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Abstract

This thesis presents an investigation into the application of dimensionality reduction tech-
niques, specifically Principal Component Analysis (PCA), to sensor data from a fish farm sea
cage. The goal of the thesis is to find a more sparse sensor setup that retains most of the in-
formation of the full setup. The primary focus lies on depth sensor data, but accelerometer
and load shackle data is also analysed.

The study reveals that the PCA can be effectively applied to depth sensor data, indicating the
existence of optimized sensor setups that don’t lose significant amounts of information regard-
ing depth dynamics. However, the PCA’s application to accelerometer and load shackle data
proved more challenging, highlighting the limitations of the PCA and the potential presence
of non-linear relationships in these sensors.

Alternative approaches and techniques, such as t-SNE, UMAP, autoencoders, and wavelet trans-
forms are discussed as they might be better suited to uncover the patterns in the accelerometer
and load shackle data. The importance of future research in this area is also discussed.

While this study is not comprehensive enough to crown one single sensor setup as most op-
timal, it offers valuable and novel insights that can help optimize sensor setups in the aquacul-
ture industry. Thus, the findings presented in this thesis contribute to the ongoing academic
efforts, while laying the foundation for future research aimed at improving the optimization
of sensor setups in the fish farming industry.

iii





Acknowledgements

I must begin by extending my deepest gratitude to my main supervisor Martin Føre. His genuine
and deeply humane interest for my well-being, beyond the confines of this thesis, instilled an
immense sense of comfort, and had a profound impact on me. I cannot explain it.

A big thanks must also be given to my co-supervisor, Pascal Klebert, who was invaluable in
providing crucial information and fervently suggesting possible approaches.

That being said, I wouldn’t even have made it here without the support of my mom, dad, and
sister. Bless them, they really do mean the world to me.

Special shout-out to my study buddies who distracted me all too often; who added a spark of
life to my daily routine.

...and finally: wow. i did it:))

v





Table of contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Structure of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Norwegian salmon farming and the shift to more exposed farming sites . . . . . 5
2.2 Related works in structural monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Structural monitoring methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Wave induced deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Structural loads and tensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.3 Net cage deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.4 Environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Dimensionality reduction and other approaches to optimizing sensor setups . . . 10
2.4.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.2 Mathematical workings of PCA . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.3 Using PCA to reconstruct data . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.4 Importance of dataset size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Description of Butterworth filters . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 Mathematical workings and Python implementation of Butterworth filters 16

3 Methods and Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Sensor setup and data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Buholmen fish farm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Load shackles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4 Depth sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.5 Weather buoy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

vii



viii Armon: Optimization of measurement setup in fish farms

3.1.6 Sensor overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Selecting time periods (cases) for analysis . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Accelerometer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Load shackle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Depth sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Summary of preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.1 Principal Component Analysis on individual datasets . . . . . . . . . . . . . 31
3.4.2 Aggregated analysis of depth sensor data . . . . . . . . . . . . . . . . . . . . 32
3.4.3 Butterworth filtering and PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.4 Rolling window averages and PCA . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.5 Combining datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.6 Reconstructing dataset from a subset of sensors . . . . . . . . . . . . . . . . 34

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Load shackles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.3 Depth sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.4 Aggregated analysis of depth sensors . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Butterworth filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Rolling averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Combined data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4.1 Accelerometers and load shackles . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 All sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Reconstruction of depth sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Interpretation of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Depth sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Accelerometers and load shackles . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Effectiveness of Butterworth filter and rolling window averages . . . . . . 59
5.2.4 Combination of sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 Reconstruction of depth sensor data . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 Implications of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



Figures

2.1 Focus areas in exposed aquaculture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 PCA explained . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Butterworth filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 SINTEF Fish farm locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Buholmen overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Load shackles setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Depth sensors and accelerometers setup . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Current speeds at various depths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Wave period and height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Preprocessed accelerometer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 Preprocessed load shackle data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Preprocessed depth sensor data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 PCA results for accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 PCA results for load shackles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 PCA results for depth sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Aggregated PCA results for depth sensors . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 PCA results for accelerometer data with Butterworth filter . . . . . . . . . . . . . . 43
4.6 PCA results for load shackle data with Butterworth filter . . . . . . . . . . . . . . . 44
4.7 PCA results for accelerometer data with rolling average . . . . . . . . . . . . . . . 45
4.8 PCA results for load shackle data with rolling average . . . . . . . . . . . . . . . . . 46
4.9 PCA results for accelerometer and load shackle data combined . . . . . . . . . . . 47
4.10 PCA results for all sensor data combined . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.11 Error in reconstructed depth sensor data - 2 hours . . . . . . . . . . . . . . . . . . . 49
4.12 Error in reconstructed depth sensor data - 5 days . . . . . . . . . . . . . . . . . . . 50

ix





Tables

3.1 Sensor overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Time periods (cases) chosen for data analysis . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Preprocessing steps summarized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

xi





Chapter 1

Introduction

1.1 Motivation

Aquaculture is a growing global industry that has been highlighted as one of the key future
providers of food to support a growing world population. In 2013, the World Bank predicted
that 62% of all seafood would be farm raised by 2030 [1]. Through its growth over the last
decades, the Norwegian salmon industry has evolved to become one of the most important
national industrial segments, with an export of 1.25 million metric tons of salmon in 2022,
at a record-high total value of 105.8 BNOK [2]. These values are predicted to reach 5 million
metric tons at a value of 500 BNOK by the year 2050 [3], although the stagnation experienced
in recent years might put a stopper to this goal.

The last couple of decades has seen a trend within fish farming where farm sites are increas-
ingly being established at more remote sites, mainly because there is a shortage of coastal
sites suitable for fish farming, but also because the conditions further from shore may be more
beneficial for the fish. For more information regarding the challenges and considerations in
moving offshore, the reader is referred to [4, 5].

Suffice to say, these "offshore-sites" are typically more exposed and therefore more likely to
experience larger and more extreme environmental forces than previous sites. This, together
with the reduced capability for human intervention (due to remoteness) means that structural
monitoring is even more important for exposed sites than for conventional fish farms. However,
due to the flexibility of the sea cages it can be difficult to identify exactly which sensors are
needed and where they should be placed to best understand how the environmental forces cause
structural movements and deformations, and how this affects the fish farm. This thesis aims
to produce novel insights to this problem.

1.2 Scope of work

The scope of this work is restricted to the application and assessment of dimensionality reduc-
tion techniques, specifically Principal Component Analysis (PCA), to sensor data collected from

1



2 Armon: Optimization of measurement setup in fish farms

a fish farm sea cage located in Buholmen in Norway. The primary focus is on depth sensor data,
but the work also includes various attempts at reducing the dimensionality of accelerometer
and load shackle data.

The study starts with the application of PCA to depth sensor data in several ways, investigating
the potential of the PCA in reducing the number of sensors while retaining as much information
as possible. Through this exploration, the thesis delves into finding an optimal sensor setup in
the fish farming industry.

Next, the effectiveness of the PCA is investigated when applied to accelerometer and load
shackle data. Given the lack of dimensionality reduction when applied to these sensor types,
this thesis then goes on to examine assumptions of the PCA, before discussing the potential
need for alternative approaches better suited to handling non-linear data. This is limited to a
brief discussion of techniques such as t-SNE, UMAP, autoencoders, and wavelet transforms.

Finally, while this thesis presents some significant and novel findings, it does not deliver one
single optimal sensor setup that is necessarily applicable to all kinds of fish farms. Rather, this
thesis presents the findings in light of what they indicate based on the conditions from which
they were derived. While this can be useful in and of itself, it acts mainly as a foundation for
further research. The findings are presented with the hope that future work will be able to
build upon and further refine the results.

1.3 Main contributions

This thesis makes several key contributions that help understand how the measurement setup
on fish farms can be optimized.

The first and perhaps most significant contribution comes from using the Principal Component
Analysis (PCA) on depth sensor data. The analyses carried out on these sensors highlight the
potential in using PCA as a dimensionality reduction tool for depth sensors. Furthermore, the
results clearly point to certain sensors being more "important" than others. This novel finding
could have important implications for the optimization of measurement setup on fish farms.
Some of these implications include potential reductions in costs through less equipment, and
consequently also less maintenance.

The second contribution of this thesis lies in the limitations of the PCA when applied to accel-
erometer and load shackle data. The lack of dimensionality reduction for these sensors might
suggest that they contain non-linear relationships, or that they indeed all are "equally import-
ant" in understanding the dynamics at the fish farm. These insights highlight the fact that
there is still a need for more work, especially in trying alternative dimensionality reduction
techniques that can handle non-linear data, or other approaches altogether.

Thus, this thesis paves the way for future research, listing and discussing some promising meth-
ods that can be explored, as well as demonstrating the utility of the PCA. These are mentioned
briefly above and expanded upon in later sections. The discussion of these future research
directions can also be considered a contribution, providing a good starting point for further
studies in the area.
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1.4 Structure of the report

Chapter 2 - Background: This chapter is dedicated to providing the reader with background
material that gives context to the rest of the report. This includes a short rundown of the history
of fish farming in Norway and a brief discussion of related works. Then comes an overview of
the various dynamics that affect sea cage structures, how each of these are measured, and some
of the associated challenges. This is followed by a quick discussion of the various approaches
to optimizing sensor setups in the context of this thesis. Finally, the tools that will be used in
this study, namely PCA and Butterworth filters, are explained in sufficient detail.

Chapter 3 - Methodology and Experimental Setup: This chapter starts by presenting the site
from which data is collected, followed by an overview of the sensor setup and how each sensor
collects data. It then presents the preprocessing steps that were applied to each of the sensor
types, before giving a detailed description of the various analyses that were carried out.

Chapter 4 - Results: This chapter presents and briefly comments on the results of applying
PCA to sensor data in a multitude of different ways. It also presents the results of trying to use
PCA to reconstruct depth sensor data.

Chapter 5 - Discussion: This chapter starts with a summary of all the findings, before provid-
ing a more in-depth interpretation of all the observed results. This chapter then goes on to
discuss the implications of these findings, along with the limitations of the study. Finally, al-
ternative approaches and future research is discussed.

Chapter 6 - Conclusion: A summary is provided of the key findings of the thesis and their
implications. This chapter then briefly recounts the possible explanations for the observed
results before reiterating on the future work that be done to build upon the presented results.





Chapter 2

Background

2.1 Norwegian salmon farming and the shift to more exposed
farming sites

Fish farming in Norway has a long and rich history, dating back to the viking age. At some
point, it is thought that in addition to traditional fishing, vikings developed simple ponds to
produce fish. While fish farming has existed for several centuries, it wasn’t until the late 1960s
that modern fish farming really began taking shape in Norway. During this time, more and
more attention shifted towards marine-based fish farming, starting what would lead Norway
on the road to becoming the largest salmon farming nation.

Norway’s first fish farm was deployed off the island of Hitra in 1970, by brothers Ove and
Sivert Grøntvedt. They devised a system where the rearing of smolt was conducted in land-
based facilities, while most of the growth would be achieved in marine fish farms that were
deployed in the sea. After their first successful harvest in 1971, several other salmon farms
followed suit. The first decade of fish farming in Norway was summarized by rapid growth,
with annual production increasing from 500 tons in 1971 to 8,000 tons in 1980. [6]

The 1980s were marked with a similar growth, largely fuelled by the introduction of Norwegian
salmon in Japanese sushi. During this decade illness among fish started becoming a problem,
spawning various research projects that aimed to better understand and improve fish health.
By the time the decade was over, production had increased from 8,000 tons to 170,000 tons
in 1990. [6]

The 1990s saw great developments in the use of vaccines for fish farming. Prior to this decade,
disease outbreaks could lead to significant losses and were starting to become a big issue.
Vaccines made the use of antibiotics in salmon farming almost obsolete.

The 2000s saw the introduction of stricter regulations to ensure environmental sustainability.
In 2005, the Norwegian parliament passed several laws that were designed to facilitate sus-
tainable development [7]. With the new system, aquaculture facilities were required to carry
out comprehensive environmental assessments considering factors such as water quality and

5



6 Armon: Optimization of measurement setup in fish farms

impact on wild fish populations before being granted the right to operate. Aquaculture farms
were now also required to report disease outbreaks and take certain measures to prevent the
spread of diseases between farms. Efforts were also made towards reducing the number of fish
that escape farms. In 2006, more than 900,000 fish escaped Norwegian fish farms, although
this number has been greatly reduced in the years since thanks to stronger structures and bet-
ter monitoring of farms [8].1 This started marking the need for better structural monitoring
as a means to prevent escapes.

