
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t. 
of

 In
fo

rm
at

io
n 

Se
cu

rit
y 

an
d 

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Fridtjof Storm Flaate

Shining Light on the Black Box

Detection System for Adversarial Attacks on Skin
Lesion Classifiers

Master’s thesis in Communication Technology and Digital Security
Supervisor: Sule Yildirim Yayilgan
June 2023





Fridtjof Storm Flaate

Shining Light on the Black Box

Detection System for Adversarial Attacks on Skin
Lesion Classifiers

Master’s thesis in Communication Technology and Digital Security
Supervisor: Sule Yildirim Yayilgan
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology





Title: Shining Light on the Black Box
Detection System for Adversarial Attacks on Skin Lesion Classifiers

Student: Fridtjof Storm Flaate

Problem description:

Artificial intelligence (AI) has the potential to assist doctors in improving various
applications within the healthcare industry. With the ability to analyze large amounts
of data and identify patterns, AI can support doctors in performing and improving
medical diagnosis, drug discovery, personalized treatment, and disease management.
AI can also help streamline administrative tasks, reduce costs, and increase efficiency
in healthcare systems.

Over the past few years, there has been a significant shift in the field of image
recognition with the introduction of Convolutional Neural Networks (CNNs). These
advanced deep-learning algorithms have revolutionized the way we process and
analyze images. In addition, CNNs have proven to be highly effective at identifying
image features, allowing for more accurate object recognition and classification.
CNN is beneficial in healthcare, where accurately diagnosing and classifying medical
conditions with image recognition can significantly improve patient outcomes.

Despite this, the models used to assist in diagnosis have shown to be vulnerable
to attacks in which images are deliberately perturbed. These perturbations are
undetectable to the human eye and are mathematically generated to deceive doctors
in diagnosing results. Previous research has identified patterns and correlations
within the deep models. Particularly low-level kernels. While processing perturbed
images, as presented in an earlier master thesis [Orv22]. In this thesis, we aim to
investigate further the identified patterns and deep model parameters (the model’s
internal state) to explore the potential for developing an adversarial detection and
mitigation model. By delving deeper into these patterns and parameters, we can gain
a comprehensive understanding of how the model behaves in response to adversarial
attacks and develop strategies to enhance its robustness and security.

Approved on: 2023-04-18
Main supervisor: Yayilgan, Sule Yildirim, NTNU IIK





Abstract

This Master’s thesis addresses the critical cybersecurity challenges as-
sociated with implementing Convolutional Neural Networks (CNN) in
early skin lesion detection. With the alarming rate of melanoma skin
cancer diagnoses and its significant mortality rate, CNN-aided skin lesion
classifiers present an innovative solution for early detection and improved
patient outcomes. However, their susceptibility to fraudulent manipula-
tion and adversarial attacks can lead to dangerous consequences, from
financial exploitation to ’medical hacking’. Our research identifies a gap
in the existing literature where a deep-dive exploration into the ’black
box’ of CNNs facilitates a new approach to detecting adversarial attacks.

Utilizing multiple CNN architectures, including Inception V3 and
ResNet-18, trained on datasets such as ISIC 2018 and ISIC 2019. The
thesis aims to create a detection model attached to the CNN skin le-
sion models to detect adversarial attacks. We found that certain CNN
components, namely, feature maps (outputs of convolutional layers), ac-
tivated feature maps (non-linear activation function applied to feature
maps), and dense layer weights, are key to identifying adversarial attacks.
The detection models we developed demonstrated broad generalizability
across various adversarial attacks, including those they were not initially
designed to detect. This suggests an advancement in tackling adversarial
attacks in CNNs. Our technique is fully automated and suitable for real-
time applications where latency for adversarial detection is an important
factor.





Sammendrag

Denne masteroppgaven tar sikte på å adressere cybersikkerhetsutford-
ringene knyttet til implementeringen av dype nevrale nettverk i tidlig
påvisning av føflekker og hudlesjoner. Dype nevrale nettverk er en innova-
tiv løsning for å effektivisere klassifiseringen av føflekker og hudlesjoner.
En nedside ved disse dype nevrale nettverkene er at de er høyt mot-
takelig for manipulasjon og angrep. Disse angrepene kan komme med
fatale konsekvenser, fra økonomisk forsikrings utnyttelse til ’medisinsk
hacking’. I denne masteroppgaven identifiserer vi et gap i den eksisterende
litteraturen, der et dypdykk inn i den ’svarte boksen’ til de dype nevrale
nettverkene, kan brukes til å oppdage disse angrepene.

I oppgaven vil det bli brukt flere dyper nevrale nettverk arkitekturer,
inkludert Inception V3 og ResNet-18, trent på forskjellige datasett som
ISIC 2018 og ISIC 2019. Oppgaven tar sikte på å lage en deteksjonsmo-
dell som er festet til disse dype nevral nettverkene, og som kan dermed
detektere angrepene. Vi fant ut at visse komponenter, nemlig feature
maps, aktiverte feature maps (ikke-lineær aktiveringsfunksjon brukt på
feature maps), og dense layers, er nøkkelen til å identifisere disse an-
grepene. Deteksjonsmodellene vi utviklet viser bred generaliserbarhet
på tvers av en rekke angrep, inkludert de de i utgangspunktet ikke var
designet for å oppdage. Dette antyder et fremskritt i å takle angrep i
dype nevrale nettverk. Teknikken vår er helautomatisert og egnet for
sanntidsapplikasjoner, hvor ventetid for deteksjon er en viktig faktor.





Preface

The Master’s thesis is part of my Master of Science in Communication
Technology and Digital Security, the thesis is linked to the prelimenary
project Understanding Mitigation Against Adversarial Attacks on Skin
Lesion Classifiers, which was conducted in the autumn of 2022 [Fla22].

I am pleased to present this work, which represents the culmination of
intensive research, rigorous analysis, and meticulous attention to detail.
This journey has been one of constant learning, filled with challenges
that tested my patience, resilience, and intellectual rigor. As with any
significant undertaking, I could not have accomplished this alone.

Firstly, I would like to express gratitude to my advisor, Sule Yildirim
Yayilgan. I appreciate the guidance and insightful discussions, which
have been invaluable throughout this process. I am also grateful to
Norwegian University of Science and Technology (NTNU) for providing
the environment and resources that I needed to conduct my research.

Furthermore, I would like to thank Leaf Consulting and Start NTNU
for their generous support and providing five good years at NTNU.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Signum Function . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Measuring the Magnitude of Vectors . . . . . . . . . . . . . . 5
2.1.3 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Machine Learning Background . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Supervised vs. Unsupervised Learning . . . . . . . . . . . . . 8
2.2.3 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Convolutional Neural Network . . . . . . . . . . . . . . . . . 10
2.2.6 Important definitions: . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Deep Learning in Health Care . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Skin Lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Assisting Medical Professionals with Deep Learning . . . . . 16

3 Adversarial attacks 17
3.1 Concept introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Adversarial Attack Scenario . . . . . . . . . . . . . . . . . . . 18
3.2 High-Level Taxonomy of Adversarial Attacks . . . . . . . . . . . . . 20

3.2.1 Stage of Attack Implementation . . . . . . . . . . . . . . . . 20
3.2.2 Goal of the Attacker . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.3 Attackers Capabilities . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Attackers Knowledge . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Examples of adversarial attacks . . . . . . . . . . . . . . . . . . . . . 23
3.3.1 Fast Gradient Sign Method . . . . . . . . . . . . . . . . . . . 23
3.3.2 One-step Target Class Method . . . . . . . . . . . . . . . . . 24

vii



3.3.3 Iterative Fast Gradient Sign Method . . . . . . . . . . . . . . 25
3.3.4 Universal Adversarial Perturbation . . . . . . . . . . . . . . . 26
3.3.5 DeepFool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.6 Projected Gradient Descent . . . . . . . . . . . . . . . . . . . 27
3.3.7 Carlini & Wagner . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Transferability of adversarial attacks . . . . . . . . . . . . . . . . . . 30

4 Related work 31
4.1 Gradient Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Method implementation . . . . . . . . . . . . . . . . . . . . . 31
4.1.2 Security performance . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Input transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.1 Method Implementations . . . . . . . . . . . . . . . . . . . . 33
4.2.2 Security performance . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Adversarial training . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.1 Method implementation . . . . . . . . . . . . . . . . . . . . . 35
4.3.2 Security performance . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Adversarial Detector Subnetwork . . . . . . . . . . . . . . . . . . . . 37
4.4.1 Method Implementation . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Security Performance . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Investigating Adversarial Impact on CNN Activations . . . . . . . . 39

5 Methodology 41
5.1 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Generalizibility . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Iterative Process . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Experimental Research . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.3 Guiding Requirements . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Selection of Deep Learning Framework . . . . . . . . . . . . . . . . . 48
5.3.1 Advantages of Pytorch . . . . . . . . . . . . . . . . . . . . . . 48
5.3.2 Comparison of PyTorch and TensorFlow . . . . . . . . . . . . 48
5.3.3 Rationale for Choosing PyTorch . . . . . . . . . . . . . . . . 48

5.4 Hardware Setup and OS . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Selection of Attack Software Framework . . . . . . . . . . . . . . . . 50

5.5.1 Attack Libraries: Torchattacks vs. Foolbox vs. Adversarial
Robustness Toolbox . . . . . . . . . . . . . . . . . . . . . . . 50

5.5.2 Rationale for Choosing Torchattacks . . . . . . . . . . . . . . 50
5.6 Selection of Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6.1 International Skin Imaging Collaboration Datasets . . . . . . 51
5.6.2 Rationale for Choosing ISIC 2018 and ISIC 2019 . . . . . . . 51



5.7 Selection of Skin Lesion Classification Architechtures . . . . . . . . . 53
5.7.1 Inception V3 Architechture . . . . . . . . . . . . . . . . . . . 53
5.7.2 ResNet-18 Architechture . . . . . . . . . . . . . . . . . . . . . 54
5.7.3 Rationale for choosing ResNet-18 and Inception V3 . . . . . . 55

5.8 Dataset Preproccessing . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.8.1 Addressing Dataset Imbalance . . . . . . . . . . . . . . . . . 57
5.8.2 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8.3 Image Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Development of Skin Lesion Classification Model . . . . . . . . . . . 60
5.9.1 Architechture Implementation . . . . . . . . . . . . . . . . . . 60
5.9.2 Challenges and Shortcomings in Model Fine-tuning . . . . . . 61
5.9.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.9.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.10 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.10.1 Selection of Adversarial Attacks . . . . . . . . . . . . . . . . . 64
5.10.2 Implementation of Adversarial Attacks . . . . . . . . . . . . . 64

5.11 Extraction of Features . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.11.1 Diversity of Components . . . . . . . . . . . . . . . . . . . . . 66
5.11.2 Feature Extraction Simplicity . . . . . . . . . . . . . . . . . . 67
5.11.3 Manageability of Data . . . . . . . . . . . . . . . . . . . . . . 67

5.12 Selection of Detection Model . . . . . . . . . . . . . . . . . . . . . . 68
5.12.1 Comparative Evaluation of Machine Learning Models . . . . 68
5.12.2 Rationale for Choosing Extreme Gradient Boosting . . . . . . 68

6 Experiments and Results 71
6.1 Experiment 1: Identifying Essential CNN Components for Ongoing

Adversarial Attack Detection . . . . . . . . . . . . . . . . . . . . . . 71
6.1.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 71
6.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Experiment 2: Evaluating the Generalizability of a Detection Model
for Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.3 Experiment 3: Exploring the trade-off between Resource usage and
Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7 Discussion 83



7.1 Comparison to Related Work . . . . . . . . . . . . . . . . . . . . . . 83
7.1.1 Comparison to Input Transformations and Detector Subnetwork 83
7.1.2 Performance on Adversarial Attacked Images . . . . . . . . . 84
7.1.3 Comparison of Methods . . . . . . . . . . . . . . . . . . . . . 85

7.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.1 Research Question 1 . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.2 Research Question 2 . . . . . . . . . . . . . . . . . . . . . . . 88
7.2.3 Research Question 3 . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.1 Parameter Tuning for Skin Lesion Classifiers . . . . . . . . . 91
7.3.2 Domain-Specific Knowledge in the Medical Field . . . . . . . 91
7.3.3 Number of Attachment Points for Detection Model . . . . . . 91
7.3.4 Selection of Feature Combinations . . . . . . . . . . . . . . . 91
7.3.5 Resource Bottleneck . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.6 Experimental Constraints . . . . . . . . . . . . . . . . . . . . 92

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.1 Standardization and Exploration of Attachment Points . . . . 93
7.4.2 Expanding the Architectural Exploration . . . . . . . . . . . 93
7.4.3 Broaden Scope Beyond Skin Lesions . . . . . . . . . . . . . . 93
7.4.4 Anamoly Detection . . . . . . . . . . . . . . . . . . . . . . . . 93

References 95

Appendix

A Experiment 1: Comprehensive Overview 103

B Experiment 1: Table results 105

C Experiment 2: Heatmaps 111

List of Figures

2.1 Visual representation of L1 norm of vector x = (2, 3) . . . . . . . . . . . 6
2.2 Visual representation of L2 norm of vector x = (2, 3) . . . . . . . . . . . 6
2.3 Visual representation of L∞ norm of vector x = (2, 3) . . . . . . . . . . 7
2.4 Visual representation of gradient descent . . . . . . . . . . . . . . . . . . 10

x



2.5 Visual representation of the convolution operation within a Convolutional
Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Visual representation of hierarchical feature learning in a Convolutional
Neural Network (CNN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Visual representation of the non-linear activation function Rectified Linear
Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.8 Visual representation of the eight skin lesions . . . . . . . . . . . . . . . 15

3.1 Illustration of a simple adversarial attack: a pig image subtly perturbed
to be misclassified as an airliner. . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Adversarial attack influencing a skin lesion classification. . . . . . . . . . 19
3.3 Fast Gradient Sign Method (FGSM) adversarial attack on a single skin

lesion image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Iterative Fast Gradient Sign Method (I-FGSM) adversarial attack on a

single skin lesion image. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Projected Gradient Descent (PGD) adversarial attack on a single skin

lesion image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Carlini & Wagner (CW) adversarial attack on a single skin lesion image. 29

4.1 Representation of the defended model which uses gradient masking . . . 32
4.2 Representation of the substitute model, which creates the adversarial

examples for the defended model. . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Illustration of the two-step input transformation process, WebP compres-

sion, and flip operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Illustration of the attachment points of the adversarial detector subnetwork

to a ResNet architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Illustration of the logarithmic distance between adversarial and benign

activations for each filter (kernel) output in the initial convolution layer. 39

5.1 Schematic illustration of the complete system overview. . . . . . . . . . 44
5.2 Illustration of a simple inception module, naive version . . . . . . . . . . 53
5.3 Illustration of a single residual learning building block . . . . . . . . . . 56
5.4 Schematic illustration of the preprocessing pipeline for the skin lesion

classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Distribution of Skin Lesion Categories in the ISIC 2018 Dataset before

and after the data augmentation. . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Distribution of Skin Lesion Categories in the ISIC 2019 Dataset before

and after the data augmentation. . . . . . . . . . . . . . . . . . . . . . . 59
5.7 Schematic illustration of the skin lesion classifier CNN model training. . 60
5.8 Schematic illustration of creating the adversarial attacks. . . . . . . . . 65
5.9 Schematic illustration of extracting features from the CNN and prepro-

cessing these features to create a dataset. . . . . . . . . . . . . . . . . . 66



6.2 Heatmap visualization on the transferability of adversarial attacks for the
Combination* features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Heatmap visualization on transferability of adversarial attacks for the
Combination** features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.4 Graph illustration of the number of training samples and the corresponding
detection accuracy for ResNet-18 architecture. . . . . . . . . . . . . . . 81

6.5 Graph illustration of the number of training samples and the corresponding
detection accuracy for Inception V3 architecture. . . . . . . . . . . . . . 82

A.1 Schematic illustration of Experiment 1 . . . . . . . . . . . . . . . . . . . 104

C.1 Heatmap visualization on the transferability of adversarial attacks for the
Combination* features on ResNet-18 architecture trained on International
Skin Imaging Collaboration (ISIC) 2018. . . . . . . . . . . . . . . . . . . 111

C.2 Heatmap visualization on transferability of adversarial attacks for the
Combination** features on ResNet-18 architecture trained on ISIC 2018. 112

C.3 Heatmap visualization on the transferability of adversarial attacks for the
Combination* features on ResNet-18 architecture trained on ISIC 2019. 113

C.4 Heatmap visualization on transferability of adversarial attacks for the
Combination** features on ResNet-18 architecture trained on ISIC 2019. 114

C.5 Heatmap visualization on the transferability of adversarial attacks for the
Combination* features on Inception V3 architecture trained on ISIC 2018. 115

C.6 Heatmap visualization on transferability of adversarial attacks for the
Combination** features on Inception V3 architecture trained on ISIC 2018. 116

C.7 Heatmap visualization on the transferability of adversarial attacks for the
Combination* features on Inception V3 architecture trained on ISIC 2019. 117

C.8 Heatmap visualization on transferability of adversarial attacks for the
Combination** features on Inception V3 architecture trained on ISIC 2019. 118

List of Tables

3.1 Summary of used symbols and their description. . . . . . . . . . . . . . 23

4.1 Security performance of two input transformation methods against various
white-box adversarial attacks. . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Security performance of adversarial training against various white-box
adversarial attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xii



4.3 Security performance of CNN detector subnetwork against various white-
box adversarial attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Summary of the Inception V3 architecture used for the experiments. . . 54
5.2 Summary of the ResNet-18 architecture used for the experiments. . . . 55
5.3 Comparison of model parameters used for training four skin lesion classifiers. 63
5.4 Performance outcomes of the four skin lesion classification models on their

respective test datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Adversarial attack methods used in the experiments and their respective
implementation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 List of component-metric pairs used in experiment 1 . . . . . . . . . . . 73
6.3 Average detection accuracy for component-metric pairs . . . . . . . . . . 74
6.4 Average computation time for adversarial attacks . . . . . . . . . . . . . 80

B.1 Results of the Fast Gradient Sign Method (FGSM) adversarial attack
from experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B.2 Results of the Iterative Fast Gradient Sign Method (I-FGSM) adversarial
attack from experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.3 Results of the Carlini & Wagner (CW) adversarial attack from experiment
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B.4 Results of the Projected Gradient Descent (PGD) adversarial attack from
experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.5 Results of the Fast Gradient Sign method (FGSM) adversarial attack
from experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

B.6 Results of the Iterative Fast Gradient Sign method (I-FGSM) adversarial
attack from experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.7 Results of the Carlini & Wagner (CW) adversarial attack from experiment
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B.8 Results of Projected Gradient Descent (PGD) adversarial attack from
experiment 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109





List of Acronyms

FGSM Fast Gradient Sign Method

PGD Projected Gradient Descent

BIM Basic Iterative Method

UAP Universal Adversarial Pertubations

CW Carlini & Wagner

I-FGSM Iterative Fast Gradient Sign Method

ART Adversarial Robustness Toolbox

ML Machine Learning

CNN Convolutional Neural Network

DNN Deep Neural Network

AI Artificial Intelligence

CE Cross Entropy Loss

DL Deep Learning

DNN Deep Neural Network

MSE Mean Square Error

ReLU Rectified Linear Unit

SVM Support Vector Machine

SGD Stochastic Gradient Descent

XGBoost Extreme Gradient Boosting

LR Logisitic Regression

xv



SVM Support Vector Machines

NLP Natural Language Processing

TP True Positives

TN True Negatives

FP False Positives

FN False Negatives

NV Melanocytic Nevus

VASC Vascular Lesion

DF Dermatofibroma

BKL Benign Keratosis

MEL Melanoma

BCC Basal Cell Carcinoma

SCC Squamous Cell Carcinoma

AKIEC Acitinic Keratosis Intra Epithelial Carcinoma

ISIC International Skin Imaging Collaboration

API Application Programming Interface

GPU Graphics Processing Unit







Chapter1Introduction

The advent of the Internet has undisputedly marked one of the most monumental
milestones in human history. When the Internet was first developed, it sparked
a technological revolution that fuelled countless advancements and innovations.
It was an open field of potential rapidly populated with various functionality and
applications, transforming our lives and society in ways we could hardly have imagined.
However, in our initial enthusiasm to explore this new frontier, one fundamental
aspect was largely overlooked: security. It was only when the vulnerabilities of this
cyberspace began to manifest, often with detrimental effects, that the importance of
information security became apparent.

Fast-forward to the present day, and we find ourselves at the dawn of another era
characterized by the ever-evolving realms of Artificial Intelligence (AI) and Machine
Learning (ML). Much like the initial stages of the Internet, we are exploring new
applications, finding novel uses, and innovating at an astonishing rate. However,
unlike in the past, we are no longer naive about the potential risks. We have learned
from our previous oversight and are now more aware of the importance of baking
security into the system. With the knowledge and skills we have acquired, we are in
a position to build secure applications.

1.1 Motivation

Annually, 160,000 individuals are diagnosed with Melanoma skin cancer, as the
International Agency for Research on Cancer (IARC) reported. This form of skin
cancer is notoriously challenging to combat in the later stages due to its resilience
to traditional chemotherapeutic and radiotherapeutic approaches. Consequently, it
is responsible for an alarming 75% of deaths related to skin cancer. However, the
key to successful treatment is often early detection; it enhances the likelihood of
success. Treatment could often be as straightforward as a simple skin lesion excision.
Therefore, early detection is not just critical, but it is life-saving [FFRT21]. In light

1



2 1. INTRODUCTION

of this, Deep Neural Network (DNN) has offered hope by enabling the development
of skin lesion classifiers. These AI-powered classifiers could potentially revolutionize
early melanoma detection, leading to enhanced survival rates and improved patient
outcomes [BR21].

Despite these benefits, the security aspects associated with implementing these
classifiers raise significant concerns. With high-value financial transactions involved,
especially in health insurance, there is a considerable risk of these models being
manipulated to exploit the system falsely. A fraudulent user might adjust the
models to misidentify skin lesions as cancerous, leading to unjustifiable financial gains
[FBI+19]. More alarmingly, there is a potential for these classifiers to be used for
harmful purposes, such as ’medical hacking’. In this scenario, people with ill intentions
could misuse these tools to cause harm to others, creating a new cyber threat. This
risk could pose significant challenges to individuals and the broader healthcare sector,
necessitating the establishment of robust safeguards when utilizing these technologies.
This problem is particularly difficult due to the high sophistication of DNN and the
complexity of ensuring their security. Creating secure DNN models necessitates a
comprehensive understanding of possible attack vectors and the implementation of
countermeasures, which can be challenging given the rapidly evolving nature of both
AI technologies and cyber threats.

Despite this, we have discovered a potential gap in the research, where using
the ’black box’ itself can inform us if the skin lesion classifier is currently under an
adversarial attack. We will extensively study potential attack vectors and develop
corresponding countermeasures [Orv22; Fla22] to accomplish this.

Given the pressing need for early melanoma detection, the clear potential of
DNN in this domain, and the increased importance of cybersecurity in healthcare,
this work is timely and crucial. We believe our work can pave the way for more
secure and efficient use of artificial intelligence in medical diagnostics, making it more
trustworthy for all stakeholders, from patients to doctors to insurance companies.



1.2. RESEARCH QUESTIONS 3

1.2 Research questions

The first research question is central to this thesis as it seeks to ascertain the most
crucial components of the CNN that can be effectively integrated as features for
adversarial attack identification. Understanding these core elements will provide the
foundational building blocks in designing the detection model, which can enhance
security.

RQ1: In the context of enhancing cybersecurity, which essential convolutional neural
network components can be effectively integrated as features for the identification of
ongoing adversarial attacks?

