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Abstract

The challenge of interpreting generative models, particularly in the context of
Generative Adversarial Networks (GANs), poses a significant issue in understand-
ing what they truly learn. Despite their remarkable ability to generate realistic-
looking data, an important question arises whether the data also adhere to the
same laws and constraints implicitly followed by the real data. Laws governing
the underlying process or system embody crucial aspects of the real world and
must be followed for the generated data to be considered useful and valid, espe-
cially when used for learning or analysis purposes.

This thesis investigates the capability of GANs to capture the underlying laws
through data from a simulated physical system with known underlying laws. The
system under investigation centers around the collision of shallow-water waves,
which are solutions to the Korteweg-de Vries equation and obey the conservation
principles. Experiments are conducted using a dataset of colliding waves of vari-
ous heights, and samples are evaluated based on their adherence to conservation
laws. We evaluate the performance difference between two separate GANs, which
have the same architecture but are trained with and without information about
the underlying conservation laws.

Comparisons of conservation error statistics show clear performance differ-
ences between the models. In the best-case scenario, the regular GAN exhibits,
on average, more than three times more conservation errors compared to the in-
formed version. Considering the average GAN performance, the conservation er-
rors are much more significant. The findings suggest that GANs have limitations
in accurately capturing the underlying constraints.

We find various barriers that hinder GANs’ ability to capture the underlying
constraints. It is primarily believed to be due to the statistical nature of GANs, as
they are not able to catch the implicit laws only through sample statistics. Their
performance is also greatly affected by the unpredictable and sensitive nature of
GANs in response to hyperparameter combinations and architectural design, mak-
ing it difficult to find the proper parameters to reach desired results. Future studies
to explore alternative GAN architectures with various recurrent modules and with
larger network capacities should be conducted to confirm whether similar results
and challenges also persist across a broader range of GANs.
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Sammendrag

Utfordringen med tolkning av generative modeller, spesielt blant Generative Ad-
versarial Networks (GANs), utgjør et betydelig problem når det handler om å
forstå hva de faktisk lærer. Til tross for deres bemerkelsesverdige evne til å gener-
ere data som ser realistisk ut, oppstår et viktig spørsmål om hvorvidt dataene
også følger de samme lovene og begrensningene som implisitt følges av virkelige
data. Lover som styrer den underliggende prosessen eller systemet, inneholder
avgjørende aspekter av den virkelige verden og må følges for at den genererte
dataene skal være gyldige, spesielt når de brukes til statistiske analyser.

Dette prosjektet undersøker GANs evne til å fange opp de underliggende lovene
gjennom data fra et simulert fysisk system med kjente underliggende lover. Systemet
som undersøkes, omhandler kollisjonen mellom havbølger, som er løsninger av
Korteweg-de Vries-likningen og følger prinsippene om massebevaring, bevegel-
sesbevaring og energibevaring. Eksperimenter utføres ved bruk av et datasett med
kolliderende bølger av ulike høyder, og modellene evalueres basert på deres sams-
var med bevaringslovene. Vi evaluerer ytelsesforskjellene mellom to separate GAN
modeller, som har samme arkitektur, men er trent med og uten kunnskap om
bevaringslovene.

Sammenligninger av statistikk for bevaringsfeil viser tydelige forskjeller i ytelse
mellom de to modellene. I det beste tilfellet viser en vanlige GAN over tre ganger
mer bevaringsfeil sammenlignet med en informerte versjon. Men med tanke på
en gjennomsnittlig GAN er bevaringsfeilene langt mer betydningsfull. Resultatene
antyder at GANs har begrensninger når det gjelder å følge de underliggende be-
grensningene med liten feil.

Vi finner forskjellige årsaker som hindrer GAN modeller i å fange opp de un-
derliggende begrensningene. Det antas primært å skyldes GANs statistiske natur,
som ikke er i stand til å fange opp de implisitte lovene gjennom kun statistikk fra
dataene. GANs evne påvirkes også i stor grad av GANs uforutsigbare og sensitive
natur i respons på kombinasjoner av hyperparametere og nettverkdesign, noe som
gjør det vanskelig å finne riktige kombinasjoner for å nå sitt potensiale. Fremtidige
studier for å utforske alternative GAN-arkitekturer med ulike tilbakevendende
moduler og høyere nettverkskapasiteter bør utføres for å bekrefte om lignende
resultater og utfordringer også vises på et bredere spekter av GANs.
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Chapter 1

Introduction

In the field of artificial intelligence, there has been lots of innovation the recent
years and rapid implementations to utilize the latest techniques for various ap-
plications. Among these techniques are generative models, which have become
increasingly popular due to their ability to create unrestricted amounts of real-
istic data. They can do so in an unsupervised manner without the need for labels,
making them applicable to a wide range of tasks. Generative models have gained
significant attention and adoption across diverse fields, including computer vis-
ion, natural language processing, and audio, and their utility continues to advance
with its fast-moving research frontier. The success of generative models, especially
in the form of Generative Adveserial Networks (GANs) [1], flow-based models
[2], and variational autoencoders [3], has revolutionized how researchers and
industries approach problems related to small datasets, privacy protection [4–8],
anomaly detection [9–12], and uncertainty quantification [13–16] to mention a
few.

However, despite the success of generative models, they have also presen-
ted new challenges, particularly in terms of trust and interpretation of generated
data. Generative models can generate instances that do not match a particular
case in the available dataset but resemble multiple known ones, which could be
considered a valid sample by a human observer. Evaluating the sample validity can
not be achieved solely by comparing them to existing data, and existing statistical
methods may be considered insufficient without the adoption of domain know-
ledge. This issue has gained significance as GANs, for example, are being studied
for critical applications such as medical diagnosis [17], MR image reconstruction
[18, 19], and upsampling brain signal data [20], where interpretability is crucial
for ensuring the safety and effectiveness of the models.

In many applications, it is necessary for the generated data to not only look
realistic but also adhere to the same constraints as the real data. Both explicit
constraints concerning specific data limitations, such as value ranges, and implicit
constraints, which the data obeys as a consequence of being a measurement of a
system governed by laws and underlying principles, for instance, conservation
laws in physical systems. In situations when the generated data does not adhere

1
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to the correct constraints, the data convey incorrect information or impossible
cases that may be utilized without being aware of it.

In domains where underlying constraints in the system or process being modeled
are known and defined, they can be incorporated into the model to force the gen-
eration of valid data. However, in most cases, the underlying constraints are either
unknown, impossible to define, or inaccessible. In such cases, the GAN must learn
the underlying constraints solely through the statistics of the data and without
knowledge about the underlying system. While it may be tempting to assume that
the generated data will also emulate the inherent rules of the original system,
there is no guarantee of this. This thesis delves further into exploring the level at
which a GAN can successfully learn and follow such underlying constraints.

During the work of this thesis, OpenAI released the highly popular ChatGPT.
While the architecture and purpose of ChatGPT are different from GANs, the ques-
tion of what it truly learns remains common. Understanding the limitations and
interpretability of generative models like ChatGPT is crucial for ensuring their
reliability and trustworthiness.

1.1 Motivation

Understanding the limitations of Generative Adversarial Networks in capturing
the implicit laws in systems is crucial for utilizing them correctly and in appro-
priate applications. Implicit constraints are present in all types of data and must
be strictly followed for the generated data to be considered valid. If generated
samples do not adhere to the same underlying laws, they may induce differ-
ent statistics and potentially influence decision-making processes. Enhancing our
knowledge concerning the capabilities of GANs would not only highlight possible
model flaws but also drive research toward developing more reliable GAN frame-
works.

Despite the notable progress of GANs and their widespread claim for gen-
erating realistic-looking data, demonstrated by models like StyleGAN [21] and
DragGAN [22], there remains a significant gap in comprehending their perform-
ance in domains that go beyond common images. Examples of such data types
include medical images, time series data, and system modeling. Although GANs
have demonstrated remarkable success in image synthesis tasks, evaluating their
performance and reliability in these specialized domains is of great importance
for practical applications.

Existing research has explored the capabilities of GANs in adhering to geo-
metrical constraints in image data [23], to generate divergence-free fields [23],
and their ability to adhere to the Euler scheme when predicting values for one-
dimensional Lorenz systems [24]. These studies demonstrated that GANs often
struggle to adhere to underlying constraints. Additionally, Stinis et al. [24] ac-
knowledged the need for further investigations into more complex and higher-
dimensional systems. Further examination of other data types and settings would
contribute to a better understanding of the capabilities and effectiveness of GANs
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in various domains.
One specific area of interest lies in the domain of time series with complex

high-dimensional data, which pose unique challenges for generative models. In
the case of time series data, accurately capturing temporal dependencies and dy-
namics is crucial for generating meaningful samples, especially in the presence of
nonlinearities within complex high-dimensional data.

This thesis aims to explore this gap by investigating the performance of GANs
in simulating physical systems. Specifically, evaluate the extent to which generated
simulations adhere to conservation laws within a closed system involving colliding
waves described by the Korteweg-de Vries (KdV) equation [25].

1.2 Contribution

This thesis makes contributions to the field of Generative Adversarial Networks
by presenting findings related to their fidelity and methods for evaluating them.

First and foremost, it extends previous research on GAN’s capability to ad-
here to underlying constraints, specifically in the domain of high-dimensional
multivariate time series data. While prior research has predominantly focused on
image data and one-dimensional sequences, this thesis delves into the challenges
and capabilities of GANs when applied to complex and higher-dimensional time
series data.

To address the evaluation problem associated with GANs, a novel evaluation
metric called the Fast approximation of the Sliced-Wasserstein distance (SW), pro-
posed by Nadjahi [26], is employed and tested. The SW metric estimates the dis-
tance between two distributions when only samples from each distribution are
accessible. By utilizing this metric, the thesis tackles the evaluation challenge and
assesses the performance of GAN models in generating time series data.

Furthermore, this thesis provides an overview of various GAN frameworks for
generating multivariate time series data. It explores different GAN architectures
and techniques, comparing their performances and shedding light on the strengths
and weaknesses associated with each approach.

1.3 Research questions

This thesis aims to explore the capabilities and limitations of Generative Adversarial
Networks in adhering to underlying physical laws and examine the effectiveness of
a novel evaluation metric. The following research questions serve as the primary
inquiries driving this thesis:

• RQ1: How well do regular GANs conform to the underlying physical laws gov-
erning the data in comparison to physics-informed GANs?

• RQ2: What are the limitations and challenges GANs face in adhering to com-
plex physical laws in multivariate time series data?
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• RQ3: How effective is the approximated Sliced-Wasserstein distance in evalu-
ating the performance of GANs on time series?

However, before delving into the primary research questions, it is crucial to
address an additional and important secondary research question to ensure the
adoption of an appropriate model for the main experiments:

• RQ1.1: What is the comparative performance of different time series GAN mod-
els when generating long sequence lengths?

Answering RQ1.1 will provide valuable insights into the performance and suit-
ability of different time series GAN models, establishing a solid ground for the
subsequent investigation of the primary research questions.

1.4 Research method in brief

To comprehensively analyze different GAN frameworks, an initial experiment is
carried out using a straightforward dataset to compare and evaluate their perform-
ance. Based on the outcomes of this experiment, the most promising framework
is selected for the main experiment, which also answers RQ1.1.

The main experiments involve assessing the performance difference between
a regular and physics-informed GAN. The physics-informed GAN is employed as a
benchmark for comparison, enabling the analysis of performance metrics, sample
statistics, and adherence to underlying constraints.

1.5 Structure of the report

The thesis is structured as follows: Chapter 2 introduces necessary and essential
theoretical ideas to understand GANs, how they operate, and ideas for evaluat-
ing them. This includes a minimal introduction to probability theory and optimal
transport theory. Using the theory and similar mathematical notation, we form-
ally introduce GANs in Chapter 3. Chapter 4 presents an overview of different
GANs for time series generation, including important milestones and varieties,
along with previous work on investigating GANs on physical systems. Chapter 5
presents an outline for the experiments with considerations and design choices.
It includes an explorative experiment in addition to the main experiments. Every
implementation detail, along with results and discussion, is presented about the
exploratory experiment in Chapter 6, while Chapter 7 includes the implementa-
tion details concerning the main experiment. The results of the main experiment
are then presented and discussed in Chapter 8. The final chapter, Chapter 9,
concludes our findings along with future work.



Chapter 2

Theoretical background

This chapter introduces a theoretical foundation to understand key concepts about
GANs and evaluation metrics. The covered topics encompass a brief introduction
to concepts in probability theory, statistical distance, and the utilization of optimal
transport theory for transforming probability distributions.

2.1 Probability theory

Probability theory is one of the cornerstones in machine learning and deep learn-
ing methodologies, and a poor understanding of probability theory makes it diffi-
cult to grasp important ideas and methods. Therefore, we introduce some essential
and fundamental ideas to refresh the underlying theory and provide the minimum
knowledge needed to understand upcoming concepts.

This introduction is meant to be short and only refreshes parts of the field. We
will therefore leave out several noteworthy corollaries and edge cases. Only the
discrete cases, situations where the set of all possible outcomes is finite, are intro-
duced here as we believe extending them beyond does not provide a significantly
better understanding than what is captured in the discrete cases. The reader is
assumed to be familiar with basic set theory and mathematical notation.

Probability space

In probability theory, a construct to formally model a random process or experi-
ment is called a probability space. Probability spaces are the foundation of prob-
ability theory and provide a framework for analyzing and understanding random-
ness and uncertainty. They consist of three key elements:

1. A sample space, Ω, is the set of all possible elementary outcomes from a
random process or experiment.

2. An event space F , which is a selected number of subsets of Ω describing
events we would like to consider. An event E ∈ F represents a set of out-
comes of the experiment.

5
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3. A probability function P : F → [0,1], which assigns a probability to each
event in the event space, represented by a number between 0 and 1.

Figure 2.1: An illustrative figure of the three elements that together define a
probability space. A sample space Ω, an event A, and a probability measure P.
(Illustration from Paskin [27].)

In order to create a sensible model of probability, the elements must be defined
in such a way they satisfy three particular axioms, namely The axioms of probab-
ility:

1. The probability of an event is always non-negative, P(E)≥ 0 for all E ∈ F
2. The probability of the sample space is 1, P(Ω) = 1
3. For two disjoint events A, B ∈ F , the probability of both events happening is

equal to the sum of each respective event happening, P(A∪B) = P(A)+P(B)

It is important to note that all ω ∈ Ω are referred to as outcomes or ele-
mentary events. Moreover, the probability of an event E ∈ F is computed as
P(E) =
∑

ω∈E P(ω), the sum of the probability of all outcomes in the event. Since
we define each event as a subset of the discrete sample space, an event is con-
sidered countable, meaning it contains only finitely many elements.

Figure 2.2: Illustration of the axioms of probability theory. (Illustration from
Paskin [27].)

An example of a probability space is rolling a fair 6-sided die. Here, the sample
space would equal Ω = {1,2, 3,4, 5,6} all the individual sides and let the event
space F be the set of all subsets of the sample space. The event space would
then contain events such as ω = {6} ("the die rolled a 6") or ω = {1, 3,5} ("the
die rolled an odd number"). By the use of a fair die, the probability function
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can be defined for each outcome to be equal to 1/6. In formal terms, P(ω) =
1/6, for all ω ∈ Ω. The probability function could then be used to give the prob-
ability of a particular event happening, e.g., P({6}) = 1/6 and P({1,3, 5}) =
P({1}) + P({3}) + P({5}) = 3/6= 1/2.

Random variables

To quantify the probability of certain events, random variables serve as a form-
alization to "pick out" aspects of the experiment’s outcomes. A random variable
is defined as function X : Ω → Ξ from a sample space Ω to a measure space Ξ,
which is often the real numbers for continuous X . The purpose of X is to provide
a means of measuring events in a way that can be analyzed and understood. The
mapping of events to outcomes in Ξ allows exactly that.

Figure 2.3: A random variable X mapping outcomes to measure space. (Illustra-
tion from Paskin [27].)

Random variables can be used to define events, e.g., {ω ∈ Ω : X (ω) = t rue}.
Such a set contains all of the outcomes ω that result in the function X being true.
This allows us to define specific events and determine the probability of that event
happening by using the probability function P, e.g., P({ω ∈ Ω : X (ω) = 1}), which
is often reduced to just P(X = 1).

The choice of X depends on the nature of the experiment and the quantity of
interest. Its purpose is to reflect on some interesting outcomes of the experiments
and provide insight.

An example of a random variable is the outcome of rolling a fair 6-sided die.
We define the random variable X as the function that maps each possible outcome
of rolling the die to that number itself, X (ω) = ω. The sample space Ω is the set
{1,2, 3,4, 5,6}, which the co-domain Ξ also equals since we map the outcomes
to themselves. Using this random variable, we can define events such as X ≥ 4,
which is the event that the number rolled is greater than or equal to 4. We can
also calculate the probability of certain events, such as P(X = 3), which is the
probability of rolling a 3.
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Probability mass

The probability of a certain event in the sample space is calculated via the prob-
ability mass. Considering the random variable X takes on a specific value, it is
defined as measuring the probability mass of X where X = x . In general, the
probability mass function pX : Ξ→ [0, 1] is defined as pX (x) := P({ω : X (ω) =
x}) = P(X = x) for all x ∈ Ξ. For continuous random variables, this is instead
referred to as the probability density.

Figure 2.4: A probability mass function maps an outcome of a random variable
to a number. (Illustration from Paskin [27].)

For the probability mass function to be valid, every x ∈ Ξ needs to have a non-
zero probability mass, and the sum of the probability of each event must equal 1.
Formally summarized as

∑

x∈Ξ
pX (x) = 1 and pX (x)≥ 0, for all x ∈ Ξ.

As the probability mass function can provide the probability of any event described
by X , fetching the probability for all the possible values X can take provides us
with a probability distribution.

Probability distribution

A probability distribution provides a comprehensive understanding of the beha-
vior of a random variable and enables the calculation of fundamental statistics
such as the expected value and variance. Statistics offer insights into the random
variable’s behavior, facilitating predictions for future experiments and comparis-
ons with other probability distributions.

The expected value represents the weighted average of all possible outcomes,
offering insights into the random variable’s most frequently occurring average
value. It is defined as:

E[X ] =
∑

x∈Ξ
x pX (x). (2.1)

The variance measures how spread out the distribution is from the expected value.
It is defined as the expected value of the squared difference between the random
variable and its expected value:

Var[X ] = E[(X −E[X ])2] =
∑

x∈Ξ
(x −E[X ])2pX (x). (2.2)
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While the expected value and variance are essential descriptors for a useful dis-
tribution representation, higher statistical calculations known as moments can be
computed to provide more comprehensive insights. However, out of these various
moments, the expected value and variance are the most frequently utilized and
commonly reported statistics in academic research.

Multiple random variables

It is possible to define multiple random variables and extend the concepts dis-
cussed earlier to calculate the probability of multiple outcomes. Suppose we have
two random variables, X and Y , denoted by X : Ω→ Ξ and Y : Ω→ Υ , respect-
ively. The joint probability mass function pX Y (x , y) = P(ω : X (ω) = x , Y (ω) = y)
describes the probability of both X and Y taking certain values x and y , respect-
ively, where x ∈ Ξ and y ∈ Υ .

Figure 2.5: A probability mass function maps the outcome of two random vari-
ables to a number. (Illustration from Paskin [27].)

To compute the probability of an event involving both X and Y , we can use
the joint probability mass function, such as the probability that X takes a value
less than or equal to x and Y takes a value less than or equal to y , given by
P(X ≤ x , Y ≤ y) =

∑x
i=1

∑y
j=1 pX Y (i, j).

When several random variables (X1, X2, ...Xn) are considered in the same ex-
ample, grouping them into a single vector called a random vector is common. The
joint distribution of a random vector X= (X1, X2, ...Xn) is then denoted as

P(X1 = x1, X2 = x2, ..., Xn = xn),

where x1, x2, ..., xn are the respective outcomes of the random variables. This com-
pact notation reduces redundancy and enables one to discuss many related ran-
dom variables at the same time.

It is worth noting that when dealing with random variables and densities, the
probability space is always implicitly present behind the calculations, although it
is often overlooked. In most experiments, you do not have access to the probability



10 Kohmann, E.: GANs’ Ability to Capture Implicit Laws in Physical Systems

shape, but you can infer it through samples (and sometimes assumptions about
its shape, e.g., Gaussian).

Figure 2.6: The probability space is often implicit when working directly with
random variables and their joint densities. (Illustration from Paskin [27].)

2.2 Metrics and divergence

In the context of evaluating machine learning models and comparing probability
distributions, metrics and divergences play a crucial role. A metric, formally defined
as a function, quantifies the similarity or dissimilarity between objects or points in
space. In particular, a metric on a set X is a function d : X ×X → R that satisfies
the following properties for all x , y, z ∈ X :

1. Non-negativity: d(x , y)≥ 0, and d(x , y) = 0 if and only if x = y .
2. Symmetry: d(x , y) = d(y, x).
3. Triangle inequality: d(x , z)≤ d(x , y) + d(y, z).

Described with words: 1) the distance metric must always be greater and only
zero when considering the distance from itself, 2) the distance is symmetric, and
3) the distance is always shortest when not considering an intermediate point
unless it lies on the same line between x and z.

These properties ensure that a metric provides a valid measure of distance or
dissimilarity between points in the set X . The Euclidean distance on a plane is a
famous example: d2((x1, y1), (x2, y2)) =

p

(x2 − x1)2 + (y2 − y1)2.
On the other hand, the notion of divergences is a different type of measure

that does not satisfy all the axioms of a metric but is still considered crucial in the
field of statistics. A divergence measures the dissimilarity between two probabil-
ity distributions [28]. One commonly used divergence is the Kullbeck-Leibler (KL)
divergence, denoted as DKL(P ∥ Q), where P and Q are two probability distribu-
tions. The KL divergence quantifies the difference between the two distributions
by computing the expected value of the logarithmic difference between their prob-
abilities. Mathematically, the KL divergence is defined as:
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DKL(P ∥Q) =
∑

x∈X
P(x) log
�

P(x)
Q(x)

�

(2.3)

Despite being asymmetric, with DKL(P ∥ Q) ̸= DKL(Q ∥ P), and violating the tri-
angle inequality, the KL divergence remains highly valuable. It is widely used to
measure dissimilarity between probability distributions in various applications,
such as information theory and machine learning.

2.3 Optimal transport theory

Optimal transport is a problem concerning transforming one probability mass dis-
tribution to another as efficiently as possible. Thinking of one dirt pile and a hole
with the same volume, one can imagine filling in the hole by shoveling the dirt
into the hole with the least travel distance and dirt being moved around.

To introduce the idea of the theory, we will consider moving a distribution of
boxes from a stack defined by the probability measure pX to a stack qX in discrete
positions. The left-hand side in Figure 2.7 illustrates the defined stack for the two
distributions containing 6 boxes and 5 discrete positions. Here each box has a
mass equal to 1/6, and the probability mass of a particular position corresponds
to the sum of the mass of the boxes.

Figure 2.7: Left: Two probability distributions p (red boxes) and q (blue boxes),
illustrated of boxes with destiny equal 1/6. Right: A valid and optimal transport-
ation plan π (matrix) to move probability mass from the distribution p to look
like q. Blank matrix entries are zeros.

By using optimal transport, we would like to transform pX into qY using a
minimal amount of total work. Work is defined as the distance moved multiplied
by the mass transported. To determine the cost of moving a box at position x i to
y j , a transportation cost c is used and defined as:

c(x i , y j)
p = ||x i − y j||p, (2.4)
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where || · || denotes the norm, and the exponent p defines the costliness of moving
long distances. We set p to equal 1 for this example. This makes the cost function
a measure of the distance between two points, which is always positive.

In the discrete case, it is easy to construct a transportation cost matrix Ci j to
describe the distances from every x i to y j where the indices i and j specify the
index in the cost matrix. In our example, Ci j would be a 5× 5 matrix.

To determine how many units of mass to transport from one distribution to
another, a transportation plan π(x , y) is considered1. This is a map that explains
how much mass and where to transport it to transform the initial distribution into
the other and serves as the function we are interested in solving. The transport-
ation plan can also be registered as a matrix, πi j , with the same size as the cost
matrix, but where each entry describes how much mass to move from x i to yi . For
π to be meaningful and concise with our probability mass distributions, it needs
to satisfy three conditions:

1.
∑

j π(x i , y j) = p(x i), for all rows i ∈ {1,2, ..., 5}
2.
∑

i π(x i , y j) = q(y j), for all columns j ∈ {1, 2, ..., 5}
3. π(x i , y j)≥ 0, for all combinations i, j ∈ {1, 2, ..., 5}

Here condition 1) states that the total mass transported at a starting position x i
must equal the amount of mass available to be transported, which is p(x i). In the
example of a transportation plan in Figure 2.7, this can be thought of as summing
row-wise and obtaining the correct total mass for the red distribution. Similarly,
for condition 2), which states that where the mass is transported to, y j must equal
the amount available to be collected, which is q(y j). Using the same figure, this
can be understood as summing column-wise and obtaining the blue distribution.
Both conditions 1 and 2 make sure that all of the mass is considered when trans-
forming between the distributions. The third condition states that all transporta-
tion plans must have non-negative values: Moving negative mass is prohibited.