Figure 2.1: Autonomy and monitoring are two of the areas within technological innovations
that will allow aquaculture operations to move to more exposed locations. Image courtesy of
Bjelland et al. [4]

One area that received a lot of attention in the 2010s and that continues to be a problem to
this day is lice infestations. As with disease, lice infestations among fish pose one of the biggest
threats to the industry [11]. More recent developments in methods aimed at preventing lice
infestations among farmed salmon are reviewed in [12].

As the demand for farmed salmon continued to grow and stricter regulations were put in
place, Norwegian salmon farmers also had to start moving their fish farms further offshore
in the 2010s. This led to new environmental challenges that still make it harder to monitor
and maintain fish farms. In particular, stronger currents are a big issue as they can severely
deform the cages, causing fish to die from a lack of space [13]. Several areas of focus have been
identified as key components in enabling fish farms to move further offshore. Some of these are
shown in Figure 2.1, including technologies such autonomous feeding systems and automated
cage cleaning systems [4]. The progress of autonomous solutions is perhaps best appreciated
when considering that this decade also saw the introduction of the first remotely operated fish
farm [14]. Although most of these technologies remain largely under development to this day,
they have proven that they can help improve efficiency and sustainability [15].

All in all, considering the continued efforts to reduce fish escapes and the myriad challenges
associated with moving fish farms to more exposed locations, it is clear that more sophisticated

1Readers interested in learning more about escapes from fish farms and its various causes are referred to [9,
10]. These articles delve much deeper into the issue, presenting more numbers and detailed analyses of the various
causes for fish escapes in the period from 2000 to 2018.
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structural monitoring will be crucial.

2.2 Related works in structural monitoring

Marine fish farms consist of several sea cages where all the components (i.e., ropes, nets, float-
ing collars) are flexible such that they comply with, rather than resist, environmental forces.
This effectively reduces the strain on components due to environmental excitation during harsh
weather and other demanding events, but it also has the adverse effect of making sea cages
particularly difficult to monitor. Structural monitoring is an important element in fish farming
as it is used to evaluate the structural integrity of existing facilities, or for planning the devel-
opment of future farms and their location. In both cases, the main aim of structural monitoring
is to predict/detect events such as net ruptures, which can ultimately lead to fish escapes, loss
of equipment/infrastructure, and impair the welfare of the fish.

While somewhat limited in number, some studies have been conducted to monitor the forces
and their effects on full-scale fish farms, using various sensor setups. Fredriksson et al. used
a non-invasive optical measurement system to measure a sea cage’s heave, surge, and pitch
response to different wave elevations [16]. The tension in the anchor line was also meas-
ured, and all this was used to validate various numerical models. In another study, Lader et al.
used an acoustic current meter and depth sensors to study net deformations relative to vari-
ous incoming currents, emphasizing the importance of multiple current measurements due to
complex eddies at one of their sites [17]. In yet another study, DeCew et al. combined acoustic
sources, hydrophones, and current meters to investigate current-induced shape changes in a
small-scale fish cage [18]. These studies nicely demonstrate how different sensors can be used
to investigate sea cage deformations in response to different or varying current profiles, as
well as its importance in ensuring fish welfare.

A great amount of effort has also been put into modelling and simulating sea cages with various
designs and conditions, ranging from basic studies of net panels in flow [19] to full scale
simulations of cage dynamics [13]. One such paper examines the wake effect on aquaculture
nets with different angles of attack and current velocities [20]. In another research project,
Moe-Føre et al. examine how different cage models can yield different deformation predictions
[21]. Specifically, they test the triangle and spring models in FhSim2 as well as a truss model
using ABAQUS and MATLAB, concluding that each model has it’s strengths and weaknesses.

In a paper by Endresen and Klebert, different flexible cage designs were tested to see which
ones fit best with physical models, all while varying the loads used in each design [24].
Amongst other discoveries, they find that using lighter weights on the different cage designs
yields inaccurate numerical results, likely due to the global deformation of the cages and sub-
sequent breakdown of model validity.

2Many of the articles mentioned here use FhSim. Developed by SINTEF Ocean, FhSim is an extremely flexible
and efficient simulation tool. Its primary purpose is to aid in the design, analysis, and operation of marine systems,
including aquaculture facilities. It uses a highly modular modeling approach to enable the simulation of intercon-
nected systems with complex dynamics. This includes mechanics, hydraulics, electric power, and control systems
among others. FhSim’s inner workings won’t be discussed further in this thesis, but can be found in articles such
as [22, 23], or at their website https://fhsim.smd.sintef.no/.

https://fhsim.smd.sintef.no/
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More recent attempts at using sensor data to predict deformation include a recent paper by
Su et al. where they examine the use of real-time measurements from an underwater position-
ing system to predict the cage’s deformation [25]. The positioning system used in their study
consists of three acoustic sensors that are mounted on the cage at different depths and loc-
ations. Their work validates that the approach is well suited for general-purpose monitoring
of cage deformations. However, they also conclude that more sensors (or a combination of
different sensors) are needed for higher accuracy. This leads nicely into the research that has
been undertaken and shall be presented in this thesis.

2.3 Structural monitoring methods

In this section, the reader presented with the various dynamics that are important to consider
when monitoring the structural integrity of a sea cage. In addition, the parts that follow briefly
discuss how each aspect is attempted to be captured through the use of a specific type of sensor.
The experimental setup of each sensor type is given in Section 3.1.

2.3.1 Wave induced deformations

Wave induced deformations represent an important aspect of structural monitoring in floating
fish farms. Waves cause deformations that strain the fish farm structure, leading to damage
or potentially failure over time. Observing and understanding these deformations plays a key
role in allowing the development of future strategies that can minimize or mitigate some of
the damage.

Accelerometers can be used to measure the vertical movement of the floating collar due to
waves. This in turn says something about the wave induced deformations and the overall
severity of the incoming waves. The main challenge with accelerometers is that their signals
can be quite noisy, often caused by various environmental factors, such as wind, or other small
fluctuations. Such disturbances can affect the accuracy and reliability of the collected data.
When higher accuracy is needed, various signal processing techniques can be used to filter
away some of the noise, improving the quality of the measured data.

2.3.2 Structural loads and tensions

In addition to causing deformations, waves also strain the system that is responsible for holding
the sea cage in place: the mooring system. This is a crucial aspect that must be monitored to
ensure the safety and stability of the fish farm. In particular, operators must be able to detect
when the load exerted on the system is so high that it can cause damage to the sea cage.
To this end, load shackles are used to monitor the forces acting upon the mooring system.
Their purpose is to provide a reliable and accurate way to measure the weight and force being
exerted on the system.

Some of the challenges associated with using load shackles lie in the difficulty of installing
and maintaining them. As opposed to the accelerometers that are positioned on the floating
collar, above water, the load shackles are partly submerged in water, weigh much more, and
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are always under some tension when operating. This makes the inspection or replacement of
malfunctioning load shackles much more challenging than with accelerometers. Furthermore,
while accelerometers are unlikely to experience a sudden failure, load shackles are constantly
withstanding great environmental forces, making them more likely to malfunction.

2.3.3 Net cage deformations

As opposed to the two previous dynamics, net cage deformation is exclusively the result of
underwater phenomena, specifically: currents. Observing and limiting net cage deformation
is of utmost importance as severe deformations can lead to big losses of internal volume. This
has been shown to negatively affect fish in several ways, particularly when the stocking density
is high [25, 26]. In extreme cases, mass mortalities of up to 40 tons of fish have been observed
[13]. Depth sensors play a vital role in detecting these deformations.

Being the only sensors that are mounted on the net, depth sensors provide crucial data to
quantify deformation. As sections of a net cage bend inwards (or outwards) due to the forces
induced by currents, mounted depth sensors move with it, registering a change in depth as the
net curves slightly upwards. The measured change in depth serves as a way to quantify the
degree of cage deformation.

One of the challenges with using depth sensors is that they don’t say anything about the way in
which the cage is deforming: it could be deforming inwards, outwards, or anything in-between.
This makes it difficult to draw a direct connection between depth sensors measurements and
the shape of the net cage without a good model to describe their relationship. Nonetheless,
monitoring and processing the vertical movement of each depth sensor is a critical stepping
stone in understanding the net cage’s deformation and ensuring its correct functioning.

2.3.4 Environmental conditions

As explained in the previous subsections, waves and currents can strain the mooring lines, as
well as cause the entire sea cage to deform in various ways. In addition to measuring each of the
effects as mentioned above, it is crucial to measure the severity of the environmental conditions
themselves, that is, the "strength" of the waves and currents.3 Furthermore, as strong winds
can cause wind-induced waves (as well as directly influencing the emergent parts the sea
cage, although to a lesser degree), they should also be taken into account when examining the
environmental conditions. In this study, these factors were measured using a weather buoy,
with the goal of giving context to the analyses of the data gathered from the other sensors.

One of the main challenges associated with the weather buoy lies in determining exactly how to
measure each of the environmental conditions of interest. Due to the impracticality of meas-
uring individual wave profiles, one will have to rely on spectral analyses and the resulting
average wave heights and wave periods. Likewise, similar approaches must be taken when
considering wind speeds. This can make it difficult to examine the effects of a single wave or a
single gust of wind on accelerometer and load shackle readings. This is however not an issue
when considering current speeds, which tend to vary only on larger time-scale.

3The notion of "strength" is specified and further elaborated in Section 3.1.
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2.4 Dimensionality reduction and other approaches to optimizing
sensor setups

While the sensors mentioned above are capable of measuring various important aspects of sea
cage deformations, it is not at all clear how many are needed, or what the optimal placements
are. These issues can be approached in a multitude of different ways.

One might for instance approach the problem by applying a dimensionality reduction tech-
nique, such as t-SNE (t-distributed Stochastic Neighbor Embedding) or a Principal Component
Analysis (PCA) to name two. Unlike PCA, t-SNE is able to reduce the dimensionality of non-
linear datasets, but it is also more complex, requiring very careful tuning, as the "wrongful"
selection of hyperparameters has been shown to produce misleading results [27, 28]. PCA on
the other hand is only able to reduce the dimensionality of linear datasets, but is much simpler
and cannot produce similarly misleading results as there are no hyperparameters to tune. This
makes the use of PCA as an introductory analysis more attractive than other, more complex
techniques.

One might also explore completely different approaches to optimizing sensor setups, such as
examining the data through the lens of a wavelet transform. However, this technique is relat-
ively complex and requires a solid mathematical understanding of the underlying principles
in order to be used. This left it somewhat impractical given the scope of this project.

After some consideration, it was decided that PCA, a well-established statistical technique
for dimensionality reduction would be used in this study. It is simple and does not require
any careful hyperparameter tuning, making it ideally suited for this scenario. Furthermore, it
excels at clearly revealing the internal structure of data. Thus, PCA was selected as the primary
tool in this study. Seeing as PCA is unable to handle noisy data, some sort of filtering will also
be included as a secondary/auxiliary tool. This is further elaborated in Section 2.5.

2.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a widely used unsupervised machine learning tech-
nique for dimensionality reduction and feature extraction. Forming the basis for multivariate
data analysis, it was first introduced by Pearson in 1901 [29] and later developed independ-
ently by Hotelling in 1933 [30]. The main goal of PCA is to transform a high-dimensional
dataset into a lower-dimensional dataset while retaining as much of the original information
as possible. Strictly speaking, it tries to create a new dataset that preserves as much variance
as possible. This is particularly useful when dealing with large datasets, as reducing the num-
ber of dimensions can help improve computational efficiency and facilitate data visualization
[31]. It is therefore frequently used in areas such as pattern recognition and signal processing.

PCA achieves dimensionality reduction by identifying linear combinations of the original vari-
ables, known as principal components (PCs), which capture the maximum amount of variance
in the data. The first principal component (PC1) is computed as the linear combination that
accounts for the largest proportion of the dataset’s total variance. The next principal compon-
ents are found in a similar way, with one important constraint: they must be orthogonal to the
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preceding components, ensuring that the PCs are uncorrelated. In this way, a PCA generates
a new coordinate system where the new axes correspond to the principal components. Each
data-point from the original dataset is then projected onto this lower-dimensional plane, as
visualized in Figure 2.2.

Figure 2.2: Sketch showing how PCA reduces the dimensionality of a dataset. As seen on the
left side, despite existing in three dimensions, the dataset seems to lie completely on a two
dimensional plane. Thus, one can represent the dataset using only two axes as seen on the
right side. Figure is modified from Serafeim Loukas’ Towards Data Science article.

The main advantage of PCA is its ability to reveal underlying patterns data, highlighting re-
dundancies in the original variables. However, by focusing on the most significant components
it also filters out some of the noise as a bi-product, although this is most often not what it is
used for.