Expanding on the findings from the initial research question, this thesis will focus
on constructing a generalizable detection model. The success of this model will be
assessed in terms of its generalizability across different adversarial attacks targeting
skin lesion image classification models, taking us to the second research question.

RQ2: Considering the strategic employment of key convolutional neural network
components outlined in RQ1, to what extent can a detection model be developed,
demonstrating generalizability across a diverse range of adversarial attacks targeting
skin lesion image classification models?

The final research question of this thesis acknowledges the practical limitations
of computational resources. It aims to evaluate the resources needed to balance
resource usage and effectiveness in adversarial attack identification.

RQ3: What computational resources are necessary to balance resource use and
security in the system for effective adversarial attack identification?

In summary, this thesis proposes exploring the efficacy of CNN components
for detecting adversarial attacks on skin lesion classification models. It hopes
to contribute to cybersecurity by creating resource-efficient, generalized detection
models.



4 1. INTRODUCTION

1.3 Thesis Structure

1. Introduction: The first chapter provides the context and motivation behind
the research, articulates the research questions that the thesis aims to answer,
and summarizes the structure of the thesis.

2. Background: The second chapter delves into the foundational prerequisites
to understand the thesis.

3. Adversarial Attacks: The third chapter introduces the concept of adversarial
attacks, provides a high-level taxonomy of various adversarial attacks, provides
examples of different adversarial attacks, and discusses their transferability.

4. Related Work: The fourth chapter presents an overview of prior studies
and techniques in the field. Providing an explanation of each method and the
following security performance of the method.

5. Methodology: The fifth chapter defines the methodology employed during
the thesis. Additionally, it explains the rationale behind key decisions made
throughout the process.

6. Experiments and Results: The sixth chapter presents the experimental
design and results of various tests to understand the impact of adversarial
attacks and evaluate the security performance of the provided solution.

7. Discussion: The final chapter compares the findings of this thesis with related
work, addresses the research questions outlined in the first chapter, and discusses
the limitations of the thesis and potential areas for future work.

This structure offers a logical flow of information, starting with the necessary
background knowledge, proceeding through the specifics of the methodology and
experimental results, and culminating in a comprehensive discussion of the findings.



Chapter2Background

This chapter is divided into three distinct sections. First, Section 2.1 will explain
essential mathematical concepts and functions central to understanding the thesis.
Secondly, Section 2.2 will delve into important machine learning concepts relevant
to the thesis. Finally, Section 2.3 will provide the prerequisite for skin lesions and
applying deep learning in healthcare.

2.1 Mathematical background

2.1.1 Signum Function

The signum function, also known as the sign function, is a mathematical function
that returns the sign of a given number. Defined in Equation 2.1.

sign(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

(2.1)

It is commonly used to define the direction of a vector. Given a vector v̂ =
(v1, v2, v3, ..., vn), we can obtain the direction of the vector by taking the signum
function of the vector, sign(v̂). The signum function can decouple the vector’s
magnitude from the vector’s direction. Given the direction vector, we can then scale
the vector using a scalar variable α, α · sign(v̂).

2.1.2 Measuring the Magnitude of Vectors

Vectors are mathematical objects that describe quantities possessing both magnitude
and direction. As such, the need for a systematic way to measure their magnitudes
has led to different norms, essentially functions that assign a non-negative scalar
value to a vector. This scalar value corresponds to the ’length’ or ’size’ of the vector.

5



6 2. BACKGROUND

x

y

(0,0)

(2,3)

v

Figure 2.1: Visual representation of L1 norm of vector x = (2, 3), ∥x∥1 = |2|+ |3| =
5.

x

y

(0,0)

(2,3)

v

Figure 2.2: Visual representation of L2 norm of vector x = (2, 3), ∥x∥2 =√
22 + 32 =

√
13.

L1 Norm

The L1 norm is the sum of the absolute values of all the scalar values in the vector,
defined in Equation 2.2, visualized in Figure 2.1.

∥x∥1 =
n∑

i=1
|xi| (2.2)

L2 Norm

The L2 norm, also known as the Euclidean norm, is the square root of the sum of
the squares of all the scalar values in the vector, defined in Equation 2.3, visualized
in Figure 2.2.

∥x∥2 =

√√√√ n∑
i=1

x2
i (2.3)



2.1. MATHEMATICAL BACKGROUND 7

x

y

(0,0)

(2,3)

v

Figure 2.3: Visual representation of L∞ norm of vector x = (2, 3), ∥x∥∞ =
max(|2|, |3|) = 3.

L∞ Norm

The L∞ norm, also known as the maximum norm, is the maximum absolute value of
all the scalar values in the vector, defined in Equation 2.4, visualized in Figure 2.3.

∥x∥∞ = max
1≤i≤n

|xi| (2.4)

2.1.3 Gradient

In vector calculus, the gradient is a concept that helps to determine the direction
and rate of the fastest increase for a given function f at a given non-zero point p.

We define the gradient function f as follows:

∇f =
(

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xi
, . . . ,

∂f

∂xn

)
(2.5)

Where ∇f is the gradient of the function f , and ∂f
∂xi

represents the partial
derivative of the function with respect to the variable xi [AAL20].



8 2. BACKGROUND

2.2 Machine Learning Background

ML is a subset of AI that allows systems to learn and improve from experience without
being explicitly programmed. ML is achieved using algorithms that iteratively learn
from data. The more data the algorithms can access, the more they can learn and
adapt their models.

2.2.1 Cost Function

A cost function, alternatively referred to as a loss function, is a mathematical
expression that quantifies the difference between the predicted output and the true
output. The cost function provides a mathematical construct to optimize in ML
[AAL20]. However, paradoxically, it also supplies us with a metric we could potentially
degrade.

Several cost functions exist, each being appropriate for different problems and
particular instances of those problems. Common examples include the Mean Square
Error (MSE) for regression problems, Cross Entropy Loss (CE) for classification
tasks, and Hinge Loss for Support Vector Machines (SVM). In the context of this
thesis, however, we will primarily focus on the CE function.

Cross Entropy Loss

CE is a cost function frequently employed in classification tasks in Deep Learning (DL),
as well as adversarial attack within the realm of adversarial ML. It measures the
dissimilarity between the predicted class probabilities and the true class probabilities.

For a given set of input data and corresponding true labels, the cross entropy loss
is defined as:

CE(y, ŷ) = −
n∑

i=1
yi log(ŷi) (2.6)

Where n is the number of samples, yi is the true value for the i-th sample, and
ŷi is the predicted value for the i-th sample.[MMZ23].

2.2.2 Supervised vs. Unsupervised Learning

Supervised learning is a type of ML that uses labeled data to learn a function that
maps inputs to outputs. Given a training set of n data points (x1, y1), (x2, y2), ..., (xn, yn)
where xi ∈ X are the inputs and yi ∈ Y are the outputs, the goal is to learn a
function h : X → Y so that h(x) is a good predictor for the corresponding value of y.
For a classification problem, y is a discrete value (class label).



2.2. MACHINE LEARNING BACKGROUND 9

In mathematical terms, supervised learning can be represented as:

h = arg min
f∈H

1
n

n∑
i=1

J(yi, f(xi)) (2.7)

Where J(yi, f(xi)) is a cost function (see Section 2.2.1), and H is a hypothesis
space1 [DFO20].

Unsupervised learning, on the other hand, deals with unlabeled data. The
goal is to infer the natural structure within a set of data points. For example,
given a set of n data points x1, x2, ..., xn where xi ∈ X, the goal is to find patterns
or relationships in X. Unsupervised learning includes clustering, dimensionality
reduction, and density estimation.

2.2.3 Gradient Descent

Gradient Descent is an optimization algorithm commonly used in ML and DL to
minimize a given loss function by iteratively updating the model’s parameters. The
algorithm calculates the gradient (see Section 2.1.3) of the cost function (see Section
2.2.1) with respect to the parameters and then moves the parameters in the direction
of the negative gradient.

θi+1 = θi − α∇J(θi) (2.8)

Where θ represents the model parameters, α is the step size, also known as the
learning rate, and ∇J signifies the gradient of the cost function. The gradient descent
process repeats until convergence is achieved or a maximum number of iterations is
reached. Through this procedure, gradient descent enables the discovery of optimal
model parameters that minimize errors in predictions or classifications [AAL20].
Figure 2.4 illustrates the gradient descent process.

2.2.4 Confusion matrix

A confusion matrix, also known as an error matrix, is a tool used in ML to evaluate
the performance of an algorithm. The confusion matrix shows the number of correct
and incorrect predictions made by a classifier, broken down by each class. The
confusion matrix is the basis for many other performance metrics, including accuracy,
precision, and recall [FLW+20; GBV20]. Given the four values in a confusion matrix

1The hypothesis space H is the set of all the possible functions that can be chosen by a learning
algorithm based on the given data [Blo11].



10 2. BACKGROUND

Figure 2.4: Visual representation of gradient descent.

of a binary classifier, the accuracy can be computed using the equation presented as
Equation 2.9.

– True Positives (TP): The number of positive instances correctly classified.

– True Negatives (TN): The number of negative instances correctly classified.

– False Positives (FP): The number of negative instances misclassified as
positive.

– False Negatives (FN): The number of positive instances misclassified as
negative.

Accuracy = TP + TN

TP + TN + FP + FN
(2.9)

[GBV20]

2.2.5 Convolutional Neural Network

CNNs are a class of DL models that have achieved remarkable success in various
computer vision tasks.

Convolution

The core of the CNN is the convolution, which refers to a mathematical operation
involving two functions, f and g. This operation generates a third function (f ∗ g)
that demonstrates how the shape of one function is influenced by the other. The
term convolution pertains to both the resulting function and the computation process



2.2. MACHINE LEARNING BACKGROUND 11

Figure 2.5: Visual representation of the convolution operation between two matrices.
The process involves sliding a smaller matrix (filter) over the larger input matrix,
computing element-wise multiplication between the overlapping elements, and then
summing the results to produce a single value in the output matrix, also called the
feature map.

[Con23]. Within a CNN model, function f and g are two matrices calculated as
displayed in Figure 2.5.

Convolutional Neural Network Architecture

Convolutional Layer:

The convolutional layer is the primary building block of a CNN. The convolutional
layers capture patterns or features in the input data. The first layers in the network
typically capture low-level features, such as edges and textures. As we move deeper
into the network, the layers progressively capture higher-level and more abstract
features, such as corners, shapes, and parts of objects. Eventually, the final layers
can capture the most abstract and complex features that help distinguish between
different classes, see Figure 2.6. The output of a convolutional layer is called a feature
map [AMA17].

Non-linear Activation Function:

After each convolution layer, a non-linear activation function is applied element-wise
to the feature maps, as displayed in Figure 2.7. The activation function introduces
non-linearity into the model, allowing it to learn complex, non-linear relationships
between inputs and outputs. One of the most popular activation functions, the
Rectified Linear Unit (ReLU), is illustrated in Equation 2.10.



12 2. BACKGROUND

Figure 2.6: The figure illustrates the process of hierarchical feature learning in a
CNN. As we move deeper into the network, the layers capture more abstract and
complex features. The first layer detects simple features such as edges, while the
second layer combines these features to detect more complex features like eyes, noses,
eyebrows, and mouths. The third layer captures even higher-level features, such as
faces [AMA17].

Figure 2.7: Visual representation of the application of a non-linear activation
function to the feature map, specifically the application of the ReLU.

ReLu(x) = max(0, x) (2.10)

Pooling Layer:

Following the convolutional layers and non-linear activation function, a pooling layer
is often added to reduce the spatial dimensions of the activated feature maps. This



2.2. MACHINE LEARNING BACKGROUND 13

downsampling operation reduces the computational complexity of the model and
helps prevent overfitting. Standard pooling techniques include average pooling and
max pooling, as displayed in Equation 2.12 and 2.13 respectively (based on Equation
2.11).

M =


a b c d

e f g h

i j k l

m n o p

 , (2.11)

AvgPooling(M) =
[

a+b+e+f
4

c+d+g+h
4

i+j+m+n
4

k+l+o+p
4

]
(2.12)

MaxPooling(M) =
[

max(a, b, e, f) max(c, d, g, h)
max(i, j, m, n) max(k, l, o, p)

]
, (2.13)

Fully Connected Layer:

At the end of the CNN comes the fully connected layer, also called the dense
layer. Before entering the dense layers, the high-dimensional output from the last
convolutional layer is typically flattened into a one-dimensional vector. Each node in
a dense layer is connected to every node in the previous layer, hence the term fully
connected. The role of the dense layers is to interpret and make decisions based on
the features identified by the convolutional layers. They function as a classifier on
top of the features extracted by the convolutional layers.

2.2.6 Important definitions:

To keep this thesis clear and precise, we will explicitly define the following:

Feature maps

The matrix output from a convolutional layer before the application of a non-linear
activation function.

Activations

The matrix output from a convolutional layer after the application of a non-linear
activation function, also called activated feature maps.



14 2. BACKGROUND

2.3 Deep Learning in Health Care

The advent of DL has revolutionized numerous industries, including health care. In
recent years, DL techniques, particularly CNN, have been increasingly applied to
medical image analysis tasks, aiding in diagnosing and treating various conditions.
One specific area where DL has shown great promise is in the classification of skin
lesions, where timely identification is essential for the patient’s survival, should the
skin lesion turn out to be cancerous [HEA+22; YCD+16; MBG+21]. In this section,
we will discuss the various types of skin lesions and their characteristics, as well as
the role of deep learning in identifying and classifying these lesions to assist medical
professionals in making more accurate and timely diagnoses.

2.3.1 Skin Lesions

Skin lesions are changes in the appearance of the skin that can be caused by various
factors, including infections, genetics, environmental factors, or diseases. These skin
lesions can vary from being harmless (benign) to cancerous (malignant). This thesis
will discuss eight skin lesion categories with distinct features and characteristics.

Melanocytic Nevus (NV) - A mole-like lesion caused by an overgrowth of
melanocytes, typically appearing as a spot or bump on the skin. They can be present
at birth or develop later in life and are often harmless. However, in some cases, they
can develop into melanoma [REGT15].

Vascular Lesion (VASC) - A lesion of the blood vessels, typically appearing
as red or purple spots or stretches on the skin. Vascular lesions usually form during
embryologic development and are benign (noncancerous) tumors that line the blood
vessels [AA05].

Dermatofibroma (DF) - A benign skin lesion, typically appearing as a firm,
dome-shaped bump on the skin and is often found on the lower legs. Treatment is
typically not necessary [ZZB04].

Benign Keratosis (BKL) - A type of benign skin lesion that typically appears
as a scaly, rough patch on the skin. BKL is usually caused by sun damage and is
typically found on sun-exposed areas such as the face, neck, and hands. Since a BKL
is benign, it is not mandatory to remove it [HV08].

Melanoma (MEL) - A type of skin cancer that arises from the uncontrolled
growth of melanocytes, which produce the pigment melanin. MEL can develop in
areas of skin that are exposed to the sun, such as the face, arms, and legs, but can
also occur in areas that are not usually exposed to sunlight, such as the soles of
the feet, under the nails, and in the mouth. If left untreated, MEL can spread to



2.3. DEEP LEARNING IN HEALTH CARE 15

Figure 2.8: Visual representation of the eight skin lesions, illustrating their distinct
appearances and characteristics, which can aid in the identification and understanding
of various skin conditions [KHF20].

other body parts through the bloodstream, making it more challenging to treat and
potentially deadly. Therefore, early diagnosis and treatment of MEL are crucial to
improving outcomes [CCP+06].

Basal Cell Carcinoma (BCC) - A type of skin cancer that is the most common
form of all skin cancers, typically appearing as a pearly or waxy bump. It is most
common to find on the head and neck, where we find 80% of the cases. BCC is
usually caused by exposure to ultraviolet radiation from the sun or other sources and
is generally slow-growing and non-invasive. Therefore, it is rarely fatal, even though
it is cancerous [RCR05].

Squamous Cell Carcinoma (SCC) is a type of skin cancer that can appear
as a scaly, red patch on the skin. It is usually caused by exposure to ultraviolet
radiation from the sun or other sources and can be found on sun-exposed areas such
as the face, neck, and hands. SCC is typically slow-growing and can be treated with
surgery, radiation therapy, or topical medications. Regular monitoring of SCC is
important to reduce the risk of progression to a more advanced stage [Mar96].

Acitinic Keratosis Intra Epithelial Carcinoma (AKIEC) - is a precancerous
skin condition characterized by rough, scaly patches or lesions that can develop into
SCC if left untreated. These lesions are typically found on sun-exposed areas of the
skin, such as the face, scalp, ears, and hands. Therefore, regular monitoring and sun
protection measures are important to reduce the risk of developing AKIEC [Fer17].



16 2. BACKGROUND

2.3.2 Assisting Medical Professionals with Deep Learning

DL based skin lesion classification has the potential to significantly aid medical
professionals in making more accurate and timely diagnoses. By providing additional
support, these models can enhance the decision-making process for dermatologists
and general practitioners, reducing the risk of misdiagnosis and improving patient
outcomes. Some of the key benefits of incorporating DL models in the diagnosis of
skin lesions include:

Efficient Screening: Given the high prevalence of skin lesions, it can be
potentially challenging for medical professionals to examine and evaluate every case
on time. DL models can help prioritize cases that require immediate attention,
ensuring that patients with potentially malignant lesions receive prompt evaluation
and treatment [HJW+14].

Accessibility and early detection: DL models for skin lesion classification can
be integrated into mobile applications, making them accessible to individuals who
may not have immediate access to dermatologists or other specialists. In addition,
by empowering patients to monitor their skin conditions and seek medical advice
when needed, DL models can facilitate early detection and intervention, potentially
saving lives [FFRT21].

Second Opinion: In the absence of a second opinion, diagnostic accuracy in
the United States is estimated to be approximately 83.2%. However, the integration
of a second opinion in every diagnostic process presents a substantial improvement,
elevating the diagnostic accuracy rate to 87.4%. Utilization of DL models represents
an innovative and cost-efficient methodology for offering second opinions for doctors,
leading to more accurate patient care and treatment outcomes [TTT+21].

It is essential to note that DL models should not be considered a replacement
for the expertise of medical professionals. Instead, they should be viewed as a
complementary tool that can augment the diagnostic process, providing additional
insights and support to clinicians. By harnessing the power of DL, we can work
towards a future where skin lesions are detected and treated more effectively, leading
to improved patient outcomes and a reduced burden on healthcare systems.

However, DL models for skin lesion classification are not without challenges.
For example, adversarial attacks, where small perturbations are intentionally added
to input images to fool the model, can lead to incorrect classifications. Therefore,
understanding and detecting these attacks is crucial for ensuring the reliability and
robustness of skin lesion classifiers in clinical applications.



Chapter3Adversarial attacks

This chapter will discuss different adversarial attacks and details about the imple-
mentations of these attacks. First, Section 3.1 will introduce the concept. Section
3.2 will provide a high-level taxonomy of adversarial attacks. Then, Section 3.3
describes different adversarial attack implementations. Lastly, Section 3.4 describes
the concept of transferability of adversarial attacks.

3.1 Concept introduction

Classical ML relies on extracting the right features for model training, requiring
significant domain expertise to identify which aspects of the data contribute to the
desired outcome. In classical image recognition, hard-coded edge detectors were
commonly used to detect objects, and these were usually hard to generalize and
specific to the task at hand [Bie87; Lin94; ZT+98]. With the introduction of CNN,
feature engineering became integrated with DL, allowing the model to choose features
independently [Fuk80; LBBH98]. The integrated feature engineering significantly
improved image recognition. However, it also outsources the feature selection process,
introducing a vulnerability to adversarial attacks [SZS+13; GSS14].

Adversarial attacks refer to deliberate modifications of input data, such as speech,
images, or text, intending to cause a ML model to make incorrect predictions [ECC22;
MR22; TV16]. Indeed, adversarial attacks become apparent when considering the
seemingly paradoxical behavior of high-performance CNN under minor perturbations
of the input data. For example, as illustrated in Figure 3.1, an image of a pig, correctly
identified by a CNN, can be subtly manipulated – with changes imperceptible to
the human eye – causing the same model to misclassify it as an airliner with high
confidence.

The adversarial attacks can fool models into making wrong decisions, even when
the input data appears unchanged to a human observer [NYC15]. The goal of
adversarial attacks can vary widely depending on the context. In some cases, the

17



18 3. ADVERSARIAL ATTACKS

Figure 3.1: Illustration of an adversarial attack on an image classifier. The original
image (left) is correctly identified by the CNN as a pig. After adding a subtle
perturbation noise (center), the image (right) is mistakenly classified as an airliner
by the same CNN. The perturbation exemplifies how minor changes can exploit
vulnerabilities in the model, leading to misclassification with high confidence.

goal may be to evade detection or bypass security measures, while in others, the goal
may be to manipulate or influence the decisions made by a ML system.

3.1.1 Adversarial Attack Scenario

In the given scenario, the individual, unaware of being afflicted with a skin cancer
called MEL, uses a mobile application designed for skin lesion analysis and classifica-
tion. For further information about MEL, refer to Section 2.3.1. While capturing an
image of the skin lesion on her arm, a malicious entity, having successfully compro-
mised the security of the camera, executes an adversarial attack, subtly distorting
the image data. There are no discernible alterations to the patient’s naked eye; thus,
the manipulated image is subsequently fed into a CNN engineered for the specific
task of skin lesion classification. Due to the adversarial perturbation, the classifier
erroneously identifies the lesion as BKL, a benign type of skin lesion, outlined in
Section 2.3.1. Subsequently, the individual, reassured by the benign classification,
does not seek further professional medical evaluation, potentially leading to severe
health implications, up to and including mortality, due to the undiagnosed MEL.



3.1. CONCEPT INTRODUCTION 19

Figure 3.2: Visual illustration of an adversarial attack on a skin lesion classifier,
leading to misclassification of MEL as BKL.



20 3. ADVERSARIAL ATTACKS

3.2 High-Level Taxonomy of Adversarial Attacks

This section presents a high-level taxonomy of adversarial attacks to organize attacks
and familiarize readers with key terminology. Adversarial attacks can be broadly
classified along four different dimensions: 1) stages of attack implementation, 2)
goal of the attacker, 3) attackers capabilities, and 4) knowledge of attacker [OV23;
SBG20].

3.2.1 Stage of Attack Implementation

The stage of attack refers to when the attack is implemented and performed in
the ML pipeline. Attacks can be implemented at different stages of the pipeline,
including:

– During training: Implemented in the training stage of the model, the attacker
can tamper with the training data or interfere with the training procedure,
negatively impacting the functionality of the model.

– During testing: Implemented during the evaluation stage of the model, the
attacker can tamper with test data or alter the model-generated outcomes,
leading to a distorted perception of the performance of the model.

– After deployment: These attacks are implemented after the model has been
deployed. The attacker may manipulate the input data to insert adversarial
examples, resulting in erroneous outputs from the model [OV23; SBG20].

3.2.2 Goal of the Attacker

The goal of an attacker can be categorized along three primary dimensions: 1)
availability, 2) integrity, and 3) confidentiality, also called the CIA-triad [SC14].

– Availability: An attack on the availability aims to decrement the overall
performance of the model, making it unusable or unreliable. In an untargeted
availability attack, the attacker wants to make the model reject all legitimate
samples. On the other hand, in a targeted attack, the attacker wants to make
the model reject specific samples. For instance, it wants a self-driving car not
to detect a stop sign.

– Integrity: An attack on the integrity is a specific attack toward misclassifica-
tion of the output of the model. For example, the attacker wants to impersonate
another person in a biometric system or trick a self-driving car into detecting a
traffic light as a 50 km/h speed sign.



3.2. HIGH-LEVEL TAXONOMY OF ADVERSARIAL ATTACKS 21

– Confidentiality: An attack on confidentiality aims to compromise a model
by exposing its components, parameters, or dataset information. For example,
an attacker may attempt to steal parameters from a cloud model through
continuous querying. The attacker would repeatedly submit queries to the
service to gradually extract information about the parameters of the model. By
analyzing the model outputs in response to these queries, the attacker may be
able to reverse engineer information about the parameters of the model [OV23;
SBG20].

