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Abstract: The dynamics of underwater vehicle-manipulator systems (UVMSs) are very hard to
model, which reduces the feasibility of model-based control approaches. Even so, such strategies
prove useful in redundancy resolution. In this paper, higher-order sliding mode control is
combined with task-priority operational space control (OSC) in order to handle and utilize
the redundancy of UVMSs despite the presence of dynamic model errors. At each task level,
the generalized super-twisting algorithm is implemented to reject effects caused by model errors
while maintaining a continuous control signal. The general problem of OSC with uncertain
models is analyzed, and some of its challenges are highlighted, including an algebraic loop. We
conduct a simulation study on a highly redundant UVMS, where we compare task-level higher-
order sliding mode control to proportional-derivative control. Though this paper is motivated
by challenges specific to UVMSs, the results also hold for other vehicle-manipulator systems.
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1. INTRODUCTION

Underwater vehicle-manipulator systems (UVMSs) are
generally kinematically redundant with respect to their
end-effector configuration. This redundancy can be lever-
aged in order to execute additional objectives simultane-
ously. Depending on the system at hand, it is preferable to
resolve the redundancy either at the kinematic or the dy-
namic level. For systems with sufficiently quick dynamics,
it is tractable to resolve the redundancy at the kinematic
level. Conversely, for systems with slower dynamics, such
an approach is generally ill-advised. Additionally, some
classes of UVMSs suffer from significant coupling forces
caused by joint motions (Borlaug et al., 2022). In order to
instead resolve the redundancy on the dynamic level, it is
possible to apply the results of Khatib et al. (2004) which
extended the well-known operational space formulation
(OSF) (Khatib, 1987) to a task-priority framework. In or-
der to achieve effective redundancy resolution of UVMSs,
we wish to apply task-priority operational space control
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(OSC). However, OSC relies heavily on knowledge of the
kinematics and dynamics of the system. There exist many
systems in which an accurate model cannot be obtained,
particularly with respect to their dynamic parameters. It is
in general not possible to maintain strict dynamic priority
in the task hierarchy in this case.

The existing literature on this topic is limited, especially
regarding theoretical results. A comparison of OSC strate-
gies is given in Nakanishi et al. (2008), where the effects of
modelling errors are mentioned but only analyzed empir-
ically. Adaptive control has been applied to improve the
model knowledge in task-priority methods in Lee et al.
(2019) and Garofalo et al. (2021). The effects of imperfect
model knowledge can also be dealt with through robust
control, e.g. by using sliding mode control (SMC). In
Slotine et al. (1988), first-order SMC is applied for an end-

Fig. 1. The Eelume AIAUV, a highly redundant UVMS
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effector regulation task in the presence of uncertainties.
To the authors’ knowledge, there exists no literature on
higher-order SMC in OSC. In Antonelli et al. (2018);
Di Lillo et al. (2021), the effects of dynamic model errors
in task-priority OSC is investigated, both with compatible
and incompatible tasks. It is shown that only the restor-
ing forces affect steady-state errors of a task. The work
considers regulation control, and is limited to two tasks,
implemented on a fixed-base robot. The present work is
motivated by extending this analysis to task trajectory
tracking for vehicle-manipulator systems (VMSs).

In this paper, the task-priority OSC problem with an
arbitrary number of tasks is formulated for UVMSs sub-
jected to dynamic model parameter uncertainties. The
resulting task-level dynamics in the presence of imperfect
cancellation of the system dynamics is analyzed for an
arbitrary number of tasks. The analysis reveals that the
dynamics suffer from an algebraic loop when the system
inertia estimate is erroneous. An attempt to achieve task
trajectory tracking in spite of this is made by implement-
ing a super-twisting algorithm (STA) at each task level.
The STA attenuates chattering compared to conventional
SMC, which is important for systems with slow dynam-
ics, while retaining robustness. Lastly, a simulation study
with an articulated intervention autonomous underwater
vehicle (AIAUV) (cf. Fig. 1) is conducted and supports
the presented theory. The AIAUV is a subclass of UVMSs
which is particularly challenging to model correctly. The
results of this paper hold also for other VMSs in general.

The paper is organized as follows. The mathematical
model of a general UVMS is presented in Section 2. In
Section 3, the OSC problem is described with and without
modelling errors. Furthermore, a task-level super-twisting
controller is proposed to provide robustness to dynamic
model errors. A theoretical stability analysis is given in
Section 4. The proposed method is validated through a
simulation study in Section 5. Lastly, Section 6 presents
conclusions and future work.

2. MATHEMATICAL MODEL

The equations of motion for a UVMS can be expressed in
a body-fixed reference frame as (From et al., 2014)

ξ̇ = Jξ(q)ζ (1a)

M(θ)ζ̇ +C(θ, ζ)ζ +D(θ, ζ)ζ + g(ξ) = τ . (1b)

The system configuration of a UVMS equipped with an

n-joints manipulator arm is defined as ξ �
[
ηT ,θT

]T
,

where η �
[
(pI

IB)
T , qT

]T ∈ R7 is the position and attitude
of the base frame with respect to the inertial frame and
θ ∈ Rn is the vector of joint angles. The attitude is

parametrized by the quaternion q �
[
η, εT

]T ∈ R4 such
that ‖q‖2 = 1, where η denotes the real part and ε
denotes the vector part of q. The body-fixed velocities are

denoted ζ �
î
(vI

IB)
T , (ωI

IB)
T , θ̇T

óT
, where vI

IB ∈ R3 are

the linear velocities, ωI
IB ∈ R3 are the angular velocities,

and θ̇ ∈ Rn are the joint velocities. The body-fixed and
inertial velocities in (1a) are related through the kinematic
relationship