PCA also has some drawbacks that one should be aware of. PCA assumes linear relationships
between the variables and may not be suitable for handling non-linear dependencies. Trying to
use PCA on a dataset that contains highly non-linear dependencies will fail, meaning that no
dimensionality reduction will be achieved. Furthermore, the method generally doesn’t perform
well on datasets that contain a lot of noise or outliers, as these make the dataset more non-
linear.

Another drawback of the PCA is that the principal components that are returned are often far
less interpretable than the original variables. This is because they represent combinations of
features rather than directly measurable quantities. As such, PCA is perhaps best used not as
an end in itself, but merely as a tool to guide further investigation [32].

Nonetheless, the PCA is a powerful and versatile technique for dimensionality reduction. By
capturing the essential structure of high-dimensional data in a lower-dimensional space, PCA
provides a means to reveal hidden patterns, reduce computational complexity, and improve the
results of other machine learning algorithms. Readers interested in more intuitive explanations
of the PCA are referred to the excellent turorial by Jonathan Shlens [33].
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2.4.2 Mathematical workings of PCA

To perform a PCA, one first needs to calculate the covariance matrix of the dataset. The co-
variance matrix Σ captures the relationships between the variables, where each element σi j
represents the covariance between variables i and j. For a dataset X with n samples and p
features, the covariance matrix is given by:

Σ=
1

n− 1
X T X (2.1)

In practice, it is very common to use the centered matrix X∗ where the mean of each column is
subtracted from elements in that column, i.e. x∗i j = x i j−x j . This doesn’t change the covariance
matrix as it by definition is the average squared deviation from the mean. However, it does
make implementations easier and provides cleaner geometric interpretations.

Furthermore, in addition to using centered matrices, it is very common to also standardize the
dataset before calculating the covariance matrix. Standardization ensures that all variables are
on the same scale, hindering variables with larger scales from dominating the principal com-
ponents simply because they have larger scales. To standardize the dataset, one must divide
each column in the centered dataset by their respective standard deviations, σ j . Thus, one can
replace X in Equation (2.1) with the standardized Z as calculated by:

Z j =
X j

σ j
=

X∗j − x j

σ j
(2.2)

where Z j form the columns of Z. Again, this ensures that all features contribute equally to the
analysis, and also makes it easier to visualize, interpret, and analyze the data. After calculating
the covariance matrix of the standardized dataset, one may proceed with the rest of the PCA.

Next, the eigenvectors and corresponding eigenvalues of the covariance matrix Σ should be
computed. The eigenvectors represent the principal components, that is, the directions of max-
imum variance in the data, while the eigenvalues act as "weights" that indicate the amount of
variance explained by each eigenvector. Mathematically, this can be represented by:

Σe i = λie i , (2.3)

where e i is the i-th eigenvector and λi is the corresponding eigenvalue. The larger the eigen-
value, the more variance can be explained by its corresponding eigenvector. By sorting the
eigenvalues in descending order and applying the same transformation to the eigenvectors,
one can nicely determine the importance of each eigenvector.

Together, the sum of all the eigenvalues represents the total explained variance in the original
dataset. The proportion of variance explained by a specific principal component is given by
the ratio of its eigenvalue to the total explained variance. This can be computed as:
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πi =
λi
∑p

j=1λ j
, (2.4)

where p is the number of variables in the dataset. Furthermore, one can now define the cumu-
lative explained variance using the k most important principal components as:

Cumulative explained variance=
k
∑

i=1

πi . (2.5)

Note that both the ratio of explained variance πi and cumulative explained variance can be
(and often are) represented as percentages by multiplying by 100%. By using only the eigen-
vectors associated with the largest eigenvalues, it is possible to project the data onto a lower-
dimensional space, effectively reducing the dimensionality while preserving the majority of
the information in the original data.

To reduce the dimensionality of the dataset X , one simply needs to multiply it by the matrix E
which contains the selected eigenvectors. That is,

Y = XE = X[e1 e2 . . . em], (2.6)

where the m eigenvectors explain the desired amount of variance. To decide exactly how many
principal components to use, it is common to define a threshold and use however many com-
ponents that are required to surpass said threshold. One might for instance require that the
cumulative explained variance of the principal components be above 95%. A higher threshold
means that more of the variance will be explained by the data, but it will also require more
principal components. Thus there is a trade-off between cumulative explained variance and
the dimensionality of the reduced sensor setup.

2.4.3 Using PCA to reconstruct data

As explained in [34], once the PCA is completed, the data Y can also be used to reconstruct
the full dataset.

Given an original dataset X, one can standardize it and perform PCA, resulting in a matrix Y
of transformed data and a matrix E of eigenvectors or principal components as described in
Equation (2.6).

One may then select a subset of the most important principal components (columns) from the
matrix E, denoted Ereduced, along with the corresponding transformed data (columns) from the
matrix Y, denoted Yreduced.

To reconstruct the original dataset, one needs to undo the transform in Equation (2.6). This can
be done by multiplying the reduced data Yreduced by the transpose of the selected eigenvectors
ET

reduced:
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Xreconstructed = YreducedET
reduced. (2.7)

Keep in mind that this reconstructed dataset is still in standardized form. Thus, to obtain the
original scale of the dataset, one must multiply the reconstructed dataset by the standard
deviation and add the mean of the original dataset:

Xrescaled = Xreconstructed ⊙σ ⊕X, (2.8)

where ⊙ denotes element-wise multiplication, ⊕ denotes element-wise addition, σ =
[σ1 σ2 . . . σ j] is the standard deviation of each column in the original dataset X , and
X= [x1 x2 . . . x j] is the mean of each column in the original dataset X .

The resulting dataset, Xrescaled, is an approximation of the original dataset, reconstructed using
only the selected principal components. Note that this process involves losing information due
to the reduced number of principal components used in the reconstruction.

While reconstructing the original dataset based on fewer features isn’t the main purpose of
PCA, it can be used to provide a more interpretable way of assessing the reduced dataset.
One can reconstruct the original dataset from the reduced dimensions and then calculate the
error between the reconstructed dataset and the true dataset to get a sense for how good the
reduction is.

For the sake of clarity, consider this specific example. Say there are 20 depth sensors located
across various points on a net cage. When one moves due to currents, others are likely to do
the same. In other words, their movement is somehow correlated. You perform a PCA and
find that 5 sensors can explain 95% of the variance. To check whether they really "capture"
the movement of the other sensors, you reconstruct (and rescale) the data for the 20 sensors,
based on the data from the 5 sensors that explain 95% of the variance. The rescaled data can
then be compared to the original data to see how closely it follows the original data.

2.4.4 Importance of dataset size

There has historically been some debate as to how much data is required to gain stable4 PCA
results. However, most of these debates have lacked solid experimental grounding. There are
two main schools of thought, those who think the recommended sample size N can be given
as a number, and those who think that the sample size N should be given as a ratio to how
many features (variables) are in the dataset. Both schools of thought agree that more data is
better.

According to [35], few articles examine the issue comprehensively enough to be definitive. In
their study, they conclude that stability is likely to be the result of an interaction between both
of the schools of thought: a large sample size and a high samples-to-features ratio is likely

4In the context of this study, stability can be understood as applying a PCA to data collected from different
time periods of equal length by the same set of sensors, and obtaining the same, or at least similar reduced sensor
setups.
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what leads to the best outcome. The view that it is an interaction between the two is backed
by several articles that examine the effects of increasing either the sample size or the ratio [36,
37]. Furthermore, and crucially to coming discussions, both schools of thought also agree that
too few data points can cause unstable results.

2.5 Filtering

Recall that wave induced deformations will be measured using accelerometers, which can
often be quite noisy, and that the PCA struggles with such data. This raises the possible need
for filtering to remove noise.

Several techniques exist for filtering data, each with their own advantages and disadvantages.
In this study, three types of filters were mainly considered to be used, namely Butterworth,
Chebyshev and Elliptic filters. Both Chebyshev and Elliptic filter have steeper roll-off charac-
teristics than Butterworth filters, but this is not too important in the context of this thesis, as
the frequency of noise is likely to be much higher than the frequency at which waves strike and
thus deform the sea cage. Furthermore, Chebyshev filters have ripples in the pass-band and
Elliptic filters have ripples in both the pass-band and the stop-band. Butterworth filters have
no such unwanted ripples.

In articles such as [38] where all three filters are considered, it is concluded that "the Butter-
worth filter is the best compromise between attenuation and phase response." More generally,
the Butterworth filter is a widely used type of signal processing filter that is known for its
maximally flat frequency response in the passband [39].

By applying the Butterworth filter to the sensor data, high-frequency noise should be atten-
uated, while the relevant lower-frequency information should still be preserved. All things
considered, Butterworth filters present a suitable approach to noise reduction prior to running
PCA in certain situations in this study.

2.5.1 Description of Butterworth filters

Named after its inventor, Stephen Butterworth, this filter has found applications in various
fields such as audio processing, communication systems, and control systems, where a smooth
frequency response is desired.

One of the key advantages of the Butterworth filter is its ability to provide an optimal trade-off
between the flatness of the passband and the rate of attenuation in the stopband. In other
words, the filter has a smooth transition between the passband and stopband regions, while
having a rapid roll-off rate in the stopband. This characteristic ensures that the desired fre-
quency components of the input signal are preserved with minimal distortion, while the un-
wanted frequency components are effectively attenuated.

Butterworth filters can be designed as low-pass, high-pass, band-pass, or band-stop filters,
depending on the desired frequency response. The order of the filter determines the steepness
of the roll-off in the stopband, with higher-order filters offering a faster rate of attenuation.
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The cutoff frequency defines the boundary between the passband and stopband, specifying the
frequency at which the filter’s gain drops to half its passband value (approximately -3 dB).

In this study, the Butterworth filter was used to preprocess the data obtained from accelero-
meters and load shackles. These sensors are prone to capturing noise and high-frequency fluc-
tuations that may obscure the underlying trends in the data. The goal of using the Butterworth
filter is to eliminate noise while still keeping the essential features of the sensor measurements.
The Butterworth filter has been widely used in various applications, such as signal processing,
data analysis, and especially medical data preprocessing, often to great success [40, 41]. The
coming section will delve into the relevant mathematical details of the Butterworth filter and
its implementation in the data preprocessing stage. Readers who are interesting in learning
more about the filter are referred to [42].

2.5.2 Mathematical workings and Python implementation of Butterworth filters

The Butterworth filter is a type of IIR (Infinite Impulse Response) filter, meaning that its im-
pulse response continues indefinitely, approaching, but never quite reaching 0. The filter is
given by its order and cutoff frequency. The cutoff frequency,ωc , defines where the filter trans-
itions from pass-band to stop-band, while the order of the filter, n, determines how aggress-
ively the filter attenuates signals that are in the stop-band. The Butterworth filter’s frequency
response, H(ω), can be expressed as:

H(ω) =
1
q

1+ ( ωωc
)2n

(2.9)

For a more intuitive understanding, Figure 2.3 shows visually what the filter’s response looks
like.

To apply the Butterworth filter to the sensor data, it must be implemented as a discrete-time
system. The continuous-time filter is first designed by specifying the order n and cutoff fre-
quency ωc , and then transformed into a discrete-time filter. In Python, this transformation
was implemented using the butter() function from scipy.signal. Once run (with the correct
arguments), it returns the filter coefficients a and b that define the filter’s behavior in the
discrete domain. Once these coefficients are obtained, they can be used to filter the sensor
data. In the Python implementation, this was done using the filtfilt() function, also from
scipy.signal.
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Figure 2.3: Diagram showing the frequency response of a Butterworth filter around the trans-
ition band. Normalized frequency simply indicates division by the Nyquist frequency5 of the
signal first. Figure is modified from AnalogueDialogue.





Chapter 3

Methods and Experimental Setup

3.1 Sensor setup and data collection

The sea cage used to collect data is located at Buholmen and is equipped with acceleromet-
ers, load shackles, and depth-sensors. Together, these sensors provide a good basis to analyze
structural deformations and the effect of waves. This section begins by providing an overview
of Buholmen fish farm, before presenting the experimental setup of each of the sensors, along
with how their data is recorded. The same is done for the weather buoy.

3.1.1 Buholmen fish farm

All the data used in this project was gathered from Buholmen Fish Farm. SINTEF Ocean has
quite a few sites dedicated to conducting research and collecting data. While the three main
sites are Rataren, Tristeinen and Korsneset, they also have access to farm sites that are less
frequently used for research. One of these is Buholmen fish farm, located off the coast of
Åfjord as shown in Figure 3.1. It has been operational since mid 2013 but is in the process of
being shut down at the time of writing (mid 2023) due to problems regarding repeated disease
outbreaks.

