and some might find this
troublesome.

To address the first challenge, the authors of Selene have proposed a variant they call
Selene II. Informally, the idea is to provide each voter with a set of alternative (or dummy)
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trackers, one for each possible candidate, in a way that the set of alternative trackers is
unique to each voter. This way, it is not possible for a coerced voter to accidentally point
to the coercer’s tracker. However, trackers are still published in the clear.

Both challenges are also addressed by Ryan et al. [30], who have proposed a voting
system they call Hyperion. The idea is to only publish commitments next to the plaintext
ballots, rather than plaintext trackers. Furthermore, to avoid the issue that voters might
accidentally point to the coercer’s own tracker, each voter is given their unique view of
the bulletin board.

For both Selene II [31] and Hyperion [30], we refer to the original papers for the full
details of the constructions, but we briefly describe here how these systems fit into our
framework. We first remark that in Selene II, it is necessary that the encryption system
used to encrypt the ballots supports plaintext equivalence tests (PETs). As in the original
description of Selene, we use ElGamal encryption to encrypt the ballots, so PETs are
indeed supported (see e.g. [23]).

For Selene II, we need to change the TrackerGen algorithm so that it outputs c + 1
trackers for each voter, where c is the number of candidates, and c “dummy” ciphertexts,
one ciphertext for each candidate. We let the last tracker be the one that is sent to the
voter to be used for verification. By construction, for all voters there will be an extra
encrypted ballot for each candidate. Thus, the DecryptResult algorithm works similarly
as for Selene, except that it needs to subtract nv votes for each candidate, where nv is
the number of voters. The voting protocol must also be changed. Before notifying the
voters of their tracking numbers, the EA must now perform a PET between each voter’s
submitted ciphertext, and each of the “dummy” ciphertexts belonging to the voter, before
removing the ciphertext (and the corresponding tracker) containing the same candidate as
the voter voted for. This way, all voters receive a set of trackers, each pointing to a different
candidate, which is unique to them. The opening to their real trackers is transmitted
as usual, and thus the ExtractTracker algorithm works as in Selene. The ClaimTracker
algorithm also works exactly as in Selene, except that voters now can choose a tracker
from their personal set of dummy trackers, thus avoiding the risk of accidentally choosing
the coercer’s tracker.

For Hyperion, the modification of the TrackerGen algorithm is straight forward: we
simply let it compute tracker commitments as described in [30], namely by (for each
voter) sampling a random number ri and computing the commitment as vpkrii . At the
same time, an opening is computed as opi ← gri . The Shuffle algorithm still shuffles the
list of encrypted ballots and tracker commitments in parallel, in the sense that they are
subjected to the same permutation. However, the encrypted ballots are put through the
same re-encryption shuffle as before, but the tracker commitments are put through an ex-
ponentiation mix, raising all commitments to a common secret power s. The DecryptResult
algorithm now performs additional exponentiation mixes to the commitments, one mix
for each voter (by raising the commitment to a secret power si, unique to each voter),
giving the voters their own unique view of the result. For each voter, it also computes the
final opening to their commitments, as opi ← gri·s·si . Again, we need to change the vot-
ing protocol, this time so that each voter actually receives their own view of the bulletin
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board. The ExtractTracker algorithm raises the opening opi to the voter’s secret key and
and loops through the bulletin board to find a matching commitment. The ClaimTracker
algorithm uses the voter’s secret key to compute an opening to a commitment pointing
to the coercer’s desired ballot.

6 Concluding Remarks

In this work, we have presented security definitions for cryptographic voting systems
making use of tracking numbers, that simultaneously capture ballot privacy, integrity and
coercion mitigation. To the best of our knowledge, this is the first game-based definition
of coercion mitigation in the literature. Our definitions closely resemble standard cryp-
tographic definitions, making them fairly easy and intuitive to work with. Furthermore,
we have presented a complete model of Selene in our framework, and proved that Selene
satisfies all the aforementioned security properties.