Jξ =


R

I
B(q) 03×3 03×n

04×3 Tq(q) 04×n

0n×3 0n×3 In


 , Tq(q) =

1

2

ï
−εT

ηI3 + S(ε)

ò
,

(2)
whereinRI

B ∈ SO(3) describes the rotation from the body-
fixed frame to the inertial frame and S : R3 �→ so(3)
is the skew-symmetry map. The dynamics of (1b) are
described by the positive definite inertia matrix M(θ)
which includes hydrodynamic added mass, the Coriolis-
centripetal matrix C(θ, ζ), which also includes added
mass effects, the damping matrix D(θ, ζ), the restoring
forces g(ξ), and the control forces and moments τ . These
equations also hold for terrestrial and space VMSs if the
hydrodynamic effects are excluded.

Generally, the dynamics of a UVMS are very hard to
model. This is mainly due to the effects of added inertia
and hydrodynamic drag forces that are experienced un-
derwater. These directly affect M , C, and D. Addition-
ally, its hydrostatics, collected in g, may not be perfectly
known, particularly if the vehicle is often reconfigured. As
a result, model-based control of UVMSs loses some of its
tractability when only poor estimates of the dynamics are
available. Even so, model-based controllers may necessar-
ily perform better than those that do not depend on the
dynamic model. Indeed, this is often the case, especially
for systems with a large degree of coupling at the dynamic
level. Additionally, some effects due to model uncertainties
may be alleviated by use of robust feedback control, and
this will be investigated in this paper.

3. OPERATIONAL SPACE CONTROL

In this section, some background theory of OSC is re-
counted. Then, motivated by Di Lillo et al. (2021), we
derive the task-level dynamics of a UVMS subjected to
dynamic model errors in the task-priority OSC. An anal-
ysis of the dynamics is then performed, and this reveals
that errors in the system inertia estimate may cause an
algebraic loop to appear.

3.1 Background

Generally, OSC is a control approach where a system is
controlled in the coordinates of some task, such as the
end-effector coordinates of a robot manipulator. In task-
priority OSC, we can define r tasks in a prioritized order.
Tasks can be defined as any function of the system states,
and several prioritized tasks form a hierarchy of tasks. The
main idea behind the hierarchy is that tasks with higher
priority will not be affected by motions generated by lower
priority tasks. Let xi(t) ∈ Rmi denote an mi-dimensional
task, with i ∈ {1, . . . , r}. The task coordinates are related
to the system configuration through the kinematic rela-
tionship

xi(t) = fi(ξ(t)), (3)

where fi generally is a nonlinear function. The differential
task kinematics are found through time differentiation of
(3) and insertion of (1a) as

ẋi(t) =
∂fi(ξ(t))

∂ξ
ξ̇ = J̄i(ξ)ξ̇(t) = Ji(ξ(t))ζ(t), (4)
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effector regulation task in the presence of uncertainties.
To the authors’ knowledge, there exists no literature on
higher-order SMC in OSC. In Antonelli et al. (2018);
Di Lillo et al. (2021), the effects of dynamic model errors
in task-priority OSC is investigated, both with compatible
and incompatible tasks. It is shown that only the restor-
ing forces affect steady-state errors of a task. The work
considers regulation control, and is limited to two tasks,
implemented on a fixed-base robot. The present work is
motivated by extending this analysis to task trajectory
tracking for vehicle-manipulator systems (VMSs).

In this paper, the task-priority OSC problem with an
arbitrary number of tasks is formulated for UVMSs sub-
jected to dynamic model parameter uncertainties. The
resulting task-level dynamics in the presence of imperfect
cancellation of the system dynamics is analyzed for an
arbitrary number of tasks. The analysis reveals that the
dynamics suffer from an algebraic loop when the system
inertia estimate is erroneous. An attempt to achieve task
trajectory tracking in spite of this is made by implement-
ing a super-twisting algorithm (STA) at each task level.
The STA attenuates chattering compared to conventional
SMC, which is important for systems with slow dynam-
ics, while retaining robustness. Lastly, a simulation study
with an articulated intervention autonomous underwater
vehicle (AIAUV) (cf. Fig. 1) is conducted and supports
the presented theory. The AIAUV is a subclass of UVMSs
which is particularly challenging to model correctly. The
results of this paper hold also for other VMSs in general.

The paper is organized as follows. The mathematical
model of a general UVMS is presented in Section 2. In
Section 3, the OSC problem is described with and without
modelling errors. Furthermore, a task-level super-twisting
controller is proposed to provide robustness to dynamic
model errors. A theoretical stability analysis is given in
Section 4. The proposed method is validated through a
simulation study in Section 5. Lastly, Section 6 presents
conclusions and future work.

2. MATHEMATICAL MODEL

The equations of motion for a UVMS can be expressed in
a body-fixed reference frame as (From et al., 2014)

ξ̇ = Jξ(q)ζ (1a)

M(θ)ζ̇ +C(θ, ζ)ζ +D(θ, ζ)ζ + g(ξ) = τ . (1b)

The system configuration of a UVMS equipped with an

n-joints manipulator arm is defined as ξ �
[
ηT ,θT

]T
,

where η �
[
(pI

IB)
T , qT

]T ∈ R7 is the position and attitude
of the base frame with respect to the inertial frame and
θ ∈ Rn is the vector of joint angles. The attitude is

parametrized by the quaternion q �
[
η, εT

]T ∈ R4 such
that ‖q‖2 = 1, where η denotes the real part and ε
denotes the vector part of q. The body-fixed velocities are

denoted ζ �
î
(vI

IB)
T , (ωI

IB)
T , θ̇T

óT
, where vI

IB ∈ R3 are

the linear velocities, ωI
IB ∈ R3 are the angular velocities,

and θ̇ ∈ Rn are the joint velocities. The body-fixed and
inertial velocities in (1a) are related through the kinematic
relationship