Being located in a fairly exposed area of the coast means that Buholmen experiences widely
varying weather conditions, making it a good candidate for data gathering. Wind speeds typ-
ically lie in the range of 3-15 m/s, although gusts can reach speeds of 25 m/s or more, while
current speeds typically stay below 50 cm/s. Temperatures vary from 5◦C in months of January-
March to 15◦C in the months of July-September.

In total, Buholmen fish farm consists of 10 sea cages, all of which are owned and operated by
Salmar. However, one of these cages contains fish that are used by SINTEF Ocean for research.
This sea cage has a diameter of 50m and depth of 30m, and is only used for raising Atlantic
salmon.

19
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Figure 3.1: Map showing the locations of different SINTEF fish farms. Buholmen can be seen
in the middle, towards the top. Trondheim is located at the Sealab pin (for reference). Photo
courtesy of SINTEF ACE.

Figure 3.2: Image showing Buholmen fish farm. Orange circle shows the sea cage that is used
for research by SINTEF Ocean. The white circle shows the location of the weather buoy that
collects weather and environmental data. North, east, west and south included for reference.
Photo courtesy of SINTEF ACE.

3.1.2 Accelerometers

In this project, a total of 8 G-Link-200-OEM accelerometers (produced by LORD, MicroStrain
Sensing Systems) were placed in a circular configuration along the floating collar, above the
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water surface, as shown in Figure 3.4 and Figure 3.3. Each accelerometer records and saves
x, y, and z-acceleration at a frequency of 8Hz and has done so from November 2019 to April
2020. These sensors were stored individually, but synchronized to provide the same time-stamp
across all devices. Although there are few errors in this time period, notable outages include
sensor 4 not recording any data from early January to mid February.
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Figure 3.3: Sketch showing the sea cage from above. The placements of the load shackles are
shown in green and accelerometers in blue.
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3.1.3 Load shackles

In this project, 6 "type 4991" load shackles (produced by James Fisher Strainstall) were used
to measure the tension in the mooring system. These were placed along the western side of
the sea cage as seen in Figure 3.3. This is the side that faces the ocean and is most likely to be
hit by waves. Furthermore, there are no other sea cages that obstruct the waves coming from
this direction, as seen in Figure 3.2.

The load shackles record the force they experience at a frequency of 4Hz and were synchron-
ized to do so at the same timestamps. However, due to some technical error, they only saved
data in sporadically occurring two-hour intervals throughout each day. That is to say, during
one day, the shackles saved data from 01:09 to 03:09, 03:09 to 05:09, 07:09 to 09:09, 11:09
to 13:09 and 21:09 to 23:09, while another day, they only saved data from 09:09 to 11:09 and
15:09 to 19:09. The load shackles collected data like this from November 2019 to March 2020.
On top of this, shackle number 1 broke down in early January 2020, leaving only shackles 2-6.

Finally, the load shackles only save the voltages they measure. A linear calibration equation is
given for each load shackle. These need to be applied to every measurement to yield measured
force in tons.

3.1.4 Depth sensors

To measure net cage deformations, 16 milli-F Data Storage Tags (DST)(produced by Star-Oddi)
were mounted on the net cage at various depths. The milli-F DST is a small cylindrical logger
that is often used for monitoring the movements of fish and other marine animals. It’s a high-
precision depth and temperature data logger, with a depth accuracy of ±0.4% of the selected
measurement range and a temperature accuracy of ±0.1°C.

The 16 depth-sensors were attached to the net cage in two circular configurations at 7m and
15m, as shown in Figure 3.4. Instead of being located along the upper circular plane, sensor
number 2 is located at the bottom. Besides this exception, all the other depth sensors are
spread apart by 45◦.

These sensors only record and save depth (and temperature) every 4 minutes, but this is not
an issue as water currents don’t tend to change much during such short time periods.1 Unfor-
tunately, no data is available from sensor number 15 due to technical difficulties. However, the
other sensors diligently recorded data every 4 minutes from mid. December 2019 to early April
2020. Like the accelerometers and load shackles, the depth sensors were also synchronized so
as to save data at the same timestamps. For some unknown reason, sensors number 5 and 12
were offset by two and one minutes respectively.

3.1.5 Weather buoy

The weather buoy is located right next to the facility, as seen in Figure 3.2, and is made up
of a Wavesense sensor (produced by Fugro OCEANOR) that is highly programmable. It meas-

1There are several complex factors affecting how water currents change, but these typically cause changes on
the timescale of hours and days (or more). [43]
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Figure 3.4: Figure showing the placements of the depth sensors in yellow and the accelero-
meters in blue. Geographic north, south, east and west are included for reference.

ures a range of environmental conditions, some of which are crucial to understanding how
phenomena that affect sea cages arise. These are given below.

Amongst other things, the weather buoy measures current speed and direction at 3-meter
intervals down to 60 meters. Without this data, the analysis of depth sensor measurements
would be have to be conducted without knowing whether there were weak or strong currents
present. This would in turn limit our ability to examine whether there is a connection between
environmental conditions and optimal sensor setups.

Additionally, the buoy is equipped with sensors to measure wave height and period, offering
crucial information about wave-induced movements and loads. Again, this provides context to
the analysis of data from the accelerometers and load shackles. Lastly, the weather buoy also
measures wind direction and speed, although only the wind speed is used in this study. These
factors significantly influence wave formation and can impact the movement/deformation of
the floating collar.



24 Armon: Optimization of measurement setup in fish farms

It is worth mentioning that the weather buoy also measures a multitude of other conditions,
such as O2 concentration, salinity, air temperature, and water temperature at different depths.
These parameters are vital in understanding the environmental conditions within the fish farm
and how they might affect fish health and growth. However, these parameters are far less
important to our analysis and will therefore not be used in this thesis.

All the parameters measured by the weather buoy are saved every whole hour. In order to
do a spectral analysis of the waves, the buoy at Buholmen collects data points at a frequency
of 4Hz over 40 minutes - 20 minutes before each whole hour and 20 minutes after - before
performing calculations and then saving the data. While the weather buoy’s data is complete
(no missing values at any point), it is only available from mid January 2020 to early March
2020.

In this study, the data from the weather buoy was used to select time-periods where the men-
tioned conditions span the entire range of low-high values. It is within these time-periods that
data from accelerometers, load shackles, and depth sensors shall be analyzed. This approach
enables one to examine if there is a connection between the optimal sensor setup and the
harshness of the environmental conditions in a given time period.

3.1.6 Sensor overview

All the variation in when and how each sensor collects data can be hard to keep track of. The
table that follows is meant to act as a summary, making it easier to compare how each sensor
collects and stores data.

Sensor Data collection period Sampling rate Errors Saving format

8 Accelerometers Dec. 2019 - Apr. 2020 8 Hz
Sensor 4 down in
January.

Binary

6 Load shackles Nov. 2019 - Mar. 2020 4 Hz

Sensor 1 down from
January. Records data
sporadically in 2-hour
intervals.

.Txt

16 Depth sensors Dec. 2020 - Apr. 2020 Every 4 min Sensor 15 down. .Dat
Weather buoy Jan. 2020 - Mar. 2020 Every 1 hour .Txt

Table 3.1: Table showing the data collection period, sampling rate, errors, and saving format
of each sensor.

3.2 Selecting time periods (cases) for analysis

To conduct a focused analysis, ten specific time periods were chosen by examining the data
from the weather buoy. Altogether, these ten time periods cover the different environmental
conditions observed at the fish farm, specifically in terms of current speed, wave amplitude
and period, and wind speed. This selection process helped reduce the dataset size, while also
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allowing the investigation of whether certain sensors only were necessary under specific con-
ditions. To capture the full spectrum of conditions experienced at the fish farm, the following
criteria were considered when selecting the time periods:

• Current speed: time periods with low, moderate, and high current strength at 7m, 16m,
and 31m depth were selected in an attempt to understand how different water flow
conditions might affect the fish farm structures and sensor measurements. The current
strength was generally in the range of 0-40 cm/s in the time period where the weather
buoy recorded data. This data is shown in Figure 3.5.
• Wave height and period: time periods with different wave heights and periods were

selected to examine the impact of different wave conditions on the sea cage movements
and mooring system. The significant wave height2 was generally in the range of 0-2m
while the wave period was in the range of 3-6s. This data is shown in Figure 3.6.
• Wind speed: time periods with calm, moderate, and strong winds were included to evalu-

ate the effects of wind-induced surface waves and currents on the fish farm. These might
affect load shackle readings and potentially the current strength at shallow depths, which
in turn affects depth sensor reading. The wind strength generally stayed in the range of
0-16m/s.

Figure 3.5: Graph showing the current speeds measured by the weather buoy at a depth of 7m
(in purple), 16m (in blue) and 31m (orange).

In addition to analyzing each factor individually, time periods with various combinations of
these environmental parameters were included, enabling the exploration of their combined

2The significant wave height is defined as the average height of the highest one-third of waves. This can also
be calculated in other ways. This study uses Hm0 as an alternate way of calculating the significant wave height.
Mathematically, Hm0 is the square root of the zeroth moment of the wave spectrum.
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Figure 3.6: Graph showing the wave period (blue, in seconds) and significant wave height
(green, in meters) measured by the weather buoy.

influence on the fish farm structures and sensor readings. This however turned out to be slightly
difficult as those periods with strong winds also tended to have strong currents and big waves,
and vice versa.

The time periods that were chosen for analysis are shown in Table 3.2. Each of the cases span
a 1.5 hour time window. This was done for two main reasons.

Firstly, recall that the weather buoy gathers data in 40 minute windows around a given whole
hour. This means that the data it records is most representative of the weather conditions
within that time frame. When a "time period" entry reads "09:15 - 10:45", the rest of the values
in the row indicate that the data was collected by the weather buoy from 09:40 to 10:20, but
saved with the timestamp "10:00".

Secondly, the load shackles only record data in sporadic 2-hour intervals. This places an upper
limit on the time span of each of the cases. Considering these two pieces of information, it
seemed sensible to only analyze data from 1.5 hour windows, as listed in Table 3.2. Throughout
Chapter 4, when referring to "case X" in the various graphs, the reader should understand it
as the time periods given in Table 3.2.

As seen in Table 3.2, the selected cases cover a range of stormy, moderate and calm weather
conditions. Some cases also have a mix of high values in one column and low values in other
columns. This was done in an attempt to cover most of the wide range of weather conditions
that can be experienced by exposed fish farms.

All the selected time periods fall within January 2020 - early March 2020 as this was the time
within which most sensors were recording data. More importantly, it is the time period within
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Current speed
(0-40 cm/s)

Case no.
Time period
in 2020

Wave period
(3-6s)

Wave height
Hm0 (0-2m) 7m 16m 31m

Wind speed
(0-15m/s)

1
18.01
09:15 - 10:45

3.12 0.39 9.38 4.69 3.52 4.58

2
19.01
11:15 - 12:45

5.13 1.06 9.38 8.20 8.20 10.53

3
20.01
15:15 - 16:45

6.17 1.52 39.84 39.84 37.5 16.68

4
21.01
07:15 - 08:45

6.33 1.60 38.67 35.16 25.78 13.47

5
23.01
03:15 - 04:45

5.32 1.13 42.19 41.02 19.92 14.08

6
25.01
17:15 - 18:45

5.5 1.21 29.3 30.47 28.13 13.47

7
26.01
19:15 - 20:45

2.96 0.35 16.41 15.23 12.89 3.21

8
28.01
15:15 - 16:45

2.96 0.35 2.34 3.52 4.69 3.01

9
21.02
17:15 - 18:45

5.93 1.41 21.09 16.41 11.72 16.13

10
01.03
13:15 - 14:45

3.28 0.43 3.52 1.17 1.17 8.41

Table 3.2: Table showing the weather pattern in 10 different time periods, as given by the
weather buoy. Data from the sensors will be analyzed within these time periods. Numbers in
parenthesis indicate the range within which most values tend to lie, as well as units of meas-
urement. Orange color scheme is used to convey the severity of values, with lighter shaded
squares indicating a (relatively) low value and darker squares indicating a (relatively) high
value. Darker shaded rows taken as a whole point to stormy weather while lighter shaded rows
point to calm weather.

which the weather buoy was recording weather conditions. Furthermore, most of the selected
time periods lie in late January. This is because the weather buoy’s data was initially only
made available for late January - early February. One additional month of data (February -
early March) was made available some time after the time periods for analysis had already
been selected. However, this is not an issue as the additional month doesn’t contain any novel
weather patterns that don’t appear in late January - early February.