6.1 Future work

In this paper, we only present pen-and-paper security definitions and proofs. As such, an
idea for future work is to model our definitions and proofs in a proof assistant, such as
EasyCrypt. The main value of modeling security definitions and proofs in EasyCrypt
is perhaps the increased assurance that the definitions and proofs are sound. However,
it also has a scientific value on its own. Indeed, EasyCrypt is still a product under
development, and modeling complex security definitions and proofs might help uncover
shortcomings in the tool, as well as aid in developing the EasyCrypt standard library.

While ballot privacy at first glance seems to be a strictly weaker property than coer-
cion resistance (and receipt-freeness), Küsters et al. [27] demonstrate that the relationship
between privacy and coercion resistance is more subtle than first thought. Similarly, coer-
cion mitigation is intuitively a weaker property than receipt-freeness, but no certain claims
can be made without a thorough analysis of the relationship between the two. However,
this is out of scope for this paper and is, as such, left for future research.
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A Examples of Verifiable Shuffles

We here give two examples of verifiable shuffle protocols: one for shuffling two lists of
ElGamal ciphertexts in parallel (Protocol 2) and one for shuffling random numbers (Pro-
tocol 1). Protocol 1 is due to Gjøsteen [20] and Protocol 2 is an extension of a protocol
by Gjøsteen [20], adapted to shuffling two lists of ciphertexts in parallel. Note that in
this paper, Protocol 1 is only used as a sub-protocol in Protocol 2. Protocol 2 can easily
be modified to a protocol for shuffling single sequences of ElGamal ciphertexts instead of
two sequences in parallel. In the single sequence setting, the common input is only one
ElGamal public key (i.e. yv) and two sequences of ciphertexts (i.e. (xv,wv) and (x̃v, w̃v)),
while the private input consists of only one random tuple rv, in addition to a permutation
π. Furthermore, we remove every computation involving xt, x̃t,wt, w̃t and rt. In other
words, we remove everything with subscript t.

Protocol 1 Interactive argument for shuffle of secret random values, based on a group G
of prime order q with generator g.

Common Input: A generator ξ ∈ G and commitments u and v.
Private Input: Messages m, an integer a and a permutation π such that ξ = ga, u = gm

and v = ξπm.

1: V samples β0
r← Zq \ {m1, . . . ,ml} and sends β0 to P.

2: P samples ρ1, . . . , ρ2l−1
r← Zq and computes α1 ← gρ1a(β0−mπ(1)), αi ←

gρi−1(β0−mi)+ρia(β0−mπ(i)) for i = 2, . . . , l, αi ← gρi−1a+ρi for i = l + 1, . . . , 2l − 1
and α2l ← gρ2l−1a, and sends (α1, . . . , α2l) to V.

3: V samples β1
r← Zq and sends β1 to P.

4: P computes ρ′1 ← −(β0 −m1)/(a(β0 −mπ(1))), ρ
′
i ← −ρ′i−1(β0 −mi)/(a(β0 −mπ(i)))

for i = 2, . . . , l, ρ′i ← −ρ′i−1a for i = l+ 1, . . . , 2l− 1 and γ ← ρ+ β1ρ
′ and sends γ to

V.
5: V accepts if and only if αi = (gβ0u−1i )γi−1(ξβ0v−1i )γi for i = 1, 2, . . . , l and αi = ξγi−1gγi

for i = l + 1, l + 2, . . . , 2l, where γ0 = γ2l = β1.

The shuffle arguments in Protocols 1 and 2 can be made non-interactive by applying
the Fiat-Shamir heuristic [19]. The idea is to replace the challenges sent by the verifier
in step 1 and 3 in Protocol 1 and step 2 and 4 in Protocol 2 by a call to some hash
function, making the challenges look random. This is fairly straight-forward, but in step
1 of Protocol 1, we need to make sure that the hash value β0 does not land in the set
{m1, . . . ,ml}. As Protocol 1 is only used as a sub-protocol of Protocol 2, if the unlikely
event occurs that β0 lands in the set {m1, . . . ,ml}, we simply abort and start Protocol 2
from the beginning, resulting in new values for the public information to be hashed (and
hence a new value for β0), as well as new values for m1, . . . ,ml. Note that the verifier can
verify in the final step that β0 is indeed in the correct set, by computing gβ0 and checking
that gβ0 /∈ u.
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Protocol 2 Interactive argument for a parallel shuffle of ElGamal ciphertexts, based on
ElGamal over a group G of prime order q with generator g.