3.2.3 Attackers Capabilities

Several competencies could be harnessed by an adversary to manipulate a system.
We describe six such capabilities below:

– Training data: An attacker could have the capabilities to control or modify a
part of the training dataset to perform or set up an attack.

– Model parameters: An attacker might be able to disrupt or change model pa-
rameters, for instance, by inserting malicious triggers into the model parameters
that react to a particular input.

– Testing data: An attacker could use the capabilities of controlling parts of
the testing data to give a skewed performance evaluation of the model.

– Labels: An attacker could control or modify some of the labels within the
dataset to manipulate the learning process of the model. The attacker could
misguide the model during training by changing these labels, leading to incorrect
or biased predictions.

– Source code: An attacker could manipulate the source code of an underlying
open-source library that performs mathematical calculations.

– Access to query: To what extent can the attacker query the model with
inputs, and if there are some restrictions on the number of queries an attacker
can perform [OV23].

3.2.4 Attackers Knowledge

The last category for which we can classify an adversarial attack is what knowledge an
attacker has of the system. The knowledge can be categorized along two dimensions:
1) white-box attacks and 2) black-box attacks.



22 3. ADVERSARIAL ATTACKS

– Black-box attacks: The attacker has limited knowledge of the target model,
often only knowing its inputs and outputs. This interaction mirrors a cloud-
based ML model, where the extent of engagement permitted with the model is
limited to input-output interaction.

– White-box attacks: In this scenario, the attacker has complete knowledge
of the target model, including its architecture, parameters, and training data.
White-box attack is more effective than black-box attacks, as the adversary
can use this knowledge to craft targeted attacks that exploit the specific
vulnerabilities of the model [OV23; SBG20].



3.3. EXAMPLES OF ADVERSARIAL ATTACKS 23

3.3 Examples of adversarial attacks

This section will discuss some of the most well-known adversarial attacks in the
context of deep learning models. We will provide an overview of each attack and
explain their underlying principles. Table 3.1 presents a summary of the symbols used
throughout this section, which will help understand the mathematical formulations
of the attacks.

Symbol Description

θ Parameters of a model
X Benign model input
Xadv Pertubated model input constructed from a specific input X

ytrue True label associated with a specific input X

yadv Target label for a specific adversarial attack
J(θ, X, y) Cost function (see Section 2.2.1).
∇xf Gradient of function f with respect to input X (see Section 2.1.3 and 2.2.3)
sign(v̂) Signum function of vector v̂ (see Section 2.1.1)
steps Maximum amount of steps
α Step size

Table 3.1: Summary of used symbols and their description.

3.3.1 Fast Gradient Sign Method

The FGSM is an adversarial attack that leverages gradient information to craft
malicious inputs. By taking the gradient of the cost function (∇xJ(θ, X, ytrue)), we
obtain the direction towards the maximum of the cost function for parameters θ.
Instead of updating the parameters of the model by stepping in the direction of the
negative gradient as in gradient descent, see Section 2.8. FGSM will update the
parameters of the model by stepping in the direction of the positive gradient; in
other words, FGSM will take the step that maximizes the cost function.

To create an attack that can be scaled according to a scalar value ϵ, take the
signum function of the gradient (see Section 2.1.1) and multiply it by ϵ. This gives
a gradient that has length ϵ and which has the direction towards the maximum of
the cost function [GSS14]. Furthermore, we can apply this perturbation to the input
image X and obtain the perturbated image Xadv [KGB16]. In summary, FGSM can
be stated by Equation 3.1, where the cost function is the CE function introduced in
Section 2.2.1.

Xadv = X + ϵ · sign(∇xJ(θ, X, ytrue)) (3.1)



24 3. ADVERSARIAL ATTACKS

The symbols used are explained in Table 3.1. The effectiveness of the FGSM
adversarial attack is visually illustrated in Figure 3.3, where a benign skin lesion
image (Figure 3.3a) is perturbed to mislead the model. The perturbed image (Figure
3.3b), which appears almost identical to the human eye, can cause a well-trained
model to misclassify the lesion, highlighting the vulnerability of neural networks to
such adversarial attacks.

(a) Before attack (b) After attack

Figure 3.3: FGSM adversarial attack on a single skin lesion image.

FGSM in the Taxonomy of Adversarial Attacks

The FGSM adversarial attack is implemented after deployment of ML model, and it
aims to attack the integrity of the model. The attacker requires the capabilities to
have access to the model parameters, access to query, and a single input they can
perform the adversarial example on. Furthermore, the attacker needs to compute
the gradient of the cost function with respect to the input, which requires knowledge
of the model’s internal workings, classifying it as a white-box adversarial attack
[MGvDN21]. FGSM, as described earlier, is a non-targeted attack. This implies that
the perturbation is designed to maximize the cost function for the true label rather
than minimizing the cost for a particular alternative target [XCS19].

3.3.2 One-step Target Class Method

One-step Target Class Method is the targeted implementation of the FGSM adver-
sarial attack. In this attack, we first define a target label yadv. Then, given this
target label, the attack uses gradient descent to take one step toward minimizing the
cost function for the incorrect class. Gradient descent towards yadv will increase the
probability that the output of the model prediction will be the specific target class
label [KGB16]. In summary, the one-step target class method can be described by
Equation 3.2, where the cost function is the CE function introduced in Section 2.2.1.

Xadv = X − ϵ · sign(∇xJ(θ, X, yadv)) (3.2)



3.3. EXAMPLES OF ADVERSARIAL ATTACKS 25

symbols are explained in Table 3.1.

One-step Target Class Method in the Taxonomy of Adversarial Attacks

For classifying One-step Target Class Method adversarial attack following the high-
level taxonomy described in Section 3.2, it is equal to the FGSM attack described in
Section 3.3.1 [MGvDN21; KGB16].

3.3.3 Iterative Fast Gradient Sign Method

I-FGSM also called Basic Iterative Method (BIM), is an iterative application of
the FGSM adversarial attack, using a small step size. In other words, we want
to perform FGSM over multiple iterations, gradually generating an undetectable
adversarial example. At each iteration, we calculate the gradient of the cost function
with respect to the current perturbed input and use this gradient to generate a new
perturbation. The perturbations are added to the original input X and clipped
to ensure that the pixel values remain within an acceptable range. The process
repeats until the desired level of adversarial perturbation is reached [KGB16]. The
pseudocode implementation is displayed in Algorithm 3.1, where the cost function
is the CE function introduced in Section 2.2.1. The effectiveness of the I-FGSM
adversarial attack is visually illustrated in Figure 3.4

(a) Before attack (b) After attack

Figure 3.4: I-FGSM adversarial attack on a single skin lesion image.

I-FGSM in the Taxonomy of Adversarial Attacks

Concerning the stage of attack implementation, I-FGSM is performed after the
deployment of the model. The goal of the adversarial attack is to degrade the
integrity of the model output. It requires the capabilities to have query access,
model parameters, and single or multiple inputs they can perform the adversarial
attack on. I-FGSM is also a white-box adversarial attack, requiring knowledge of
the model’s internal workings to compute the gradients [MGvDN21]. I-FGSM often
exhibits superior effectiveness compared to FGSM and the One-step Target Class
Method. This superiority is primarily due to its ability to generate highly specialized



26 3. ADVERSARIAL ATTACKS

adversarial perturbations due to its iterative application of the gradient. However, it
requires more computational time and resources [XCS19].

Algorithm 3.1 I-FGSM Algorithm
Require: X, θ, ytrue, α, steps, maximum perturbation ϵ,

1: J(θ)← −
∑n

i=1 ytrue
i log(ŷi) ▷ Initialize cost function

2: Xadv ← X ▷ Initialize adversarial input
3: for i = 1 to steps do
4: ∇xJ(Xadv, ytrue, θ) ▷ Compute gradient
5: Xadv ← X + α · sign(∇xJ(Xadv, ytrue, θ))
6: Xadv ← clip(Xadv, X − ϵ, X + ϵ) ▷ Ensure ϵ perturbation size
7: end for
8: return adversarial example Xadv

3.3.4 Universal Adversarial Perturbation

Universal Adversarial Pertubations (UAP) is an image-agnostic perturbation. Unlike
the FGSM and I-FGSM, UAP does not generate a perturbation for a single image
at a time. UAP solves an optimization problem over a given dataset to generate
a universal perturbation. Despite being created based on a specific dataset, this
perturbation can be applied universally to new images that were not part of the
original dataset used during its training [MFFF17].

UAP in the Taxonomy of Adversarial Attacks

UAP represents an adversarial attack strategy initiated post-deployment, intending to
compromise the integrity of the machine learning model. The adversary capabilities
required for UAP include access to query and the ability to access training or
testing data along with their associated labels. The dependency on access to model
parameters is contingent on the specific implementation of UAP. The conventional
UAP method operates as a white-box adversarial attack, necessitating access to
the model’s parameters. Conversely, the unconventional variant pioneered by the
Takemoto lab circumvents the need for parameter access, qualifying as a black-box
adversarial attack [KT22]. Consequently, UAP showcases the flexibility to function as
a black-box or a white-box adversarial attack. Moreover, UAP can be distinguished
by two distinct modes of implementation. The default UAP strategy is identified
as a non-targeted adversarial attack. However, an alternative approach enables the
deployment of UAP as a targeted adversarial attack [HMT21].

3.3.5 DeepFool

DeepFool is an iterative adversarial attack designed to find the minimum amount
of perturbation necessary to cause a model to misclassify a given input. In essence,



3.3. EXAMPLES OF ADVERSARIAL ATTACKS 27

DeepFool linearizes the decision boundary of the target model around the input and
then finds the nearest point on the decision boundary. This process is repeated until
the perturbed input crosses the decision boundary, indicating a misclassification.
DeepFool starts by taking a benign input X and then iteratively adjusts this input,
moving it closer to the classifier’s decision boundary. The adjustment at each iteration
is performed along the direction of the gradient of the classifier’s output with respect
to the input. The procedure stops when the adjusted input crosses the decision
boundary and the classifier misclassifies the input. The pseudocode implementation
is displayed in Algorithm 3.2, where the classifier f is used [MFF16].

Algorithm 3.2 DeepFool Algorithm
Require: X, θ, classifier function f , steps

1: X0 ← X ▷ Initialize adversarial input
2: for i = 1 to steps do
3: δi ← f(Xi,θ)

||∇xf(Xi,θ)||2
2
· ∇xf(Xi, θ) ▷ Compute perturbation

4: Xi+1 ← Xi + δ
5: end for
6: return Xadv ←

∑steps
i=0 δi

DeepFool in the Taxonomy of Adversarial Attacks

DeepFool is an adversarial attack that is typically executed after the deployment
of the machine learning model. Its objective is to compromise the integrity of the
model by inducing a misclassification. The adversary requires access to the model
parameters and query access to execute DeepFool. DeepFool requires knowledge
of the gradient of the classifier output with respect to the input, marking it as a
white-box adversarial attack [MGvDN21]. DeepFool is designed as a non-targeted
adversarial attack, as its goal is to find the smallest perturbation that causes a
misclassification, regardless of the class to which the perturbed input is assigned.
It should be noted, however, that DeepFool can be modified to create targeted
adversarial attacks, but the original formulation is non-targeted [MFF16].

3.3.6 Projected Gradient Descent

The PGD adversarial algorithm, proposed by Madry et al. in 2017, is an iterative
optimization-based method for generating adversarial examples [MMS+17]. The
PGD attack is quite similar to the I-FGSM attack, but some key differences exist.
First, the PGD attack bases it is starting input on a uniformly random point within
epsilon distance away from the starting input point. Secondly, on each iteration,
PGD will add the sign of the gradient with respect to the cost function to the last
adversarial example. In I-FGSM, each iteration adds the sign of the gradient to the



28 3. ADVERSARIAL ATTACKS

original input image. The effectiveness of the PGD adversarial attack is visually
illustrated in Figure 3.5

(a) Before attack (b) After attack

Figure 3.5: PGD adversarial attack on a single skin lesion image.

PGD in the Taxonomy of Adversarial Attacks

The PGD adversarial attack is implemented after the model is deployed and aims
to damage the integrity of the model. The PGD attack is a white-box attack that
requires the adversary to have complete knowledge of the target model. In addition,
the adversary also needs the capability to access the model’s parameters, query access,
and access to the input data on which the adversary will perform the attack. The
general pseudocode outline of the PGD adversarial attack is provided in Algorithm
3.3.

Algorithm 3.3 Projected Gradient Descent Algorithm
Require: X, θ, ytrue, α, steps, maximum perturbation ϵ,

1: J(θ)← −
∑n

i=1 ytrue
i log(ŷi) ▷ Initialize cost function

2: Xadv ← X + U(−ϵ, ϵ) ▷ Initialize at uniform random point
3: Xadv ← clip(Xadv, X − ϵ, X + ϵ) ▷ Ensure ϵ pertubation size
4: for i = 1 to steps do
5: ∇xJ(Xadv, ytrue, θ) ▷ Compute gradient of loss
6: Xadv ← Xadv + α · sign(∇xJ(Xadv, ytrue, θ))
7: Xadv ← clip(Xadv, X − ϵ, X + ϵ) ▷ Ensure ϵ pertubation size
8: end for
9: return adversarial example Xadv

3.3.7 Carlini & Wagner

CW adversarial attack algorithm, proposed by Nicholas Carlini and David Wagner
in 2017, is an optimization-based method for generating adversarial examples. The
distinctive feature of CW attack, as compared to both the I-FGSM and PGD, lies
in its optimization process. CW uniquely employs two cost functions, one for the
misclassification cost and one for the perturbation cost. This optimization is one of



3.3. EXAMPLES OF ADVERSARIAL ATTACKS 29

the defining characteristics that differentiate CW from both I-FGSM and PGD. The
CW attack is highly effective in finding adversarial examples with small perturbations
[CW17]. The effectiveness of the CW adversarial attack is visually illustrated in
Figure 3.6

(a) Before attack (b) After attack

Figure 3.6: CW adversarial attack on a single skin lesion image.

CW in the Taxonomy of Adversarial Attacks

The CW adversarial attack is implemented after deployment and targets the integrity
of a model system. To execute this attack, the adversary needs the capability to
access model parameters, query access, and the input data on which the adversary
will perform the attack. The CW attack is a white-box attack, as the adversary
requires complete knowledge of the target model to perform the attack. The general
outline of the CW adversarial attack is defined in Algorithm 3.4.

Algorithm 3.4 Carlini & Wagner Algorithm
Require: X, θ, ytrue, steps, regularization parameter c

1: Define misclassification cost Jmisclass and perturbation cost Jperturb

2: Initialize perturbation variable w in tanh space.
3: Generate adversarial example: Xadv ← x + transform(w)
4: for i = 1 to steps do
5: Optimize w to minimize c · Jmisclass(Xadv, ytrue) + Jperturb(X, Xadv)
6: Update Xadv using the new w: Xadv ← x + transform(w)
7: end for
8: return adversarial example Xadv



30 3. ADVERSARIAL ATTACKS

3.4 Transferability of adversarial attacks

Transferability of adversarial attacks refers to the ability of adversarial examples
crafted for one model to successfully mislead another model, even if the target model
has a different architecture or is trained on a different dataset. The transferability
property enables an attacker to craft adversarial examples on a substitute model
and subsequently use the adversarial attacks to attack a victim model without the
capabilities or knowledge which would constitute a white-box adversarial attack, see
Section 3.2. Instead, the adversary will only need access to the input and output
of the model. This phenomenon has been observed in various DNN models, and
raises concerns about the security of ML systems in real-world applications [PMG16;
PMSW16].

In the paper by Papernot, McDaniel, and Goodfellow (2016), titled "Transferabil-
ity in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial
Samples", they demonstrated the effectiveness of the transferability attacks on two
commercial ML classification systems from Amazon and Google. To quantify the
effectiveness of the transferability of adversarial attacks, they defined the misclas-
sification rate. The misclassification rate is calculated by dividing the number of
misclassified adversarial examples by the total number generated. A higher misclassi-
fication rate indicates a more effective transferability attack. For the two commercial
ML classification systems from Amazon and Google, they managed a 96.19% and
88.94% misclassification rate, respectively [PMG16].



Chapter4Related work

In this chapter, we present a comprehensive overview of the current state-of-the-art
methods employed for defending against adversarial attacks in the field of adversarial
machine learning. We elaborate upon the specific implementation of these defenses,
delineating their operational methodologies and algorithmic complexities. Further,
we describe the corresponding security performance associated with each defense,
providing quantifiable measures of their efficacy and robustness against adversarial
perturbations.

4.1 Gradient Masking

Many adversarial attacks aimed at fooling a DNN will use the gradients of the model
outputs with respect to its inputs. An adversary can reverse these gradients and
reapply them to the input to fool the model as observed in Section 3.3; this is the
basis for the FGSM attack, the One-step Target Class Method, and the I-FGSM
attack. Gradient masking is a defense strategy that aims to make these attacks
less effective by removing the possibility of the adversary utilizing the gradients
[PMSW16; PMG+17; TKP+17].

4.1.1 Method implementation

Gradient masking techniques are employed during the learning phase of the model.
The technique incorporates non-differentiable functions at certain points in the model,
obstructing the computation of meaningful gradients. One such operation commonly
used in this context is quantization. Quantization involves converting continuous
values into a finite set of discrete values. By creating discontinuities in these values,
the function becomes non-differentiable at these points, obfuscating the gradient and
limiting an adversary’s ability to calculate meaningful gradients. As we can observe
in Figure 4.1, the gradient of the model’s output with respect to its input X is zero,
meaning that the slope of the tangent to the function h at point x is equal to zero.
In a situation where an adversary computes the gradient h at point x, they would be

31



32 4. RELATED WORK

Figure 4.1: Representation of the defended model which uses gradient masking,
x is model input, h(x) is model output and x∗ is model input which will give a
missclassified model output h(x∗) [PMSW16].

Figure 4.2: Representation of the substitute model, which creates the adversarial
examples for the defended model. Point x is the original model input, and x∗ is the
model input, giving a misclassified model output for the substitute model [PMSW16].

unable to leverage it to find the direction towards x∗, leading to the model output
h(x∗), which is the misclassified result [PMSW16].

4.1.2 Security performance

Gradient masking is not an effective defense strategy due to the transferability
property described in Section 3.4. Adversaries can bypass gradient masking by
crafting adversarial examples using a substitute model, see Figure 4.2. The defense
mechanism does not impact the substitute model, and the adversary has the necessary
gradients to generate adversarial examples. Interestingly, even under black-box
conditions where the adversary lacks complete knowledge about the model, they can
still successfully bypass gradient masking techniques [PMG+17].



4.2. INPUT TRANSFORMATIONS 33

4.2 Input transformations

One effective method of protecting a DNN from adversarial attacks involves applying
some transformation to the original image to create a new input that is more robust to
adversarial attacks. By doing so, the model becomes more resistant to perturbations
in the input, making it harder for attackers to craft adversarial examples that can
fool the model. This approach is effective against various types of attacks. In both
instances below, we assess the security performance of the adversarial attacks by
employing the classification accuracy metric. The baseline reference classification
accuracy is based on benign images that were initially accurately classified by the
trained models [DSC+17].

4.2.1 Method Implementations

JPEG compression

In their work, Das, Nilaksh, et al. proposed a defense method based on input
transformation. The proposed method comprises a preprocessing step that employs
JPEG compression to mitigate the effects of adversarial perturbations before the
input undergoes analysis by the classification model. JPEG compression can reduce
the impact of small adversarial changes while keeping a decent visual quality, even
though it might create block-like patterns due to the compression process. The JPEG
algorithm, which is inherently lossy, results in the diminution of high-frequency details
in the image. This property aids in lessening the effect of adversarial perturbations
[DSC+17].

Flip + WebP compression

Yin, Zhaoxia, et al. present a new input transformation-based defense approach.
The input transformation consists of a preprocessing module, which incorporates
two low-level image transformations, WebP compression, and a flip operation, to
counteract the adversarial perturbations before the classification model processes the
input. WebP compression efficiently mitigates minor adversarial interferences while
preserving a higher visual quality than JPEG compression, mainly due to the lack of
block-like artifacts often associated with JPEG. The flip operation, which involves
mirroring the image along one axis, disrupts the distinctive structure of adversarial
perturbations, thereby augmenting the resilience of the defense mechanism. The
step-by-step process is visualized in Figure 4.3 [YWW+20].

4.2.2 Security performance

The input transformation as a defense method against adversarial attacks was
performed on three different adversarial attacks, I-FGSM (see Section 3.3.3), DeepFool



34 4. RELATED WORK

Figure 4.3: Illustration of the two-step input transformation process - applying
WebP compression and flip operation on the image before sending it to the classifier
[YWW+20].

(see Section 3.3.5), and CW (see Section 3.3.7). The results are in Table 4.1.

Security Performance of Input Transformations

Evaluation Metric: Classification Accuracy

Defense Benign Images I-FGSM DeepFool CW

No Defense 100% 9.68% 2.58% 0%

JPEG 93.14% 71.87% 79.29% 80.10%

WebP + Flip 95.84% 80.12% 85.23% 86.59%

Table 4.1: Security performance of two input transformation methods, on white-box
adversarial attacks. The rows represent the different methods used, and the columns
represent the adversarial attack used, with their respective classification accuracy.
Results are from a ResNet-101 architecture on a subset of the ImageNet dataset,
collected from [DSC+17; YWW+20].
Note: Only benign images classified correctly by the underlying model are included.



4.3. ADVERSARIAL TRAINING 35

4.3 Adversarial training

Adversarial training involves supplementing the training dataset with adversarially
perturbed images while retaining the original labels. This enables the model to en-
hance its ability to accurately predict labels even when images have been manipulated
[TDL20].

4.3.1 Method implementation

There is no single specific implementation of adversarial training, as its realization
may vary depending on the particularities of the model and the chosen adversarial
attacks. However, a general algorithm can be outlined to demonstrate the typical
adversarial training process. The pseudocode provided in Algorithm 4.1 represents a
common approach to performing adversarial training, where the model is updated
iteratively using batches of both original and adversarially perturbed images.

Algorithm 4.1 Adversarial Training
Require: training data {X1, . . . , Xn}, model parameters θ, iterations I

1: fadv ← initializeAdversarialAttack(θ)
2: for i = 1 to I do
3: B ← {X1, . . . , Xm} ▷ Batch, B, from a subset of the training set
4: {Xadv

1 , . . . , Xadv
k } ← fadv(θ, B) ▷ Apply adversarial attack

5: B′ = {Xadv
1 , . . . , Xadv

k , Xk+1, . . . , Xm} ▷ New batch
6: Update θ using B′ ▷ Update model paramters
7: end for

4.3.2 Security performance

Adversarial training has proven effective against black-box adversarial attacks, where
the attacker has limited access to the model’s parameters and can only interact
through input and output. However, this approach has limited efficacy against
white-box adversarial attacks, as these attackers have full access to the model’s
parameters, architecture, weights, and coefficients. This enables them to adapt their
adversarial attacks accordingly [TDL20; KGB16]. Table 4.2 shows an overview of
the security performance.

While adversarial training can increase a model’s robustness against black-box
adversarial attacks, it can be computationally intensive. This technique requires
perturbing images based on specific attack types and then including them in the
training dataset, which increases training time. Furthermore, it has been shown
to slightly decrease the accuracy of clean images on large datasets like ImageNet
[DDS+09]. Nevertheless, the accuracy on clean images when using smaller datasets,
such as MNIST and CIFAR-10, does not change [KH+09; LBBH98]. Adversarial



36 4. RELATED WORK

training remains a valuable method for improving a model’s overall robustness, even
if it has limited impact on white-box models [TDL20; KGB16].