After identifying the ten cases of interest, the corresponding data was extracted from the ac-
celerometers, load shackles, and depth sensors. This targeted approach enabled more efficient
data analysis and the possibility of examining the interplay between environmental conditions
and sensor measurements. The results from such an approach could provide valuable insights
into the optimal deployment and utilization of sensors under different conditions, ultimately
leading to improved monitoring strategies for fish farms.



28 Armon: Optimization of measurement setup in fish farms

3.3 Preprocessing

In this thesis, data from accelerometers, load shackles, and depth sensors all had to be prepro-
cessed to make sure they were in a format suited for subsequent analysis. This section discusses
the specific steps taken in preprocessing each type of sensor.

3.3.1 Accelerometer data

For the accelerometer data, the raw binary files were first imported into a program called
SensorConnect. This allowed for the visualization of the data as well as the option to export
it to CSV format. Only the z-components (vertical motion) of each sensor were extracted (ho-
rizontal effects of waves are captured by the load shackles) within the relevant time periods
and exported to CSV files.

Sensor number 4 hadn’t recorded any data during most of the exported time periods and was
therefore removed completely from the dataset, to ensure consistency. Any rows containing
NaN values were eliminated, and the numbers were rounded down from 15 decimal places
to 4. The dataset was then saved as a new CSV file with timestamps. Preprocessed data from
case 1 is plotted in Figure 3.7.

Figure 3.7: Plot showing the preprocessed accelerometer data from the first time period listed
in Table 3.2. Note that only every 40th data point (every 5 seconds) is used in this plot for
visualization purposes.
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3.3.2 Load shackle data

The load shackles required a different preprocessing approach. Each load shackle came with
its own set of linear calibration equations, that is, equations of the form "a*x + b", where "a"
and "b" are decimal numbers and "x" is the voltage measured by the load shackle. Only after
applying the corresponding equation to the corresponding sensor in the corresponding time
period would one obtain the force experienced in tons.

As the load shackles recorded data in sporadic 2-hour intervals, the appropriate data files had
to be located first. This was done manually by finding the 10 files that corresponded to the
datetimes given in Table 3.2. Then, a script was written to apply the respective calibration
equations to each load shackle during each time interval.

Sensor number 1 (or ch0 in subsequent plots) was found to be malfunctioning during most of
the time periods and was therefore removed completely from the dataset. Furthermore, all the
recorded data had timestamps that ended in 0.095s, 0.345s, 0.595s and 0.845s. As this might
have troublesome for later cross-sensor analyses, all the timestamps were offset by 0.095s to
make sure they ended in 0.0s, 0.25s, 0.50s and 0.75s. Finally, the calibrated data was rounded
down from 10 decimal places to 4 and then saved to a CSV file with timestamps. Preprocessed
data from case 1 is plotted in Figure 3.8.

Figure 3.8: Plot showing the preprocessed load shackle data from the first time period listed
inTable 3.2. Note that only every 20th data point (every 5 seconds) is used in this plot for
visualization purposes.
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Figure 3.9: Plot showing the preprocessed depth sensor data. As opposed to the two previous
plots, this plot shows all the data from the first date to the last date listed in Table 3.2. Further-
more, every data point is used in this visualization.

3.3.3 Depth sensor data

Lastly, each depth sensor had its data stored in separate .Dat files. These contained some
metadata as well as recorded depths (with 2 decimal places precision) and water temper-
ature. Recall from Section 3.1 that data from sensor number 15 was missing, meaning that it
had no .Dat file and was dropped from this stage.

First, the .Dat files were stripped so as to only include depth measurements and timestamps.
Then, all the data from the sensors was concatenated and saved as one text file. In this process,
it became apparent that sensors no. 5 and 12 were offset by two and one minutes, respectively,
from the rest of the sensors. To align these sensors with the others, the offsets were corrected
before saving all the depth sensor measurements to a single text file. Rows containing NaN val-
ues, which were located at the very beginning of December or end of April, were also removed.
Preprocessed depth sensor data is plotted in Figure 3.9.

3.3.4 Summary of preprocessing

The data preprocessing steps for each sensor type involved data extraction, cleaning, and cal-
ibration to ensure consistency and accuracy in the analysis. By following the steps outlined in
this section, the data was transformed into a format suitable for further analysis in the context
of this thesis. The steps taken to preprocess the data from the different sensors is neatly sum-
marized in Table 3.3 for future reference. After preprocessing, three CSV files remained, each
containing timestamped measurements from accelerometers, load shackles, or depth sensors.
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Sensor Sensors dropped Preprocessing steps

8 Accelerometers Sensor no. 4
Z-component exported from binary to CSV files using SensorConnect.
Numbers rounded from 15 decimal places to 4.
CSV files concatenated into one CSV file.

6 Load shackles Sensor no. 1
Calibration eqs. applied to each sensor in each time period.
Numbers rounded from 6 decimal places to 4.
0.095s subtracted from each timestamp to ensure nice timestamps.

16 Depth sensor Sensor no. 15

Metadata stripped from .Dat files.
Sensor no. 5 offset by 2 min to match other timestamps.
Sensor no. 12 offset by 1 min to match other timestamps.
Data joined on timestamps and saved into one CSV file.

Table 3.3: Table showing a summary of the preprocessing steps applied to each of the sensors.

No preprocessing was needed on the data from the weather buoy, as this was simply used to
select time periods within which the data from the other sensors would be analyzed. The data
from the weather buoy itself would not be used in any analysis.

3.4 Principal Component Analysis

PCA was implemented in Python using the sklearn library. Before running PCA, the relevant
dataset (data from one of the sensor types) was always standardized first, so that each variable
was centered and scaled to have a mean of 0 and a standard deviation of 1. In each of the
coming analyses, the PCA would identify the fewest number of sensors that were required to
explain 95% of the given dataset’s variance. These sensors, which will also be loosely referred
to as "most important sensors" or "optimal sensor setup", would then be returned in a list by
the Python function.

The rest of this section outlines the different approaches and methods that were attempted
used in combination with the PCA. It gives a description of the various ways in which the PCA
was applied to the different datasets obtained from depth sensors, accelerometers, and load
shackles. This section also discusses the reconstruction of the full dataset based on a reduced
dataset, although this was only done for the depth sensors.

3.4.1 Principal Component Analysis on individual datasets

Initially, PCA was performed separately on each type of sensor data from each of the 10 cases.
This meant running the PCA separately on measurements from depth sensors, accelerometers,
and load shackles. This approach aimed to identify whether dimensionality reduction could
be achieved for each sensor type independently. Seeing as the depth sensors had continuous
measurements available in the entire time period between case 1 and case 10, it was decided
that a PCA would also be run on all the depth sensor data collected during this month-and-a-
half long time period.
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3.4.2 Aggregated analysis of depth sensor data

To further verify the results of the initial analysis and assess the consistency of the reduced
sensor setup, a more detailed analysis was conducted. The entire depth sensor dataset (mid.
December to early April) was divided into segments of equal lengths (e.g. fourteen one-week
segments). A PCA was then carried out on each segment independently, identifying and re-
turning the most important sensors.

A tally was kept of how many times each sensor was included in the list of most important
sensors. Then, a bar chart was created to visualize this data. This approach made it possible
to assess the stability of the "optimal" sensor setups that the PCA would return, by looking at
the heights of the bars in the bar chart.

Several segment lengths were examined. For starters, the initial analysis (that was conducted
on data from the 10 cases listed in Table 3.2) is completely equivalent to conducting a PCA
on ten 1.5 hour segments. This however doesn’t utilize the entire dataset. Thus, after trying
fourteen one-week segments (from 21st of December to 28th of March), the segment-length
was gradually increased from one day to four weeks, one day at a time.

As one might imagine, there is a trade-off between segment-length and total number of seg-
ments. With shorter segments, e.g. one-day segments, there will be roughly 100 separate seg-
ments in total (3 months or ∼100 days), but each sensor will only contain 360 data points in
each segment, as the sampling rate is 4 minutes. On the other hand, with longer segments, e.g.
14-day segments, each sensor will contain 5040 data points, but there will only be 7 separate
segments to run PCA on.

An additional layer of flexibility was introduced by varying the degree to which the analysis
window was shifted each time. For the sake of clarity, consider the following example. When
using segments of length 14 days, the "default" way would be to run the PCA on weeks 1-2, then
weeks 3-4, then 5-6, then 7-8, then 9-10, and then 11-12, and finally weeks 13-14. However,
one could also run the PCA on weeks 1-2, then weeks 2-3, then 3-4, all the way up to weeks
12-13 and finally 13-14. In the first example, the window of analysis is shifted by the same
amount as the segment length (14 days) each time, while in the latter example, the window of
analysis is only shifted by half the segment length (7 days) each time. While the first example
yields 7 separate segments to run PCA on, the latter example yields 13 overlapping segments
to run PCA on.

For a clearer presentation and discussion of the results, segment length shall be referred to as
Lseg (in days), window shift as Lshi f t (in days), and the resulting no. of segments for analysis as
Nseg . With these variables in place, the first example given above would be given by Lseg = 14,
Lshi f t = 14, Nseg = 7, while the second example would be given by Lseg = 14, Lshi f t = 7,
Nseg = 13.

3.4.3 Butterworth filtering and PCA

Here, a Butterworth filter was applied to both accelerometer and load shackle data before
running a PCA in an attempt to remove some of the noise and improve the PCA results. The
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Butterworth filter was tried with several cutoff frequencies ωc and an order of n = 4. How-
ever, different cutoff frequencies presented challenges; low frequencies effectively wiped the
data, while high frequencies did not result in any significant dimensionality reduction. This is
reiterated and further discussed in Chapter 4.

In the end, a cutoff frequency of 0.8Hz was chosen as it is slightly higher than the highest wave
frequency, which is around 0.5Hz (recall that most waves hit the fish farm with a period of 3-
6s). This ensures that the filter preserves the important frequency components of the signal
while eliminating higher frequency noise that could negatively impact the PCA results.

3.4.4 Rolling window averages and PCA

An alternative noise-reduction approach involved applying rolling window averages to the
accelerometer and load shackle data before running a PCA. This method aimed to reduce
noise by smoothing out the signals over time.

The rolling average, or rolling window average technique involves replacing each data point
with the average of all values within a defined "window" of size n, starting from the data point
in focus. This technique has the potential to smooth out short-term fluctuations and highlight
longer-term trends in the data, potentially improving the results of the PCA.

Different window lengths were tried, but as with the Butterworth filter, there was one main
challenge; short windows preserved patterns but did not lead to dimensionality reduction,
while longer windows "smeared" the data in time, effectively destroying it. Again, this is further
discussed in Chapter 4.

3.4.5 Combining datasets

Accelerometers and load shackles

In an attempt to explore potential relationships between the datasets, load shackle and ac-
celerometer data was combined into a single dataframe before running a PCA. This made
intuitive sense as waves have an effect on both of the measurements, pointing to a potential
link between the two datasets. Thus, this was and attempt investigate whether the combined
data could lead to better dimensionality reduction or reveal any hidden patterns across the
datasets.

To perform this joint analysis, the accelerometer and load shackle data was combined using
an intersection join, which only kept every other accelerometer measurement to match the
lower sampling rate of the load shackles. This ensured that the combined dataset had an equal
number of measurements from each type of sensor. As before, a PCA was run on each of the
cases given in Table 3.2.

All sensors combined

Additionally, all datasets, including depth sensors, accelerometers, and load shackles, were
combined into one large dataframe to investigate the possibility of joint dimensionality reduc-
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tion. This makes less intuitive sense, but was easy to implement and couldn’t do any harm (as
will be explained in Chapter 5). This approach was mainly meant to catch any hidden rela-
tionships that might have been present between the datasets, and analyze their impact on the
total explained variance.

The disparate sampling rates of the different sensors posed a challenge. The depth sensors
sample once every four minutes, which is significantly slower than the 8Hz and 4Hz sampling
rates of the accelerometers and load shackles, respectively. Nonetheless, to create a combined
dataframe, an intersection join was used. This effectively downsampled all data to the sampling
rate of the depth sensors.

3.4.6 Reconstructing dataset from a subset of sensors

When successful, the PCA returns a reduced sensor setup. By starting with a reduced sensor
setup and essentially running the PCA in reverse, it is possible to recreate data for the rest
of the sensors not included in the reduced setup. This was only attempted with depth sensor
data.

