
Ocean Engineering 280 (2023) 114540

A
0

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Ship maneuvering model optimization for improved identification with less
excitation
Shiyang Li ∗, Tongtong Wang, Guoyuan Li, Houxiang Zhang
Department of Ocean Operations and Civil Engineering, Norwegian University of Science and Technology, 6009 Ålesund, Norway

A R T I C L E I N F O

Keywords:
Least squares regression
Correlation analysis
Sensitivity analysis
Model simplification

A B S T R A C T

The precise model of a ship is the foundation for its operation and control. The traditional methods of
building such models are time-consuming and require large amounts of simulation data, sea trial experiments,
or calculating with professional computational fluid dynamics software. Usually, specific maneuvers are
conducted to obtain the experimental data with full excitation. In this paper, we propose a ship maneuvering
model optimization method that can lower the requirement on data excitation during model identification
by simplification. First, the least squares method is used to identify the preliminary parameters of the ship
mathematical model. Then, correlation analysis can determine the correlation among the parameters and divide
the parameters with higher correlation into one group. Sensitivity analysis is used to detect the influence level
of parameters and as a basis for selecting the more critical parameters. Based on the results of these two
analyses, we set up a standard to simplify the ship maneuvering mathematical model. Finally, the simplified
model and the complete model are tested under different levels of data excitation, and the experiment results
verify that the simplified model can perform better than the complete model when identifying with less
excitation data.
1. Introduction

The last decade has seen an increasing interest in intelligent ships.
The maritime industry is critical to social and economic development,
accounting for roughly 90% of the EU’s external freight trade, with
more than 400 million passengers embarking and disembarking in Eu-
ropean ports each year (Sullivan et al., 2020). Digitization is seen as the
process of modernization in the maritime industry. In recent years, we
have seen increasing interest in developing and employing digital twins
for maritime industrial system design and ship intelligence (Zhang
et al., 2022), which can predict ship motion based on sensors. The
ship model is potentially fundamental to intelligent ships from a dig-
italization perspective. Thus, a simple and effective ship model is of
great significance to the safe use of intelligent ships (Kanazawa et al.,
2022). Ship motion prediction can reduce risk by predicting the future
motion trend of the ship according to historical motion data (Wang
et al., 2022). Detailed vessel motion forecasts would support under-
way and deployment decisions for safer and more efficient vessel
operation (Schirmann et al., 2022; Li et al., 2019).

System-based (SB) and computational fluid dynamics (CFD) meth-
ods are primary simulation methods to predict ship motion (Toxopeus
et al., 2018). The simulation computation time of the SB is much
shorter than that of CFD since such methods need only solve the
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equations of motion using a prescribed mathematical model and ma-
neuvering coefficients. For ship motion prediction, the system is the
ship mathematical model that can represent ship dynamics. Building
an accurate ship mathematical model poses some challenges. Ships will
be influenced by many forces, including hydrodynamics, environmental
force, etc., on the ocean (Fossen, 2011). The Taylor expansion is con-
ducted on hydrodynamics to express the forces on the ocean, and the
expansion coefficients are called the hydrodynamic parameters. Param-
eter identification for ship maneuvering models involves determining
the hydrodynamic parameters, which are often ambiguous.

It is vital to identify the hydrodynamic parameters accurately. The
more accurate the hydrodynamic parameters are, the more precise the
model is. Because Taylor expansion requires dozens of parameters to
describe the complexity of the ship’s shape and environmental force,
the amount of data needed to identify these parameters to ensure
the model’s fidelity is substantial. If fully identifying all the hydro-
dynamic parameters is almost impossible, keeping the most important
components and relinquishing the less relevant ones seems an efficient
alternative. Given two explanations of the data, all other things being
equal, the simpler explanation is preferable. From the practical appli-
cation perspective, an overly complex model will make the model’s
inspection and maintenance more difficult.
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The traditional methods for parameter identification need to con-
duct sea trial experiments under particular maneuvers like zigzag,
which are full excitation and can comprehensively show the force
changes in all degrees of freedom and requires less interference from
environmental forces. Too many parameters are difficult to identify
without particular maneuvers. The difficulty is that, even if the history
data has been collected, particular tests have to be conducted to set up
a mathematical ship maneuvering model, and this is costly. However,
in practice, there is no need for highly complex models in most cases.
So a simplified model that can be identified by data with less excitation
has significant utility. To this end, parameters can be identified by
data with less excitation, such as a random trajectory, which reduces
constraints on parameter identification.

This paper analyzes the ship maneuvering model using generic
correlation analysis and data-driven sensitivity analysis, which can be
applied to most ships without prior knowledge. A standard is proposed
to simplify the model based on two analysis results. The proposed
simplified model is verified under different maneuvers and compared
with the complete model. This paper’s contributions are as follows:

• The simplified model we proposed can be identified with less
excitation data instead of relying on the full excitation data, such
as zigzag maneuvers, which lowers the data requirement.

• The correlation and sensitivity of parameters are analyzed to
simplify the ship maneuvering model.

• A standard is set to simplify the ship model based on the correla-
tion and sensitivity analysis results.

The paper is organized as follows. The related work will be ex-
lored in Section 2, including parameter identification and model
implification. Section 3 elaborates on the methodology, mainly the
xperimental process, including the ship maneuvering model, parame-
er identification, and model simplification. This section also illustrates
he algorithms, including the least square regression, correlation, and
ensitivity analysis. In Section 4, the experiment results are shown. We
et up a simplified mariner model with correlation and sensitivity anal-
sis results and verify the simplified model under different maneuvers.
hen, Section 5 discusses the limitations of the proposed method and
ossible solutions. Finally, Section 6 offers a summary of the paper.