Security Performance of Adversarial Training

Evaluation Metric: Fooling Rate

Defense FGSM DeepFool CW

No Defense 98% 99% 99%

Adversarial Training 49.2% 99% 99%

Table 4.2: Security performance of adversarial training on various white-box adver-
sarial attacks. The reported values are the respective fooling rates after adversarial
training. Results are from a ResNet architecture on the TinyImageNet dataset,
collected from [TDL20].



4.4. ADVERSARIAL DETECTOR SUBNETWORK 37

4.4 Adversarial Detector Subnetwork

Efforts to counter adversarial attacks through input data manipulation often result in
compromised performance on benign images, as detailed in Section 4.2. Additionally,
employing adversarial training strategies modifies the model’s internal parameters,
thereby influencing its performance accuracy on benign images, as discussed in Section
4.3. An alternative approach is to maintain the model’s internal structure and address
the adversarial attack externally without modifying the model’s parameters. One
such method is presented in the paper On Detecting Adversarial Perturbations,
wherein the authors propose a novel technique for detecting adversarial examples
by attaching a binary classification subnetwork to the primary model. This method
demonstrates potential in mitigating the impact of adversarial attacks and enhancing
the robustness of ML models [MGFB17].

4.4.1 Method Implementation

The authors first trained a multi-class image classification model to detect adversarial
attacks without altering the model parameters. They then froze all the model weights
and attached the detector model, a separate, smaller CNN. Subsequent training of
the detector model can be conducted by employing the multi-class image classification
model to classify images. Features can then be extracted from the multi-class image
classification during classification and provide the detection model with a labeled
dataset consisting of extracted features for benign and adversarial images [MGFB17].

The independent binary detector model connects to the multi-class classifica-
tion model at five distinct attachment points. The detector model was tested for
detectability accuracy at each attachment point. Figure 4.4 displays these five at-
tachment points as arrows pointing to AD(0), AD(1), AD(2), AD(3), AD(4), and
AD(5). The first attachment point is at the input of the multi-class classification
model, meaning that the detector model receives a copy of the input image directly
[MGFB17].

4.4.2 Security Performance

For the security performance evaluation of the system, five attacks were implemented,
FGSM, I-FGSM (L2 and L∞) and DeepFool (L2 and L∞), see Section 3.3 for details
about the attacks. The five attacks were performed on two different datasets CIFAR10
[KH+09] and a subset of ImageNet [DDS+09]. Concerning attachment points, the
results indicate that AD(0) had the lowest detectability accuracy, while AD(2) and
AD(4) provided the highest detectability accuracy across the five different adversarial
attacks. Furthermore, the security performance results for the detection accuracy on
the CIFAR 10 dataset and ImageNet dataset can be seen in Table 4.3 [MGFB17].



38 4. RELATED WORK

Figure 4.4: Adversarial detector subnetwork attached to a ResNet. The adversarial
detector subnetwork is attached at five places. The adversarial detector subnetwork
is a CNN [MGFB17].

Security Performance of CNN Detection Network

Fooling rates: >70%

Evaluation Metric: Detection Accuracy

Dataset FGSM IFGSM L∞ IFGSM L2 DeepFool L∞ DeepFool L2

CIFAR10 97% 89% 87% 82% 79%

ImageNet 89% 87% 90% 85% 91%

Table 4.3: Performance of the detector network on white-box adversarial attacks.
The perturbation ϵ is minimized to ensure the classification accuracy of the underlying
ResNet32 classifier falls below 30%. Results are obtained from [MGFB17].



4.5. INVESTIGATING ADVERSARIAL IMPACT ON CNN ACTIVATIONS 39

Figure 4.5: Illustration of the logarithmic distance between adversarial and benign
activations for each filter (kernel) output in the initial convolution layer. Each
row represents a specific instance of an adversarial attack with its corresponding
parameters, while the columns represent the filter indexes in the first convolution in
the Inception V3 architecture [Orv22].

4.5 Investigating Adversarial Impact on CNN Activations

A recent Master’s thesis by Orvedal at NTNU studied how adversarial attacks
influence activated feature maps, also known as activations, in a CNN. Through
experiments, Orvedal examined the differences in activations by classifying benign
and adversarial images. By conducting these tests with various adversarial attacks,
he could visually observe the difference in activations and identify specific patterns
in the data. He conducted his experiments using three different adversarial attacks:
FGSM, PGD, and UAP. More information can be found in Section 3.3 [Orv22].

From Figure 4.5, it can be seen that certain indexes show a consistent pattern,
displaying similar cooler or warmer colors across different adversarial attacks. These
include but are not excluded to index one, seven, ten, and sixteen. Orvedal further
visually examined the entire Inception V3 architecture. He found these patterns
easier to detect in the shallower layers [Orv22].

However, it is essential to underscore that Orvedal’s methodology of extracting
and analyzing the data was a manual process. Therefore, its practical applicability in
real-time operational systems is inherently limited. This signifies a crucial aspect of
his research, indicating that while the insights derived are informative and beneficial,
they may not directly translate into immediate solutions for live adversarial attack
detection in CNNs, and therefore is hard to display the security performance of his
work. This recognition underscores the necessity for further development to enable
automatic detection and response within real-time systems [Orv22].





Chapter5Methodology

This chapter describes the methodology used in the thesis. First, Section 5.1 describes
the overall research approach. Further, Section 5.2 defines the research design of the
methodology and describes the guiding requirements for each step of the research
process. The subsequent sections detail each step of the research methodology,
providing assumptions and considerations conducted along the way aligned with the
guiding requirements.

5.1 Research Approach

For this master’s thesis, we will adhere to a quantitative research approach. The
selection of a quantitative research approach is driven by the goal of yielding quantifi-
able and reproducible results from experiments. Furthermore, we want to generate
insights that extend beyond the specific context of our investigation, thereby making
an objective contribution to the field of adversarial machine learning [Str19].

It is important to note that quantitative research has its potential pitfalls. Risks of
quantitative research biases, such as sampling bias1, and selection bias2, are inherent
to this research approach. To ensure the validity of our results, we will implement
measures to minimize these biases and maintain the integrity of our findings.

5.1.1 Generalizibility

In order to minimize the potential for sampling and selection bias, we will focus on
the generalizability of our results. Therefore methods to enhance generalizability will
play a crucial role in our quantitative research approach. Generalizability refers to
how our research findings can be applied to a broader context beyond the specific

1Sampling bias is a systematic error that occurs when specific data points are disproportionately
likely to be included in a sample. This bias can distort the representation of the data, potentially
leading to erroneous conclusions [Hec90].

2Selection bias refers to the distortion that occurs when the data chosen is not fully representative
of the set or group of data that should have been considered [HS95].

41



42 5. METHODOLOGY

instances or cases studied. The goal is to develop models and draw conclusions not
limited to our specific dataset or experimental setup but can be extrapolated to
other similar contexts. Moreover, we aim to avoid coincidental results, which could
arise from conducting a particular experiment that only holds in a narrow context
and fails to yield consistent outcomes upon minor alterations. This is to ensure the
robustness and reproducibility of our findings, critical factors in maintaining the
integrity of our research.

To ensure generalizability and reduce coincidental results, we design our ex-
periments with various adversarial attacks, using multiple CNN architectures and
employing more than one dataset. Taking these precautions allows us to simulate a
wide array of scenarios [Hec90; HS95].

5.1.2 Iterative Process

Given our focus on generalizability, we anticipate unexpected findings as we conduct
our experiments. Therefore, we commit to an ongoing iterative process to rigorously
incorporate these emergent insights. Each data collection and analysis cycle will
be systematically followed by a review and refinement phase, informed by the new
knowledge gathered. However, to maintain the integrity of our research and minimize
selection and sampling bias, it remains crucial that we continue to conduct our
experiments within a broad spectrum of contexts; despite the iterative nature of our
process, we need to make sure we are testing in a variety of situations to ensure the
integrity of our work [Smi12].



5.2. RESEARCH DESIGN 43

5.2 Research Design

Following our quantitative research approach, which aims to produce generalizable
results through an iterative process described in Section 5.1, our research design is
centered around experimental research.

5.2.1 Experimental Research

To answer our research questions, we will conduct experimental research. The
experimental research involves building different CNN models, exposing them to
various adversarial attacks, and evaluating their performance. First, we aim to identify
the essential components of CNN that can be effectively integrated to identify ongoing
adversarial attacks (RQ1). Subsequently, we will develop a detection model and
evaluate its robustness and generalizability (RQ2). Furthermore, we will evaluate the
resource usage of the detection model compared to its security performance (RQ3).

5.2.2 Overview

To ensure a thorough understanding of our proposed methodology, we outline the
complete system overview in Figure 5.1. Each number in this figure signifies a
detailed diagram that will be explored further in the corresponding sections of the
methodology chapter.

Within Figure 5.1, the rounded boxes with gear icons signify processes, denoting
dynamic operations or actions carried out throughout our research. Conversely, the
sharp-edged boxes represent static elements in our research methodology. These
static elements are either collected or created through a dynamic process.

5.2.3 Guiding Requirements

To effectively carry out the experimental research, we will adopt the following research
design process described below. Please note that in this section, we define what
needs to be achieved in each step of the process, defining the guiding requirements of
the overall system. The methodology chapter will detail the specific implementation
details employed to adhere to these guiding requirements.

Software and Hardware

The guiding requirements for software and hardware toolkit will be their accessibility,
ease of use for the task at hand, and usability based on previous knowledge.



44 5. METHODOLOGY

Figure 5.1: Schematic illustration of the complete system overview.

Dataset Selection

– Size: Balance the need for large datasets with the practical constraints of time
and resources inherent to a master’s thesis. This implies selecting datasets of
sufficient size to minimize coincidental results while ensuring manageability
within our scope.

– Accessibility: Prioritize datasets that are readily accessible to ensure that
other researchers in the field can replicate our study.

– Diversity: Consider the comprehensiveness and diversity of the datasets. This
ensures that they encompass a wide range of scenarios and variables, further
enhancing the robustness of our research, given the generalizability in our
approach outlined in Section 5.1.1



5.2. RESEARCH DESIGN 45

Arhictecture Selection for Skin Lesion Classifiers

– Accessiblity: The model architectures must be openly accessible, either
via an Application Programming Interface (API) or a detailed description of
implementation in literature, to ensure the reproducibility of our study.

– Prevalence in existing literature: The prevalence of the architecture’s
usage in the existing literature is important. Providing a benchmark for model
performance, enabling comparison and evaluation of our results to external
research.

– Architectural differences: The chosen model architectures must have some
architectural differences in how they are built. The diversity in architecture
will contribute to a more robust evaluation of our methods and ensure we can
test for the generalizability outlined in Section 5.1.1.

Data Preprocessing

– Data augmentation: The requirement for data augmentation will be deter-
mined by the size and variety of our datasets and our models’ tendency to
overfit. For smaller or less varied datasets, augmentation might be advantageous
to boost the model’s ability to generalize to new data. Moreover, if overfitting
- the model’s excessive adaptation to the training data at the expense of its
performance on unseen data - appears to be a significant problem, we may
employ augmentation as a potential countermeasure.

– Architectural constraints: Our preprocessing methodologies must respect
the specific needs and restrictions of the chosen CNN architectures. This means
the data may need to be reshaped or reformatted based on the requirements of
the selected models.

– Data partitioning: Ensure that the partitioned data set sizes are representa-
tive and balanced, allowing for robust training and validation. Furthermore,
the independence of each data subset should be maintained to avoid inter-
dependencies that could lead to biased results and overfitting.

Development of Skin Lesion Classification Model

– Mitigating Overfitting: Develop models that generalize well, meaning they
perform comparably on the training, validation, and test datasets.

– Performance Benchmarking: Create competitive models compared to the
current state of the art. To ensure that our skin lesion classifiers meet the



46 5. METHODOLOGY

state-of-the-art standard, we should benchmark these classifiers against others
with similar architectures in the field

Adversarial Attacks

– Variety of Attacks: A variety of adversarial attacks should be used; the
diversity should reflect both different techniques and strengths. This will help
determine whether the detection technique is consistent across different attacks.

– Consistent Implementation: To ensure fair and comparable results, im-
plementing these attacks should be consistent across all tested models. This
may require standardizing parameters and applying attacks under the same
conditions.

– Prevalance in existing literature: The attacks chosen for the evaluation
should be represented in the existing literature. The selection should consider
the most commonly used and researched attacks, ensuring the relevance and
practicality of the evaluation. This will also allow for a better comparison with
other models tested under similar adversarial conditions.

Feature Extraction

– Diversity of Components: To capture a broad and nuanced understanding
of the model’s operations, it is vital that the features we extract originate from
a diverse range of components within the CNN. This ensures that the extracted
features provide a holistic representation of the model’s internal operations.

– Manageability of Data: Extract as many meaningful features as possible
while keeping the volume of data manageable. Balance obtaining comprehensive
data and avoiding an overwhelming dataset that could complicate our analysis
and extend processing times.

– Simplicity of Extraction: The complexity of the feature extraction process
should be kept as minimal as possible. This does not imply a sacrifice in
the quality or completeness of the data but instead underscores the need for
efficiency and straightforward methods. Extracting features should not be
an overly intricate process that becomes a project in itself. Instead, features
should be designed and selected to be simple to pull from the CNN.

Detection Model Selection

– Publicly available: The models must be publicly available to ensure that
someone can easily replicate our work.



5.2. RESEARCH DESIGN 47

– Distribution-agnostic performance: The detection model should perform
optimally without a prerequisite for specific data distributions, given the
unpredictability of potential data distribution.

– Efficient training design: The detection model should be designed for
efficient training. Ideally, it should have a low training time without compro-
mising its performance. This principle aligns with the need for practicality
in real-world applications where quick deployment and updates are essential.
In addition, an efficient model minimizes computational resources and time,
lowering operational costs and fostering sustainable scalability.

Throughout our research process, we will ensure that our research approach is
iterative, revisiting and refining our models and experiments based on the results
obtained at each stage. Further, to guarantee the replicability of our work, we will
keep clear records of our methodologies, including their underlying motivations and
implementation details, all following the defined guiding requirements.



48 5. METHODOLOGY

5.3 Selection of Deep Learning Framework

This section delves into the selection process for a deep learning framework for our
project, focusing on PyTorch and contrasting it with another well-known framework,
TensorFlow. The rationale behind the final choice is also presented.

5.3.1 Advantages of Pytorch

PyTorch has earned a strong reputation in the academic and industrial world due
to its simplicity, flexibility, and wide range of features, including multi-platform
deployment and distributed training [PGM+19]. In addition, the framework is
equipped with an intuitive interface for harnessing the computational power of GPUs,
leading to more efficient training processes. Moreover, PyTorch comes with various
pre-trained models [WGZ+20].

5.3.2 Comparison of PyTorch and TensorFlow

PyTorch and TensorFlow, both open-source libraries, are widely used for creating
and training deep learning models. TensorFlow, developed by Google, was introduced
in 2015, while PyTorch was developed a year later in 2016 by Facebook AI Research
(now Meta AI) [PGM+19; AAB+16].

One of the main differences between PyTorch and TensorFlow is their approach
to building and training models. PyTorch employs a dynamic computational graph,
offering greater flexibility and ease of use when constructing and modifying models.
In contrast, TensorFlow utilizes a static computational graph, which can result in
more efficient execution of large models but at the cost of flexibility [PGM+19].

They also diverge in their adopted programming style. PyTorch’s imperative
programming offers an intuitive and interactive experience. In contrast, Tensor-
Flow’s declarative programming is well-suited for production-level development and
deployment but might be less intuitive for researchers and developers [RG16].

5.3.3 Rationale for Choosing PyTorch

We opted for PyTorch as our deep learning framework. Its flexibility, ease of use,
and dynamic computational graph make it suitable for a research-oriented master’s
thesis. In addition, the availability of pre-trained models and GPU support further
strengthens our choice, allowing us to develop, train, and evaluate our models
efficiently. It is also the primary framework from which we derive our previous
knowledge, therefore aligning the choice with the guiding requirements for software
and hardware outlined in Section 5.2.3.



5.4. HARDWARE SETUP AND OS 49

5.4 Hardware Setup and OS

We leveraged the computational acceleration offered by Graphics Processing Unit
(GPU) to train our deep learning models efficiently. Our university had provided us
with a virtual machine, which included a quarter of a Tesla A100. Essentially giving
us a GPU equipped with 10GB of virtual GPU-RAM. This GPU was accompanied by
60GB of RAM and 12 vCPUs, enabling us to handle large datasets and run multiple
tasks simultaneously. In addition, our virtual machine was hosted on Ubuntu 20.04.5
LTS, a stable and widely adopted operating system. This setup allowed us to fully
utilize the capabilities of the PyTorch framework, ensuring rapid and efficient training
of our models.

The highest quantity of virtual GPU-RAM accessible via the educational institu-
tion guided the selection of the given hardware configuration. In addition, Ubuntu
Linux was preferred due to its terminal-based controllability, which offers significant
advantages when interfacing through SSH (Secure Shell). Additionally, Ubuntu Linux
was selected as it represented the primary platform we were familiar with, adhering
to the guiding principle of previous knowledge discussed in our research design in
Section 5.2.3.



50 5. METHODOLOGY

5.5 Selection of Attack Software Framework

This section compares different adversarial attack software frameworks and discusses
the rationale for selecting the final framework.

5.5.1 Attack Libraries: Torchattacks vs. Foolbox vs. Adversarial
Robustness Toolbox

We considered three main libraries for implementing adversarial attacks: Torchattacks,
Foolbox, and Adversarial Robustness Toolbox (ART) [Kim20; RBB17; NST+18].
While all three libraries support adversarial attacks, ART and Foolbox are more
general-purpose libraries that can also be used with TensorFlow. Torchattacks, on
the other hand, is designed explicitly for PyTorch, offering a PyTorch-like interface
and functions that simplify the process of creating adversarial attacks.

Torchattacks provides a range of adversarial attacks, including but not limited to
FGSM, CW, and DeepFool [Kim20]. Performance-wise, Torchattacks outperforms
ART and Foolbox on FGSM, PGD, and CW, as demonstrated in a fair comparison
using Robustbench [CAS+20].

5.5.2 Rationale for Choosing Torchattacks

Considering the selection of PyTorch as the primary deep learning framework,
Torchattacks was chosen as the attack software framework. This decision was
motivated by Torchattacks’ compatibility with PyTorch, user-friendly interface, and
ability to generate many unique adversarial attacks with high performance. Moreover,
given the absence of familiarity with adversarial attack software frameworks, opting
for a Pytorch-specific framework would greatly facilitate the learning process, as
Pytorch is a familiar environment.



5.6. SELECTION OF DATASETS 51

5.6 Selection of Datasets

In keeping with our aim of generalization as detailed in Section 5.1.1, we have
selected two distinct but related datasets. We have chosen two datasets from the
ISIC challenges, ISIC 2018 and ISIC 2019.

5.6.1 International Skin Imaging Collaboration Datasets

The ISIC has made available five datasets, each generated annually from 2016 to
2020. The datasets were created for the ISIC competition to enhance the diagno-
sis of melanoma detection. As a result, these datasets have undergone rigorous
experimentation and analysis. [KHF20; HKF20; SAH+22; GNS+20].

5.6.2 Rationale for Choosing ISIC 2018 and ISIC 2019

Firstly, these datasets are substantial in size, which ensures minimalization of coinci-
dental results while simultaneously being manageable within the time and resource
constraints of a master’s thesis. Secondly, the datasets are publicly accessible via
the ISIC challenge archive, promoting the reproducibility of our study. Lastly, the
diversity and comprehensiveness of the ISIC 2018 and ISIC 2019 datasets are further
enhanced by their inclusion of varied image sizes and multiple skin lesion types.
Section 2.3.1 outlines the different skin lesion types.

ISIC 2018 Dataset

The first dataset we will utilize originates from the ISIC 2018 challenge, com-
posed of two sub-datasets. The first part of the dataset is constructed from the
HAM10000 Dataset, comprising 10,015 dermoscopic images of skin lesions. The
second dataset, from which the ISIC 2018 challenge is constructed—also known as
the MSK Dataset—will not be employed for training, validation, or testing purposes
[TRK18; NRT+18].

ISIC 2019 Dataset

The second dataset we will utilize originates from the ISIC 2019 challenge, consisting
of 25,331 dermoscopic images. The dataset is assembled from three independent
datasets: the MSK Dataset, the HAM10000 Dataset, and a new dataset called
the BCN_20000 Dataset. The BCN_20000 Dataset comprises 19,424 dermoscopic
images of skin lesions.

Dataset Overlap

The ISIC 2018 and 2019 challenge datasets exhibit a degree of overlap, as they both
incorporate the HAM10000 and the MSK datasets. However, we have excluded the



52 5. METHODOLOGY

MSK Dataset from our analysis of the ISIC 2018 dataset. Despite the HAM10000
dataset’s presence in both the ISIC 2018 and ISIC 2019 challenges, we maintain that
validating our methodology across datasets of varying dimensions is crucial. Given
the limited availability of public skin lesion datasets, we conclude that proceeding
with experiments on both datasets is justified. This decision will allow us to extract
more comprehensive insights, enhancing the robustness and applicability of our
findings.



5.7. SELECTION OF SKIN LESION CLASSIFICATION ARCHITECHTURES 53

Figure 5.2: Illustration of a simple inception module, naive version [SLJ+15].

5.7 Selection of Skin Lesion Classification Architechtures

In this project, as part of our generalizability approach described in Section 5.1.1, we
have selected two distinct CNN architectures for our skin lesion classifiers: Inception
V3 and ResNet-18.

5.7.1 Inception V3 Architechture

Inception V3 is a CNN architecture, which has demonstrated strong performance
in various computer vision tasks [AZH+21; PFH+18]. Specifically, it has been
used to classify skin lesions and is often used as a test benchmark architecture for
adversarial attacks in the category of inception architectures [NP21; KT22; XCS19].
The architecture employs a series of inception modules, improving the model’s ability
to learn complex representations at different levels of abstraction. Furthermore,
Inception V3 has about 24 million trainable parameters [SVI+16]. See Table 5.1 for
the Inception V3 architecture used in the thesis.

Inception modules

Inception modules are used in CNN to allow for more efficient computation and
reduction of overfitting. Instead of only stacking more convolutional layers of different
types and sizes sequentially, we let, for example, 1x1 convolution, 3x3 convolution,
5x5 convolution, and a max pooling layer operate on the same level, see Figure 5.2.
The Inception V3 model architecture incorporates three distinct inception modules.
Each module features its unique mixed architecture, differentiating it from the others
[SLJ+15].



54 5. METHODOLOGY

Inception V3 Architecture

Type Filter size - Stride Input Size

conv layer 3x3 - 2 299x299x3

conv layer 3x3 - 1 149x149x32

conv layer padded 3x3 - 1 147x147x32

max pooling 3x3 - 2 147x147x64

conv layer 1x1 - 1 73x73x64

conv layer 3x3 - 1 71x71x80

max pooling 3x3 - 2 35x35x192

3xInception A * 35x35x192

Reduction A * 17x17x768

4xInception B * 17x17x768

Reduction B * 17x17x768

2xInception C * 8x8x1280

average pooling 8x8 8x8x2048

linear layer 1x1x2048

dense layer ** 1x1xN

Table 5.1: Summary of the Inception V3 architecture used for the experiments.
Each row of the table represents a different layer (or set of layers) in the architecture.
(*) Inception modules and reduction modules as described in [SVI+16]
(**) The size N in the final dense layer represents the number of classes in the output
and will be 7 (ISIC 2018) or 8 (ISIC 2019).