The reconstruction process was performed in two steps. First, the dataset was split into two,
using the time period between all the days in Table 3.2 as a training set and a few hours or
days thereafter as a test set. Then, PCA was applied to the training set to obtain the principal
components corresponding to the sensors that explained 95% of the cumulative variance. Next,
(data from) these sensors were extracted from the test set and the reconstruction process
was applied to this part that the PCA had not seen before. This was done to validate the
reconstruction method on unseen data.

The whole process as it was implemented in Python can be described as follows:

1. Split the entire depth sensor dataset into training and test sets. In this thesis, the time
period between 10:00 on the 18th of January and 14:00 on the 1st of March was used
as the training set. A given period of time starting immediately after the training set was
used as the test set.

2. Standardize both datasets by subtracting the mean and dividing by the standard devi-
ation.

3. Perform PCA on the standardized training set. Use the results to find out which sensors
are able to explain 95% of the training set’s variance, obtaining principal components in
the process.

4. Filter the test set to only include measurements from the sensors found in the previous
step. Perform PCA on this reduced standardized test set.

5. Reconstruct the sensors that were filtered away (in the test set, in the previous step)
using the principal components that were found in step 3. This is done by multiply-
ing the PCA-transformed test set (Y test) by the transpose of the principal components
(E t raining) of the training set (found in step 3). This is in essence the same as computing
Equation (2.7), but using Y reduced from the test set and E reduced from the training set.

6. Rescale the test data using the training set’s mean and standard deviations, as in Equa-
tion (2.8)
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7. (Optional to increase accuracy) Overwrite the estimations of those sensors that were
kept in step 4. In step 4, one essentially pretends to have less than 15 sensors, wanting
to predict the values of the rest. Since the measurements of the sensors that are kept are
known, one doesn’t need to estimate these through the reconstruction process. Thus,
one might as well overwrite whatever is estimated, using the values from the original
measurements. This step is executed in the context of this study.

By following this process, the full test-dataset was reconstructed using only the sensors that ex-
plained 95% of the cumulative variance in the training-dataset. This helped intuitively validate
the effectiveness of PCA for dimensionality reduction.





Chapter 4

Results

In this chapter, the results of the various analyses are presented. What follows below is a quick
recap of all the analyses done, in order of appearance in this chapter.

Initially, PCA was run separately on accelerometers, load shackles, and depth sensors, using
data from each of the time periods given by the 10 cases in Table 3.2. This provided a great
starting point, and branched the coming analyses into two: further analysis of depth sensor
data and filtering of accelerometer and load shackle data.

Following the initial analyses, a PCA was run on depth sensor data from a 1.5-month time
period, in order to further verify the dimensionality reduction capabilities found in the initial
analysis. One drawback with this new approach was that there was no way to assess the sta-
bility of the returned optimal sensor setup. Only running the analysis once made it somewhat
difficult to trust that the sensors found to be important really were important. Thus, another
experiment - the aggregated analysis - was conducted to bring more "certainty" or "credibility"
to the reduced sensor setups provided by the PCA.

Next, the reader is presented with the results found when first applying a Butterworth filter be-
fore running a PCA. This was only done with accelerometer and load shackle data. Afterwards,
another attempt was made where a rolling average was applied (instead of the Butterworth
filter) to accelerometer data and load shackle data before running a PCA.

Up until this point, sensor data from accelerometers, load shackles and depth sensors had been
analysed separately. In the combined analysis, data from these sensors would be combined into
a single dataframe for analysis, in an attempt to uncover possible cross-sensor patterns.

Finally, the reader is presented with results from the reconstruction experiment. Here, a re-
duced depth sensor setup was used to reconstruct data for the missing sensors, further verifying
the capabilities of PCA and shedding light on potential other use-cases of the technique.

37
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4.1 Principal Component Analysis

This section presents the results from running the principal component analysis on each of
the different sensors, without any filtering or rolling window averages. The PCA plots show
the cumulative explained variance when including n sensors. In this analysis, it was decided
that a cumulative explained variance above 0.95 (or 95%) would be considered a successful
reduction in dimensionality, preferably with as few sensors as possible.

It is imperative that this limit be approached with a bit of caution. Consider the case where
one is trying to reduce the dimensionality of measurements from 20 sensors by only using the
sensors that explain 95% of the variance. Even when there is absolutely no underlying pattern,
each sensor will account for an equal share of the total variance, or roughly 5% in this case.
In this scenario, 19 (or less) of the sensors will always be able to explain 95% of the total
variance in the dataset despite there being no underlying pattern. Selecting these 19 sensor
based on the fact that they explain 95% of the total variance will not yield any "meaningful"
reduction. This will be more akin to discarding 5% of the information.

That being said, what follows are the results of the principal component analysis.

4.1.1 Accelerometers

Figure 4.1: Plot showing the cumulative explained variance when using n accelerometer
sensors. The analysis is performed on data from the time period given by case 1 in Table 3.2,
that is, from 09:15 to 10:45 on the 18th of January.

As seen in Figure 4.1, each sensor accounts for roughly one-seventh of the total variance, thus
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forming a (almost) straight diagonal line when plotted cumulatively. This is an indication that
the analysis didn’t find any underlying patterns and that every sensor is equally important
in explaining variance. It is important to note that this doesn’t necessarily mean there is no
underlying pattern, but that the analysis wasn’t able to find any.

While the included plot only shows the results of the analysis on data from one of the 10 cases,
it is important to mention that the analysis was conducted on data from within all of the 10
time periods. The analyses of the other 9 cases yielded very similar results, with each sensor
only accounting for roughly one-seventh of the total explained variance.

4.1.2 Load shackles

Figure 4.2: Plot showing the cumulative explained variance when using n load shackles. The
analysis is performed on data from the time period given by case 1 in Table 3.2.

Figure 4.2 shows the results of applying a PCA to load shackle data from case 1 in Table 3.2. No
one sensor is able to explain more than 30% of the total variance in the dataset. Furthermore,
the least important sensor still accounts for 10% of the total variance. This again indicates that
the analysis wasn’t able to find any linear connection between the different sensors, or that
they are all roughly equally important in explaining the dataset’s variance.

The analysis was repeated on data from all the 9 other cases. However, most of them gave
similar results. Data from day 6 indicated that 4 of the 5 sensors were able to explain 95.3%
of the total variance (these were sensors 1, 2, 3, and 5), but this seems mostly due to random
chance, given the fact that none of the other days produced similar results.
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4.1.3 Depth sensors

(a) Result of PCA on depth sensor data from case 1. (b) Result of PCA on depth sensor data from case 8.

(c) Result of PCA on depth sensor data from case 6. (d) Result of PCA on all the depth sensor data starting from
case 1 to case 10 (including the time in-between cases).

Figure 4.3: Figures showing the results of running PCA on depth sensor data from various time periods. (a) shows the results
from case 1, as has been done with accelerometer and load shackle data. (b) shows the results from case 8, where the analysis
required the highest number of sensors (11) to explain 95% of the total variance. (c) shows the results from case 6, where the
analysis required the lowest number of sensors (4) to explain 95% of the total variance. (d) shows the results of the analysis
when using all the data from 18.01 to 01.03 (2020).

The PCA yielded much more interesting and varied results when applied to data from the depth
sensors. When run on data from case 1, it indicated that 8 out of 15 sensors were required
to explain 95% of the variance in the dataset (as seen in Figure 4.3a). As opposed to the
results from the accelerometer and load shackles, one depth sensor alone is able to account
for slightly less than 60% of the variance in the dataset, greatly exceeding the 1

15 ≈ 6.67% one
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would expect if the analysis had failed to find any connection between the readings.

However, the analysis yielded mixed results when comparing performance across all the differ-
ent cases. The analysis showed that 11 out of 15 sensors were needed to explain 95% variance
on data from case 8 (as seen in Figure 4.3b), while only 4 out of 15 sensors were needed on
data from case 6 (as seen in Figure 4.3c): these were sensors no. 1, 5, 8 and 16.

More sensors were generally needed to explain 95% of the variance on days with calm weather
(like case 1, case 8 or case 10). On the other hand, the analysis indicated that some stormy
days required comparatively few sensors (like case 5 or 6), while other stormy days required
many sensors (like on case 4) to explain 95% of the variance. Overall, there didn’t appear to
be any clear correlation between the environmental conditions and sensors required to explain
95% of the variance.

1.5-Month analysis

Sampling data once every 4 minutes meant that each of the depth sensors only made 23 meas-
urements in each 1.5 hour case that was analysed. This seemed to be quite sparse, especially
considering the importance of dataset size as discussed in Section 2.4.4. With this in mind, it
was decided that a PCA would be run on all the data gathered in the time period starting from
the beginning of case 1 and lasting until the end of case 10 (Table 3.2). It was hoped that this
would further confirm that dimensionality reduction could be achieved for the depth sensors.
Using data from a 1.5 month time period amounted to roughly 15500 data points for each
depth sensor.

The result of applying the PCA to all the depth sensor data from the 18th of January to the 1st
of March is shown in Figure 4.3d. Here, the analysis indicated that only 5 sensors were needed
to explain 95.1% of the dataset’s total variance. These were sensors no. 1, 2, 4, 10, and 12.

4.1.4 Aggregated analysis of depth sensors

In this section, the entire available depth sensor dataset was split into segments of equal length
and analysed individually. As before, the IDs of the sensors that were required to explain 95%
of the variance in each of the segments were returned. By counting how many times each of
the sensors was included in the list of returned sensors, a bar chart could be made. These
charts, using various segment lengths Lseg and shift lengths Lshi f t are shown in Figure 4.4.

Sensor no. 10 seems to be the most important. Further inspection reveals that sensor no. 2 also
seems to be quite important, as it consistently appears in most of the reduced sensor setups.
Finally, sensors 4, 5, 12 and 13 also appear to be quite important, but with somewhat varying
scores across the tests. All in all, sensors 2, 4, 5, 10, 12, and 13 seem to be most important
according to the aggregated analysis, with sensors no. 2 and 10 being especially important.

While the choice of Lseg and Lshi f t seems to influence the importance of some sensors, others
score low across all the tests. Notably, sensors 1, 6, 7, 8, 9, 11, and 14 all have a low score
on at least three of the four charts. This indicates that they aren’t as important as some of the
other sensors.
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(a) Aggregated results with Lseg = 7, Lshi f t = 7, Nseg = 14. (b) Aggregated results with Lseg = 10, Lshi f t = 10, Nseg = 10.

(c) Aggregated results with Lseg = 14, Lshi f t = 14, Nseg = 7. (d) Aggregated results with Lseg = 14, Lshi f t = 7, Nseg = 13.

Figure 4.4: Figures showing aggregated PCA results from depth sensor data using various segment lengths and shifts. All these
analyses were done on data starting from the 21st of December.

Shorter and longer segment lengths than those shown were also tried. However, clear patterns
didn’t seem to emerge before using a segment length Lseg of at least 5 days. On the other
hand, using segment lengths above 14 days meant that there would be quite few segments
to analyse, resulting in vertically squished graphs. This would make it much more difficult to
clearly distinguish between the importance of some sensors.



Chapter 4: Results 43

(a) Accelerometer data after applying a Butterworth filter, using
a cutoff frequency of 0.8Hz and filter order of 4. Only every 40th
data point (every 5 seconds) is shown in this plot for visualization
purposes.

(b) Result of performing PCA on Butterworth filtered ac-
celerometer data.

Figure 4.5: Figure that summarizes the effect of applying a Butterworth filter to the accelerometer data. (a) shows the filtered
accelerometer data. (b) shows the results of the PCA when using the filtered data.

4.2 Butterworth filter

Figure 4.5 shows the results of applying the Butterworth filter with a 0.8 Hz cutoff frequency
to the accelerometer data. Figure 4.5a shows the filtered data, while Figure 4.5b shows the cu-
mulative explained variance. The fact that the cumulative explained variance closely resembles
that of the unfiltered accelerometer data (Figure 4.1) indicates that the Butterworth filter has
little effectiveness in improving PCA results compared to the unfiltered data.

Several other cutoff frequencies were also tested, as well as using data from other time periods
to investigate whether the filter could improve the PCA results. When higher cutoff frequencies
were used, there were minimal changes to the data, but each sensor would only be capable of
explaining roughly one-seventh of the total variance. As expected, this indicates that higher
cutoff frequencies are ineffective at improving the PCA outcome, as more noise will be in-
cluded.

On the other hand, when using cutoff frequencies below 0.2 Hz, the PCA was able reach 95%
explained variance with only 6 out of 7 sensors. However, at such low cutoff frequencies, the
data was essentially destroyed, losing crucial information from the original signal. Indications
that the dimensionality of the dataset could be reduced wouldn’t be properly grounded in
the original data anymore. This demonstrated that low cutoff frequencies weren’t suitable for
preserving the integrity of the data while achieving meaningful dimensionality reduction.