. Related work

.1. Parameter identification

Methods that can be used to determine the hydrodynamic coeffi-
ients in the ship maneuvering mathematical model include empirical
ormula, captive model tests, CFD calculation, and system identification
SI) combined with free-running model tests (Randeni P. et al., 2018).
I combined with free-running model tests is the most plausible and
irect manner to confirm ship maneuvering properties (Costa et al.,
021), as it does not need a harsh experimental environment. Some
onventional methods are also applied to SI in the ship mathematical
odel, such as extended Kalman filter (Skulstad et al., 2021), maximum

ikelihood (Chen et al., 2018), support vector regression (SVR) (Xu
t al., 2019), etc.

Seeking to make an accurate ship model, many researchers have
tudied parameter identification in different scenarios. Jian-Chuan
t al. (2015) identified the hydrodynamic derivatives of the Abkowitz
odel in the 20–20 zigzag test. The identified results were compared
ith the planar motion mechanism test results to verify the effective-
ess of the partial least square parameter identification method. Meng
t al. (2022) proposed a parameter identification scheme based on
VR combined with a modified grey wolf optimizer using the full-
cale trial data of the vessel YUKUN. The study uses 10–10 zigzag test
ata as identification data to obtain the parameters of ship response
2

athematical models. Wang et al. (2021) completed the identification
procedure for a three-degree-of-freedom (DOF) hydrodynamic model
under disturbance based on the SVR and conducted zigzag experiments
in different sea states to investigate the effects of turbulence on the
identification performance. Wang et al. (2019) used 𝜈(‘‘nu’’)- Support
Vector algorithm to identify the parameters in different maneuvers
of zigzag tests under polluted simulate data of three different levels,
which verify the robustness and efficiency of the algorithm. Jiang
et al. (2022) proposed a novel system identification scheme to obtain a
multi-input multi-output model of ship maneuvering motion based on a
long-short-term-memory deep neural network using simulated standard
maneuvers, including zigzag and turn circle, which can leverage the
temporal correlation from the constructed training data to learn the
underlying feasible model robust to extraneous noise. Many studies
have demonstrated the feasibility of parameter identification in the ship
model. But most of the research on identifying parameters relied at least
partially on the zigzag test, such ship trajectories never occur in reality.

2.2. Model simplification

Simplification can improve the efficiency of the ship model because
identifying a model with multiple parameters requires a level of excita-
tion in data, which costs resources. Too many parameters will also pose
challenges for maintenance. Some researchers have already worked on
model simplification based on experience for different purposes. For ex-
ample, Fang et al. (2018) applied the second-order model proposed by
Nomoto to simplify the turning characteristics of a large container ship
for the collision avoidance model. And the simplified model can quickly
determine the helm angle when the ship makes a collision avoidance
maneuver, which is helpful for the safety of ship navigation in heavy
traffic areas. Xie et al. (2019) proposed a simplified 3DOF Abkowitz
model based on experience, which provided a model basis for real-
time prediction of ship states and collision risks. Some researchers also
studied simplifying by other methods in different situations. Luo (2016)
simplified the structure of the maneuvering model based on correlation
analysis to diminish the drift of hydrodynamic coefficients and found
that there are couplings among the hydrodynamic derivatives. Gao
et al. (2018) used statistical hypothesis and 𝑝-value to remove param-
eters that would lead to the most negligible impact on model accuracy
in motion equations for the submariner model. Zhang et al. (2019)
proposed a method of simplifying the complex mathematical modeling
group (MMG) model with considerable accuracy for atypical ships such
that it conforms to the standard of the International Electrotechnical
Commission (IE62065), which calculated relevant parameters by de-
signing a motion simulation experiment applying the complex MMG
model to the atypical ship. In different scenarios, simplifying the model
structure can improve the feasibility of the model using different meth-
ods. In this paper, a method of model simplification to improve the
identification of the model is proposed.

2.3. Identification under weak excitation

Identification under weak excitation can improve identification effi-
ciency and reduce experiment costs. Nouri et al. (2018) designed input
by the amplitude-modulated pseudo-random binary signal in order to
estimate the hydrodynamic derivatives of an autonomous underwater
vehicle’s nonlinear dynamic model and use the genetic algorithm to
solve the constraint optimization problem. Wang et al. (2020) pre-
sented an optimal design scheme of excitation signals to determine
the training data that provides the maximum dynamic information to
improve the stability and accuracy of the identification of ship maneu-
vering models. Yue et al. (2022) proposed an online adaptive parameter
identification method for the unmanned surface vehicle to identify its
model parameters without the condition of persistence of excitation.
The researchers focus on input optimization or online adaptive method,
but we try to optimize the model to improve the identification under

weak excitation.
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Fig. 1. The workflow of implementing model initialization, simplification, and verification.
3. Methodology

The ship maneuvering mathematical model will decompose hydro-
dynamics by Taylor expansion. Due to the many influencing factors
and rapid changes in hydrodynamics, identifying the hydrodynam-
ics parameters accurately to describe the hydrodynamics of ships is
challenging.

3.1. Overview

This paper aims to set up a reliable ship mathematical model with
fewer parameters than existent models and that can be implemented
with less excitation data. The workflow of implementing model ini-
tialization, simplification, and verification is shown in Fig. 1. The
first step is model initialization because an accurate mathematical
model is almost impossible to obtain directly in practice. Therefore,
a preliminary model needs to be built using parameter identifica-
tion methods. The data is acquired by the ship maneuvering model,
explained in Section 3.2, which outputs the following ship motion
under control commands. And then the data are artificially polluted
to simulate the data obtained in practice because most sensors will
introduce noise when measuring. The second step is to analyze and
simplify the ship mathematical model. The correlation analysis and
sensitivity analysis are then chosen. Correlation analysis is a method
to discover the relationship among parameters and the strength of that
relationship. Sensitivity analysis is used to determine the importance
of the parameters that have the same effect on the output. The more
important parameters will be left, and others will be eliminated. This
way, a mathematical model with fewer parameters can be set up.
Finally, the simplified model is verified under different maneuvers and
compared with the complete model.