Jξ =


R

I
B(q) 03×3 03×n

04×3 Tq(q) 04×n

0n×3 0n×3 In


 , Tq(q) =

1

2

ï
−εT

ηI3 + S(ε)

ò
,

(2)
whereinRI

B ∈ SO(3) describes the rotation from the body-
fixed frame to the inertial frame and S : R3 �→ so(3)
is the skew-symmetry map. The dynamics of (1b) are
described by the positive definite inertia matrix M(θ)
which includes hydrodynamic added mass, the Coriolis-
centripetal matrix C(θ, ζ), which also includes added
mass effects, the damping matrix D(θ, ζ), the restoring
forces g(ξ), and the control forces and moments τ . These
equations also hold for terrestrial and space VMSs if the
hydrodynamic effects are excluded.

Generally, the dynamics of a UVMS are very hard to
model. This is mainly due to the effects of added inertia
and hydrodynamic drag forces that are experienced un-
derwater. These directly affect M , C, and D. Addition-
ally, its hydrostatics, collected in g, may not be perfectly
known, particularly if the vehicle is often reconfigured. As
a result, model-based control of UVMSs loses some of its
tractability when only poor estimates of the dynamics are
available. Even so, model-based controllers may necessar-
ily perform better than those that do not depend on the
dynamic model. Indeed, this is often the case, especially
for systems with a large degree of coupling at the dynamic
level. Additionally, some effects due to model uncertainties
may be alleviated by use of robust feedback control, and
this will be investigated in this paper.

3. OPERATIONAL SPACE CONTROL

In this section, some background theory of OSC is re-
counted. Then, motivated by Di Lillo et al. (2021), we
derive the task-level dynamics of a UVMS subjected to
dynamic model errors in the task-priority OSC. An anal-
ysis of the dynamics is then performed, and this reveals
that errors in the system inertia estimate may cause an
algebraic loop to appear.

3.1 Background

Generally, OSC is a control approach where a system is
controlled in the coordinates of some task, such as the
end-effector coordinates of a robot manipulator. In task-
priority OSC, we can define r tasks in a prioritized order.
Tasks can be defined as any function of the system states,
and several prioritized tasks form a hierarchy of tasks. The
main idea behind the hierarchy is that tasks with higher
priority will not be affected by motions generated by lower
priority tasks. Let xi(t) ∈ Rmi denote an mi-dimensional
task, with i ∈ {1, . . . , r}. The task coordinates are related
to the system configuration through the kinematic rela-
tionship

xi(t) = fi(ξ(t)), (3)

where fi generally is a nonlinear function. The differential
task kinematics are found through time differentiation of
(3) and insertion of (1a) as

ẋi(t) =
∂fi(ξ(t))

∂ξ
ξ̇ = J̄i(ξ)ξ̇(t) = Ji(ξ(t))ζ(t), (4)

where Ji(ξ) � J̄i(ξ)Jξ(q) ∈ Rmi×(6+n). Furthermore,
omitting dependencies for readability, the task accelera-
tion is given by

ẍi = Jiζ̇ + J̇iζ

= JiM
−1(τ −Cζ −Dζ − g) + J̇iζ.

(5)

Then, by collecting dynamic terms as

n = Cζ +Dζ + g, (6)

and defining the task inertia (assuming Ji has full rank)

Λi = (JiM
−1JT

i )−1 ∈ Rmi×mi , (7)

we may express the dynamics of the task by

Λiẍi = ΛiJiM
−1(τ − n) +ΛiJ̇iζ. (8)

Systems that are redundant with respect to some task xi

are generally able to complete other tasks by projecting
control forces and moments into the null space of that
task. The dynamically consistent null space projectors
associated with each task is given by (Khatib et al., 2004)

N1 = In+6, Ni+1 =
Ä
In+6 −NiJ

T
i (J†

i )
T
ä
Ni, (9)

where
J†
i = M−1JT

i Λi (10)

is the inertia-weighted pseudoinverse of Ji. Using the null
space projectors, it is possible to define the prioritized task
inertia (Khatib et al., 2004) as

Λi = (JiN
T
i M−1NiJ

T
i )−1 = (JiM

−1NiJ
T
i )−1, (11)

given that NiJ
T
i has full rank (i.e. that the task is

kinematically compatible with higher priority tasks). If
the converse is true, (JiM

−1NiJ
T
i ) will be singular.

Eigenvalue decomposition of (JiM
−1NiJ

T
i ) reveals the

null space controllable dimensions of the task (Khatib
et al., 2004).

Remark 1. Henceforth, mi is considered to be equal to the
number of controllable dimensions in the task.

For a system with r tasks, the control input is chosen as

τ = N1τ1 +N2τ2 + ...+Nrτr +n =

r∑
i=1

Niτi +n, (12)

where τ1, τ2, ..., τr are control inputs corresponding to the
r different tasks while the nonlinear dynamics (6) are
cancelled directly. The task-level control inputs are chosen
such that they linearize the task dynamics, i.e.

τi = JT
i Λi

Å
ai − J̇iζ − JiM

−1
i−1∑
j=1

Njτj

ã
, (13)

where ai is the desired task acceleration to be defined later.

Remark 2. The sum in (13) is by definition zero for i = 1.