By considering the preservation of crucial signal components and the fact that the accelero-
meters were intended to capture the effect of waves on the fish farm, a cutoff frequency of
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0.8Hz was determined to be a suitable choice for the Butterworth filter that was used in this
thesis. However, it’s effectiveness in improving PCA results was very limited.

The Butterworth filter was also applied to data from the load shackles before performing PCA,
as shown in Figure 4.6. Like with the accelerometers, the load shackles didn’t benefit from
being filtered. As was done with the accelerometer data, various cutoff frequencies were tested
on data from various time periods, but with little success. The points that have been briefly
discussed in this section regarding choice of cutoff frequency and lack of improvement in PCA
results apply directly to the load shackles as well.

(a) Load shackle data after applying a Butterworth filter, using a
cutoff frequency of 0.8Hz and filter order of 4. Only every 20th
data point (every 5 seconds) is shown in this plot for visualization
purposes.

(b) Result of performing PCA on Butterworth filtered load
shackle data.

Figure 4.6: Figure that summarizes the effect of applying a Butterworth filter to the load shackle data. (a) shows the filtered load
shackle data. (b) shows the results of the PCA when using the filtered data.

4.3 Rolling averages

In addition to running the PCA on Butterworth filtered data, it was also run on data that had
first been smoothed by a rolling average. The results of this analysis are shown in Figure 4.7
and Figure 4.8. When rolling average windows were applied to the accelerometer data, no
reduction in dimensionality was achieved before extending the window size to roughly 10s.
At this point, data from case 6 managed to obtain a cumulative explained variance of 95.1%
using only 6 out of 7 sensors. However, this is not representative of the result obtained on
other days. When using rolling averages with a window size of 10s, accelerometer data from
most other cases performed similarly to that shown in Figure 4.7b.

The results were slightly better when using load shackle data, albeit not substantially. When us-
ing a window size of 1s, most cases performed similarly to that shown in Figure 4.8b. Only data
from case 6 was able to surpass 95% cumulative explained variance without all the sensors.
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(a) Accelerometer data after applying a rolling average with a
window size of 10s (80 measurements). Every 40th measurement
plotted (every 5s) for visualization purposes.

(b) Result of performing PCA on accelerometer data that
had first been smoothed using a rolling average.

Figure 4.7: Figure summarizing how smoothing accelerometer data with a rolling windows average affects the analysis. (a)
shows how the raw data is transformed by the filter. (b) shows the results of the PCA when using the rolling-averaged data.

When increasing the window size to 5s, data from cases 1, 5, 6, 7, and 8 were all able to sur-
pass 95% cumulative explained variance without needing all 5 sensors. However, the results
from these cases were split when it came to which sensor was least important in explaining
variance. The results from cases 1 and 7 indicated that sensor no. 4 carried the least informa-
tion, results from cases 5 and 6 indicated that sensor no. 1 carried the least information, while
the result from case 8 indicated that sensor no. 3 carried the least information. All this is to
say that no conclusion can be drawn with certainty.

In the context of this study, applying a rolling average to the accelerometer and load shackle
data did not substantially improve the PCA results. As mentioned, several different window
sizes were tested, from short windows that preserved more detail in the data, to longer win-
dows that provided more smoothing.

For shorter window sizes, the PCA results were not significantly improved and the analysis
wasn’t able to eliminate any of the sensors. As the window size was increased, the PCA began
to yield results, with the explained variance increasing as the window size was expanded.
However, this approach has an important drawback. The larger the window size, the more
the data is "smeared" out over time. This results in a loss of detail in the data, as the original
signal is increasingly averaged out. At these larger window sizes, the filtered data began to
lose meaningful connection to the original data.

Despite some results when applied to load shackle data, the use of a rolling average filter
cannot be deemed successful in substantially or meaningfully improving the PCA results for
the accelerometer and load shackle data in this study. The trade-off between smoothing the
data (and consequently improving the PCA results) and preserving the integrity of the original
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signal could not be satisfactorily resolved using this method.

(a) Load shackle data after applying a rolling average with a win-
dow size of 1s (4 measurements). Every 20th measurement plot-
ted (every 5s) for visualization purposes.

(b) Result of performing PCA on load shackle data that had
first been smoothed using a rolling average.

Figure 4.8: Figure summarizing how smoothing load shackle data with a rolling window average affects the analysis. (a) shows
how the raw data is transformed by the filter. (b) shows the results of the PCA when using the rolling-averaged data.

4.4 Combined data analysis

In this section, an investigation is launched to determine whether more sparse sensor setups
can be uncovered by first combining different sensor data into a single dataframe and then
analysing the combined data. The goal is to explore whether combining the datasets may
reveal any shared patterns of variance that could be exploited to achieve a more effective
dimensionality reduction with the PCA. By performing the analysis on this joint dataset, an
attempt is made at leveraging the potential of PCA to uncover patterns of variance that span
multiple sensor types, potentially leading to a better representation and consequent analysis
of the sensor data.

4.4.1 Accelerometers and load shackles

One might reasonably expect that accelerometer data and load shackle data could be correlated
due to the shared effect waves have on both of these. By analyzing the accelerometer and load
shackle data together, it was hoped that the PCA would be able to identify a smaller number
of principal components that effectively capture the joint variability of these sensors.

Unfortunately, the results of the PCA on the combined dataset did not show substantial im-
provements over the separate analyses. Most of the results were similar to that of case 7, shown
in Figure 4.9. Here, 11 out of 12 sensors were needed to reach a 95% explained variance. There
were occasional instances where one sensor could be dropped while still explaining a signific-



Chapter 4: Results 47

Figure 4.9: Figure showing cumulative explained variance when running PCA on combined
accelerometer and load shackle data. The plot only shows the results of running the analysis
on data from case 7. Most other cases yielded similar results.

ant portion of the variance, but these occurrences were inconsistent and appeared to be due
to random chance rather than a meaningful pattern in the data.

Given the results, it doesn’t appear as though combining the accelerometer and load shackle
data has a substantial effect on the results of the PCA. This suggests that the underlying factors
driving the variability in these sensors’ measurements may be independent, or that both data-
sets simply exhibit some pattern that cannot be uncovered by the PCA. Thus, combining the
datasets did not yield the desired improvements in the effectiveness of the PCA.

4.4.2 All sensors

Although it is more difficult to reasonably justify, an experimental analysis was also conducted
where all the sensor data was combined into a single dataframe, before running a PCA. This
included measurements from the accelerometers, load shackles, and the depth sensors.

Applying PCA to this combined dataset resulted in a reduction of approximately 6-10 sensors in
each of the 10 cases chosen for analysis. Results are shown for case 3 in Figure 4.10. Upon fur-
ther inspection, it was found that this reduction was essentially the same as what was achieved
when PCA was applied independently to each of the different sensors. In other words, the act
of combining data didn’t contribute to a better explanation of the variance. Instead, it seemed
that the structure found in the depth sensor data alone dominated the PCA results.
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Figure 4.10: Figure showing cumulative explained variance when running PCA on data from
all the sensors combined. The plot only shows the results from case 3. Most other cases yielded
similar results.

Despite this attempt to find underlying patterns in the combined dataset, no further dimen-
sionality reduction was achieved beyond what was observed with the depth sensor data alone.
Combining all the sensor data into one dataset before performing a PCA did not reveal any
additional patterns that could be leveraged for better results. Nonetheless, this analysis con-
firmed the importance of the information contained in the depth sensor data, supporting the
results of the previously conducted independent analysis in Section 4.1.

4.5 Reconstruction of depth sensor data

In this analysis, PCA was run on data from a 1.5-month period (from 10:00 on the 18th of
January to 14:00 on the 1st of March) to identify the most important sensors. As presented
earlier, the results can be seen in Figure 4.3d. Again, the analysis indicated that sensors 1, 2,
4, 10, and 12 were the most important sensors. The principal components corresponding to
these sensors were then extracted.

To ensure that the reconstruction process was applied to unseen data, a separate dataset was
created. This reduced dataset was created by only extracting the measurements from sensors
1, 2, 4, 10, and 12 over a 2-hour time period immediately following the end of the 1.5-month
period. The reconstruction process involved using the extracted principal components to es-
sentially do "PCA in reverse" and transform the reduced dataset back to the original high-
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dimensional space. The error between the original and reconstructed sensor values is shown
in Figure 4.11.

Figure 4.11: Figure showing the error in reconstructed depth sensor data starting from 14:00
on the 1st of March. Reconstruction was done using data from sensors 1, 2, 4, 10, and 12; the
sensors found to be most important in the 1.5 month analysis.

While the reconstructed data does not perfectly match the original data, it nonetheless repres-
ents a reasonable approximation. However, it is essential to note that despite the mathematical
possibility of this reconstruction, its practical application is very limited due to the inherent
loss of information during the dimensionality reduction process. This is more evident when
trying to reconstruct data over longer periods of time. To highlight this point, the experiment
was repeated twice more, with the aim of reconstructing data over a 5-day and 10-day period.

This experiment was repeated using the sensors that were found to be most important in the
aggregated analysis, namely sensors 2, 4, 5, 10, 12, and 13. The PCA was run on the same
data, but this time, the principal components corresponding to these sensors were extracted
and kept. Measurements from these sensors were then extracted over a 5-day period (instead
of 2 hours), and the principal components were used to reconstruct data for the remaining
sensors. The results are shown in Figure 4.12.

Although not shown, the experiment was repeated one final time (using the same sensors as
those found in the aggregated analysis), with the aim of reconstructing data over a 10-day
period. In this case, errors peaked at slightly above one meter.
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Figure 4.12: Figure showing the error in reconstructed depth sensor data over 5 days starting
from 14:00 on the 1st of March. This time, the reconstruction was done using data from sensors
2, 4, 5, 10, 12, and 13; the sensors found to be most important in the aggregated analysis.
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Discussion

5.1 Summary of findings

This master’s thesis has delved into the potential of using Principal Component Analysis (PCA)
as a method for identifying more sparse sensor setups in fish farming operations. What follows
here is a brief summary of the all the different analyses and the findings. A more thorough
discussion of the results is given in Section 5.2.

Depth sensors:

The initial analysis consisted of performing PCA on the 10 cases listed in Table 3.2. Here,
reduced sensor setups were obtained that were able to explain at least 95% of the given data-
set’s variance. However, these reduced sensor setups varied greatly both in terms of how many
sensors were required (mostly 7-11 sensors, down from 15), and which sensors these were.
Furthermore, there didn’t seem to be any connection between the optimal sensor setups and
the environmental conditions in the different cases. It nonetheless indicated that there was
potential for finding reduced sensor setups using the PCA.

In the 1.5 month analysis, it was found that sensors 1, 2, 4, 10, and 12 were key contributors,
explaining around 95% of the total variance in the dataset. This was a big reduction in the
number of sensors as compared to the initial analysis, and seemed to be more reliable as it
was based on a much larger number of depth measurements.

Afterwards, the aggregated analysis was performed. This analysis pointed very strongly to-
wards sensor no. 10 being essential, followed closely by sensor no. 2. Besides these two, sensors
4, 5, 12, and 13 were also found to be quite important.

Finally, mostly as an academic exercise, an attempt was made at reconstructing data based on
various reduced sensor setups. Comparing the reconstructed data with the real data revealed
relatively high errors, indicating limited utility. While this procedure is sometimes used in other
academic applications (albeit infrequently), it is not well suited in the context of this thesis,
as will be further elaborated shortly, in Section 5.2

51
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Accelerometers and load shackles:

When PCAs were applied to accelerometer and load shackle data, the results were less encour-
aging. Each sensor was found to be equally important in explaining the dataset’s variance. In
spite of also using noise-reduction techniques such as the Butterworth filter and rolling win-
dow averages, no substantial dimensionality reduction was achieved. The variance in these
datasets was more evenly distributed across all sensors, indicating the absence of a small sub-
set of dominant sensors akin to what was found in the depth sensor data. It is unclear if this is
because each sensor fundamentally captures different components of the dynamics at the fish
farm, or whether the sensors simply contain non-linear relationships that can’t be picked up
by the PCA.

Combining datasets:

In the first attempt, accelerometer and load shackle data were combined before running the
PCA. This didn’t yield any significant sensor reductions. Next, data from all the different
sensors (accelerometers, load shackles and depth sensors) were combined before running the
PCA. This required downsampling all data to the sampling rate used by the depth sensors (4
minutes). No further reduction was observed in dimensionality beyond what was observed for
each of the sensor types individually, further underscoring the challenge posed by the acceler-
ometer and load shackle datasets.