3.2. Ship maneuvering model

The ship maneuvering model is the data generator, which can
output the following ship motion with the current ship motion and
control commands. There are two common methods of building up a
ship maneuvering model, the Abkowitz model (Abkowitz, 1964) pro-
posed by Prof. Abkowitz and the MMG (Models et al., 2005) proposed
by a Japanese research committee. The first one involves expanding
the hydrodynamic forces acting on the hull into the Taylor series of
various motion variables from the overall point of view. Compared
3

with the linear mathematical model, the third-order nonlinear terms
are considered. The second method is to decompose the hydrodynamic
forces and moments that act on the ship according to the physical
meaning.

The 3DOF Abkowitz mariner model is chosen in this paper, as
shown in Eq. (1). The experiments are performed in the Marine System
Simulator (MSS) (Perez et al., 2006). The dynamics associated with
the motion in heave, roll, and pitch are neglected, and the model has
been simplified from the original. Only 10, 12, and 12 parameters are
considered in the surge, sway, and yaw motion equation, respectively.
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where 𝑚′ is the non-dimensional mess of the ship. 𝑥′𝑔 is center of
gravity. 𝑋′

�̇�, 𝑌
′
�̇� , 𝑌

′
�̇� , 𝑁

′
�̇�, 𝑁

′
�̇� represent hydrodynamic added mass. 𝐼 ′𝑧𝑧 is

a non-dimensional inertia moment about the vertical axis. �̇�′, �̇�′, �̇�′ are
the accelerations in surge, sway, and yaw. 𝑋′, 𝑌 ′, 𝑁 ′ denote the longi-
tudinal force, the transverse force, and the yaw moment, respectively.
Many factors will affect the values in the Abkowitz model, such as the
ship size, speed, and the fluid medium’s physical parameters. According
to the similarity principle, the dimensionless hydrodynamic derivatives
are used to facilitate the direct use of ship experimental data for
prototypes, which are expressed as superscripts. The most commonly
used normalization forms for marine craft are the prime system (Fossen,
2011). The accelerations and velocities can be described as shown in
Eq. (2).

�̇�′ = �̇�𝐿
𝑈2

, �̇�′ = �̇�𝐿
𝑈2

, �̇�′ = �̇�𝐿2

𝑈2
, 𝑢′ = 𝑢

𝑈
, 𝑣′ = 𝑣

𝑈
, 𝑟′ = 𝑟𝐿

𝑈
, (2)

where �̇�, �̇�, �̇� are the velocities in three directions. 𝑈 =
√

(

𝑈0 + 𝑢
)2 + 𝑣2

is the ship speed. 𝑢 is the small perturbations from nominal surge
𝑈0. The forces and moments 𝑋′, 𝑌 ′, 𝑁 ′ can be expressed as shown in
Eq. (3).

𝑋′ = 𝑋
1
2𝜌𝐿

2𝑈2
, 𝑌 ′ = 𝑌

1
2𝜌𝐿

2𝑈2
, 𝑁 ′ = 𝑁

1
2𝜌𝐿

3𝑈2
(3)

where 𝐿 is the ship’s length, and 𝜌 is the density of the fluid.
The hydrodynamic forces and moments 𝑋′, 𝑌 ′, and 𝑁 ′ expressions

can be established after a Taylor expansion, as shown in Eqs. (4), (5),
(6). 𝑋′ , 𝑌 ′, 𝑁 ′ represent hydrodynamic parameters. There are in total
∗ ∗ ∗
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respectively 10, 12, and 12 hydrodynamic parameters in the complete
model to express hydrodynamic forces and moments 𝑋′, 𝑌 ′, 𝑁 ′.

𝑋′ = 𝑋′
𝑢𝑢

′ +𝑋′
𝑢𝑢𝑢

′2 +𝑋′
𝑢𝑢𝑢𝑢

′3 +𝑋′
𝑣𝑣𝑣

′2 +𝑋′
𝑟𝑟𝑟

′2 +𝑋′
𝑟𝑣𝑟

′𝑣′

+ 𝑋′
𝑑𝑑𝛿

2 +𝑋′
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′𝑣′𝛿′
(4)
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𝑣𝑣𝑣𝑣
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′
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3.3. Parameter identification

With the ship maneuvering model, the data can be generated under
zigzag or other maneuvers. When there are enough data, the param-
eters can be identified. The least square regression is a method of
parameter identification, which can find a set of parameters to fit
linearly. The least square method is based on the minimization mean
square error. Thus it is designed to select unknown parameters to min-
imize the sum of the squares of the difference between the theoretical
value and the observed value. The fitting function can be supposed as
shown in Eq. (7).

ℎ𝜃 = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑥
2 +⋯ + 𝜃𝑛𝑥

𝑛 (7)

The least square regression will find 𝜃0, 𝜃1,… , 𝜃𝑛 to minimize
∑𝑛

𝑖=1(ℎ𝜃(𝑥𝑖) − 𝑦𝑖)2, where 𝑦𝑖 is primitive function. So the Sum of Square
Error (SSE), as shown in Eq. (8), is used to set up the cost function.

𝑆𝑆𝐸 = 𝐸(�̂�) = ‖𝑦 −𝑋(�̂�)‖22 = (𝑦 −𝑋(�̂�))𝑇 (𝑦 −𝑋(�̂�)) (8)

To get the minimum value of the equation, we can take the deriva-
tive of �̂� and let it be zero, as shown in Eq. (9).
𝜕𝐸
𝜕�̂�

= 0 (9)

Then 𝜔 can be calculated as shown in Eq. (10).