The dynamically consistent null space projectors satisfy

JiM
−1Nj = 0, i < j, (14)

that is, they remove any effects from τi on the higher pri-
oritized tasks. Null space projectors constructed without
using the inertia weighted Jacobian inverse in (10) will still
be kinematically consistent. That is, they satisfy

JiNj = 0, i < j, (15)

but may not be dynamically consistent and thus a coupling
between tasks will remain at the dynamic level. The closed-
loop task-level dynamics are found by insertion of (12) and

(13) into (8) such that

ẍi = JiM
−1NiJ

T
i Λi

Å
ai − J̇iζ − JiM

−1
i−1∑
j=1

Njτj

ã

+ JiM
−1

r∑
j=1,j �=i

Njτj + J̇iζ (16)

= ai

where (14) and JiM
−1NiJ

T
i Λi = I have been applied. It

can be observed that the closed-loop dynamics are linear
as long as the system model is perfectly known.

3.2 Effects of modelling errors

So far it has been assumed that terms in the system
dynamics can be perfectly cancelled by the control law.
A mathematical model of a real system, however, will in-
evitably contain parameter uncertainties (Nakanishi et al.,
2008). Analysis of the effects of modelling errors has
already been done by Antonelli et al. (2018); Di Lillo
et al. (2021). With this section, we intend to extend their
analysis. We derive the disturbance term in an explicit
form and examine effects of modelling errors both up and
down the task hierarchy. In the presence of model errors,
it is reasonable to rewrite (13) to task-level control inputs
in the form

τi = JT
i Λ̂i

Å
ai − J̇iζ − JiM̂

−1
i−1∑
j=1

N̂jτj

ã
, (17)

where the symbol ·̂ implies an estimate. Analogously
to Di Lillo et al. (2021), we will consider parameter
uncertainties in the dynamics, while the system kinematics
(such as Ji) are considered known. The complete control
law then takes the form of

τ =
r∑

i=1

N̂iτi + n̂

=

r∑
i=1

N̂iJ
T
i Λ̂i

Å
ai − J̇iζ − JiM̂

−1
i−1∑
j=1

N̂jτj

ã
+ n̂.

(18)
Inserting (18) into (8) gives

ẍi = JiM
−1

Å r∑
j=1

N̂jτj + n̂− n

ã
+ J̇iζ. (19)

We proceed by splitting the control input in three different
parts, namely when j < i, j = i, and j > i. This corre-
sponds to control contributions from higher priority tasks,
the current task, and lower priority tasks, respectively. The
dynamics of the current task then becomes

ẍi = JiM
−1

i−1∑
j=1

N̂jτj

+ JiM
−1N̂iJ

T
i Λ̂i

Å
ai − J̇iζ − JiM̂

−1
i−1∑
j=1

N̂jτj

ã

+ JiM
−1

r∑
j=i+1

N̂jτj + JiM
−1(n̂− n) + J̇iζ.

(20)
We have that

JiM
−1N̂iJ

T
i Λ̂i � (Λ

i|‘i−1
)−1Λ̂i � Λ̃i, (21)
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Fig. 2. Conceptual overview of connections between tasks

where (Λ
i|‘i−1

)−1 is an inverse task inertia based on the

true system inertia. It is projected into an estimate of
the dynamically consistent null space by N̂i. By collecting
terms and using definition (21) we then obtain

ẍi = Λ̃iai +
Ä
I − Λ̃i

ä
J̇iζ + JiM

−1ñ

+
Ä
JiM

−1 − Λ̃iJiM̂
−1
ä i−1∑

j=1

N̂jτj

+ JiM
−1

r∑
j=i+1

N̂jτj

� Λ̃iai + di(t, ξ, ζ, τ ),

(22)

which describes the closed-loop task-level dynamics in the
presence of modelling errors. Firstly, (22) has an uncertain

input matrix Λ̃i. Several disturbances, collected in di,
affect the dynamics of each task. These include imperfect
cancellation of the joint-space dynamics n defined in (6),

the Coriolis term J̇iζ, and both top-down and bottom-up
disturbances. The last two are caused by coupled task
dynamics. Task controls from different tasks may thus
propagate both up and down the task levels. The partially
compensated top-down disturbancesÄ
JiM

−1 − Λ̃iJiM̂
−1
ä∑i−1

j=1 N̂jτj appear since they can

not be compensated exactly by (17). The bottom-up

disturbances JiM
−1

∑r
j=i+1 N̂jτj are generated by lower-

prioritized tasks on tasks with higher priorities due to the
fact that, when the correct inertia matrix is not used, the
null space projectors are no longer dynamically consistent.
That is, (14) does not hold, and the tasks affect each other
at the dynamic level. Thus, all task-level control inputs
may affect all tasks as illustrated in Fig. 2. This coupling
in control inputs, may lead to an algebraic loop, where
the task-level control input becomes part of the task-level
disturbance term di. The consequences of this will be
further analyzed in Section 4.2.

3.3 Task-level control

A typical choice for the desired task acceleration is

ai = ẍd
i −KD,i

˙̃xi −KP,ix̃i (23)

which is a proportional-derivative (PD) controller with a
task acceleration feedforward term ẍd

i . The task error is

defined as x̃i � xi − xd
i , where xd

i is the desired task
trajectory. The gains KP,i and KD,i are positive definite
matrices. Without any modelling errors, the dynamics of
the task tracking error are linear with an exponentially
stable (ES) equilibrium. The presence of modelling errors,
however, complicates the task dynamics significantly as
seen in (22).