By combining the transportation costs and a transportation plan, we can for-
mulate an equation that computes the total work required to transform one distri-
bution into another. Multiplying each piece of mass by the distance it has moved,
the total work can be mathematically formulated as follows:

Total work=
∑

i

∑

j

πi jCi j , (2.5)

where we multiply the matrices component-wise and sum over all the indices.
The main objective considered in optimal transport theory is then to minimize
this quantity (equation 2.5), which can be achieved using linear programming.
However, when the number of observations, for instance, the cost and plan matrix,
becomes large, this is no longer feasible. Luckily, approximations and alternative

1Allowing the masses to be split corresponds to the Kanotorovich formulation of the optimal
transport problem. This is a relaxation of the Monge formulation of the problem, which is more
strict, thus, harder to solve. Kanotorovich’s formulation is more computationally feasible and com-
monly used in modern applications. For more details, see Villani [29] and Peyré and Cuturi [30]
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optimization problems exist to combat this issue.
The idea behind this formulation of the theory was to introduce it in a setting

that was intuitive and easy to grasp. Therefore, only discrete probability mass dis-
tributions with the smallest movable mass being 1/6 were considered. In reality,
this mass can be split into whatever quantity, and the distributions can be continu-
ous. This requires, however, a more detailed notation and familiarity with several
other ideas, which can be found in much more sophisticated works such as "Op-
timal Transport" by Villani [29] and "Computational Optimal Transport" by Peyré
and Cuturi [30].

2.3.1 Wasserstein distance

The Wasserstein distance, also known as the Earth Mover’s distance and first defined
by Kantorovich [31], is a commonly used method for quantifying the dissimilar-
ity between two probability distributions. It is exactly the same optimal transport
problem introduced in the previous section but formulated in terms of probability
theory. As a result, the Wasserstein distance has a seemingly complex representa-
tion that is expressed as follows:

Wp(pX , qY ) =
�

inf
π∈Π(pX ,qY )

E(x ,y)∼π [c(x , y)p]
�1/p

, (2.6)

where Wp(pX , qY ) represents the Wasserstein distance between two probabil-
ity measures, pX , and qY , and the cost of transporting mass from x to y is given
by c(x , y). The "inf" denotes the selection of the least costly element in the set of
all possible transport plans π ∈ Π(pX , qY ), which represent all possible transport
plans that move mass from pX to qY . The power p in the cost function acts as a
sensitivity to large distances, and taking the p-th root at the end ensures that the
resulting distance measure is a true metric (defined in section 2.2). The compu-
tation of the work can be rephrased as the integration of the cost function over
the joint probability space defined by the transport plan π. This integration can
be equivalently expressed as the expected value of the cost function. Here shown
for continuous variables X and Y :

Total work=

∫ ∫

c(x , y)pπ(x , y)d x d y

=

∫

c(x , y)pdπ(x , y)

= E(x ,y)∼π [c(x , y)p]

(2.7)

The Wasserstein equation satisfies all three axioms of a metric (defined in
section 2.2), which means it is a proper distance function defined to measure the
distance between two probability distributions. This can be verified as W(P,Q) = 0
only when P = Q. It is symmetric W(P,Q) = W(Q, P) as this would correspond
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to just a transposed transport plan and satisfies the triangle inequality. It is more
difficult to prove that it holds the triangle inequality but is shown by Clement and
Desch [32].

As stated in section 2.3, calculating the Wasserstein distance between two
probability distributions is not feasible if the number of observations is large.
However, some special cases exist where the Wasserstein distance can be com-
puted easily, which will be important for later sections. One of those occurrences
is when the distributions involved follow a Normal distribution. Calculating the
Wasserstein-2 distance (with p = 2) can then be obtained using this formula:

W2 (N(m1,Σ1), N(m2,Σ2)) = ||m1 −m2| |2 + Tr
�

Σ1 +Σ2 − 2(Σ1/2
1 Σ2Σ

1/2
1 )

1/2
�

,
(2.8)

for two normal distributions N (m1,Σ1), N (m2,Σ2) with means m1,m2 ∈ Rd ,
and covariance matrices Σ1,Σ2 ∈ Rd×d over dimensions d, which often represent
the number of variables in a dataset. Here Tr denotes the Trace operator, which
sums over all elements on the main diagonal. In the case of symmetry where
Σ1Σ2 = Σ2Σ1, the formula can be written in the simpler form

W2 (N(m1,Σ1), N(m2,Σ2)) = ||m1 −m2||
2 +
�

�

�

�

�

�Σ
1/2
1 −Σ1/2

2

�

�

�

�

�

�

2

F
, (2.9)

where || · ||F denotes the Frobenius norm, essentially summing the squares
off all elements and taking the square root as such for a matrix A of size n×m,
||A||F =
Ç

∑n
i=1

∑m
j=1 |ai j|2. Proof of why this is true is provided by Givens and

Shortt [33].
The second case where the calculation of the Wasserstein distance happens to

be straightforward is for univariate distributions. In the case of two sets of n ob-
servations {x i}ni=1, {yi}ni=1 from two univariate distributions pX , qY , respectively,
the distance can be calculated using

Wp(pX , qY ) =
1
n

n
∑

i=1

||x i − yi||p, (2.10)

where the sets {x i}ni=1, {yi}ni=1 are sorted, such that x1 ≤ ... ≤ xn and y1 ≤ ... ≤
yn. The formula can be expressed analytically and more precisely defined but is
avoided here to reduce confusion. A complete formulation is provided by Nadjahi
[26] on page 37.

In cases when the distributions are not Gaussian or univariate, the Wasserstein
is intractable to calculate for high-dimensional problems. However, recent ad-
vances in optimal transport have provided estimation methods of the Wasserstein
distance, which have been popularized and allow the application of optimal trans-
port to high-dimensional data. We will introduce and employ two of these meth-
ods: the Sinkhorn divergence and the Fast approximation of the Sliced-Wasserstein
distance.
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2.3.2 Sinkhorn divergence

Sinkhorn divergence [34] estimates the Wasserstein distance by introducing a no-
tion of entropy in the optimization objective, referred to as entropic regularization.
This has a blurring effect on the optimal transport plan and allows for different
algorithms that can calculate the new optimum more efficiently. Here we will not
introduce the algorithm behind the calculation but rather the idea behind this
formulation of the problem. See Cuturi [34] for details concerning the algorithm.

The main difference between the Wasserstein distance and the Sinkhorn diver-
gence is that the latter introduces an entropy term H in the original Wasserstein
distance. It measures the entropy of a transport plan, defined as:

H(π) = −
∑

i

∑

j

πi j

�

log(πi j)− 1
�

, (2.11)

where the transport plan π is a matrix, and H is the entropy function. The entropy
function acts as a regularizer that punishes the transport plan for having entries
equal or very close to 0, e.g., if one of the entries in π is 0, H(π) = −∞. Adding
the regularization function to the original Wasserstein-distance objective, we get
the following:

Wp,ε(pX , qY ) =
�

inf
π∈Π(pX ,qY )

�

E(x ,y)∼π [c(x , y)p]− εH(π)
	

�1/p

. (2.12)

Here the Wp,ε(pX , qY ) denotes the estimated Wasserstein distance with a new
parameter ε, which controls the significance of the entropy term. Notice that the
infimum considers both terms. This results in the optimal transport plan being less
strict and encouraging mass transportation more evenly, not just from the high
peaks. Figure 2.8 shows the effects of reducing the regularization strength for a
simple 1-dimensional optimal transport problem. The top heatmaps and bottom
surface plots visualize the optimal transport plans for different ε values, where
the marginal densities are displayed as blue and red lines on the bottom plots.
It should be noted that the Sinkhorn divergence does not satisfy all of the ax-
ioms to be defined as a metric, which the original Wasserstein distance does, as
Wp,ε(pX , pX ) ̸= 0. Hence it is called a divergence.
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Figure 2.8: The impact of ε between the optimal transport plan between two
1-dimensional densities. (Illustration from Peyré and Cuturi [30]).

2.3.3 Sliced-Wasserstein distance

The Sliced-Wasserstein distance [35] is an alternative approach for estimating the
Wasserstein distance by simplifying the computation by mapping high-dimensional
data onto a 1-dimensional space. This allows the Wasserstein distance to be estim-
ated using 1-dimensional distributions instead of high-dimensional distributions,
which is much more feasible.

The technique involves slicing the distributions along various random direc-
tions defined by random unit vectors ul . The slicing is defined as taking the inner
product of the unit vector and all observations {x}ni=1, denoted 〈ul , x i〉, which
maps the observations to R. This defines our projected distribution slice, which
we write u∗l pX over the measure pX , and is used to calculate the Wasserstein dis-
tance. By doing this multiple times with different random directions, we obtain
a set of 1-dimensional Wasserstein distances that can be averaged to efficiently
approximate the high-dimensional Wasserstein distance.

More formally, let pX and qY be two probability measures defined on Rd . The
Sliced-Wasserstein distance is defined as follows:

SW p(pX , qY ) =

�

1
L

L
∑

l=1

�

Wp(u
∗
l pX , u∗l qY )
�p
�1/p

, (2.13)

where ul is a random unit vector of size 1 × d sampled uniformly from a unit
sphere S = {θ ∈ Rd : ||θ || = 1} and u∗l pX , u∗l qY denote the projections of pX and
qY onto the space defined by ul . The Sliced-Wasserstein distance computes the
Wasserstein distance between the 1-dimensional projections of pX and qY along
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L random directions and takes the p-th root of the average of the L distances.
The number of random directions L determines the accuracy of estimation, where
more is better. Letting L→∞ has been shown to make the SW estimate converge
to the true Wasserstein distance.

Necessary details and facts to understand exactly why this is true are out of
the scope of this thesis but provided by Nadjahi [26] on page 40.

The important trick that makes this method work is that projecting the samples
onto a 1-dimensional space allows us to utilize the closed-form formula for uni-
variate distributions (equation 2.10). The Wasserstein distance can then be ef-
ficiently calculated for each projected distribution and averaged. Algorithm 1
presents a relatively straightforward approach to computing the Sliced-Wasserstein
and gives a clear overview of how the projections are obtained and used.

Algorithm 1 Algorithm to calculate the Sliced-Wasserstein.
1: SW = 0
2: for l = 1, · · · , L do
3: Sample ul uniformly from the unit sphere S
4: for i = 1 to n do
5: Project: x ′i = 〈ul , x i〉, y ′i = 〈ul , yi〉
6: end for
7: Sort: x ′(1)≤ x ′(2)≤ · · · ≤ x ′(n), y ′(1)≤ y ′(2)≤ · · · ≤ y ′(n)

8: SW ← SW + 1
n

n
∑

i=1
|x ′(i)− y ′(i)|p

9: SW = (SW/L)1/p

10: return SW
11: end for

One of the downsides of this method is its stochastic nature. The estimation ac-
curacy depends on the uniform sampling of unit vectors, which will yield varying
estimates over different runs. As such, this method may not be ideal for situations
that require deterministic calculations, e.g., when comparing GAN performance.
There exists, however, an estimate of the Sliced-Wasserstein that is deterministic
and faster to compute called the Fast approximation of the Sliced-Wasserstein dis-
tance.

2.3.4 Fast approximation of the Sliced-Wasserstein distance

The Fast approximation of the Sliced-Wasserstein distance (SW) is obtained by
sampling projection vectors from a standard Gaussian distribution instead of uni-
formly on a unit sphere. Using the central limit theorem, the sampling of many
such vectors has been shown by Reeves [36] to converge to a Gaussian distribu-
tion. Using this result, the non-deterministic Sliced-Wasserstein can be reformu-
lated to consider the distance between two normal distributions, thus allowing
the closed-form formula (equation 2.9) for calculating the Wasserstein distance
to be used.
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The details and proof as to why this is true are left out as it is considered out
of scope for this thesis, but we will explain the main concept and show how it is
calculated. Details underlying this method are provided on page 101 in Nadjahi
[26].

Equation 2.14 represents the Fast approximation of the Sliced-Wasserstein dis-
tance, denoteddSW 2(µd ,νd). The approximation contains two terms, the first be-
ing the Wasserstein distance between two Gaussian distributions, and the second
term is the squared Euclidean distance between the means of the probability meas-
ures µd and νd , denoted by mµd

and mνd
, respectively.

dSW 2(µd ,νd) =W2

�

N
�

0,
1
d

m2(µ̄d)
�

,N
�

0,
1
d

m2(ν̄d)
��

+
1
d
∥mµd

−mνd
∥2

(2.14)
The first term is a consequence of the Sliced-Wasserstein distance approaching

a normal distribution when sampling projection vectors from a Gaussian. Calcu-
lating the Wasserstein between two normal mean-centered probability measures
µ̄d and ν̄d is then used as an estimate. The estimation error is shown by Nadjahi
[26] to approach 0 as d → ∞, but fast enough for the estimator to be useful.
The means of these Gaussian distributions are set to zero, while the covariance
matrix is set to 1

d m2(µ̄d) and 1
d m2(ν̄d), respectively. Here, m2(ξ) represents the

covariance of the probability measure ξ, while ξ̄ is the centered version of the
probability measure ξ ∈ {µd ,νd}.

To compute the values of mξ and m2(ξ), the mean and covariance of the prob-
ability measure ξ containing "n" samples are calculated using equations (1) and
(2). Equation (1) involves calculating the mean of the probability measure ξ, while
equation (2) involves calculating the covariance used in the normal distribution.
Since the covariance is calculated for mean-centered probability measures, it sim-
plifies to being the sum of the squared elements (squared Euclidean distance).
The resulting value of m2(ξ) is then divided by the number of dimensions d.

mξ =
1
n

n
∑

j=1

x j (1) m2(ξ) =
1
n

n
∑

j=1

∥x j∥2 (2)

To provide a clearer understanding of how this is calculated, Algorithm 2 provides
an example for calculating the Fast approximation of the Sliced-Wasserstein dis-
tance between two discrete probability measures µd ,νd . Both probability meas-
ures containing "n" observations {xd}nj=1 with xd = (x1, ..., xd) for some random
variables x i .
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Algorithm 2 Central Limite Theorem approximation of the Sliced Wasserstein
distance
Require: µ: tensor, shape (nsamples, dim), samples in the source domain
Require: ν: tensor, shape (nsamples, dim), samples in the target domain
Ensure: cost: float, Sliced Wasserstein Cost

1: function m2(X )
2: return 1/n

∑n
i=1 X 2

i,:
3: end function
4: function SW APPROXIMATION(µ, ν)
5: mµ←mean(µ, axis= 0)
6: mν←mean(ν, axis= 0)
7: µ̄← µ−mµ
8: ν̄← ν−mν
9: W ←
�p

m2(µ̄)−
p

m2(ν̄)
�2

10: d ← dim
11: res← 1

d

�

�mµ −mν
�

�

2

12: return |W + res|2
13: end function





Chapter 3

Generative Adversarial Networks

This chapter introduces the fundamental concept and context of the framework
investigated in this thesis, namely the Generative Adveserial Network (GAN). The
chapter is divided into three sections, starting with an introduction of the GAN
framework, followed by a formal definition where we additionally motivate and
assemble its objective function, and finally, a review of challenges associated with
training them along with some proposed solutions. The sections build on content
from the preliminary project by Kohmann [37] but are reformulated and with
additional material.

3.1 Overview

A Generative Adveserial Network (GAN) is a deep learning framework that was
first introduced in 2014 by Goodfellow et al. [1] as a new generative model to
generate realistic samples. The method utilizes two models, typically neural net-
works, that compete with opposing objectives. By having the models compete, the
optimization process can be interpreted as a game and designed using game the-
ory such that the best strategy is to produce samples that match the desired target
samples.

One of the models is referred to as the generator (G) and is the model which
creates new samples. The generator takes as input random noise and produces a
new sample that ideally resembles the target dataset. The other model is referred
to as the discriminator (D), which aims to distinguish between real samples from
the target dataset and fake samples produced by the generator. The discrimin-
ator takes as input a sample and outputs a probability score that indicates the
likelihood of the sample being real or fake. The generator and discriminator are
trained in an alternating fashion, like many two-player games. The generator at-
tempts to produce samples that fool the discriminator into thinking they are real,
while the discriminator tries to classify the samples as real or fake correctly. As the
training progresses, the generator improves its ability to produce realistic samples,
while the discriminator improves its ability to distinguish between real and fake

21
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samples. Once the training is complete, the generator can be used to produce new
samples that are similar to the target dataset.

Although the name of the framework state that they are "adversarial", they
are instead the opposite, very cooperative. The term "adversarial" is used because
GANs can be effectively analyzed using game theory tools.

3.2 Formal definition

A GAN consists of three components: a collection of target samples and two dis-
tinct neural networks, a generator, and a discriminator. Considering the data do-
main X ⊂ Rd , the target data can be thought of in probabilistic terms as a col-
lection of n samples {xi}ni=1 from a probability distribution ptarget(x), where xi ∼
ptarget(x). The probability distribution is considered inaccessible, with only the
target samples being available, but defined to consider all possible samples over
the data domain with probability mass only distributed to the target samples and
their reasonable variations.

The generator is a neural network that can be represented as a function G :
Z → X from noise space Z ⊂ Rr to the space of all possible samples X . Its pur-
pose is to map random noise to the data domain, which should ideally resemble
the target samples. The noise vector z is drawn from a selected probability dens-
ity distribution pz = N (0, Ir), where Ir denotes the identity matrix of size r × r
1. Having the generator constantly adapt to different noise vectors is what gives
the generator the ability to generalize and produce new, diverse samples. Also,
utilizing a simple probability distribution to sample noise vectors causes the gen-
eration of new samples to be very easy and is what is considered generative in
this framework.

The generation of samples can be thought of as following an implicit prob-
ability distribution with density pgen(x), where "gen" is short for generated. This
probability distribution captures the distribution of the generated samples over
the same data domain X through the mapping defined by G(z), where z∼ pz .

Having two probability densities over the same data domain provides a basis
for evaluating how well the generator performs. Specifically, the generator aims
to produce samples that approximate the target probability distribution such that
pgen(x) closely matches ptarget(x). When this is achieved, the generator can be
efficiently used as a process to obtain new samples. The probability distributions
do not initially match each other, so tuning the generator network to gradually
produce samples closer to the target distribution is required. Assessing how similar
two inaccessible probability distributions are is a very challenging task but can be
estimated using a neural network, which is the purpose of the discriminator.

The discriminator is a function D : X → [0, 1] from the data domain to the
set of real values between 0 and 1. It acts as a binary classifier (considering the

1Other probability distributions, such as a uniform distribution between -1 and 1, have been
considered in the literature. They can be selected arbitrarily but should, most importantly, be fast
and simple to sample from.
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official GAN introduced by Goodfellow et al. [1]) whose objective is to discrimin-
ate between target and generated samples. For every sample, it produces a single
scaler representing the confidence of the sample belonging to the target (=1) or
the generated (=0) distribution. The confidence information of the discriminator
can be used to obtain a dissimilarity measure between the two probability distri-
butions. We will take a step back to understand why this is true and define what
it means and how to measure the similarity between probability distributions.

Let us consider two probability distributions represented by their densities,
ptarget(x) and pgen(x). Our objective is to evaluate how similar these distributions
are to each other so that we can adjust the generator network to make pgen(x)
more similar to the target distribution. In theory, we can achieve this for every x ∈
X by comparing the two probability densities using either the density difference
method, where r∗(x) = ptarget(x)− pgen(x), or the density ratio method, which is
considered in the original GAN:

r∗(x) :=
ptarget(x)

pgen(x)
(3.1)

The density ratio is a typical quantity that is commonly encountered in a vari-
ety of statistical divergences [28], for instance, in the Kullback-Leibler divergence
(equation 2.3).

The density ratio of an arbitrary random vector x indicates the extent to which
we should modify pgen(x) to match ptarget(x). This knowledge can be utilized to
improve the generated sample by guiding the learning of the generative network
to minimize this quantity. Despite appearing as a novel technique, the density ratio
serve as a significant tool in different branches of statistics and machine learning
[38–40].

Calculating the density ratio explicitly is not possible since ptarget(x) and pgen(x)
are unavailable to us when working with GANs. Getting around this problem is
achievable by directly estimating the density ratio r∗(x) without ever needing to
assess ptarget(x) and pgen(x) separately. This turns out to be much easier, and sev-
eral methods for doing so exist [41].

Estimating the density ratio can be formulated as a probabilistic classifica-
tion task [39, 41]. By training a discriminator to distinguish between generated
and target samples efficiently, the density ratio can be formulated, in probabilistic
terms, as a conditional probability P(Y = y|x) with the sample being generated
divided by the complementary probability:

r∗(x) =
P(y = 0|x)

1− P(y = 0|x)
=

D(x)
1− D(x)

(3.2)

Here Y indicates whether x comes from the generated (with y = 0) or tar-
get distribution (with y = 1). The probability function P assigns the probability
to the random variable originating from the generator, which is what discrimin-
ator D also predicts. This avoids the need for computing the individual densities,
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which was previously required (equation 3.1), and only depends on a binary clas-
sifier D. Mohamed and Lakshminarayanan [41] and Tiao [42] provides a detailed
derivation of this fact.

The final ingredient needed in the GAN framework is constructing an objective
function for training the neural networks. We will motivate and define the object-
ive function for the generator and discriminator as introduced by Goodfellow et
al. [1].

3.3 Mathematical derivation of the objective function

As the discriminator is simply a binary classifier, using the Binary Cross Entropy
(BCE) to measure the classification loss is a natural choice. The BCE loss formula
is defined as:

BC E( ŷ , y) = −y log( ŷ)− (1− y) log(1− ŷ), (3.3)

where the ground truth label for a sample is represented by y = {0, 1}, while
the predicted probability that y is the true label is represented by ŷ ∈ [0, 1].

The discriminator aims to maximize its ability to correctly classify samples
drawn from the target distribution ptarget(x) as real. This can be achieved by min-
imizing the BCE loss. To do this, the ground truth label is set to 1, and the predicted
label is set to the discriminator’s output for the sample, denoted ŷ = D(x). This
results in the following expression for the BCE loss:

BC E(D(x), 1) = −1 log D(x)− (1− 1) log(1− D(x))

= − log D(x)
(3.4)

On the other hand, for generated samples G(z), the discriminator aims to min-
imize the probability of incorrectly classifying them as real. This can be achieved
by minimizing the discriminator’s output for the generated samples, denoted as
D(G(z)), to be as close to zero as possible. In the BCE loss, this can be achieved
by setting the ground truth label to 0 and the predicted label to D(G(z)). The
expression for the BCE loss for generated samples is thus:

BC E(D(G(z)), 0) = −0 log(D(G(z)))− (1− 0) log(1− D(G(z)))

= − log(1− D(G(z)))
(3.5)

By merging equation 3.4 and 3.5, we can establish a value function V that
takes into account both situations. To maintain consistency with the original frame-
work and make notation easier, we use the negation of both BCE equations as
such:

V (D, G) = −BC E(D(x), 1)− BC E(D(G(z)), 0)

= log(D(x)) + log(1− D(G(z)))
(3.6)
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Notice that V depends on two types of samples - real and generated - making
it a function also dependent on network parameters defining D and G. Since we
negated the loss for the single cases, the discriminator would now aim to maximize
this quantity, precisely maxD V (D, G), while keeping the parameters of G constant.

To account for the general loss and not just individual samples, the value
function is expanded by evaluating the expected loss for all samples. The general
value function can be represented by applying the expected value to the relevant
terms with their corresponding probability densities. Theoretically, optimizing this
quantity for a fixed generator G should lead to the optimal discriminator. This is
the true theoretical quantity the discriminator would like to maximize:

V (D, G) = Ex∼ptarget(x) [log D (x)] +Ez∼pz
[log (1− D (G (z)))] (3.7)

Discriminator objective : max
D

V (D, G) (3.8)

When turning theory into practice, an estimation of the value function is instead
considered. This is because it is impossible to calculate the expected value across
the whole data domain. So to obtain an estimate and for efficiency, Monte Carlo
sampling is used to approximate the expected values by averaging over a subset
of samples (also described as a minibatch).

The generator’s objective function is the opposite of the discriminator, mean-
ing that it aims to minimize the discriminator’s objective and make it perform
poorly. This can be expressed mathematically as

Generator objective : min
G

max
D

V (D, G) (3.9)

The only aspect of the value function that the generator can control is
Ez∼pz

[log (1− D (G (z)))], which necessitates generating samples that cause D(G(z))
to be high. An approach to achieving this is by producing samples that resemble
the target samples.

The generator and discriminator models improve iteratively through the value
function as the generator attempts to fool the discriminator, and the discrimin-
ator improves its ability to distinguish between the samples. This cycle enables
both models to improve progressively and has been proven to converge in an
ideal theoretical world2. When the generator has learned to fully capture the tar-
get distribution, making generated samples indistinguishable from real samples,
Goodfellow et al. [1] showed that the discriminator would guess 50% for every
sample. However, expecting this behavior in practical applications is not realistic
[43].

It is not obvious, but this also corresponds to minimizing the dissimilarity
between ptarget(x) and pgen(x). To illustrate this, we’ll consider the optimal dis-

criminator (shown by Goodfellow et al. [1]), denoted D∗ =
ptarget(x)

ptarget(x)+pgen(x)
, mean-

ing it can distinguish the samples the best possible way. Plugging the optimal dis-

2This is based on two main assumptions. 1) The capacity of the discriminator and generator is
sufficient, 2) the discriminator is considered optimal for every generator update[1].