�̂�𝑇 = (𝑋𝑇𝑋)−1𝑋𝑇 𝑦 (10)

The least square regression achieves curve fitting and calculates
very fast, so it is used in the ship mathematical model. From Eq. (1), it
can also be expressed as Eq. (11) for 𝑌 and 𝑁 directions.

𝑚22�̇�′ + 𝑚23 �̇�′ = 𝑌 ′

𝑚32�̇�′ + 𝑚33 �̇�′ = 𝑁 ′ (11)

It can be seen that the forces 𝑌 in sway are coupling with the
oments 𝑁 in yaw, so 𝛽𝑣, 𝛽𝑟 as shown in Eqs. (12), (13) are used to

it the forces and moments to calculate the hydrodynamic coefficients
f 𝑌 ′, 𝑁 ′.

𝑣 =
𝑚33𝑌 ′ − 𝑚23𝑁 ′

𝑚22𝑚33 − 𝑚23𝑚32
(12)

𝛽𝑟 =
𝑚22𝑁 ′ − 𝑚32𝑌 ′

𝑚22𝑚33 − 𝑚23𝑚32
(13)

Then, Eqs. (12), (13) can be decoupled to obtain the hydrodynamic
oefficients of 𝑌 ′, 𝑁 ′, as shown in Eqs. (14), (15).

′ =
𝑚22𝛽𝑣 − 𝑚23𝛽𝑟

𝑚22𝑚33 − 𝑚23𝑚32
(14)

′ =
𝑚32𝛽𝑣 − 𝑚33𝛽𝑟

𝑚22𝑚33 − 𝑚23𝑚32
(15)

Parameter identification is needed to identify the parameters in
he ship maneuvering model with historical data. This is because, in
ractice, only the physical parameters of the ships can be known, and
he mathematical model cannot be obtained directly.
4

.4. Correlation analysis

The correlation analysis is performed on the complete model to
nalyze the correlation of parameters and group the parameters. The
orrelation means the degree of linear relationship among variables.
here are two usual methods to analyze the correlation of parameters,
earson and Spearman. The covariance is used to measure the overall
rror of variables, as Eq. (16).

ov(𝑊 ,𝑍) =
∑𝑛

𝑖=1
(

𝑊𝑖 − �̄�
) (

𝑍𝑖 − �̄�
)

𝑛 − 1
(16)

where �̄� and �̄� respectively express the mean of variance W and
Z. 𝑛 represents the number of samples. If coefficients have the same
trend, the covariance will be positive, which means they are positively
correlated. On the contrary, if they have an opposite tendency, the
covariance will be negative, which means they are negatively corre-
lated. Finally, if the covariance equals zero, they will be independent
of others, which means they are not associated.

Pearson uses the correlation coefficients as shown in Eq. (17) to
respond to the closeness and measure the linear relationship among
variables.

𝜌𝑊 ,𝑍 =
cov(𝑊 ,𝑍)
𝜎𝑊 𝜎𝑍

=
𝐸
[(

𝑊 − 𝜇𝑊
) (

𝑍 − 𝜇𝑍
)]

𝜎𝑊 𝜎𝑍
(17)

here 𝜎𝑊 means the standard deviation of variables. 𝐸 expresses
he mean of variables. But when the data do not meet the normal
istribution, Spearman correlation analysis is chosen, introducing rank
nto the correlation analysis. In other words, variances need to be
orted to obtain the corresponding grade numbers first. Following this,
he grade numbers are used to replace the original data and brought
nto the Pearson correlation coefficient formula to get the Spearman
orrelation coefficients as shown in Eq. (18).

=
∑

𝑖
(

𝑊𝑖 − �̄�
) (

𝑍𝑖 − �̄�
)

√

∑

𝑖
(

𝑊𝑖 − �̄�
)2 ∑

𝑖
(

𝑍𝑖 − �̄�
)2

(18)

It can also be transformed to Eq. (19).

𝜌 = 1 −
6
∑𝑛

𝑖=1(𝑤𝑖 − 𝑧𝑖)2

𝑛
(

𝑛2 − 1
) (19)

The correlation results are the basis for grouping the parameters.
Parameters with high correlation have a similar effect on the output,
so they can be removed.

3.5. Sensitivity analysis

The sensitivity analysis can identify and prioritize the most influ-
ential inputs based on the relationships between the input variables
and the output. The global sensitivity analysis (GSA) method aims
at ranking input random variables according to their importance in
the output uncertainty, or even quantifying the global influence of a
particular input on the output (Antoniadis et al., 2021). The PAWN sen-
sitivity analysis (Pianosi and Wagener, 2015) proposed by Pianosi and
Wagener considers the entire probability density function of the model
output instead of its variance only. It uses the Kolmogorov–Smirnov
statistics, as shown in Eq. (20) to measure the difference between
unconditional and conditional cumulative distribution functions.

𝐾𝑆
(

𝑤𝑖
)

= max
𝑧

|

|

|

𝐹𝑧(𝑧) − 𝐹𝑧∣𝑤𝑖
(𝑧)||

|

(20)

here 𝐹𝑧(𝑧) denotes the unconditional cumulative distribution function
f the output z. 𝐹𝑧∣𝑤𝑖

(𝑧) denotes the conditional cumulative distribution
unction when 𝑤𝑖 is fixed. The PAWN index 𝑇𝑖 considers the statistic
ver all possible values of 𝑤𝑖. So the definition of 𝑇𝑖 is shown in
q. (21).