In order to compensate for this, we consider a control law
with stronger robustness properties than (17), (23). SMC
is known to be able to handle uncertain input coefficients
and time- and state-dependent perturbations. Traditional
first-order sliding mode requires knowledge of the upper
bound of the disturbances and is highly prone to chatter-
ing. For these reasons, we will instead use the generalized
STA (GSTA), which can theoretically compensate for un-
bounded disturbances and has a continuous control input.

In the scalar case, the GSTA control approach is described
by the differential equation (Moreno, 2009)

uGSTA = −αφ1(σ) + v, v̇ = −βφ2(σ), (24)

where

φ1(σ) = �σ� 1
2 + Lσ, (25a)

φ2(σ) =
1

2
�σ�0 + 3

2
L�σ� 1

2 + L2σ, (25b)

and �a�b � |a|b sgn(a). The control law has three gains
α, β, L ∈ R, and uses a sliding variable σ ∈ R, to be
designed. The applied control signal is continuous due to
the integration of the sign term in (24) (uGSTA ∈ C0). We
choose the task-level sliding variable as

σi(x) = ˙̃xi +Ωix̃i, (26)

with Ωi � 0. This choice is made so that on the surface
S � {x : σi(x) = 0} in the state space, the task dynamics
become

˙̃xi = −Ωix̃i (27)

and converge exponentially to the equilibrium x̃i = 0.
The scalar control law (24) can be applied independently
on each degree of freedom (DoF) of a task by defining

ai = −Aiφ1(σi) + vi + ẍr
i v̇i = −Biφ2(σi), (28)

where Ai and Bi are diagonal gain matrices, ẍr = ẍd
i −

Ωi
˙̃xi, and φ1(σi) and φ2(σi) are the functions φ1(·) and

φ2(·) applied element-wise on σi, respectively.

4. STABILITY ANALYSIS

In this section, we analyze the task dynamics with the
PD control law (23) and the STA (28), and discuss
the properties of the resulting closed-loop system. Some
fundamental challenges of controlling the system in the
presence of modelling errors are discussed.

Assumption 3. A set of r tasks are considered, such that
the total number of controllable task dimensions is equal
to the number of DoFs of the system. Additionally, it is
assumed that the trajectories of the system stay away from
any singularities.

4.1 Without modelling errors

Without any model errors, the task dynamics are described
by (16). This means that all tasks are completely de-
coupled, implying that any control stabilizing each task
also stabilizes the whole system. Furthermore, the DoFs
within each task are decoupled, so that each dimension
can be controlled independently. The control problem thus
simplifies to stabilizing scalar, linear systems of the form

ẍij = aij , (29)

where j ∈ {1, . . . ,mi} denotes a dimension in task xi. As
mentioned, using the PD control law (23) gives a linear
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where (Λ
i|‘i−1

)−1 is an inverse task inertia based on the

true system inertia. It is projected into an estimate of
the dynamically consistent null space by N̂i. By collecting
terms and using definition (21) we then obtain

ẍi = Λ̃iai +
Ä
I − Λ̃i

ä
J̇iζ + JiM

−1ñ

+
Ä
JiM

−1 − Λ̃iJiM̂
−1
ä i−1∑

j=1

N̂jτj

+ JiM
−1

r∑
j=i+1

N̂jτj

� Λ̃iai + di(t, ξ, ζ, τ ),

(22)

which describes the closed-loop task-level dynamics in the
presence of modelling errors. Firstly, (22) has an uncertain

input matrix Λ̃i. Several disturbances, collected in di,
affect the dynamics of each task. These include imperfect
cancellation of the joint-space dynamics n defined in (6),

the Coriolis term J̇iζ, and both top-down and bottom-up
disturbances. The last two are caused by coupled task
dynamics. Task controls from different tasks may thus
propagate both up and down the task levels. The partially
compensated top-down disturbancesÄ
JiM

−1 − Λ̃iJiM̂
−1
ä∑i−1

j=1 N̂jτj appear since they can

not be compensated exactly by (17). The bottom-up

disturbances JiM
−1

∑r
j=i+1 N̂jτj are generated by lower-

prioritized tasks on tasks with higher priorities due to the
fact that, when the correct inertia matrix is not used, the
null space projectors are no longer dynamically consistent.
That is, (14) does not hold, and the tasks affect each other
at the dynamic level. Thus, all task-level control inputs
may affect all tasks as illustrated in Fig. 2. This coupling
in control inputs, may lead to an algebraic loop, where
the task-level control input becomes part of the task-level
disturbance term di. The consequences of this will be
further analyzed in Section 4.2.

3.3 Task-level control

A typical choice for the desired task acceleration is

ai = ẍd
i −KD,i

˙̃xi −KP,ix̃i (23)

which is a proportional-derivative (PD) controller with a
task acceleration feedforward term ẍd

i . The task error is

defined as x̃i � xi − xd
i , where xd

i is the desired task
trajectory. The gains KP,i and KD,i are positive definite
matrices. Without any modelling errors, the dynamics of
the task tracking error are linear with an exponentially
stable (ES) equilibrium. The presence of modelling errors,
however, complicates the task dynamics significantly as
seen in (22).

In order to compensate for this, we consider a control law
with stronger robustness properties than (17), (23). SMC
is known to be able to handle uncertain input coefficients
and time- and state-dependent perturbations. Traditional
first-order sliding mode requires knowledge of the upper
bound of the disturbances and is highly prone to chatter-
ing. For these reasons, we will instead use the generalized
STA (GSTA), which can theoretically compensate for un-
bounded disturbances and has a continuous control input.

