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Abstract

The potential threats to satellite based navigation have renewed the interest in GNSS-
independent systems as a means to secure the continued service of critical infrastructure. To
this end, a baseline framework for a GNSS-independent navigation system in the maritime sec-
tor is presented in this report. The proposed framework only utilizes a monocular camera and
a digital elevation model of its surroundings to estimate a vessel’s deviation from a predefined,
intended trajectory. A Unity based simulator is further used to simulate the vessel and its
surroundings, before an independent Python application is deployed to analyze the synthetic
data. The pose estimation was done through minimization of the reprojection error between
features in the terrain and a matching feature in the camera image plane. Image features
from the intended and actual trajectories were extracted using morphological operations and
an iterative depth-first search, before being matched through a sum of absolute differences
energy measure. The feature in the 3D environment was found through a ray-tracing scheme
with image features for reference. 3 different trajectories affected by varying degrees of noise
were used to evaluate the systems performance. Positive improvements of the mean square
error ranging from 1.5% to 12.8% were recorded on paths experiencing moderate to high dis-
turbances, whilst negative contributions were recorded on paths with little to no noise. The
various modules of the system were analyzed, verified and deemed adequate, with the excep-
tion of the matching algorithm for image features and the adaptive grid search algorithm for
pose-estimation. Overall, the framework was deemed a promising prospect for future devel-
opment, with the potential of furthering scientific solutions in the field of long-range visual
odometry.
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Sammendrag

Potensielle trusler rettet mot satellittbaserte navigasjonssystemer har vekket fornyet inter-
esse for GNSS-uavhengige systemer, som et middel for å sikre fortsatt drift av kritisk infra-
struktur. I tr̊ad med dette presenterer denne rapporten et grunnleggende rammeverk for et
GNSS-uavhengig navigasjonssystem for bruk i den maritime sektoren. Det foresl̊atte ramme-
verket brukte kun et monokulært kamera og en digital høydemodell av fartøyets omgivelser for
å estimere avviket fra en forh̊andsdefinert, planlagt bane. En simulator laget i Unity ble videre
brukt for å simulere fartøyet og dets omgivelser, mens en separat applikasjon i Python ble
anvendt for å analysere den syntetiske dataen fra simulatoren. Posisjonsestimatet ble utført
ved å minimere reprojeksjonsfeilen mellom et landemerke i terrenget og et tilsvarende lande-
merke lokalisert i bildeplanet til kameraet. Landemerker i bildeplanene til de to banene ble
funnet ved hjelp av morfologiske operasjoner og et iterativt dybde-først-søk, før de ble forsøkt
matchet ved hjelp av en sum av absolutte forskjeller. Landemerker i 3D terrenget ble funnet
ved hjelp av en str̊alesporingsalgoritme, som benyttet landemerkene i ett av bildeplanene som
referanse. 3 ulike baner, p̊avirket av varierende grader med støy, ble videre definert og brukt
til å evaluere systemets ytelse. Positive forbedringer av den kvadratiske gjennomsnittsfeilen p̊a
mellom 1, 5% og 12, 8% ble registrert for baner som opplevde moderat til høye forstyrrelser,
mens negative bidrag ble registrert hvor liten til ingen støy ble lagt til. De ulike modulene i
systemet ble s̊a analysert, verifisert og vurdert tilstrekkelige, med unntak av sammenlignings-
algoritmen mellom landemerker i bildeplan og den adaptive grid-search algoritmen brukt for
posisjonsestimering. Rammeverket ble alt i alt vurdert som et lovende fremtidsprospekt, med
høyt potensial innen fremtidig, visuell posisjonsestimering til havs.
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List of mathematical symbols

ω⃗i Intended position in the XZ plane at waypoint i
θω⃗i

Intended heading of the vessel at waypoint i
p⃗i Actual position in the XZ plane at waypoint i
θp⃗i

Actual heading of the vessel at waypoint i
Nw Number of columns in the semantic segmentations
Nh Number of rows in the semantic segmentations
Iω⃗i

Semantic segmentation of terrain captured at ω⃗i

Ip⃗i
Semantic segmentation of terrain captured at p⃗i

Sω⃗i
Skyline contour extracted from Iω⃗i

Sp⃗i
Skyline contour extracted from Ip⃗i

M Number of features
L Length of all features
K Amount of possible features within a skyline contour

f⃗ω⃗i
Matched image feature extracted from Sω⃗i

f⃗p⃗i
Matched image feature extracted from Sp⃗i

R⃗j 3D ray used to find element j, j ∈ [0 L) in f⃗DEMi matching

element j in f⃗ω⃗i

f⃗DEMi
Matched set of 3D features extracted from the dem

r Resolution of the DEM
e Reprojection error
p̂i Estimated position in the XZ plane at waypoint i
θp̂i Estimated heading of the vessel at waypoint i
h Height of the camera aboard the maritime vessel
K Intrinsic camera matrix
f Focal length of the camera aboard the maritime vessel
fx Directional focal length of the camera along the horizontal

axis
fy Directional focal length of the camera along the vertical

axis
ox Camera principal point coordinate along the horizontal axis
oy Camera principal point coordinate along the vertical axis
FOVH Horizontal field of view of the camera
E Extrinsic camera matrix
Rw

cθ Rotation matrix from a world coordinate system to a cam-
era coordinate system with a general rotation θ

t⃗wcθ Translation vector from a world coordinate system to a
camera coordinate system with a general rotation θ

EN Structuring element for morphological noise removal
EE Structuring element for morphological erosion of skyline

contours
µ Mean of Gaussian noise
ϕ Variance of Gaussian noise
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List of technical abbreviations

GNSS global navigational satellite systems
GPS global positioning system
APNT alternative positioning navigation and timing
DoS denial of service
DEM digital elevation model
DOF degree of freedom
AI artificial intelligence
ML machine learning
CV computer vision
VO visual odometry
USV unmanned surface vehicle
SLAM simultaneous localization and mapping
IMU inertial measurement unit
FOV field of view
SAD sum of absolute differences
MSE mean squared error
API application programming interface
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1 Introduction

1.1 Motivation

In the maritime sector, global navigational satellite systems (GNSS) have been the de facto gold
standards for navigation for the better part of a decade. Originally released to the public as the
US military’s global positioning system (GPS), satellite based navigation has rendered alternat-
ive positioning navigation and timing (APNT) systems mostly redundant [1] and become solely
responsible for the efficiency of one of the most important socio-economic sectors in our modern
world [2–4]. Every year, billions of tonnes of cargo and millions of passengers are transported over
national and international waterways [5, 6], making the safeguarding and security of navigational
integrity of joint, global interest.

With the breakout of the war of Ukraine in February of 2022, the known weaknesses of GNSS
have become more apparent than ever [7, 8] and the prospect of denial of service (DoS) through
jamming devices or spoofing of GNSS signals [9] is causing growing, international unrest. A study
from 2019 with US government backing estimates economical losses of 5-14 billion USD given a
30-day GPS outage only in the maritime sector [10], whilst [11] highlights the possible catastrophic
consequences of GNSS denial to critical infrastructure and personnel. As so, a global endeavour
is now underway to limit the necessity of GNSS in a variety of sectors, including for maritime
navigation.

For the sake of simplicity, a division of GNSS independent navigational systems in development
into two distinct sub-categories is adopted: Signal dependent and signal independent systems.
Signal dependent systems are defined as relying on the propagation of EM-waves in one form or
another, whilst signal independent systems perform pose estimation and navigation without relying
on external information. This report seeks to present an experimental framework for the latter,
using a single monocular camera aboard a maritime vessel to estimate its position in known terrain.

1.2 Problem description

The proposed navigation problem is limited to maritime vessels following a predefined trajectory,
in this case a piece-wise linear path consisting of n densly located waypoints ω⃗i, i ∈ [0, n] in the 2D
plane, dubbed the intended path. The vessel is further assumed to deviate from said intended path,
yielding a separate behaviour defined as the actual path. The vessel is further assumed armed with
one or more mounted, calibrated monocular camera(s) of which all parameters are known, as well
as a digital elevation model (DEM) of the vehicle’s surroundings. The camera’s mounting height
h on this vehicle is also assumed known, but is, for proof of concept, set to a negligible value h
≃ 0. Using only these tools, the problem is to estimate the vessel’s deviation from the intended
path, i.e the actual path, only using images captured from the camera(s) and the on-board DEM.

Figure 1 illustrates a simplified version of the problem: A vessel near waypoint imisses the intended
position ω⃗i, ending up at a different position p⃗i. This deviation is not immediately apparent to the
vessel. The vessel uses synthetic data (the on-board DEM) to generate a semantic segmentation
of the visible terrain given the assumption of being in the intended pose. This synthetic image is
labeled Iω⃗i

. Similarly, a semantic segmentation of the terrain in the actual state of the boat can
be generated in real time from the camera. This image is labeled Ip⃗i

. From these segmentation
and the DEM, a set of features are extracted and used to optimize the 3 degree of freedom (DOF)
pose to minimize the so-called reprojection error. A 6 DOF pose, which would be more realistic
but significantly increases problem complexity, is omitted by the assumption of constant altitude
and either negligible or compensated roll- and yaw-angles aboard the vessel. The actual pose at
waypoint i then consists of 3 variables, the vessel’s position in the local coordinate frame (p⃗ix,
p⃗iy), as well as the clockwise bearing of the vessel in the 2-dimensional plane θp⃗i

. However, given
the nature of piece-wise linear paths, the intended and actual headings, θω⃗i

and θp⃗i
, will be known

for a linear segment if the previous and next positions are known, further reducing the complexity
of the problem to a 2 DOF position estimation at waypoint i, p̂i.

1



Figure 1: Simplified summary of the overall problem. Two semantic segmentations Iω⃗i
and Ip⃗i

are
captured at waypoint i and used to estimate the actual position p⃗i deviating from the intended
position ω⃗i through optimizing the reprojection error.

At each i, an update of known a-priori knowledge is assumed to occur. That is, the boat is
assumed to update its knowledge of ω⃗i−1 such that ω⃗i−1 = p̂i−1. This is a necessary assumption
when developing the presented estimation scheme.

For the purpose of testing and development, the images captured by the vessel are to be generated
in a Unity based simulator environment and analysis of said images are to be performed post data
acquisition in Python. Unity is an open world, cross platform game engine capable of generating
highly realistic, physics based simulations, whilst Python is a high-level computer programming
language, optimal for precise, easy proofs of concepts given the extensive support of libraries for
advanced data modification and analysis. The images generated in Unity are to be on the form of
semantic segmentations, that is, they are to contain pixel-level class labelling of the terrain visible
from the vessel.

1.3 Related works

The rapid advances in artificial intelligence (AI), machine learning (ML) and computer vision (CV)
over the last decade has laid a strong foundation for the research and development around visual
odometry (VO). In many autonomous and/or robotics systems, the concept of being able to use one
or more cameras to estimate an agents ego-pose whilst simultaneously providing object detection
and tracking [12, 13] is alluring, avoiding the dependencies of GNSS and allowing for potentially
cheap and precise navigation in challenging scenarios [14]. In the fields of autonomous cars [15–
18], interplanetary rovers [19–22] and aviation [23, 24], VO occurs fairly frequently, emerging in
standalone implementations [16, 22, 23] or as a part of larger sensor-fusions [17, 20, 24]. Generally,
the approaches are divided in knowledge based and learning based approaches, utilizing geometric
properties and ML models based on vast amounts of data, respectively [18]. Knowledge based VO,
falling in line with the proposed framework in this paper, often use features between a set of images,
like the 3-dimensional peaks proposed by Li Wei and Sukhan Lee [22], the lunar craters proposed by
Larry Matthies et al. [21] or the complete features obtained by a monocular camera and matched
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with LiDAR depth-estimates proposed by Johannes Graeter et al. [17]. Similar methods have
proven to yield good results on everything from short- to long-range ego-pose estimations.

As [25] highlights however, similar work for marine deployment is rather lackluster. Although the
focus has been increasing in recent years, VO is still in a somewhat experimental field for maritime
vessels. The best results have primarily been reported for short-range ego-pose estimation, like the
marker-based docking system employed by Volden et al. [26] and Cortes-Vega et al.’s unmanned
surface vehicle (USV) controller based on monocular VO in urban waterways [27]. VO is more
common, arguably more so than in other sectors, as part of a larger sensor fusion, where great
successes are being reported in applications such as the autonomous passenger ferry Milliampere 2
[28], Liu et al.’s augmented reality based navigation system [29] and a promising navigation system
for smart ships based on game theory proposed by Zhou et al. [30]. In such fusions, cameras are
often deployed as part of a greater system for simultaneous localization and mapping (SLAM),
allowing for both exploration and navigation in a variety of coastal areas.

Although major sensor fusions are seeing the most success in the maritime sector, researchers
have also found interest in navigation and pose-estimation based on a limited amount of sensors;
work that can prove interesting for more economic appliances or in larger fused frameworks. Ma
et al. propose a feature based radar system, extracting coastlines and inferring with satellite
data to determine the position of a USV [31], Jung et al. present a working sonar based particle
filter performing navigation by underwater geophysical features [32] and Rogne et al. presented an
initial framework for dead-reckoning based position estimation using multiple inertial measurement
unit (IMU) [33]. [34, 35] attempt to use infrared cameras for various navigational services whilst
Jungwook et al. use a typical marine radar to perform SLAM on coastal areas [36]. One should
also note some of the significant contributions advances in AI present to a variety of these single-
sensor applications, especially for monocular VO. The ever-improving YOLO labelling algorithms
[37] and monocular depth estimation algorithms, such as the exceptional Boosting network [38]
are promising steps in covering the many shortcomings of monocular cameras, rendering them
proficient, standalone sensors.

1.4 Goals and contributions

This report seeks to present a baseline framework for long-range, knowledge-based, monocular VO
aboard a maritime vessel following an intended trajectory in known terrain. A 2 DOF position
in the XZ plane is estimated by the reprojection error, using synthetically generated semantic
segmentations of terrain visible aboard the maritime vessel and abstraction to matching features
in the DEM.

The main contributions can be summarized as:

• A baseline estimation framework based on reprojection errors and nonlinear optimization, in-
cluding algorithms for feature extraction and matching given a set of semantic segmentations
and a-priori information about the vessel’s surroundings in the form of a DEM.

• A baseline 3D Unity simulator environment for consistent data generation and processing.

• A qualitative analysis of the algorithmic framework in light of experimental results.

1.5 Structure of the report

The report is divided into 7 sections in total. Section 2 provides an overview of the complete
proposed framework, for the reader to familiarize him/herself with the intended workings of the
system. Section 3 presents all deployed algorithms, with illustrations and pseudocode for reprodu-
cibility. Section 4 presents the proposed simulator environment and necessary considerations when
working between Unity for data generation and Python for analysis. Section 5 presents the results
of the framework applied to the synthetically generated data and Section 6 serves as a discussion
of said results. Section 7 presents the final conclusion.
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2 Overview of the proposed framework

The framework proposed in this report is designed to function as a standalone pose-estimator
for a marine vessel following a predetermined trajectory in known terrain. Although the possible
amount of cameras and their models or configurations are technically limitless aboard the vessel,
it is here assumed a single, forward facing camera with a limited horizontal field of view (FOV),
FOVH , typically ranging between 60°and 90°to accommodate a pinhole-camera model. The ves-
sel’s intended trajectory is assumed to be piece-wise linear, connected between a set of n densely
populated waypoints, and the surrounding terrain is assumed know on the form of a DEM with a
fixed resolution and known spatial constraints. Figure 2 illustrates this intended behaviour on an
arbitrary maritime vessel in a simple example environment consisting of several islands of differing
height-profiles:

Figure 2: The assumed intended behaviour of a maritime vessel following a predetermined, piece-
wise linear path. The vessels camera frustum is limited to FOVH < 90° to accomodate a pinhole
camera model and the DEM of the surrounding terrain is assumed known.