𝑖 = 𝑠𝑡𝑎𝑡[𝐾𝑆(𝑤𝑖)] (21)

𝑤𝑖
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Fig. 2. The results of the correlation analysis. (a) The correlation matrix of 𝑋 hydrodynamic parameters. (b) The correlation matrix of 𝑌 hydrodynamic parameters. (c) The
correlation matrix of 𝑁 hydrodynamic parameters.
Fig. 3. The results of the sensitivity analysis. (a) The sensitivity analysis result of 𝑋 hydrodynamic parameters. (b) The sensitivity analysis result of 𝑌 hydrodynamic parameters.
(c) The sensitivity analysis result of 𝑁 hydrodynamic parameters.
Table 1
Specifications of the ship.
Description Value

Length between perpendiculars 160.93 m
Design draft 8.23 m
Design speed 20 𝑘𝑛𝑜𝑡𝑠
Nominal speed 15 𝑘𝑛𝑜𝑡𝑠
Maximum beam 23.17 m
Aspect ratio 1.88
Area of rudder 30.012 m2

Design displacement 18541 m3

Block coefficient 0.57

𝑇𝑖 varies between 0 and 1. The lower the value of 𝑇𝑖, the less influential
𝑤𝑖. If 𝑇𝑖 = 0, then 𝑤𝑖 has no influence on 𝑧. In this paper, the hydrody-
namic parameters are set as the input, and the changes in trajectory are
used to measure the influence degree of the hydrodynamic parameters
on the ship model.

4. Experimental results

4.1. Experiment setting

The experiments are performed in MSS (Perez et al., 2006). Table 1
shows the specifications of the ship. The type of vessel is a fast cargo
vessel. In the actual measurement, the sensors will involve noise, so the
output of the data generator is polluted by artificial noise to simulate
this situation. The method of adding noise refers to Sutulo and Guedes
Soares (2014). The calculation method is as shown in Eq. (22).

𝜁 = 𝜁 + 𝜁max𝑘 𝑘 𝜉 (22)
5

𝑖 0𝑖 0 𝜁 𝑖
where the output 𝜁 = 𝑈, 𝑢, 𝑣, 𝑟, 𝛿 can be recorded. 𝜁0𝑖 indicates the actual
output, which is a clean model response. 𝜁max is the maximum absolute
value of the clean response. 𝑘0 means the degree of the noise. To fit
the actual operation, it is set to 5%. 𝑘𝜁 is for the specific reduction
factor. Usually, there is less noise in records for the rudder angle and
the velocity than for the yaw and drift angle. So, it is set to 0.05
for the rudder angle and the surge’s velocity and 1 for others. 𝜉𝑖 is a
Gauss-distributed random variable.

The output of the data generator with 5% noise under 20–20
zigzag maneuver is utilized, including nominal speed 𝑈0, the perturbed
surge velocity about 𝑈0, the perturbed sway velocity about zero, the
perturbed yaw velocity about zero, the perturbed yaw angle about zero,
and the actual rudder angle to identify the parameters. A Savitzky–
Golay filter is chosen to smooth the signals. At each position, the
smoothed output value obtained by sampling the fitted polynomial is
identical to a fixed linear combination of the local set of input samples;
i.e., the set of 2𝑀 + 1 input samples within the approximation interval
are effectively combined by a fixed set of weighting coefficients that can
be computed once for a given polynomial order 𝑁 and approximation
interval of length 2𝑀 + 1.

4.2. Simplification results

A simplified model will be built to improve identification with less
excitation. The correlation analysis is executed at first. The identified
parameters with different degrees of noise are collected using the
Spearman correlation. The results are shown in Fig. 2. The heat maps
use the change in color to indicate the strength of the correlation,
where yellow and blue, respectively, indicate positive and negative
correlations. The value of correlation means the relevance among
parameters. There are three different degrees of correlations: weak,
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Table 2
Grouping results of 𝑋, 𝑌 ,𝑁 directions.

𝑋 Value (×10−5) 𝑌 Value (×10−5) 𝑁 Value (×10−5)

1 𝑋𝑢 , 𝑋𝑢𝑢 , 𝑋𝑢𝑢𝑢 −184, −110, −215 𝑌𝑣 −1160 𝑁𝑣 , 𝑁𝑟 −264, −166
2 𝑋𝑣𝑣 , 𝑋𝑟𝑟 , 𝑋𝑑𝑑 , 𝑋𝑢𝑑𝑑 −899, 18, −95, −190 𝑌𝑟 −499 𝑁𝑣𝑣𝑣 , 𝑁𝑣𝑣𝑟 1636, −5438
3 𝑋𝑟𝑣 798 𝑌𝑣𝑣𝑣 , 𝑌𝑣𝑣𝑟 −8078, 15256 𝑁𝑣𝑢 , 𝑁𝑟𝑢 −264, −166
4 𝑋𝑣𝑑 , 𝑋𝑢𝑣𝑑 93, 93 𝑌𝑣𝑢 , 𝑌𝑟𝑢 −1160, −499 𝑁𝑑 , 𝑁𝑑𝑑𝑑 −139, 45
5 𝑌𝑑 , 𝑌𝑑𝑑𝑑 278, −90 𝑁𝑢𝑑 , 𝑁𝑢𝑢𝑑 −278,−139
6 𝑌𝑢𝑑 , 𝑌𝑢𝑢𝑑 556, 278 𝑁𝑣𝑑𝑑 13
7 𝑌𝑣𝑑𝑑 , 𝑌𝑣𝑣𝑑 −4, 1190 𝑁𝑣𝑣𝑑 −489
Table 3
The complete model and the simplified model.

