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Hyperlocal environmental data 
with a mobile platform in urban 
environments
an Wang  1, Simone Mora  1,2 ✉, Yuki Machida  1, Priyanka deSouza3, Sanjana Paul1, 
Oluwatobi Oyinlola1, Fábio Duarte1 & Carlo Ratti1

Environmental data with a high spatio-temporal resolution is vital in informing actions toward tackling 
urban sustainability challenges. Yet, access to hyperlocal environmental data sources is limited due to 
the lack of monitoring infrastructure, consistent data quality, and data availability to the public. this 
paper reports environmental data (PM, NO2, temperature, and relative humidity) collected from 2020 to 
2022 and calibrated in four deployments in three global cities. Each data collection campaign targeted 
a specific urban environmental problem related to air quality, such as tree diversity, community 
exposure disparities, and excess fossil fuel usage. Firstly, we introduce the mobile platform design and 
its deployment in Boston (US), NYC (US), and Beirut (Lebanon). Secondly, we present the data cleaning 
and validation process, for the air quality data. Lastly, we explain the data format and how hyperlocal 
environmental datasets can be used standalone and with other data to assist evidence-based decision-
making. Our mobile environmental sensing datasets include cities of varying scales, aiming to address 
data scarcity in developing regions and support evidence-based environmental policymaking.

Background & Summary
Rapid urbanization has been posing new sustainability challenges to planners, engineers, scientists, and citizens 
in a climate change era. Hyperlocal environmental data are desirable for academics and practitioners to identify 
exposure hotspots, understand the spatial distribution of urban air pollution, and support evidence-based cli-
mate change mitigation. Yet, hyperlocal data acquisition remains a challenge in both developed and developing 
regions. Among all urban environmental data, air pollution data is one of the most challenging to monitor due 
to its high spatial and temporal variability. In cities, air pollution emission sources are diverse, and emission 
dispersion is highly volatile1. In recent years, mobile monitoring has been playing an increasingly important 
role in complementing traditional monitoring methods, such as stationary monitoring and satellite remote 
sensing2–4. It provides a highly scalable alternative to operate in various urban environments while generating 
high-resolution data.

Mobile air quality measurement techniques are documented in a rapidly expanding body of literature. 
The most notable ones include a series of studies conducted in collaboration with Google Street View cars in 
Houston, the San Francisco Bay Area, Amsterdam, Copenhagen, and London (https://www.google.com/earth/
outreach/special-projects/air-quality). Reference and research-grade air monitors were carried around in cities, 
repetitively measuring most street segments in periods from months to years. Their raw data were partially pub-
lished via a third-party online database and API (https://explore.openaq.org). While the spatial and temporal 
coverage was extensive, Google’s air monitoring campaigns were focused on populous urban areas with good 
street view image sampling density. Mobile monitoring instruments and laboratories operated by academics are 
another important air quality data source. Nonetheless, the final outputs for such deployment are often scientific 
papers and reports, commonly without publishing the full dataset5–8. Even though some papers have attached 
raw data files, there is less consistency in data quality from project to project, given the difference in study scope, 
instrumentation, personnel, sampling methods, and data validation. Another important air quality data pool 
is provided with the wider adoption of low-cost air sensing technology, citizen science, and crowd-sourced 
monitoring campaigns9. Moreover, lacking a unified, open-sourced channel to index and retrieve data from 
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individual studies has created a substantial hurdle for non-academics to access and make further use of these 
data outside of scientific publications.

Our work targets mitigating the gap in the availability of hyperlocal environmental data in both developed 
and developing regions with three reproducible and low-cost advantages with consistent instrumentation, sam-
pling methods, and data validation procedure10. We first introduce the mobile platform we used in real-world 
deployments in global cities and how its custom configurations can best serve these applications. We further 
present validated environmental sensing data, focusing on calibrated air monitoring data, from several mobile 
monitoring deployments in various urban contexts from the Middle East to North America in both developed 
and developing regions. Lastly, we demonstrate typical use cases of air pollution data by themselves and other 
data sources in New York City, including emission hotspots inference and air quality predictions. Our results 
agree well with the standing regulatory air quality prediction maps, proving the validity of our data collection 
and calibration methodology. This paper is timely for environmental practitioners and researchers to reflect on 
traditional air quality data collection approaches and publication, providing a good example for future practices.