By defining a local reference frame for the maritime vessel within this environment or using geospa-
tial referencing of both waypoints and the vessel’s pose it is possible to construct a variety of robust
control-schemes guiding the vessel from one waypoint to another. Such a scheme will, however, be
subject to a plethora of error-sources; a reality ever more prevalent for control schemes functioning
out at sea. External, time dependent factors such as waves, winds and sub-surface currents are
certain to cause deviations from the intended path of any maritime vessel, rendering the actual
behaviour of the proposed maritime vessel more reminiscent of that presented in Figure 3. Note
that at i = 0, ω⃗0 = p⃗0, as initialization is assumed supervised and verified by human inspection.
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Figure 3: The assumed actual behaviour of a maritime vessel at each waypoint i. The intended
behaviour is assumed disrupted by external factors, causing the vessel to drift away from the
planned trajectory.

The proposed solution to estimate this deviation at each i is through the minimization of a well-
poised optimization problem which has gained significant popularity within the scientific circles of
CV the last decades: The reprojection error. The general concept is in many ways fairly simple:
By assuming a rigid camera model and the surrounding terrain, a good estimate of the vessel’s
position p̂i can be found through images taken at the intended and actual positions, respectively
Iω⃗i

and Ip⃗i
for waypoint i. Figure 4 illustrate a set of plausible 16× 9 images taken at the position

of a maritime vessel in the intended and actual position illustrated in Figures 2 and 3 respectively.
Note again how the headings θω⃗i

and θp⃗i
of the camera in both positions are solely dependent on the

linear connection between the current and previous positions along both paths. The discretization
on these images is significant for ease of conceptual illustration, but will not affect the algorithmic
approach.

Figure 4: Possible 16×9 images capturing the shape of terrain from a maritime vessel with position
and heading similar to those in Figure 2 and 3 in the illustrated terrain.

Here, both Iω⃗i
and Ip⃗i

are semantic segmentations of the terrain visible from the camera aboard
the vessel at waypoint i, along the intended and actual path respectively. This means that all
pixels in the image are assigned a class label: Gray pixels illustrating labeled terrain and white
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pixels denoting anything else. Although this can be extended to classify and isolate more objects,
like the ocean, vessels and obstacles, here it serves as a way to threshold the terrain from its
surroundings. These semantic segmentations are what allow us to extract features with common
CV techniques, enabling the knowledge-based estimation scheme. They are also becoming more
and more accessible for real-time deployment, for example through the YOLO algorithms [37].

Given the importance of features in the proposed framework, they warrant a more thorough de-
scription. To formulate the nonlinear reprojection error, a set of M≥ 3 features are required.
The first M−1 such features are located within M−1 camera views, or image coordinates. For
simplicity, these are denoted image features. These image features vary from one application to
another, but always tend to highlight noticeable areas within the image. They can consist of one
or more pixels encompassing an area of distinct illumination, geometry, edges ect. It is important
that all these image features highlight the same feature across allM−1 image features and are
all of the same dimensions. For the proposed framework, there will be two image features f⃗ω⃗i

and

f⃗p⃗i
denoting a matching geometric area between the semantic segmentations Iω⃗i

and Ip⃗i
. Figure

5 illustrate these for the running example. Both features will consist of L 2D pixel-coordinates
denoting matching hilltops in the images, where hilltops are geometric, convex shapes in the terrain
segmentation. f⃗ω⃗i

and f⃗p⃗i
are highlighted as blue pixels in both images.

Figure 5: Example of extracted hilltop-contour from the images in Figure 4.

The last of theM required features is a set of L 3D coordinates in the DEM that are as close to a set
of triangulated matches to theM−1 image features as possible. In other words: The last feature
f⃗DEMi

consist of the 3D world coordinates that, when projected onto all of theM−1 camera views
forming image features, align with said features for all views. Figures 6 and 7 attempt to illustrate
briefly how f⃗DEMi

can be visualized and how it is related to matches in image features. Figure 6

shows that one of theM−1 image features, in our case f⃗ω⃗i
, is used to locate L points in the DEM.

Figure 7 builds on this, showing how the points in f⃗DEMi
have to align during projection into a

pinhole camera model with the located image features, here f⃗ω⃗i
and f⃗p⃗i

.
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Figure 6: Example of L world points f⃗DEMi found through a matching scheme with image feature

f⃗ω⃗i
.

Figure 7: The alignment condition on features f⃗DEMi
to located image features f⃗ω⃗i

and f⃗p⃗i
. Note

that the difference in heading between camera views is highly exaggerated. This also distorts the
elements of f⃗DEMi

.

AllM features can be written on vector-form as in equation (1). f⃗I are here general image-features

and f⃗DEM are DEM features:
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f⃗I =


xI,0 yI,0
xI,1 yI,1
...

...
xI,L−1 yI,L−1

 , f⃗DEM =


xDEM,0 yDEM,0 zDEM,0

xDEM,1 yDEM,1 zDEM,1

...
...

...
xDEM,L−1 yDEM,L−1 yDEM,L−1

 (1)

Finally, the optimization problem can be formulated using the 3 distinct features and a-priori
information about the vessels position. The idea is, conceptually, quite simple: As we know
the intended position ω⃗i of a vessel at waypoint i, this can be used as an initial guess for the
estimated position p̂i. The estimated heading, θp̂i

, is assumed implicitly known from the previous
and estimated position along a piece-wise linear path, rendering it obsolete in estimation. From
here, the 3D feature f⃗DEMi

is reprojected back to the camera on board the vessel at ω⃗i and the

distance between all L reprojected pixels and their corresponding matches in f⃗p⃗i
are measured

numerically. This yields a numerical error e of the deviation from the actual position. Figure 8
attempts to show a visual representation of an unlikely, but illustrative, perfect estimation. The
pose-estimator returns an estimation p̂i of the actual deviation p⃗i after 2 iterations. Each iteration
lessens the overall cost function by choosing intermediate positions who’s reprojections of f⃗DEMi

are closer to f⃗p⃗i
than the last, eventually converging p̂i = p⃗i for waypoint i.

Figure 8: Example of plausible 3 DOF optimization, minimizing the euclidean distance between
corresponding pixels of the reprojection of f⃗DEMi

and f⃗p⃗i
.

After obtaining p̂i at waypoint i, it is imperative to update the previous knowledge of the route,
that is ω⃗i = p̂i. This implies an assumption that the maritime vessel estimates its deviation with
some precision (p̂i ≃ p⃗i), which yields the correct heading when computing the features of the next
images: Iω⃗i+1 and Ip⃗i+1. Figure 9 illustrates how the intended path is updated when an estimation
has been completed:
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Figure 9: Update of a-priori information performed after each estimated waypoint.
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3 Employed algorithms

This section is dedicated to the algorithms making up the presented framework. Each underlying
subsection presents one or more algorithm(s) through a sequential description complete with fig-
ures and equations, before presenting a simplified pseudocode, working as both a summary and
compressed template for repeatability.

3.1 Feature extraction and matching in camera images

The first subsection seeks to illustrate in detail the algorithms employed to extract and match
features f⃗ω⃗i

and f⃗p⃗i
in Iω⃗i

and Ip⃗i
. Three algorithms will be presented to this end: One to

accurately and consistently extract a skyline contour from semantic segmentations of terrain, one
to extract predetermined features from such a skyline contour, and a final algorithm to match and
align features betweenM−1 camera views using the sum of absolute differences (SAD) algorithm:

3.1.1 Extracting skyline contours from semantic segmentations

The skyline contour of a semantic segmentation of terrain is the highest pixel layer of the terrain
intersecting visible sky. To extract this subset of the terrain, an algorithm based on morphological
operations in image processing is employed. The full field of morphological operations, which is
vast and relatively complicated, fall outside the scope of this report. However, a quick summary
of the relevant operations employed by the algorithm follows below:

Morphological operations

The field of mathematical morphology encompasses numerous techniques applicable to the
analysis and processing of various geometrical shapes, but in image processing it is more
often than not synonymous with Binary Morphology on images, which presents a set of
operations capable of extracting valuable information of shapes within a binary image.
Denote a general, binary image as B. The methodology bases itself on a smaller, binary
image known as a structuring element, denoted E, which is compared with the neighborhood
around each pixel-center in B. The amount of overlap between binary values in B and E can
be used to infer different bits and pieces of information, yielding a set of different operations.

Structuring elements: Examples of difference structuring elements E can be seen below.
Note that this is a very small sample of possible elements, as they are not limited in size
and contents and vary depending on the desired task:

It should be noted that although the dimensions of all the above elements are the same,
the amount of binary True-False values, or 1’s and 0’s, are vital to the output of the
morphological operation. Gray elements are here binary 1’s, whilst white elements are
binary 0’s, in line with the exemplary semantic segmentations in Section 2.
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Binary Morphological Operations: In the subsequent framework, the following mor-
phological operations were utilized:
The first two, Erosion and Dilation, are considered the most basic operations and are often
used in combination to achieve more complex results:

• Erosion (⊖): Erosion is performed by iterating a structuring element E over all
pixels in the binary image B. The operation, denoted B⊖E, results in the diminished
circumference of all geometric shaped present in B. If, for a pixel xi ∈ B, all pixels in
E that are True or 1 do not overlap pixels in B that are True or 1, xi is discarded.
Although this can be described mathematically through set-theories, the concept is
the easiest to grasp visually:

• Dilation (⊕): Dilation is the inverse operation of Erosion, increasing the circum-
ference of geometric shapes in B by iterating a structuring element E over all pixels
xi ∈ B. If only one of the True values in E overlap a True value in B, the pixel xi

is also considered to be True. The operation, fittingly, has the opposite notation to
the Erosion Operator B ⊕ E and can be visualized in a similar fashion:

The last two operations are composite operations, or rather operations made up of two or
more basic operations:

• Opening: A composite operation typically used to remove noise from outside larger
geometric shapes in a binary image B. A structuring element E is first used to erode
smaller shapes B ⊖ E before dilating remaining geometrical shapes to reconstruct
their circumference B ⊕ E. The composite operation is typically denoted:

B ◦ E = (B ⊖ E)⊕ E

• Closing: A composite operation typically used to remove noise from inside larger
geometric shapes in a binary image B. A structuring element E is first used to dilate
the existing geometric shapes, filling minor discontinuities inside their hull B ⊕ E,
before eroding away the added circumference to reconstruct the original shapes of the
geometric shapes B ⊖ E. The composite operation is typically denoted:

B • E = (B ⊕ E)⊖ E
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The following algorithm utilize these morphological operations in 5 fixed steps to consistently and
precisely isolate the contour of a skyline in a semantic segmentation of terrain. The first two steps
are attributed to reducing and removing noise potentially present in the segmented terrain images.
Such noise can occur from a variety of external factors, such as scattering and weather phenomena,
reflections of light on smoother surfaces, or internal phenomenons such as misclassifications by the
employed segmentation algorithm or irregular bit-switches inside the camera encoder. Taking
measures to remove noise, even when it is not present, is then an advisable step to improve the
algorithms consistency throughout a wide range of possible scenarios. Figure 10 illustrate these
two steps and their use of morphological opening and closing for noise-reduction/removal on the
example terrain from Section 2:

(a) First step of the skyline contour extraction algorithm, designed to remove noise from inside
visible terrain in the semantic segmentations through morphological closing.

(b) Second step of the skyline contour extraction algorithm, designed to remove noise from
outside terrain contours in the semantic segmentations through morphological opening.

Figure 10: First two steps of the skyline contour extraction algorithm, designed to eliminate noise
inside and outside visible terrain segmentations in a semantic segmentation.

Above, the structuring element EN utilized in both operations is a 3 × 3 square matrix. Larger
elements can be used and will eliminate greater instances of pixel-noise, but can affect the terrain
by removing smaller parts of the segmented landmass in the same process. As noise tends to be
smaller in nature and the ambiguity between larger noise and smaller landmasses grows with the
size of the structuring element, this size was deemed the most reliable for the current application. In
general the choice may vary based on a plethora of factors, such as the deployed camera parameters,
expected external conditions and image-quality and aspect ratio, to mention a few.

The next two steps of the algorithm are illustrated in Figure 11 and seek to isolate the contour
of the visible, segmented terrain by a masking scheme based on morphological erosion and bitwise
operations:
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(a) Step three of the skyline contour extraction algorithm, isolating the interior of the terrain contour
through morphological erosion.

(b) Step four of the skyline contour extraction algorithm, extracting the contour of the terrain by masking
the noise-reduced version of the skyline contour from steps 1-2 with the interior of the terrain contour from
step 3 using a binary XOR operation.

Figure 11: Step three and four of the skyline contour extraction algorithm, isolating the contour
of visible terrain in a semantic segmentation.

Notice the shape of EE used in Figure 11a. This kind of cross-shaped 3 × 3 structuring element
is used to ensure only one pixel on each side of a geometric shape is eroded away, contrary to
the square 3× 3 structuring element used in Figure 10a and 10b. These are more indiscriminate,
especially around corners, and can result in elements further into the shape being discarded. If
one such structuring element was utilized on the above Iω⃗i

, one would see the lone, leftmost pixel
and all corner-pixels vanish, highlighting the importance of choosing suitable structuring elements
when dealing with morphological operations.

The fourth step in Figure 11b outputs a complete contour of the terrain visible in the semantic
segmentation, that is a skyline contour, distinguishable as the upper part of the contour, and a
coastline: The intersection of the terrain with a planar surface, in this particular case the ocean.
For the proposed framework, this coastline is unnecessary. Hence, the last step of the algorithm,
shown in Figure 12, is a simple algorithmic procedure to remove the coastline, only keeping the
skyline contour for feature extraction and matching:

Figure 12: Step five of the skyline contour extraction algorithm, which erases the coastline from
the complete terrain-contour.

The algorithm employed for this final step is fairly simple, comparing all pixels in the skyline
of similar x-values and removing the one with the lowest y-value (assuming there are more than
one). The reason removing the lowest pixel is preferred to only keeping the highest one is for
cases in which a drastic gradient is present in the contour. The fourth column from the left
is a good indication of such a scenario in the above figure. Here, only keeping the topmost-pixel
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would render the skyline discontinuous, whilst removing the lowest one correctly outputs the target
skyline contour.

A proposed pseudocode for the algorithm can be seen in Algorithm 1:

Algorithm 1 Extract Skyline Contour from Semantic Segmentation of terrain

Require: Semantic Segmentation of terrain I
procedure SkylineContourExtraction(I)

Ib ← BinaryThreshold(I) ▷ Transform I into a binary image
EN ← StructuringElement((3× 3), full)
Ib ← (Ib • EN ) ◦ EN ▷ Remove noise
EE ← StructuringElement((3× 3), cross)
Iinside = Ib ⊖ EE

C ← BITWISE XOR(Ib, Iinside) ▷ Extract complete skyline contour
for x ∈ [0, len(Cx)] do ▷ Remove cosatline

column values← C[x, :]
C.Remove([x, Min(column values))

end for
Return(C)

end procedure

3.1.2 Feature extraction from skyline contours

With skyline contours extracted using Algorithm 1, the next step is to define an algorithm to
extract features from one such skyline. Naturally, there are quite a few possible features one can
choose to extract here, all the way from the single pixel, top-most extremities to the complete
contour. In the proposed framework, a combination of these two are chosen: fully connected,
continuous hilltops. These features are somewhat tougher to extract, being subject to quite a few
limiting constraints, but are theoretically more robust where they are present. The top-most pixel
extremities, or peaks visible in an image can often be ambiguous, as was the case in [39], whilst a
complete skyline is bound to contain values on the edges of images. These can become a source of
errornous matching from cameras with limited horizontal FOVs, due to the fact that hills or peaks
past the image-border technically are unknown and can be misclassified as a result. Using heavily
constrained hilltops should mitigate this error and subsequently related errors further down the
pipeline. One should note that, as with single extremities, multiple hilltops can be extracted from
the same skyline contour, given they satisfy the necessary constraints.

The constraints posed onto the extracted hilltops are as follows:

• Hilltops are defined to be sets of pixels forming convex hulls with negative semi-definite edges.

– The convexity of the features imply that hills cannot be slopes, which would be highly
ambiguous during matching of multiple hilltops.

• Hilltops cannot reach the edges of the images they are present in, as this can result in
ambiguous or lacking features.

• Hilltops should be subject to minimum-thresholds on their widths tw and heights th, ensuring
more distinct features.

• No two hilltops, say H1 and H2, should have any overlapping pixels, that is H1 ∩H2 = ∅.