26 Kohmann, E.: GANs’ Ability to Capture Implicit Laws in Physical Systems

criminator into the objective function of the generator (equation 3.9), minG V(D∗, G),
allows us to rewrite it:

min
G

V(D∗, G) =Ex∼ptarget(x) [log D∗ (x)] +Ez∼pz
[log (1− D∗ (G (z)))]

=Ex∼ptarget(x) [log D∗ (x)] +Ex∼pgen
[log (1− D∗ (x))]

=Ex∼ptarget(x)

�

log
ptarget(x)

ptarget(x) + pgen(x)

�

+

Ex∼pgen(x)

�

log
pgen(x)

ptarget(x) + pgen(x)

�

=

∫

X
ptarget(x) log

ptarget(x)

ptarget(x) + pgen(x)
dx+

∫

X
pgen(x) log

pgen(x)

ptarget(x) + pgen(x)
dx

(3.10)

Using a formulation of the Jensen-Shannon divergence (DJS), which is a sym-
metric Kullbeck-Leibler divergence (equation 2.3), it is possible to derive the re-
formulated objective of the generator (equation 3.10) plus some additional con-
stants:

DJS(ptarget ∥ pgen) =
1
2

DKL(ptarget ∥
ptarget + pgen

2
) +

1
2

DKL(pgen ∥
ptarget + pgen

2
)

=
1
2

�∫

X
ptarget(x) log

2ptarget(x)

ptarget(x) + pgen(x)(x)
dx

�

+

1
2

�∫

X
pgen(x) log

2pgen(x)

ptarget(x) + pgen(x)(x)
dx

�

=
1
2

�

log2+

∫

§
ptarget(x) log

ptarget(x)

ptarget(x) + pgen(x)(x)
dx

�

+

1
2

�

log2+

∫

X
pgen(x) log

pgen(x)

ptarget(x) + pgen(x)(x)
dx

�

=
1
2

�

log 4+min
G

V(D∗, G)
�

(3.11)

By rearranging the terms and isolating the generator’s objective, we obtain the
following:

min
G

V(D∗, G) = 2DJS(ptarget ∥ pgen)− log4, (3.12)

where the Jensen–Shannon divergence measures the dissimilarity between the
target and generated probability densities. The Jensen-Shannon divergence is al-
ways greater than or equal to zero and only equal to zero when the target and
generated distributions are the same, meaning ptarget = pgen. This implies that for
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the generator to minimize the value function, it must also minimize the dissimil-
arity between the generated and target samples, which we wanted to show.

Figure 3.1 provides an overview of the concepts related to the GANs frame-
work and the gradients used for updating the neural networks. The generator
and discriminator are identified as having parameters θg and θd , respectively. The
gradients used for updating the networks are obtained by differentiating the value
function with respect to the appropriate network parameters. During the gradient
calculation, the parameters of the opposing network are held constant, similar to
an opposing player remaining still when a player is contemplating a "move."

Figure 3.1: A GANs illustration with the forward and backward pass marked
as continuous and dotted lines, respectively. The gradients used to update each
network are provided on the dotted lines. The expected values are replaced with
a Monte Carlo sampling of m samples to estimate the value function.

3.4 Challenges

Despite the promising concept of GANs, they are known for their difficulty in train-
ing. This can be attributed to multiple factors, such as the design of the loss func-
tion, sensitivity to specific architectures, and the conflicting objective between the
generator and discriminator [44]. These instabilities pose significant challenges
in developing practical applications, highlighting the need for research to address
these obstacles. Since the initial framework was published in 2014, there have
been various proposed modifications to make the framework more robust and
controllable. Hence, a short review of some proposed solutions will be covered
here to understand when GANs fail and how to avoid common mistakes. Such
knowledge will be essential when selecting a GAN framework and making them
produce the desired results. Much of the content concerning this chapter is based
on the preliminary project by Kohmann [37].
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3.4.1 Vanishing gradients and instability

The generator objective function presented earlier (equation 3.9) is unstable in
practice, as it provides poor-quality, or none, gradients to the generator when the
discriminator is too confident. This is often the case in the early stages of training
when the generator produces low-grade samples, and the discriminator is trained
too quickly such that it manages to distinguish between target and generated
samples with high confidence. This causes log(1−D(G(z))) to saturate and leaves
the generator with subtle gradients to update on [1].

To address this issue, Goodfellow et al. [1] proposed a new objective for the
generator while keeping the discriminator’s objective unaltered. Instead of min-
imizing log(1 − D(G(z))), they suggested that the generator could rather max-
imize the failure of the discriminator to recognize generated samples as fake,
maxG log D(G(z)). This new generator objective yields more rich gradients, en-
abling it to learn effectively even with a confident discriminator. While this solu-
tion somewhat mitigates the problem, it is purely heuristically motivated and not
based on any theoretical foundation. As a result, several other alternative solu-
tions have been proposed.

The most influential proposed solution has been to adopt a different statist-
ical distance as the objective function, namely the Wasserstein distance (equation
2.6). The Wasserstein distance is always defined, unlike the Jensons-Shannon di-
vergence used in the original GAN, which is only defined if the two probability
densities overlap. This completely avoids the vanishing gradient problem for the
generator and serves as one of the most influential proposed solutions to the GAN
framework.

Arjovsky et al. [45] was one of the first to successfully implement the Wasser-
stein distance into the objective function. It was possible due to a reformula-
tion of the Wasserstein 1-distance (the p-th root equal to 1), referred to as the
Kantorovich-Rubinstein duality [46]:

W(pX , qY ) = sup
∥ f ∥L≤1

Ex∼pX
[ f (x)]−Ey∼qY

[ f (y)] (3.13)

With this new approach, the discriminator is seen as an estimator of the best
cost function f rather than a classifier. Unlike previous GAN models where the
discriminator output is bounded between 0 and 1, this new model considers the
discriminator as a critic, estimating a function f instead. The function f represents
the cost of loading and unloading mass at the position defined by x and y. The
function must be 1-Lipschitz continuous (represented as ∥ f ∥L ≤ 1), meaning it
has to be smooth and not change rapidly (the derivative of f at any point is less
than or equal to 1).

The redefined discriminator changes the training process of the GAN. It is
now more beneficial to update the discriminator (critic) multiple times before
updating the generator. A more optimal discriminator (critic) provides a better
approximation of the Wasserstein distance, hence more accurate gradients for the
generator.



Chapter 3: Generative Adversarial Networks 29

Although the Wasserstein distance has gained significant recognition as an
objective function for GANs, it is not without flaws. Several alternative objective
functions, some of which are based on the same theory as Wasserstein, have been
proposed. However, there is still no agreement on which objective function is the
most practical, and selecting a suitable one remains an unresolved issue [44].

However, various straightforward solutions exist to overcome the vanishing
gradient problems in GANs. For example, a strategy suggested by Salimans et al.
[47] proposes modifying the BCE loss function (equation 3.4) by using a slightly
smaller value than 1, such as 0.9, as the real target label. This method helps pre-
vent the discriminator from being too confident in its predictions. Another way
to reduce the confidence of the discriminator is by adding Gaussian noise to both
the target and generated samples and gradually decreasing the amount of noise
over time to stabilize the training process. According to Sønderby et al. [48], this
technique can prevent the early overfitting of the discriminator.

3.4.2 Mode collapse

Mode collapse, or mode drop, occurs in GANs when the generator only produces
a limited subset of the modes or classes in the target distribution. When this hap-
pens, the generator has learned to generate only parts of the target distribution,
leaving out the specific regions or modes we want to produce. The reason behind
this behavior is that the generator is able to trick the discriminator with some gen-
erated samples, which the discriminator cannot distinguish from the real ones, and
then continue only to generate these samples. Since the generator has no reason
to switch to or generate other modes or classes, the GAN will only optimize for a
subset of the modes or classes. This is equivalent to the minimax game between
the discriminator and the generator ending up in a local Nash equilibrium. All
other strategies would result in a worse state for both players [49].

One of the significant issues with mode collapse is that it occurs often and
unexpectedly. This has made it an important research topic with numerous pro-
posed solutions to tackle this issue, introducing fixes for almost every component
in the GAN framework. In one such solution, Arjovsky et al. [45] introduced the
Wasserstein distance as a new objective function to achieve more stable gradients
for the generator. However, they also found that their GAN became more prone
to mode collapse, which they attributed to the quality of gradients that the critic
(discriminator) produced for the generator. This led to the suggestion that the
robustness of the critic is linked to mode collapse [44, 45, 50].

Liu et al. [51] investigated the robustness of the discriminator in GANs more
closely and found that the spectral distribution of the weights in the discriminator,
precisely the singular values of W SN (W ) (with W representing a weight-matrix),
was strongly linked to mode collapse. They noticed that mode collapse caused a
dramatic drop in the singular values, a phenomenon they named spectral collapse.
To address this problem, they introduced a spectral regularization term in the
objective function, which prevented spectral collapse and improved performance.
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Kodali et al. [43] investigated the reasons behind mode collapse in GANs by
analyzing their convergence behavior. They discovered that the discriminator pro-
duces sharp gradients around some target sample points, encouraging the gener-
ator to make the same output for slightly different noise vectors. To overcome
this issue, they proposed a gradient penalty term to avoid moving quickly to local
equilibria, which improved the GAN stability.

Similarly, Durall et al. [52] tackled the problem of local equilibria using a
different approach. They found that gradients near local equilibria produce high
eigenvalues in the Hessian of the loss, which is a sign of premature mode collapse.
To address this, they developed the NuGAN optimizer, which uses second-order
derivative information to avoid local Nash equilibria and prevent mode collapse
by steering away from such steep gradients.

Other proposed approaches to combat mode collapse include using multiple
generators (MGAN)[53], conditioning on labels (cGAN)[54] and unrolling to see
future behaviors (Unrolled-GAN)[55]. Saxena and Cao [44] lists many other and
unique methods but acknowledges that there are still several unsolved issues and
few GAN frameworks are robust against all errors.

Despite the numerous proposed solutions, mode collapse is not yet fully un-
derstood. Since most research on this topic has been in the image domain, it is un-
clear whether these solutions will be effective in other domains, such as sequential
data. Nevertheless, since many of the proposed solutions are not domain-specific,
there is potential to modify and test these methods for different types of GANs.

3.4.3 Other factors

In addition to the problems discussed is their sensitivity to architectural design and
hyperparameter choice. Slight changes to the initial weights or learning rate can
significantly affect the model’s performance, and it is not clear what the optimal
settings should be. Therefore, training GANs often involves much trial and error
in finding a good combination of hyperparameters, which makes it common for
the model to fail or produce unsatisfactory results.



Chapter 4

Related work

This chapter presents the literature review on two main subjects: GANs for time
series generation and previous studies focusing on constrained and physics-informed
GANs. The first topic discusses various significant frameworks that enable the
generation of time series by employing different objective functions and archi-
tectural designs, aiming to present a comprehensive overview of viable methods.
The second topic provides a summary of past research in this area, highlighting
existing knowledge and identifying areas that require further investigation.

4.1 GANs for time series generation

In this section, we will cover several different architectures that have achieved
noteworthy results concerning their date of publicity and improvement over pre-
vious state-of-the-art designs. Each framework has a focus on architecture design
choices, objective function, and evaluation metrics used. Much of this content was
also present in the preliminary project [37].

4.1.1 Continuous-RNN-GAN (C-RNN-GAN) (2016)

One of the earliest attempts to extend the GAN framework to operate on sequen-
tial data was by Mogren [56] in an attempt to generate new classical music. They
modified the original framework to function on continuous real-valued time se-
quences and incorporated modules to identify temporal patterns, which enabled
them to create new musical compositions.

The model architecture was relatively straightforward, comprising a generator
with an Long Short-Term Memory (LSTM) and a discriminator with a bidirectional
LSTM. The output of each LSTM cell in the discriminator was passed through a
linear layer with sigmoid activation to determine the confidence level for the clas-
sification of the generated sample at each time step and then return the average
confidence. This means the discriminator D : XT → [0,1] returns a single value
for each sample x1:T , where T is the sequence length. They then used the original
BCE objective functions to train the models:

31
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max
D

V(D, G) = Ex1:T∼ptarget
[log D (x1:T)]] +Ez1:T∼pz

[log (1− D (G (z1:T)))]

max
G

V(D, G) = Ez1:T∼pz
[log (D (G (z1:T)))]

(4.1)

Despite facing obstacles such as vanishing gradients and mode drop in the gen-
erated samples, Mogren [56] employed simple techniques such as freezing the
discriminator when it became too confident, as suggested by Salimans et al. [47],
to tackle these challenges. The generated samples were evaluated primarily using
subjective music-specific metrics and listening impressions. Although the results
were not exceptional, Mogren [56] demonstrated that the model could capture
important components in the training data, which inspired further exploration of
the idea.

4.1.2 Recurrent GAN (RGAN) (2017)

A succeeding study that received much attention and became the state-of-the-art
architecture for generating time series was Recurrent GAN (RGAN) by Esteban
et al. [57]. Esteban et al. [57] was the first to investigate the generation of real-
valued multivariate time series and proposed evaluation metrics to measure the
quality and diversity of the generated samples.

They modified the C-RNN-GAN architecture by replacing the recurrent mod-
ules in the generator and discriminator with stacked uni-directional LSTMs fol-
lowed by a single dense layer. The discriminator utilized the sigmoid function on
each time step, similarly as Mogren [56], but Tanh in the generator and training
using the same objective function as Mogren [56] (equation 4.1).

One of the main contributions of Esteban et al. [57] was to expand the use
of labels in order to enhance the efficiency of learning the target distribution and
to have more control over the generation process. This concept was first demon-
strated on image data by Mirza and Osindero [54]. For time series data, Esteban et
al. [57] proposed a solution by concatenating the label c to each noise and target
data time step. This was achieved by using x1:T = (xi , ci)Ti=1, and z1:T = (zi , ci)Ti=1,
where xi and zi are random vectors with the same dimensions as the feature and
noise dimensions, respectively. This had the same effect of adding an extra data
dimension to the time series and did not require modification to train using the
same objective function. The conditional framework was named Recurrent Con-
ditional GAN (RCGAN), illustrated in Figure 4.1.

Esteban et al. [57] conducted experiments using their architecture on increas-
ingly complex datasets, incorporating temporal correlations and multivariate se-
quences. The datasets included independent sinus waves with varying frequen-
cies and phases, arbitrary smooth signals with local correlations, MNIST repres-
ented as multivariate sequences (treating each 28x28 image as 28 sequences of
length 28), and real ICU (Intensive Care Unit) data. To address the lack of robust
evaluation metrics in prior research, the authors introduced two novel metrics
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Figure 4.1: The architecture of RGAN/RCGAN as presented in the paper by
Esteban et al. [57].

for assessing the generated samples: the Maximum Mean Discrepancy (MMD),
a statistical test for comparing distributions, and the Train-on-Synthetic-Test-on-
Real (TSTR), which measures the classification difference between models trained
and tested on synthetic versus real data. By employing these evaluation metrics
and presenting useful distribution plots of the generated data, the authors demon-
strated that their models successfully generated data that closely resembled real
data on all datasets.

Esteban et al. [57] also demonstrated the increased performance of their ar-
chitecture by comparing it to the C-RNN-GAN by Mogren [56], for learning the
target distribution without additional loss tricks used in the loss function. How-
ever, it remains unclear whether this performance increase was due to condition-
ing on labels or the architecture itself, as a direct comparison between RGAN and
RCGAN was not discussed. The authors did not provide a detailed analysis of how
well the model captured the spatial and temporal relations among the multivariate
sequences, relying mainly on TSTR scores to assess sample quality. Despite the ar-
chitecture’s simplicity and potential in generating time series data, RGAN/RCGAN
is a simple and valuable helpful model for our experiment.

4.1.3 TimeGAN (2019)

Previous architectures in the field of time series generation mainly extended the
standard GAN framework by incorporating temporal elements, such as using RNN
[56–58] or CNN [20, 59] modules. However, Yoon et al. [60] took a different ap-
proach with their Time Series GAN (TimeGAN). They fused representation learn-
ing and autoregressive models within the GAN framework to better capture the
complex temporal dependencies in the data.

TimeGAN was compared against several previous methods, notably C-RNN-
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GAN Mogren [56] and RGAN [57] and demonstrated significant improvements in
sample quality. This gained TimeGAN considerable attention and established it as
one of the state-of-the-art models.

Before we present how TimeGAN operates, an important disclaimer is that
version presented here is a simplified version of the original TimeGAN framework,
which aimed to support a wide range of datasets, including static variables and
variable time series lengths. Since our data do not possess these characteristics,
we focus on the core intuition and motivation behind the architecture.

Given the high dimensionality associated with time series data, Yoon et al. [60]
drew inspiration from works that combined autoencoders with GANs to operate
on data in lower-dimensional representation space. Instead of directly operating
on raw samples, TimeGAN’s generator and discriminator create and classify latent
representations of the target data produced by an encoder. The reconstruction of
these representations back to the original feature dimension is performed by a
separate recovery network within the autoencoder, distinct from the GAN com-
ponents.

The autoencoder in TimeGAN consists of an embedding network and a recov-
ery network, which facilitate the mapping between the feature space and latent
representations for the GAN learning process. The embedding network, denoted
as E, is implemented using a Gated Recurrent Unit (GRU) and generates a latent
representation h1:T = E(x1:T ) for input samples x1:T from the training data.

To reconstruct the input samples from their latent representations, the recov-
ery network R performs the reverse process by mapping the latent representation
back to the feature representation. This is achieved by reconstructing the input as
x̂1:T = R(h1:T ). The architecture of the recovery network is commonly a mirrored
version of the embedding network, also utilizing GRU-based modules.

To evaluate the quality of reconstruction for each sample, mean squared error
is employed to measure the difference between the input x1:T and the reconstruc-
ted x̂1:T . This gives rise to the reconstruction loss LR, which is utilized for training
the autoencoder. The reconstruction loss is defined as follows:

minLR = Ex∼pdata

�

∑

t

∥xt − x̂t∥2

�

(4.2)

It is worth noting that the latent representation h1:T has the same length as
the time series. Therefore, when specifying the number of hidden features for
the latent representation, each time step t in h1:T will have the same number of
dimensions, for instance, 20 dimensions to encode information. Additionally, the
architecture used for both the embedding and recovery networks can be of any
arbitrary module which adheres to causal ordering, ensuring that outputs at each
step depend only on previous information. Hence, a range of modules, such as
LSTMs, temporal convolutions, and transformers, can be employed.

Yoon et al. [60] identified a limitation in previous methods where they solely
relied on the discriminator’s binary adversarial feedback to learn the target dis-
tribution. They assumed this was insufficient for efficiently capturing the target
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distribution because of the complexity of time series data. To address this, Yoon et
al. [60] gave greater importance to modeling the dependencies across time, expli-
citly focusing on accurately representing the conditional distribution p(x t |x1:t−1)
for each time step t.

Figure 4.2: The networks that constitute the TimeGAN architecture. This illus-
tration is sourced from the original paper[60].

An additional autoregressive network S is introduced to act as a supervisor to
improve the generator’s ability to capture the conditional distributions better. This
network effectively learns the factorized version of the joint distribution by con-
ditioning on previous time steps: p(x1:T ) =

∏

t p(x t |x1:t−1). Notably, the autore-
gressive model S learns from training data alone, which provides access to the
ground truth conditional distribution p(x t |x1:t−1) for any time step t.

Yoon et al. [60] implements S using GRU modules with a final linear layer and
operates on the latent representations. It takes in encoded samples and outputs the
same samples recurrently. This is done using teacher forcing, a technique where
the correct input is provided at each time step during training instead of using
the predicted output from the previous time step. Teacher forcing accelerates the
learning process and speeds up training.

A supervised loss combining the two is constructed to utilize the autoregressive
model S to guide the generator to produce samples resembling the target distribu-
tion. This involves estimating the distribution p̂(x t |x1:t−1) by feeding the model S
with generated samples. The error between the true conditional distribution and
the estimate is then computed using the squared error over all time steps:

minLS = Eh1:T∼E(pdata)

�

∑

t

∥ht − S(ht−1, zt)∥2

�

, (4.3)

where S represents the autoregressive model that outputs the estimate ĥt ,
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and true ht , and computes the squared error across all time steps. Further details
regarding this specific loss can be found in the research paper.

The final components of the architecture consist of the generator and discrim-
inator networks, both implemented as GRU modules with a linear final layer and
sigmoid activation. These networks operate solely with latent representations and
employ a similar loss function to other mentioned architectures. However, in Ti-
meGAN, the input sequence x1:T is first encoded using the embedding network E,
resulting in the following loss equations:

maxLD = Eh1:T∼E(pdata) [log D (h1:T)]] +Ez1:T∼pz
[log (1− D (G (z1:T)))]

maxLG = Ez1:T∼pz
[log (D (G (z1:T)))]

(4.4)

These equations represent the discriminator loss LD and the generator loss
LG , respectively. To summarize, the four losses utilized to train TimeGAN are the
reconstruction loss LR, the supervised generator loss LS , the unsupervised gener-
ator loss LG , and the discriminator loss LD.

They train the models in three separate stages. The autoencoder (consisting
of the embedding network E and the recovery network R) is trained first to learn
proper latent representations of the target data, then the autoregressive model S.
When the autoregressive model has learned a good estimate of the target distri-
bution, all models are trained jointly. This sequential training approach ensures
that the generator and discriminator begin their training with meaningful repres-
entations of the target data rather than starting with random and meaningless
representations.

Yoon et al. [60] extensively tested their proposed framework by comparing it
to previous state-of-the-art models using four different datasets. The evaluation
methods used to assess the models focused on the generated samples’ diversity,
fidelity, and usefulness. Diversity was subjectively assessed using PCA and t-SNE,
fidelity using the discriminative score, and usefulness using the predictive score.

The discriminative score quantified the classification error of an external model
trained to distinguish between generated and target data. The predictive score,
similar to TSTR introduced by Esteban et al. [57], predicts the next time-step for
all time steps on real data and computes the mean absolute error as the loss.

The reported results revealed that TimeGAN consistently outperformed C-
RNN-GAN in terms of generating realistic and correct samples and slightly outper-
formed RGAN. The improvements were attributed to incorporating a supervised
loss to enhance the modeling of the conditional distribution and the utilization of
different data representations.

However, it is important to note that the evaluation scores relied solely on two
external neural networks, which may introduce assumptions about their design
and capabilities. The lack of visual evidence showcasing the realism of the gener-
ated data is another limitation of the paper.
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4.1.4 COTGAN (2020)

Xu et al. [61] investigated a different aspect of generating time series data not
considered by previous methods, which is that time series data needs to follow
a causal relationship. This means that data at each point in time should only be
influenced by data from the past, which is a true phenomenon when sampling
data through time. Combined with optimal transport theory and a mathematical
definition of causality, they define a new learning objective that produces causal
transport plans for the generator to minimize; hence they named it a Causal Op-
timal Transport GAN (COTGAN). They show that this objective function can be
implemented to a broader range of different data types by showing models able to
generate autoregressive processes and image sequences of animated game char-
acters and human actions.

To achieve this, Xu et al. [61] takes a very different approach from the other
proposed time series GANs as they calculate an approximated Wasserstein dis-
tance without using a neural network but directly using the Sinkhorn divergence
algorithm. A property of the Sinkhorn divergence algorithm is that it allows for
gradient flows such that the error can be propagated through the transport plan
and reach the generator for gradient updates. This frees the discriminator, which
usually is used for this calculation. Xu et al. [61] uses the discriminator instead
for measuring the error of causality in the transport plan.

Xu et al. [61] starts by considering the Sinkhorn divergence (equation 2.12)
and adds an additional constraint on the transport plan π to make it causal. They
mathematically consider a transport plan causal π ∈ Π(µ,ν) if

π(yt |x1, · · · , xT ) = π(yt |x1, · · · , x t), for all t = 1, · · · , T − 1

This equality states that the amount of mass transported by π from positions
x1, · · · , xT to a single position yt only to be dependent on the source x up to time
t. Meaning that future events do not influence the result of the transport plan.
To impose the causality constraint, an equivalent characterization of causality is
considered

π causal⇔ Eπ[l(x , y)] = 0, for all l ∈ L (4.5)

where L is some well-defined space of linear functions. This equivalent statement
shifts the problem of finding causal transport plans to find instead functions l ∈ L
such that the equation holds, which is more feasible. Adding the causality con-
straint to the regularized optimal transport (equation 2.12 with the exponent
p = 1) gives the reformulated optimal transport:

COTc,ε(pX , qY ) = inf
π∈Π(pX ,qY )

�

Eπ [c(x , y)]− εH(π) + sup
l∈L
Eπ [l(x , y)]

�

= sup
l∈L
cWc+l,ε(pX , qY )

(4.6)

where COTc,ε(pX , qY ) denotes the causal optimal transport between two prob-
ability distributions, sup is the operator selecting the function l ∈ L in which
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Wc+l,ε(pX , qY ) is the largest, and c the transportation cost. Xu et al. [61] provides
proof of why this equality holds. As they utilize the Sinkhorn divergence, ε and L
are additional hyperparameters that control the entropic regularization and the
number of iterations to use in the Sinkhorn algorithm, respectively.