In the scalar case, the GSTA control approach is described
by the differential equation (Moreno, 2009)

uGSTA = −αφ1(σ) + v, v̇ = −βφ2(σ), (24)

where

φ1(σ) = �σ� 1
2 + Lσ, (25a)

φ2(σ) =
1

2
�σ�0 + 3

2
L�σ� 1

2 + L2σ, (25b)

and �a�b � |a|b sgn(a). The control law has three gains
α, β, L ∈ R, and uses a sliding variable σ ∈ R, to be
designed. The applied control signal is continuous due to
the integration of the sign term in (24) (uGSTA ∈ C0). We
choose the task-level sliding variable as

σi(x) = ˙̃xi +Ωix̃i, (26)

with Ωi � 0. This choice is made so that on the surface
S � {x : σi(x) = 0} in the state space, the task dynamics
become

˙̃xi = −Ωix̃i (27)

and converge exponentially to the equilibrium x̃i = 0.
The scalar control law (24) can be applied independently
on each degree of freedom (DoF) of a task by defining

ai = −Aiφ1(σi) + vi + ẍr
i v̇i = −Biφ2(σi), (28)

where Ai and Bi are diagonal gain matrices, ẍr = ẍd
i −

Ωi
˙̃xi, and φ1(σi) and φ2(σi) are the functions φ1(·) and

φ2(·) applied element-wise on σi, respectively.

4. STABILITY ANALYSIS

In this section, we analyze the task dynamics with the
PD control law (23) and the STA (28), and discuss
the properties of the resulting closed-loop system. Some
fundamental challenges of controlling the system in the
presence of modelling errors are discussed.

Assumption 3. A set of r tasks are considered, such that
the total number of controllable task dimensions is equal
to the number of DoFs of the system. Additionally, it is
assumed that the trajectories of the system stay away from
any singularities.

4.1 Without modelling errors

Without any model errors, the task dynamics are described
by (16). This means that all tasks are completely de-
coupled, implying that any control stabilizing each task
also stabilizes the whole system. Furthermore, the DoFs
within each task are decoupled, so that each dimension
can be controlled independently. The control problem thus
simplifies to stabilizing scalar, linear systems of the form

ẍij = aij , (29)

where j ∈ {1, . . . ,mi} denotes a dimension in task xi. As
mentioned, using the PD control law (23) gives a linear

closed-loop system with an ES origin. Similarly, it is well
known that applying the STA control law (24) to (29)
makes σij go to zero in finite time, after which the origin
xij = 0 is ES (Moreno, 2009).

Remark 4. As the task dynamics (16) depend on the total
system configuration, global results cannot be obtained,
due to potential kinematic singularities.

4.2 With modelling errors

Applying the PD control law (23) to the system with
modeling errors (22) yields the closed-loop task dynamics

¨̃xi + Λ̃i(KD,i
˙̃xi +KP.ix̃i) = di + (Λ̃i − I)ẍd

i . (30)

When the system dynamics are imperfectly cancelled,
the dimensions of each task are no longer decoupled,
as discussed in Section 3.2. It has been demonstrated
previously (Borlaug et al., 2022) that the GSTA (28)
performs well in spite of this. Differentiating (26) with
respect to time and inserting (22) with control law (28)
yields the dynamics of the sliding variable as

σ̇i = ¨̃xi +Ω ˙̃x

= Λ̃i

(
−Aiφ1(σi) + vi + ẍr

i

)
+ di − ẍr

i

= Λ̃i

(
−Aiφ1(σi) + vi

)
+ (Λ̃i − I)ẍr

i + di. (31)

This can be seen as mi coupled scalar systems, given by

σ̇ij = λ̃ijuGSTA,ij + ẍr
ij(λ̃ij − 1) + dij + cij , (32)

where λ̃ij is the j-th diagonal element of Λ̃i, dij the j-th
element of di, aij the j-th element of ai, and cij contains
all coupling terms from the remaining task dimensions.
That is, cij will contain off-diagonal elements in Λ̃i, di,
and so on.

An obvious issue arises if the inertia matrix Λ̃i is com-
pletely unknown. In general, assumptions must be made
about the properties of this matrix in order to apply our
proposed control laws. An additional problem caused by
incorrect knowledge of M , is the coupling between control
inputs across tasks, cf. Fig. 2. To examine the effects of this
coupling, we consider what happens at any point where
¨̃xi = 0. At such a point, the task-level control would
have to match the disturbance di in order to keep perfect
tracking, that is

0 = ẍi − ẍd
i (33)

= Λ̃iai + di − ẍd
i (34)

=⇒ ai = Λ̃−1
i ẍd

i − Λ̃−1
i di (35)

which can be written more explicitly as

ai = Λ̃−1
i ẍd

i − (Λ̃−1
i − I)J̇iζ + Λ̃−1

i JiM
−1ñ

+
Ä
Λ̃−1

i JiM
−1 − JiM̂

−1
ä i−1∑

j=1

N̂jτj

+ Λ̃−1
i JiM̂

−1
r∑

j=i+1

N̂jτj ,

(36)

where all τj are given by (13). Thus, the task-level control
has to cancel both top-down and bottom-up disturbances
caused by all other control inputs τj . Since the same is true
for all other task levels, an algebraic loop appears. This
holds regardless of which task-level control law is used.
The effects of any higher- or lower-priority control τj on

xi are scaled by
Ä
JiM

−1 − Λ̃iJiM̂
−1
ä
or JiM̃

−1N̂j , re-

spectively, both of which vanishes with perfect knowledge
of M . Depending on the accuracy of M̂ , this effect may
cause the control input to grow unbounded and render
any task-level control law useless. The effects caused by
incorrect cancellation of the nonlinear effects n are easier
to handle, since it is not directly dependent on the other
task-level controls.