The proposed algorithm to extract a hilltop H from a skyline contour S is presented in Figure 13.
The method contains a top-down, depth-first search of the supplied skyline contour, extracting one
hilltop at a time and removing it from S by iterating from the top using a predefined search area.
Extracted hilltops are kept if they adhere to the above conditions.
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Figure 13: Algorithm to extract a hilltop H from a skyline contour S. One row of skyline elements
are evaluated at a time. The algorithm divides them into smaller segments if clusters of elements
occur at discontinuous column values. A search area moving down the contour in a negative semi-
definite, depth-first fashion is then adopted, adding skyline elements to H until no further feasible
elements can be located in either direction. Given the shape of the search area, the resulting hilltop
H is guaranteed to be a convex hull. If H satisfies all conditions placed upon potential hilltops, it
is removed from S and stored in a dictionary. The algorithm will then evaluate the next rows of S
recursively, extracting new hilltops and deleting pixels as above, until no possible features remain.

A simplified pseudocode of the algorithmic procedure is presented in Algorithm 2. Given the
many conditions on a hilltop and search-area specifics, this does not relay the precise extraction
of hilltops as much as an overall workflow. For a full implementation, see the Python application
programming interface (API) attached to this report.

Algorithm 2 Extract hilltop features from skyline contour

Require: Skyline contour S consisting of N pixels (xi, yi), i ∈[0, N)
Require: Predetermined feature thresholds for minimum hilltop width tw and height th
Require: Known image borders Imin, Imax

procedure HilltopExtraction(S, tw, th, Imin, Imax)
hilltops← {}
for row ∈ [Sy,max, Sy,min] do

if nonzero(row) = ∅ then
continue

end if
row segments← row divided into segments of continuous x-values
for segment ∈ row segments do

Grow segment to a convex hull by adding descending, connected pixels present in s.
H ← Convex hull
if (H ∪ Imin ̸= ∅ or H ∪ Imax ̸= ∅) then ▷ Check if Hilltop overlap image borders

continue
end if
if Hy,max −Hy,min < th then ▷ Check if Hilltop is tall enough

continue
end if
if Hx,max −Hx,min < tw then ▷ Check if Hilltop is wide enough

continue
end if
hilltops.Add(H)

end for
end for
Return(hilltops)

end procedure

15



3.1.3 Matching image features between multiple skyline contours

Utilizing Algorithms 1 and 2, it is possible to properly define a compound algorithm accepting
two camera images of semantically segmented terrain, returning a set of optimally matching image
features f⃗ω⃗i

and f⃗p⃗i
. The algorithm first finds a large subset of K possible hilltops in one image,

before calculating which of these has the best match in the other. The similarity measure used is
known as the sum of absolute differences (SAD) and is fairly known in the fields of signal processing
and image processing:

Sum of Absolute Differences (SAD)

Often called Sum of Absolute Errors (SAE), SAD is an energy measure, like the famous
Mean Square Error (MSE) and Mean Absolute Errors (MAE). The simplicity of the
measure is often its biggest appeal, both from a theoretical and computational standpoint.
It’s use in image processing is predominantly to calculate the difference between different
segments of images and its integration is quite straightforward [40] :

Suppose we have two images, one N ×M,N > M image I1 and a smaller M ×M image
I2. To find the area in I1 most similar to I2, one can overlay I1 with I2 and calculate the
deviation of overlapping elements between the two images. Summing these deviations for
all pixels the M ×M image, we get equation (2):

SAD =

M−1∑
i=0

M−1∑
j=0

|I1,(i,j) − I2,(i,j)| (2)

Note that the above is a calculation in 2 dimensions. SAD is easily adaptable to any
number of dimensions, like in this framework, where only 1 dimension is used. Calculating
the SAD for all areas where I2 can fully overlap I1, we can find the best match to be the
area of smallest error.

A quick visual example follows below to illustrate the concept in the case of two images
with N = 5&M = 3. All areas not considered at the current iteration are marked ”-”:

For the three iterations i0 − i2 presented, the respective SAD values are SAD0 = 32,
SAD1 = 28, SAD2 = 10. Hence, the third area in I1 is deemed the best match to I2.

The presented algorithm works as follows: Given two skylines, Sω⃗i
and Sp⃗i

for the presented
framework, K hilltops are extracted from Sω⃗i

by Algorithm 2. All K hilltops are then matched
with an area in Sp⃗i

, leaving K matching areas between Sω⃗i
and Sp⃗i

. The match with the lowest

total SAD score is determined the best and returned as the best possible image features f⃗ω⃗i
and f⃗p⃗i

.
The matching between hilltops and skyline is done by a one-dimensional SAD measure, meaning
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the error between two corresponding pixels is seen as the vertical difference between them. It is
important to note that certain matches are seen as invalid, specifically those where the hilltop is
matched with a discontinuous section of skyline. Figure 14 illustrates one iteration of the algorithm
between a located hilltop H0 from the intended skyline Sω⃗i

and the actual skyline Sp⃗i
.

Figure 14: Matching algorithm deployed on an extracted hilltop H0 from the intended skyline Sω⃗i

and the actual skyline Sp⃗i
. The SAD between H0 and Sp⃗i

is calculated for each possible overlap,
iterating from left to right. Highlighted iterations show a complete overlap in i0, a partial overlap
in i3 and an infeasible matching in i7. Infeasible matches occur where Sp⃗i

is discontinuous in the
considered area. The returned match between H0 and Sp⃗i

results in the smallest SAD.

An important preprocessing step here is to make sure the skylines are unique with regards to their
column-values. This, at first glance, might seem contradictory to the removal of the coastline in
Section 3.1.1, but should be considered a separate step entirely. Where it was imperative for the
skyline to be as continuous as possible to successfully extract hilltops, it is more important when
working with any similarity measures that all comparisons are unique and unambiguous. As the
presented algorithm uses a one-dimensional SAD measure along each column, it is imperative that
each column only has one value, although it might render the skylines or hilltops discontinuous.
Figure 15 illustrates how this simple but important preprocessing is applied to the hilltop H0

extracted from Sω⃗i
and the entirety of Sp⃗i

from the previous example.
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Figure 15: Necessary preprocessing of hilltop H0 and skyline Sp⃗i
before matching. If multiple

elements exist for a column value x in either, the bottom value is removed to keep SAD computation
unambiguous.

A simplified pseudocode for the presented algorithm can be seen in Algorithm 3:
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Algorithm 3 Match Skyline Contours

Require: Two skyline contours: s1 and s2 consisting of N and M pixels.
procedure SkylineMatching(s1, s2)

H ← HilltopExtraction(s1, ...) ▷ Algorithm 2
if H is empty then

Terminate: No features in skyline.
end if
best match H ← []
best match S2← []
best SAD ←∞
for Hi ∈ H do ▷ Iterate through all located Hilltops

j ← 0
while j ≤ len(s2)− len(Hi) do ▷ Iterate through overlaps of Hi and s2

s2,overlap ← s2[j : j + len(Hi), :]
if s2,overlap discontinuous then

j ← first index after discontinuity
Continue

else
SAD ← SAD(Hi, s2,overlap)
if SAD < best SAD then

best SAD ← SAD
best match H ← Hi

best match S2← s2,overlap
end if
j += 1

end if
end while

end for
return best match H, best match S2

end procedure

3.2 Locating skyline elements in DEM data

This subsection seeks to present the algorithm(s) employed in the framework to extract the feature

from the DEM, f⃗DEMi
. Due to the interwoven complexity of the algorithm, encompassing many

other smaller sub-problems and their respective solutions, a divide and conquer approach is em-
ployed, dividing the problem into a set of smaller algorithms to simplify the final implementation.
This makes the overall system more modular and easier to review in case of erroneous responses.

Before getting into the details, it is important to get a sufficient overview of the proposed solution.
The idea is fairly simple: To extract a set of L, 3D positions in world coordinates corresponding
to all L pixels of allM−1 image features. Although this seems daunting at first, it is important
to remember that if one assumes the output of Algorithm 3 to yieldM−1 correctly corresponding
image features of length L, finding a set of 3D positions matching only one of the image features
is equivalent to finding a set matching all. The presented algorithm does this for the feature f⃗ω⃗i

captured at the intended position ω⃗i of the vessel at waypoint i. This is the feature containing the
most a-priori information, as one can assume both the position (and subsequently heading) of the

vessel to be known. f⃗DEMi will then contain L 3D positions corresponding to the L 2D pixels in

feature f⃗ω⃗i
, and, by extension, f⃗p⃗i

.

Figure 16 illustrates how f⃗ω⃗i
is utilized in the algorithm to find f⃗DEMi

For each of the L pixels

in f⃗ω⃗i
, a ray R⃗j , j ∈ [0 L) is drawn from the intended position ω⃗i through the pixel position on

the image plane, into the DEM. The heading of each ray is calculated as a displacement from the
known heading of the vessel, where the displacement comes from a division of the known camera
frustum into Nw angular deviations. Nw is the total number of columns in image Iω⃗i

and the
division is done by dividing the far render plane of the frustum into Nw−1 equidistant lengths,
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each representing a pixel on the image plane. Along each of these rays, a cross-section of the
DEM is extracted through a 2D line-drawing algorithm and the point in this cross-section with
the greatest angle is returned as the skyline-element in f⃗DEMi

.

Figure 16: Overview of the DEM feature extraction algorithm. The feature f⃗ω⃗i
consisting of L

pixels, captured at ω⃗i, is projected into the DEM by L rays in the forms of 2D lines.

The simplified pseudocode of the complete algorithm can be seen in Algorithm 4. The rest of this
subsection will be devoted to the modules making up this algorithm, namely an algorithm to divide
the camera frustum into Nw rays, one to draw a ray R⃗j as a 2D line to the edge of the DEM and

one to extract elements along R⃗j and add the correct feature to f⃗DEMi
.
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Algorithm 4 Extract fi,DEM

Require: DEM IDEM

Require: Image feature f⃗ω⃗i
from intended skyline contour Sω⃗i

Require: Intended position at waypoint i ω⃗i

Require: Actual position at last waypoint i− 1 p⃗i−1

Require: The horizontal span of the camera-frustum in degrees FOVH

Require: The amount of columns in Iω⃗i
, Nw

procedure ExtractDEMFeature
dem feature← []
directional vector ← ω⃗i - p⃗i−1

θω⃗i
← atan2(directional vector[1], directional vector[0]) ▷ Calculate heading of vessel

angles← DivideCameraFrustum(Nw, FOVH , θω⃗i
)

for j ∈(0, Nw] do

if j ̸⊂ f⃗ω⃗ix then

continue ▷ Skip elements not in f⃗ω⃗i

end if
α← angles[i]

R⃗j ← DrawLine2D(ω⃗i, ProjectRayToDEMBorder(IDEM , ω⃗i, α)) ▷ Draw R⃗j

dem feature.append(ExtractSkylineElementFromRay(R⃗j , IDEM )) ▷ Add R⃗j to f⃗DEMi

end for
return dem feature

end procedure

3.2.1 Division of camera frustum

To find L rays matching each 2D pixel coordinate in f⃗ω⃗i
it is important to understand how each

ray will differ from one another. Primarily, each ray will have its origin on ω⃗i, face a different
heading from other rays and terminate at the spatial border of the DEM. This subsection primarily
deals with the headings of these rays, attempting to divide the entirety of the camera frustum’s
horizontal FOV FOVH into Nw equal parts: each one corresponding to a column in the image Iω⃗i

.
This is important, as not just the headings for the matching rays, but for all possible rays in the
image are calculated. The reason for this will be explained, but introductory it should be sufficient
to note that this is imperative to accurately compute the desired L rays.

The general strategy deployed is based on the geometrical interpretation of a triangular camera-
frustum (for the pinhole camera model) and how it is geometrically similar to a smaller triangle
that can be drawn from the camera center to the image plane. Figure 17 illustrates this, with a
red triangle indicating the full camera frustum and a blue, similar triangle formed with the image
plane a distance f from the camera center. It should be noted here that all rays are drawn at the
same height h of the maritime vessel. This is intentional, as matching the height keeps the rays
strictly horizontal, making them ideal for extracting cross-sections of the DEM at a later stage.
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Figure 17: Geometrical interpretation of similar triangles within a camera frustum, fixed at the
height of the camera h. The cross-section of the camera frustum at this height, drawn in red, goes
from the camera center, through the borders of the image plane and reaches until the far-plane of
the frustum. A geometrically similar triangle, shown in blue, can be formed with the image plane
as the far side of the triangle. The image plane is imagined to be a length f , where f denotes the
camera focal length, from the camera center.

Analyzing Figure 17 one can make a few important observations. Firstly, the two triangles formed
both have a horizontal, angular span FOVH at the image center. Secondly, the Nw angular
headings calculated can be visualized as rays of their own, given that they are just headings in two
dimensions from the camera center. As these intersect the image plane through the pixel centers of
each column in Iω⃗i

, the distances between these rays on the far render plane have to be equidistant.
This is an important assumption. Thirdly, the Nw rays drawn generate Nw−1 smaller triangles
with their own horizontal, angular spans from the camera center. These are denoted θm, where
m ∈ [1, Nw] and are not necessarily equivalent. That is, θm ̸≡ θm+1. This is the reason all Nw

headings have to be calculated, as subsequent angles are dependent on previous ones, which are not
necessarily constant. Finally, given the geometric similarity between the two triangles, one should
note that all angles θm are equivalent for any distance f , allowing it to be chosen arbitrarily.

With all of these observations, it is possible to discern an algorithmic approach based purely
on geometric and trigonometric interpretations of triangles. Figure 18 illustrates a geometrically
similar triangle formed within a camera frustum of horizontal, angular span FOVH with Nw= 4
headings prefixed by a letter d and Nw−1 = 3 angular deviations θm. In line with previous
observations, one can safely normalize the focal length f= 1 and assume an equidistant partitioning
of the one-dimensional distance between all headings, called l.
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Figure 18: Overview of the camera frustum subdivision problem, with headings d, and angular
deviations θm,m ∈[1, Nw]. The camera has a total horizontal FOV FOVH and the focal length f
is normalized to 1. l is the equidistant, one-dimensional length between headings on the far plane.

The proposed subdivision makes each desired angle θm part of a smaller, not necessarily right,
triangle. To isolate the angle, the generalized Pythagorean equation, also known as the Law of
cosines, can be utilized:

c2 = a2 + b2 − 2abcos(θ) (3)

Here, c is the opposite side of the angle θ, making a and b adjacent. To solve for θm in Figure 18,
one can substitute c = l, a = dm−1 and b = dm before solving for θm:

l2 = d2m−1 + d2m − 2dm−1dmcos(θm)

2dm−1dmcos(θm) = d2m−1 + d2m − l2

θm = cos−1(
d2
m−1+d2

m−l2

2dm−1dm
) (4)

When solving equation (4), it is desirable to find closed-form solutions to the expressions dm−1,
dm and l. Using the fact that a camera frustum always forms an isosceles triangle and that the
focal length f intersects the image plane orthogonally in the center, l can be calculated by dividing
the entire length of the normalized image plane and simply divide it into Nw−1 equidistant parts.
The horizontal length of the normalized image plane can be found as twice the opposing cathode
of a right triangle formed by f and the frustum borders:
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wnormalized image plane = 2 · (tan(FOVH

2
)f)

= 2 · tan(FOVH

2
)

Which enables the closed-form solution in equation (5):

l =
wnormalized image plane

Nw − 1
=

2 · tan(FOVH

2 )

Nw − 1
(5)

The sides dm−1 and dm of the triangle formed by an angle θm to the camera center can also be
found by using Pythagoras on a right triangle formed by f . The tricky part for these is finding the
far-side of the triangles, for which it is important to assess the direction one iterates through the
lines within the frustum. In this report, this iteration is denoted to be clockwise, meaning dm will
be further to the right than dm−1 in Figure 18. Figure 19 then illustrates the proposed strategy to
find dm−1 and dm as the hypotenuses of their respective right-triangles for m = 2 in the example
proposed in Figure 18:

Figure 19: Algorithmic approach to calculate the sides dm−1, dm of a triangle m. Both sides are
considered hypotenuses of their respective right-angle triangles formed with the normalized focal
length f . The far cathode for each side is dependent on whether l · (m − 1) and l ·m are greater
than or smaller than the half point of the opposing frustum side tan(FOVH

2 ). With all cathodes,
dm−1 and dm can be calculated by Pythagoras rule.

dm−1 and dm are visibly subject to a condition: Whether they intersect the normalized image
plane on the left or right side of its halfway point. Keeping in mind that this border-condition is
the length tan(FOVH

2 ), a set of closed-form equations for the line of each side in triangle m can be
calculated:

dm−1 =


√
1 + (tan(FOVH

2 )− l · (m− 1))2, if l · (m− 1) ≤ tan(FOVH

2 )√
1 + (l · (m− 1)− tan(FOVH

2 ))2, otherwise
(6)

dm =


√

1 + (tan(FOVH

2 )− l ·m)2, if l ·m ≤ tan(FOVH

2 )√
1 + (l ·m− tan(FOVH

2 ))2, otherwise
(7)

Inserting Equations (7), (6) and (5) into (4), one can compute the Nw−1 angular deviations
between all Nw headings in the frustum for an equidistant division of the horizontal length of
the normalized image plane. Assuming the maritime vessel has the known heading θω⃗i

at ω⃗i, the
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deviations can be added to this recursively to displace them correctly with respect to the vessels
heading. A simplified psuedocode for the entire algorithmic procedure can be seen in Algorithm 5:

Algorithm 5 Divide camera frustum

Require: Predefined amount of subdivisions Nw

Require: The horizontal span of the camera-frustum in degrees FOVH

Require: The initial heading of the camera θω⃗i

procedure DivideCameraFrusutm(Nw, FOVH , θω⃗i
)

angles←[]
half fov ← FOVH

2
angles[0] ← θω⃗i

− half fov
l← Calculate l()
for m ∈[1, N ] do

lm−1 ← l × (m− 1)
lm ← l ×m
dm−1 ← CaculateLine(lm−1, half fov)
dm ← CaculateLine(lm, half fov)
angles[m] ← CosineLaw(l, dm−1, dm) + angles[m− 1]

end for
Return angles

end procedure

3.2.2 Drawing a ray R⃗j in the DEM

Assuming the headings of the L desired rays R⃗j j ∈ [0 L) are extracted from Algorithm 5, the
next step is to isolate the DEM along these rays, which will be imperative later on to extract a
cross-section for evaluation. For this, two fairly simple subproblems require solutions, which should
be covered for reproduceability and completeness.