The set of functions L serves as a test for causality, as presented in equa-
tion 4.5. An oversimplified overview using a similar notation to [61] is presen-
ted here to see how causality is measured, with details provided by Xu et al.
[61]. Each l ∈ L is composed of two special continuous functions denoted as
an ordered pair (h, M), where h = (ht)Tt=1 and each ht ∈ Cb(Rd×t) where Cb(R)
the set of continuous bounded functions on R. The function M measures causal-
ity with a stricter definition of being a martingale over the probability density pX ,
precisely a martingale in the set of M(FX , pX ), which is the set of (X ,FX , pX )-
martingales. A martingale can be defined as the conditional expected value over
a time-dependent variable X = (X1, · · · , XT ), which always equals the previous
value: E[Xn+1|X1, · · · , Xn] = Xn for all n < T . This can be understood as the ex-
pected value of the next observation, given all the past observations, is equal to
the most recent observation. The filtration FX = {FX

t }
T
t=1 is a filter on the prob-

ability space X that permits only information up to time t to be available at any
instance, effectively filtering out information about the future.

The function M is constrained to be a martingale over the filtered probability
space, denoted as M = (Mt)Tt=1 ∈M(FX , pX ), with each Mt ∈ Cb(Rd×t). By con-
sidering the pairs (h, M) associated with each l ∈ L, the causality test (equation
4.5) can be reformulated as follows:

Eπ
� T
∑

t=1

ht(y≤t)∆t+1M(x≤t+1)

�

= 0 for all (h, M) = l ∈ L (4.7)

In this equation, the function h operates on the generated data, while M operates
on the target data, which will be estimated using separate neural networks. This
is where the discriminators come into play, with one dedicated to h and the other
to M . The goal is to estimate functions (h, M) that satisfy this equation, which
becomes an additional objective of the proposed method. It’s important to note
that understanding the intricate details of how this equation tests causality can be
challenging due to the lack of clarity in Xu et al. [61] and the complexity of the
referenced proof by Veraguas et al. [62].

Since equation 4.7 considers all functions L, it is approximated using a fixed
number of functions denoted by the integer J . The causal optimal transport ob-
jective can then be expressed with a modified cost function that incorporates the
causality test for J functions, as shown in equation 4.8.

cϕ(x , y) = c(x , y) +
J
∑

j=1

T
∑

t=1

h j
t(y≤t)∆t+1M j(x≤t+1) (4.8)

A martingale regularization is introduced to ensure that the martingale discrimin-
ator M satisfies the criteria. This regularization penalizes the discriminator M for
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not satisfying the martingale properties. It is achieved by calculating the average
non-zero value of M for a minibatch of size m:

pM (x) =
1

mT

J
∑

j=1

T
∑

t=1

�

�

�

�

�

m
∑

i=1

∆t+1M j(x i)
p

Var[M j] +η

�

�

�

�

�

(4.9)

where Var[M] denotes the empirical variance of M over batch and time, and η is
a small constant to avoid dividing by zero.

Combining equations 4.6 and 4.9, the adversarial objective function is defined
as cWc+l,ε(pX , qY )−λpM , which the discriminators aim to maximize while the gen-
erator aims to minimize. The λ parameter controls the importance of martingale
regularization.

Additional techniques are employed to improve the estimation of Sinkhorn
divergence for batch sizes. These techniques include adding bias correction terms
and simultaneously computing the distance on two distinct batches.

They compare their framework to three other generative models, including
TimeGAN. The comparison focuses on the generation of autoregressive processes,
noisy oscillations, and brain signals (EEG). They also demonstrate COTGAN’s abil-
ity to be used on a wider range of data types by generating video animations of
video characters. However, their evaluation mainly relies on visual information
related to the auto-correlation between data channels, which does not provide
strong evidence for the performance boost of COTGAN. The discussion and model
comparison in their study are considered limited and would benefit from further
investigation. Nevertheless, using a unique approach in time series generation by
COTGAN is intriguing and offers the possibility of addressing issues present in
other frameworks.

4.1.5 RTSGAN (2021)

Real-World Time Series GAN (RTSGAN), proposed by Pei et al. [63], is a mod-
ern architecture specifically designed to generate realistic real-world time series
(RTS) data. It addresses the challenges of supporting variable time series sequence
lengths and generating time series data with missing values. Similar to TimeGAN,
RTSGAN also utilizes an autoencoder network to produce compact representa-
tions of the target data. However, it differs from TimeGAN in that it allows for
flexible dimensionality of the latent space independent of sequence length and
does not incorporate a supervisor network. This flexibility enables RTSGAN to
have a smaller latent space dimension and employ a simpler architecture utilizing
only fully-connected layers for the generator and discriminator. Since they are not
dependent on using recurrent layers, such as LSTMs, they also utilize the Wasser-
stein distance instead of the BCE losses as the objective function. Through experi-
ments on various datasets, including comparisons with TimeGAN and RGAN, the
authors demonstrate the better performance of their architecture.

It’s worth noting that the RTSGAN architecture includes methods and tech-
niques specifically tailored to handle challenges related to generating RTS data
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with variable time series lengths and missing values. However, these techniques
are not required for datasets that do not have missing values and where every time
series have equal lengths. In such cases, a simplified version of the framework can
be used, which is discussed here. Please refer to the work by Pei et al. [63] for the
original architecture.

The design of RTSGAN was primarily driven by the objective of generating
high-quality and concise latent space representations of time series data that are
independent of sequence length and can be easily reconstructed. Pei et al. [63]
achieved this by incorporating an autoencoder structure with certain modifica-
tions to the encoder component to generate feature-rich representations.

Figure 4.3: Illustration of the RTSGAN architecture. The blue lines represent the
training phase of the autoencoder, while the red lines indicate the training phase
of the GANs. Once the training is completed, sample generation occurs along the
green path. The generated representation, denoted as r̂, is constructed autore-
gressively within the decoder, shown by the dashed lines. This diagram is a mod-
ified version of the original figure from Pei et al. [63] to align with our modified
explanation.

The encoder creates latent representations through a sequence of steps. It
starts with a time series sample x1:T and passes it through an N -stacked Gated
Recurrent Unit (GRU) module with a hidden dimension defined by dAE . The GRU
module generates hidden states hn

i for each time step i and each layer n of the
GRU module. The calculation of the hidden states is listed as:

hn
i = GRU(ei), i ∈ [1, T], n ∈ [1, N],

where T represents the length of the time series, and N is the number of
stacked recurrent units (GRU modules). The encoder then applies average pooling
and max pooling operations to the hidden states from the last layer of the GRUs,
denoted as hN

i . The results of these pooling operations are concatenated with the
final hidden state hN

T and passed through a fully connected (FC) layer with the
LeakyReLU activation function, enriching the representation as follows:

s= FC([AvgPool(hN
i ),MaxPool(hN

i ),h
N
T ])
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Finally, the encoder combines the enriched representation with the last hidden
state of the GRU module to produce a latent representation r of the time series,
given by:

r= [s, {hn
T }

N
n=1] (4.10)

The resulting latent representation r has a dimension of (N + 1)dAE .
The decoder reconstructs the entire time series using an autoregressive ap-

proach with GRU modules, similar to the encoder with N -stacked GRU modules
with a hidden dAE . The latent representation, r, includes the final hidden state
of the previous GRU or a noise-generated state. The hidden state is then used as
the initial hn

T for the first GRU module in the decoder. The reconstruction process
aims to model p(xi|x1..i−1) for each time step i and follows these steps:

êi = [xi−1, s], ĥ
n
i = GRU(êi , ĥ

n
i−1), n ∈ [1, N]

x̂i = Sigmoid(Wx ĥ
N
i + bx),

Here, êi represents the autoregressive latent representation input to the GRU,
initially set to ê1 = [0, s]. ĥ

n
i denotes the hidden state at time step i of the GRU,

and n ranges from 1 to N . x̂i is the reconstructed value for time step i. The weights
and biases in a dense layer are represented by Wx and bx , respectively.

The autoencoder is trained using the mean squared error (MSE) reconstruc-
tion loss, defined as Lre = MSE(x̂,x), and this occurs before the GAN training to
ensure that the training data is accurately mapped to meaningful latent repres-
entations.

Since the latent representation has a low dimension and the generator and
discriminator operate on it rather than the high-dimensional time series, the gen-
erator can easily synthesize new latent representations. The low-dimensional rep-
resentation simplifies the architecture of the generator and discriminator signific-
antly. The generator consists of five fully connected layers with layer normaliza-
tion, while the discriminator has three fully connected layers. Both networks use
LeakyReLU as the activation function.

To ensure stable training, Pei et al. [63] incorporated the Wasserstein distance
with the Gradient Penalty technique proposed by Gulrajani et al. [64] to enforce
1-Lipschitz continuity in the discriminator. By employing the Wasserstein distance,
their optimization objective was formulated as follows:

min
G

max
D
Er∼encoder(X )[D(r)]−Ez∼p(z)[D(G(z))], (4.11)

where G represents the generator, D represents the discriminator, r denotes
real samples from the encoder, and z denotes random noise samples. The max-
imum and minimum are with respect to the whole expression.

Pei et al. [63] compared their RTSGAN model with other models, namely C-
RNN-GAN, RGAN, and TimeGAN. They used two datasets used in TimeGAN[60]
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for their tests. Evaluation of the models involved similar methods, including the
discriminative score, prediction score, as well as PCA and t-SNE for visualization.
The findings revealed that the RTSGAN model outperformed the others regarding
discriminative and prediction scores while demonstrating a greater diversity in
generated samples. Although the results section of their study provided a concise
model comparison, the evaluation might be influenced by potential discrepancies
in the training efforts and implementation among the frameworks. Additionally,
the absence of visual plots comparing the generated samples to the target data
limits the comprehensive assessment of their results.

4.1.6 Other works

So far, only architectures designed for generating multivariate data have been in-
troduced, an area that has received less attention than the generation of univariate
data. However, numerous noteworthy frameworks on univariate data can provide
valuable insights, for instance, their methods and experiments.

For instance, Hartmann et al. [20] investigated the use of a convolution-based
Generative Adversarial Network (GAN) for generating new univariate brain sig-
nals (EEG data). Instead of employing recurrent modules, they utilized a recurrent-
free architecture and adopted the Wasserstein distance to stabilize the training
process. Their goal was to model long-range EEG data with over 1000 time steps,
and they achieved this by progressively scaling the generator’s capabilities, draw-
ing inspiration from GANs used for generating high-resolution images.

Zhu et al. [65] aimed to determine the most advantageous combination of
generator and discriminator architectures for generating univariate EEG signals.
They explored various combinations and found that the best results were obtained
using a convolution-based discriminator with a bi-directional LSTM generator. The
generator architectures they experimented with included CNN, LSTM, GRU, and
MLP discriminators.

Brophy et al. [66] investigated the generation of multivariate EEG data. They
addressed the vanishing gradient issue by employing a different objective function
called Least Squares GAN and introduced a regularizer that penalized the gener-
ation of samples that significantly differed from the target samples. To measure
the similarity between time series, they used a technique called Dynamical Time
Warping (DTW). The generator in their architecture consisted of stacked LSTMs,
while the discriminator utilized 2-dimensional convolution. Although they did
not compare their results with other models, their approach of incorporating 2-
dimensional convolution in generating multivariate data is noteworthy.

4.2 Constrained and physics-informed GANs

GANs have become popular in generating realistic samples from a given data dis-
tribution. Integrating physical laws into GANs is a growing research topic. While
many studies have presented physics-informed GANs [67–74], there is a lack of
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comprehensive comparisons between physics-informed GANs and standard GANs.
Such comparisons are essential for understanding the benefits of incorporating
physics constraints and the limitations of standard GANs in capturing the underly-
ing physics. Defining valuable constraints for the underlying dynamics in the data
may be difficult or impossible in real-world scenarios, making standard GANs the
only available option. Hence, understanding the boundary between what GANs
can and cannot learn is crucial for selecting the appropriate model for any par-
ticular application. A deeper understanding of the GAN framework would help
choose the correct model for the appropriate data and application, preventing the
adoption of flawed models that do not achieve desired outcomes.

The work of Stinis et al. [24] was among the first to investigate the differ-
ence between physics-informed GANs and standard GANs. Stinis et al. [24] ex-
plored enforcing constraints for extrapolation in time series data, meaning using
the GAN to predict the next step in the sequence, single-step prediction. The mod-
els only operated using the current input and its rate of change (gradient), similar
to the forward Euler method. They performed tests on a system of ODEs exhibiting
chaotic behavior and found that enforcing constraints significantly improved the
results. Although their results were promising, they emphasized the need for fu-
ture research to explore more intricate dynamical systems, including Hamiltonian
systems and higher-dimensionality problems. They also hinted at the potential
application of GANs in solving Partial Differential Equation (PDE) with random
coefficients.

In a succeeding study, Zeng et al. [23] extended the research conducted by
Stinis et al. [24] by examining the impact of incorporating imprecise constraints
on image data, specifically focusing on geometric constraints in a dataset of circles
and divergence-free flow velocity fields. The authors observed that while the stand-
ard GAN generated thick rings that resembled circles to some extent, the informed
GAN produced significantly more accurate circles with minimal spacing between
the points. Similar improvements were observed in the case of flow velocity fields,
where the informed GAN outperformed the standard GAN. Notably, both models
generated samples that appeared realistic and approximated the target data distri-
bution well, highlighting that it is the finer details that the standard GAN struggles
to capture accurately. The study’s findings indicate that incorporating constraints,
even imprecise, enhances convergence speed and elevates the quality of generated
samples.

However, there is still much to be investigated, as these studies focused on spe-
cific examples and data types. Stinis et al. [24] exclusively explored the effects on
one-dimensional time series data and did not consider the incorporation of past
time steps in the generation process. Incorporating a broader temporal context
provides more information and enhances the prediction of future values in the
sequence. Extending the analysis to more complex time series data with multiple
variables and longer sequences remains thus as an open area for investigation.
Additionally, Zeng et al. [23] did not explore the implications of imprecise con-
straints on time series data, leaving room for further exploration in this domain.
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Consequently, investigations need to discern the limitations and challenges
that GANs encounter when addressing intricate problems. Such inquiries will con-
tribute to a more comprehensive understanding of the capabilities and potential
biases of GANs, helping to select more robust models for various applications.

4.3 Evaluation methods

The GAN framework often faces challenges in finding suitable evaluation meth-
ods to assess the quality of generated samples. This challenge becomes even more
complex when applying GANs to time series generation. Evaluation metrics com-
monly used for GANs have primarily relied on visual inspection and metrics spe-
cifically designed for images, which are not directly applicable to time series data.
The lack of proper evaluation metrics has resulted in a diverse range of metrics
being employed in published works on GANs for time series. This variation in
metrics arises from the introduction of inadequate metrics and metrics tailored
to specific datasets, which has hindered the establishment of a clear consensus
on which metrics to use. The task of defining a satisfactory metric for comparing
two sets of samples without labels is inherently challenging. It is thus a significant
factor contributing to the wide array of different metrics being used.

This section aims to provide an overview of different evaluation methods used
in the literature and help in finding a suitable evaluation method to be utilized
for our experiments. A preferred evaluation method should be interpretable and
reproducible, avoiding excessive assumptions and biases. It should not rely on
other models and should produce consistent results. Furthermore, since the field
of GANs in time series is divided into univariate and multivariate data, the evalu-
ation method should be applicable to multivariate data.

Table 4.1 comprises a list of the different evaluation methods used in the lit-
erature of GAN for time series generation. The evaluation methods are marked
with an "x" to denote which ones which do not satisfy the criteria of a desirable
method. It is clear that there certainly exists an evaluation method problem, as
many of them being based are based on the results from other natural networks.
This does not mean they are not useless, but rather not ideal according to the
desired criteria. There exist, however, three methods that do satisfy the desired
criteria. These include the Maximum Mean Discrepancy (MMD) [75], the Wasser-
stein distance, and the Dynamic Time Warping (DTW) [76].

However, many of the listed evaluation metrics in Table 4.1 rely on other
neural networks, introducing additional reproducibility issues. The training and
fine-tuning of these models can be sensitive to factors like hyperparameters, ini-
tialization, and training data. Reproducing the exact conditions and achieving
identical performance becomes challenging, especially when working with dif-
ferent datasets or experimental setups. This lack of reproducibility hinders the
comparability and generalizability of the evaluation results, making it difficult to
establish consistent benchmarks and accurately assess the model’s performance.
Furthermore, the lack of interpretability in these model-based evaluation methods
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adds to the challenge of understanding and interpreting the results.
Despite these drawbacks, model-based evaluation methods can still serve a

purpose during training and as supplementary evaluation methods for identifying
correlations between different metrics. Using a range of diverse evaluation meth-
ods that capture different aspects can be more powerful than relying on a single
metric.

Among the evaluation metrics that met the desired criteria, only the Wasser-
stein distance was chosen for further investigation and deemed suitable as an
evaluation metric. Dynamic Time Warping (DTW) was excluded since its original
purpose is to measure differences between two time series rather than two collec-
tions of time series. The possibility of extending DTW to compare collections and
its applicability to multivariate time series were not explored. Maximum Mean
Discrepancy (MMD) was also not selected because it only compares the means of
two sample sets after applying a "kernel" function to transform them into another
space.

Further examination of the Wasserstein distance revealed its intractability when
dealing with high-dimensional data. However, estimation methods have been de-
veloped to address this challenge, including the Sinkhorn divergence [34] (section
2.3.2) and the Sliced-Wasserstein distance [35] (section 2.3.3).

The Sinkhorn divergence was not considered highly useful as an evaluation
method due to introducing additional hyperparameters, namely the entropy reg-
ularization parameter ε and the number of iterations in the algorithm. Similarly,
due to its non-deterministic algorithm, the Sliced-Wasserstein distance was not
chosen because it produces different results for identical runs. However, a more
in-depth investigation into optimal transport theory and the search for faster, more
accurate, and deterministic algorithms led to the discovery of a deterministic ver-
sion of the Sliced-Wasserstein distance known as the Fast approximation of the
Sliced-Wasserstein distance, as described in the section 2.3.4.

The Fast approximation of the Sliced-Wasserstein distance (SW) provides the
advantage of fast computation, allowing for real-time measurement during GAN
training to monitor performance and detect early mistakes or suboptimal hyper-
parameters. However, there is a lack of discussion regarding the accuracy of the
estimate when handling high-dimensional data with numerous variables and the
number of samples required for reliable estimates. Previous research by Nadjahi
[26] has demonstrated that the accuracy of the estimate improves with an in-
creasing number of features (a 1x28x28 image sample has 784 features). The
performance of the estimate in scenarios involving a high correlation between
features and its applicability to time series data remains unexplored.

4.3.1 Visualization techniques

The evaluation of GAN models presents a challenge in terms of selecting appro-
priate metrics to assess performance. This has led many researchers to rely on
visualization techniques to gain insights into the quality and characteristics of
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generated samples [60, 63, 78, 79, 84–86]. While visualization methods can be
subjective and challenging to interpret consistently across different models and
datasets, they remain very useful for capturing large errors in generated samples
during tuning and general performance. Traditional techniques like PCA and t-
SNE have long been popular for visualizing high-dimensional data, but a more re-
cent addition, UMAP, has gained significant traction since its introduction in 2018.
These visualization methods serve as valuable tools in overcoming the complex-
ities of high-dimensional data by reducing dimensionality and revealing patterns
and relationships between variables [87].

PCA

Principal Component Analysis (PCA) is a data compression and visualization tech-
nique introduced by Pearson [88]. Its primary purpose is to reduce the dimensions
of a dataset while preserving the most critical information. This is accomplished
by determining the linear combination of the original variables that account for
most of the data’s variance. Sorting these variables based on the amount of vari-
ance they explain in the data allows for identifying the most important features
or patterns. Additionally, the sorted variables can be used to visualize the data
in a lower-dimensional space. For example, picking two of the most significant
variables and visualizing them with a scatter plot reveals information about the
higher inaccessible dimensional structure of the data. As a result, PCA is a valu-
able tool for visualizing high-dimensional datasets and identifying inter-variable
relationships.

t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE), by Maaten and Hinton [89],
is a nonlinear dimensionality reduction technique primarily used to visualize high-
dimensional data in a two- or three-dimensional space. It works very differently
from PCA as it constructs a nonlinear mapping from the high to the low-dimensional
space with an intent to preserve the local structure. It defines a low-dimensional
probability distribution aimed at estimating the high-dimensional distribution and
making them similar by minimizing the Kullbeck-Leibler divergence (equation
2.3) using gradient descent. While the t-SNE algorithm has gained popularity for
its effectiveness in data visualization, it has specific limitations, such as its non-
deterministic nature and its inability to preserve the global structure of the data.

UMAP

Uniform Manifold Approximation and Projection (UMAP) by McInnes et al. [87]
is also a dimensionality reduction method, visually similar to t-SNE. It constructs
visualizations of high-dimensional data in a lower-dimensional space but uses
ideas from topological data analysis and manifold learning to identify similarities
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in the data. The exact workings of UMAP are out of the scope of this thesis. Des-
pite being non-deterministic like t-SNE, UMAP is more effective at preserving the
global structure of the data, meaning that distant points in the low-dimensional
visualization also are distant and unique in the dataset.

4.3.2 Prediction Score

The Prediction Score (PS), proposed by Yoon et al. [60], serves as a metric to
assess the quality of generated samples by examining their temporal dynamics. It
involves training an autoregressive model on the generated data and evaluating
its performance on separate hold-out datasets consisting of real and generated
data. By comparing the errors between these datasets using metrics like mean
absolute error, insights can be obtained regarding their similarity. A low relative
error suggests a resemblance between the generated and real data, while a high
error indicates differences [60].

However, it is important to note that the Prediction Score does not capture cer-
tain aspects such as mode dropping and overfitting [77]. Overfitting occurs when
the generated samples do not exhibit a uniform distribution of different modes,
with some modes being more likely to occur than others. Furthermore, the metric
heavily relies on the outcomes of a neural network, which may introduce biases
and assumptions that can impact the evaluation. For instance, the accuracy of the
metric assumes the neural network has the appropriate architecture to capture
the data probability distribution accurately [77].
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Chapter 5

Method

This chapter contains high-level information about the essence of our methodo-
logy and the reasoning behind the experiments. Details for reconstructing exper-
iments and the evaluation methods used are provided in sections 6 and 7.

The first experiment, named Framework testing, involved exploring various
frameworks to assess their capabilities in generating time series. This examination
allowed the selection of the most compelling framework, subsequently employed
in the main experiment. The primary experiment, named Learning of underlying
physical laws, delved deeper into the chosen framework’s learning capabilities to
address our primary research questions.

Given the demanding nature of GANs, involving extensive testing and para-
meter tuning, a separate section (section 5.3) is provided to outline the compre-
hensive tuning procedure employed for all experiments.

Python 3.9 served as the primary programming language for our experiments,
while the PyTorch 1.13 framework was employed for model creation and training.
The selection of PyTorch was motivated by its automated differentiation capabilit-
ies, which greatly facilitated the design of novel loss objectives. Furthermore, we
leveraged Neptune for logging, visualization, and monitoring of model perform-
ance and hyperparameters during the training process. Code to reproduce experi-
ments is publically available at GitHub: https://github.com/Kohmann/master-GAN.

5.1 Experiment: Framework testing

This experiment aims to explore various proposed frameworks for generating mul-
tivariate time series. It involves evaluating these frameworks using various eval-
uation methods on a simple dataset. The results will guide the selection of which
model to utilize in the main experiment (Learning of underlying physical laws).
Additionally, this experiment aims to validate the relevance and applicability of
the chosen evaluation methods to complex data. Thus, this experiment will eval-
uate both the respective frameworks’ performance and the evaluation methods’
utility.

49
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To conduct the experiment, a set of selected frameworks will be implemented
and trained on a synthetic dataset. The models will then be evaluated on the
same test data and a range of evaluation methods. The success of the experiment
relies on addressing several questions, including the selection of frameworks, the
properties of the dataset, and which appropriate evaluation methods to utilize.

5.1.1 Defining dataset properties

A simple synthetic multivariate time series dataset was considered for investigat-
ing the respective frameworks’ generating abilities. It was designed to focus on
several essential time series properties such as sequence length, long-term de-
pendent variables, and variable correlation. All of these are considered important
properties and are also present in the dataset employed in the main experiment.
Accurately modeling time series data across multiple time steps is essential and
challenging. The complexity increases as the time series length grows, posing dif-
ficulties for models to capture the underlying patterns and dynamics effectively.
A framework able to model long time series is preferable as it allows extra flexib-
ility for the dataset utilized in the main experiment, assuming it can also adeptly
model shorter sequences with comparable performance.

Another critical aspect of time series data revolves around the correlation ob-
served between variables across temporal and spatial domains. While obtaining
a model that generates realistic-looking data is important, it is equally import-
ant that the dynamics of the time series are captured accurately. Consequently,
the dataset should contain spatial and temporal correlations, including long-term
dependencies in single features and combination with other features.

5.1.2 Framework selection

The framework selection process involved thoroughly examining the existing lit-
erature to identify techniques that satisfied our specific criteria for generating
multivariate time series data. These criteria encompassed a range of architectural
complexities and objective functions, ensuring a diverse selection of frameworks.

The choice of objective function holds significant importance as it serves as
the foundation for the optimization process, directly influencing the attainment
of desired results. Given the known challenges of training GANs, many modified
objective functions have been proposed to address these issues. However, a con-
sensus on the optimal objective function for a particular case is not yet established.
Therefore, including a diverse array of objective functions in the framework selec-
tion process is considered important in order to identify high-performing options
and gain insights into their respective strengths and weaknesses.