Since the terms in the disturbance di are generally nonva-
nishing, a PD controller will not be able to perfectly com-
pensate for them. Therefore, the best possible performance
using a PD control law would be to bring the tracking error
x̃i within some bound around 0, with the size of the bound
depending on di. The GSTA control law (28) has stronger
robustness properties which should allow it to compensate
for the disturbances to a higher degree. Application of
GSTA, meanwhile, means that the disturbance term di

becomes non-Lipschitz and even harder to compensate for.

The challenges detailed in this section prevent us from
reaching any definite conclusions on the stability proper-
ties of the system (22) with the control law (23) or (28)
without making inelegant assumptions. However, as will
be demonstrated in Section 5 (and has been shown in a
variety of other works), practical implementation of OSC
tends to perform fairly well.

5. SIMULATIONS

In this section, we investigate the performance of the
control law (12), (13) together with the PD law (23) and
the GSTA law (28), respectively, through a simulation
study. The UVMS used in the simulations is the AIAUV
“Eelume” (Liljebäck and Mills, 2017; Schmidt-Didlaukies
et al., 2018) depicted in Fig. 1. The simulations were run
in Matlab with ODE1 and a fixed step size of 0.01s.

Task-priority control of AIAUVs has been investigated
across several works. In Borlaug et al. (2022) and Ivers-
flaten et al. (2022), inverse kinematics control was applied,
and the dynamics were controlled by sliding mode control
(SMC). In Basso and Pettersen (2020), feedback lineariza-
tion in a task-priority OSC framework was investigated for
and applied to an AIAUV but relied on perfect dynamic
model knowledge. Model knowledge was utilized also in
Sæbø et al. (2022), where the passivity-based method in
Dietrich and Ott (2020) was applied to an AIAUV and
first-order SMC was adopted at each task level.

Eelume is a modular, slender, and multi-articulated vehicle
with no separate base. Due to its many DoFs, redundancy
resolution is an important element of AIAUV control.
The modularity allows the robot to be easily reconfig-
ured, which affects its weight distribution and balance.
Obviously, it is infeasible to derive new model parameters
with every configuration change. Correctly modelling this
robot for the purpose of simulation is considered “im-
mensely challenging” (Schmidt-Didlaukies et al., 2018).
These characteristics make Eelume a prime candidate for
the simulation study.

The simulation model of the robot has been derived by
perturbing the nominal controller model (1). The inertia
matrix (and consequently the Coriolis matrix (Fossen,
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2011)) has been modified by changing the added mass
coefficients in all DoFs. Both linear and nonlinear damping
coefficients have been perturbed as well. The nominal and
perturbed parameters are shown in Table 1.

The simulated AIAUV has nine links and n = 8 joints,
yielding a total of 14 DoFs. Seven thrusters are positioned
along the robot. Since Eelume has no separate robot base,
both of its ends can be viewed as end-effectors. Therefore,
it is logical to attempt to control the configuration of both
ends. We choose the “tail” (henceforth denoted “base” for
familiarity) configuration as the highest-prioritized task,
and “head” (denoted “end-effector”) as the second. The
first task and its error can be expressed as

x1 =

ï
pi
ib
ε

ò
, x̃1 =

ï
pi
ib − pi

ib,d

ηεd − ηdε+ S(ε)εd

ò
, (37)

where pI
IB,d and qd =

[
ηd, ε

T
d

]T
is the desired base

position and attitude, respectively. The vector part of
the quaternion is sufficient for attitude representation
due to its unit length constraint. Analogously, the end-
effector configuration is defined as the second task, x2. At
most, these two tasks consume m1 + m2 = 6 + 6 = 12
DoFs of the system. To ensure that no DoFs are left
uncontrolled, a final task was chosen, which was to keep
the joint velocities at zero. In practice, the eigenvalue
decomposition detailed in Section 3.1 is implemented with
a small threshold value εi to avoid inversion of arbitrarily
small elements. The controller gains were chosen equal
for the two main tasks. For the PD controller, they were
chosen as KP,1 = KP,2 = diag {0.5, 0.5, 0.5, 1, 1, 1} and
KD,1 = KD,2 = diag {5, 5, 5, 3, 3, 3}. The STA proved
to perform well with unit gains, so no further tuning
was performed, i.e. A1 = A2 = B1 = B2 = I6, and
L = 1. The final task only has a damping term, with
gain KD,3 = 10In. Moreover, the STA control law was
implemented with a continuous approximation of the sign
term, namely sgn(a) ≈ tanh(a/ε), where ε = 0.01, in order
to further attenuate any chattering.

We initialized the system in an S-shape (see Fig. 1)

(θ =
[
0,

π

3
, 0,

π

3
, 0,−π

3
, 0,−π

3

]T
), since it yields com-

patibility between the base and end-effector tasks. The
reference trajectories for the base and end-effector configu-
rations are shown in Fig. 3 and chosen such that the tasks
eventually cannot be completed simultaneously, i.e. that
m2 < 6. Figs. 4 and 5 show the tracking error of the base
and end-effector tasks both with the PD control law (23)
and the GSTA (28). It can be seen that the x-position and
pitch angle of the end-effector become uncontrollable just
before t = 40s. This happens since the end-effector tries to
move too far away from the base, such that N2J

T
2 drops

Table 1. Dynamic model parameters

Nominal Perturbed

Added mass coeff. 1 3
Nonlinear drag coeff. in surge 0.2 0.6
Nonlinear drag coeff. in roll 0.1 0.7
Nonlinear crossflow drag coeff. 0.5 0.1
Linear cross drag coeff. 0.1 0.8
Added mass ratio, surge 0.2 0.5
Linear drag parameter, surge 0.1 0.5
Linear drag parameter, roll 0.1 0.7

Fig. 3. The desired base and end-effector trajectories

Fig. 4. Comparison of the base configuration errors using
PD and STA control

rank. It is clear that the GSTA exhibits superior tracking
to the PD controller in the controllable dimensions of
both tasks. Lastly, Fig. 6 shows the control forces and
moments generated by both control laws. Notably, the
sliding mode control signal in the upper plot oscillates
compared to the PD control input. The control signal
is however still continuous, and the oscillations are fairly
small with a frequency of around 1 Hz and an amplitude
less than 1 N. Thus the increased robustness compared to
the PD controller may be worth the additional chattering
depending on the system.