5.7.2 ResNet-18 Architechture

ResNet-18 is a member of the Residual Network (ResNet) family of DNN. The
primary innovation of the ResNet architecture is the use of residual connections (or
skip connections), which makes it easy to optimize even very deep residual networks
while still achieving increased accuracy gains from a wide network. This approach
allows us to increase accuracy and make it easier to optimize while reducing the
overall complexity of the model. Furthermore, ResNet-18 has about 11 million
trainable parameters [HZRS16]. See Table 5.2 for the ResNet-18 architecture used in
the thesis.



5.7. SELECTION OF SKIN LESION CLASSIFICATION ARCHITECHTURES 55

Residual blocks

Residual blocks play a crucial role in ResNets by enabling the transfer of information
from earlier layers to later layers of a neural network. A usual method to increase
the accuracy of a CNN is to make the model architecture deeper, but this only works
up to a certain level before the accuracy starts to degrade rapidly [GB10; BSF94].
Residual blocks allow information in the network to bypass certain layers and retain
important information, ultimately improving the accuracy and efficiency of the model.
In other words, residual blocks help to ensure that the neural network can learn
complex representations of data by allowing an additional channel of information to
pass through the network [HZRS16].

ResNet-18 Architecture

Type ResNet-18 Input Size

conv layer 7 × 7, stride=2, padding=3 224 × 224 × 3
max pool 3 × 3, stride=2, padding=1 112 × 112 × 64

conv2_x
[

3 × 3, 64
3 × 3, 64

]
× 2 56 × 56 × 64

conv3_x
[

3 × 3, 128
3 × 3, 128

]
× 2 56 × 56 × 64

conv4_x
[

3 × 3, 256
3 × 3, 256

]
× 2 28 × 28 × 128

conv5_x
[

3 × 3, 512
3 × 3, 512

]
× 2 14 × 14 × 256

avg pool 7 × 7 7 × 7 × 512

dense layer N* neurons 1x1xN*

Table 5.2: Summary of the ResNet-18 architecture used for the experiments. Each
row of the table represents a different layer (or set of layers) in the architecture
[NPS18].
(*) The size N in the final dense layer represents the number of classes in the output
and will be 7 (ISIC 2018) or 8 (ISIC 2019).

5.7.3 Rationale for choosing ResNet-18 and Inception V3

Both architectures are readily available via the Pytorch API, and both architectures
come with a multitude of pre-trained weights. The architectures are, in addition to
this, explained in depth in their respective research papers [SVI+16; HZRS16]. Sec-
ondly, residual networks like ResNet-18 and inception-based networks like Inception
V3 are frequently utilized in the literature. In a meta-analysis of 416 peer-reviewed



56 5. METHODOLOGY

Figure 5.3: Illustration of a single residual learning building block [HZRS16].

journal articles, the residual network family of networks stood for 33% of the 416
papers, and the Inception V3 stood for 5% [GMHM21]. Lastly, the two architectures
are unique, characterized by components such as residual blocks in ResNet-18 and
inception modules in Inception V3. The uniqueness of model architectures is fur-
ther emphasized by variations in model sizes, as reflected in the number of layers
and trainable parameters. This selection aligns with the guiding requirements for
architecture selection defined in Section 5.2.3.



5.8. DATASET PREPROCCESSING 57

Process 1 in Figure 5.1

Figure 5.4: Schematic illustration of the preprocessing pipeline for the skin lesion
classifiers, originating from the ISIC dataset.
Note: Primary ISIC 2018 dataset includes a distinct testing dataset, the primary
ISIC 2018 dataset will therefore only be subdivided into training and validation.

5.8 Dataset Preproccessing

This section will detail the steps to prepare the ISIC 2018 and ISIC 2019 datasets
for model training. We will cover a range of preprocessing procedures that were
fundamental to ensuring the datasets were well-structured, balanced, and suitable
for use in our selected CNN models. Figure 5.4 shows a schematic illustration of the
preprocessing pipeline.

5.8.1 Addressing Dataset Imbalance

The ISIC 2018 and ISIC 2019 datasets, selected for developing our skin lesion clas-
sifiers, initially exhibited significant class imbalance. Before these datasets were
deployed to train our classifiers, it was imperative to discuss if data augmentation
techniques were required. The need for data augmentation was based on the con-
siderations outlined in the guiding requirements for data preprocessing in Section
5.2.3. The diversity of the different classes in the dataset, particularly the smaller
representation of some skin lesion types, could limit the model’s ability to learn
effectively. By amplifying the size of under-represented classes, augmentation could
improve the classifier’s ability to discern between different skin lesion types.

Furthermore, as the dataset was highly imbalanced, it was prone to overfitting.
Given these challenges – dataset imbalance, limited diversity, and potential for
overfitting – we planned to use data augmentation techniques before initiating the



58 5. METHODOLOGY

model training phase to address them. In implementing data augmentation, we
applied a variety of transformations to the skin lesion images. For each transformation,
we randomly selected an image from a specific category. As a result, we ensured
that each skin lesion category in the ISIC 2018 dataset was sampled a minimum
of 3000 times and in the ISIC 2019 dataset, a minimum of 6000 times. The series
of transformations applied included a random horizontal flip (25% probability), a
random vertical flip (25% probability), and a random rotation between -90 and 90
degrees. The effect of these augmentations on the data distributions for the ISIC
2018 and ISIC 2019 datasets can be seen in Figures 5.5 and 5.6, respectively.

5.8.2 Data Partitioning

To train our models and evaluate their performance, we divided our datasets into
distinct sets. Specifically, we had the training, validation, and test datasets. The
training dataset was utilized to develop and adapt the models. Meanwhile, the
validation set was used during training to tune hyperparameters, adjust learning
rates, and make other model modifications without risking overfitting. Finally, the
test set was used to assess the final model’s performance in a controlled and unbiased
manner, providing a reliable measure of the model’s effectiveness and generalizability
to unseen data. The ISIC 2018 dataset conveniently came prepackaged with a
dedicated test dataset. As such, we planned to utilize this dataset for our testing
needs. We strategically split the default ISIC 2018 dataset for training and validation
purposes.

5.8.3 Image Preprocessing

Before utilizing the images for model training, they underwent specific preprocessing.
The images in the ISIC 2018 dataset shared dimensions of 3x450x600, where the three
channels represented red, green, and blue. 450 is the number of pixels in height, and
600 is the width. However, the images in the ISIC 2019 dataset came in various sizes.
The Inception V3 model requires an input size of 3x299x299, while the ResNet-18
model requires an input size of 3x224x224. Therefore, we resized the images to the
appropriate dimensions by cropping them based on the center of the image.



5.8. DATASET PREPROCCESSING 59

Figure 5.5: Distribution of Skin Lesion Categories in the ISIC 2018 Dataset before
and after the data augmentation.

Figure 5.6: Distribution of Skin Lesion Categories in the ISIC 2019 Dataset before
and after the data augmentation.



60 5. METHODOLOGY

Process 2 in Figure 5.1

Figure 5.7: Schematic illustration of the skin lesion classifier CNN model training.

5.9 Development of Skin Lesion Classification Model

This section describes the methodology for developing the four individual skin lesion
classifiers. To provide a comprehensive overview of our research methodology, we
also document those experimental methodologies that did not yield the desired
hypothesized outcomes. The motive behind presenting this is to contribute to future
research efforts by illuminating effective and less successful strategies. Figure 5.7
shows an overview of the model training process.

5.9.1 Architechture Implementation

PyTorch provides an API for importing model architectures. We employed this API
to implement the Inception V3 architecture [SVI+16] and the ResNet-18 architecture
[HZRS16], both of which come with pre-trained weights, which are trained on



5.9. DEVELOPMENT OF SKIN LESION CLASSIFICATION MODEL 61

ImageNet [DDS+09]. We will construct four skin lesion classifiers, two of which
will utilize the ResNet-18 architecture, and two will be based on the Inception V3
architecture. For both architectural configurations, we will train one model on the
ISIC 2018 dataset and the other on the ISIC 2019 dataset.

5.9.2 Challenges and Shortcomings in Model Fine-tuning

Our initial approach was to fine-tune the models by only training a linear layer,
keeping the pre-trained ImageNet weights unchanged. This method is commonly used
when leveraging transfer learning, as it allows the model to retain generic features
learned from a large-scale dataset like ImageNet while adapting to the specific
task at hand. However, this approach could have yielded more satisfactory results,
specifically in accuracy. Consequently, we revised our approach and performed full
model training, utilizing the ImageNet model weights as a starting point. This
decision was motivated by our intention to ensure that our skin lesion classifiers
remain competitive concerning state-of-the-art models in terms of overall performance.
Unfortunately, with fine-tuning, initial results fell short of this benchmark. As such,
a more comprehensive training approach, encompassing the entire model and not
merely a linear layer, was necessary to enhance performance and align more closely
with the state-of-the-art potential.

5.9.3 Model Training

Given the shortcomings in the initial fine-tuning approach, we strategically decided
to perform full model training for our classifiers. We were utilizing the pre-trained
weights from ImageNet as the starting point. To begin with, we configured the
parameters specific to each of the four models, as illustrated in Table 5.3. Then,
with these parameters in place, the training process was initiated. Throughout the
training process, at the end of each epoch, we assessed the model’s performance
using the validation dataset.

Rationale for Parameter Selection

Our choice of parameters was first and foremost governed by the hardware limi-
tations detailed in Section 5.4. We set the number of workers at 10, the highest
possible value under our constraints. The batch size selection underwent a similar
consideration. Initially, we considered a batch size of 64, but our training GPU
could not accommodate such a large size due to memory constraints, necessitating a
reduction to a batch size of 32. We conducted a coarse grid search for the learning
rate, gamma, momentum, and step size to identify the parameters that would deliver
suitable performance. While the primary objective of our master’s thesis is not to
create the best-performing skin lesion classifier, having a solid and high-performing
base model for our experimental investigations is still important. The coarse grid



62 5. METHODOLOGY

search approach allowed us to balance performance and computational efficiency
while ensuring the parameters selected were fit-for-purpose and capable of fostering
an adequately robust model. Initially, we experimented with the Adam optimizer
but later transitioned to the Stochastic Gradient Descent (SGD) following its proven
effectiveness with CNN architectures as indicated in [PP19]. We adjusted the epoch
count for the ResNet-18 model on the ISIC 2018 dataset. We observed that running
50 epochs led to overfitting for this specific model. To mitigate this, we reduced the
epoch count to 25, which helped alleviate the overfitting issue.

5.9.4 Model Evaluation

The outcomes of our model training process are presented in Table 5.4. These
results are contextualized by reference benchmarks on ISIC 2018 and ISIC 2019
datasets. In previous studies, a ResNet-50 model achieved 89.28% classification
accuracy, and an Inception-V3 model attained 88.05% classification accuracy on
the ISIC 2018 test dataset [AKK20]. Furthermore, a hybrid architecture combining
residual and inception elements reached a classification accuracy of 90.35% on the
ISIC 2019 dataset (without segmentation) [SAA22]. These established benchmarks
serve as essential reference points for assessing the model’s performance concerning
state-of-the-art. While our results with the ResNet-18 model are slightly inferior,
registering a few percentage points lower for both datasets compared to state-of-the-
art, we attributed this to ResNet-18 having half the trainable parameters compared
to Inception V3 and ResNet-50.

Consequently, its capacity for learning complex representations is somewhat
constrained, which may account for the observed performance difference. Nevertheless,
our Inception V3 models demonstrate performance in line with state-of-the-art models,
a considerable achievement. Based on our analysis, we confidently assume that both
models possess a similar capacity for generalization compared to comparable models,
thus fulfilling the performance benchmarking criterion as detailed in Section 5.2.3.
Moreover, the models exhibit respectable performance on unseen data, satisfying
the second critical factor for our skin lesion classification model’s development.
Consequently, we believe these models have successfully met the standards we
initially set for this research.



5.9. DEVELOPMENT OF SKIN LESION CLASSIFICATION MODEL 63

ResNet-18 Inception V3

ISIC 2019 ISIC 2018 ISIC 2018 ISIC 2019

Step Size 10 10 10 10

Gamma 0.1 0.1 0.1 0.1

Learning Rate 0.01 0.01 0.01 0.01

Momentum 0.9 0.9 0.9 0.9

Batch Size 32 32 32 32

Number of Workers 10 10 10 10

Dataset Split (%) 80,20* 80,20* 70,20,10 70,20,10

Epoch Count 50 25 50 50

Cost function CE CE CE CE

Optimization algorithm SGD SGD SGD SGD

Table 5.3: Comparison of model parameters used for training four skin lesion
classifiers. The ’Dataset Split’ row describes dataset partitioning into training,
validation, and testing.
Note: Cross Entropy Loss (CE), Stochastic Gradient Descent (SGD)
(*): For the ISIC 2018 dataset, a dedicated test dataset is already available, so the
dataset is only split into training and validation sets.

ResNet-18 Inception V3

ISIC 2019 ISIC 2018 ISIC 2018 ISIC 2019

Training time 59 min 20 min 68 min 107 min

Classification Accuracy 84.96% 86.01% 88.08% 90.88%

Recall 84.96% 86.01% 88.08% 90.88%

Precision 85.29% 87.17% 88.62% 90.91%

F1 Score 84.84% 85.93% 88.17% 90.85%

Table 5.4: Performance outcomes of the four skin lesion classification models on
their respective test datasets.



64 5. METHODOLOGY

5.10 Adversarial Attacks

5.10.1 Selection of Adversarial Attacks

To select the adversarial attacks, we will adhere to our guiding requirements for
adversarial attacks outlined in Section 5.2.3. We have selected four unique adversarial
attacks to ensure various attacks with a diversity of strengths and techniques.

FGSM is selected because of its strong prevalence in existing literature, as it
was the first implementation of an adversarial attack [SZS+13]. As we can see from
Chapter 4, it gives us a strong comparison basis to compare our method to multiple
protection methods. It also provides an example of a less strong attack, giving us a
starting point for the whole spectrum of attacks in terms of strength. See Section
3.3.1 for further details about the attack.

CW is selected because it represents the stronger adversarial attacks, as noted
in Orvedals master’s thesis future work, it would be one of the most interesting
adversarial attacks to put into the test, as it makes many protective mechanisms
obsolete [Orv22]. It also is highly represented in prevailing literature, giving us a
good basis for comparison. See Section 3.3.7 for further details about the attack.

I-FGSM is selected because it significantly escalates the FGSM attack’s strength.
It is an iterative approach that applies the FGSM attack multiple times with a small
step size, providing a more refined adversarial example. This attack is a stepping stone
between FGSM and CW in terms of attack strength and sophistication; thus, it serves
a crucial role in testing the robustness of our models. I-FGSM has been discussed
extensively in the literature, providing a wealth of comparative data [KGB16]. See
Section 3.3.3 for further details about the attack.

PGD is selected as it is a variant of the I-FGSM attack, offering further sophis-
tication and potency. This attack assists us in investigating how our models react
to two closely related but distinct adversarial attacks. The inclusion of the PGD
attack contributes to the breadth of our investigation [MMS+17]. See Section 3.3.6
for further details about the attack.

5.10.2 Implementation of Adversarial Attacks

We have developed an iterative process to maintain uniformity in the application
of adversarial attacks. This method is designed to apply these attacks with consis-
tency systematically. A detailed representation of the application process for each
adversarial attack can be found in Figure 5.8.



5.10. ADVERSARIAL ATTACKS 65

Process 3 in Figure 5.1

Figure 5.8: Schematic illustration of creating the adversarial attacks.



66 5. METHODOLOGY

Process 4.1 and 4.2 in Figure 5.1

Figure 5.9: Schematic illustration of extracting features from the CNN and prepro-
cessing these features to create a dataset.

5.11 Extraction of Features

This section described our methodology for extracting features from the inner struc-
tures of our skin lesion classifiers. For a complete overview of this part of the
methodology, see Figure 5.9.

5.11.1 Diversity of Components

In line with the guiding requirements for feature extraction outlined in Section 5.2.3,
we highly emphasized the diversity of components when selecting which elements to
extract as features. Our approach is rooted in understanding the architecture of a
typical CNN, as described in Section 2.2.5. We identified four key components within
the CNN architecture: convolutional layers, non-linear activation functions, pooling
layers, and fully connected layers. Each of these components plays a unique role in
the model’s operation, and thus, extracting features from each of these components
ensures a comprehensive understanding of the model’s internal workings.

While we recognize the importance of pooling layers in reducing the spatial size
of the representation and controlling overfitting, we have chosen not to focus on these
layers individually for feature extraction. This decision is based on their primary
role being to sub-sample the input, which is inherently a part of the feature maps



5.11. EXTRACTION OF FEATURES 67

generated by the convolutional layers and activation functions [AZH+21]. Instead,
we focus our feature extraction on the convolutional layers with or without non-linear
activation functions and the fully connected layers.

5.11.2 Feature Extraction Simplicity

Our strategy for feature extraction is grounded in the principle of simplicity and
focuses on key layers of the respective architectures.

ResNet-18: We targeted the conv1, conv2_x, conv3_x, conv4_x, and conv5_x
layers for feature extraction. An overview of the architecture is outlined in Section
5.7.2 and Table 5.2. We extracted features both pre and post-application of the
non-linear activation function. Furthermore, we extracted the weight values from
the dense layers.

Inception V3: Based on the architecture denoted in Table 5.1, we focused
on the first five convolutional layers, excluding the two max pooling layers. We
further extracted features from each inception and reduction module, giving us 16
layers. Like ResNet-18, we extracted features before and after applying the non-linear
activation function. Furthermore, we extracted the weight values from the dense
layers.

5.11.3 Manageability of Data

As we extract features from various layers and components of the CNN models, we
confront the challenge of high dimensionality. The direct use of the extracted feature
set would lead to an unwieldy volume of data, significantly complicating further
analysis and potentially leading to issues like the curse of dimensionality [AK18]. To
manage this, we implement a dimensionality reduction strategy.

Our strategy involves applying statistical and mathematical measures that encap-
sulate the salient properties of the extracted features, thereby reducing the data’s
dimensionality while retaining crucial information. Specifically, we employ the mean,
L1-distance, L2-distance, and L∞-distance as our primary measures, see Section
2.1.2.

In essence, these measures reduce the dimensionality of the extracted features
while ensuring the preservation of the essential characteristics of the data. As a result,
this approach provides easier data handling and more efficient downstream analysis.
Simultaneously, it reduces the risk of overfitting and computational complexity.



68 5. METHODOLOGY

5.12 Selection of Detection Model

This section systematically evaluates various machine learning models in light of the
guiding requirements for detection model selection outlined in Section 5.2.3.

5.12.1 Comparative Evaluation of Machine Learning Models

Initially, we consider several popular models for the task at hand: SVM, Logisitic
Regression (LR), Extreme Gradient Boosting (XGBoost) and DNN [Sar21]. Each
model’s potential is assessed against our established requirements: public availability,
requirements about data distribution, and efficient training.

SVM are widely available through open-source libraries, but they can struggle
with large datasets and require data to be well-preprocessed and normalized. They
work best with small to medium-sized datasets with a clear margin of separation
between classes but can be adapted for non-linear problems using the kernel trick.
However, due to their high computational complexity, SVM have longer training
times than other machine learning algorithms, particularly for large datasets [Nob06].

LR is a popular algorithm for classification and is widely available through libraries
in multiple programming languages. It assumes a linear relationship between the
independent variables and requires independent observations. It is computationally
efficient and relatively fast to train, though performance and training time may vary
based on the size and nature of the dataset [HLS13].

XGBoost is an open-source tool, freely accessible and capable of handling diverse
data types, including numerical, categorical, sparse, or missing data, without requiring
extensive preprocessing. It is specifically designed for efficiency, leveraging parallel
computing capabilities for faster training time and supporting distributed computing
for large datasets. In addition, XGBoost flexibility and built-in techniques to handle
overfitting make it a potentially good choice as a detection model [CG16].

DNN offer high performance but require large and diverse datasets, as well as
significant computational resources and time for training. Using open-source neural
network frameworks and hardware accelerators can alleviate some of these challenges.
However, traditional machine learning methods may be more efficient and practical
for smaller datasets or more straightforward tasks.

5.12.2 Rationale for Choosing Extreme Gradient Boosting

Choosing XGBoost as our detection model is driven by its computational efficiency
and scalability, handling large datasets effectively through parallel and distributed
computing. XGBoost’s ability to manage diverse data types, including numerical,



5.12. SELECTION OF DETECTION MODEL 69

categorical, or missing data, reduces preprocessing effort compared to other models
like SVMs. In addition, its built-in techniques to control overfitting make it more
reliable and robust. Unlike Logistic Regression, it can model complex, non-linear
relationships, and compared to Neural Networks, it is less resource-intensive and
more flexible. Overall, XGBoost aligns well with our requirements, offering versatility
and practicality for our detection model [CG16].





Chapter6Experiments and Results

This chapter delves into a series of carefully designed experiments and their corre-
sponding results aimed at providing us with crucial insights to address our three
research questions. Each experiment is crafted with a well-defined objective comple-
mented by an experimental design. Following each experiment, we will present the
results obtained. Section 6.1 is related to answering RQ1, Section 6.2 is related to
answering RQ2, and lastly, Section 6.3 is related to answering RQ3.

6.1 Experiment 1: Identifying Essential CNN Components
for Ongoing Adversarial Attack Detection

In the initial experiment of this master thesis, we will continue to build on the
knowledge from Orvedal’s research, see Section 4.5. His research demonstrated that
specific detectable changes occur within a network during an adversarial attack
[Orv22].

6.1.1 Objective

Our first experiment aims to pinpoint the components and metrics within the CNN
that will provide valuable information about the model’s security state, particularly
detecting whether it is currently under an adversarial attack.

6.1.2 Experimental Design

Evaluation Metrics

Five key evaluation metrics are collected: true positives, true negatives, false positives,
false negatives, and detection accuracy. See Section 2.2.4 for a more detailed explana-
tion of the confusion matrix. These evaluation metrics will give us an understanding
of the contribution for a given component-metric combination. Additionally, the
confusion matrix is chosen because it allows us to compare the results with various

71



72 6. EXPERIMENTS AND RESULTS

findings and results from other research studies within the field of adversarial machine
learning.

Experiment Setup and Implementation

In the experiment, all four skin lesion classifiers are employed. Detailed information
about each specific model can be found in Section 5.9. Four unique white-box
adversarial attacks are applied for each image in the dataset. Each attack and its
corresponding parameters are detailed in Table 6.1. The four skin lesion classifiers
are sequentially supplied with benign and adversarial images during the experi-
ment. During classification, features are extracted; see Section 5.11. The resulting
component-metric pairs which are extracted are detailed in Table 6.2.

The extracted component-metric pairs will be used to generate a labeled dataset.
The labels in this dataset will reflect the state of the skin lesion classifier - precisely,
whether it is under an adversarial attack or not. Supervised machine learning serves
as an assessment instrument to determine which component-metric pair yields the
most significant insights into the security status of the model. We will train and
test a total of 1761 distinct supervised ML models. After training each supervised
ML model on 80% of the available labeled data, we will test it on the remaining
20%. Evaluation metrics will be recorded during testing to assess the different
component-metric pairs. The supervised machine learning algorithm that will be
used is XGBoost; see Section 5.12. An overview of experiment 1 can be viewed in
Figure 6.1, while a comprehensive overview can be found in Appendix A.

Attacks Parameters

Fast Gradient Sign Method ϵ = 8/255

Iterative Fast Gradient Sign Method ϵ = 8/255
α = 2/255
steps = 10

Carlini & Wagner c = 1
κ = 0
steps = 50
lr = 0.01

Projected Gradient Descent L∞ ϵ = 8/255
α = 1/255
steps = 10

Table 6.1: Adversarial attack methods used in the experiments and their respective
implementation parameters.

1Four skin lesion classifiers, on four adversarial attacks on eleven different component-metric
pairs (4x4x11=176)



6.1. EXPERIMENT 1: IDENTIFYING ESSENTIAL CNN COMPONENTS FOR
ONGOING ADVERSARIAL ATTACK DETECTION 73

Figure 6.1: Schematic illustration of the process of assessing a single component-
metric utilizing supervised ML techniques.