Firstly, to isolate the DEM across a ray R⃗j , the ray needs to be calculated as a set of points
from which a cross-section can be retrieved. As described in Section 3.2.1, the rays are drawn
perpendicular to the groundplane (as they intersect the image plane at height h), meaning a 2D
line drawing algorithm should be sufficient to retrieve a set of 2D coordinates projecting this
ray onto the DEM. The most well known algorithm is the original 1965 implementation of J. E.
Bresenham [41], which holds up well to this day, but there are plenty other good implementation
yielding similar results with various improvements. For this framework, an implementation by
John Clark Craig of Medium is adopted [42]. His solution is based on Bresenhams algorithm, but
utilizes some clever tweaking of the math to cover the many edge-cases in 2D line drawing in a
shorter, albeit equally accurate and quick solution. The resulting lines are, for all intents and
purposes, identical to those calculated by Bresenham; only experiencing shifts in a single pixel on
diagonal segments.

Secondly: For any line-rendering algorithm, it is imperative to denote a start and end-point of
which to draw the line between. In the presented implementation the initial point will always be
the intended position ω⃗i, whilst the heading of ray R⃗j , which can be denoted θj , is calculated in
Algorithm 5. The end-point p⃗end, however, proves more challenging. Although trivial on visual
inspection, it is tricky to find p⃗end in a closed-form manner, given the many possible combinations
of starting points, headings and spatial borders of the DEM. To this end, a fairly simple but efficient
iterative algorithm is presented, localizing a sufficient approximation of p⃗end by recursively adding
unit-vectors of R⃗j , r̂j , onto a compound vector until a bound of the DEM is breached. Figure 20

illustrates this for an arbitrary starting point ω⃗i and heading θj of R⃗j :
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Figure 20: Algorithm to approximate the 2D intersection p⃗end of the ray R⃗j with the border of

the DEM. A unit vector along the heading θj of R⃗j , r̂j , is added onto p⃗end until p⃗end breaks one of
the spatial constraints of the DEM. The last feasible value of p⃗end is returned as the approximated
border-value.

A quick, simplified pseudocode for this solution can be seen in Algorithm 6

Algorithm 6 Approximate ray projection to DEM border

Require: DEM IDEM

Require: Ray initial position ω⃗i.
Require: Ray heading θj .
procedure ProjectRayToDEMBorder(IDEM , ω⃗i, θj)

r̂j ← [cos(θj), sin(θj)] ▷ Unit vector in direction θj
p⃗end ← ω⃗i

ouf of bounds← False
while !ouf of bounds do

if p⃗end outside borders of IDEM then
p⃗end− = r̂j
ouf of bounds← True

else
p⃗end+ = r̂j

end if
end while
return p⃗end

end procedure
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3.2.3 Extraction of skyline element f⃗DEMi ,j along ray R⃗j

Using Algorithm 6 and the proposed 2D line-drawing algorithm of Section 3.2.2, a cross section
of the DEM can be extracted along R⃗j by masking the DEM with the resulting line. This will
essentially isolate 2D coordinates along the groundplane of the DEM corresponding to the evaluated
column in Iω⃗i

. Using this cross-section, the 3D coordinate inside the DEM, corresponding to a

2D pixel on the matched hilltop f⃗ω⃗i
, can be isolated. The approached proposed in this report

first reduces the dimension of the 3D cross section to two dimensions, of which the point with the
greatest angle from origo, which equals ω⃗i, is returned. Figure 21 illustrates the proposed solution
for a calculated ray R⃗j inside the DEM.

Figure 21: Algorithmic approach to find the DEM feature along R⃗j , f⃗DEMi ,j . A cross-section of
the DEM is extracted along Rj and projected onto a 2D plane with horizontal axis xeuclidean: The
euclidean distance from each 2D element of the DEM ground-plane to ω⃗i, and z: The altitude of
each 3D element in the DEM. The angle from ω⃗i to each element in the cross-section is calculated
using atan2, and the heighest angle is returned.

The dimensional reduction in Figure 21 happens along the horizontal axis of the percieved cross-
section. Instead of using the 2D ground-plane of the DEM, the euclidean distance, or L2-norm,
from ω⃗i to all points along R⃗j are calculated, allowing a 2D representation of altitudes along the
DEM. With only 2 dimensions, calculating the angles all points form with ω⃗i and the groundplane
is trivial through the atan2-angular measure. The element with the greatest angle within the
cross-section is considered the highest visible point from the maritime vessel at ω⃗i and it’s 3D
coordinates inside the DEM are added to f⃗DEMi .

Algorithm 7 presents a simplified pseudocode for the proposed strategy:

Algorithm 7 Extraction of skyline element fi,DEM,j from Rj

Require: Ray as a 2D line on the DEM floor plane LRj

Require: DEM data IDEM

procedure ExtractSkylineElementFromRay(LRj
, IDEM )

DEMcross−section ← IDEM [LRj
]

x⃗← Euclidean(DEMcross−section, IDEM [LRj [0]])
z⃗ ← DEMcross−section[:, 2]

θ⃗ ← atan2(z⃗, x⃗)

return DEMcross−section[argmax(θ⃗)]
end procedure
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3.3 Posing the optimization problem: The Reprojection error

With all M matching features it becomes possible to pose the proposed optimization problem,
designed to estimate the actual position of the vessel p̂i. As mentioned introductory in Section 2,
this is reminiscent of the vessels 3 DOF pose along a piece-wise linear path, as θp̂i

is known for a
set of known points ω⃗i−1 and p̂i. The proposed solution is then to utilize a so-called reprojection
error, the idea of which is, in many ways, fairly simple. As the sought after 2D position p⃗i is known
to deviate from the intended position ω⃗i, the latter is used as the initial guess of the estimated
position p̂i. During the first iteration of the optimization procedure, the 3D world coordinates
f⃗DEMi

are projected to the image plane of the camera at position p̂i = ω⃗i, resulting in L 2D pixel

coordinates. Assuming ω⃗i ̸= p⃗i and f⃗DEMi
are perfect matches to the L 2D pixel coordinates in

f⃗p⃗i
, the reprojected coordinates will deviate from the ones in f⃗p⃗i

by a numerically quantifiable
amount. This is the reprojection error e. The goal is then to update the 2D position of the vessel
in the DEM, p̂i, such that e is minimized. As f⃗p⃗i

represents the reprojection of f⃗DEMi
at p⃗i, this

implies that p̂i ≃ p⃗i when e is minimized, effectively solving the pose-estimation.

Figure 22 attempts to illustrate this concept for the recurring example throughout this report. At
the initial estimate p̂i = ω⃗i, the reprojection of f⃗DEMi to the image plane clearly deviates from

the target image feature f⃗p⃗i
. This initial reprojection is illustrated by orange rays in the DEM

and pixels on the image plane. At the position where the reprojection error e is minimized, that
is where p̂i ≃ p⃗i, the reprojection of f⃗DEMi onto the image plane is equivalent to the target image

feature f⃗p⃗i
. This final reprojection is illustrated by green rays in the DEM and pixels on the image

plane.

Figure 22: Conceptual idea of pose estimation utilizing the reprojection error. The 3D world
coordinates f⃗DEMi

, here illustrated as blue crosses, are projected to the image plane in its current

position and compared with the target feature f⃗p⃗i
. This numerical comparison is the reprojection

error. If ω⃗i ̸= p⃗i, the initial reprojection at ω⃗i, illustrated by orange rays, will deviate from the
target feature, prompting a translation of the image coordinate frame to a position with a better
fit. Ultimately, this should end up at p̂i, where the reprojection, as green rays, match the target
feature more closely.

The rest of this subsection is dedicated to defining a general closed-form, mathematical solution
of the reprojection error e given a set of 3D world coordinates at any 2D position within a DEM.
For the more specific solution proposed for the chosen implementation, the reader is directed to
Section 4.3.2.
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To correctly define the reprojection error e, a rigid understanding of the deployed camera model is
imperative. Although many models exist for a plethora of cameras, lenses and purposes, a quick
summary of the pinhole camera model, employed in this framework, is supplied below:

Pinhole camera model

The pinhole camera model, is a simple but common camera model assuming no lens but a
small aperture opening where all light-rays from outside the camera are assumed to intersect
before being projected onto an image plane. Generally, the pinhole camera model can be
summarized by equation (8):

x⃗I = Px⃗w (8)

Here, x⃗w is a 3D world coordinate, P is the camera projection matrix and x⃗I is the 2D image
coordinates resulting from projecting x⃗w by P. This projection matrix can be expanded
as in equation (9) to encompass two separate matrices describing the state of the pinhole
camera.

x⃗I = Px⃗w = (K ·E)x⃗w = (K ·
[
R t⃗

]
)x⃗w (9)

K is the 3×3 intrinsic matrix describing the internal parameters of a camera, often given on
the form of equation (10). fx and fy are the focal lengths along the horizontal and vertical
axes of the image plane in pixels, s is a skew factor and (ox, oy) denotes the principal point
of the camera, also in pixels. The two focal lengths are used to map continuous values
on the image plane to discrete pixels that are not necessarily square, hence the need for
two values to describe the relation with each pixels aspect ratio. The skew factor denotes
if pixels are skewed in either direction (in most cameras it’s set to 0 by default) and the
principal point denotes where the optical axis of a camera intersects its image plane.

K =

fx s ox
0 fy oy
0 0 1

 (10)

E, in equation (9) is the 3 × 4 extrinsic matrix, which can be further reduced to a
concatenation of a 3× 3 rotation matrix R and a 3× 1 translation vector t⃗.

An important note to make about the resulting image coordinates x⃗I is that the last element
of the 3 × 1 vector is a scaling element denoted λ. To normalize the result to the discrete
image plane consisting of pixel-values, often called the UV plane, the output is normalized
with regards to the last element as follows:

u =
x⃗I,x

λ
, v =

x⃗I,y

λ

The reprojection error e can simply be defined as a sum of differences between the L projected
elements of f⃗DEMi

at position p̂i and the corresponding L elements in f⃗p⃗i
, as in equation (11):

e =
∑L

k=0 ||Pf⃗DEMi ,k − f⃗p⃗i ,k||

=
∑L

k=0 ||(K ·E)f⃗DEMi ,k − f⃗p⃗i ,k||

=
∑L

k=0 ||(K ·
[
Rw

cθ t⃗wcθ
]
)f⃗DEMi ,k − f⃗p⃗i ,k|| (11)

One should note the extrinsic matrix E =
[
Rw

cθ t⃗wcθ
]
, which specifies the change of base of

the rotation matrix Rw
cθ and translation vector t⃗wcθ from an arbitrary world coordinate system w

to a general camera coordinate system c of a known heading θ. The choice of distance measure
|| · || further decides the shape and behavior of the error-function, hence presenting an important
parameter for the overall performance of the pose estimator. In this framework, the euclidean
distance, often called L2 norm, between corresponding points is adopted.
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The final optimization problem can be formed by a minimization of equation (11) with regards to
the estimated position p̂i, yielding an ideal pose-estimation p̂i

∗ in equation (12):

p̂i
∗ = argminp̂i

e (12)

Again, note how, for a piece-wise linear path, the heading θp̂i
is implicitly given by the estimated

location p̂i and is therefore not explicitly part of the above optimization.

3.4 Adaptive grid search to minimize the reprojection error

Given the non-linearity of equation (12), the deployment of a nonlinear solver is necessary to
estimate the 2 DOF solution p̂i

∗. For the sake of simplicity, this proof of concept limits this
solver to a less advanced adaptive grid search, the theory of which will be covered briefly as its
implementation is of secondary interest to the proposed optimization problem.

The adaptive grid-search is an improvement over the exhaustive grid search, which is often con-
sidered a brute-force approach for solving both linear and nonlinear problems. The method is used
in optimization to alter the state of a system by a fixed step-length t at each iteration, slowly,
but surely converging to the nearest local minima. The adaptive method makes this step-length
a variable ti, changing its value when an optimal for the current value is reached, before finding
a new optima with the new length. In most cases, the initial length, t0, is the largest value and
subsequent lengths become smaller. This way, a crude approximation of the solution is first found
using a large step length, before smaller steps are applied to get as close to the optimal solution
as possible.

For the presented reprojection error in (11) the solution is adapted to finding a 2 DOF position
estimate using a set of neighborhoods. These neighborhoods are a generalization of the step-length
around the currently evaluated position, essentially denoting half the length of the cross-section
of a square. The border of these square neighborhoods denote where the possible next position
updates can be located. For each of these, f⃗DEMi is reprojected back to the camera aboard the
vessel, and the position resulting in the greatest decrease of the reprojection error is selected.
When no new optimal value can be found with the current neighborhood, the cross-section is
halved and the algorithm continues. This is done recursively until no better solution can be found
or a number of iterations are surpassed. Figure 23 illustrates the proposed algorithmic approach.
The neighborhood is initialized at position ω⃗i with half a cross-section t0, which is iteratively
halved as the estimate improves. After 3 iterations, the method returns an estimate p̂i.

Figure 23: Example of the proposed, adaptive grid-search. After 3 iterations, the estimation
starting in ω⃗i finds a 2D location p̂i optimizing the reprojection error (11). At each iteration,
the cross-section of the square neighborhood is halved to more precisely hone in on an optimal
solution.

30



4 Implementation

This section seeks to present the actual implementation of the proposed framework, as well as
assumptions, considerations and decisions taken underway. The entire pipeline is highlighted for
reference in Figure 24 serving as a template of the framework all the way from data acquisition to
pose estimation. The system is split into 3 separate overarching modules, reflected in the division
of the following section: Firstly, the acquisition and preprocessing of topological data for use in
both the simulator- and analysis-environment is covered, with focus on how the conversions are
aimed at staying 1:1 throughout the framework. Secondly, the process used to generate synthetic
data through the Unity game engine is presented, building on previous work conducted in [39],
and thirdly, the necessary considerations and adaptations to the algorithms presented in Section
3, taking place post-estimation, are described in detail.

Figure 24: Pipeline of the proposed framework. Note the 3 overarching modules for data acquisition
and processing, synthetic data generation, which takes place in Unity, and feature extraction and
pose estimation, which takes place in Python.