The architectural complexity associated with each framework is equally signi-
ficant to the objective function. The architecture of a model establishes the con-
straints and assumptions of the task at hand, ultimately dictating its performance
capabilities. While simpler architectures are easier to interpret, they may struggle
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to capture complex relationships within the data. On the other hand, overly in-
tricate models can introduce unnecessary complexity. To account for variations
in model complexity, a balanced approach is adopted, including both relatively
simple architectural models and those of greater complexity in the collection of
frameworks.

An additional criterion influencing framework selection is the quality associ-
ated with the proposed techniques. Only published and cited works with source
code are considered, indicating the proposed techniques’ reliability and useful-
ness. Conducting a quality check ensures confidence in the effectiveness of the
frameworks and minimizes the likelihood of encountering unexpected implement-
ation issues.

Selected frameworks

The collection of frameworks that met our criteria consisted of four models, namely
RGAN [57], TimeGAN [60], RTSGAN [63], and COTGAN [61]. The selection was
limited due to time limitations, as each framework required considerable archi-
tecture and hyperparameter tuning to produce desirable results.

RGAN was selected due to its simplicity and similarity to the regular GAN
framework. It utilizes the classic GAN objective function and operates using a
straightforward architecture. It was chosen as a baseline for one of the simplest
time-series GANs to implement and aid in evaluating the improvements that other
frameworks may introduce.

TimeGAN was selected due to its complex architectural design, compared to
RGAN, specifically aimed at allowing the model to capture the complex depend-
encies in the data. Most of the changes are in the architecture, which utilizes the
same baseline loss function as RGAN. However, it incorporates some additional
terms in the loss to learn the time-dependent features better and improve stability.
Moreover, it is a well-cited1 framework that has been considered state-of-the-art
for some time.

RTSGAN shares architectural similarities with TimeGAN but employs a differ-
ent implementation that enables the use of a more stable loss function. It utilized
the Wasserstein distance as the objective function and was selected for its balance
between a relatively complex architecture and a sensible objective function.

Lastly, COTGAN was selected for its high focus on an objective function tailored
specifically for time-series data. The objective function is based on optimal trans-
port, the Sinkhorn divergence, but modified to account for causal data. This al-
lows the use of a much simpler architecture, close to RGAN’s, which is more in-
terpretable. Compared to TimeGAN, it focuses on a more appropriate objective
function instead of a complicated architecture.

1488 citations according to Google Scholar
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5.2 Experiment: Learning of underlying physical laws

The primary objective of this experiment is to determine whether GANs follow
the underlying constraint present in the data. A synthetic dataset that adheres
to measurable physical laws is utilized to investigate this, along with the best-
performing framework from the "Framework testing" experiment (as described in
section 5.1).

The experiment is divided into four parts, each assessing the model’s per-
formance under varying circumstances and with additional guidance. The first
two experiments evaluate how well the model performs when presented with
two datasets of different complexity. The remaining two experiments will serve
as supporting experiments to determine the plausible performance of the model
and establish an upper limit to compare the GAN’s performance against.

5.2.1 Defining dataset properties

The key to this experiment lies in the choice of data on which to base the exper-
iment on. It must simulate a physical system obeying well-defined laws, and it
must be possible to validate or measure to what extent the data obeys these laws.

A mathematical model which satisfies these criteria is the simulation of ocean
waves following the Korteweg-de Vries (KdV) equation [90]. This model simulates
the interaction of multiple waves in a closed physical system and ensures that the
simulations follow the energy conservation law, which means that the energy at
each point in time remains unchanged. Energy conservation can be validated ef-
ficiently as explicit formulas exist for this mathematical model. These formulas
consider mass, momentum, and energy quantities, all conserved in the physical
system. Using these formulas, the energy associated with a simulation can be cal-
culated directly from the generated simulations. This means the measurement of
conserved energy is independent of another ground truth sample, allowing us to
avoid steps that could introduce errors.

Another important characteristic of simulating ocean waves using the KdV
equation is that it involves solving a non-linear problem. Such problems are non-
trivial and can not always be solved analytically but require numerical approx-
imations. For the KdV equation, this is true for most initial waves, but it also has
a perfect analytical solution in some special cases. An advantageous feature of
the KdV equation is its compatibility with certain numerical methods when solv-
ing it through numerical approximations. These methods exhibit a relatively low
relative error in comparison to other mathematical simulations.

Two datasets based on this physics-based simulation will be used as the basis
for all experiments. The first dataset involves a single wave’s evolution over time,
and the second dataset is the more complex scenario of two colliding waves. These
datasets will serve as the foundation for all experiments.
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5.2.2 Experiments

This section outlines the experiments designed to assess whether the GAN can
capture the physical laws underlying the data. The experiments utilize two data-
sets of varying complexities. The first experiment considers the simple case of a
single wave propagating through time. The second experiment involves the col-
lision of two waves, considered the primary test to determine whether the GAN
model is able to adhere to the underlying physical laws.

Two supporting experiments are conducted to provide solid facts regarding
the GAN architecture and establish a performance bound to evaluate the GAN
against. The first supplementary experiment aims to demonstrate the potential
of the generator network by utilizing an autoencoder. The autoencoder consists
of an encoder network and the GAN generator as the decoder. The experiment
evaluates the generator’s ability to reconstruct samples from their latent repres-
entations by training the autoencoder to encode and decode target samples. This
test assumes that the encoder can provide meaningful representations, and by
using the same latent space and generator architecture as the GAN, it provides
evidence of a plausible latent space and generator weights capable of generating
realistic samples that conform to the physical laws.

In the second supplementary experiment, the GAN used to generate collid-
ing waves is informed about the errors associated with the underlying physical
laws. Informing the model is accomplished by incorporating a conservation regu-
larization term into the objective function. By explicitly considering conservation
errors, the GAN is expected to perform better and generate data that more closely
adheres to the conservation laws. This experiment aims to establish an upper limit
on performance, providing a benchmark against which the uninformed GAN’s per-
formance can be evaluated and compared.

5.3 Tuning procedure

Training the models consisted of modifying the architecture and tuning the hyper-
parameters accordingly in a circular process. Because GANs are known for their
stability issues, finding a functional architecture with good hyperparameters re-
quires a lot of trial and error [91, 92]. Training runs often lead to non-convergence
or mode collapse with little intuition as to why, and uncertainty of how the ar-
chitecture and the hyperparameters behave together adds to the problem. The
number of configurations to test becomes very large and difficult to navigate. To
attempt to address these issues, a circular training approach is followed to organ-
ize the training process systematically and avoid redundant runs.

The circular approach consisted of 4 high-level steps: 1) choose an initial ar-
chitecture, 2) exhaustive hyperparameter search, 3) modify architecture, 4) jump
to step 2. As each step consists of many sub-steps and techniques, we will go into
further detail on steps 1, 2, and 3 below.
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5.3.1 Initial architecture

The architecture proposed in the relevant paper is used as the initial architecture
for each type of model. These have been proven to work for similar datasets and
serve as a good starting point. Not all architectures proposed in the relevant papers
directly apply to our datasets, so some minor modifications are applied to make
them compatible.

5.3.2 Hyperparameter search

To assess the stability of the architecture, it is first tested on the chosen dataset
with some initial set of hyperparameters. These are initially selected using the
hyperparameters listed in the relevant paper or based on empirical knowledge
from previous experiments. Some architectures introduce new hyperparameters
specific to the architecture modules or objective functions used. In these cases,
the reported values are used.

Not all hyperparameters may drastically change and affect the model, but ex-
perience indicates that the learning rate and batch size stand out as the most
important. They determine if the model will be subject to mode collapse and non-
convergence and follow a complex relationship that is important to settle before
fine-tuning with the other hyperparameters. Because of their effect on the model,
they are prioritized above all the other hyperparameters and assumed to provide
enough information to determine whether the architecture is sufficient. When a
model shows signs of some proper learning, the other hyperparameters are also
considered.

Because GANs are highly sensitive to different combinations of hyperparamet-
ers, a hierarchical structure is used to organize the hyperparameters based on their
impact on sample quality. The hierarchy is used to structure which hyperparameter
to first fine-tune after making new adjustments and help to determine the modi-
fication’s gain faster. Initially, this hierarchy is determined through guesswork, but
it is refined as further information is gathered during training to produce a more
detailed list. The learning rate and batch size are typically ranked as the top two
most significant hyperparameters across all architectures.

When tuning the hyperparameters, it happens in a controlled manner where
the focus is on one hyperparameter at a time and freezing the others. This makes
understanding how specific hyperparameters affect the training process and result
easier. Using more sophisticated hyperparameter optimization tools such as grid
search, evolutionary algorithms, or Bayesian optimization is not feasible because
these algorithms require many more training runs and good evaluation metrics to
guide the search.

If the model does not converge, the experiment is repeated with more epochs,
usually double the previous number. This is especially important for standard BCE
loss architectures, which may experience sudden random learning spikes after ex-
tended periods of seemingly no learning. In the case of architectures using optimal
transport, this is more stable, and more epochs generally only increase the sample
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quality.
Some hyperparameters were split into predefined ranges to quickly test a

range of values and get a notion of the architecture stability. The most notable
hyperparameter ranges were the learning rates {0.0001, 0.0005,0.001,0.01} and
batch sizes {8,16, 32,64}. The number of epochs varied depending on the learn-
ing rate and batch size and was adjusted accordingly. The minimum number of
epochs employed was 100 and was usually increased for lower learning rates.

Several evaluation metrics and visualization methods are used to evaluate
the performance and effects of the hyperparameters. More specifically, the Sliced-
Wasserstein distance (section 2.3.4), discriminator and generator loss, the sample
distribution using PCA, t-SNE, and UMAP (section 4.3.1), and traditional sample
assessment to spot irregularities.

5.3.3 Modifying the architecture

If the architecture performs poorly on the evaluation metrics after several trials
of different hyperparameters, it is a sign that it is insufficient and unable to learn
properly. In these cases, the architecture is modified. We first try small modifica-
tions and, if unsuccessful, move on to larger changes.

The small changes generally include increasing the size of hidden layers, the
number of layers in fully-connected modules, and introducing batch normaliza-
tion between layers. These are intended to improve the network’s ability to com-
bine representations to produce the desired output.

The more extensive changes aim to improve the network’s ability to create
better representations and learn the data dynamics. These modifications include
increasing the number of RNN layers, using another type of RNN (e.g., LSTM or
GRU), replacing RNN with convolution, and rearranging specific modules.





Chapter 6

Experiment: Framework testing

This chapter provides comprehensive coverage of the framework testing experi-
ment, including an overview of the dataset and frameworks used, an analysis of
the results, and identifying the most suitable framework for the main experiment.
It is organized into three sections: Experimental Setup, Results and Discussion,
and a concluding section summarizing the findings.

The presented content builds upon the preliminary project [37] but has been
extensively revised to include additional information and improve overall clarity.

6.1 Experimental Setup

This section presents essential information required to reproduce the experiments.
It contains specific details about the dataset, framework architectures, and the
hyperparameters used for training.

6.1.1 Dataset

The considered dataset was created using explicit functions to guarantee precise
knowledge of the underlying dependencies and comprised of 1500 samples. The
data consisted of three multivariate series following a path defined by sinusoidal
waves with different frequencies and phases. Each sample contained three distinct
variables that evolved over time following three different paths, defined by three
functions, namely sin1(t), sin2(t), and sin3(t). In this context, t represents a time
step in the sequence, bounded by the total number of time steps to consider, T ,
which we set to 100. The sinusoidal functions, sin1(t), and sin2(t), were generated
independently using the wave function

sini(t) = sin(ωi
2πt
T
+ϕi), t = (0, 1, . . . T − 1) , (6.1)

where i = 1,2 determines which function to use and controls the set of frequencies
ωi and phases ϕi to consider. The parameters for sin1 were uniformly sampled
from ω1 ∈ (1,3] and ϕ1 ∈ (−

π
2 , 0], while for sin2 they were sampled from ω2 ∈

57
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(4,6] and ϕ2 ∈ (0, π2 ]. The last sinusoidal wave (sin3) was created by taking a
linear combination of the two waves and applying an exponential moving average
across previous time steps. This is calculated as:

sin3(t) =
1
2

t
∑

j=0

αt− j (sin1( j) + sin2( j)))

=
1
2

t
∑

j=0

αt− j
�

sin(ω1
2π j
T
+ϕ1) + sin(ω2

2π j
T
+ϕ2))
�

,

(6.2)

where α represents the weighting importance of the current time step, and the
subscripts 1,2 denote each of the two independent waves. The exponential used
in the moving average was set to α = 0.7. After all of the samples were created,
the data were scaled to fit inside the bounds [0,1]. The complete dataset was a
matrix of dimensions [N , T, C] = [1500, 100,3], where N represents the num-
ber of samples in the dataset, T is the sequence length, and C is the number of
variables.

Figure 6.1: Each panel shows the three time-dependent variables sin1, sin2, and
sin3 of three unique samples.

6.1.2 Framework details

All frameworks, namely RGAN, TimeGAN, RTSGAN, and COTGAN, was imple-
mented in PyTorch with the aid of the publicly available code provided in the
respective research papers. Initially, RGAN, TimeGAN, and COTGAN were de-
veloped using TensorFlow, but they were translated to PyTorch to maintain con-
sistency.

The model architecture and hyperparameters of each framework were then
fine-tuned to the best of our abilities using the tuning procedure described in sec-
tion 5.3 until acceptable results were obtained or numerous relevant modifications
were exhaustively tested.

RGAN

The first architecture, RGAN, was implemented using a very similar version pro-
posed by Esteban et al. [57], using two stacked LSTMs for both the generator and
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discriminator and the hidden dimension set to 20. It was trained for 1000 epochs
with a learning rate of 0.0001 using the Adam optimizer, batch size of 32, and
sampling noise from a standard normal random variable Z : RT×D. Here T de-
notes the number of time steps in the dataset, which equals 100 for the sinusoidal
dataset, and D represents the number of noise dimensions associated with each
time step, which we set to 100. For clarity, sampling a batch of B samples z ∼ pZ
takes the form of a matrix [B, T, C]. A detailed overview of the GAN network ar-
chitecture is outlined in Table 6.1.

Discriminator
Layer Input Output Activation
LSTM B, T, C B, T, 20
LSTM B, T, 20 B, T, 20
Linear B, T, 20 B, T, 1 LeakyReLU
Flatten B, T, 1 B, T Sigmoid

Generator
Layer Input Output Activation
LSTM B, T, 100 B, T, 20
LSTM B, T, 20 B, T, 20
Linear B, T, 20 B, T, C Sigmoid

Table 6.1: RGAN discriminator and generator network architectures for the si-
nusoidal dataset. Static dimensions are denoted by a capital letter.

TimeGAN

TimeGAN was implemented using the same architectural design as Yoon et al.
[60]. The five networks, namely the embedding, recovery, supervised, generator,
and discriminator, all employ a 2-layered GRU followed by a linear layer. Similarly
to RGAN, TimeGAN samples from the same noise variable Z : RT×D and uses the
same number of nodes in the hidden dimension. Table 6.2 provides an overview
of the architecture for all networks except the supervised network, which was
designed to be identical to the embedding architecture except for the input of the
first layer, which was set to [B, T, 20] instead of [B, T, 3]. The hyperparameters
for all networks were set to a batch size of 20 and a learning rate of 0.0005 using
the Adam optimizer. During training, the embedding and recovery networks were
first trained as an autoencoder to learn useful representations of the data and
recover the data from those representations. Once the autoencoder was able to
encode and decode the data, the supervisor network was added to the training
process and trained using teacher forcing to learn the conditional distribution
of the representations. Finally, when both the autoencoder and the supervisor
network achieved satisfactory results, the discriminator and generator were added
to the training loop. All networks were then trained jointly until the generator
reached the desired results. The number of epochs for each stage of the three
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training phases was set to 1000, 1000, and 2000, respectively.

Embedding
Layer Input Output
GRU B, T, 3 B, T, 20
GRU B, T, 20 B, T, 20
Linear B, T, 20 B, T, 20
Sigmoid B, T, 20 B, T, 20

Recovery
Layer Input Output
GRU B, T, 20 B, T, 20
GRU B, T, 20 B, T, 20
Linear B, T, 20 B, T, C
Sigmoid B, T, C B, T, C

Discriminator
Layer Input Output
GRU B, T, 20 B, T, 20
GRU B, T, 20 B, T, 20
Linear B, T, 20 B, T, 1
Flatten B, T, 1 B, T
Sigmoid B, T B, T

Generator
Layer Input Output
GRU B, T, 100 B, T, 20
GRU B, T, 20 B, T, 20
Linear B, T, 20 B, T, 20
Sigmoid B, T, 20 B, T, 20

Table 6.2: TimeGAN network architectures for the sinusoidal dataset. Static di-
mensions are denoted by a capital letter.
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RTSGAN

The original implementation of RTSGAN [63] included support for varying se-
quence lengths. However, this feature was removed in our implementation to en-
hance readability without compromising the model’s capacity. The encoder and
decoder networks consist of a 2-layer GRU, with the hidden dimension for the
autoencoder set to 40, resulting in a latent representation dimension of 120. The
generator and discriminator networks are composed of fully-connected layers and
specified in detail in Table 6.3. A standard normal noise vector of 120 dimensions,
Z : R120, was used since the latent representations are not restricted by the data-
set’s time series length. Firstly, the autoencoder was trained for 300 epochs using
the Adam optimizer with a learning rate of 0.001 to learn meaningful represent-
ations for the data. Following this, the generator and discriminator were trained
for 500 epochs with the RMSProp optimizer using a learning rate of 0.0001 while
using only the encoder to encode the real data into the representation space. The
decoder network was only used for visualizing results once the generator and dis-
criminator were trained. Since RTSGAN utilizes the Wasserstein distance as the
objective function, the discriminator and generator were updated at a ratio of
10 : 1. This means that the discriminator was updated 10 times before the gener-
ator was updated once. All models were trained with a batch size of 60.

Discriminator
Layer Input Output Activation
Linear B, 120 B, 80 LeakyReLU
Linear B, 80 B, 40 LeakyReLU
Linear B, 40 B, 1

Generator
Layer Input Output Activation
Linear B, 120 B, 120 LayerNorm, LeakyReLU
Linear B, 120 B, 120 LayerNorm, LeakyReLU
Linear B, 120 B, 120 LayerNorm, LeakyReLU
Linear B, 120 B, 120 LeakyReLU

Encoder
Layer Input Output Activation
GRU B, T, C B, T, 40
Concat B, 20, 20, 20 B, 120
Linear B, 120 B, 120 LeakyReLU
Linear B, 120 B, 120 LeakyReLU

Decoder
Layer Input Output Activation
Reshape B, 120 B, T, 20
GRU B, T, 20 B, T, 40
Linear B, T, 40 B, T, C Sigmoid

Table 6.3: RTSGAN generator and discriminator network architectures for the
sinusoidal dataset. It is worth noting that the discriminator and generator are not
bound to the sequence length. Static dimensions are denoted by a capital letter.
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COTGAN

The best-performing architecture and hyperparameters considering the COTGAN
framework [61] consisted of a generator using two stacked GRU modules and a
3-layered fully connected output layer with 64 nodes in each layer. The discrim-
inator utilizes one-dimensional convolutions with stride 1, padding set to "same",
and kernel size 5, in combination with the stack of two GRU modules. Its output
dimension J is set to 32. Details regarding the number of connections in each layer
and the architecture structure are shown in table 6.4. The model was trained for
1200 epochs with the Adam optimizer using a learning rate of 0.0005, and a batch
size of 72 was used. A learning rate scheduler was used to decrease the learning
rate over time. The scheduler decayed the learning rate by multiplying the current
learning rate by 0.8 every 200 epochs. Similarly to RGAN, noise is sampled from
a standard normal random variable Z : RT×50, with 50 noise dimensions for each
time step.

COTGAN includes additional parameters which control the martingale regu-
larization and the Sinkhorn algorithm, which computes the estimated distance
between the generated and target samples. The number of iterations used to es-
timate the Sinkhorn divergence was set to 200 with an ε set to 10. The martingale
regulator λ was set to 0.01.

Discriminator
Layer Input Output Activation
Reshape B, T, C BT, 1, C
Conv1d BT, 1, C BT, 64, C LeakyReLU
Conv1d BT, 64, C BT, 128, C LeakyReLU
Reshape BT, 128, C B,T, 128C
GRU B,T, 128 B,T, 64 LeakyReLU
GRU B, T, 64 B, T, J=32

Generator
Layer Input Output Activation
GRU B, T, Z B, T, 64
GRU B, T, 64 B, T, 128
Linear B, T, 128 B, T, 64 LeakyReLU
Linear B, T, 64 B, T, 64 LeakyReLU
Linear B, T, 64 B, T, C Sigmoid

Table 6.4: The COTGAN architecture. All linear layers include the bias term, and
LeakyReLU activations have a negative slope set to 0.01.
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6.1.3 Evaluation methods

Several evaluation methods are employed to assess the performance of various
models in matching the target distribution. These include the Fast approximation
of the Sliced-Wasserstein distance and Prediction Score (PS) (as defined in section
2 and section 4.3.2), as well as a dataset-specific test to measure the sin3 error,
which evaluates the error in the relationship between variables. Additionally, three
visualization techniques (PCA, t-SNE, and UMAP) are employed to visualize dif-
ferences between the generated and target distributions. The tests are performed
using 1000 test samples from the target distribution that were not previously used
in any GAN model and 1000 generated samples from the GAN model being eval-
uated.

The Fast approximation of the Sliced-Wasserstein distance was calculated us-
ing Algorithm 2 with the test and generated data reshaped to [N T, C] = [1000 ∗
100,3], where N is the number of samples considered in the test, T the number
of time steps and C the number of data variables. Reshaping the data in this order
significantly increases the accuracy and reduces the variance, as illustrated in the
Appendix in Figure A.5. To account for the fact that two different sets of a finite
number of samples from an arbitrary distribution do not have an SW distance
equal to 0, a baseline SW distance, denoted SWbasel ine, is computed as a reference
value. The SWbasel ine provides the distance between two different sets of samples
from the target distribution, α,β ∼ Pdata, and SWbasel ine =dSW 2(α,β) represents
the lowest possible distance that can be expected. This is performed by having α
and β , each consisting of 1000 samples, with the shape [1000 ∗ 100, 3].

The autoregressive model used in calculating the Prediction Score (PS) con-
sisted of two LSTM modules followed by a single linear layer of size 20 following
the Sigmoid activation function. The model was trained on a set of 1000 generated
samples from the GAN of interest and tested on 1000 samples from the target dis-
tribution. To avoid overfitting the generated data, the training set was split into
a train set of size 800 and a validation set of size 200, which were monitored
during training using early stopping. Early stopping stops the training process if
the validation loss keeps increasing while the training loss continues to decrease,
avoiding overfitting. The model was trained for 300 epochs for all PS runs using
the Adam optimizer with a learning rate of 0.001 and a batch size of 32.

Learning of the spatial-temporal dependencies: The sin3 error

The sin3 error is a measure used to assess a model’s ability to learn the spatial
and temporal dependencies in the sinusoidal dataset. Since sin1 and sin2 are in-
dependent, only the error in the sin3 wave is considered. To properly construct
sin3, the model must recognize that sin3 is an exponential moving average of the
other two curves. Since all three curves are generated simultaneously1, both sin1

1To be precise, they are generated sequentially, but the mentioned curves are the trace of the
three points evolving through time. Since the path of each point is predetermined to follow an exact
function, it is natural to consider the whole curve that each point traces out instead of just a point
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and sin2 can be used to calculate the sin3 manually using the following equation:

sin3(t) =
1
2

t
∑

j=0

αt− j (sin1( j) + sin2( j))) , (6.3)

where the same exponential α used to create the training dataset is used. This is
the same equation as equation 6.2 but with generated sin1 and sin2 terms, which
are vectors containing values for each time step instead of explicit functions.

The sin3 error is then calculated as the mean squared error of N -generated
samples with the generated sin3 and the true sin3 as such:

sin3 error=
1
N

∑

N
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(6.4)

at different time steps.
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6.2 Results and discussion

The results from this experiment indicate that COTGAN and TimeGAN are the only
models which can generate samples that closely match the target distribution. This
is supported by the relatively low error in constructing sin3, the small distance
between the generated and target distributions according to the Wasserstein dis-
tance estimate (SW), and the fact that the Prediction Score (PS) model does not
perform poorly when predicting on the test set containing real data, as indicated
by its small error (see Table 6.5). These numerical results are also consistent with
the visual results shown in Figures 6.2 and 6.3, which show that the generated
samples closely match the target samples in many regions, indicating that the
models can cover a significant portion of the target distribution without focusing
on specific modes. However, small clusters of target and generated samples do
not entirely overlap, suggesting that the models still have room for improvement.
The SW distance also supports this, as the SWbasel ine = .00034373 is significantly
lower than the reported distance for COTGAN and TimeGAN.

Experiment 1: Numeric results

sin3 error PS* (gen) PS* (target) SW* Time spent training
RGAN .0328 .0081±.0004 2.1253±.1068 .3819 0h 16m (0.9 s/epoch)
TimeGAN .0057 .0068±.0005 .0259±.0035 .0233 2h 45m (4.9 s/epoch)
RTSGAN .006 .0024±.0002 .0628±.0043 .0514 0h 10m (0.6 s/epoch)
COTGAN .0053 .0511±.0034 .0236±.0021 .0039 2h 38m (6.6 s/epoch)

Table 6.5: The results of the standard implementation of three models trained on
the sinus dataset and tested on a test set of 1000 samples. The Prediction score
(PS) model was trained and validated using an 800 : 200 split on generated
data and displayed with the standard deviation along with the score when tested
on the target dataset. All models had the same baseline SW distance*, equal to
SWbasel ine = .00034373. *The PS and SW results are multiplied by a factor of 100
for presentation purposes.