Methods
instrumentation. Air quality datasets in this study were collected using our self-designed and manufac-
tured City Scanner (CS) mobile sensing platform11,12. It aims to enable large-scale environmental sensing tasks 
using existing urban fleets, such as taxis, buses, and municipal service vehicles, as sensing nodes. We present our 
sensor design, which is based on three concepts summarized in Fig. 1: low-cost design, modular sensing units, 
and Internet-of-Things (IoT) capabilities. Our low-cost design follows the definition of a low-cost air sensor by 
the US Environmental Protection Agency (EPA), which sets an upper-cost limit of $2,500 (https://www.epa.gov/
air-sensor-toolbox/how-use-air-sensors-air-sensor-guidebook). CS’s modular sensing units allow users to easily 
customize their sensing capabilities or a range of environmental sensing applications. CS is IoT-enabled, where 
collected air quality data and device status can be instantly streamed to the cloud for storage and analysis via a 
cellular network. As shown in Fig. 1, the combinations of each two design concepts serve three major functions: 
a) monitoring individual sensor’s status and remote, instantaneous access to data, b) versatility in complex urban 
environments balancing device energy consumption, cost, and data requirement, and c) a vision for swarm sens-
ing, where a CS fleet operates in coordination to reach real-time city scanning. Only a few sensors are required to 
sense a large urban space13.

Specifically, each CS has two major compartments: the control and sensing compartments. The control 
compartment houses the motherboard, the data communication and local storage system, and the energy 
and thermal performance management system. The sensing compartment is more relevant to data collection 
and is detailed in this section. Figure 2 illustrates the basic configuration of the current CS iteration, named 
“Whiteburn II”, focusing on the sensing compartment in the front view.

In the standard configuration of the sensing compartment, a low-cost Alphasense OPC-N3 optical particle 
counter is adopted for particulate matter (PM) concentration measurement. It counts the number of particles 
by emitting a laser beam through the air flow being drawn in, so that by counting the pulses of light scattered by 
particles in the airflow, OPC can infer the number of particles of different sizes. This technique has been widely 
adopted in academic and citizen science projects14,15. Two gas sensors can be hosted in the sensing compart-
ment simultaneously. In the sensor deployments reported in this study, we used Alphasense’s electrochemical 

Fig. 1 The City Scanner design boundary (inner) and function boundary (outer).
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gas sensors for CO, NO2, and SO2. The surface material on an electrochemical gas sensor reacts with the target 
gaseous pollutant, which results in an electric current that passes from the working to the reference electrode. 
The current is measured and is proportionate to the target pollutant’s concentration. CS has a basic platform 
with an OPC and the sensing capability of up to two gaseous pollutants. The platform is also equipped with 
basic environmental sensing capabilities, including ambient air temperature and relative humidity sensing. The 
weather sensors are mounted on the mikroBUSTM socket, comprising a pair of 1 × 8 female headers. The pinout 
consists of three groups of communications pins (SPI, UART, and I2C), six additional pins (PWM, interrupt, 
analog input, reset, and chip select), and two power groups (+3.3 and 5 V). Table 1 documents a list of environ-
mental sensors that are currently being used, which can be easily substituted as long as the data communication 
protocols conform.

Data collection campaigns. We used the CS platform version “Whiteburn II” for high spatio-temporal res-
olution data collection, which is designed as a plug-and-play environmental sensing platform. After a full charge, 
each CS was mounted on the roof of a vehicle, whose fleet information is presented in Table 2. The CS should be 
placed with the OPC air inlet facing sideways and the sensing compartment facing the direction of driving. This 
orientation minimizes the influence of vehicle speed on OPC air intake, while exposing the passive sampling gas 
sensors as much as possible to ambient air. We adopted an opportunistic data collection method, where CS data 
collection is not the main purpose of driving. It indicates that we do not have prescribed routes for the vehicles to 
follow. To avoid spatial and temporal biases of sampling (some places and some time slots are oversampled), each 
data collection campaign has been conducted in a sufficiently long period, lasting at least two months. The sam-
pling period and area are also dependent on the study scope of each deployment. In all, our platform design and 
deployment protocols are simple to apply and easy to use, which intend to make environmental sensing available 
to a larger population and as many communities.

Two deployments in New York City target the Bronx borough, with 2 million residents, mostly ethnic and 
racial minorities. The Bronx is disproportionately exposed to air quality hazards, as are many other vulnerable 
neighborhoods which are overburdened with environmental issues16. The region is covered by four reference sta-
tions operated by the New York State Department of Environmental Conservation, only two out of which meas-
ure gaseous pollutants in addition to PM. The New York City Department of Health designed New York City 
Community Air Survey (NYCCAS) with a finer air monitoring network of high-quality but not reference-grade 
sensors since 2008 (https://www.nyc.gov/site/doh/data/data-sets/air-quality-nyc-community-air-survey). 
NYCCAS runs fifteen monitoring sites in the Bronx, collecting hourly PM2.5, black carbon, NO, and NO2 

Fig. 2 Whiteburn II basic configuration.