Before delving into the specifics of the implementation, it is important to highlight a vital part of
the presented pipeline: The disconnect between simulation and analysis. The idea is to present one
simulator developed in the Unity Game engine and a framework for analysis developed independ-
ently in Python. As can be seen in the above pipeline, the task assigned to the Unity simulator
was to generate synthetic imagery and/or semantic segmentations of a simulated maritime vessel
in a marine environment, which were to be analyzed post-simulation by the software in Python.
Although this simplifies the framework from a real-time simulator implementation, making it suit-
able for a proof of concept, the division between multiple development platforms introduces certain
challenges, especially related to data-cohesion and replication.
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4.1 Preserving DEM identicalness

As the Unity simulator was tasked with generating synthetic imagery and semantic segmentations
of the terrain surrounding a maritime vessel, the question quickly became how elevation data
should best be handled. For use within the Python application, the DEM could be utilized on its
original format, typically as a .tif file, with its specific resolution, or meters per pixel, r. The Unity
simulator, however, would require the DEM to be represented in the form of a 3D mesh: a model
consisting of polygons built from a set of vertices, forming a 3-dimensional ’object ’. Such an object
would then have to be generated through a conversion of the original DEM, keeping its resolution
r identical and returning a 3D mesh which would be 1:1 with the raw data. Anything less precise
than this would render the estimation framework infeasible, generating differences between the
terrain data analyzed in Unity and Python independently. In other words: The same terrain,
analyzed in different software at different stages in time, had to be identical after conversion.

The conversion adopted by this report is a manual one, going through 4 fixed steps to convert
DEM data on a .tif format, into a .blend or .fbx file compatible with Unity. This was deemed a
safer approach in comparison to using third-party plugins or software, as it allowed for full control
of each step of the procedure rather than blindly trusting the output of a more efficient and
simpler black-box conversion. Although a more cumbersome process, the final product came out
very promising, with close to no visual discrepancies and a 1:1 scale upon a comparative analysis
between Unity and Python. A DEM in raster-form, such as illustrated in Figure 25, is downloaded
with an arbitrary precision r and size, illustrating the 3D topology of a landscape in the form of
a height map:

Figure 25: Elevation data embedded in a DEM, unaltered.

At this point, the DEM is on the form of a simple raster image with encoded data in a separate file.
To transform it into a 3D mesh with interconnected polygons between vertices, the popular open
source geographic system QGIS [43] was utilized. Here, a java-based plugin called Qgis2threejs [44]
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could be employed to import and convert geospatial data into 3D meshes through the well-known
Javascript library threejs [45], before being exported for later use. Figure 26 shows the raster of
Figure 25 converted to a 3D mesh inside the interactable interface of the plugin. Some things to
note here is that the subsampling/smoothing of the mesh is set to the minimum value such as
to retain the original dimensions and vertices of the DEM, whilst a manual polygon is used to
appropriately define the borders of the DEM within QGIS. The result is exported as a .glb file; a
standardized format used to export and send 3D models in the form of a binary file.

Figure 26: The raw raster data from Figure 25, imported into and visualized by the Qgis2threejs
interface. Subsampling and smoothing of the raster data is set to the minimal value and the
borders of the DEM are reinforced by the Polygon object.

The resulting .glb file is imported into Blender, a highly regarded open source software used for
just about anything related to 3D models [46]. This is capable of importing .glb files and convert
them into files suitable for use within the Unity game engine, such as .fbx or .blend files. Figure
27 shows the .glb file imported into blender as a registered 3D mesh, whilst Figure 28 shows the
fully converted .blend mesh imported into unity with a simple 3D plane functioning as a makeshift
substitution for a generated ocean:
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Figure 27: The .glb file of Figure 26 imported into Blender before being exported as a 3D model
on the .blend format.

Figure 28: The fully converted .blend file of the raw raster data imported for use in Unity. A
simple, 3D plane is inserted with a blue material to illustrate the ocean level.

Although this method seems promising upon inspection of the final results and the comparison
with the original raster data, it should be noted that a conversion with this many steps can be
prone to errors and could be necessary to revise in future implementations.

4.2 Synthetic data generation

The basic simulator environment deployed for this proof of concept is in many ways identical
and/or similar to the one implemented in [39]. With the 3D terrain data located in the middle
of the world coordinate system, a simple 3D plane slightly elevated above the actual sea-level
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(∼5mm) is used to more clearly distinguish the ocean from the surrounding terrain. The reason
for this slight increase in altitude is to avoid so called z-fighting, where different objects with similar
distances to the camera begin to experience flickering during rendering due to near identical values
in the depth-buffer. It should further be noted that the terrain is not curved as to fit the earths
circumference, but is assumed to be planar in a smaller area. A basic environment from the default
High Definition Render Pipeline (HDRP) is used, implementing a simple but efficient atmospheric
lighting, and unnecessary post-processing effects are disabled on the camera.

The intended path of the maritime vessel is generated by the improved Path Generator component,
stemming from [39], which is assigned to an empty GameObject in the scene intended to work as
a parent-transform to all n waypoints along the path. These n waypoints are then instantiated as
n child-objects of this Path Generator and are linked in the order of appearance within the Unity
hierarchy. Figure 29 show the implemented setup of a random path in the hierarchy, with Unity
Gizmos highlighting the path in the editor and a basic interface in the inspector:

Figure 29: Intended path, as shown in the Unity editor. The path consists of 6 waypoints in the
hierarchy on the left, under a parent gameobject. They are visible in the scene view in the middle
of the image through a set of unity gizmos and the Path Generator component, named Linear
Path, can be seen on the right.

Similarly to the above Path Creator component, the Noisy Path Generator is adopted from [39].
This component is used to generate an actual path deviating from the intended path by applying
Gaussian noise N (µ, ϕ) to each intended position ω⃗i at waypoint i. The mean value of the noise
is set to µ= 0 by default, whilst the variance ϕ can be set in the component window. Figure 30
illustrates how the tool looks and works inside the Unity editor. On the right, in the component
window, the Intended path of which the component inherits the intended waypoints is assigned, as
well as min and max values for ϕ. The Gaussian noise is further applied along a specified set of
dimensions, here set to be the XZ plane. In the hierarchy on the left a new set of n waypoints are
instantiated under the ActualPath parent transform, and a new path of blue vertices connected
by purple edges can be seen in the scene view.
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Figure 30: Actual path in the Unity editor. The intended path from which the waypoints are
inferred, as well as the parameters of the applied Gaussian noise, are assigned in the Inspector on
the right. A set of n actual positions p⃗i are instantiated in the hierarchy on the left and the new
path is visible in the scene view.

To acquire the data along both paths, the Perception Camera package from Unity [47] was utilized
exactly as in [39]. This allows for a quick and easy integration of a Perception Camera compon-
ent, performing flawless semantic segmentations of objects in the world with correctly assigned
Segmentation Labels. Although this is not necessarily a realistic segmentation, given how well the
labeler works under all conditions such as with heavy fog, rain or powerful diffuse reflections of
sun in the water, it is sufficient for a proof of concept of the proposed framework.

To streamline the collection of data and the export from both the Perception Camera and Path
Generators, a component named the Capture Manager was instantiated. This was tasked with
managing the cameras position and heading between all waypoints of an intended and actual path,
requesting captures from the camera with sufficient delays to compensate for the shutter speed of a
simulated physical camera and storing all relevant data at different locations. The storing of data
itself was done through two coroutines: One implemented in the Linear Path-class inherited by
both Path Generators, writing the positions of all waypoints in each respective path to a designed
.txt file, and one in the Capture Manager writing the utilized intrinsic camera parameters to
another .txt file for reproduction of the Unity camera in Python.

Finally, the Capture Manager also handles the update of the intended path presented in Figure
9. At each intended position ω⃗i, the previous intended position is updated to the previous actual
location ω⃗i−1 = p⃗i−1, mimicking the update one could expect from an optimal pose estimator.

4.3 Data reproduction from Unity to Python

With data generated and exported from the Unity simulator, the remaining feature extraction and
estimation is to be performed in a separate Python implementation, adopting and utilizing the
algorithms presented in Section 3. This comes with a few challenges however, all introduced by
the need to replicate parts of the simulator environment present in Unity in the adopted Python
environments. In this report, the main libraries utilized in Python for image analysis and fea-
ture extraction were Numpy [48] for mathematical operations and OpenCV [49] of more specific,
image based operations. Evidently, there are fairly large differences between the different envir-
onments, requiring some adjustments and adaptations to allow for consistent and accurate feature
extraction and analysis. Amongst these challenges, the one constantly rearing its head proved to
be the difference in world coordinate frames between the two platforms. Most mathematical or
graphical libraries in Python utilize a right-hand coordinate system, whilst Unity opts for a left
hand coordinate system, popular amongst some 3D software packages, but rather unusual in the
grand scheme of things. Furthermore, it should be noted that matrix conventions (and hence most
predefined matrices in Unity) change given the currently deployed graphics API, the OS the Unity
installation is currently running on and whether the actual computation is performed on the GPU
or CPU.
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4.3.1 Reproducing the intrinsic matrix of Unitys Phyiscal Camera component

As of the publishing of this report, no satisfactory means exist in which to extract a fully functioning
3 × 3 intrinsic matrix K from a physical camera component through the Unity API. The closest
are a few public methods capable of extracting projection matrices from either the CPU or GPU,
which project 3D camera-coordinates into normalized device coordinates. Although similar at a
glance, the resulting matrices do not yield a good generalization of camera parameters and result in
poor performances when used to re-create said camera in Python. Hence, the method of replication
presented in this report is a re-creation of the intrinsic matrix K from camera parameters readily
available through the Unity API.

Referencing the matrix in equation (10), the directional focal lengths fx and fy have to be found
in [pixels]. This is not directly available through the Unity API, but can be calculated through
available parameters. More specifically, the focal length f [mm] denoting the distance from the
camera center to the image plane, can be multiplied by a pixel density measure mx and my,
denoting the amount of pixels per physical millimeter on the camera sensor along the horizontal
and vertical axes respectively. As the sensor dimensions sx and sy [mm] can be fetched from the
physical camera component in Unity, as well as the width Nw and height Nh [pixels] of the resulting
image plane, fx and fy can be found by equation (14):

fx = mxf =
Nw

sx
f (13)

fy = myf =
Nh

sy
f (14)

The principal point (ox, oy) [pixels] can be found through public methods on the physical camera
component in Unity, enabling the re-construction of the intrinsic camera matrix from Unity for
use with Python libraries as per equation (15):

K =

Nw

sx
f 0 ox

0 Nh

sy
f oy

0 0 1

 (15)

4.3.2 Reprojection of 3D world coordinates

When reprojecting the 3D world coordinates in f⃗DEMi
as in Section 3.3, the differences in coordin-

ate frames between Unity and the Python libraries present a number of challenges when defining
the camera extrinsic matrix E. The parameters of E =

[
Rw

cθ t⃗wcθ
]
require careful crafting to

match the change between world- and camera-coordinates as well as camera positions and headings
along a piece-wise linear path. To find closed-form solutions to the above parameters, Figure 31
is supplied for geometric interpertations. Two coordinate systems w and c are defined for world-
and camera-coordinates respectively, as well an arbitrary rotation of the camera θ, caused by the
constraints on the linear path. A generic 3D point in world coordinates p⃗w is also defined for
reprojection back to the camera’s image plane. Notice how, as the reprojection is happening in
Python, the world coordinate system is right handed, whilst the camera coordinate system, which
is replicated from Unity, is left handed. Also notice how the representation of the camera extrinsics
are happening in the XZ-plane, again replicating the original Unity environment.
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Figure 31: Geometric interpretation of the relationship between world- and camera-coordinate
frames.

Figure 31 also contain a set of vectors intended to visualize the necessary steps to transform
p⃗w into camera coordinates: t⃗wp denoted the position of p⃗w in world coordinates, t⃗wc denote the

position of the camera in world coordinates and t⃗cp denote the position of p⃗w in camera coordinates.

Upon inspection of these vectors, one can come to the conclusion that t⃗cp is the key to finding the
parameters of E, being the output of a 3D world coordinate transformed by said extrinsic matrix.
Denoting the general rotation and translation necessary to go from w to c rotated by an angle θ
as Rw

cθ and t⃗wcθ respectively, t⃗cp can be written in order of the other vectors and used to isolate E
as in equation (16):

t⃗cp = Rw
cθ (⃗t

w
p − t⃗wc )

= Rw
cθ t⃗

w
p −Rw

cθ t⃗
w
c

=
[
Rw

cθ −Rw
cθ t⃗

w
c

]
p̃w = Ep̃w (16)

Note the use of homogeneous coordinates here for p̃w =
[
xw yw zw 1

]⊺
. Equation (16) yields

an expression directly comparable to E =
[
Rw

cθ t⃗wcθ
]
, resulting in equation (17) for t⃗wcθ:

t⃗wcθ = −Rw
cθ t⃗

w
c (17)

What remains is then to find the correct rotation Rw
cθ, which can be seen as a compound trans-

formation between two dependent rotations: Rw
c and Rc

cθ.
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Rw
c is the coordinate frame transformation from w to c, with θ = 0. This yields an overlap between

the unit-axes x̂w and ẑc, resulting in the matrix

Rw
c =

0 0 1
0 −1 0
1 0 0


Rc

cθ can be found by a standard counter-clockwise 3D rotation matrix of θ about the camera y-axis,
yielding:

Rc
cθ =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)


Combining these two together into the compound rotation matrix Rw

cθ can then be done by a
simple matrix multiplication, shown in equation (18):

Rw
cθ = Rw

c R
c
cθ

=

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

0 0 1
0 −1 0
1 0 0


=

−sin(θ) 0 cos(θ)
0 −1 0

cos(θ) 0 sin(θ)

 (18)

As so, the extrinsic matrix of a camera in Unity can be replicated in Python by supplying the
camera rotation θ, available from the linear path, and camera position in world-coordinates t⃗wc .
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5 Experimental results

This section seeks to present the experimental results of the entire pose estimation framework.
Firstly, the experimental setup is presented, introducing the external DEM and a set of paths
on which synthetic data for a maritime vessel is generated. Afterwards, a selection of outputs
of all modules within the framework are presented in order of introduction, before the output of
the pose estimator and its performance over a plethora of different paths is illustrated in detail.
Visual results are supplied throughout, as the performance of certain modules are best analyzed
by human inspection. Numerical and statistical results are further supplied where they contribute
meaningfully to the discussion.

For repeatability of the results, Table 1 presents the specific hardware testing was performed upon:

Component Type

CPU Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz
GPU 1 Intel(R) UHD Graphics 620
GPU 2 NVIDIA GeForce MX150
Storage SanDisk SD9SN8W256G1002 (SATA)
RAM 8,00 GB
OS Windows 10 Home

Table 1: Hardware on which both testing and development was conducted.

Furthermore, the complete API for the implemented framework can be found in this public GitHub
repository, where continuous development might happen independent of the work presented in this
thesis:
https://github.com/MaximeRoedele/API master thesis

5.1 Experimental setup

To evaluate the performance of the presented framework, 3 distinct intended paths of n = 20
waypoints each (total of 57 if one doesn’t consider initial waypoints) were defined within the
confines of a known DEM, acquired from the Norwegian Mapping Authority [50]. Said DEM
represents a coastline outside of Nøtterøy in Norway and has an incredibly high resolution of r= 1.
All 3 paths can be seen in Figure 32. The goal of using multiple, longer paths with a high number of
waypoints was for the sake of a qualitative and quantitative analysis of the framework performance
in as many scenarios as possible. Hence, the curvature of the paths, as well as their mean distances
to shorelines, are noticeably different.
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(a) Path 1: A straight line with minimal visible terrain.

(b) Path 2: A curving path with a mix between far-away and close terrain.

(c) Path 3: A curved path in mostly close terrain.

Figure 32: The 3 paths used to generate data for framework evaluation and module analysis.

The actual paths, generated by adding planar noise with µ= 0 and ϕ= 35m to the intended paths,
can be seen in Figure 33:
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(a) Path 1 with noise.

(b) Path 2 with noise.

(c) Path 3 with noise.

Figure 33: The 3 actual paths, overlayed onto the intended paths of Figure 32. They can be
distinguished by the blue vertices and purple edges.