RGAN and RTSGAN suffer from mode collapse but is much more apparent in
RGAN. RGAN performs poorly on all tests, which makes this obvious, but the RTS-
GAN results require further inspection. While the SW results for RTSGAN indicate
that the generated and target distributions differ some, it is not that different when
compared to TimeGAN and COTGAN. The sin3 error results do not offer strong
evidence of mode collapse either. However, the PS score jump between fake and
real datasets (.0024 and .0628, respectively) suggests it, and sample visualiza-
tions clearly capture the mode collapse. The high SW distance for RGAN confirms
the significant difference between distributions, as seen in Figure 6.2. The PCA
plots for RGAN and RTSGAN reveal highly different and concentrated distribu-
tions, with RTSGAN displaying more diversity and much more realistic-looking
samples. This is clear in the UMAP plot, where the two distributions are globally
closer to each other than in RGAN. The same conclusion is reached when looking
at actual generated samples in Figure 6.3.
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Visualization of target and generated samples

Figure 6.2: Visual distribution plots of real and generated samples utilizing PCA,
t-SNE, and UMAP, arranged in a left-to-right column sequence. Each row corres-
ponds to the experimental results obtained from RGAN, TimeGAN, RTSGAN, and
COTGAN arranged in a top-to-bottom order.

The t-SNE and UMAP plots provide information about the similarities between
the samples and give a sense of the local and global structure of the high-dimensional
data. The t-SNE plot for RGAN shows that the generated samples are very differ-
ent from the target samples, with few samples resembling the target samples.
The UMAP plot, which is better at capturing the global structure, shows that the
distance between the generated and target samples is considerable, indicating
that RGAN generated significantly different samples. For RTSGAN, the generated
samples are closer to the target samples but still miss many modes.

Of all the models, COTGAN produces the lowest sin3 error and SW distance
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results. This is apparent in the sample plot comparing generated and target data,
where most points overlap or are very close to each other. However, there is still
room for improvement despite the low SW distance. COTGAN could achieve a
lower sin3 error and a more accurate shape of the sinusoidal waves, which RTS-
GAN manages better. As visible in Figure 6.3, the waves generated by COTGAN
are almost straight and take sharp turns rather than smooth transitions found in
true sinusoidal waves.

Figure 6.3: Hand-picked generated samples from each of the models. More ex-
amples that are randomly selected samples are provided in appendix A.

The RGAN model struggled with mode collapse, but it did learn some aspects
of the training data, as evidenced by the smooth, not noisy, oscillating curves in
Figure 6.3. Although it was difficult to stabilize and sensitive to hyperparameter
adjustments, the RGAN model had a simple architecture that made it fast to train
and test, with training time slightly under 1 second per epoch.

TimeGAN and COTGAN are the best-performing models, but they take approx-
imately eight times longer to train per epoch2 than RTSGAN. Since all models are
quite different, it is not fair to assume that they would need to be trained for the

2For TimeGAN, this is calculated by the time spent training divided by the number of epochs
used to train. The time spent training includes the whole training procedure, such as pre-training
of the autoencoder and the supervised network in TimeGAN.



68 Kohmann, E.: GANs’ Ability to Capture Implicit Laws in Physical Systems

same number of epochs to learn the data. Both TimeGAN and COTGAN typically
needed to be trained for more epochs due to their slower convergence rate as a
result of the computationally demanding architecture in TimeGAN and the explicit
calculation of the Sinkhorn divergence in COTGAN.

Despite this, the overall quality of the samples produced by RTSGAN is high,
with a low sin3 error and PS (real) loss, and they are visually accurate, appearing
smooth and within the bounds of 0 and 1 (as shown in Figure 6.3). Resolving
the mode-dropping issue for RTSGAN would be highly interesting, as it can learn
much faster and utilizes a relatively simple architecture and objective function.

The reason why RTSGAN suffers from mode dropping is not fully understood,
as it includes mechanisms intended to combat this problem: Wasserstein distance
with gradient penalty [64]. Despite this, RTSGAN still exhibits mode dropping,
indicating that other factors may control this. Small experiments, such as invest-
igating if the time series is poorly encoded into the latent space or if the model
architecture is inadequate, may shed light on why mode drops occur in RTSGAN.
Further analysis of RTSGAN is needed to fully understand the underlying causes
of this problem and how to prevent it.

Conducting an ablation study to identify the sources of performance gains in
the models would be interesting. However, our results do not align with those re-
ported in the original papers for TimeGAN [60] and RTSGAN [63]. The authors of
RTSGAN [63] conducted a comparison study including TimeGAN and RGAN and
reported having a better architecture than both. TimeGAN performed a similar
study but only with RGAN. Several factors can affect model performance, such as
the dataset, implementation, hyperparameters, and training environment, so we
do not have enough evidence to confidently argue about the relative performance
of the models shown here and why they perform differently. The authors of Ti-
meGAN claim that their model’s performance is due to its autoencoder structure
and the use of a supervised loss. This argument is consistent with our results, but
we do not provide evidence to support this claim. Since we could not solve the
mode collapse issue with RTSGAN, we do not discuss its results compared to the
others based on architecture design.

6.3 Concluding the preliminary experiment

Choosing an appropriate GAN framework for generating time series poses diffi-
culties due to the lack of comprehensive documentation on their performance with
diverse datasets beyond the ones presented in the original papers. Uncertainties
persist regarding their capability to generate lengthy sequences, the intricacies
of their learning and training processes, and their overall performance. To ad-
dress this issue, we conducted an experiment on four different time series GAN
models—RGAN [57], TimeGAN [60], COTGAN [61], and RTSGAN [63]— and
evaluated their performance on a sinusoidal wave dataset.
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RQ1.1: What is the comparative performance of different time series
GAN models when generating long sequence lengths?

The results indicate that COTGAN and TimeGAN outperformed the other models
in terms of generating samples that closely match the target distribution.

COTGAN emerged as the best-performing model, generating samples that
closely resembled the target distribution and exhibited dynamics similar to the
target data. The visual results demonstrated a close match between the generated
and target samples. However, there is still room for improvement as the generated
sinusoidal waves deviated from true sinusoidal curves. Despite taking the longest
training time, COTGAN achieved the best overall performance.

TimeGAN also performed well in generating long sequence lengths, with relat-
ively low sin3 error and SW distance results. The generated samples showed a sig-
nificant overlap with the target samples, indicating good target distribution cov-
erage. However, it trained for a similar amount of time as COTGAN but achieved
a bit poorer results with a much more complicated architecture and training in-
stabilities.

On the topic of training instabilities, RGAN and RTSGAN suffered from mode
collapse, with RGAN exhibiting more severe issues. The generated samples from
RGAN significantly differed from the target samples, as indicated by a high SW
distance and poor performance in all tests. RTSGAN exhibited some mode drop-
ping but showcased more diversity and generated more realistic-looking samples
compared to RGAN.

In summary, COTGAN and TimeGAN performed better in generating long se-
quence lengths than RGAN and RTSGAN. COTGAN achieved the lowest sin3 error
and SW distance with a relatively simple architecture, while TimeGAN demon-
strated competitive performance but with a much more complex architecture.
COTGAN’s simpler architecture is thus more desirable for future experiments where
interpretability is essential.

Additional analysis and experiments are required to comprehensively under-
stand the performance differences among these models and tackle the challenges
of mode collapse and mode dropping, thereby possibly utilizing frameworks that
can train much faster and provide better results. The current experiment provided
a preliminary overview of the performance of different frameworks, aiding in se-
lecting a suitable framework for the main experiment.





Chapter 7

Experiment: Learning of
underlying physical laws

This chapter provides a comprehensive overview of the main experiments con-
ducted, encompassing details regarding the datasets utilized, the evaluation tech-
niques employed, and specific architecture details.

7.1 Datasets

To evaluate the performance of the models, we construct two datasets of dissimilar
complexity containing simulations of waves based on the Korteweg-de Vries (KdV)
equation. The KdV equation is a fundamental equation in the study of non-linear
waves and has been used to model physical systems such as waves in shallow
water, optical fibers, and plasma [90]. It is Partial Differential Equation (PDE)
describing the evolution of a one-dimensional wave through time and is defined
as

ut +ηuux + γux x x = 0. (7.1)

Here u= u(x , t) denotes a function of two variables, x and t, representing space
and time dimensions, respectively. Further, η and γ are two arbitrary real-valued
scalar parameters that define the simulation’s behavior. These will take on the
γ= 1 and η= −6. The subscripts used on function u denote the partial derivative
with respect to that variable.

One special property of the KdV equation is that it has an exact analytic solu-
tion for certain initial conditions u(x , 0), which describes a wave of a specific
shape, called a soliton. A soliton is a single wave with a bell-like shape and no
ripples that move at a constant speed proportional to its height through time and
space. An example of a solution to the KdV equation can be obtained from the
initial condition

u(x , 0) =
1
2

c sech2
�

−x +
P
2

�

,
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with a periodic boundary condition u(P, t) = u(0, t) for t ≥ 0 and P is a period
in space. The boundary condition makes the wave appear at the left when exiting
on the right boundary. This gives the general analytic solution for all times

u(x , t) =
1
2

c sech2

��

�

�

�

(x − c t)mod P −
P
2

�

�

�

�

�

, (7.2)

where the sech function is the hyperbolic secant, defined as sech = 1
cosh , c is a

positive real number that describes the wave’s amplitude, speed, and steepness,
mod P being the modulo operator limiting the function to be defined within the
range [0, P), and − P

2 being a term that specifies the initial spatial position of the
wave. The fractions and roots in the equation scale the parameters properly to
such that it is an exact solution of the KdV equation.

All of the proceeding datasets are based on the soliton wave equation (equa-
tion 7.2), but not all are analytical solutions to the KdV equation. This is a con-
sequence of the initial condition not being a single soliton but a combination of
two solitary waves or something more complicated. Details around this are dis-
cussed in the relevant dataset section, but the soliton wave equation is the back-
bone for all of them.

7.1.1 Soliton

Representing the simple phenomenon of a single wave moving from left to right,
we construct a dataset containing N = 2000 soliton waves based on an exact
analytic solution to the KdV equation through

u(x , t) =
1
2

c sech2

��

�

�

�

(x − c t +
P
4
)mod P −

P
2

�

�

�

�

�

. (7.3)

The solitons are simulated in a spatial domain of x = [0, 50] and a time domain of
t = [0, 10], discretized with 120 uniformly-distributed points, respectively. This
gives a spatial resolution of ∆x = 50

120 = 0.416̄ and a temporal resolution of
∆t = 10

120 = 0.083̄. The period P equals the upper boundary of x , max(x) = 50.
Initially, the soliton wave described in equation 7.2 centers at P

2 , so a wave-shifting
term P

4 is added to move the initial position further to the left. This allows for a
longer simulation without the base of the wave hitting the boundary.

The height of each soliton wave is controlled by the parameter c, sampled
from a uniform distribution, c ∼ Uniform(0.5, 2). This translates to all solitons
waves having their maximal amplitude in the range [0.25,1].

We structured the dataset as a 3-dimensional matrix with dimensions of [N , T, C] =
[2000, 30,120], where N represents the number of waves, T is the number of time
steps, and C represents the number of spatial points of each wave.
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7.1.2 Colliding solitary waves

This dataset considers the more difficult problem; simulations of the overtaking
collision of two solitons. The simulations are created by defining the initial con-
dition and using numerical methods to approximate the solution for a number
of time steps. The initial condition u(x , t = 0) is a sum of two solitons, i.e.,
u = u1 + u2, where the subscript i = {1, 2} is used to distinguish between the
two. A single soliton is expressed as:

ui(x , 0) =
�

−6
−η

�

· 2 · k2
i · sech2

��

�

�

�

ki ·
��

x +
P
2
− P · di

�

% P −
P
2

�

�

�

�

�

�

, (7.4)

where the parameters ki ∼ Uniform(0.2, 0.7) affect the amplitude and steepness
of the wave, and di controls where the peak of the wave is positioned. For this
dataset, they start in the same location in every simulation with d1 = 0.3 and
d2 = 0.5. This means that the only parameters which vary between the simulations
are the peak and shape of the soliton waves.

We generate N = 2000 initial conditions u(x , 0) and model the evolution of
the system using the implicit midpoint method [93]. The numerical solutions are
conducted on initial conditions with a spatial grid x ∈ [0, P], P = 50, and over a
time interval [0,T ],T = 10, with step sizes ∆x = P

360 = 0.138̄ and ∆t = T
360 =

0.027̄. The simulations are solved using a higher spatial and temporal resolution
to reduce approximation error. Thus the simulations used when considering this
dataset are downsampled versions that fit the desired resolutions ∆x = P

120 =
0.416̄ and∆t = T

30 = 0.3̄. Solving the simulations using a resolution of 360 allows
perfect downsampling to many other resolutions, as 360 has many divisors. Thus,
it should be flexible and avoid needing to interpolate between values.

Similar to the soliton dataset, we structure the dataset as a 3-dimensional
matrix with dimensions of [N , T, C] = [2000,30, 120], where N represents the
number of waves, T is the number of time steps, and C represents the number of
spatial points of each wave.

Since the initial conditions of the dataset are created randomly, there will be
numerous instances where the two waves do not collide or overtake at any point.
If we define the moment when the peaks of the waves are directly aligned above
each other (as depicted at time step 20 in Figure 7.2) as the point of overtaking,
then there are 253 cases in the dataset where this does not occur. This accounts for
approximately 12% of the overall dataset. For a sample to satisfy this definition, it
means that the waves at least reach a state where their peaks are over each other
during the simulation time. This means it will also cover samples that undergo
the complete overtaking. A sample that does not satisfy this overtaking definition
can still include a significant interaction between the waves, as demonstrated in
rows 4, 5, and 6 in Figure 7.1.
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Figure 7.1: Numeric solutions of two colliding solitons for different initial condi-
tions (Time step: 0). The solutions are modeled for 30 time steps (T = 30), but
only select time steps are shown.
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Figure 7.2: An alternative plot of an arbitrary initial solution that shows the evol-
ution and collision of the waves more clearly. Here only every third-time step is
visualized to avoid too much overlapping between time steps.
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Figure 7.3: The same initial condition is used in 7.2 but visualized in two di-
mensions with the state of the system for each time step in different colors. The
dynamics of the soliton peaks are better captured when plotting this way.
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7.2 Evaluation techniques

To evaluate the GAN model during training for architecture modifications and
hyperparameter tuning, we employ several techniques to monitor different per-
formance aspects. This includes the general ability to match the target distribu-
tion using the Fast approximation of the Sliced-Wasserstein distance (SW) and
four custom techniques to measure dataset-specific properties. Three different
measurements of conservation error and one estimating the distribution associ-
ated with the soliton peaks. Exactly how they are defined is dependent on the
dataset, which is detailed in the following section.

7.2.1 Distribution of soliton heights

A dataset-specific test is considered to check whether the models are subject to
mode drop and capture the target distribution correctly. The test assesses the null
hypothesis that the target and generated wave peaks from the initial condition
follow the same distribution. The wave peak is the only variable that is randomly
assigned when creating the initial conditions and should follow a uniform distri-
bution in a specific range.

A set of 1000 initial condition wave peaks from the target and generator is
considered for testing the null hypothesis. The target samples are easily obtained
by creating new initial conditions (no need to solve the KdV equation) and gen-
erated samples by using the generator and only considering the first time step.

To compare the two sets of data, the Kolmogorov-Smirnov (KS) test [94] is
used. The test is non-parametric, which means it does not make any assumptions
about the underlying distribution of the data and allows for comparing any two
sample sets. The KS test will be used to test the null hypothesis that the two
collections follow the same distribution. In the evaluation of the model, a two-
tailed p-value is utilized with a confidence level of 0.05. However, the p-value
is not weighted as a significant factor in the overall assessment. This is because
the objective of the test is not to ascertain the truth of a specific hypothesis but
rather to indicate the probability that the two distributions conform to the same
underlying distribution. In this context, a higher p-value is more favorable.

Soliton

To obtain the wave peaks in the initial conditions, the maximal value of each initial
state is considered, max ui(x , 0), where i = 1,2, · · · , 1000 for both generated and
target samples. The p-value is then obtained by calculating the KS test.

Colliding solitary waves

Since the initial condition here consists of two distinct solitons, the KS test is
performed two times: one for each soliton wave. Then the average p-value of the
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two is reported1. Obtaining the wave peaks is, however, not easily achieved since
there is an issue of the initial state containing two solitary waves: each soliton
influences the peak and position of the peak of the other. This is true regarding
all systems containing two solitons because any solitary wave is always positive
and non-zero, sech(x)> 0, making it challenging to obtain the actual parameters
that perfectly describe each soliton based on the initial condition.

A simple but imperfect solution is to disregard the dependence between the
two waves, as the impact often is very tiny. The maximal peak increase is when
both solitons are made with the lowest amplitude and steepness factor (ki = 0.2).
In this scenario, the soliton peaks are increased by 7%.

By assuming independence, the wave peaks are obtained by indexing the same
index used to define where each soliton should be positioned when creating the
dataset, precisely d1 = 0.3 and d2 = 0.5. The wave peaks from each soliton, K1,
and K2, are then obtained for each sample as such:

Kξ1 = ui(d1 ∗ 120,0)

Kξ2 = ui(d2 ∗ 120,0),
(7.5)

where 120 is the total number of indexes used to discretize the spatial domain x ,
and ξ= {target, gen} represents which sample type to consider, and i = 1,2, · · · , 1000
being the sample index. The reported p-value is a result of the average when com-
puting the statistic for equal-positioned soliton waves, performed as such:

p1 = KS(K target
1 , Kgen

1 )

p2 = KS(K target
2 , Kgen

2 )

Reported p-value=
p1 + p2

2

(7.6)

7.2.2 The measure of energy conservation loss

For a physical system governed by the KdV equation, conserved quantities are in-
dependent of time, such as mass, momentum, and energy [25]. These are known
as conservation integrals and can be efficiently calculated for all generated samples.
Let the discrete spatial grid be denoted by u(x = i∆x , t), where i = 0,1, ..., P−1.
Then, the conservation integrals (sums in the discrete case) can be estimated us-
ing:

1The average of the p-values is employed as a heuristic measure and is not literally meant to test
the null hypothesis. Instead, it is recommended to utilize Fisher’s combined probability test [95] for
an accurate evaluation.
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HMass =∆x
P
∑

u (7.7)

HMomentum =∆x
P
∑

u2 (7.8)

HEnergy =∆x
P
∑

−
1
6
ηu3 +

1
2
γ2u2

x (7.9)

Each conservation integral H (short for Hamiltonian) represents an array of
the corresponding conserved quantity associated with each time step. That is,
H(t0) and H(t5) give the energy of the system at time steps 0 and 5∆t, respect-
ively. The final conservation integral, HEnergy (equation 7.9) is also dependent on
the initial values for η, and γ, which are equal to 6 and 1, respectively.

The HMass conservation integral is the easiest to grasp and does not require
delving into the theory. The area under the curve of a wave or any other solution is
directly proportional to its mass. As a result, if one point in the wave decreases in
height, the height of another point or multiple other points must simultaneously
increase by the same amount, similar to how an old-fashioned scale works, where
pressing one end results in the opposite end moving in the opposite direction.
This means that any energy used to change the height of one point has an inverse
effect on the other points.

We define the total error of energy conservation for the different quantities as
the deviation of the energy at each time step from the initial condition, given by:

Conservation error=
T
∑

t=0

|H(t)−H(t0)| (7.10)

We denote the mean error associated with each conservation integral with a hat
"ˆ," as such: ĤMass, ĤMomentum, and ĤEnergy.

7.3 Architecture details

This section contains essential implementation details needed to reconstruct the
experiments, such as the architecture design and choice of hyperparameters. We
only present details of the best-performing models as this is the most relevant
for the analysis. Still, a visual collection of other models that have been tested is
provided in the Appendix.

There are a total of four models that will be showcased, consisting of two main
experiments for each dataset - soliton and colliding solitary waves. And in addi-
tion, two supporting experiments aimed at determining the maximum potential
performance of the model using the colliding solitary waves dataset.
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7.3.1 Soliton and colliding solitary waves

The models used for the soliton and colliding solitary wave datasets shared much
of the same architecture and were trained similarly. This enables a more precise
comparison of their results instead of using two very different ones. The best-
performing model for each of the datasets comprised a generator with two GRU
layers and three fully-connected layers. The discriminator was more optimized for
finding features, including two one-dimensional convolutions and two GRU lay-
ers. Specific details concerning the arrangement of the modules and the number
of neurons used in each respective module are summarized in Table 7.1.

The models were trained for 600 epochs using the Adam optimizer with betas
β1 = 0.5 and β2 = 0.9 and an initial learning rate of 0.01 for both the generator
and discriminator with a mini-batch size of 90 samples. To assist the models in
fine-tuning the samples after being able to create general features, the learning
rate was decayed every 200 epochs by multiplying it by 0.8. For the model trained
on the soliton dataset, input consisted of a noise vector Z : RT×10 drawn from a
standard normal distribution with 10 dimensions per time step, where T denotes
the number of time steps used in the dataset, e.g., T=30. For the model trained
on colliding solitary waves, the noise vector was instead drawn from a uniform
distribution in the range −1 and 1, as this resulted in better results.

Most hyperparameters were similar, but the soliton and colliding wave models
varied in two sensitive hyperparameters related to the COTGAN objective func-
tion. Specifically, the soliton model employed an entropic regularizer ε of 0.7,
while the colliding waves model used 0.8. Also, the soliton model utilized a mar-
tingale penalization of λ equal to 0.01, whereas the colliding waves model used
0.05. Both models utilized 200 iterations for calculating the Sinkhorn divergence
using the Sinkhorn algorithm.

Figures A.11 and A.7 in the Appendix presents a comprehensive view of the
other models that were examined, along with their respective hyperparameters
and performance metrics.

7.3.2 Physics-informed GAN

A new model was developed to test how the best-performing colliding solitary
waves model performs when being informed about the errors in the underlying
physical laws. The model utilized the same architecture as the best-performing col-
liding solitary waves model, described in Table 7.1, and was trained with identical
hyperparameters. The new model included an additional term in the objective
function to penalize samples for not following the conservation laws, called the
conservation regularization term.

The conservation term was defined as a summation of all the mean conserva-
tion errors for a minibatch of generated samples y, precisely as follows:

Her ror(y) = ĤMass + ĤMomentum + ĤEnergy (7.11)
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Discriminator
Layer Input Output Activation
Reshape B, T, C BT, 1, C
Conv1d BT, 1, C BT, 64, C LeakyReLU
Conv1d BT, 64, C BT, 128, C LeakyReLU
Reshape BT, 128, C B,T, 128C
GRU B,T, 128S B,T, 64 LeakyReLU
GRU B, T, 64 B, T, J=32

Generator
Layer Input Output Activation
GRU B, T, Z B, T, 64
GRU B, T, 64 B, T, 128
Linear B, T, 128 B, T, 64 LeakyReLU
Linear B, T, 64 B, T, 64 LeakyReLU
Linear B, T, 64 B, T, C Sigmoid

Table 7.1: COTGAN architecture utilized for main experiments. The capital letters
denote static quantities, where B(=90) denotes a batch of samples and Z(=10) is
the noise dimension associated with each time step. All linear layers include the
bias term, and all LeakyReLU activations have a negative slope equal to 0.01.

This term was then added to the COTGAN objective function, forming the new
objective:

cWmix ,L
cκϕ ,ε (x,y)− pMφ2

(x)−ψHer ror(y), (7.12)

Here, ψ denotes the weighting term that determines the importance of the
conservation error. For the best-performing model, ψ was set to 10. A relatively
high value was found to be beneficial as it forces the model to consider minor
conservation errors.

The conservation regularization was not applied in the GAN training for the
first 160 epochs to allow the model to first learn the global features before fine-
tuning the samples. The model was trained for a total of 800 epochs.

7.3.3 Autoencoder

The autoencoder used to assess the capacity of the generator network for the
colliding solitary waves dataset was constructed with the identical generator ar-
chitecture as described in Table 7.1. The generator functioned as the decoder and
operated with an appropriate encoder. The encoder consists of a GRU and three
dense layers. The final layer employs the Tanh activation function to map the out-
put to the range of −1 to 1, equivalent to the generator’s sampling space in the
GAN. This means the generator operates on the same information space but with
different sample representations. Further details about the encoder architecture
are listed in Table 7.2.
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Encoder
Layer Input Output Activation
GRU B, T, C B, T, 64
Linear B, T, 64 B, T, 256 LeakyReLU
Linear B, T, 256 B, T, 256 LeakyReLU
Linear B, T, 256 B, T, Z Tanh

Table 7.2: The encoder in the Autoencoder architecture. The capital letters de-
note static quantities, where B(=32) denotes a batch of samples, C(=120) is the
feature dimension, and Z(=10) is the noise dimension associated with each time
step. All linear layers include the bias term, and LeakyReLU activations have a
negative slope set to 0.01.

The autoencoder was trained to encode and reconstruct samples from the col-
liding solitary waves dataset. The encoder takes in target samples and encodes
them into a latent representation of the same size as the noise dimension used in
the GAN. The generator then reconstructs the samples from the latent represent-
ations.