Sensor Sensing subject Unit cost Substitution

Alphasense OPC-N3 Particulate matter count and estimated mass concentration $350 With a thermal camera

Alphasense NO2-A4 Nitrogen dioxide $50 With other gas sensors

Bosh BME-280 Temperature, humidity $20 N/A

Table 1. Environmental sensor specifications.
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concentrations once per season. Our Bronx deployments worked jointly with these local authorities to com-
plement the existing network, providing more details on air quality’s spatial and temporal variability. Moreover, 
mobile air quality measurements are useful for quantifying air pollution exposure disparities at a high 
spatio-temporal resolution, which advises equitable and just air pollution mitigation plans.

In the Boston deployment, we collected hyperlocal air quality data in a neighborhood north of the Boston 
Logan International airport. We mounted CS units on a research-grade mobile environmental laboratory, which 
measures real-time particulate matter and NOx concentrations, whose validity has been proved in previous 
publications17,18. We contrasted CS-collected data with high-quality mobile laboratory data, demonstrating the 
transferability and robustness of our mobile air quality sampling approach.

The final deployment presented in this study was conducted in Beirut, the capital of Lebanon. The country 
faces a severe economic collapse and has been suffering from air pollution from diesel generators, as their cen-
tralized power grid operates only a few hours per day. Currently, there is no government-regulated air quality 
monitoring infrastructure. To our knowledge, our collaborators at American University Beirut run the only 
research-grade air monitoring site, measuring PM and gaseous pollution. The extremely sparse air monitor-
ing network cannot provide much useful information to tackle the deteriorating local air quality problem. In 
this case, our deployment aims to address the local air quality data gap in a data and resource-scarce urban 
environment. In all, our CS deployments proved the accuracy, validity, durability, and versatility in a variety of 
uncontrolled urban environments serving various purposes, including air quality management, climate change 
mitigation, citizen engagement, and knowledge dissemination.

technical Validation
Low-cost sensors are prone to data quality and stability issues. For example, low-cost OPC cannot discern par-
ticulate matter from water droplets. Thus, it does not function well in high-humidity environments (85%)19,20. 
Therefore, it is necessary to perform sensor collocation and calibration to ensure accurate and robust meas-
urements. Here we define collocation as the process of deploying low-cost sensors side-by-side with reference 

City Sensing target pollutants Sensing fleet Duration

New York City, US Particulate matter, particle size distribution, NO2 Five municipal vehicles driven by park rangers Jan. 2020 – Feb. 2020;
Sep. 2021 – Dec. 2021

Boston, US Particulate matter, particle size distribution, NO2 One mobile environmental laboratory Feb. 2022 – Apr. 2022

Beirut, Lebanon Particulate matter, particle size distribution Two taxis Feb. 2022 – Jun. 2022

Table 2. Deployments in three cities.

Fig. 3 Data post-processing and validation protocols.
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monitors and calibration as the adjustment of raw sensor readings using collocation data and mathematical 
models. Air quality datasets published in this study were cleaned, calibrated, and validated under a standardized 
framework referencing the US EPA air sensor performance testing protocols published in 202110,21,22. US EPA 
is a federal agency that regulates and manages environmental protection matters. They also provide references, 
guidelines, and regulations considered “the gold standard” for air quality monitoring, primarily in the US and 
many other countries. A general flow chart of our post-processing and validation process is presented in Fig. 3.

Immediately before or after mobile deployments longer than three months, we perform stationary colloca-
tion for at least three weeks, as reference stations usually report measurements every hour, so that we can get 
around five hundred coincident data points for calibration model development. We suggest using collocation 
data with higher temporal resolution, ideally by minute, for modeling training, validating, and testing, given that 
CS readings are every five seconds. The models are statistical models developed using meteorological factors and 
CS readings as explanatory variables and reference monitor readings as the target variable. That is, to “calibrate” 
CS devices towards the reference. Empirically, we use mainly four meteorological factors from a central weather 
station for all CS units circulating in a city, including air temperature, humidity, air pressure, and dew point. 
For each CS unit, we developed a unit-specific calibration model to account for the inter-sensor variability of 
low-cost sensors, where each sensor responds to the same air pollutant concentration slightly different from the 
others. We adopted two types of tree-based calibration models, namely random forest and gradient boosting 
tree, which have faster training speed and better interpretability. Specifically, the second deployment in NYC 
employed the gradient boosting tree calibration model, as there is more collocation data (27,000 minute-level 
readings per CS unit compared to an average of 2,000 in other deployments). The other deployments were 
calibrated with random forest model, which provides better accuracy and better generalizability with less col-
location data. Model training was realized in Python using scikit learn23 and LightGBM24 libraries and detailed 
hyperparameter tuning information can be found in our recent publication10.