For reproduceability of the supplied results, the parameters of the simulated camera can be seen
in Table 2:
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Camera parameter value

Nw 1920
Nh 1080

Near clipping plane 0.1
Far clipping plane 5000

Horizontal FOV, FOVH 70°
Focal length f 25.70667 [pixels]

Skew 0
Optical center (ox, oy) (960, 540)

Sensor size x 36 [mm]
Sensor size y 24 [mm]

Camera Gate Fit None

Table 2: Camera parameters and their chosen values during data-generation.

Finally, on the analysis of results and provided statistics: To the authors knowledge there does
not exist a well-established framework in which to analyse the performance of modules for the
extraction and matching of visual features. This has to be done visually through inspection,
although results can be ambiguous at times. For modules producing numerical outputs however,
like the 3 DOF pose estimator, numerical values and deviations can be calculated to yield a directly
measurable analysis.

5.2 Feature extraction and matching

This subsection will provide visual results of the presented modules used for feature extraction and
matching.

5.2.1 Skyline contour extraction

Applying Algorithm 1 to semantic segmentations of terrain resulted in consistent skyline contours
across as good as all captured images. Figures 34, 35 and 36 illustrate 3 examples encapsulating
the algorithm performance in the most common scenarios: Figure 34 illustrate the extraction of
a skyline contour from a secluded piece of terrain, Figure 35 illustrate the extraction of many
independent contours and Figure 36 illustrate the extraction of one large, continuous contour
spanning the entire camera frustum. Note here that the green pixels in the image are segmented
sections of terrain, whilst red points illustrate the extracted skyline:
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Figure 34: Skyline contour extracted at waypoint 18 along the actual path of path 1. Green pixels
in the image are segmented sections of terrain, whilst red points illustrate the extracted skyline.

Figure 35: Skyline contour extracted at waypoint 11 along the intended path of path 2. Green
pixels in the image are segmented sections of terrain, whilst red points illustrate the extracted
skyline.
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Figure 36: Skyline contour extracted at waypoint 6 along the actual path of path 3. Green pixels
in the image are segmented sections of terrain, whilst red points illustrate the extracted skyline.

Some attention should however be drawn to the Figure 37, where the noise-removal results in an
ambiguous contour on the leftmost side of the larger landmass:

Figure 37: Skyline contour extracted at waypoint 18 along the intended path of path 3. Green
pixels in the image are segmented sections of terrain, whilst red points illustrate the extracted
skyline.

The performance of the algorithm is attempted illustrated in Figure 38, where the elapsed time of
the algorithm for all waypoints of the intended and actual paths of path 2 are plotted, alongside
the mean elapsed time. Path 2 was chosen because it represented the worst case scenario amongst
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the three paths, having the most visible terrain on average.

Figure 38: Time elapsed by the skyline contour extraction algorithm over all terrain segmentations
of the intended and actual paths of path 2. The mean elapsed time was 0.16s.

5.2.2 Hilltop extraction from skyline contours

Algorithm 2 yielded K hilltops subject to the strict conditions in Section 3.1.2 for pretty much any
contour where K hilltop(s) fulfilling said conditions exist. Figures 39 and 40 illustrate the algorithm
output from a continuous skyline contour with multiple possible features, whilst Figures 41 and 42
illustrate the localization of features in very sparse of uniform contours, respectively. The height
and width threshold used when generating these results were 5 and 25 pixels respectively. The
subplots contain the input skyline contour as a set of green pixels on the left and all K extracted
hilltops in different colors, for ease of distinction, on the right.

Figure 39: K= 3 hilltops extracted from the abundant skyline contour of the intended path of path
1 at waypoint 1. The input skyline contour is represented as a set of green pixels in the left image,
whilst all K extracted hilltops are represented by different colors in the right.
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Figure 40: K= 4 hilltops extracted from the abundant skyline contour of the intended path of
path 2 at waypoint 13. The input skyline contour is represented as a set of green pixels in the left
image, whilst all K extracted hilltops are represented by different colors in the right.

Figure 41: K= 1 hilltop extracted from the sparse skyline contour of the intended path of path 1
at waypoint 14. The input skyline contour is represented as a set of green pixels in the left image,
whilst all K extracted hilltops are represented by different colors in the right.

Figure 42: K= 1 hilltop extracted from the very uniform skyline contour of the intended path of
path 3 at waypoint 4. The input skyline contour is represented as a set of green pixels in the left
image, whilst all K extracted hilltops are represented by different colors in the right.

At none of the 57 waypoints did the algorithm return infeasible or faulty hilltop-features, except in
the cases where no hilltops matching the aforementioned conditions in Section 3.1.2 existed within
the skyline contour.

Figure 43 illustrates the elapsed time of the hilltop extraction algorithm over all waypoints of the
intended and elapsed time of path 2. As was the case in Figure 38, path 2 yielded the worst case
result and is henceforth presented.
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Figure 43: Time elapsed by the hilltop extraction algorithm over all skyline contours found along
both the intended and actual paths of path 2. The mean elapsed time was 1.45s.

5.2.3 Matching image features between two skyline contours

Algorithm 3 proves to be the first module capable of generating suboptimal and even wrong results.
For the sake of precision and transparency, Table 3 is supplied, illustrating how the algorithm-
outputs of the 57 waypoints are divided between 5 categories. Correct matches, where the areas
in either skyline are, in fact, matching, suboptimal matches, where the areas match but are visible
inferior to other matches and ambiguous matches, where the correspondence of located matches
is not necessarily clear. Furthermore, failed matches occur where no match between two skylines
could be found and wrong matches are matches where two visibly different areas are considered
similar. The division is done through visual inspection of the results.

Path Wrong Failed Ambiguous Suboptimal Correct % feasible matches

1 4 1 0 2 12 ∼ 74%
2 4 0 1 1 13 ∼ 74%
3 1 0 1 0 17 ∼ 89%

Table 3: Overview of the performance of Algorithm 3 over the 57 considered waypoints from visual
inspection of the results. The matches are classified as 1 of 5 categories: Correct matches are
good matches between the two skylines, suboptimal matches are matches that are clearly inferior
to other potential matches between the contours and ambiguous matches are matches which are
hard to verify through visual inspection. Furthermore, Failed matches are the cases in which
no matches can be procured whilst Wrong matches are matches of wrong areas between the two
skylines. Feasible matches are finally the combination of correct or suboptimal matches.

To further supply the results in Table 3, visual examples are supplied for each respective category.
Figures 44 and 45 illustrate a correct match, where the areas in both skylines correspond and
the selected peaks are good with regards to physical parameters such as size, positioning and
height. The topmost subfigure illustrate the final matching results between f⃗ω⃗i

and f⃗p⃗i
, whilst the

lowermost subfigure illustrate the available hilltops found in Sω⃗i
:
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(a) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

(b) K= 3 hilltops extracted from the intended skyline in (a).

Figure 44: Waypoint 16 of path 3. Correct matching of image features in (a). The most prevalent
hilltop in (b) used to find a close to optimal match. Note that in (b), the input skyline contour is
represented as a set of green pixels in the left image, whilst all K extracted hilltops are represented
by different colors in the right.
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(a) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

(b) K= 3 hilltops extracted from the intended skyline in (a).

Figure 45: Waypoint 3 of path 1. Correct matching of image features in (a). The largest, most
centered hilltop in (b) used to find a close to optimal match. Note that in (b), the input skyline
contour is represented as a set of green pixels in the left image, whilst all K extracted hilltops are
represented by different colors in the right.

Figure 46 and 47 on the other hand, illustrate a set of suboptimal matches. These are correct
matches for all intents and purposes, but contain areas in the two skylines that are visibly worse
than other options.
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(a) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

(b) K= 5 hilltops extracted from the intended skyline in (a).

Figure 46: Waypoint 9 of path 1. A set of hilltops are found in (b), of which one the smallest,
less centered and less distinct are returned as the located match in (a). The match is correct, but
deemed suboptimal. Note that in (b), the input skyline contour is represented as a set of green
pixels in the left image, whilst all K extracted hilltops are represented by different colors in the
right.
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(a) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

(b) K= 3 hilltops extracted from the intended skyline in (a).

Figure 47: Waypoint 11 of path 2. A set of hilltops are found in (b). Arguably the worst of these,
being the smallest, least centered and least distinct, is returned as an output of the matching
procedure. Note that in (b), the input skyline contour is represented as a set of green pixels in the
left image, whilst all K extracted hilltops are represented by different colors in the right.

Figure 48 and 49 further illustrate a set of ambiguous matches. These can be either correct or
wrong, but due to the surrounding terrain and/or the shapes of the matches themselves, their
classifications become uncertain upon visual inspection.

Figure 48: Waypoint 3 of path 2. The unknown, drastic shift in scenery between the two images
puts the match into question: Is the actual match correct or on the wrong side of the little hill on
the right?
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Figure 49: Waypoint 8 of path 3. The uniformity of the terrain makes it tough to distinguish
whether or not the match is correct.

Figure 50, 51 and 52 further illustrate the three most common cases of wrong matches: The feature
from the intended skyline goes out of frame in the actual skyline, there exist an area with better
SAD score in than the actual matching area and feature from the intended skyline is greater than
the exact same feature in the actual skyline.

Figure 50: Waypoint 1 path 2. The hilltop in the intended skyline contour goes out of frame,
yielding an incorrect match.

Figure 51: Waypoint 8 path 2. The hilltop in the intended skyline contour is matched with a
different area than intended in the actual skyline contour, due to this receiving a better SAD score
by chance.
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Figure 52: Waypoint 7 path 1. The hilltop in the intended skyline is matched with another area
due to the same feature in the actual skyline contour containing fewer pixels. Above, the island in
the first image is not matched correctly due to it being perceived as smaller in the actual skyline
contour.

Finally, the image fails if no good matches are deemed to be within sigth. This happened only
once for the 57 considered waypoints: At waypoint 19 of path 1, in which no features were visible.

5.3 Locating skyline elements in DEM

Algorithm 4 consistently yielded a set of L rays in the 2D plane at waypoint i, coinciding accurately
with the pixels they stemmed from in f⃗ω⃗i

. Figures 53, 54 and 55 seek to illustrate the robustness
of the algorithm and its respective outputs.
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(a) The 3 DOF pose of the maritime vessel, rays in the 2D plane and resulting 3D coordinates of f⃗DEMi .

(b) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

Figure 53: Waypoint 18 of path 1. The image feature from the intended skyline contour f⃗ω⃗i
in

(b) serves as the base for the resulting DEM feature f⃗DEMi
in (a). It is evident that the isolated

island on the intended skyline is accurately extracted in the DEM.
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(a) The 3 DOF pose of the maritime vessel, rays in the 2D plane and resulting 3D coordinates of f⃗DEMi .

(b) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

Figure 54: Waypoint 2 of path 1. The algorithm evidently considers vertices at all depths along
the rays, yielding f⃗DEMi

in (a) as a diverse set of the most probable matching coordinates in the
image feature of the intended skyline contour in (b).
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(a) The 3 DOF pose of the maritime vessel, rays in the 2D plane and resulting 3D coordinates of f⃗DEMi .

(b) Best image feature matches between the skyline contours captured along both the intended and actual
paths.

Figure 55: Waypoint 4 of path 3. The algorithm is evidently capable of finding f⃗DEMi for wider
images.

Figure 56 illustrates the elapsed time taken by Algorithm 4 on all waypoints along the intended
path of path 3, which was the slowest of the three.

Figure 56: Time elapsed by the dem extraction algorithm on all image features f⃗ω⃗i
along the

intended path of path 3. The mean elapsed time was 2.17s.
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5.4 Reprojection of 3D world coordinates

The results of the proposed solution from Sections 3.3 and 4.3.2 yield consistent and accurate
results, which also validate the 3D features f⃗DEMi

from Section 5.3.

Figures 57, 58 and 59 illustrate the robustness of the reprojection scheme by reprojecting the
entire skyline contour Sω⃗i

back to the image plane. This can be done by using Algorithm 4 on

the entirety the skyline, f⃗ω⃗i
= Sω⃗i

, allowing for a general analysis of the reprojection across the
entire image plane. Special attention should be placed on the supplied error plots, illustrating the
vertical deviation between original and reprojected skyline contours.

(a) Original and reprojected skyline.

(b) Errorbar plot showcasing the deviation between the two contours at every 10’th pixel.

Figure 57: Reprojection of the entire intended skyline contour Sω⃗i
at waypoint 19 of path 3. (a)

illustrates the two skylines side by side. (b) illustrates the vertical deviation at 10 pixel intervals
between the contours.
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(a) Original and reprojected skyline.

(b) Errorbar plot showcasing the deviation between the two contours at every 10’th pixel.

Figure 58: Reprojection of the entire intended skyline contour Sω⃗i
at waypoint 18 of path 2. (a)

illustrates the two skylines side by side. (b) illustrates the vertical deviation at 10 pixel intervals
between the contours.

(a) Original and reprojected skyline.

(b) Errorbar plot showcasing the deviation between the two contours at every 10’th pixel. Notice that
NULL-values are defaulted to y = 0.

Figure 59: Reprojection of the entire intended skyline contour Sω⃗i
at waypoint 11 of path 2. (a)

illustrates the two skylines side by side. (b) illustrates the vertical deviation at 10 pixel intervals
between the contours.

Figures 61 and 60 further illustrate the reprojection of selected features f⃗ω⃗i
. It should be noted

that wrong matches, as defined in Section 5.2.3, do not affect the reprojection of f⃗DEMi
found
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from f⃗ω⃗i
.

(a) Image feature f⃗ω⃗i and reprojected DEM feature f⃗DEMi .

(b) Errorbar plot showcasing the deviation between the two features at every 10’th pixel.

Figure 60: Reprojection of the DEM feature at waypoint 8 of path 3. (a) illustrates the image

feature f⃗ω⃗i
and reprojection of f⃗DEMi

side by side. (b) illustrates the vertical deviation at 10 pixel
intervals between features.
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(a) Image feature f⃗ω⃗i and reprojected DEM feature f⃗DEMi .

(b) Errorbar plot showcasing the deviation between the two features at every 10’th pixel.

Figure 61: Reprojection of the DEM feature at waypoint 13 of path 1. (a) illustrates the image

feature f⃗ω⃗i
and reprojection of f⃗DEMi

side by side. (b) illustrates the vertical deviation at 10 pixel
intervals between features.

5.5 Pose estimation

The results of the adaptive grid-search pose-estimator of Section 3.4, with t0 = 32, for all paths
can be seen in Figures 62, 63 and 64, including the mean squared error (MSE) recorded between all
n waypoints. The topmost subplots contain all three positions, ω⃗i, p⃗i and p̂i, for each waypoint, as
well as a line to connect each p̂i to it’s respective ground-truth p⃗i. The second subplots illustrate
the estimation error in euclidean distance for all waypoints of the presented path compared to the
total path’s MSE:
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(a) Results of position estimations for the entirety of path 1.

(b) Estimation error in euclidean distance at each waypoint of path 1. MSE = 13.48

Figure 62: The estimated points of path 1 compared to the actual and intended path in (a), with
the estimation error in euclidean distance between each waypoint in (b).
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(a) Results of position estimations for the entirety of path 2.

(b) Estimation error in euclidean distance at each waypoint of path 2. MSE = 10.96

Figure 63: The estimated points of path 2 compared to the actual and intended path in (a), with
the estimation error in euclidean distance between each waypoint in (b).
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(a) Results of position estimations for the entirety of path 3.

(b) Estimation error in euclidean distance at each waypoint of path 3. MSE = 8.22

Figure 64: The estimated points of path 3 compared to the actual and intended path in (a), with
the estimation error in euclidean distance between each waypoint in (b).

For a better understanding of the results, a closer look at known waypoints and their optimizations
are warranted. Firstly, a set of waypoints with known correct matching between image-features,
as defined in Section 5.2.3, are analyzed. Figure 65 illustrate close-ups of two sets of waypoints
in paths 2 and 3, whilst Figure 67, 66 and 68 summarize the general estimation results through a
select few of these waypoints. This is done by looking at the iterations of the estimation procedure
with respects to both the position and reprojection of f⃗DEMi , from the initial position ω⃗i to the

final estimation p̂i, before comparing them to the target values for position p⃗i and reprojection f⃗p⃗i
.