Component Metric

Feature maps

Average value
L1 distance
L2 distance
L∞ distance

Activations

Average value
L1 distance
L2 distance
L∞ distance

Dense layers Weight values

Combinations* Activations L2 and Feature maps L∞

Activations L2, Feature maps L∞, and dense layer weight values

Table 6.2: CNN components and the corresponding metrics used for reducing the
matrices into multiple scalar values.
(*) Incorporates a combination of components and metrics.

6.1.3 Results

All component-metric pairs for each attack on every model, along with the cor-
responding evaluation metrics, can be found in the tables presented in Appendix
B. As evident from the data presented, certain component-metric combinations
demonstrated higher detection accuracy across all models and attacks, while others
underperformed in comparison. An overview of the average detection accuracy over
all models and datasets for each attack can be observed in Table 6.3.

We observe that two component-metric pairs outperformed others. The first
is the combination of Activations L2 distance, Feature maps L∞ distance, and
dense layer weight values, achieving an average detection accuracy of 96.14% across
all adversarial attacks. The second-best performing pair utilizes a combination of
Activations L2 and Feature maps L∞ distance, resulting in a slightly lower average



74 6. EXPERIMENTS AND RESULTS

detection accuracy of 95.67%.

The Feature maps L∞ distance stood out as the component-metric pair, perform-
ing best against the CW attack, registering a detection accuracy of 88.84%. This
detection accuracy surpasses that of other component-metric pairs in identifying
the same attack. For instance, the Feature maps L1 and L2 distances achieved
accuracies of 70.93% and 70.27%, respectively, which are considerably lower. The
same pattern is observed for the Activations and Dense layer component-metric pairs.
The second highest accuracy for the CW attack, aside from the combinations that
include Feature maps L∞, is achieved with the Dense layers weight values, standing
at 79.07%. Hence, the Feature maps L∞ distance metric substantially improves
the detection of CW adversarial attacks. It is also worth noting that the average
detection accuracy of the Feature maps L∞ distance for all attacks is 90.46%, which
is somewhat lower compared to other component-metric combinations. However, its
strength is clearly in its ability to detect the CW attack, which outperforms other
metrics.

Average over all models and datasets

Component Metric FGSM I-FGSM CW PGD Average

Feature maps

Average value 98.54% 99.28% 70.12% 99.01% 91.74%
L1 distance 97.38% 99.15% 70.93% 98.94% 91.60%
L2 distance 98.55% 99.28% 70.27% 99.02% 91.78%
L∞ distance 89.03% 92.59% 88.84% 91.38% 90.46%

Activations

Average value 97.52% 99.99% 76.10% 99.99% 93.40%
L1 distance 97.45% 99.99% 75.91% 99.99% 93.34%
L2 distance 96.92% 100.00% 76.51% 99.98% 93.35%
L∞ distance 88.68% 99.77% 68.11% 99.68% 89.06%

Dense layers Weight values 90.27% 99.96% 79.07% 99.91% 92.30%

Combinations Combination* 98.06% 100.00% 84.63% 99.98% 95.67%
Combination** 98.99% 100.00% 85.60% 99.98% 96.14%

Table 6.3: Average detection accuracy for different component-metric pairs for
various adversarial attacks across all models and datasets. The accuracies are
presented as percentages, indicating the effectiveness of each component-metric
combination in detecting the respective adversarial attack.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞, and dense layer weight
values.



6.2. EXPERIMENT 2: EVALUATING THE GENERALIZABILITY OF A DETECTION
MODEL FOR ADVERSARIAL ATTACKS 75

6.2 Experiment 2: Evaluating the Generalizability of a
Detection Model for Adversarial Attacks

6.2.1 Objective

The objective of the second experiment is to evaluate to what extent it is possible to
develop a detection model that demonstrates generalizability across a diverse range
of adversarial attacks targeting skin lesion classification models.

6.2.2 Experimental Design

Evaluation Metrics

In order to evaluate the generalizability of the detection model for adversarial attacks,
we will assess the extent to which the model can effectively detect various adversarial
attacks beyond its original design scope. The primary evaluation metric employed
will be detection accuracy.

Experiment Setup and Implementation

Before we can start the second experiment, we will begin by selecting the two
component-metric pairs that yielded the best performance in Experiment 1. Referring
to the results presented in Section 6.1.3, the first component-metric pair with the
best performance is the combination**2. The second component-metric pair is the
combination*3. These two component-metric pairs will be utilized as the features for
our detection model in Experiment 2.

In the second experiment, we employ all four skin lesion classifiers and apply four
unique white-box adversarial attacks. The specifics of each attack, including their
parameters, are described in Table 6.1, and the specifics of each skin lesion classifier,
including their parameters, are described in Section 5.9. Each combination of an
adversarial attack, a skin lesion classifier, and the specific features (combination* or
combination**) will have a dedicated detection model. We will create, train and test
16 different detection models.

We will provide features extracted from the CNN skin lesion classifier during
classification, 50% benign images, and 50% perturbed images to train all detection
models. Following the training process, each detection model will be tested against
all four adversarial attacks.

2combination** is compromised of activations with L2 distance, feature maps with L∞ distance
and dense layer weight values

3combination* is compromised of activations with L2 distance and feature maps with L∞
distance



76 6. EXPERIMENTS AND RESULTS

6.2.3 Results

A detailed presentation of figures explaining the results of the second experiment can
be found in Appendix C. This section will summarize these findings by showcasing
the average values computed over all datasets and models. The average results for
Combination* and Combination** are illustrated in Figure 6.2 and 6.3.

The experimental findings provide a rich perspective on the transferability of
various adversarial attacks. For example, observing the results of the detector models
trained on the CW attack, we notice a robust performance when they are subjected
to I-FGSM, FGSM, and PGD for both Combination* and Combination** features.

The performance of a detector model trained on I-FGSM and then tested on
PGD has a 100% detection accuracy on both the Combination* and Combination**
features. The reverse scenario—where a model trained on PGD is tested on I-FGSM
has a 99.98% detection rate for both Combination* and Combination** features.
However, it is noteworthy that both I-FGSM and PGD do not demonstrate effective
transferability to either CW or FGSM adversarial attacks. Since the detection model
operates on binary classification, their performance of transferring to CW or FGSM
adversarial attacks is no better than random.



6.2. EXPERIMENT 2: EVALUATING THE GENERALIZABILITY OF A DETECTION
MODEL FOR ADVERSARIAL ATTACKS 77

Figure 6.2: Heatmap visualization on the transferability of adversarial attacks for
the Combination* features (activations L2 distance and feature maps L∞ distance).
The adversarial attack type used to train the detector model is indicated on the
vertical axis, while the adversarial attack it was tested on is shown on the horizontal
axis. The color gradation within each cell symbolizes the degree of transferability,
with warmer colors corresponding to higher detection rates.



78 6. EXPERIMENTS AND RESULTS

Figure 6.3: Heatmap visualization on transferability of adversarial attacks for the
Combination** features (activations L2 distance, feature maps L∞ distance, and
dense layer weights). The adversarial attack type used to train the detector model is
indicated on the vertical axis, while the adversarial attack it was tested on is shown
on the horizontal axis. The color gradation within each cell symbolizes the degree of
transferability, with warmer colors corresponding to higher detection rates.



6.3. EXPERIMENT 3: EXPLORING THE TRADE-OFF BETWEEN RESOURCE
USAGE AND SECURITY 79

6.3 Experiment 3: Exploring the trade-off between Resource
usage and Security

6.3.1 Objective

The third experiment’s primary goal is to thoroughly investigate the relationship
between computational resources and the system’s security. In addition, this inves-
tigation seeks to understand how variations in resource allocation can impact the
robustness of protective mechanisms.

6.3.2 Experimental Design

Evaluation Metrics

In order to assess the trade-off between resource utilization and security, we will
employ the following metrics: computational time and image count for resource
evaluation, as well as detection accuracy for security evaluation.

Experiment Setup and Implementation

The third experiment utilizes the most successful features identified from the first
and second experiment. According to the observed outcomes, the model employing a
combination of L2 distance, L∞ distance, and dense layer weight values demonstrated
the highest overall security performance regarding detection accuracy. Further, this
experiment is divided into three stages: the adversarial attack phase, the detection
model training phase, and the detection model testing phase.

Adversarial attack phase: We will compute and apply adversarial attacks while
recording the computational time. Each unique adversarial attack will be evaluated
individually, with the average time to perform a single attack being determined
from these measurements. The experiment will conduct two evaluations, focusing on
the ResNet-18 architecture and the Inception V3 architecture. Given the white-box
nature of the attacks, results may vary concerning the size of each architecture.

Detection model training phase: Our assessment will focus on the compu-
tation time and the number of image samples utilized during the training process.
Additionally, we will evaluate the subsequent performance of the detection model,
particularly its ability to ensure security.

Detection model testing phase: We will focus our investigation on the
computational demands tied to feature extraction and predictive operations of the
detection model. This involves an examination of the model’s efficiency in handling
real-time predictive tasks on incoming data. By closely tracking the computational



80 6. EXPERIMENTS AND RESULTS

resources and time expended in these procedures, we aim to evaluate the operational
viability of the security model.

It is important to highlight that the measurements in the adversarial attack and
testing phase are contingent upon the specific hardware configuration utilized in our
experiment, as detailed in Section 5.4. Consequently, actual computational times
may exhibit some variance across different hardware setups. However, despite this
potential variability, these results can still provide valuable insights into the relative
computational demands of the different models. Furthermore, this comparison is
instrumental in understanding the trade-off between security and resource allocation
across different architectures, irrespective of the exact hardware configuration.

6.3.3 Results

Phase: Adversarial Attacks

From Table 6.4, we can observe that the time required to generate and apply
adversarial attacks significantly varied according to the employed attack method
and the complexity of the targeted skin lesion classifier. As anticipated, the more
complex Inception V3 required more computational time to execute each attack when
compared to the relatively smaller ResNet-18 architecture. The CW attack consumed
the most time on the ResNet-18 and Inception V3, averaging 0.125 seconds and 0.303
per attack on their respective model architectures. Among the three phases, the
adversarial attack phase was found to be the most demanding in terms of resource
utilization, taking the longest time to complete.

Average Computation Time for Adversarial Attacks

Attack ResNet-18 Inception V3

FGSM 0.006 sec 0.025 sec

I-FGSM 0.068 sec 0.249 sec

C&W 0.125 sec 0.303 sec

PDG 0.067 sec 0.249 sec

Table 6.4: The table presents the average computation time required to generate
and apply a single instance of an adversarial attack. The presented values are derived
by taking the average from 1,000 iterations of the attack process and are denoted in
seconds.



6.3. EXPERIMENT 3: EXPLORING THE TRADE-OFF BETWEEN RESOURCE
USAGE AND SECURITY 81

Phase: Detection Model Training

The relation between the number of samples and detection accuracy between different
adversarial attacks on two architecture models, ResNet-18 and Inception V3, can
be observed through the plots presented in Figure 6.4 and Figure 6.5. Notably,
the detection accuracy on both I-FGSM and PGD adversarial attacks exhibit the
same pattern, performing precisely the same if the detection model is trained on 100
samples or 10 000 samples. Regarding the FGSM attack, as the size of the training
dataset increases, there is a slight improvement in the detection accuracy.

On the other hand, the detection accuracy when the detection model is exposed
to the CW adversarial attack demonstrates a stronger correlation with the number
of training samples. For example, for the Inception V3 model, the detection accuracy
reaches a saturation point of around 2500 samples, indicating that further exposure
to additional samples does not yield significant improvements in accuracy. However,
for the ResNet-18 model, the detection accuracy continues to trend upward as the
number of samples increases.

Figure 6.4: This graph illustrates the relationship between the number of training
samples and the corresponding detection accuracy of the detection model. The
detection model is connected to the ResNet-18 model. The x-axis is presented in a
logarithmic scale, while the y-axis represents the detection accuracy, starting from
50%, corresponding to random guessing.
Note: I-FGSM, also called BIM, can not be seen in the plot since it is directly under
PGD.



82 6. EXPERIMENTS AND RESULTS

Figure 6.5: This graph illustrates the relationship between the number of training
samples and the detection accuracy of the detection model. The detection model is
connected to the Inception V3 model. The x-axis is presented in a logarithmic scale,
while the y-axis represents the detection accuracy, starting from 50%, corresponding
to random guessing.
Note: I-FGSM, also called BIM, can not be seen in the plot since it is directly under
PGD.

Phase: Detection Model Testing

Our observations from this phase showed that feature extraction time was subject to
variations based on the complexity of the model architecture. Specifically, we noticed
that the extraction time for features from the more complex and bigger Inception V3
model was higher, averaging about 0.102 seconds. In contrast, the smaller ResNet-18
model required significantly less time, with an average feature extraction time of just
0.007 seconds. These results help illustrate the influence of model complexity on
computational resource demands in the context of adversarial attack detection.

These findings suggest that feature extraction and adversarial attack detection
processes can be performed with minimal delays, enabling real-time operations.
Furthermore, despite the variations in computational time observed due to the
complexity of different model architectures, the extraction times for both the Inception
V3 and ResNet-18 models were within an acceptable range, remaining below a tenth
of a second. Therefore, in practical applications, these delays would likely not
significantly impede the real-time detection of adversarial attacks.



Chapter7Discussion

In this chapter, we will discuss the presented solution by comparing it against state-of-
the-art solutions in Section 7.1. Subsequently, we address the three research questions
posed at the beginning of this study in Section 7.2, facilitating a comprehensive
understanding of the implications of our findings. Then, Section 7.3 will explore the
constraints and limitations of our research. Finally, Section 7.4 will discuss potential
paths for future work.

7.1 Comparison to Related Work

In this section, we will undertake an in-depth comparison and analysis of our outcomes
in relation to those achieved by the state-of-the-art solutions that have been previously
discussed in Chapter 4. This comparative evaluation serves to situate our work within
the broader scientific context and highlight our contributions to the field. By drawing
parallels and contrasts with the existing body of knowledge, we aim to demonstrate
the novelty and utility of our solution. We will discuss both its innovative elements
and practical usefulness.

7.1.1 Comparison to Input Transformations and Detector
Subnetwork

In this section, we will examine the security performance of our proposed detection
model against the detector model outlined in Section 4.4. Furthermore, we will also
compare our detection model against the input transformation method, outlined in
Section 4.2. We have chosen Flip + WebP compression as the benchmark for compar-
ison due to its outstanding security performance. However, our comparison will not
include gradient masking or adversarial training. The exclusion of gradient masking
from our comparative study is based on its lack of substantial security performance,
rendering it an insignificant element for comparison. As for adversarial training, we
have chosen to exclude it since it was only somewhat effective on FGSM, while for

83



84 7. DISCUSSION

CW and DeepFool, it did not change the fooling rate after retraining, which means
that the effectiveness is limited to black-box adversarial attacks. Given our testing
is exclusively focused on white-box adversarial attacks, which are fundamentally
stronger, the comparison with adversarial training would not yield valuable insights
as these methods are inherently vulnerable to such attacks.

Performance on Benign Images

Input transformations inherently modify the input to the DNN, as the compression
operation removes specific features from the image. This invasive technique compro-
mises the classification accuracy of benign images. The accuracy of correctly classified
images (100%) dropped to 95.84% following the application of input transformation.

In contrast, the detection model developed in this thesis and the current state-
of-the-art detector model leave the structure of the DNN untouched; it is merely
appended to the network, observing its operation. Consequently, there is no deterio-
ration in the performance of benign images correctly classified before the application.

7.1.2 Performance on Adversarial Attacked Images

The comparative investigation for input transformations encompassed three adversar-
ial attacks - I-FGSM, DeepFool, and CW - applied to a ResNet-101 architecture. The
ResNet-101 architecture contains approximately 44.5 million trainable parameters
and is best contrasted with our Inception V3 architecture. While input transfor-
mations function primarily as a mitigation technique, not a detection method, it is
essential to note that a detector model can preemptively counter an attack, thus
providing a form of mitigation. Therefore, we find it meaningful to compare the
classification accuracy of the input transformations under attack and the detection
accuracy of our detection model.

Focusing on the I-FGSM adversarial attack, the input transformation demon-
strated a classification accuracy of 80.12%. However, our generalized detection
model, trained on the CW adversarial attack, presented a notably superior average
detection accuracy of 97.00%1. Remarkably, our detection model specifically trained
on I-FGSM exhibited a perfect detection accuracy of 100.00%. Furthermore, consid-
ering the CW adversarial attack, the input transformation-based model exhibited a
classification accuracy of 86.59%, whereas our detection model achieved an average
detection accuracy of 88.29%.

1The 97.00% detection accuracy is calculated from the average of two detection models attached
to two Inception V3 architecture models, where one is trained on ISIC 2018 and another is trained
on ISIC 2019 dataset



7.1. COMPARISON TO RELATED WORK 85

For the comparison with the state-of-the-art detector model, which is integrated
into a ResNet-32 architecture, we evaluated it against the averaged security perfor-
mance of our detection model, attached to the ResNet-18 model architecture. Given
the CIFAR10 dataset’s limitation to images of size 32x32 pixels, we benchmarked our
results with the ImageNet security performance. Regarding the FGSM adversarial
attack, the present state-of-the-art detector model, specifically trained on the FGSM
adversarial attack, attained a detection accuracy of 89%. In contrast, when specifi-
cally trained on the same FGSM adversarial attack, our detection model achieved a
significantly higher detection accuracy of 98.22%. Thus, our detection model sur-
passes the current state-of-the-art detector model regarding FGSM security based on
detection accuracy. Moreover, when considering the I-FGSM L∞ adversarial attack,
the state-of-the-art detector model yielded a detection accuracy of 87% after being
specifically trained on I-FGSM. Conversely, our detection model, under equivalent
training conditions on I-FGSM, achieved a remarkably higher detection accuracy of
99.99%. Hence, our detection model methodology proves superior to the existing
state-of-the-art detector model even in this scenario.

7.1.3 Comparison of Methods

Input Transformations to our Detection Model

A comparative analysis of our proposed solution with the input transformation
methods reveals distinct differences. Firstly, input transformation methods do not
necessitate training for their security measures; they are applied once and continue to
safeguard the model indefinitely. This no-training approach presents both strengths
and drawbacks. On the one hand, it offers advantages like reduced computational
cost and simplicity, removing overfitting risks. However, these input transformation
methods could be less accurate and robust due to their inability to learn from data
and adapt to new scenarios. Hence, while the lack of training requirement simplifies
their implementation, it could potentially limit their long-term performance and
adaptability compared to our method, which can learn and improve over time with
the availability of stronger adversarial attacks.

In contrast, our approach needs initial training of the detection model. This
training phase of the detection model has a unique advantage: the ready availability
of training data, given that we can self-conduct the adversarial attacks and utilize
the data generated for detection model training. One of the benefits of employing
a trainable detection model is its ability to be iteratively updated in response to
evolving adversarial attacks, thereby improving its effectiveness over time. However,
these benefits come with their trade-offs. There is an increased computational cost
and complexity since detection model training requires computational resources and
involves multiple stages, such as choosing a ML model, creating an attachment data
pipeline, and creating adversarial attacks. Furthermore, while our approach mitigates



86 7. DISCUSSION

the risk of overfitting through rigorous training procedures, it remains a potential
challenge intrinsic to the training process of ML.

The second distinguishing factor lies in the functionality of our model to signal
potential threats, indicating when the underlying skin lesion classifier might be
under attack. The signaling enhances security by allowing real-time threat detection
and enables proactive measures, such as temporarily shutting down the skin lesion
classifier or implementing additional security measures. This could lead to reduced
long-term costs associated with damage rectification. However, while these features
offer clear advantages, they also bring particular challenges. There can be instances of
false positives causing unnecessary disruption. Additionally, the increased complexity
in system design requires more development, testing, and upkeep resources and may
make the system harder to maintain and troubleshoot.

Contrarily, input transformations have no mechanism to alert when the skin
lesion classifier is under attack. This simplifies the system design and operation and
leaves the model more vulnerable to unforeseen threats. In conclusion, the decision to
implement a threat signaling mechanism requires a careful balance between enhancing
security and handling its possible drawbacks.

State-of-the-art Detector Model to our Detection Model

Shifting the focus to comparing our proposed solution and the current state-of-the-art
detection model reveals a set of intriguing contrasts. In our approach, we employ a
classical ML algorithm for the detection model, a striking deviation from the current
state-of-the-art method, which deploys a separate CNN as a detection model.

The biggest difference between the state-of-the-art detector model and our solution
is its capability to extract features from the entire underlying CNN model, thus
offering a comprehensive perspective of the network’s behavior when under attack. As
discussed in Section 4.5, based on Orvedal’s studies, we understand that adversarial
attacks result in significant alterations at particular points within the model. Our
detection model is designed to capture and analyze components across the entire
CNN. We believe that by examining the complete architecture, we can identify
the most indicative features of adversarial activity and consequently improve the
accuracy of our detection mechanism. This is a marked departure from the state-
of-the-art detector model, which only employs a single attachment point, which is
the most intuitive way to tackle this problem, but, as discussed, does not provide
the same security protection. As a result, it strives to detect adversarial attacks by
analyzing a single layer, whereas our solution summarizes the complete network’s
performance during an attack. Further, relying on a single attachment point might
not be optimal, as adversarial attacks could be constrained to strategically reduce
their noise proximate in the detection region while not needing to constrain their noise



7.1. COMPARISON TO RELATED WORK 87

elsewhere in the network. In contrast, our method oversees the entire model network,
limiting the adversarial attack’s ability to hide its manipulations. This holistic view
increases the robustness of our solution in the face of intricate adversarial attacks.

Furthermore, our choice to employ a classical ML algorithm in our detection
model offers several distinctive benefits. Firstly, the classical ML algorithm provides
high interpretability. Unlike the state-of-the-art detector model, which operates
as a black box due to the inherent complexities of CNN, our model allows for
a transparent understanding of its decision-making process. This interpretability
is particularly crucial in cybersecurity applications, where the rationale behind
detection decisions often needs to be explained. Furthermore, our model enjoys a
superior computational efficiency over the CNN-based detection model. Classical ML
algorithms are generally less computationally intensive than a CNN, so our model
can be trained and run more quickly, making it more practical for real-time detection
scenarios. Additionally, the lower data requirement of our classical ML algorithm
offers another stark advantage. While CNNs typically demand large volumes of
labeled data to perform optimally, our model can deliver satisfactory performance
with smaller datasets. This feature is particularly beneficial when generating training
data is computationally costly. As outlined in Section 6.3, generating the adversarial
attacks is the most resource-intensive part of creating the detection model. Another
advantage lies in the model’s operation. Unlike a CNN, which necessitates higher-end
hardware, our classical ML model can run on standard computing hardware without
compromising its performance. This hardware independence significantly expands
the potential deployment environments for our model.



88 7. DISCUSSION

7.2 Research Questions

7.2.1 Research Question 1

RQ1: In the context of enhancing cybersecurity, which essential CNN components
can be effectively integrated as features for identifying ongoing adversarial attacks?

Based on the results provided in experiment 1, outlined in Section 6.1. We can
confirm that specific CNN components are crucial in identifying ongoing adversarial
attacks, which, when effectively integrated, can significantly boost the cybersecurity
posture of a system. We specifically identified three components: the feature maps
generated by the convolutional layers, the activations resulting from the non-linear
activation function on the feature maps from the convolutional layers, and the weight
values of the dense layers. By reducing the high dimensionality of the feature maps
and activations through specific metrics - precisely the L2 distance for activations and
the L∞ distance for feature maps - we were able to derive valuable features for the
detection of adversarial attacks. The combination of the L2 distance for activations,
the L∞ distance for feature maps, and the weight values of dense layers, in particular,
yielded an impressive average detection accuracy of 96.14% across all adversarial
attacks. This demonstrates the substantial potential of these components when used
jointly. Interestingly, we also found that the effectiveness of specific component-metric
pairs can vary depending on the adversarial attack being executed. For example, the
L∞ distance metric applied on the feature maps was exceptionally adept at detecting
the CW attack, exhibiting a significantly higher detection accuracy compared to
other component-metric combinations.