Calibration models’ performance is evaluated with k-fold cross-validation23 and two statistical metrics, the r 
and the root mean squared error (RMSE), as shown in Eqs. 1, 2. r is the Pearson correlation coefficient between 
calibrated CS readings and reference readings. RMSE measures the absolute difference between these two read-
ings. In the training and test datasets, the CS readings for air pollutants and meteorological factors, including 
temperature, humidity, dew point and air pressure, were used as explanatory factors, while the reference mon-
itor readings were treated as the target factor. Other meteorological factors that are commonly found in local 
weather stations, including wind speed, wind direction, and feel temperature, were also tested in the models but 
removed due to statistical insignificance.
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Deployment r RMSE (µg/m3)

Pilot 1, New York City, US 0.96 —

Pilot 2, New York City, US 0.97 0.96

Boston, US 0.85 0.76

Beirut, Lebanon 0.68 5.38

Table 3. PM2.5 calibration model performance against reference or research-grade monitors.

Field name Definition Unit

SensorID Unique sensor IDs in each deployment —

time Time in Unix time second

latitude, longitude GPS location readings in WGS84 coordinates degree

pm1, pm25, pm10 Particulate matter (PM) readings after calibration µg/m3

no2 Nitrogen dioxide (NO2) readings after calibration ppb

bin0-bin23
Twenty-four bins from the OPC containing particle number counts for different sizes from 
0.35 to 40 µm. The cutting sizes are: 0.35, 0.46, 0.66, 1.0, 1.3, 1.7, 2.3, 3.0, 4.0, 5.2, 6.5, 8.0, 
10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 22.0, 25.0, 28.0, 31.0, 34.0, 37.0, 40.0

Number/second

temperature Ambient temperature readings Celsius

humidity Ambient relative humidity Percentage

Table 4. Data fields’ definitions and units. Note that not all fields are present in all datasets.

https://doi.org/10.1038/s41597-023-02425-3


6Scientific Data |          (2023) 10:524  | https://doi.org/10.1038/s41597-023-02425-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Where:
yi and yi� are observed and predicted target features in the test dataset;
−y  and �y  are mean values of observed and predicted target features in the test dataset;
n is the size of the test dataset.

The calibration models were then applied to cleaned mobile air quality data to produce the datasets we report 
in this paper. Our data cleaning process is straightforward, following the principle to preserve as many data 
points as possible. First, all sensors are functioning, yielding numerical results. CS is designed to give out “Not 
Applicable (NA)” signals when sensors operate with anomalies, such low battery or over-heating. Second, read-
ings under high humidity (>90% or raining) are excluded, given that the low-cost particle counter we used is 
known to have skewed responses in this condition19,25. Lastly, we eliminate records with readings out of the rea-
sonable ranges (<1 ug/m3 or >1000 ug/m3 for PM2.5, <200 mv or >900 mv for NO2 electro-signal). The reason-
able ranges are determined by a priori knowledge of the ambient environment and the sensors themselves26,27. 
In total, about 15% of raw data are excluded in data cleaning.

PM2.5 calibration models’ performance for all cities is presented in Table 3. It is worth noticing that the calibra-
tion model performs poorly on the Beirut dataset, which is caused by Beirut’s limited air monitoring resources. 
Ideally, CS should be calibrated against reference-grade instruments before deployment, whose purchase and 
maintenance often require a good amount of financial input from governments and agencies. However, Beirut cur-
rently does not have enough resources to operate reference air quality monitoring station due to an economic col-
lapse nor stand-alone reference-grade air instruments that we can access. Alternatively, we used a research-grade 
PM sensor for collocation and calibration, namely a Met One E-BAM Portable Environmental Beta-Attenuation 
Mass Monitor provided by our local collaborators. While the monitor is high-quality, it cannot meet the standards 
of reference monitors. It reveals that limited public investment for air quality monitoring and regulation can in 
turn lead to bigger air regulation and research gaps in less-developed regions. Our design of the CS platform and 
publication of our air monitoring data aim to narrow these gaps. Still, certain limitations exist in our approach.