Direction The complete model The simplified model

𝑋 𝑋′
𝑢 , 𝑋

′
𝑢𝑢 , 𝑋

′
𝑢𝑢𝑢 , 𝑋

′
𝑣𝑣 , 𝑋𝑟𝑟′ , 𝑋𝑑𝑑′ , 𝑋𝑢𝑑𝑑′ , 𝑋𝑟𝑣′ , 𝑋′

𝑣𝑑 , 𝑋
′
𝑢𝑣𝑑 𝑋𝑢 , 𝑋𝑟𝑟

𝑌 𝑌 ′
𝑣 , 𝑌

′
𝑟 , 𝑌

′
𝑣𝑣𝑣 , 𝑌

′
𝑣𝑣𝑟 , 𝑌

′
𝑣𝑢 , 𝑌

′
𝑟𝑢 , 𝑌

′
𝑑 , 𝑌

′
𝑑𝑑𝑑 , 𝑌

′
𝑢𝑑 , 𝑌

′
𝑢𝑢𝑑 , 𝑌 ′

𝑣𝑑𝑑 , 𝑌
′
𝑣𝑣𝑑 𝑌 ′

𝑣 , 𝑌
′
𝑟 , 𝑌

′
𝑟𝑢 , 𝑌

′
𝑑 , 𝑌

′
𝑢𝑑

𝑁 𝑁 ′
𝑣 , 𝑁

′
𝑟 , 𝑁

′
𝑣𝑣𝑣 , 𝑁

′
𝑣𝑣𝑟 , 𝑁

′
𝑣𝑢 , 𝑁

′
𝑟𝑢 , 𝑁

′
𝑑 , 𝑁

′
𝑑𝑑𝑑 , 𝑁

′
𝑢𝑑 , 𝑁

′
𝑢𝑢𝑑 , 𝑁𝑣𝑑𝑑′ , 𝑁 ′

𝑣𝑣𝑑 𝑁 ′
𝑣 , 𝑁

′
𝑟 , 𝑁

′
𝑟𝑢 , 𝑁

′
𝑑 , 𝑁

′
𝑢𝑑
moderate, and strong (Ratner, 2009). If values are between 0 and 0.3
(0 and −0.3), a weak positive (negative) linear relationship is indicated
through a shaky linear rule. If values are between 0.3 and 0.7 (0 and
−0.7), a moderate positive (negative) linear relationship is indicated
through a fuzzy-firm linear rule. Finally, if values are between 0.7 and
1.0 (−0.7 and −1.0), a strong positive (negative) linear relationship
is indicated through a firm linear rule. The parameters with a strong
positive (negative) indicate a strong correlation, which can be divided
into one group. The correlation value of all parameters in one group
must be greater than 0.7. Based on these conditions, the result of
grouping parameters is shown in Table 2. The 𝑋, 𝑌 , and 𝑁 parameters
are divided into 4, 7, and 7 groups of strongly correlated parameters,
respectively.

PAWN is used to analyze the sensitivity of hydrodynamic parame-
ters in three directions, surge, sway, and yaw, as shown in Fig. 3. The
higher the sensitivity value is, the more critical the parameters are.
The mean of sensitivity values is the basis for measuring parameters’
importance. The mean sensitivity values of hydrodynamic parameters
in the 𝑋, 𝑌 , and 𝑁 directions are 0.239, 0.232, and 0.211, respectively.
If the values are over the mean, the parameters will remain.

The mathematical model can be simplified using correlation and
sensitivity results. The correlation analysis determines which parame-
ters are strongly correlated, so only one parameter for each group will
remain. The sensitivity analysis shows the importance of parameters,
so the most critical parameters for each group will be retained. If the
most significant sensitivity value in the group is less than the mean of
the sensitivity in that direction, the whole group will be discarded. The
standard of simplifying is shown as follows.

• The correlation between any two parameters in a group is greater
than 0.7.

• The parameters with the greatest sensitivity value will be left in
the group unless it is less than the mean of that direction.

• Because 𝑌 ,𝑁 are coupled, the union of parameters in these two
directions needs to be left. That is to say, 𝜃𝑦,𝑛 = 𝜃𝑦 ∪ 𝜃𝑦

Based on the correlation results shown in Table 2 and the results
f the sensitivity analysis shown in Fig. 3, the simplified model can
e expressed as Eq. (23), (24), (25). The hydrodynamic parameters of
he two models are listed in Table 3. So the numbers of hydrodynamic
oefficients are reduced from 10 to 2 in the surge and from 12 to 5 in
he sway and yaw.

′ = 𝑋′
𝑢𝑢

′ +𝑋′
𝑟𝑟𝑟

′2 (23)

𝑌 ′ = 𝑌 ′
𝑣𝑣

′ + 𝑌 ′
𝑟 𝑟

′ + 𝑌 ′
𝑟𝑢𝑟

′𝑢′ + 𝑌 ′
𝑑𝛿

′ + 𝑌 ′
𝑢𝑑𝑢

′𝛿′ (24)

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
6

𝑁 = 𝑁𝑣𝑣 +𝑁𝑟𝑟 +𝑁𝑟𝑢𝑟 𝑢 +𝑁𝑑𝛿 +𝑁𝑢𝑑𝑢 𝛿 (25)
4.3. Generalization study

To verify the generalization of the simplified model, the simplified
model with the parameters identified from the zigzag test is tested
in other maneuvers, including the circle test and the random test.
The zigzag tests are usually chosen for parameter identification, where
features can be easily identified because of the drastic changes in the
forces and moment. The 20–20 zigzag test is conducted, as shown
in Fig. 4. In this paper, the noise-polluted and filtered output of the
data generator is set as the benchmark, as shown in the red dotted
line in Fig. 4(a). The simplified model shown in Eq. (23), (24), (25) is
performed parameter identification with contaminated data obtained
from the data generator. The trajectory under the same control com-
mand as the complete mathematical model is shown in the green line
in Fig. 4(a). The outputs of the data generator with artificial noise are
input for parameter identification, which simulates model identification
in real conditions. The identified parameters are used as the parameters
of the complete model, and the trajectory under the same control
command as the data generator is shown in the green dotted line
in Fig. 4(a). The red dot represents the origin, which is the starting
point.