In conclusion, our findings suggest that to enhance cybersecurity, the internal
components of a CNN model, specifically a combination of feature maps, activations,
and dense layer weights, can be effectively harnessed to identify ongoing adversarial
attacks. While our research has made considerable progress in demonstrating the
utility of these CNN components in enhancing cybersecurity and yielding higher
performance than current state-of-the-art methods, as described in 7.1, the results
also uncover a new area of exploration in adversarial machine learning, as per our
knowledge and understanding of the field, this is the first instance where an entire
CNN architecture is leveraged for the purpose of detecting adversarial attacks.

7.2.2 Research Question 2

RQ2: Considering the strategic employment of key convolutional neural network
components outlined in RQ1, to what extent can a detection model be developed,
demonstrating generalizability across a diverse range of adversarial attacks targeting
skin lesion image classification models?



7.2. RESEARCH QUESTIONS 89

The results of the second experiment were particularly insightful and provided
a deep understanding of the transferability of various adversarial attacks. More
specifically, we found that the detection models trained on the CW attack exhibited
strong performance when subsequently tested with I-FGSM, FGSM, and PGD
attacks. The detection models trained using I-FGSM and PGD exhibited impressive
generalizability to each other. Remarkably, when tested interchangeably - the model
trained on I-FGSM tested on PGD and vice versa - the detection rates were near
perfect. This outstanding performance underscores the strength of the features
that the detection model utilizes. However, it is worth noting that the model’s
generalizability did not hold across all adversarial attacks. Particularly, the detection
models that were trained on either I-FGSM or PGD demonstrated no better than
random performance when put to the test against CW and FGSM adversarial attacks.

In conclusion, our findings indicate that creating a detection model with high
generalizability across adversarial attacks is possible if the detection model is trained
on the highest-performing adversarial attack. The detection models trained on CW
adversarial attack had an average detection accuracy of 90.61%, calculated by taking
the average across all adversarial attacks on all four models.

7.2.3 Research Question 3

RQ3: What computational resources are necessary to balance resource use and
security in the system for effective adversarial attack identification?

The results from Experiment 3 provide insight into the trade-off between computa-
tional resources and security. The investigation began by noting significant variations
in computational time associated with the generation and application of adversarial
attacks, with these differences being contingent on the complexity of the model
architecture and the complexity of the adversarial attack. This revealed the primary
bottleneck in resource utilization: the generation of adversarial attacks. Further, it
was identified that the CW adversarial attack emerged as the most computationally
demanding, especially on the more complex architecture, such as the Inception V3
architecture.

A key finding in training the detection models was that the detection accuracy
does not improve for all adversarial attacks with an increased number of training
samples. Specifically, the detection accuracy for both I-FGSM and PGD adversarial
attacks remained relatively stable irrespective of the number of training samples
used. On the other hand, the detection accuracy of the CW attack was more strongly
correlated with the number of training samples, indicating that a more extensive
training dataset could enhance detection performance. However, it is important to
note that this trend was more pronounced when the detection model was connected
to the ResNet-18 architecture than the Inception V3 architecture. The testing phase



90 7. DISCUSSION

showed that the feature extraction process, a crucial step in detecting adversarial
attacks, is subject to variation based on architecture complexity. Nevertheless, the
average extraction times for both models were short, 0.102 seconds for the Inception
V3 architecture and 0.007 seconds for the ResNet-18 architecture, indicating that
the feature extraction process is not a resource bottleneck for the system.

In conclusion, an effective balance between resource usage and system security
necessitates careful consideration of the size of the skin lesion classifier model ar-
chitecture. As exemplified by ResNet-18, smaller architectures tend to require a
higher quantity of training samples to effectively detect certain types of adversarial
attacks. For example, the CW adversarial attack, where even with 10,000 training
samples, the detection model fails to reach a detection accuracy saturation point,
indicates a challenge in pinpointing an ideal trade-off. Conversely, detection models
tied to larger architectures, such as Inception V3, exhibit different performances.
These models reach detection accuracy saturation with 2,500 training samples. These
findings suggest that the computational resources necessary to balance resource
use and security in the system for effective adversarial attack identification heavily
depend on the complexity and the architecture of the model being used.

The variation in the performance of detection models applied to ResNet-18
and Inception V3 architectures may also be explained by the differing number of
attachment points within these models, suggesting a more complex influence than
model size alone. For instance, ResNet-18’s detection model utilizes five attachment
points, while in the case of Inception V3, this number is 16, as outlined in Section
5.11. This suggests an alternative interpretation of the results; the performance
difference could be influenced by the volume of information extracted from each
architecture. The Inception V3 architecture, with its greater number of attachment
points, may allow for a more comprehensive extraction of features, which could
potentially enhance its performance in detecting adversarial attacks. Consequently,
it seems the intricate link between a model’s architecture and the accuracy of the
detection model is not merely tied to the model’s size. Instead, it may also be
influenced by the extent of information accessibility within the model. In that case,
the resource usage necessary for the trade-off between resource usage and security
would be that the more attachment points one has to the CNN model, the fewer
resources are needed.



7.3. LIMITATIONS 91

7.3 Limitations

7.3.1 Parameter Tuning for Skin Lesion Classifiers

The primary objective of this thesis is to delve into the security aspects associated
with skin lesion classifiers. Consequently, the classifiers underwent a relatively basic
coarse grid search for hyperparameters tuning, as outlined in Section 5.9.3. This
was carried out to maintain the research’s concentrated attention on evaluating the
security rather than the extensive optimization of these classifiers.

7.3.2 Domain-Specific Knowledge in the Medical Field

A limitation of this study lies in its lack of in-depth, domain-specific medical expertise,
specifically within dermatology. Only a short introduction to the skin lesion types was
provided in Section 2.3.1. While the thesis focuses primarily on the technical aspects
of skin lesion classifiers and their associated security vulnerabilities, understanding
dermatology and the broader medical context in which these classifiers operate
is undoubtedly valuable. These classifiers are developed to work in a particular
domain - the medical field, specifically in diagnosing skin lesions. The nuances of
medical imaging, the varied appearances of skin lesions, and the dynamic nature of
diseases could all influence the performance of the classifiers and their susceptibility
to adversarial attacks. Additionally, our lack of understanding could affect the
interpretation of results and the subsequent clinical decisions based on these classifiers.

7.3.3 Number of Attachment Points for Detection Model

One limitation in this study relates to the different number of attachment points for
the detection model connected to the ResNet-18 and the Inception V3 architectures.
The ResNet-18 model had fewer attachment points compared to the Inception V3.
While this difference was intentionally implemented to assess the impact of varying
attachment point numbers on performance, it could have skewed the performance
outcome for the ResNet-18 models. Consequently, it is essential to bear in mind
that any performance disparities between the two architectures might not solely
be attributed to their architectural differences but also to the varying number of
attachment points.

7.3.4 Selection of Feature Combinations

In experiment 1 outlined in Section 6.1, the selection process for creating the com-
binations of component-metric pairs was largely experimental. While this iterative
approach, as highlighted in Section 5.1.2, facilitated the discovery of feature com-
binations that yielded robust performance, it lacked a systematic and structured
foundation. This lack of a formalized selection process for feature combinations repre-



92 7. DISCUSSION

sents a limitation in our experiments. The current approach was primarily dependent
on experimental outcomes and iterative processes. This may have introduced the
risk of overlooking potentially significant combinations.

7.3.5 Resource Bottleneck

A significant resource bottleneck in the present study is centered around the generation
of adversarial attacks. This step is resource-intensive and consumes a considerable
portion of the capabilities of the system. Although these attacks are only necessary
during the training phase of the detection models, they represent a substantial con-
straint within the overall security framework, significantly impacting the adoptability
of the system.

7.3.6 Experimental Constraints

Despite the high degree of automation within the experimental system, there are some
limitations to consider regarding time efficiency. A single iteration of Experiment
2 - encompassing the generation of all adversarial attacks, extraction of features,
training of detection models, and the evaluation of the generalizability of these models -
necessitates approximately 12 hours of processing time, utilizing the hardware outlined
in Section 5.4. Experiment 2, in particular, requires a comprehensive production of
adversarial attacked images in order to create enough data points. The constraint
could potentially affect the overall momentum and effectiveness of the research
activities, warranting an exploration of non-invasive alternatives or methodological
modifications for streamlining the process. The time commitment underscores a
potential limitation concerning the capacity to execute numerous iterative cycles.
Particularly given our research approach that emphasizes an iterative process, as
discussed in Section 5.1.2.



7.4. FUTURE WORK 93

7.4 Future Work

7.4.1 Standardization and Exploration of Attachment Points

A critical aspect that requires further attention, as pointed out in the limitations
discussed in Section 7.3.3, relates to the potential variation in the number of attach-
ment points associated with detection models. In order to make a more objective
comparison, we need to standardize the number of attachment points across different
model architectures. Additionally, future research endeavors should investigate the
implications of manipulating the number of attachment points to recognize its in-
fluence on the overall model performance. This exploration could provide critical
insights into these detection models’ optimal number of attachment points.

7.4.2 Expanding the Architectural Exploration

Future investigations should broaden the spectrum of the analysis by encompassing a
wide variety of architectural models. It would be intriguing to explore architectures
that represent significant differences in complexity and size. For instance, testing
across smaller, simpler architectures and larger, more complex ones could be beneficial.
Adopting this approach could extrapolate more general insights into the relationship
between architectural design and performance. These insights surpass the specific
scenarios examined within ResNet-18 and Inception V3 frameworks. Furthermore,
an expanded evaluation incorporating diverse architectures might reveal unobserved
patterns or trends within the initial limited sample, which could be instrumental in
refining architectural design choices and enhancing performance outcomes.

7.4.3 Broaden Scope Beyond Skin Lesions

While the current research presented here is concentrated on skin lesion datasets,
as outlined in Section 5.6. Further research should indeed strive to explore the
applicability of these findings across a wider spectrum of image datasets, both in
size and domain. Furthermore, considering tasks outside of image-based processing
can offer an even more encompassing perspective on the security performance of the
method. Extensions to areas like Natural Language Processing (NLP) and audio
signal processing could further enhance the applicability and versatility of the study’s
findings.

7.4.4 Anamoly Detection

The primary resource bottleneck in the proposed solution, as outlined in Section
7.3.5, is centered around generating adversarial attacks. This limitation prompts us
to contemplate alternative methodologies to alleviate this constraint while achiev-
ing the same performance. One such approach that merits further exploration is



94 7. DISCUSSION

anomaly detection. Unlike the current methodology, which necessitates the creation
of adversarial examples for supervised learning, anomaly detection could provide a
viable alternative. This technique would pivot the detection model’s training to focus
solely on benign (non-adversarial) images. The detection model would be trained to
understand the baseline characteristics of benign images. Consequently, any input
sufficiently deviating from this learned norm could be flagged as adversarial. This
model hinges on the premise that adversarial attacks introduce changes that make
these images significantly different from benign ones, allowing them to be detected
as outliers or anomalies. Anomaly detection could offer a more efficient, scalable
solution by bypassing the need to generate many adversarial attacks. This promising
alternative approach could be a significant area for future exploration and research.



References

[AK18] N. Altman and M. Krzywinski, «The curse (s) of dimensionality», Nat
Methods, vol. 15, no. 6, pp. 399–400, 2018.

[AKK20] M. A. Al-Masni, D.-H. Kim, and T.-S. Kim, «Multiple skin lesions diagnostics
via integrated deep convolutional networks for segmentation and classifica-
tion», Computer methods and programs in biomedicine, vol. 190, p. 105 351,
2020.

[AMA17] S. Albawi, T. A. Mohammed, and S. Al-Zawi, «Understanding of a convolu-
tional neural network», in 2017 international conference on engineering and
technology (ICET), Ieee, 2017, pp. 1–6.

[AZH+21] L. Alzubaidi, J. Zhang, et al., «Review of deep learning: Concepts, cnn
architectures, challenges, applications, future directions», Journal of big
Data, vol. 8, pp. 1–74, 2021.

[Bie87] I. Biederman, «Recognition-by-components: A theory of human image un-
derstanding.», Psychological review, vol. 94, no. 2, p. 115, 1987.

[Blo11] H. Blockeel, «Hypothesis space», Encyclopedia of Machine Learning, vol. 1,
pp. 511–513, 2011.

[BR21] A. Bhardwaj and P. P. Rege, «Skin lesion classification using deep learning»,
in Advances in Signal and Data Processing: Select Proceedings of ICSDP
2019, Springer, 2021, pp. 575–589.

[BSF94] Y. Bengio, P. Simard, and P. Frasconi, «Learning long-term dependencies
with gradient descent is difficult», IEEE transactions on neural networks,
vol. 5, no. 2, pp. 157–166, 1994.

[CAS+20] F. Croce, M. Andriushchenko, et al., «Robustbench: A standardized adver-
sarial robustness benchmark», arXiv preprint arXiv:2010.09670, 2020.

[CCP+06] D. L. Cummins, J. M. Cummins, et al., «Cutaneous malignant melanoma»,
in Mayo clinic proceedings, Elsevier, vol. 81, 2006, pp. 500–507.

[CG16] T. Chen and C. Guestrin, «Xgboost: A scalable tree boosting system», in
Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, 2016, pp. 785–794.

95



96 REFERENCES

[Con23] W. Contributors, Convolution, https://en.wikipedia.org/wiki/Convolution,
Online; accessed 21-April-2023, 2023. [Online]. Available: https://en.wikipedi
a.org/wiki/Convolution.

[CW17] N. Carlini and D. Wagner, «Towards evaluating the robustness of neural
networks», in 2017 ieee symposium on security and privacy (sp), Ieee, 2017,
pp. 39–57.

[DDS+09] J. Deng, W. Dong, et al., «Imagenet: A large-scale hierarchical image
database», in 2009 IEEE conference on computer vision and pattern recogni-
tion, Ieee, 2009, pp. 248–255.

[DFO20] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for machine
learning. Cambridge University Press, 2020.

[DSC+17] N. Das, M. Shanbhogue, et al., «Keeping the bad guys out: Protecting and vac-
cinating deep learning with jpeg compression», arXiv preprint arXiv:1705.02900,
2017.

[ECC22] M. Esmaeilpour, N. Chaalia, and P. Cardinal, «Rsd-gan: Regularized sobolev
defense gan against speech-to-text adversarial attacks», IEEE Signal Pro-
cessing Letters, vol. 29, pp. 1998–2002, 2022.

[FBI+19] S. G. Finlayson, J. D. Bowers, et al., «Adversarial attacks on medical machine
learning», Science, vol. 363, no. 6433, pp. 1287–1289, 2019.

[Fer17] M. Fernandez Figueras, «From actinic keratosis to squamous cell carcinoma:
Pathophysiology revisited», Journal of the European Academy of Dermatology
and Venereology, vol. 31, pp. 5–7, 2017.

[FFRT21] R. Francese, M. Frasca, et al., «A mobile augmented reality application for
supporting real-time skin lesion analysis based on deep learning», Journal of
Real-Time Image Processing, vol. 18, pp. 1247–1259, 2021.

[Fla22] F. S. Flaate, «Understanding mitigation against adversarial attacks on skin
lesion classifiers», 2022.

[FLW+20] L. Faes, X. Liu, et al., «A clinician’s guide to artificial intelligence: How to
critically appraise machine learning studies», Translational vision science &
technology, vol. 9, no. 2, pp. 7–7, 2020.

[Fuk80] K. Fukushima, «Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position», Biological
cybernetics, vol. 36, no. 4, pp. 193–202, 1980.

[GB10] X. Glorot and Y. Bengio, «Understanding the difficulty of training deep
feedforward neural networks», in Proceedings of the thirteenth international
conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, 2010, pp. 249–256.

[GBV20] M. Grandini, E. Bagli, and G. Visani, «Metrics for multi-class classification:
An overview», arXiv preprint arXiv:2008.05756, 2020.

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Convolution


REFERENCES 97

[GMHM21] H. Ghanbari, M. Mahdianpari, et al., «A meta-analysis of convolutional
neural networks for remote sensing applications», IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 3602–
3613, 2021.

[GNS+20] N. Gessert, M. Nielsen, et al., «Skin lesion classification using ensembles of
multi-resolution efficientnets with meta data», MethodsX, vol. 7, p. 100 864,
2020.

[GSS14] I. J. Goodfellow, J. Shlens, and C. Szegedy, «Explaining and harnessing
adversarial examples», arXiv preprint arXiv:1412.6572, 2014.

[HEA+22] M. K. Hasan, M. T. E. Elahi, et al., «Dermoexpert: Skin lesion classification
using a hybrid convolutional neural network through segmentation, transfer
learning, and augmentation», Informatics in Medicine Unlocked, vol. 28,
p. 100 819, 2022.

[Hec90] J. Heckman, «Varieties of selection bias», The American Economic Review,
vol. 80, no. 2, pp. 313–318, 1990.

[HJW+14] R. J. Hay, N. E. Johns, et al., «The global burden of skin disease in 2010:
An analysis of the prevalence and impact of skin conditions», Journal of
Investigative Dermatology, vol. 134, no. 6, pp. 1527–1534, 2014.

[HKF20] K. M. Hosny, M. A. Kassem, and M. M. Fouad, «Classification of skin lesions
into seven classes using transfer learning with alexnet», Journal of digital
imaging, vol. 33, pp. 1325–1334, 2020.

[HLS13] D. W. Hosmer Jr, S. Lemeshow, and R. X. Sturdivant, Applied logistic
regression. John Wiley & Sons, 2013, vol. 398.

[HMT21] H. Hirano, A. Minagi, and K. Takemoto, «Universal adversarial attacks on
deep neural networks for medical image classification», BMC medical imaging,
vol. 21, pp. 1–13, 2021.

[HS95] J. J. Heckman and J. A. Smith, «Assessing the case for social experiments»,
Journal of economic perspectives, vol. 9, no. 2, pp. 85–110, 1995.

[HV08] C. Hafner and T. Vogt, «Seborrheic keratosis», JDDG: Journal der Deutschen
Dermatologischen Gesellschaft, vol. 6, no. 8, pp. 664–677, 2008.

[HZRS16] K. He, X. Zhang, et al., «Deep residual learning for image recognition», in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[KGB16] A. Kurakin, I. Goodfellow, and S. Bengio, «Adversarial machine learning at
scale», arXiv preprint arXiv:1611.01236, 2016.

[KH+09] A. Krizhevsky, G. Hinton, et al., «Learning multiple layers of features from
tiny images», 2009.

[KHF20] M. A. Kassem, K. M. Hosny, and M. M. Fouad, «Skin lesions classification
into eight classes for isic 2019 using deep convolutional neural network and
transfer learning», IEEE Access, vol. 8, pp. 114 822–114 832, 2020.



98 REFERENCES

[Kim20] H. Kim, «Torchattacks: A pytorch repository for adversarial attacks», arXiv
preprint arXiv:2010.01950, 2020.

[KT22] K. Koga and K. Takemoto, «Simple black-box universal adversarial attacks
on deep neural networks for medical image classification», Algorithms, vol. 15,
no. 5, p. 144, 2022.

[LBBH98] Y. LeCun, L. Bottou, et al., «Gradient-based learning applied to document
recognition», Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[Lin94] T. Lindeberg, «Scale-space theory: A basic tool for analyzing structures at
different scales», Journal of applied statistics, vol. 21, no. 1-2, pp. 225–270,
1994.

[Mar96] R. Marks, «Squamous cell carcinoma.», The Lancet, vol. 347, no. 9003,
pp. 735–738, 1996.

[MBG+21] C. Metta, A. Beretta, et al., «Explainable deep image classifiers for skin
lesion diagnosis», arXiv preprint arXiv:2111.11863, 2021.

[MFF16] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, «Deepfool: A simple and
accurate method to fool deep neural networks», in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 2574–2582.

[MFFF17] S.-M. Moosavi-Dezfooli, A. Fawzi, et al., «Universal adversarial perturba-
tions», in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 1765–1773.

[MGFB17] J. H. Metzen, T. Genewein, et al., «On detecting adversarial perturbations»,
arXiv preprint arXiv:1702.04267, 2017.

[MGvDN21] K. Mahmood, D. Gurevin, et al., «Beware the black-box: On the robustness
of recent defenses to adversarial examples», Entropy, vol. 23, no. 10, p. 1359,
2021.

[MMS+17] A. Madry, A. Makelov, et al., «Towards deep learning models resistant to
adversarial attacks», arXiv preprint arXiv:1706.06083, 2017.

[MMZ23] A. Mao, M. Mohri, and Y. Zhong, «Cross-entropy loss functions: Theoretical
analysis and applications», arXiv preprint arXiv:2304.07288, 2023.

[MR22] G. Maimon and L. Rokach, «A universal adversarial policy for text classifiers»,
Neural Networks, vol. 153, pp. 282–291, 2022.

[Nob06] W. S. Noble, «What is a support vector machine?», Nature biotechnology,
vol. 24, no. 12, pp. 1565–1567, 2006.

[NP21] B. Nandini and R. Puviarasi, «Detection of skin cancer using inception v3 and
inception v4 convolutional neural network (cnn) for accuracy improvement»,
REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, vol. 11,
no. 4, pp. 1138–1148, 2021.

[NPS18] P. Napoletano, F. Piccoli, and R. Schettini, «Anomaly detection in nanofi-
brous materials by cnn-based self-similarity», Sensors, vol. 18, no. 1, p. 209,
2018.



REFERENCES 99

[NRT+18] V. Noel Codella, P. Rotemberg, et al., «Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the international skin imaging collabo-
ration (isic)», arXiv preprint arXiv:1902.03368, 2018.

[NST+18] M.-I. Nicolae, M. Sinn, et al., «Adversarial robustness toolbox v1. 0.0», arXiv
preprint arXiv:1807.01069, 2018.

[NYC15] A. Nguyen, J. Yosinski, and J. Clune, «Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images», in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2015, pp. 427–
436.

[Orv22] A. O. Orvedal, «Deep learning in health systems: An analysis of adversarial
attacks on convolutional neural networks», M.S. thesis, Norwegian University
of Science and Technology, 2022.

[OV23] A. Oprea and A. Vassilev, «Adversarial machine learning: A taxonomy
and terminology of attacks and mitigations (draft)», National Institute of
Standards and Technology, Tech. Rep., 2023.

[PFH+18] S. Palacio, J. Folz, et al., «What do deep networks like to see?», in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 3108–3117.

[PGM+19] A. Paszke, S. Gross, et al., «Pytorch: An imperative style, high-performance
deep learning library», in Advances in Neural Information Processing Systems,
2019, pp. 8024–8035.

[PMG+17] N. Papernot, P. McDaniel, et al., «Practical black-box attacks against machine
learning», in Proceedings of the 2017 ACM on Asia conference on computer
and communications security, 2017, pp. 506–519.

[PMG16] N. Papernot, P. McDaniel, and I. Goodfellow, «Transferability in machine
learning: From phenomena to black-box attacks using adversarial samples»,
arXiv preprint arXiv:1605.07277, 2016.

[PMSW16] N. Papernot, P. McDaniel, et al., «Towards the science of security and privacy
in machine learning», arXiv preprint arXiv:1611.03814, 2016.

[PP19] R. Poojary and A. Pai, «Comparative study of model optimization techniques
in fine-tuned cnn models», in 2019 International Conference on Electrical and
Computing Technologies and Applications (ICECTA), IEEE, 2019, pp. 1–4.