Data Records
Data records from all devices for the same environmental indicator (e.g., PM1, PM2.5, PM10, and NO2) in each 
deployment are pooled in the same dataset. After data cleaning and calibration, there are 118,765 (NYC pilot 1),  
515,917 (NYC pilot 2), 123,192 (Boston), and 56,628 (Beirut) 5s-interval data records. Each data file incorporates 

Fig. 4 Spatial distributions of PM2.5 concentrations in (a) New York Pilot 1, (b) New York Pilot 2, (c) Boston, 
and (d) Beirut.
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five categories of fields: unique sensor IDs, time stamp, GPS coordinates, weather, and calibrated concentrations, 
as demonstrated in Table 4. The number of fields for each deployment is determined by how many pollutants we 
have measured and calibrated. We map the spatial distributions of PM2.5 concentrations in the four deployments 
in Fig. 4. The datasets are available under Creative Commons Attribution license at Zenodo28.

Usage Notes
Hyperlocal air quality data provide unique opportunities for data-driven environmental and climate 
decision-making. While covering a large area with high spatial resolution, mobile monitoring is subject to higher 
uncertainty than stationary monitoring, as the sensor only captures a snapshot of a certain location. Therefore, 
it is crucial to have repetitive measurements over the same location. It is suggested that at least four randomized 
measurements on different days should be aggregated to generate an average value of air pollution at a certain 
location in the same season7. In practice, a certain location can be defined as street segments or grid cells of 
different sizes. Given the different data collection duration and intensity across our deployments, the grid size 
we aggregated our observations with ranges from 100 by 100 m to 300 by 300 m. As a rule of thumb, at least 500 
grids should cover at least one-third of a city’s land area with more than ten observations from at least four dif-
ferent days in the same season to generate a robust air quality surface. This ensures a good spatial representation 
of a city with representative levels of air pollution. Here we present a couple of potential applications of our air 
quality datasets, with a special focus on the New York City dataset and its application in air pollution mapping.

First, we look at the calibrated mobile measurement data in the Bronx, New York City. We aggregated the 
data in 100 by 100 m grid cells. All cells in Fig. 5 contain at least ten observations from 4 different days. This 
map is useful for identifying emission and air pollution hotspots, where we observe that highways and industrial 
areas in the bottom right corner suffer from significantly higher PM2.5 concentrations.

Another common usage for mobile air quality data is land use regression (LUR), a spatial regression tech-
nique using the proximity of land use and emission indicators to explain and estimate air pollution levels in 
places without measurement. Using the measured PM2.5 concentrations in each grid cell, we create buffers of dif-
ferent sizes, ranging from 50 to 1000 m, and extract land use and emission indicators within each buffer size. The 
indicators are documented in Table 5, which align with the regulatory air pollution maps developed under the 
New York City Community Air Survey (NYCCAS) program and are retrieved from New York’s open data plat-
form (https://nyccas.cityofnewyork.us/nyccas2021v9/sites/default/files/NYCCAS-appendix/Appendix1.pdf). 
Our prediction map presented in Fig. 6 illustrates a spatial pattern similar to the NYCCAS regulatory one in 
the same temporal scope, even though the absolute air pollution levels differ slightly. We further contrasted our 
PM2.5 predictions in 100 by 100 m grid cells with NYCCAS predictions cell by cell. We employed 2020 data for 
comparison, given the data unavailability for 2021 at a fine resolution. The Pearson correlation is 0.38 between 
the two datasets and the root mean square error is 2.02 µg/m3. Given that the 2020 NYCCAS predictions are also 

Fig. 5 Measured PM2.5 concentrations in the Bronx after calibration and aggregation.

https://doi.org/10.1038/s41597-023-02425-3
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modeling results trained on observations, a relatively low correlation between the two models is anticipated. 
Still, the statistics demonstrate satisfactory performance of our prediction model and thus, the validity of our 
mobile sampling method and data quality assurance.