In addition to the trajectory, the fitting results of velocity terms,
including surge, sway, and yaw, are shown in Fig. 4(b). The surge
term has greater deviation than the sway and yaw terms because only
two parameters are left for the surge term. However, the impact on
the trajectory prediction of the ship is minimal. The surge term differs
between the simplified and complete models in the first 200 s, probably
due to the lower departure speed and thus more noise interference. The
simplified model and the benchmark have similar sway and yaw, which
can prove that the simplified model can represent the mariner well.

The simplified model and the complete model obtained from the
20–20 zigzag tests are tested in the circle and random test to assess
their generalization, the results as shown in Fig. 5. In most cases, the
ships will not conduct the zigzag in reality, but it is likely to have
less excitation data, such as turning to avoid obstacles. In Fig. 5(a),
the simplified model is more accurate than the complete model in the
beginning, which indicates that the simplified model can be considered
for short-term prediction. But the simplified model does not provide
reliable long-term prediction and needs to be corrected. In Fig. 5(c),
both the complete model and the simplified model can predict the
trajectory accurately to some extent.

4.4. Identification on less excitation maneuvers

Three trajectories, including the zigzag-like, random, and circle test,
which contain different levels of excitation, are generated to verify the
effectiveness of the simplified model in identifying under less excitation
data. The details of the tests are as shown in Table 4. Note that the out-

puts of the data generator for each trajectory are the training data for
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Fig. 4. The results of the 20–20 zigzag test. (a) The trajectory of the simplified model and the complete model. (b) The velocity comparison of the simplified model and the
complete model.
Fig. 5. The results of the generalization test for the complete model and simplified model with parameters identified in the zigzag test. (a) The circle test of the simplified model
and the complete model. (b) The comparison of the surge, sway, and yaw speed in the circle test. (c) The random test of the simplified model and the complete model. (d) The
comparison of the surge, sway, and yaw speed in the random test.
.
identifying parameters respectively. The simplified model and complete
model with parameters obtained from different levels of excitation are
tested with the same command as the data generator, as follows.
7

• The zigzag-like test. A more excitation trajectory is shown in Fig. 6
The running time is 600 s. The mariner makes a 20◦ turn at 250 s
for 100 s and a −30◦ turn at 350 s for 100 s. The rudder angle
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Fig. 6. The results for models with the parameters identified from the zigzag-like test. (a) The trajectory of the complete model and the simplified model in the zigzag-like test.
(b) The changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the zigzag-like test.

Fig. 7. The results for models with the parameters identified from the random test. (a) The trajectory of the complete model and the simplified model in the random test. (b)
The changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the random test.

Fig. 8. The results for models with the parameters identified from the circle test. (a) The trajectory of the identified model and the simplified model in the circle test. (b) The
changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the circle test.
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Fig. 9. (a) The trajectory of the simplified model and the complete model in the 20–20 zigzag test with 10% noise. (b) The changing trend of command and yaw angle and the
comparison of the surge, sway, and yaw speed in the zigzag test.
Table 4
The experimental setting.

Maneuver type Rudder angle(◦) Course Time(s) Sampling rate(s)

1 The zigzag-like test – 250–350 s 20◦

350–450 s −30◦
600 1

2 The random test – 450–600 s 10◦ 600 1
3 The circle test 20 – 600 1
w
m
t
m
e
t
c
f
d
m
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remains unchanged at other times. So there are three fluctuations
in forces and moment, which can be seen as a zigzag-like test.
The change is not as obvious as in the zigzag test, as shown
in Fig. 6(b). Although there is still a gap between the trajectories
of the simplified model and the benchmark, the results indicate
the gap is narrower than those in the zigzag test.

• The random test. A random trajectory with less excitation is
designed, as shown in Fig. 7. The running time is also 600 s. The
mariner keeps going at full speed and only makes a 10◦ turn in
450 s for 150 s. So there is only one fluctuation in the whole
trial. The results and command changes are shown in Fig. 7(b).
The simplified model performs better than the complete model,
especially in turning, probably because the fewer force changes
in the trail, the less information can be extracted. The extracted
information is not enough to identify as many parameters as the
complete model, but it is enough for the simplified model.

• The circle test. The less excitation trajectory is the circle test,
as shown in Fig. 8. The data of the circle test are hardly used
to identify the parameters, as the changes in forces are very
slight. The forces only change when starting, and they remain
the same after that. The results and command changes in 20◦

turn are shown in Fig. 8(b). The simplified model can perform
better than the complete model. The trajectory of the simplified
model almost coincides with the trajectory of the data generator.
But for the complete model, the deviation in trajectory is very
large. Sometimes the parameters of the complete model cannot be
identified with the circle test data alone, such that the trajectory
diverges.

In three tests, as shown in Figs. 6, 7, 8, the velocity changes in
hree directions are gradually stable, and the data excitation gradu-
lly decreases. As the data excitation increases, the trajectory of the
implified model is gradually closer to the benchmark than that of
he complete model. The experimental results show that the simplified
odel is easier to identify than the complete model. In the case of
9

ow data excitation, the simplified model can still be identified, which b
proves that the ship maneuvering model can be improved identification
with less excitation by simplifying.

The data polluted by 10% white noise are also tested, as shown
in Fig. 9(a). But the measuring methods are gradually improving, and
the measuring noise will most likely be 5% and almost never reach
10%. From the result, we can see that the increasing noise significantly
impacts the complete model, but the impact on the simplified model is
less obvious. The differences in trajectory between the data generator
and the identified model are greater than between the complete model
and the simplified model.

We use the mean absolute error (MAE) to evaluate the performance
of the simplified model.