The initial position ω⃗i and reprojection of f⃗DEMi
are illustrated by green pixels. The iterations

towards the final estimation are visualized by a color-gradient from green to yellow, with yellow
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being the final estimation. The target position p⃗i and reprojection f⃗p⃗i
are (red):

(a) ω⃗i, p⃗i and p̂i for i ∈ [5, 8] of path 2.

(b) ω⃗i, p⃗i and p̂i for i ∈ [3, 6] of path 3.

Figure 65: Pose estimation of waypoints with correct matches between image-features.
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Figure 66: Pose-estimation for waypoint i = 8 of path 2. The estimation slowly converges closer
to the actual solution, but misses due to the deviations between the image feature f⃗p⃗i

and the

reprojection of f⃗DEMi

Figure 67: Pose-estimation for waypoint i = 6 of path 3. The estimation readjusts after a massive
initial leap, successfully locating the target position up to reasonable degree.
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Figure 68: Pose-estimation for waypoint i = 3 of path 3. Note how the result deviates from the
target position, although the feature is fairly well matched.

Similarly, one can analyze the results from a set of waypoints with known erroneous matches
between image features to get an idea of the effect this has on the final estimation. Figure 69
illustrate two such sets from paths 1 and 2, whilst Figures 70 and 71 summarize the general
estimation results for a selection of these waypoints:
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(a) ω⃗i, p⃗i and p̂i for i ∈ [14, 16] of path 1.

(b) ω⃗i, p⃗i and p̂i for i ∈ [1, 2] of path 2.

Figure 69: Pose estimation of waypoints with incorrect matches between image-features.
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Figure 70: Pose-estimation for waypoint i = 16 of path 1. The estimation quickly diverges from
the target position p⃗i to lessen the reprojection error to the incorrect match, but is not able to
further converge.

Figure 71: Pose-estimation for waypoint i = 1 of path 2. The estimated position p̂i quickly diverges
in the opposite direction of the target position p⃗i, given the vastly different shape of image feature
f⃗p⃗i

and reprojection of f⃗DEMi .

Finally, the elapsed time of the estimator on all waypoints of path 1 can be seen in Figure 72.
Path 1 was chosen as it provided the worst results of the 3, illustrating the worst case scenario.
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Figure 72: Time elapsed by the pose estimator at each waypoint of path 1. The mean elapsed time
was 1.87s.

5.6 Estimator performance on trajectories with varying noise

In the case of the presented pose estimator, a logical way to evaluate its performance is to analyze
how much its estimation p̂i is to prefer over a grossly simplified estimation, returning the intended
position ω⃗i at waypoint i, i.e., p̂i = ω⃗i. The performance can be analyzed through the mean
squared error (MSE), which is calculated both when the estimator works as intended and in the
more simplified state. For ease of notation, the simplified estimation can be denoted the existing
error.

To further diversify and generalize the performance measures, the MSE of the estimator and
existing errors are analyzed over a set of different values for the Gaussian noise generating the
actual path. The mean µ is kept constant at 0 at all iterations, but the variance ϕ changes
between a set of 4 values: 10, 70, 120 and 170, in addition to 35 used in the above results.

Figure 73 illustrates how path 1 is affected by the 4 additional values of ϕ and denotes existing
errors between the intended and actual paths. Figure 74 illustrates the position estimations of
path 1 for all values of ϕ, as well as the MSE of the subsequent estimations.
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(a) Path 1 with ϕ= 10. Existing error (MSE): =
2.89.

(b) Path 1 with ϕ= 70. Existing error (MSE): =
31.41.

(c) Path 1 with ϕ= 120. Existing error (MSE):
= 49.39.

(d) Path 1 with ϕ= 170. Existing error (MSE):
= 51.43.

Figure 73: Path 1 with varying degrees of noise and the corresponding MSE between the intended
and actual positions
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(a) Position estimation results for path 1 with ϕ=
10. Estimation MSE = 10.1

(b) Position estimation results for path 1 with ϕ=
70. Estimated MSE = 31.08.

(c) Position estimation results for path 1 with ϕ=
120. Estimated MSE = 50.8.

(d) Position estimation results for path 1 with ϕ=
170. Estimated MSE = 46.57

Figure 74: Position estimates for path 1 with varying degrees of noise and the corresponding MSE
between estimated and actual values.

Figures 75 and 76 illustrate similar results for path 2 over all values of ϕ:
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(a) Path 2 with ϕ= 10. Existing error (MSE): =
2.61.

(b) Path 2 with ϕ= 70. Existing error (MSE): =
25.08.

(c) Path 2 with ϕ= 120. Existing error (MSE):
= 42.05.

(d) Path 2 with ϕ= 170. Existing error (MSE):
= 77.19.

Figure 75: Path 2 with varying degrees of noise and the corresponding MSE between the intended
and actual positions.
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(a) Position estimation results for path 2 with ϕ=
10. Estimation MSE = 8.54

(b) Position estimation results for path 2 with ϕ=
70. Estimated MSE = 20.23.

(c) Position estimation results for path 2 with ϕ=
120. Estimated MSE = 34.38.

(d) Position estimation results for path 2 with ϕ=
170. Estimated MSE = 73.18

Figure 76: Position estimates for path 2 with varying degrees of noise and the corresponding MSE
between estimated and actual values.

Finally, Figures 77 and 78 illustrate the results for path 3 over all values of ϕ:
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(a) Path 3 with ϕ= 10. Existing error (MSE): =
3.13.

(b) Path 3 with ϕ= 70. Existing error (MSE): =
26.80.

(c) Path 3 with ϕ= 120. Existing error (MSE):
= 43.32.

(d) Path 3 with ϕ= 170. Existing error (MSE):
= 56.57.

Figure 77: Path 3 with varying degrees of noise and the corresponding MSE between the intended
and actual positions.
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(a) Position estimation results for path 3 with ϕ=
10. Estimation MSE = 4.28

(b) Position estimation results for path 3 with ϕ=
70. Estimated MSE = 25.75.

(c) Position estimation results for path 3 with ϕ=
120. Estimated MSE = 35.73.

(d) Position estimation results for path 3 with ϕ=
170. Estimated MSE = 52.08

Figure 78: Position estimates for path 3 with varying degrees of noise and the corresponding MSE
between the estimated and actual values.

The differences between the existing errors and estimation MSEs can then be compared to give a
quantitative measure of the estimators performance over just assuming no positional change from
the intended trajectory. Figure 79 illustrate this in a simple diagram, presenting the improvements
of MSE measurements in % for all 3 paths and with all 5 values of ϕ. Positive values indicate an
improvement over the existing error, i.e, the estimator performs better than simply estimating p̂i
= ω⃗i. Figure 80 further elaborates on this in a new diagram showing the improvements of MSE
with respect to each of the three paths. Note that ϕ = 10m is omitted to provide a generalized
analysis to the 4 similar cases.
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Figure 79: Diagram showing the % improvement of using the estimator, rather than the intended
path, to make estimations. Noteably, the framework performs poorly on paths with little to no
disturbances, but sees great improvements for noisier paths.

Figure 80: Diagram showing the % improvement of using the estimator, focusing on the improve-
ments notices over the separate paths. ϕ = 10m is omitted to give a better generalization of the
results.
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6 Discussion and future work

This section will seek to provide an in depth analysis of the results in Section 5 whilst providing
suggestions for changes and improvements in future implementations.

Initially, the overall performance of the framework is analysed in depth, before the validity of both
the simulator data and system architecture are discussed. Finally, the results of all the modules
for feature extraction and matching are analyzed in more detail, with a strong focus on possible
changes and improvements for future implementations.

6.1 Analysis of the complete estimation scheme and nonlinear problem

Upon inspection of the results in Section 5, it becomes clear from Figures 79 and 80 that the
estimation framework generally performs quite well, albeit presenting room for a variety of im-
provements. Disregarding the absolutely abysmal results on the path with ϕ= 10m, the estimator
seems to improve on the the so-called existing error by an average of ∼ 8.5%. For an initial proof
of concept, these results should not be seen as too discouraging, given that the system performs
fairly consistently over paths with adequate to high amounts of deviations. It is evidently, as
shown in Figure 80, far superior on some paths rather than others, going from a 1.5% average
improvement to a 12, 8% improvement and can produce results that are occasionally worse than
the existing error. This can have a variety of different explanations and should be analyzed more
rigorously, but the authors leading theory has to do with the average distance from to the nearest
visible shoreline along each path. Path 2 and 3, on which the estimator far outperforms its results
on path 1, are both situated significantly closer to the extracted features on average, something
Figures 54 and 55a illustrate nicely. The possible errors of estimation over longer distances are
then to be considered significantly more devastating to the system, as a pixel in the image space
of the camera aboard the vessel will contain a lot more information, generalizing far more of the
surrounding terrain, for features further away. This is, however, a hypothesis, and the focus should
rather be turned to the visual and numerical results:

The elephant in the room should be addressed first: The paths of noise variance ϕ= 10m. Judging
by the results in Figure 79, the estimator performs abhorrently on a path with little to no deviation,
supporting an average deterioration of the MSE by almost 200&. This might be a little hard to
believe when inspecting the complete estimated paths in Figures 74a, 76a and 78a, boasting the
evidently smallest estimation errors for all 3 paths, but has a very simple explanation tied to an
average error performed by the estimator. Quickly inspecting the estimation iterations on paths
with ϕ ̸= 10, for example Figures 66 or 67 with ϕ = 35, it becomes evident that the chosen adaptive
grid search does not manage to correctly converge to the target solution p⃗i, always introducing
some deviation, if only of a few pixels. When no noise is present in the original path however, such
deviations, although small as evident in Figures 74a, 76a and 78a, represent a massive increase
over the existing noise, drastically inflating the underperformance of the system. One could argue
that the choice of metric in Figures 79 and 80 exaggerates these errors drastically, but it is still an
important illustration of the relative deterioration performance for such paths and should be used
to conclude that the estimation framework has a negative effect on paths where little to no noise
is expected.

It becomes important however to shift the focus from the special case where paths have little to no
noise to the more general cases, where average to high levels of noise are present and the estimator
performs better than the existing error on average. These are not only more realistic in a maritime
environment, but the results here are significantly more promising, showcasing the future potential
of the framework as a standalone or fused pose estimator. Figures 62, 63 and 64 compared with
Figures 65a-71 illustrate, however, an assumption on which this analysis should take place. The
vastly different performance of the framework when the matching between image features returns
a correct or wrong match is staggering, and so the two cases should be analyzed separately so
as to form as good an image as possible of the frameworks strengths and weaknesses along more
plausible paths.
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When the matching of image features return a correct set of matching areas f⃗ω⃗i
and f⃗p⃗i

, the results
of the estimation framework are generally quite good, as visualized by Figures 65a and 65b. Upon
comparison with Figures 69a and 69b, where the matches are wrong, and the numerical results of
estimation errors for all waypoints in Figures 62, 63 and 64, one can safely conclude that correct
matches produce far smaller errors than wrong matches. These remaining errors do, however,
warrant discussion, elaborating to what degree they are the culmination of propagating errors
from feature extraction and matching or the fault of the proposed estimation scheme. Figures
66 and 68 can be interpreted as advocating the former, showing how even when the iteratively
updated position estimate results in reprojections approaching the target image feature f⃗p⃗i

, the

final estimation p̂i deviates from p⃗i. The shape of the reprojection f⃗DEMi deviates, if only by a few

pixels, from f⃗p⃗i
, introducing an error in Figure 66 and even divergence in the wrong direction in

Figure 68. The possible causes for these deviations are discussed in Section 6.7, but to summarize
quickly: The errors most likely occur during data-generation, as slight differences between the DEM
and constructed 3D mesh or discretization happening upon the capture of semantic segmentations.
At the same time however, both figures, especially 66, also illustrate the shortcomings of the
estimation-scheme, falling into a local minima deviating from the optimal solution at p⃗i. This
can occur from the lack of exploration in an adaptive grid search, where the first solution found
is often regarded as the best solution, and warrants the exploration of other nonlinear solvers.
Finally however, one should note Figure 67, which illustrates an example of a successful estimation.
Although subject to a good match between the target feature f⃗p⃗i

and the reprojection of f⃗DEMi
, as

well as a probable local minima in the desired solution p⃗i, such cases illustrate that the reprojection
error is capable of rendering a proper optimization problem for the desired pose estimation. The
perquisites for this to occur are just extremely sensitive to errors and would probably benefit from
a more robust nonlinear solver.

Figures 69a and 69b, however, show how the optimization problem is rendered infeasible when
wrong matches occur between image features. The selected examples of the estimation iterations
in Figures 70 and 71 illustrate how the position of the vessel is driven drastically off course to
try and compensate for the discrepancies between f⃗p⃗i

and the reprojection of a wrongly matched

f⃗DEMi
, producing a set of invalid estimations with staggering errors. The MSE diagrams in Figures

62, 63 and 64 illustrate this the most efficiently: Waypoints 14− 16 of path 1 and waypoints 1− 2
in path 2, illustrated in the Figures 70 and 71 respectively, result in sets of error-values eclipsing
the MSEs along their respective paths, contributing to a significant deterioration of the overall
results. For future implementations, the matching algorithm then becomes imperative to produce
more consistent estimations and requires extra attention.

Overall, the estimation procedure can be significantly improved by remedying propagating errors
from the feature extraction and matching as well as changing the nonlinear solver from the baseline
adaptive grid search to a solution that is more robust in the face of local minima. A thorough
discussion of the deployed modules dealing with features follow in the subsections below, but a
quick discussion of possible optimization strategies should be mentioned here. As the presented
grid-search solution is meant to function as a baseline for future work, a more sophisticated method,
like the popular Levenberg–Marquardt algorithm applied to a nonlinear least squares formulation
of the reprojection error, should be investigated to asses possible improvements of both the es-
timation errors and performance. At the same time, a thorough analysis of the multi-dimensional
optimization space should be conducted, to validate whether or not a global optimization strategy
would be to prefer if there exist a plethora of local minima around every desired solution. To this
end, a set of global estimation schemes, such as the ever more popular Evolutionary algorithms,
should be implemented an analyzed on a more sophisticated implementation.

6.2 Simulator validity and viability of synthetic data

Given the nature of VO applications, the data supplied by the monocular camera(s) are vital to
the accuracy and performance of the final estimator. To this end, the use and necessity of the
Unity game engine in generation of critical, synthetic data is brought under the lens, as well as the
viability of the data presented in this report to a plausible, real world application.
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The use of the Unity game engine can, at first glance, be considered fairly unnecessary. The ex-
traction of the intended skyline contour Sω⃗i

at waypoint i can be done entirely outside of Unity
by applying Algorithm 4 to the entire camera frustum at a known position ω⃗i, whilst semantic
segmentations of Ip⃗i

are available through pre-trained deep neural networks, such as the aforemen-
tioned YOLOv8 algorithm [37], on the output of the on-board monocular camera. Furthermore,
the presented data is both incomplete and unrealistic, utilizing machine-calculated semantic seg-
mentations that would far exceed the precision of neural networks, while not taking into account
external factors that should occur at sea. Although reasonable concerns, these should not discredit
the value of deploying such a tool for either the presented application or future implementations.

For such a proof of concept, the use of perfect, semantic segmentations in an environment without
the interference of waves, fog, illumination and weather-effects can be seen as a way to form a
baseline understanding of the performance one can expect under optimal conditions. More than
anything, one can imagine a decent performance under such conditions to present a minimum
requirement of the system. One that, if exceeded, should entice adaptations and improvements to
tackle more challenging scenarios with limiting factors. It is in such a development stage the worth
of a fully customizeable simulator within a videogame engine becomes evident. Whereas the data
produced for a proof of concept only suffices to produce a minimal reproduction of the real world,
a full implementation can produce a plethora of realistic scenarios at any given time, complete
with everything from realistic weather to believable interactions with the environment, which can
be captured through realistic, replicable camera imagery without ever deploying a camera in the
real world. Development and testing of more mature implementations can then be done entirely
within the confines of a simulator, generating vast amounts of data for the training and validation
of neural networks, enabling the development and later deployment of an improved system into
the real world.