Users are encouraged to develop more insights from our air quality datasets, calibration models, and use 
cases. This section presents potential future research directions here for future discussion and efforts. Firstly, it 
is useful for researchers and practitioners to look further into the causes of emission and air pollution hotspots, 
which might not align spatially, to reflect on their current emission reduction and air quality management strat-
egies. Secondly, by overlaying spatial distributions of air quality and public health indicators, such as asthma 
rate, emergency room visits, and incidence of other respiratory and cardiovascular diseases, one can track down 

Predictor category Predictors examined (calculated in buffers of 50 to 1000 m) Data source

Traffic indicators

Annual average daily traffic (AADT) New York State (NYS) Department of Transportation (DOT) AADT, 2019

Truck AADT NYS DOT AADT, 2019

Distance to nearest road by functional class New York City (NYC) Open Data street centerline, 2022

Road density by functional class NYC Open Data street centerline, 2022

Distance to nearest truck route NYC Open Data truck route, 2021

Truck route density NYC Open Data truck route, 2021

Distance to nearest bus route NYC Open Data bus route, 2021

Bus route density NYC Open Data bus route, 2021

Distance to nearest railroad NYC Open Data railroad line, 2018

Railroad density NYC Open Data railroad line, 2018

Population metrics Population density US decennial census, 2020

Built space indicators

Density of built space (building floor area) NYC Department of City Planning Primary Lan Use Tax Lot Output 
(PLUTO), 2022

Density of residential units PLUTO, 2022

Total residential, industrial, commercial floor area PLUTO, 2022

Land use predictors

Area of industry and manufacturing PLUTO, 2022

Area of open space & outdoor recreation PLUTO, 2022

Dominant land use type PLUTO, 2022

Permitted emissions
Number of permitted combustion sources by fuel type (oil 2, 4, 6, 
natural gas)

NYC Department of Environmental Protection Clean Air Tracking System 
permit data, 2022

Total BTU by fuel type (oil 2, 4, 6, natural gas) NYC Mayor’s Office of Sustainability Local Law 84 Benchmarking data, 2017

Facilities

Number of transportation facilities (bus depots, terminals, ports, 
railyards, airports) NYC Open Data City Planning Facilities Database (FacDB), 2022

Distance to nearest transportation facilities FacDB, 2022

Number of waste transfer stations, waste processing sites, water 
treatment facilities FacDB, 2022

Distance to nearest waste transfer station waste transfer stations, 
waste processing sites, water treatment facilities FacDB, 2022

Table 5. Emission indicators used in air quality prediction maps.

Fig. 6 Land use regression surfaces of PM2.5 concentrations in the Bronx by (a) City Scanner data and (b) 
NYCCAS data.

https://doi.org/10.1038/s41597-023-02425-3
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the adverse health impacts of air pollution from an epidemiological perspective. Lastly, it is interesting to inves-
tigate air pollution exposure and its disparity among communities through a static home location-based analysis 
or a dynamic mobility pattern-based analysis.

Here we acknowledge a few known shortcomings of the published datasets. Firstly, the low-cost OPC we use 
for PM measurement is known for its deteriorated performance in high-humidity environments, as it cannot 
differentiate PM from water droplets in the air. Therefore, our datasets do not include observations collected in 
>90% relative humidity. Secondly, the Boston and Beirut data sets were calibrated with research-grade sensors 
rather than reference-grade ones. The research-grade sensors used in Boston were calibrated at a reference sta-
tion immediately before the mobile deployment. In Beirut, the research-grade sensors were the only available 
option for local calibration, given that no government-regulated reference stations existed. We do not consider 
this would lead to significant biases in the published datasets. Thirdly, our temperature and humidity data have 
not been calibrated against reference monitors as they are not the main focus of our deployments. In this case, 
their validity has not been adopted as a criterion for data cleaning, which aims to preserve the maximal number 
of valid observations for particulate matter and NO2. We highly advice the audience to only adopt them for 
educational or making sense purposes and to conduct a sanity check before any form of analysis. Lastly, given 
that CS is a low-cost environmental sensing platform, it is crucial to collocate and calibrate the platform before 
usage locally. This is especially important if a deployment is measuring PM, as the OPC counts particles in 
different-size bins and then estimates mass concentration with assumptions of the shape and density, which can 
vary significantly from place to place, from season to season.

Code availability
Other than air quality data stamped with time and location, we also provide a compilation of land use GIS 
layers that are used in our and NYCCAS’ LUR models for convenient reproduction of the results in our Github 
repository (https://github.com/MIT-Senseable-City-Lab/OSCS/tree/main). These GIS layers are published by 
NYC and New York State governments and processed by the authors for modeling, with 2021 as the base year. The 
audience is encouraged to explore the repository, regarding the details about how we design, build, calibrate, and 
make use of the CS platform. Python code is available for automatic land use feature extraction, LUR training, 
and performance evaluation.
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