The mean squared error loss was used to train the autoencoder, with a learn-
ing rate of 0.001, the Adam optimizer with betas β1 = 0.5 and β2 = 0.9, and
a batch size of 32 for 600 epochs. The colliding solitary waves dataset was split
into training and validation datasets, with the validation set accounting for 20%
of the samples. The validation set was used during training to monitor the model
performance and avoid overfitting.



Chapter 8

Results and Discussion

In this chapter, the performance results of the models on two datasets, Soliton
and Colliding solitary waves, are presented and interpreted. Furthermore, two
supplementary experiments are discussed, followed by a general discussion on
the GAN’s capability to adhere to conservation laws.

This chapter only reports results obtained from the best-performing COTGAN
models. Information about the performance of other suboptimal models with dif-
ferent hyperparameters is displayed in Appendix A.

8.1 Soliton

By visually inspecting the generated samples in Figure 8.1, they can be identified
as solitons that keep their structure and evolve rather stable through time. The
samples presented appear to be of different heights and evolve according to their
initial height; a short soliton travels a short distance, while taller solitons move
further. Not all heights seem to remain unchanged when evolving through time;
for instance, the second sample in the first column appears to shorten for each
time step. Initially, the results seem quite promising, but to investigate what such
results hold in general, we evaluate the performance on the metrics used.

Model SW ĤMass ĤMomentum ĤEnergy p-value
Soliton 6.43e-5 .0418 .0353 .0168 .1557

Table 8.1: Test results when learning the propagation of a single soliton wave.
The SW is compared against the baseline, SWbaseline = 3.86e-5.

An explanation for why the height of the soliton wave sometimes appears
inconsistent when evolving through time, as shown in Figure 8.1, is because of
the low spatial resolution. The spatial domain x = [0,50] is discretized with step-
size∆x = 0.138̄, representing the whole domain by only 120 discrete points. As a
result, the peak of a soliton may not appear precisely on our defined discrete points
but rather in between two adjacent points. Instead of visualizing the actual soliton
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peak, points close to the peak are visualized instead, creating the illusion that the
soliton’s height is fluctuating. The solitons are also relatively spiked, which adds
to the effect.

Figure 8.1: A random selection of nine soliton samples that were randomly gen-
erated, with each time step of the wave state represented in a different color,
ranging from the initial state (blue) to the final state (red).

According to Table 8.1, the computed Sliced-Wasserstein distance (SW) between
the generated and target soliton simulations was 6.43e-5, which is very small.
The difference between this value and the baseline value of SWbaseline = 3.86e-5
is negligible, and it is possible that the metric may not be sensitive enough to de-
tect such minor differences. The fact that the computed SW value is so similar to
the measured baseline suggests that the generated data closely resembles the tar-
get data. However, additional specific and accurate metrics are needed for more
precise results. A test was performed to evaluate the accuracy of the SW distance
calculation between two sample collections from the same distribution, and the
results of several runs revealed a relatively high variance. The model result repor-
ted here falls within this range, indicating that the SW calculation is not precise
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enough to assess the model performance accurately.
The distribution plots in Figure 8.2 demonstrate the similarities between data

at different scales. UMAP provides a global comparison and shows that the gen-
erated samples mainly capture significant differences from the target samples,
except for some small target stripes. The generated and target samples are close
to each other when they are similar and far apart when they are different, which
is desirable. On the other hand, t-SNE does not capture the global structure but
gives more detailed local information on how well the generated samples fit. The
local information is visible in more detail as the plot does not need to be zoomed
out, unlike UMAP, which remains compact. The local structure reveals that many
generated samples overlap with the targets, and several samples differ slightly.
A small portion of target samples appear not covered (clean blue stripes), and
several small dense groups of generated samples are visible. These groups could
indicate the overproduction of a specific soliton wave, which also can be seen
in the slight overproduction of high peaks in Figure 8.3b. The PCA plot broadly
conveys the same information.

(a) PCA (b) t-SNE (c) UMAP

Figure 8.2: High-dimensional target (blue) and generated (orange) samples visu-
alized on a 2-dimensional plane using different methods. Each plot suggests the
generated samples are fairly close to the target samples.

The model is able to produce solitons with various heights, and the distribution
of these heights is almost uniform. The p-value of the model’s ability to generate
uniformly increases over time, as shown in Figure 8.3a, indicating that the model
is getting better at generating solitons of different heights. The height distribu-
tion of the trained model, as displayed in Figure 8.3b, is very similar to a proper
uniform distribution, with a p-value of 0.1557 and covering almost all modes.
However, some heights are below the target range (c < 0.5), and there is a short-
age of peaks very close to the upper limit. There is a slight over-representation of
soliton heights in the upper range, but overall, the model captures the continuous
range of soliton heights well.

The authors of COTGAN intended to develop a GANs that employs optimal
transport while also respecting causality. They included a causality term, the mar-
tingale regularization pM , in the objective function to prioritize causal transport
plans by measuring the associated causality error. By tracking pM , we can de-
termine how well the model respects the causality constraint during training. The
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graph in Figure 8.4 displays the relative causality error pM during training, which
plateaus after 200 epochs. The plateau consists of unnoticeable improvements
until the final epoch, where pM = 2.13. This suggests that the model can pro-
duce relatively causal transport plans or that the discriminator capacity is insuffi-
cient for the error to decrease further. Regardless of the discriminator capacity, the
model seems to learn to respect causality more effectively during training until it
reaches the plateau. This indicates that the model has hit a barrier in which the
transport plans are not able to be more casual. Whether or not the use of causal
optimal transports has had significant importance for the generator in learning to
create good samples is not entirely certain, but Xu et al. [61] reported that causal
transport plans are beneficial.

(a) The evolution of the p-value ob-
tained from the KS test during the train-
ing process of 600 epochs. The increas-
ing p-value with each epoch indicates
that the generated soliton heights are
getting closer to the desired distribution.

(b) A visual plot of the density distribution
of the generated soliton heights for the fully-
trained model. The KS test associated with this
distribution presented a p-value of .1557, in-
dicating that the generated sample does re-
semble some of the target distribution.

Figure 8.3: The p-value evolution (a) and density distribution (b) of 2000 gen-
erated soliton heights. The target soliton heights follow a uniform distribution,
precisely c ∼ Uni f orm[0.5, 2].

We analyze how conservation errors change throughout the training process
of the regular GAN to determine whether the model follows the underlying con-
servation laws. The conservation errors (displayed in Figure 8.5) for the three
quantities, namely ĤMass, ĤMomentum, and ĤEnergy, seem to be closely connected
and vary together in distinct ranges. For the first epochs, the errors fluctuate con-
siderably but gradually decrease and stabilize over time while continuing to re-
duce the error. This is due to the model adjusting to finer details and a decreasing
learning rate (learning rate decays at epochs 200 and 400), intentionally imple-
mented to prevent over-correction and ensure smoother solitons. The fact that
the model can improve the conservation losses without being explicitly informed
about them is a positive sign, suggesting that it can identify and correct critical
underlying elements in the data.
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Figure 8.4: The causal error tracked by the martingale regularization pM quickly
drops and stabilizes to values near two. Even though the y-axis is logarithmic to
visualize small differences more clearly, the graph appears to flatten out rather
quickly with unnoticeable improvements. The box presents the pM error at the
last epoch.

Figure 8.5: During the 600-epoch training period on the soliton dataset, all three
measures of energy conservation loss decreased and stabilized. The values at the
last epoch are reported in Table 8.1. The y-axis is in the logarithmic scale to make
small changes more prominent.

Parts of the conservation errors stem from the model generating unrealistic
soliton dynamics and difficulties modeling the last few time steps. Figure 8.6
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shows that the mean and median errors generally stay consistent until the final
time steps, where they suddenly increase. Since both the mean and median in
all plots grow, not just a few samples contribute a lot to the loss, but the gen-
eral sample is generated poorly. It can be concluded that the final time steps are
more problematic to produce and contribute negatively to the conservation er-
rors. The difference between the mean and median also suggests that samples
with exceptionally high relative errors (anomalies) exist, but many samples are
more consistent in achieving a low error. Figure A.8 in the Appendix displays a
collection of these anomalies, where the model deviates from the initial condition
and rapidly transitions to modeling smaller or larger waves.

Thinking that the conservation losses could be minimized by enhancing the
network architecture is a natural thought. Still, we found that several experiments
with larger capacity generators and different hyperparameters did not obtain bet-
ter results, considering the performance of the conservation losses and other eval-
uation methods. Figure A.7 provides a broad overview of some of the architecture
changes and hyperparameters tested along with their performance.

Regular GAN: random samples

Figure 8.6: Statistics considering the different conserved quantities with respect
to every time step of 2000 samples. The blue-shaded region represents one stand-
ard deviation from the mean. The mean and median errors show that the error
increases with each time step.

Overall, the model performs exceptionally well on the soliton dataset. It can
generate numerous solitons that appear smooth, with the peaks remaining relat-
ively stable and following the expected evolution over time, closely resembling the
actual soliton solutions. The generated solitons are uniformly distributed, sugges-
ted by the relatively large p-value. However, visualizations using PCA and t-SNE
demonstrate that some differences exist among samples, meaning that the model
does not entirely capture all soliton solutions and could be improved further. The
conservation losses are moderately low, given that errors are amplified by some
imperfection resulting in anomalies. There is also a slight accumulation of errors
during the simulation, but not too significant.
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8.2 Colliding solitary waves

By inspecting a few generated samples in Figure 8.7, it is clear that the GAN
gets several properties right. The two waves resemble smooth solitons and evolve
across with speed proportional to their height, as demonstrated in the top right.
The nine samples appear evenly distributed with different initial conditions and
evolve proximate to the expected behavior. It is also clear that the evolution of the
collision is not perfect, as the bottom row of samples reveals ripples in the waves
during the collision and spontaneous drops in the peak during no collision.

Model SW ĤMass ĤMomentum ĤEnergy p-value
Soliton 6.43e-5 .0418 .0353 .0168 .1557
Colliding 8.27e-5 .1294 .0853 .0535 .2723

Table 8.2: Test results when learning to simulate two colliding solitary waves,
with the Soliton results reported in Table 8.1 included for comparison. The SW is
compared against the baseline, SWbaseline = 2.47e-5.

Similar to the soliton dataset, the SW(= 8.27e-5) obtained is considered low
and very close to the SWbaseline = 2.47e-5. This indicates that the generated samples
are so similar to the target samples that the metric is no longer accurate enough
to assess their similarity further, or insufficient samples were used. Figure A.12 in
the Appendix illustrates this further as the monitored SW during training achieves
a distance smaller than the baseline at some point.

Compared to the single soliton dataset, the distribution plots shown in Figure
8.8 are very different. This is due to the collision of solitary waves causing a much
more diverse set of scenarios than just a single propagating wave, remembering
that each dot represents a complete simulation. The UMAP plot demonstrates that
the generated samples are highly similar to the target samples, with no apparent
outliers, covering all distinct cases. t-SNE provides more detailed local inform-
ation and reveals a similar relationship between generated and target samples.
However, t-SNE also allows us to identify slightly uncovered target samples close
to generated samples. It is unclear whether this is due to the generated samples
having initial conditions that are very similar but not precisely the same, resulting
in non-overlapping points, or if the generated samples were falsely simulated. The
PCA plot highlights additional lonely targets and generated samples but also a hat-
shaped boundary of target samples that is not evenly covered. It also shows three
highly dense regions of generated samples, which could indicate the uneven dis-
tribution of initial conditions or be an artifact of the PCA algorithm. Similar dense
regions are not visible in the other plots.
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Figure 8.7: A random selection of nine colliding solitary wave samples that were
randomly generated, with each time step of the system represented in a different
color, ranging from the initial state (blue) to the final state (red). Only every
second time step is displayed to visualize wave interactions more clearly.

(a) PCA (b) t-SNE (c) UMAP

Figure 8.8: High-dimensional target (blue) and generated (orange) samples visu-
alized on a 2-dimensional plane using different methods. Each plot suggests the
generated samples are fairly close to the target samples.
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The idea that the dense regions of generated samples seen in the PCA plot
(Figure 8.8a) are due to something other than the generation of uneven modes
is supported by the soliton peak distributions (displayed in Figure 8.9b). Visually,
the distributions appear to be evenly distributed across different peaks. This cor-
responds well with the p-value of 0.2723, indicating that we can not confidently
reject the hypothesis that the distributions are even. Additionally, the evolution of
the p-value over time (Figure 8.9a) indicates that the generated samples became
more consistent with the target distribution. The distribution plot (Figure 8.9b)
shows that the first soliton wave (denoted K1) includes soliton peaks below the
target range, which shows that the model could still be improved. The distribution
of the second soliton wave (denoted K2) is however much more accurate and fits
the target distribution well.

(a) The evolution of the p-value ob-
tained from the Kolmogorov-Smirnov
(KS) test during the training process of
600 epochs. The increasing p-value with
each epoch indicates that the generated
initial conditions are getting closer to
the desired distribution.

(b) A visual plot of the density distribution
of the generated soliton heights for the fully-
trained model. The KS test associated with the
two distributions (K1, K2) received an average
p-value of 0.2723, indicating that the gener-
ated sample does resemble some of the target
distribution.

Figure 8.9: The p-value evolution (a) and density distribution (b) of 2000 gen-
erated initial conditions and their respective soliton heights. The target soliton
heights follow the same uniform distribution, precisely k ∼ Uni f orm[0.2, 0.7].

Matching results are obtained from the causality error pM for the colliding
solitary wave dataset as the single soliton dataset. Figure 8.10 displays the same
dynamics of the monitored loss, a quick drop before stabilizing with unnotice-
able improvements for the rest of the training period. As a smaller causality error
(pM = 0.386) has been observed when training other models with different hy-
perparameters but obtained poorer results on the SW and conservation errors, it
is hence unclear if the causality term contributes to the learning process.
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Figure 8.10: The causal error tracked by the martingale regularization pM quickly
drops and stabilizes to values near two in the colliding solitary waves dataset.
Even though the y-axis is logarithmic to visualize small differences more clearly,
the graph appears to flatten out rather quickly with unnoticeable improvements.
The box presents the pM error at the last epoch.

We analyze how conservation errors change throughout the training process
to determine whether the model follows the underlying conservation laws. Fig-
ure 8.11 displays the conserved error related to the different quantities, ĤMass,
ĤMomentum, and ĤEnergy. Similar to the soliton dataset (as shown in Figure 8.5),
these three quantities are highly correlated and show similar fluctuations. The
errors fluctuate significantly during the first epochs but gradually decrease and
stabilize over time while continuing to reduce the error. Compared to the conser-
vation errors observed in the soliton dataset, the errors in the colliding solitary
waves dataset are slightly higher, which is expected as simulating the interaction
of two waves is considered to be a more challenging task.

Figure 8.12 visualizes some statistics regarding the conservation losses con-
cerning each time step. The most notable result is that all the statistics (mean, me-
dian, and standard deviation) take on larger values than the soliton dataset. The
mean and median increase steadily over time, and their difference indicate that
most of the samples have a lower error, which is more steady over time for both
the energy and momentum error. The mass means and median increase evenly to-
gether, providing evidence that the generation of each time step generally induces
some error.

The energy and momentum errors show an interesting bump in their mean
values, which is more noticeable in the standard deviation around time step 17.
This time step is around when multiple waves start colliding with each other, and
the frequency of collisions increases as the simulation progresses. In order to ex-
amine how well the models handle wave overtaking, which is regarded as the most
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Figure 8.11: During the 600-epoch training period on the colliding solitary waves
dataset, all three measures of energy conservation loss decreased and stabilized.
The values at the last epoch are reported in Table 8.2. The y-axis is in the logar-
ithmic scale to make small changes more prominent.

Regular GAN: random samples

Figure 8.12: Statistics considering the different conserved quantities with respect
to every time step of 2000 samples (226 or ≈ 12% of them considered overtak-
ing). The blue-shaded region represents one standard deviation from the mean.
The mean and median errors show that the error increases with each time step.

significant moment of nonlinear interaction, we categorize the generated samples
into two groups: overtaking and non-overtaking. We group using the overtaking
definition presented earlier in section 7.1.2 but summarized as follows: The scen-
arios where the peaks of the two waves align above each other before the 25th
time step are considered to be overtaking samples. The rest is non-overtaking.
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Regular GAN: non-overtaking solitons

Figure 8.13: Statistics of 2000 generated non-overtaking solitons. The
statistics consider the different conserved quantities with respect to every
time step. The blue-shaded region represents one standard deviation
from the mean. The mean errors over all time steps are as follows:
ĤEnergy = 0.070, ĤMomentum = 0.084, and ĤMass = 0.1295.

Comparing the overtaking and non-overtaking statistics displayed in Figures
8.13 and 8.14, it becomes evident that there are significant differences between
the two scenarios. The non-overtaking statistics resemble the randomly generated
sample statistics shown in Figure 8.12, whereas the overtaking statistics exhibit
more dynamic behavior. In particular, the energy error remains small until time
step 11, after which it increases rapidly, even though the fastest possible overtak-
ing occurs at time step 14 (when the left soliton is the tallest and the other very
short). This suggests that generation flaws happen before the waves collide or
their peaks align. On the other hand, the momentum and mass errors decrease.

Regular GAN: overtaking solitons

Figure 8.14: Statistics of 2000 generated overtaking solitons. The stat-
istics consider the different conserved quantities with respect to every
time step. The blue-shaded region represents one standard deviation
from the mean. The mean errors over all time steps are as follows:
ĤEnergy = 0.1184, ĤMomentum = 0.1044, and ĤMass = 0.1214.

Comparing the mean energy error between non-overtaking and overtaking
scenarios reveals a substantial increase, rising from 0.07 to 0.1184, as reported in
Figures 8.13 and 8.14. Although the other conservation losses also increased, their
rise was not as significant. The increase in energy conservation error indicates that
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the model does not accurately capture the physical behavior of the system and is
unable to simulate wave overtaking precisely.

As the number of collisions increases after time step 15, all errors begin to rise.
This time period is considered the most significant moment of nonlinear interac-
tion. The fact that the errors increase suggests that the model struggles with the
nonlinear interaction of the colliding waves. Further investigation into whether
this is due to insufficient generator capacity is discussed in the next section.

The non-overtaking statistics closely resemble the general statistics of ran-
domly sampled data (Figure 8.12) because of an uneven distribution of overtak-
ing and non-overtaking samples. Non-overtaking samples are generated more fre-
quently and constitute most of the sample distribution. In contrast, the overtaking
waves, which account for approximately 12% of the generated samples, are not
generated often enough to have a noticeable impact on the general sample statist-
ics. Only certain combinations of soliton heights in the initial condition ensure an
overtaking scenario. Figure A.13 in the Appendix presents a visual representation
of the small percentage of the initial conditions that result in overtaking waves.

8.3 Autoencoder and physics-informed GAN

The visual samples displayed in Figure 8.15 from the physics-informed model
are very similar to the regular GAN. Both models produce relatively smooth and
visually similar samples that follow similar dynamics. Some samples still exhibit
small ripples and soliton peak jumps, e.g. the central right-most column sample in
Figure 8.15. However, the conservation errors in Table 8.3 reveal that the model
trained with physics information performs much better at conforming to the con-
servation laws. All conservation errors are considerably lower and in the same
range as the autoencoder, which was explicitly trained on the target samples. The
autoencoder experienced some difficulties in reconstructing the samples during
training as the errors plateaued for several epochs but eventually learned to re-
construct the samples. Visualizations of the mean squared error and conservation
errors during autoencoder training are provided in the Appendix as Figure A.17
and A.16. The SW distance appears to be in the same range as the regular GAN.
Providing more evidence that it is not sensitive enough to be used as a useful
metric in our scenario, as it does not provide reliable information to differentiate
between the two clearly different performing models.

Model SW ĤMass ĤMomentum ĤEnergy

Autoencoder .0361 .0174 .0125
Physics-informed GAN 4.41e-5 .0352 .0251 .0168

Table 8.3: The results of the autoencoder trained to decode and deconstruct tar-
get samples and the GAN trained while being informed about its conservation
errors. Both obtained very similar results.
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Figure 8.15: A random selection of nine colliding solitary wave samples that
were randomly generated from the physics-informed model. Each time step of
the system is represented in a different color, ranging from the initial state (blue)
to the final state (red). Only every second time step is displayed to visualize wave
interactions more clearly.

Due to the sample being visually similar to the regular GAN, visualization of
the generated samples using PCA, t-SNE, and UMAP is considered redundant for
this model’s performance. The same holds for the distribution of soliton heights
in the initial condition. These results are instead available in Figure A.14. in the
Appendix.

The conservation regularization was initiated at epoch 160, which is also
clearly visible in the error drop in Figure 8.16. The error quickly drops and stabil-
izes, slowly decreasing the conservation errors until convergence. The behavior
of the conservation loss is similar to the regular GAN but decreases for a longer
period before converging. This behavior is logical, considering that the model re-
ceives explicit information about the conservation errors.

Inspecting the conservation error in the physics-informed model for both over-
taking and non-overtaking samples shows the two scenarios behave very differ-
ently While the non-overtaking samples have a slow and stable error increase over
time, the overtaking statistics exhibit more dynamic behaviors. All conservation
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errors visualized in non-overtaking consist of a much smaller standard deviation
that gradually increases over time but indicates that most non-colliding waves
have been seemingly accurately generated. The overtaking samples displayed in
Figure 8.18 share a similar trend but is less significant in the mass and momentum
errors.

Figure 8.16: During the 800-epoch training period on the colliding solitary waves
dataset with conservation regularization, all three measures of energy conserva-
tion loss decreased and stabilized. The values at the last epoch are reported in
Table 8.3. The y-axis is in the logarithmic scale to make small changes more prom-
inent.

Physics-informed GAN: non-overtaking solitons

Figure 8.17: Statistics of 2000 generated non-overtaking solitons from the
physics-informed model. The statistics consider the different conserved quantities
with respect to every time step. The blue-shaded region represents one standard
deviation from the mean. The same y-axis range as Figure 8.14 is used for easy
comparison.

The energy error bump revealed in Figure 8.18 indicates that the GAN gen-
erator is insufficient in learning the dynamics of the colliding waves, even when
being physics-informed. The mean error seen at time step 15 in the energy error
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equals 0.15, identical to the error seen in the model trained without conservation
regularization in Figure 8.14. The mean and median errors are also similar, indic-
ating that the average sample experiences the same energy error at the time of
the collision. These findings suggest that some limitation hinders the model from
improving beyond this barrier and is likely due to insufficient network capacity.

The energy bump’s dynamics in Figure 8.18 provides valuable insights into
the colliding wave simulation. Initially, up to time-step 10, the model performs
well in simulating the two colliding waves. However, as the waves move apart
after the collision, starting from time step 11 and beyond, the model struggles
to represent their behavior accurately. Since the system is highly nonlinear, the
energy exchange and position of the waves during their collision are not intuitive.
It requires an in-depth understanding of the system to model correctly, which the
GAN model fails to capture fully.

Physics-informed GAN: overtaking solitons

Figure 8.18: Statistics of 2000 generated overtaking solitons from the physics-
informed model. The statistics consider the different conserved quantities with
respect to every time step. The blue-shaded region represents one standard de-
viation from the mean. The same y-axis range as Figure 8.14 is used for easy
comparison.

By measuring the conservation errors of the reconstructed samples, we can
evaluate the autoencoder’s ability to reconstruct the target samples. The findings
demonstrate that the generator network can not reconstruct the samples perfectly.
Figure 8.19 displays the conservation errors of reconstructed overtaking samples,
which closely resemble the statistics from the physics-informed model in Figure
8.18. Even though the autoencoder was trained using target data, one would reas-
onably expect to see a substantially lower energy error, but this did not occur. The
energy error plots of both models are nearly identical, revealing a shared error
bump. This similarity suggests that the generator network has been trained to
its potential limitations in both cases. Since the generator is solely responsible
for generating the samples, it must contain all the necessary knowledge to create
them. However, the observed energy errors indicate that the generator network
lacks the ability to construct samples with greater accuracy and lower error.

The autoencoder and the physics-informed GAN achieved more than three
times less conservation error for all conservation quantities than the regular GAN.
These low conservation errors also revealed the limitations of the generator net-
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Autoencoder: overtaking solitons

Figure 8.19: Statistics of 453 reconstructed overtaking solitons using the autoen-
coder. The statistics consider the different conserved quantities with respect to
every time step. The blue-shaded region represents one standard deviation from
the mean. The same y-axis range as Figure 8.18 is used for easy comparison.

work architecture, as both the autoencoder and physics-informed GAN obtained
very similar sample statistics. Both models encountered a similar obstacle that
prevented further improvements and given that they shared the same generator
architecture, the generator capacity is considered insufficient. The aim of both
models was to assess the generator’s capacity and establish a benchmark for the
GAN without conservation error knowledge to compare against, which they suc-
cessfully achieved.

8.4 Model comparisons

Here we combine the results into a discussion about the relative performance
differences. The main results considering each model about their conservation
errors are listed together in Figure 8.20 for easy comparison.

There exist many differences to discuss, so the section is divided into two main
parts: Sample complexity and Physics information, where the former compares
the two different datasets used with additional comparisons of the overtaking
scenarios, while the latter will discuss what performance difference between the
regular and physics-informed GAN.