Remark 5. The transition that happens as m2 first de-
creases causes a discontinuity in the control just before
t = 40s but is of no significance in the context of this
work.

6. CONCLUSIONS AND FUTURE WORK

In this paper, the task-priority OSC problem was formu-
lated for UVMSs whose dynamic model has parameter
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coefficients in all DoFs. Both linear and nonlinear damping
coefficients have been perturbed as well. The nominal and
perturbed parameters are shown in Table 1.

The simulated AIAUV has nine links and n = 8 joints,
yielding a total of 14 DoFs. Seven thrusters are positioned
along the robot. Since Eelume has no separate robot base,
both of its ends can be viewed as end-effectors. Therefore,
it is logical to attempt to control the configuration of both
ends. We choose the “tail” (henceforth denoted “base” for
familiarity) configuration as the highest-prioritized task,
and “head” (denoted “end-effector”) as the second. The
first task and its error can be expressed as
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where pI
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is the desired base

position and attitude, respectively. The vector part of
the quaternion is sufficient for attitude representation
due to its unit length constraint. Analogously, the end-
effector configuration is defined as the second task, x2. At
most, these two tasks consume m1 + m2 = 6 + 6 = 12
DoFs of the system. To ensure that no DoFs are left
uncontrolled, a final task was chosen, which was to keep
the joint velocities at zero. In practice, the eigenvalue
decomposition detailed in Section 3.1 is implemented with
a small threshold value εi to avoid inversion of arbitrarily
small elements. The controller gains were chosen equal
for the two main tasks. For the PD controller, they were
chosen as KP,1 = KP,2 = diag {0.5, 0.5, 0.5, 1, 1, 1} and
KD,1 = KD,2 = diag {5, 5, 5, 3, 3, 3}. The STA proved
to perform well with unit gains, so no further tuning
was performed, i.e. A1 = A2 = B1 = B2 = I6, and
L = 1. The final task only has a damping term, with
gain KD,3 = 10In. Moreover, the STA control law was
implemented with a continuous approximation of the sign
term, namely sgn(a) ≈ tanh(a/ε), where ε = 0.01, in order
to further attenuate any chattering.

We initialized the system in an S-shape (see Fig. 1)

(θ =
[
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), since it yields com-

patibility between the base and end-effector tasks. The
reference trajectories for the base and end-effector configu-
rations are shown in Fig. 3 and chosen such that the tasks
eventually cannot be completed simultaneously, i.e. that
m2 < 6. Figs. 4 and 5 show the tracking error of the base
and end-effector tasks both with the PD control law (23)
and the GSTA (28). It can be seen that the x-position and
pitch angle of the end-effector become uncontrollable just
before t = 40s. This happens since the end-effector tries to
move too far away from the base, such that N2J
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2 drops

Table 1. Dynamic model parameters

Nominal Perturbed

Added mass coeff. 1 3
Nonlinear drag coeff. in surge 0.2 0.6
Nonlinear drag coeff. in roll 0.1 0.7
Nonlinear crossflow drag coeff. 0.5 0.1
Linear cross drag coeff. 0.1 0.8
Added mass ratio, surge 0.2 0.5
Linear drag parameter, surge 0.1 0.5
Linear drag parameter, roll 0.1 0.7

Fig. 3. The desired base and end-effector trajectories

Fig. 4. Comparison of the base configuration errors using
PD and STA control

rank. It is clear that the GSTA exhibits superior tracking
to the PD controller in the controllable dimensions of
both tasks. Lastly, Fig. 6 shows the control forces and
moments generated by both control laws. Notably, the
sliding mode control signal in the upper plot oscillates
compared to the PD control input. The control signal
is however still continuous, and the oscillations are fairly
small with a frequency of around 1 Hz and an amplitude
less than 1 N. Thus the increased robustness compared to
the PD controller may be worth the additional chattering
depending on the system.

Remark 5. The transition that happens as m2 first de-
creases causes a discontinuity in the control just before
t = 40s but is of no significance in the context of this
work.

6. CONCLUSIONS AND FUTURE WORK

In this paper, the task-priority OSC problem was formu-
lated for UVMSs whose dynamic model has parameter

Fig. 5. Comparison of the end-effector configuration errors
using PD and STA control

Fig. 6. Control forces and moments in both control laws

uncertainties. The resulting task-level dynamics were ana-
lyzed for the case with an arbitrary number of tasks. The
analysis revealed that every task level may suffer from an
algebraic loop due to the presence of both top-down and
bottom-up disturbances. The analysis is applicable also for
other VMSs, which can be viewed as special cases of the
UVMS model (1). A simulation study using an AIAUV was
conducted which validated the aforementioned analysis.
We implemented a task-level GSTA in an attempt to
achieve satisfactory tracking in the presence of large errors
in the dynamic model parameters. This control approach
was compared to a standard PD controller and displayed
significantly improved robustness. Future work will focus
on experimental validation.
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