Common Input: Two ElGamal public keys yv and yt, and four sequences of ciphertexts
(xv,wv), (x̃v, w̃v), (xt,wt) and (x̃t, w̃t).

Private Input: A permutation π on {1, 2, . . . , l} and random tuples rv and rt such that
x̃v = gπrvxπ

v , w̃v = yπrv
v wπ

v , x̃t = gπrtxπ
t and w̃t = yπrt

t wπ
t .

1: P samples a r← {0, 1, . . . , q − 1} and r′v, r
′′
v , r
′
t, r
′′
t ,λ0,λ2

r← {0, 1, . . . , q − 1}l, such
that λ0,1, . . . , λ0,l are all distinct, and computes re-randomisations x̄v ← gr

′
vxv, w̄v ←

y
r′v
v wv, ẋv ← gr

′′
v x̃v, ẇv ← y

r′′v
v w̃v, x̄t ← gr

′
txt, w̄t ← y

r′t
t wt, ẋt ← gr

′′
t x̃t, ẇt ← y

r′′t
t w̃t,

ξ ← ga and permutation commitments u0 ← gλ0 , u2 ← gλ2 and v0 ← ξπλ0 . The
prover sends ξ, (x̄v, w̄v), (ẋv, ẇv), (x̄t, w̄t), (ẋt, ẇt),u0,u2 and v0 to V.

2: V checks that u0,1, . . . , u0,l are all distinct, samples λ3 ← {0, 1, . . . , q − 1}l and sends
λ3 to the prover. Both parties compute u1 ← gλ3u2.

3: P computes λ1 ← λ2 + λ3 and v1 ← ξπλ1 and sends v1 to V.
4: V samples ζ r← G and β r← Zq and sends (ζ, β) to P.

5: P computes λ← λ0 + βλ1, and both parties compute u← u0u
β
1 and v← v0v

β
1 .

6: P computes v̂ ← ζπλ, x̌v ← x̄λ
v , w̌v ← w̄λ

v , x̂v ← ẋπλ
v , ŵv ← ẇπλ

v , x̌t ← x̄λ
t , w̌t ←

w̄λ
t , x̂t ← ẋπλ

t , ŵt ← ẇπλ
t , and sends v̂, (x̌v, w̌v), (x̂v, ŵv), (x̌t, w̌t) and (x̂t, ŵt) to V.

7: P and V run the random value shuffle from Protocol 1 with public input (ξ,u,v) and
private input (λ, a, π).

8: For i = 1, 2, . . . , l, P and V run the Chaum-Pedersen argument for equality of discrete
logarithms with input as in the following table:

public input private input

(g, x̄v,i, ui, x̌v,i) λi
(g, w̄v,i, ui, w̌v,i) λi
(ξ, ẋv,i, vi, x̂v,i) λπ(i)
(ξ, ẇv,i, vi, ŵv,i) λπ(i)
(g, x̄t,i, ui, x̌t,i) λi
(g, w̄t,i, ui, w̌t,i) λi
(ξ, ẋt,i, vi, x̂t,i) λπ(i)
(ξ, ẇt,i, vi, ŵt,i) λπ(i)

(ξ, ζ, vi, v̂i) λπ(i)
(g, yv, x̄v,i/xv,i, w̄v,i/wv,i) r′v,i
(g, yv, ẋv,i/x̃v,i, ẇv,i/w̃v,i) r′′v,i
(g, yt, x̄t,i/xt,i, w̄t,i/wt,i) r′t,i
(g, yt, ẋt,i/x̃t,i, ẇt,i/w̃t,i) r′′t,i

(g, yv,
∏
i x̌v,i/x̂v,i,

∏
i w̌v,i/ŵv,i)

(∑
i λir

′
v,i

)
−
(∑

i λπ(i)(rv,π(i) + r′′v,i)
)

mod q

(g, yt,
∏
i x̌t,i/x̂t,i,

∏
i w̌t,i/ŵt,i)

(∑
i λir

′
t,i

)
−
(∑

i λπ(i)(rt,π(i) + r′′t,i)
)

mod q
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