8.4.1 Sample complexity

Both models demonstrate they can produce many moderately realistic samples, as
some samples included small visual flaws. The commonly used evaluation meth-
ods, such as sample comparison using PCA, t-SNE, SW distance, and mode drop
investigation, all show excellent performance for both models. Since both mod-
els show similar performance, it is problematic to understand how the sample
complexity affected the model performance or even to know if the samples are
correctly modeled. None of these evaluation methods can properly assess their
sample quality differences. Using more accurate measurements, such as a more
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Figure 8.20: The combined plot of all experimental models introduced above and
their respective conservation losses. Here Solion and Colliding denote the models
trained in the soliton and colliding solitary waves dataset, respectively.

accurate Wasserstein distance estimation, would provide more insight, but not as
clearly as measuring data-specific properties such as conservation laws. The error
associated with conserved quantities (mass, momentum, and energy) all reveal
considerable differences between the two datasets (visualized in Figure 8.20).
The model trained to generate simple solitons follows the conservation quantities
much more closely, while the colliding solitons violate them more. This is clearly
visible from the statistics of the overtaking samples in Figure 8.14) and also shows
that there is much space for improvement. The error difference in the conserved
quantities also matches our expected model performances, as the collision of two
waves should be much more difficult to model.

The total energy associated with the systems significantly differs between the
two datasets. A system containing two waves may have up to almost three times
as much energy as a single-wave system, which can influence the results. Figure
8.21 reveals a correlation in which a system’s general energy conservation error
increases with respect to its total energy. This correlation is also present in the
soliton data but not less significant (visualized in Figure A.10 in the Appendix).
The conservation errors for the model generating two waves may therefore have
some error explained by the samples themself holding more energy.
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Figure 8.21: Scatter plot illustrating the relationship between the energy error
(HEnergy) of 2000 generated colliding solitons and the total energy in the system at
two different time steps, time step 5 and the final time step (29). At the final stages
of the simulation (right plot), the error is generally larger, but also for systems
containing consisting of more energy. However, there are still many samples with
low error, similar to the early phases.

Overtaking vs non-overtaking samples

Although the model trained on colliding waves performed worse than solitons, it
exceeded expectations in certain parts of the simulation. The simulation of two
waves shows similar properties to the evolution of a single wave, such as the shape
of the wave and wave speed, which depend on the wave height. Both models share
that the shapes of the waves appear realistic and move at the correct speeds. This
holds for the colliding wave samples until the collision, as evidenced by the stat-
istics of the non-overtaking waves (Figure 8.13), which remain relatively stable
until they come into contact and interact.

Considering the modeling of waves that overtake each other, the model per-
forms much worse. This is evident in the statistics on overtaking samples (Figure
8.14), as the errors are much more dynamic with respect to time. The large er-
ror bumps arise from difficulties with the wave’s interaction and separation again
after overtaking has occurred.

Testing the generator network capacity using the autoencoder reveals that
there is still much potential for the GAN to perform better. It is not certain how
much better performance is achievable, but some other combination of hyper-
parameters definitely exists to obtain slightly better results. Envisioning a more
extensive performance gain would require modifications to the architecture. This
is believed to be the case because the autoencoder results also revealed that the
generator capacity is insufficient in modeling the colliding waves accurately. This
was confirmed by neither the autoencoder nor the physics-informed model being
able to model the colliding waves accurately as they obtained considerable energy
conservation errors (by comparing Figure 8.18 and 8.19).

The generator architecture is also considered quite simple, comprising just
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two GRU layers and three fully-connected layers. Since the colliding waves in-
clude several highly nonlinear interactions, the generator must replicate the same
nonlinearities. As the autoencoder could not do so, the generator is believed to
comprise too few nonlinear activation layers. Increasing the generator capacity
would seem to fix this issue. Still, we have tried to address this problem by in-
cluding extra GRU layers, more fully-connected layers, and nodes, but without
achieving better results. Something about the COTGAN training procedure is also
suspected to affect the model results, but we have yet to look thoroughly into this.

Another factor that could have increased the overtaking conservation error
is the in-homogeneous data distribution; only approximately 12% of the target
samples are considered good overtaking samples (Figure A.13). This challenges
the model in learning their difficult interaction when only a few samples are con-
sidered when performing network updates, rendering its gradient update ineffect-
ive. It is not considered one of the leading causes, but something that should be
investigated further.

8.4.2 Physics information

By comparing the conservation errors of the physics-informed GAN and regular
GAN in Figure 8.20, it is evident that the physics-informed model adheres much
more closely to the conservation laws. The conservation errors obtained by the
physics-informed GAN are over three times lower and near the autoencoder, a
model trained explicitly on target data. As both the autoencoder and physics-
informed GAN yield similar results and sample statistics, it is believed that they
have encountered the same performance barrier due to restricted generator capa-
city.

Both visually and using the commonly used evaluation methods, it isn’t easy
to accurately state the performance differences between the physics-informed and
regular GAN. It is possible to see some visual improvements since the data includes
smooth curves, but that is it. Knowing that the physics-informed model generates
samples much more accurately, but where the improvements are not visible or eas-
ily observable, is thus a surprising result. For cases where more complex data is
considered and not smooth curves, e.g., medical data, this is a huge problem. If it
is not possible to be certain that the underlying constraints in the data are learned
and respected, generated samples could be deemed misleading and provide false
statistics. This proves the importance of proper evaluation metrics and how know-
ing about underlying constraints can help evaluate and enhance performance.

However, knowing or being able to define underlying constraints is very of-
ten not possible, e.g., working with image data. In these cases, one can only as-
sume the model has learned the underlying constraints. Using the conservation
errors, we also found that our model had insufficient capacity to model the scen-
arios perfectly, which would have gone unnoticed without the conservation know-
ledge. This also illustrates the importance of data knowledge and the uncertainty
in model performance.
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The potential performance of the regular GAN and what it fails to capture

The regular GAN’s lack of consideration for underlying physics is apparent when
comparing statistics of the conservation errors of the overtaking solitons, as shown
in Figures 8.14 and 8.18. The physics-informed model accurately accounts for the
mass and momentum conservation with significantly lower and more stable er-
rors. In contrast, the regular GAN has at least twice the error, which fluctuates
considerably throughout the simulation. While all models struggle with energy
conservation, the physics-informed model and autoencoder recover somewhat
after the most nonlinear interactions, as the conservation error decreases after
most collisions finish. Conversely, the regular GAN accumulates errors without
noticeable recovery, indicating that it does not understand the wave interactions.

However, it should be noted that even if the conservation error falls back to
zero after the collision, a generated sample may not be entirely accurate. The new
wave positions after the collision are non-trivial and do not affect the conservation
checks. Therefore, adding conservation laws does not make the GAN water-tight
against sample errors. As this is specific to this particular wave equation and not
a general physical law, we have not evaluated whether the waves are correctly
positioned during the entire simulation.

An important point to note regarding the non-informed GAN result is that we
chose the model based on its performance on the SW distance and conservation
errors. This means many other versions of the model with different architectures
and hyperparameters may perform similarly to the one presented here when only
utilizing standard evaluation metrics. The analyzed results are hence subject to
selection bias and do not necessarily reflect the typical or expected performance of
GAN models but rather the best model that could adhere to the conservation laws
with minimal error through an implicit optimization process. Therefore, all of the
reported values of the conservation errors are generally worse when evaluating
the regular GAN’s performance without access to the conservation errors. Figure
A.11 contains the results of many worse-performing models encountered in the
hyperparameter selection process. This more strongly signifies that GANs are not
able to learn the underlying laws in the data correctly.

8.5 Other notable points

GAN training difficulties

One important point to note regarding the model results is that it took a signific-
ant time to find suitable architectures and hyperparameters to achieve desirable
outcomes. A total of 553 hours (∼23 days) was spent only training the different
GANs. Although COTGAN was one of the easier models to train without encoun-
tering issues such as total mode collapse or non-convergence, it still required care-
ful tuning. One of the major challenges was dealing with local minima in generator
network capacity. Several attempts were made to increase the generator capacity,
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but they resulted in poorer results. Experiments involved testing different gener-
ator architectures using the autoencoder for quick performance testing but were
also unsuccessful. It was assumed that a more significant capacity generator would
yield higher-quality samples, but all experiments in this direction failed. There-
fore, we believe the architecture needs to be significantly larger or redesigned
using different modules, such as convolutions. This is discussed further in future
work.

Higher spatial and temporal resolution

We explored the feasibility of achieving high spatial and temporal resolutions
in our simulations without encountering too severe training issues. We experi-
mented with spatial resolutions of up to 180 and 60 time steps, but we found that
these resolutions led to unrealistic-looking samples. Therefore, we decided on the
lower resolution, which was easier to work with. Although higher spatial resol-
ution would have resulted in smoother simulations, it would have significantly
extended the hyperparameter search period without considerably affecting the
findings. Higher resolutions would, however, allow us to perform a more in-depth
sample analysis of the waves during the collision and modify the dataset to enable
the waves to travel for an extended period. Investigating where the GAN fails in
greater depth may be viewed as a topic for future research while also creating
strategies to address the challenge of generating high-dimensional time series.

Approximate Sliced-Wasserstein distance as an evaluation method

Every generative model faces the challenge of lacking proper evaluation metrics
to easily and reproducibly assess the results. Many evaluation methods use other
neural networks, are non-deterministic, or rely solely on visual inspection. We
applied a new metric that does not rely on these flaws, the fast approximated
Sliced-Wasserstein distance and used it to monitor and evaluate our results. While
it was effective in tracking the training process, it wasn’t as precise when the
generated samples closely resembled the target samples. The method had high
variance even when using 2000 samples, making it inadequate for accurately as-
sessing model performance. Figure A.9 in the Appendix shows the high variance
obtained from different sample sets drawn from the same distribution of solitons.
Increasing the sample size could address this issue, but using a more accurate
Wasserstein distance estimation method like Sinkhorn divergence (section 2.3.2)
or non-deterministic Sliced-Wasserstein (section 2.3.3) would provide higher ac-
curacy for post-evaluation.

Additional indications of inaccuracies in the approximated Sliced-Wasserstein
distance are presented in Figure 8.22. The figure demonstrates that, despite exhib-
iting similar SW performance, the three models behave very differently regarding
energy conservation. While expecting the SW distance to detect these differences
in conservation errors precisely may be unreasonable, more distinction in the SW
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distance between the models would be beneficial. When more samples are avail-
able, more samples can be considered to estimate the SW distance more accur-
ately. However, in cases where only limited samples are available, better tech-
niques must be utilized. This thesis demonstrated that utilizing data knowledge,
such as conservation laws, is one powerful technique that can lead to better model
evaluation without requiring numerous samples.

Figure 8.22: The monitored SW distance and energy conservation error of three
non-informed models with slight hyperparameter differences. The top plot dis-
plays the SW distance, and the bottom plot shows the energy conservation er-
ror, with each model being represented by a different color - green, brown, and
purple. The monitored SW distance shows similar values for all three models,
whereas the energy conservation error varies greatly. This indicates that the SW
distance is not sensitive enough to differentiate the models based on their loyalty
to the conservation law.





Chapter 9

Conclusion and Future Work

This chapter provides a comprehensive summary of the results obtained and ad-
dresses the research questions posed in this thesis. Additionally, it offers insights
into potential avenues for future research and expansion of the current work.

9.1 Conclusion

The problem of not knowing if GANs adhere to the same underlying laws as the
real data is a significant bottleneck for interpretation. Data that does not obey the
same laws may exhibit different statistics and be considered invalid for many prac-
tical applications. While some applications can inform the GAN about underlying
constraints due to domain knowledge, this is not the case for most applications,
as the underlying process might be too complicated, inaccessible, or unknown. In
these situations, understanding if GANs can adhere to the underlying constraints
is of great importance to improve awareness about their limitations and help aid
the selection of reliable models for critical applications.

In this thesis, we investigated the capability of GANs to capture the implicit
laws embedded in a physical system. Our experiments focused on a simulated
environment of nonlinear propagating ocean waves described by the well-known
KdV equation. Simulations following the KdV equation adhere to conservation
laws, which are also mathematically defined and enable measuring the flaws in
the generated samples. We demonstrate the capability of GANs by training them to
produce new simulations on a dataset of examples and measure their adherence
to the underlying laws.

Before conducting the main experiment, we tested four different GAN frame-
works, namely RGAN, TimeGAN, COTGAN, and RTSGAN, on a simple dataset
of sinusoidal waves. By assessing sample quality, diversity, and training behavior,
we identified COTGAN as the best-performing model and selected it as the base
model for the main experiments.

In addition to conducting various GAN experiments, we utilized a novel eval-
uation metric, the Fast approximation of the Sliced-Wasserstein distance (SW) pro-
posed by Nadjahi [26], to monitor and evaluate the performance of the model—this
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effort aimed to contribute to the ongoing exploration of effective evaluation met-
rics for generative models.

For the main experiment, we utilized the conservation errors and SW distance
to assess the performance of different GANs, specifically a regular and physics-
informed GAN. Considering the performance of the physics-informed GAN as the
benchmark for comparing performances, we report statistical differences between
the conservation errors associated with mass, momentum, and energy between
the two models.

RQ1: How well do regular GANs conform to the underlying physical
laws governing the data in comparison to physics-informed GANs?

The results exhibit remarkable similarities when comparing the regular GAN with
the physics-informed GAN using standard evaluation methods like PCA, t-SNE,
UMAP, and SW distance. Both models generate relatively smooth waves that visu-
ally appear to behave correctly. However, a more detailed analysis of the mass,
momentum, and energy conservation error reveals that the physics-informed GAN
captures the underlying laws with considerably greater adherence. The conserva-
tion error between the models is over three times higher for the regular GAN,
which reflects the best-case scenario.

It is important to note that the reported result for the regular GAN is biased as
it was implicitly optimized by observing the conservation errors during the tuning
process. Consequently, these results do not reflect the performance one would ex-
pect from a regular GAN trained without access to the conservation errors. This
observation highlights that an unbiased GAN would adhere less to the underlying
physical laws. Given our findings, a regular GAN can not be expected to con-
sistently conform to the underlying conservation laws in general settings, as our
results reflect the best possible GAN scenario.

With its simplicity and smoothness, the simulation governed by the KdV equa-
tion is relatively simple compared to other real-world data. Real-world data often
includes noise, higher-dimensional data, and more complex nonlinearities, which
may not have the same visually appealing representation. In such scenarios, the
performance of GANs is expected to be even less impressive, as the mediocre res-
ults observed here provide little evidence of adequate adherence to the underlying
constraints.

In conclusion, regular GANs may exhibit inconsistency in conforming to the
underlying physical laws that govern the data. Despite producing visually pleasing
results, regular GANs tend to have significant conservation errors and face chal-
lenges in accurately adhering to the underlying constraints of complex systems.

RQ2: What are the limitations and challenges GANs face in adhering
to complex physical laws in multivariate time series data?

Several challenges limit GANs in adhering correctly to the underlying laws, but
the primary reason is believed to be that they are purely statistical. Only relying
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on the statistical properties of the training data in combination with its stochastic
generation yields a problematic task, and gradients used for updating the network
do not provide sufficient information. Models converged to results that do not
adequately adhere to conservation laws, as the delicate details in the training
data are considered too tiny to capture through statistical learning.

A more direct challenge that significantly affects GAN’s capability to reach
results that adhere to the underlying laws is its unpredictable tuning process. Its
sensitivity to small hyperparameters and architecture changes dramatically slows
the convergence rate toward optimal design and hyperparameters. Despite mon-
itoring the conservation errors and making reasonable modifications, GANs un-
predictably generate poor results, even when utilizing explicit algorithms such as
the Sinkhorn algorithm to provide accurate gradients for the generator.

The problem is hence not a direct cause of poor evaluation metrics but how
GANs behave in the first place. Even using perfect evaluation metrics, such as
the conservation errors used in our experiments, does not fix the issue of getting
the model to optimal results without explicitly informing the model about them.
Obtaining optimal GANs with sufficient architecture and good hyperparameters
in applications without access to the underlying constraints is thus even less likely.
Investigating what causes this unpredictable tuning behavior would be a case for
future work.

Secondary challenges exist regardless if their unpredictable tuning nature is
resolved, such as the lack of a suitable evaluation metric sensitive enough to detect
violations of conservation laws, the time-consuming nature of hyperparameter
tuning, and the uncertainty regarding the generator’s capacity.

The lack of proper evaluation metrics makes it difficult to distinguish between
versions of the model that perform similarly but conform differently to the under-
lying laws. Visual inspection and conventional statistical techniques, such as PCA,
t-SNE, and UMAP, are insufficient for assessing these differences, necessitating
the use and development of more sensitive evaluation methods.

Tuning GANs requires significant time and computational resources. The train-
ing duration scales with the sequence length and dimensionality, and applying
GANs to complex datasets and practical problems increases the time spent on
tuning. Employing hyperparameter search techniques, such as Bayesian optimiz-
ation, becomes infeasible due to the long training periods and the lack of suitable
evaluation metrics to guide the search. Finding optimal parameters where the
GAN adheres to the conservation laws within a reasonable margin may be out of
scope for some applications.

Determining whether the network has sufficient capacity to generate accurate
samples is a significant problem. Insufficient network capacity may go unnoticed
during the training process, and the lack of capacity can only be identified through
the measurement of conservation errors. This implies that the GAN may never
produce correct samples, raising concerns when assessing network capacity in
applications where constraint error can not be directly measured.

The issue of sufficient capacity also affects other deep learning models, as evid-
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enced by the autoencoder. The autoencoder is capable of reconstructing samples
that seem precise and realistic without showing any evidence of energy conserva-
tion violations. However, this observation does not hold when directly measuring
the constraints. This finding suggests that even when the model is trained with
perfect knowledge, it may not fully obey physical laws. Therefore, assuming that
GANs, which implicitly learn the target distribution, achieve better results is un-
reasonable.

RQ3: How effective is the approximated Sliced-Wasserstein distance
in evaluating the performance of GANs on time series?

The Fast approximation of the Sliced-Wasserstein distance (SW) has demonstrated
effectiveness for different purposes. Although it is not specifically tailored to ac-
count for the causal nature of time series data, it proves to be a valuable eval-
uation metric for the sinusoidal dataset. It effectively establishes a distinct and
meaningful boundary between different model performances, and its computa-
tional efficiency makes it suitable for monitoring GAN training progress.

However, the metric lacks the sensitivity to differentiate model performance
in the main experiment effectively. When generating colliding solitary waves, the
models quickly converge to produce samples similar to the target distribution,
rendering the SW distance too inaccurate for assessing their performance differ-
ences.

Since the metric is an approximation of the Sliced-Wasserstein distance, it is
expected to have a sensitivity threshold, but determining the point at which the
approximation becomes too inaccurate is difficult to reckon beforehand. The data
dimensions and the number of samples considered also influence this threshold.
Therefore, when working with small sample sets, it is advisable to have less reli-
ance on the metric.

The sensitivity threshold is also affected by the dimensions of the data and the
number of samples used for the measurement. Hence, when dealing with limited
sample sets, placing less reliance on the metric is recommended.

In conclusion, the Fast approximation of the Sliced-Wasserstein distance is
highly valuable for monitoring GAN training in the early stages, but it is not suit-
able for assessing performance differences between similarly performing models
or when only small sample sets are available.

9.2 Future work

Given that the primary objective of this study was to demonstrate the limitations
of GANs in capturing the underlying physical laws present in the data, it is import-
ant to note that our findings do not conclusively prove their inability. Therefore,
it is essential to delve deeper into the assumptions and choices made within this
thesis, conducting further investigations to gather additional evidence support-
ing either scenario. It is important to perform comprehensive testing with diverse
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configurations and data types, as this will contribute to a more comprehensive
understanding of the capabilities and limitations of GANs. Expanding the scope
of our analysis to encompass a broader range of settings and modules presents
an important road for future research. Some natural ideas for extending our ana-
lysis include examining the performance of higher capacity networks, exploring
the use of different recurrent modules, and extending the dataset to higher spati-
otemporal resolutions.

Enhancing Network Capacity

The findings of this thesis indicate that the model’s ability to generate samples
adhering to the laws of physics was limited, raising the question of whether in-
sufficient generator capacity played a significant role in this limitation. Despite
our efforts, we were unable to increase the generator’s capacity to the desired
level without experiencing significantly poorer training results. It is intuitive to
believe that a higher-capacity generator, equipped with more nonlinear opera-
tions, would better capture the simulated system than a lower-capacity model.
Therefore, future research focused on acquiring a Generative Adveserial Network
with sufficient capacity and performing similar experiments would yield important
results. Such work would explore whether GANs encounter difficulties in learning
good representations when strict capacity constraints are in place and potentially
reveal that our GAN performed poorly due to convergence to a local optimum. Un-
derstanding whether insufficient capacity is a major barrier significantly affecting
adherence to underlying relationships would be important.

Given the challenges encountered in augmenting the capacity of the current
architectural design, a redesign becomes necessary. Alternative recurrent modules
and design methodologies should be considered. Noteworthy starting points for
exploration include the progressive network scaling method proposed by Karras
et al. [96] and the utilization of weight normalization to stabilize training, as
investigated by Xiang and Li [97].

Exploring alternative recurrent modules

Throughout this thesis, we have mainly utilized one specific recurrent module,
namely the Gated Recurrent Unit. It’s popularity and computational efficiency
primarily drove this choice compared to other modules like LSTMs. Since the re-
current module plays a crucial role in establishing connections between time steps
and predicting the next step in the sequence within our architecture, it would be
worthwhile to investigate different recurrent modules. Modules such as LSTM,
dilated (causal) convolutions, or transformers offer distinct behaviors and may
offer additional capabilities and other outcomes. Dilated convolutions, designed
to respect causality in convolutions, have already been successfully utilized in
GANs for speech enhancement [98], and transformers have been applied to time
series data as well [78, 86].
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Conducting similar experiments to those in this thesis will help determine if
the choice of recurrent modules in the GAN architecture is a limiting factor in
achieving better results or if other aspects of the framework need improvement.

Utilizing higher spatiotemporal resolution

Expanding the simulation to a higher spatiotemporal resolution would enable a
closer examination of how the GAN understands wave interactions, providing
more insights into the underlying issues in the generation. Although we briefly
considered increasing the spatial resolution in this thesis, we ultimately aban-
doned it due to the increased complexity of tuning and training. However, there
are existing approaches to address challenges with long sequences [99] and high
dimensionality [96]. While investigating higher-resolution data could be interest-
ing and valuable for modeling long sequences, it is unlikely to yield fundament-
ally different results from those presented here. Nevertheless, it would contribute
to a better understanding of the underlying problem. Advancements in this area
would benefit applications where strict adherence to the underlying constraints is
less critical.
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Appendix A

Additional Material

A.1 Experiment: Framework testing, more results

Figure A.1: Additional examples of the best performing RGAN model on sinus-
oidal data.
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Figure A.2: Additional examples of the best performing TimeGAN model on si-
nusoidal data.

A.2 Experiment: Learning of underlying physical laws,
more results

A.2.1 Solitons

A.2.2 Colliding solitary waves

A.2.3 Autoencoder and conservation regularization
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Figure A.3: Additional examples of the best performing RTSGAN model on sinus-
oidal data.
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Figure A.4: Additional examples of the best performing COT-GAN model on si-
nusoidal data.

(a) SW distance results using three different
data shapes. Two adjacent letters indicate a
dimension equal to their product.

(b) The sensitivity of having (N , S, D)-shapes
data when minor adjustments to the dataset

Figure A.5: SW distance statistics of different data collections containing 1000
randomly generated samples using equation 7.2 with one of the datasets having
different soliton height upper ranges. The boxplots are based on 100 different
runs.
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Figure A.6: The SW distance monitored over the training period for the soliton
dataset.
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Figure A.8: A set of anomalies based on which samples contributed the most to
the conservation error.
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Figure A.9: Different results are obtained for the SW baseline when considering
many different sample sets from the target distribution. This plot resembles the
density distribution for 1000 different SW baseline calculations on the Soliton
dataset, where sample sets contain 2000 samples.

Figure A.10: Scatter plot illustrating the relationship between the energy error
(HEnergy) of 2000 colliding solitons and the total energy in the system at two
different time steps, time step 5 and the final time step (29). At the final stages
of the simulation (right plot), the error is generally larger, but also for systems
containing consisting of more energy. However, there are still many samples with
low error, similar to the early phases.
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Figure A.12: The SW distance monitored over the training period for the colliding
solitary waves dataset.
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Figure A.13: An overview of different initial conditions which result in the left-
soliton overtaking the other. The axis represents the height of the left and right
soliton, K1 and K2, respectively. The combination which leads to the overtaking
is colored in blue, which represents approximately 12% of the samples.

(a) PCA (b) t-SNE (c) UMAP

Figure A.14: Visualization of the target and generated samples from the physics-
informed model. High-dimensional target (blue) and generated (orange) samples
are visualized on a 2-dimensional plane using different methods. Each plot sug-
gests the generated samples are fairly close to the target samples.
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Figure A.15: A visual plot of the density distribution of 2000 generated soliton
heights for the fully-trained model. The KS test associated with the two distribu-
tions (K1, K2) received an average p-value of 0.0001, indicating that the generated
sample does not entirely generate the modes uniformly.

Figure A.16: During the 600-epoch training period of the autoencoder, all three
measures of energy conservation loss decreased and stabilized. The values at the
last epoch are reported in Table 8.3. The y-axis is in the logarithmic scale to make
small changes more prominent.
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Figure A.17: The mean squared errors of both the train and validation dataset
over the training period of 600 epochs. The errors plateaued for a while without
any noticeable improvements until they eventually continued to improve.
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