6.3 System architecture and design decisions

The overall system architecture, presented by the pipeline in Figure 24, should be taken critic-
ally into consideration. Although there is little visual evidence to suggest that the division into
independent data generation and analysis has introduced any significant error to the system, one
should not disregard the possibility of minor deviations occurring between the two. Notably, the
results of the reprojections in Figures 57-61 could suggest that minor differences are being intro-
duced upon generating the synthetic data within Unity. These small, but potentially deteriorating
errors, could, however, also stem from a propagation of minor errors in previous modules. What
can be discussed more explicitly, is the possible pros and cons of an alternative real-time estima-
tion scheme and if this should be considered for future implementations. The greatest allure to a
real-time system, for example in Unity, would be the possibility to use the exact same terrain data,
without having to worry about conversions and identicalness, for both synthetic data generation
and estimation. This would ensure that the estimation scheme is 1:1 by nature, independent of
the deployed DEM, possibly yielding a more robust piece of software. It would also more closely
resemble a software for active deployment onboard a physical vessel, more closely replicating the
desired, final implementation. It should be noted, however, that the implementation of a real-time
system would be significantly more cumbersome, and was hence avoided in order to prioritize the
development of the presented modules and algorithms. To the authors knowledge, clever use of
multi-threading and emulation of the software on-board a maritime vessel would be required to
develop a satisfactory simulation, making a real-time implementation somewhat exuberant for such
an initial proof of concept.

Within the chosen architecture, it should be mentioned that the generation of 3-dimensional meshes
for the use in synthetic data generation could be done in more than one way. The method deployed
in Section 4.1, manually converting external DEMs through a multi-step procedure, yields satis-
factory results when compared to the raw data. One should note, however, that such a method
could be subject to minor propagation of error if one or more of the conversion-steps produce the
slightest amount of subsampling, smoothing of sharpening. A third-party plugin, ArcGIS, for the
Unity game engine presents an alternative method for terrain replication. Deployed in [39], the
method allows for faster, simpler generation of accurate terrain data anywhere on the planet, only
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utilizing a set of global coordinates and a defined radius to infer terrain data directly from the
cloud. Utilizing Unity’s high precision framework to supply geospatial positioning unaffected by
floating point rounding errors, the plugin is further optimized for the transformations of objects
inside the world. Although ArcGIS proves a more than capable tool, the many features introduced
a significant overhead that complicated certain parts of the proposed framework: Terrain gener-
ated by ArcGIS proves tough to manipulate and customize, positional data in a local coordinate
frame prove a little tricky to extract due to the high precision framework and, the possibly the
biggest deterrent, it proves fairly difficult to use custom terrain data inside the plugin. Although
ArcGIS comes with default global terrain data, the precision required by the system, and by ex-
tension the required identicalness between terrain data, cannot be guaranteed without generating
and analyzing data based on the same source.

6.4 Extraction of skyline contours

Section 5.2.1 illustrate the great performance of the skyline contour extraction algorithm proposed
in Section 3.1.1. The results are consistent over all waypoints and the mean elapsed time of 0.16s
per skyline contour from Figure 38 is highly performant. As there is little noise in the simulated
images, it is tough to evaluate the performance of the integrated noise-removal, other than on
the edges of segmented terrain, that are sometimes interpreted as minor disturbances. These are
trimmed away, resulting in skyline contours not stretching out fully to the edge of the segmentations
of terrain. This trimming of the visible terrain, which at first glance might seem undesirable, is
not necessarily a bad thing. Quite on the contrary, removing ambiguous parts of the terrain could
be considered a desirable trait, eliminating a potential source of errors in future matching of image
features. In future implementations, rigorous testing should be performed on more complex sources
of noise, especially those resulting from external factors. Smarter methods would most likely have
to be adopted to extract skylines out of semantic segmentations heavily polluted by noise, the most
logical of which would be some sort of deep neural network able to approximate skyline contours
through dense vegetation, partial cloud cover and heavy precipitation. The presented method
could then serve as a baseline for an algorithm designed to generate synthetic training data for
such an algorithm, which would be useful for a possible real-world application as well.

A final thing to note about the presented algorithm is the possibility to keep or remove the coastline
in the contours, as shown in Figure 12. Although this part of the contour proved uninteresting
for this proof of concept, where 3-dimensional rotation of the boat was neglected, it could prove
a valuable feature in more sophisticated implementations. If, for example, the system was to
be extended to 6 DOF, the coastline could serve as a semi-horizontal line on which to align the
segmented terrain for further analysis.

6.5 Hilltop extraction from skyline contours

The hilltop extraction algorithm performed well over all waypoints, returning K hilltop features
meeting the strict requirements for each skyline contour defined in Section 3.1.2. These conditions
are in many ways what makes the algorithm fairly unique, returning K robust features that, given
good tuning of algorithm parameters, are guaranteed to be somewhat distinctive within the image.
The algorithm has one potentially disruptive problem however: The required tuning of width and
height-thresholds. Given the wide variety of possible skyline contours, the algorithm may yield
exuberant amounts of hilltops in one contour and few to none in another if the same parameter
values are applied in both cases. The algorithm does not adapt to the diverse terrain it might
be facing and would then be unreliable as an out-of-the-box solution. Possible improvements
then naturally include an adaptive version of this algorithm, perhaps using the vertical deviation
from coastline to skyline and the amount of visible gaps in a contour to tune the parameters
automatically, or a machine-learning driven approach, where the current solution might serve to
produce vast amounts of training data under human supervision.

Lastly, the performance of the algorithm, although not terrible, could see significant improvements.
The depth-first search methodology is sufficient for a proof of concept, estimating the pose post
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data acquisition, but a mean elapsed time of 1.45s in Figure 43 renders the algorithm infeasible
for a potential real-time implementation in the future.

6.6 Matching of M−1 image features

As mentioned briefly above and judging by the results in Section 5.2.3, the matching and extraction
of image features clearly has the greatest potential to cause critical failure during estimation.
Although the occasional error occurring when image features are correctly matched between skyline
contours primarily occur occur in other modules (see Section 6.1), the significant error posed by
wrong or incorrect matches are solely the responsibility of the deployed matching algorithm. A
very prevalent example of the negative contribution of such matches can be seen in Figure 69a,
where the three consecutive, erroneous estimations, based on errorneous matches, dramatically
increase the overall MSE in Figure 62b, resulting in the negative contribution of the estimator for
ϕ= 35 in Figures 79 and 80. Another example can be seen in Figure 69b, where an incorrect match
is produced at waypoint 1, visible in Figure 50, skyrocketing the estimation error manyfold above
the MSE for path 2 in Figure 63b. Upon investigation of the results in Figures 62b, 63b and 64b it
becomes evident that incorrect matches are the predominant cause of quickly diverging estimation
errors, prompting the discussion of how more sophisticated algorithms could seek to improve on
the one presented in this framework.

To this end, it becomes imperative to understand the possible scenarios in which erroneous matches
may occur. Thankfully, inspection of the results in Section 5.2.3 yield some valuable insight:

• Best match is not the correct one: Figure 51 illustrates a difficult problem when deal-
ing with energy based similarity measures: The SAD measure returns a different match
to the correct area, simply due to it having a better overall score than the correct match.
The transformation between the two images is just so that it invalidates the correct match
by shifting the reprojection of the terrain, implicitly creating a better match through the
deployed perspective transformation.

• Image feature goes out of frame: Figure 50 illustrate an example of an erroneous match-
ing in part caused by the haunting limitations of monocular cameras with limited FOV.
Between the two images, a sufficient transform finds place to eliminate a plausible image
feature from Sω⃗i

in Sp⃗i
by moving it out of frame. However, another match, superior to other

potential features, is found in the actual skyline and returned, resulting in a misclassification.

• Isolated features have different sizes: Figure 52 illustrate a case which, although seem-
ingly extremely specific at first glance, produced the 4 wrong matches denoted for path 1 in
Table 3. On the intended skyline Sω⃗i

, an isolated feature meeting all conditions is found. In
Sp⃗i

, this same feature is located in the middle of the image, but is not returned as a match.
This happens for a very simple reason: The transform between the two images render the
corresponding area in Sp⃗i

slightly smaller, making it an infeasible match, as per the definition
described in Figure 14. The inverse of this is of course possible, with Figure 44a illustrating
a similar image feature increasing in size between the two images, rendering it feasible.

An improvement to the presented algorithm would then have to take these cases into account
to deliver a more reliable, consistent results. For image features getting out of frame, the author
suggests that future implementations directly remedy the limiting FOV by using wide-angles images
or even panoramic imagery, like in [22]. This would be both quicker to implement and yield more
reliable results than developing a new algorithm for a camera of limited FOV, also covering cases
where no features are visible within a slim camera frustum. In the case of isolated features having
different sizes between one or more camera views, an option could be to develop a more adaptive
algorithm, changing the requested width and height of matches through, for example, a rough
estimation of rotation and depth between the images. Another option, which the author thinks
holds more merit, is to consider replacing the energy based matching algorithm with a deep neural
network, trained on a mix of data produced by the existing algorithm and, in the case of the
respective errors, by human generation. Such a method would alleviate the complexity introduced
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to the method by the declaration and tuning of adaptive parameters, whilst also handling the
third error case, which occurs due to the deployment of an energy based similarity measure. When
adopting SAD to find the most similar areas between two skyline contours, there is no guarantee
that the returned area is necessarily the correct one. One can say that such methods are blind,
not taking into account the neighborhood past the considered features, making them incapable of
any form of spatial reasoning. A neural network would, in comparison, take the entire skyline into
consideration, inferring from the experience of thousands of previous matches where the optimal
sets of image features f⃗ω⃗i

and f⃗p⃗i
could be located. It could potentially solve a plethora of problems

introduced in the current algorithm, although requiring paramount amounts of training data at
the same time.

One should also address the suboptimal and ambiguous matches denoted in Table 3, the explan-
ations for which are fairly simple. The term ambiguous matches in Section 5.2.3 was deployed to
explain a set of matches not easily verifiable through visual inspection. That is, they can both be
wrong or correct, the author is just not capable of making an informed decision on the manner.
The suboptimal matches are based on a problem with the adopted implementation, specifically
with the SAD algorithm. Inspecting Figures 46 and 47, one can quickly conclude that all subop-
timal matches seem to return the shortest hilltop features located by Algorithm 2 on Sω⃗i

, although
more prominent matches are clearly available. This is easily explained by equation (2), which does
not, compared to for example an MSE measure, utilize a mean error between all points to define
the similarity between two areas. SAD does not take the length of features into account, simply
adding together the error of all points before returning this as the error of the evaluated matching.
Longer features will then experience higher overall errors than existing shorter features in almost
all cases, leading to the selection of suboptimal solutions. This is a major flaw in the implemented
framework, but is easily remedied by introducing a different similarity measure, employing the
mean of all combined errors. In the case of replacing the energy based similarity measure with
a neural network all together, as mentioned above, the issue of both ambiguous and suboptimal
matches would most likely be rendered redundant.

It is important to note, however, that the feature matching procedure is not completely without
merit. Table 3 illustrate an overall mean accuracy of just about 79%, with Figures 44a, 45a
and 55b showing a set of correct matches found between widely different, often close to uniform,
skyline contours. The main contribution of errors to the pose-estimation scheme come from the
significantly more infrequent errors, which are challenging to avoid when deploying a monocular
camera with limited FOV. The errors produced when correct matches have been found between
skylines have to be attributed to later modules.

6.7 The extraction and reprojection of the DEM feature f⃗DEMi

To the authors knowledge, the only way to numerically assess the quality of the outputs of Al-
gorithm 4 is to analyze the reprojection of the resulting feature, f⃗DEMi

, back to the reconstructed
camera. If little to no errors are recorded between the original image feature and the reprojection
of f⃗DEMi

, one can safely assess that a plethora of modules and equations function as intended,
whilst the opposite would indicate an error at any of these arbitrary locations. With the proposed
interface, it is reasonable to assume that a good reprojection would validate the reconstruction of
the Unity camera in equation (15), the reprojection of 3D parameters in equations (??) and (18),

and the line rendering strategy to construct f⃗DEMi from f⃗ω⃗i
in Algorithm 4, as all are vital to the

reprojection from equation (9).

The results highlighted in Figures 60a and 61a can then be seen as validations of the presented
modules, illustrating the reprojections of the DEM features found at the respective waypoints and
the deviation of this from the intended image feature f⃗ω⃗i

. The errors recorded are only in the
range of a few pixels and always occur along the vertical axis of the skylines, indicating a slight
difference in height between the terrain recorded in Iω⃗i

and the DEM. These slight errors can have a
plethora of sources, like post-processing in Unity, discretization of images with limiting resolutions
and possible smoothing on the 3-dimensional terrain mesh during conversion, but are evidently,
by the sheer complexity of the compound problem and proximity of results, not caused by the
reprojection framework. A few pixels difference are, however, sufficient to derail the estimation
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significantly given the sensitivity of the features and corresponding error, so a thorough analysis
should be performed on future implementations, especially of potential floating point errors of
Algorith 4.

The results of the complete skyline reprojections in Figures 57, 58 and 59, where f⃗DEMi
is found

by forming and evaluating Nw rays spanning the entirety of Sω⃗i
, further illustrate the success of

Algorithm 5 in subdividing the camera frustum into L angular deviations, as no skylines break
the horizontal bounds of the image plane. The general consistency of the algorithm also works to
credit the supplied line-drawing algorithm and Algorithm 6, used to approximate the intersection
of a ray R⃗j with the edge of the DEM along the heading of the ray.

Finally, one can comment on the performance of Algorithm 4 by inspection of the results in
Figure 56. Through comparison with path 3, which is where the diagram originates from, one
should note how the fourth waypoint singlehandedly contributes to the mean elapsed time of the
algorithm. The intended feature f⃗ω⃗i

at this waypoint, as well as the extracted match f⃗DEMi
can

be seen in Figure 55 and is the largest feature to be matched along all considered waypoints. Its
significant computation time, as well as the hopeful eradication of suboptimal, short matches in
future iterations, discussed in Section 6.6, implies that the presented extraction scheme will not be
viable for real-time deployment. A plausible workaround for this, however, could be to generate
K possible features f⃗DEMi beforehand in simulator, only using images captured along the vessels
intended path and uploading them to the vessel before deployment. This would allow the system
to work in real-time, but would not capable of covering edge cases where the update illustrated
in Figure 9 alters the intended course significantly. To ensure the consistency of such a solution,
the monocular camera of limited FOV should, again, be replaced by a 360° panoramic camera as
discussed in Section 6.6, capable of catching all possible features at a given location without fail.
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7 Concluding remarks

This report presented a baseline framework for the 2DOF pose estimation of a maritime vessel
deviating from a predefined, intended path. The vessel was only equipped with a limited, monocular
camera and terrain data of its surroundings, relying on the comparison of synthetically generated
images and the on-board camera to infer the vessel’s position using the reprojection error. In
this proof of concept, all data was generated inside of a Unity based simulation, resulting in
machine-computed semantic segmentations of terrain, most likely more precise than more realistic
segmentation schemes. Analysis and image processing was finally performed post data-generation
in an independent Python script, implementing the bulk of the algorithmic framework.

The system was further tested on synthetic data. Although not ready for commercial deployment,
either as a standalone estimator or as part of a greater sensor fusion, the system performed well
for an initial proof of concept. The modules tasked with feature extraction in 2 and 3 dimensions
yielded consistently good results on all waypoints, and the mathematical formulations used to
reproject 3D world points in Python to a simulated Unity camera worked flawlessly. This, in turn,
led to an implied well-posed optimization problem when image features were correctly matched,
something that was not always the case. The algorithm tasked with matching theM−1 features
recorded wrong, failed or ambiguous matches at just about 21% of all waypoints, contributing
drastically to the near constant error introduced by the baseline nonlinear solver. Overall, however,
the system consistently yielded positive contributions compared to the existing mean squared error
between intended and actual paths.

The general system performance, combined with the consistently good outputs of most modules and
the well-posed optimization problem, provides evidence to conclude that the proposed framework
presents significant potential as a future long-range pose estimator. From what was discussed in
Section 6, integrating a more rigorous algorithm for the matching of image features and exchanging
the proposed nonlinear optimizer for a more reliable, possibly even global, solution, could yield
significant improvements. Coupled with the almost seamless integration of wide angle or even
panoramic cameras into the modular framework, eliminating the many limitations of a smaller
field of view, one could be looking at a consistent, accurate solution to a complex navigation
problem in the future.
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