[RBB17] J. Rauber, W. Brendel, and M. Bethge, «Foolbox: A python toolbox to
benchmark the robustness of machine learning models», arXiv preprint
arXiv:1707.04131, 2017.

[RCR05] A. I. Rubin, E. H. Chen, and D. Ratner, «Basal-cell carcinoma», New England
Journal of Medicine, vol. 353, no. 21, pp. 2262–2269, 2005.

[REGT15] M. R. Roh, P. Eliades, et al., «Genetics of melanocytic nevi», Pigment cell
& melanoma research, vol. 28, no. 6, pp. 661–672, 2015.

[RG16] L. Rampasek and A. Goldenberg, «Tensorflow: Biology’s gateway to deep
learning?», Cell systems, vol. 2, no. 1, pp. 12–14, 2016.



100 REFERENCES

[SAH+22] S. S. Samsudin, H. Arof, et al., «Skin lesion classification using multi-
resolution empirical mode decomposition and local binary pattern», Plos
one, vol. 17, no. 9, e0274896, 2022.

[Sar21] I. H. Sarker, «Machine learning: Algorithms, real-world applications and
research directions», SN computer science, vol. 2, no. 3, p. 160, 2021.

[SBG20] K. Sadeghi, A. Banerjee, and S. K. Gupta, «A system-driven taxonomy of
attacks and defenses in adversarial machine learning», IEEE transactions
on emerging topics in computational intelligence, vol. 4, no. 4, pp. 450–467,
2020.

[SC14] S. Samonas and D. Coss, «The cia strikes back: Redefining confidentiality,
integrity and availability in security.», Journal of Information System Security,
vol. 10, no. 3, 2014.

[SLJ+15] C. Szegedy, W. Liu, et al., «Going deeper with convolutions», in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9.

[Smi12] D. Smith, «Planning as an iterative process», in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 26, 2012, pp. 2180–2185.

[Str19] R. Streefkerk, Qualitative vs. quantitative research, en, https://www.scribbr
.com/methodology/qualitative-quantitative-research/, Accessed: 2023-4-01,
Apr. 2019.

[SVI+16] C. Szegedy, V. Vanhoucke, et al., «Rethinking the inception architecture for
computer vision», in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 2818–2826.

[SZS+13] C. Szegedy, W. Zaremba, et al., «Intriguing properties of neural networks»,
arXiv preprint arXiv:1312.6199, 2013.

[SAA22] S. K. Singh, V. Abolghasemi, and M. H. Anisi, «Skin cancer diagnosis based
on neutrosophic features with a deep neural network», eng, Sensors (Basel,
Switzerland), vol. 22, no. 16, p. 6261, 2022.

[TDL20] N. Thakur, Y. Ding, and B. Li, «Evaluating a simple retraining strategy as a
defense against adversarial attacks», arXiv preprint arXiv:2007.09916, 2020.

[TKP+17] F. Tramèr, A. Kurakin, et al., «Ensemble adversarial training: Attacks and
defenses», arXiv preprint arXiv:1705.07204, 2017.

[TRK18] P. Tschandl, C. Rosendahl, and H. Kittler, «The ham10000 dataset, a large
collection of multi-source dermatoscopic images of common pigmented skin
lesions», Scientific data, vol. 5, no. 1, pp. 1–9, 2018.

[TTT+21] A. N. Tosteson, S. Tapp, et al., «Association of second-opinion strategies in
the histopathologic diagnosis of cutaneous melanocytic lesions with diagnostic
accuracy and population-level costs», JAMA dermatology, vol. 157, no. 9,
pp. 1102–1106, 2021.

[TV16] P. Tabacof and E. Valle, «Exploring the space of adversarial images», in
2016 international joint conference on neural networks (IJCNN), IEEE, 2016,
pp. 426–433.

https://www.scribbr.com/methodology/qualitative-quantitative-research/
https://www.scribbr.com/methodology/qualitative-quantitative-research/


REFERENCES 101

[WGZ+20] K. Wang, X. Gao, et al., «Pay attention to features, transfer learn faster
cnns», in International conference on learning representations, 2020.

[XCS19] J. Xu, Z. Cai, and W. Shen, «Using fgsm targeted attack to improve the
transferability of adversarial example», in 2019 IEEE 2nd International
Conference on Electronics and Communication Engineering (ICECE), IEEE,
2019, pp. 20–25.

[YCD+16] L. Yu, H. Chen, et al., «Automated melanoma recognition in dermoscopy
images via very deep residual networks», IEEE transactions on medical
imaging, vol. 36, no. 4, pp. 994–1004, 2016.

[YWW+20] Z. Yin, H. Wang, et al., «Defense against adversarial attacks by low-level
image transformations», International Journal of Intelligent Systems, vol. 35,
no. 10, pp. 1453–1466, 2020.

[ZT+98] D. Ziou, S. Tabbone, et al., «Edge detection techniques-an overview», Pattern
Recognition and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz
Izobrazhenii, vol. 8, pp. 537–559, 1998.

[ZZB04] B. Zelger, B. G. Zelger, and W. H. Burgdorf, «Dermatofibroma—a criti-
cal evaluation», International Journal of Surgical Pathology, vol. 12, no. 4,
pp. 333–344, 2004.

[AA05] S. Astner and R. R. Anderson, «Treating vascular lesions», Dermatologic
therapy, vol. 18, no. 3, pp. 267–281, 2005.

[AAB+16] M. Abadi, A. Agarwal, et al., «Tensorflow: Large-scale machine learning on
heterogeneous distributed systems», arXiv preprint arXiv:1603.04467, 2016.

[AAL20] C. C. Aggarwal, L.-F. Aggarwal, and Lagerstrom-Fife, Linear algebra and
optimization for machine learning. Springer, 2020, vol. 156.





AppendixAExperiment 1: Comprehensive
Overview

The following appendix contains the schematic illustration of performing the first
experiment on a single adversarial attack for a single skin lesion classifier, depicted
in Figure A.1.

103



104 A. EXPERIMENT 1: COMPREHENSIVE OVERVIEW

Figure A.1: Schematic illustration of Experiment 1.



AppendixBExperiment 1: Table results

In Section 6.1, a multitude of different adversarial attacks were performed on the
Inception-V3 and the ResNet18 model. The tables show the outcome of experiment
1. The first in the table columns specifies the component of the CNN from which
the matrices are collected; the second column explains what metric was used to
reduce the matrices into a few scalar values. The third and fourth column represents
the detection results from the attached detection model, where the detection model
is attached to two different CNN skin lesion classification models trained on two
different datasets: ISIC 2018 and ISIC 2019 [NRT+18; KHF20]. The resulting values
are TP, TN, FP, FN and Accuracy, outlined in Section 2.2.4. Note: The feature
maps and activations include one or more pooling layers in the component.

ResNet18

Fooling rates: ISIC 2018: 91.38% & ISIC 2019: 84.19%

Adversarial attack: FGSM

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 1980 1974 7 40 98.83% 1904 1952 29 116 96.38%
L1 distance 1848 1939 42 172 94.65% 1861 1937 44 159 94.93%
L2 distance 1980 1974 7 40 98.83% 1904 1952 29 116 96.38%
L∞ distance 1654 1685 296 366 83.45% 1507 1696 285 513 80.05%

Activations

Average value 1904 1922 59 116 95.63% 1881 1915 66 139 94.88%
L1 distance 1891 1921 60 129 95.28% 1883 1912 69 137 94.85%
L2 distance 1806 1908 73 214 92.83% 1847 1934 47 173 94.50%
L∞ distance 1660 1729 252 360 84.70% 1496 1662 319 524 78.93%

Dense layers Weight values 1882 1871 110 138 93.80% 1638 1636 345 382 81.83%

Combinations Combination* 1907 1930 51 113 95.90% 1913 1948 33 107 96.50%
Combination** 1981 1962 19 39 98.55% 1950 1966 15 70 97.88%

Table B.1: Results of the Fast Gradient Sign Method (FGSM) adversarial attack
from experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.

105



106 B. EXPERIMENT 1: TABLE RESULTS

ResNet18

Fooling rates: ISIC 2018: 100% & ISIC 2019: 100%

Adversarial attack: I-FGSM

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 2006 1967 14 14 99.30% 1981 1950 31 39 98.25%
L1 distance 2000 1964 17 20 99.08% 1971 1950 31 49 98.00%
L2 distance 2006 1967 14 14 99.30% 1981 1950 31 39 98.25%
L∞ distance 1778 1834 147 242 90.28% 1602 1769 212 418 84.25%

Activations

Average value 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%
L1 distance 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%
L2 distance 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%
L∞ distance 2016 1975 6 4 99.75% 2019 1980 1 1 99.95%

Dense layers Weight values 2019 1980 1 1 99.95% 2019 1980 1 1 99.95%

Combinations Combination* 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%
Combination** 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%

Table B.2: Results of the Iterative Fast Gradient Sign Method (I-FGSM) adversarial
attack from experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.

Model arhcitecture: ResNet18

Fooling rates: ISIC 2018: 100% & ISIC 2019: 100%

Adversarial attack: C&W

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 1236 1266 715 784 62.53% 1159 1138 843 861 57.41%
L1 distance 1229 1364 617 791 64.81% 1218 1200 781 802 60.43%
L2 distance 1223 1272 709 797 62.36% 1172 1148 833 848 57.99%
L∞ distance 1952 1786 195 68 93.43% 1867 1637 344 153 87.58%

Activations

Average value 1597 1394 587 423 74.76% 1479 1203 778 541 67.03%
L1 distance 1574 1370 611 446 73.58% 1502 1200 781 518 67.53%
L2 distance 1536 1450 531 484 74.63% 1534 1242 739 486 69.38%
L∞ distance 1388 1447 534 632 70.86% 1414 1198 783 606 65.28%

Dense layers Weight values 1611 1633 348 409 81.08% 1597 1379 602 423 74.38%

Combinations Combination* 1830 1733 248 190 89.05% 1731 1519 462 289 81.23%
Combination** 1756 1709 272 264 86.60% 1671 1513 468 349 79.58%

Table B.3: Results of the Carlini & Wagner (C&W) adversarial attack from
experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.



107

Model arhcitecture: ResNet18

Fooling rates: ISIC 2018: 100% & ISIC 2019: 100%

Adversarial attack: PGD

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 2005 1962 19 15 99.15% 1962 1944 37 58 97.63%
L1 distance 1993 1961 20 27 98.83% 1954 1949 32 66 97.55%
L2 distance 2005 1962 19 15 99.15% 1962 1944 37 58 97.63%
L∞ distance 1742 1793 188 278 88.35% 1563 1720 261 457 82.05%

Activations

Average value 2020 1981 0 0 100.00% 2020 1981 0 0 100.00%
L1 distance 2020 1981 0 0 100.00% 2020 1981 0 0 100.00%
L2 distance 2018 1981 0 2 99.95% 2020 1981 0 0 100.00%
L∞ distance 2013 1979 2 7 99.78% 2018 1980 1 2 99.93%

Dense layers Weight values 2018 1980 1 2 99.93% 2015 1981 0 5 99.88%

Combinations Combination* 2018 1981 0 2 99.95% 2020 1981 0 0 100.00%
Combination** 2018 1981 0 2 99.95% 2020 1981 0 0 100.00%

Table B.4: Results of the Projected Gradient Descent (PGD) adversarial attack
from experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.

Inception-V3

Fooling rates: ISIC 2018: 80.52% & ISIC 2019: 69.90%

Adversarial attack: FGSM

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 2018 1979 2 2 99.90% 2017 1978 3 3 99.85%
L1 distance 2019 1980 1 1 99.95% 2017 1979 2 3 99.88%
L2 distance 2019 1979 2 1 99.93% 2017 1978 3 3 99.85%
L∞ distance 1955 1932 49 65 97.15% 1944 1910 71 76 96.33%

Activations

Average value 2019 1981 0 1 99.98% 2015 1976 5 5 99.75%
L1 distance 2019 1981 0 1 99.98% 2015 1976 5 5 99.75%
L2 distance 2017 1979 2 3 99.88% 2017 1980 1 3 99.90%
L∞ distance 1948 1917 64 72 96.60% 1934 1919 62 86 96.30%

Dense layers Weight values 1999 1954 27 21 98.80% 1742 1721 260 278 86.55%

Combinations Combination* 2014 1979 2 6 99.80% 2015 1981 0 5 99.88%
Combination** 2019 1977 4 1 99.88% 2015 1980 1 5 99.85%

Table B.5: Results of the Fast Gradient Sign method (FGSM) adversarial attack
from experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.



108 B. EXPERIMENT 1: TABLE RESULTS

Inception-V3

Fooling rates: ISIC 2018: 100% & ISIC 2019: 100%

Adversarial attack: I-FGSM

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 2020 1980 1 0 99.98% 2018 1979 2 2 99.90%
L1 distance 2020 1979 2 0 99.95% 2017 1981 0 3 99.93%
L2 distance 2020 1980 1 0 99.98% 2018 1980 1 2 99.93%
L∞ distance 2003 1957 24 17 98.98% 1991 1961 20 29 98.78%

Activations

Average value 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%
L1 distance 2020 1980 1 0 99.98% 2020 1981 0 0 100.00%
L2 distance 2020 1981 0 0 100.00% 2020 1981 0 0 100.00%
L∞ distance 2015 1975 6 5 99.73% 2009 1971 10 11 99.48%

Dense layers Weight values 2020 1981 0 0 100.00% 2018 1980 1 2 99.93%

Combinations Combination* 2020 1981 0 0 100.00% 2020 1981 0 0 100.00%
Combination** 2020 1981 0 0 100.00% 2020 1981 0 0 100.00%

Table B.6: Results of the Iterative Fast Gradient Sign method (I-FGSM) adversarial
attack from experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.

Inception-V3

Fooling rates: ISIC 2018: 100% & ISIC 2019: 100%

Adversarial attack: C&W

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 1709 1560 421 311 81.70% 1699 1501 480 321 79.98%
L1 distance 1644 1541 440 376 79.61% 1717 1511 470 303 80.68%
L2 distance 1705 1555 426 315 81.48% 1709 1504 477 311 80.30%
L∞ distance 1846 1767 214 174 90.30% 1748 1606 375 272 83.83%

Activations

Average value 1726 1604 377 294 83.23% 1726 1528 453 294 81.33%
L1 distance 1716 1602 379 304 82.93% 1723 1517 464 297 80.98%
L2 distance 1706 1585 396 314 82.25% 1732 1516 465 288 81.18%
L∞ distance 1398 1317 664 622 67.86% 1527 1335 646 493 71.53%

Dense layers Weight values 1696 1639 342 324 83.35% 1582 1533 448 438 77.86%

Combinations Combination* 1783 1694 287 237 86.90% 1726 1574 407 294 82.48%
Combination** 1832 1818 163 188 91.23% 1727 1688 293 293 85.35%

Table B.7: Results of the Carlini & Wagner (CW) adversarial attack from experiment
1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.



109

Inception-V3

Fooling rates: ISIC 2018: 100% & ISIC 2019: 100%

Adversarial attack: PGD (L∞)

Component Metric ISIC 2018 ISIC 2019

TP TN FP FN Acc TP TN FP FN Acc

Feature maps

Average value 2020 1977 4 0 99.90% 2018 1978 3 2 99.88%
L1 distance 2020 1978 3 0 99.93% 2018 1977 4 2 99.85%
L2 distance 2020 1977 4 0 99.90% 2018 1978 3 2 99.88%
L∞ distance 1995 1952 29 25 98.65% 1991 1952 29 29 98.55%

Activations

Average value 2019 1981 0 1 99.98% 2020 1980 1 0 99.98%
L1 distance 2019 1981 0 1 99.98% 2020 1980 1 0 99.98%
L2 distance 2019 1981 0 1 99.98% 2019 1981 0 1 99.98%
L∞ distance 2009 1968 13 11 99.40% 2013 1973 8 7 99.63%

Dense layers Weight values 2018 1981 0 2 99.95% 2017 1979 2 3 99.88%

Combinations Combination* 2019 1981 0 1 99.98% 2019 1981 0 1 99.98%
Combination** 2019 1981 0 1 99.98% 2019 1981 0 1 99.98%

Table B.8: Results of Projected Gradient Descent (PGD) adversarial attack from
experiment 1.
(*) Uses a combination of Activations L2 and Feature maps L∞.
(**) Uses a combination of Activations L2, Feature maps L∞ and dense layer weigth
values.





AppendixCExperiment 2: Heatmaps

Figure C.1: Heatmap visualization on the transferability of adversarial attacks for
the Combination* features (activations L2 distance and feature maps L∞ distance)
on ResNet-18 architecture trained on ISIC 2018. The adversarial attack type used
to train the detector model is indicated on the vertical axis, while the adversarial
attack it was tested on is shown on the horizontal axis. The color gradation within
each cell symbolizes the degree of transferability, with warmer colors corresponding
to higher detection rates.

111



112 C. EXPERIMENT 2: HEATMAPS

Figure C.2: Heatmap visualization on transferability of adversarial attacks for the
Combination** features (activations L2 distance, feature maps L∞ distance, and
dense layer weights) on ResNet-18 architecture trained on ISIC 2018. The adversarial
attack type used to train the detector model is indicated on the vertical axis, while
the adversarial attack it was tested on is shown on the horizontal axis. The color
gradation within each cell symbolizes the degree of transferability, with warmer colors
corresponding to higher detection rates.



113

Figure C.3: Heatmap visualization on the transferability of adversarial attacks for
the Combination* features (activations L2 distance and feature maps L∞ distance)
on ResNet-18 architecture trained on ISIC 2019. The adversarial attack type used
to train the detector model is indicated on the vertical axis, while the adversarial
attack it was tested on is shown on the horizontal axis. The color gradation within
each cell symbolizes the degree of transferability, with warmer colors corresponding
to higher detection rates.



114 C. EXPERIMENT 2: HEATMAPS

Figure C.4: Heatmap visualization on transferability of adversarial attacks for the
Combination** features (activations L2 distance, feature maps L∞ distance, and
dense layer weights) on ResNet-18 architecture trained on ISIC 2019. The adversarial
attack type used to train the detector model is indicated on the vertical axis, while
the adversarial attack it was tested on is shown on the horizontal axis. The color
gradation within each cell symbolizes the degree of transferability, with warmer colors
corresponding to higher detection rates.



115

Figure C.5: Heatmap visualization on the transferability of adversarial attacks for
the Combination* features (activations L2 distance and feature maps L∞ distance)
on Inception V3 architecture trained on ISIC 2018. The adversarial attack type used
to train the detector model is indicated on the vertical axis, while the adversarial
attack it was tested on is shown on the horizontal axis. The color gradation within
each cell symbolizes the degree of transferability, with warmer colors corresponding
to higher detection rates.



116 C. EXPERIMENT 2: HEATMAPS

Figure C.6: Heatmap visualization on transferability of adversarial attacks for
the Combination** features (activations L2 distance, feature maps L∞ distance,
and dense layer weights) on Inception V3 architecture trained on ISIC 2018. The
adversarial attack type used to train the detector model is indicated on the vertical
axis, while the adversarial attack it was tested on is shown on the horizontal axis.
The color gradation within each cell symbolizes the degree of transferability, with
warmer colors corresponding to higher detection rates.



117

Figure C.7: Heatmap visualization on the transferability of adversarial attacks for
the Combination* features (activations L2 distance and feature maps L∞ distance)
on Inception V3 architecture trained on ISIC 2019. The adversarial attack type used
to train the detector model is indicated on the vertical axis, while the adversarial
attack it was tested on is shown on the horizontal axis. The color gradation within
each cell symbolizes the degree of transferability, with warmer colors corresponding
to higher detection rates.



118 C. EXPERIMENT 2: HEATMAPS

Figure C.8: Heatmap visualization on transferability of adversarial attacks for
the Combination** features (activations L2 distance, feature maps L∞ distance,
and dense layer weights) on Inception V3 architecture trained on ISIC 2019. The
adversarial attack type used to train the detector model is indicated on the vertical
axis, while the adversarial attack it was tested on is shown on the horizontal axis.
The color gradation within each cell symbolizes the degree of transferability, with
warmer colors corresponding to higher detection rates.




	Introduction
	Motivation
	Research questions
	Thesis Structure

	Background
	Mathematical background
	Signum Function
	Measuring the Magnitude of Vectors
	Gradient

	Machine Learning Background
	Cost Function
	Supervised vs. Unsupervised Learning
	Gradient Descent
	Confusion matrix
	Convolutional Neural Network
	Important definitions:

	Deep Learning in Health Care
	Skin Lesions
	Assisting Medical Professionals with Deep Learning


	Adversarial attacks
	Concept introduction
	Adversarial Attack Scenario

	High-Level Taxonomy of Adversarial Attacks
	Stage of Attack Implementation
	Goal of the Attacker
	Attackers Capabilities
	Attackers Knowledge

	Examples of adversarial attacks
	Fast Gradient Sign Method
	One-step Target Class Method
	Iterative Fast Gradient Sign Method
	Universal Adversarial Perturbation
	DeepFool
	Projected Gradient Descent
	Carlini & Wagner

	Transferability of adversarial attacks

	Related work
	Gradient Masking
	Method implementation
	Security performance

	Input transformations
	Method Implementations
	Security performance

	Adversarial training
	Method implementation
	Security performance

	Adversarial Detector Subnetwork
	Method Implementation
	Security Performance

	Investigating Adversarial Impact on CNN Activations

	Methodology
	Research Approach
	Generalizibility
	Iterative Process

	Research Design
	Experimental Research
	Overview
	Guiding Requirements

	Selection of Deep Learning Framework
	Advantages of Pytorch
	Comparison of PyTorch and TensorFlow
	Rationale for Choosing PyTorch

	Hardware Setup and OS
	Selection of Attack Software Framework
	Attack Libraries: Torchattacks vs. Foolbox vs. Adversarial Robustness Toolbox
	Rationale for Choosing Torchattacks

	Selection of Datasets
	International Skin Imaging Collaboration Datasets
	Rationale for Choosing ISIC 2018 and ISIC 2019

	Selection of Skin Lesion Classification Architechtures
	Inception V3 Architechture
	ResNet-18 Architechture
	Rationale for choosing ResNet-18 and Inception V3

	Dataset Preproccessing
	Addressing Dataset Imbalance
	Data Partitioning
	Image Preprocessing

	Development of Skin Lesion Classification Model
	Architechture Implementation
	Challenges and Shortcomings in Model Fine-tuning
	Model Training
	Model Evaluation

	Adversarial Attacks
	Selection of Adversarial Attacks
	Implementation of Adversarial Attacks

	Extraction of Features
	Diversity of Components
	Feature Extraction Simplicity
	Manageability of Data

	Selection of Detection Model
	Comparative Evaluation of Machine Learning Models
	Rationale for Choosing Extreme Gradient Boosting


	Experiments and Results
	Experiment 1: Identifying Essential CNN Components for Ongoing Adversarial Attack Detection
	Objective
	Experimental Design
	Results

	Experiment 2: Evaluating the Generalizability of a Detection Model for Adversarial Attacks
	Objective
	Experimental Design
	Results

	Experiment 3: Exploring the trade-off between Resource usage and Security
	Objective
	Experimental Design
	Results


	Discussion
	Comparison to Related Work
	Comparison to Input Transformations and Detector Subnetwork
	Performance on Adversarial Attacked Images
	Comparison of Methods

	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3

	Limitations
	Parameter Tuning for Skin Lesion Classifiers
	Domain-Specific Knowledge in the Medical Field
	Number of Attachment Points for Detection Model
	Selection of Feature Combinations
	Resource Bottleneck
	Experimental Constraints

	Future Work
	Standardization and Exploration of Attachment Points
	Expanding the Architectural Exploration
	Broaden Scope Beyond Skin Lesions
	Anamoly Detection


	References
	Experiment 1: Comprehensive Overview
	Experiment 1: Table results
	Experiment 2: Heatmaps