MAE = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑦𝑖 − �̂�𝑖|| (26)

here 𝑦 denotes the benchmark obtained by the original mathematical
odel. �̂� denotes the estimated value of the parameters. 𝑛 denotes

he length of time. The speed MAE of the complete and simplified
odel in different maneuvers are shown in Fig. 10, which includes four

xperiments shown in Figs. 4, 6, 7, 8. The smaller the trajectory change,
he more the simplified model is superior to the complete model. The
omplete model is hard to identify if using only the circle test. But
or the common maneuvers such as zigzag and circle, the trajectory
ifference of the simplified model can be acceptable. So the simplified
odel can be identified with less excitation data.

. Discussion

This study conducts experimental investigations by using different
evels of excitation data to train and verify the effectiveness of the
implified model, described in Section 4.4. Therefore, it is plausible to
ay that the study would provide basic insight for parameter identifica-
ion under less excitation. However, the method has certain limitations,
hich can be further studied.

From the point of the methodology, the proposed means can also

e applied to other ship models. When faced with insufficient data,
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Fig. 10. The error histogram of the simplified model and the complete model.

Fig. A.11. The results of the double mass vessel with the parameters identified from the zigzag test. (a) The trajectory of the complete model and the simplified model in the
zigzag test. (b) The changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the zigzag test.

Fig. A.12. The results of the double mass vessel with the parameters identified from the zigzag-like test. (a) The trajectory of the complete model and the simplified model in
the zigzag-like test. (b) The changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the zigzag-like test.
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Fig. A.13. The results of the double mass vessel with the parameters identified from the random test. (a) The trajectory of the identified model and the simplified model in the
andom test. (b) The changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the random test.
Fig. A.14. The results of the double mass vessel with the parameters identified from the circle test. (a) The trajectory of the identified model and the simplified model in the
circle test. (b) The changing trend of command and yaw angle and the comparison of the surge, sway, and yaw speed in the circle test.
model simplification can help us to obtain a ship model, reducing model
complexity to fitting existing data. In Section 4.2, we can see that the
data of the common maneuver, such as zigzag, can support building
a simplified model. The simplified model can be identified with less
required experimental data, which proves its stronger applicability.
The simplified model can also be applied to other vessels with similar
features like dimension, tonnage, and propulsion. We test the simplified
model on the double-mass mariner as shown in Appendix. The accurate
range of transfer learning should research in the future; however, the
topic is out of the scope of this paper.

The standard we proposed for ship model simplification could be
lower for other kinds of ships. For example, we can leave two parame-
ters with the highest sensitivity values in one group with a high degree
of correlation. In this paper, only two parameters of the surge are left,
which may have a limited impact on the trajectory deviation, but can
significantly affect the velocity, especially in the departure. We may
use different retention methods in the future in line with the actual use
motions.

Having redundant features in maneuvering models is a main cause
of the so-called ‘‘parameter drift’’ problem, where some parameters
end up with spurious values due to measurement noises (Luo and Li,
2017). Such a model with spurious parameters would not perform well
in the model deployment with inexperienced inputs, which suggests
11
that model simplification that involves removing redundant features
has played a critical role in model identification. With limited data, the
simplified model can perform better than the complex model because
the simplified model can be identified more easily. The simplified
model has a lower requirement for data, which is useful when not
enough data can be obtained.

There are some questions about the PAWN index. It is gaining
traction among the modeling community as a sensitivity measure, but
little attention has been paid to its robustness (Puy et al., 2020). Though
the PAWN index is more sensitive to the design parameters than that
of Sobol, this sensitivity has a complex pattern that makes the use of
PAWN, or better the tuning of the PAWN design parameters, a delicate
task. So the method of sensitivity analysis could be changed. The global
sensitivity analysis method is recommended, which considers the whole
variation range of the inputs, such as Morris and Sobol.

6. Conclusions

This paper proposes a model simplification structure that can lower
the requirement for data excitation during parameter identification.
The white noises of various levels artificially pollute the outputs of
the data generator for the mariner to simulate the measured value in
reality. We use parameter identification to calculate the hydrodynamic
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parameters to build an identified model with the measured value.
The least square regression is used to identify parameters. To simplify
the mathematical model, we use correlation analysis and sensitivity
analysis. Correlation analysis is used to group parameters with strong
relationships, and sensitivity analysis is used to find the parameters that
have the most significant impact on the output. We add different de-
grees of noise into the model’s output and obtain a set of hydrodynamic
parameters to test the correlation of parameters. The PAWN sensitivity
analysis, which is a GSA method, is chosen. We set a standard and
build a simplified model based on this knowledge. The simplified
model has been tested under various scenarios in different levels of
data excitation. Even though the accuracy of the simplified model is
lower than that of the complete model under the zigzag and zigzag-
like test, the simplified model has higher accuracy than the complete
model in the random test designed in the paper. It implies that the
simplified model will be more robust in real scenarios. In the circle
test with less data excitation, the simplified model can be identified,
while the opposite is true for a complete model. Results illustrate that
the simplified model can outperform the complete model when there
is less data excitation.
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Appendix. The result of the double-mass vessel

To verify the generalization of the simplified model (Eqs. (23), (24),
(25)), a doubled mass of the benchmark vessel ( Table 1) is designed
and conducted the same experiments as those in Section 4.4. The
different levels of excitation data are generated by the data generator
and as the train data for identifying the simplified and complete model
separately. The simplified model and the complete model with the
parameters identified from different levels of excitation tests are tested
in the zigzag, zigzag-like, random, and circle test. The commands of the
test are the same as shown in Table 4. In Figs. A.11,A.12,A.13,A.14, the
red line presents the trajectory and the velocity comparison results of
the double-mass data generator, and the blue and green lines express
the simplified and identified models, respectively.

The results of the double-mass mariner have a similar trend to
the original mariner. As the training data excitation decrease, the
accuracy of the simplified model increase. In the circle test, as shown
in Fig. A.14, the trajectory of the complete model diverges, which can
be seen from the velocity comparison. The results of the double-mass
vessel can prove that the simplified model can be used for similar ships.
12
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