5.2 Interpretation of results

5.2.1 Depth sensors

Initial analysis

Recall that initially, PCAs were performed on ten distinct 1.5-hour time intervals, each with
different environmental conditions. This approach was chosen in an attempt to investigate
whether the sensor importance varied significantly based on the environmental state at the
time of measurements.

The initial PCA results for the depth sensors were somewhat inconsistent, reflecting different
"important" sensors across the ten selected cases. This is highlighted by Figure 4.3, which
shows that 11 sensors were required to explain 95% of the dataset’s variance in case 8, while
only 4 sensors were required in case 6. This observed variability could be attributed to several
factors.

One key element that was likely causing much of the variation was the relatively short duration
of each of the cases: 1.5 hours. As mentioned before, this only amounts to 23 data points for
each sensor. This might not have provided a sufficiently representative sample of the normal
operating conditions. Recall from Section 2.4.4 that research shows that too little data can
make PCA results unstable, although the amount of data required to avoid such instability
isn’t well defined. Another factor that could help explain some of the variation is the inherent
stochasticity in the dynamics of the sea cage in the presence of various weather conditions.
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Connection between environmental conditions and reduced sensor setup

Unfortunately, no correlation was observed between the environmental conditions in the dif-
ferent cases and the reduced sensor setups that were found in each case. The initial analysis
mainly seemed to indicate that more data would need to be analysed in order to obtain stable
sensor setups. While this would be achieved in the coming analyses, the greatly prolonged
time periods that had to be used (upwards of 5 days) made it practically impossible to analyse
the impact of different environmental conditions and the optimal sensor setups.

It would be interesting to see if this problem could be solved by having more measurements
(i.e. more frequent sampling rate) available in each case. One might reasonably hypothesize
that a more frequent sampling rate would make the reduced sensor setups found in each 1.5-
hour case more stable, but this would need to be tested. This would potentially enable one to
analyse the impact of different weather conditions on the optimal sensor setup.

1.5-month analysis

The findings from this analysis (as seen in Figure 4.3d) indicated that sensors 1, 2, 4, 10,
and 12 collectively explained approximately 95% of the total variance. This sensor setup was
much more sparse than most of those generated by running PCA on each of the 10 cases,
suggesting that five depth sensors could in theory be enough to provide a near-comprehensive
understanding of the depth dynamics at the fish farm. An encouraging finding in terms of
potential cost savings and sensor management. This analysis also supported the suspicion that
23 data points per sensor were too few.

While this analysis was a success in terms of finding a highly sparse sensor setup, its indication
that the sensors 1, 2, 4, 10 and 12 (and not some other sensors) were most important could
well be questioned as it was only performed once.

Aggregated analysis

In the aggregated analysis, the entire available dataset was split into segments of equal lengths,
and a PCA was run on each of these segments, counting how many times each sensor was in-
cluded in the reduced setups. Various segment lengths and shift lengths were attempted as
seen in Figure 4.4. Varying these parameters also had the added benefit of shedding light
upon whether the reduced sensor setups were dependent on the methodology employed (seg-
ment/shift lengths) or not.

By employing the aggregated analysis, the variability observed in the initial cases was reduced.
The analysis pointed to sensor no. 10 as the most critical, closely followed by sensor no. 2.
Sensors 4, 5, 12, and 13 were also noted as important, although to a slightly lesser extent.
This was in close agreeance with the result of the 1.5 month analysis, except for one major
deviation: in this analysis, sensor no. 1 was found to be quite unimportant. The fact that
sensor no. 1 was almost never included in the reduced sensor setups despite trying varying
segment lengths strogly undermines its importance. Furthermore, it indicates that the inclusion
of sensor no. 1 in the results of the 1.5 month analysis was likely "due to chance".
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The results of the aggregated analysis reflect a more consistent understanding of sensor import-
ance, and should be weighted more heavily. Nonetheless, the 1.5 month analysis also pointed
to sensors no. 2, 4, 10, and 12 being important, something that the aggregated analysis also
supports.

Unfortunately, the principal component analysis does not provide any intuitive reasoning be-
hind its "chosen" dimensionality reductions. This is why it is often referred to as a "exploratory
analysis". As mentioned in Section 2.4.1, the PCA is perhaps best used to guide further invest-
igations or to reduce the dimensionality of a dataset before further analyses. That being said,
one might reasonably speculate why some of these sensors are included.

Optimal sensor setup speculation

The inclusion of sensor no. 2 is perhaps the one which is easiest to understand intuitively.
Looking at Figure 3.4, one can see that sensor no. 2 is the only sensor that is located at a depth
of 30m. This might make its dynamics distinct from the others, which are located higher up
and along vertical net cage segments. In terms of the PCA, recall that it in essence tries to
maximize the amount of information retained while performing a dimensionality reduction.
Sensor no. 2 might carry information that none of the other sensors have. This essentially
makes the information sensor no. 2 carries much more "important".

As a counter-example, consider sensor no. 7. If it were to be discarded, sensors no. 6 or 8 could
likely substitute it due to their close horizontal proximity and identical vertical placement. If
sensor no. 2 were to be discarded, there wouldn’t be any other sensors in the same horizontal
plane that could substitute it in the same way.

By the same logic, it is fairly easy to understand the inclusion of at least one sensor from 7m
depth and at least one sensor from 15m depth. This would at least partly explain the inclusion
of sensor no. 4 or 5 (from 7m depth), and sensor no. 10, 12 or 13 (from 15m depth).

Unanswered questions raised by aggregated analysis

A few things clearly still remain as mysteries. If one examines Figure 4.4 and Figure 3.4 once
more, one might wonder: why exactly is sensor no. 10 marked as critical in importance across
all the tests? What makes this specific sensor so important?

One might hypothesize that parts of these questions can be answered by closely examining
the general direction of currents over the time span of the analysis windows. If for instance
the current tends to flow mostly from north to south (see Figure 3.2 and Figure 3.4), then one
would expect sensor no. 10 (being placed on the northern side) to be displaced more than
sensors on the south side. The inclusion of sensor no. 10 would therefore cover most of the
variation seen in the dataset. This seems intuitively sound, especially as waves are generally
reported to hit Buholmen from the north. Nonetheless, this explanation would need much
more thorough investigation.

Furthermore, notice that sensors 4 and 5 are right next to each other. Likewise, sensors 12
and 13 are also right next to each other. Why are sensor pairs that are right next to each other
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being marked as important? Intuitively speaking, shouldn’t sensors that are more spread out
better explain the variability observed in readings from across the entire net cage?

One might hypothesize that the apparent inclusion of two pairs of sensors that are right next
to each other can be explained through further examination of the results of the aggregated
analysis. Notice that in each of the subfigures in Figure 4.4, the number of times sensors 4-5
are included seem to roughly add up to Nseg . The same applies to sensors 12-13. It might be
the case that sensors no. 5 and 13 are excluded from the reduced setups whenever sensors
no. 4 and 12 are included, and vice versa. This would indicate that only one of each pair is
needed, but that aggregating the results can make it seem as though both are needed.

Finally, notice that sensors 4 and 5 are located right above sensors 12 and 13. What makes
sensors in this particular quadrant so special in terms of explaining the dataset’s variance?
Intuitively speaking, wouldn’t it be beneficial to also have sensors present in another quadrant
of the net cage, e.g. sensors 4-5 and 9-16?

This could potentially also be explained by examining the general direction of currents, but
would contradict the inclusion of sensor no. 10 if currents tend to flow from southeast to
northwest.

Unfortunately, there is no way to know the answers to these questions with certainty as long
as one uses the PCA.

Note on shifting sensor timestamps

Recall that sensors no. 5 and 12 were initially offset by two and one minutes, respectively,
from the rest of the sensors. This was rectified by subtracting two and one minutes from their
timestamps (respectively) to match those of the rest of the sensors. Some might suspect this
to introduce errors, but this is most unlikely. It is generally well understood that neither ocean
currents nor coastal currents vary much on the time scale of minutes. The mechanisms that
drive changes in currents tend to occur on timescales of days or longer, and are discussed in
much more detail in textbooks such as [43–45].

There are a few phenomena that can cause changes on the time scale of hours in places like
Buholmen. Most notably, these include winds, which mainly affect surface currents, tides, that
occur roughly on a bi-daily cycle, and coastal up- and down-welling, that mainly affect currents
over several hours. Finally, studies such as [46] that examine temporal current changes often
use sensors that record data once an hour or so, again underscoring the fact that currents
don’t change much over the course of a few minutes. Thus, the temporal shift applied to depth
sensors no. 5 and 12 is highly unlikely to have distorted the results in any way.

Linearity of depth sensor data

Before wrapping up the discussion of depth sensor results, it is worth briefly considering why
the analysis proved successful at all. This can be helpful in understanding why the same ana-
lysis failed on accelerometer and load shackle data. One central assumption that lays the found-
ation for how the PCA works is that the data must be linearly dependent for the analysis to



56 Armon: Optimization of measurement setup in fish farms

work. Depth sensor data must evidently adhere to this condition, at least to some degree.

The relatively stable underwater-environment could well explain why the depth sensors con-
tain linear relationships, as opposed to the accelerometers and load shackles that are being
bombarded by chaotic and rapidly changing waves. Depth sensors are almost exclusively af-
fected by currents, which crucially tend to vary far less abruptly in both direction and strength.
This is indeed why they only return measurements once every 4 minutes: more frequent meas-
urements aren’t necessary in terms of capturing big deformation changes. The vastly slower
dynamics of the currents could be allowing the depth sensors to reach stable equilibrium pos-
itions that are linearly dependent.

Summary

In summary, when performed on depth sensor data, especially in the aggregated analysis, the
PCA demonstrated its potential in identifying a reduced sensor setup that could explain a ma-
jority of the dataset’s variance. While the results of this analysis can be used as they are, there
is room for other analyses that might provide more intuitively understandable explanations be-
hind the optimal sensor setup. This analysis primarily paves the way for further investigations
into optimizing sensor deployment, potentially leading to cost-effective and efficient sensor
management at the fish farm. It also highlights the importance of selecting appropriate time
intervals and having enough test cases for the PCA to return stable results that can be trusted.

5.2.2 Accelerometers and load shackles

The application of PCA to accelerometer and load shackle data resulted in a quite different
outcome from the depth sensors. With data from these sensors, PCA yielded no significant
reduction in sensor setup. As seen in Figure 4.1 and Figure 4.2, each sensor seems to explain
roughly an equal share of the dataset’s variance, leaving no opportunity for sensor elimination
without significant loss of information. While somewhat disappointing, this finding presents
an interesting point of discussion. Specifically, it can lead to a better understanding of the
inherent nature of the data coming from these sensors.

Possible explanations for lack of dimensionality reduction

One possible explanation for this result is the absence of any underlying patterns in the data
from these sensors. Accelerometers measure the dynamic motion of the floating collar, which
is heavily influenced by the chaotic nature of ocean waves. While one often imagines waves as
following a wave-front and moving in one direction, waves are typically much more chaotic.
Similarly, load shackles measure the tension forces on the sea cage, which are also affected
by the unpredictable nature of wave and wind activity1. Given the stochastic and unpredict-
able characteristics of these forces, it is completely plausible that no strong correlation exists

1As opposed to currents, wave and wind dynamics are much more chaotic and unpredictable. These dynamics
are far outside the scope of this thesis, but readers interesting in delving deeper into wave and wind dynamics are
referred to [47] and [48].
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between the sensors. This would indicate that each sensor is equally important in giving a full
picture of the conditions at the fish farm.

Another possible explanation might be attributed to the inherent limitations of the PCA. Re-
call that the PCA works by finding linearly independent components that successively maximize
variance. As such, there might exist a correlation between the sensors, but this won’t be picked
up by the PCA if it is a non-linear relationship. Despite their chaotic and unpredictable nature,
wind and wave-induced motions might give rise to non-linear relationships in the accelero-
meter and load shackle data that the PCA is unable to capture.

Non-linearity of data

Even in the presence of relatively well-behaved and uniform wave-fronts, both accelerometer
data and load shackle data might simply be containing non-linear relationships. Consider what
happens to the accelerometers as a single wave hits the fish farm. As it takes time for the wave
to travel from one side of the floating collar to the other, sensors will rise and fall asynchron-
ously. While one set of sensors are rising, others may be stationary or even falling. Considering
the size of the farm and the sampling rate, this delay is large enough to make the data non-
linear. The same logic can be applied to explain non-linear relationships in load shackle data.
A wave likely doesn’t hit all the points where load shackles are placed simultaneously. Even if
the delay were half a second, this would be enough to offset it in time by two measurements.

If this is the case, it should in theory be possible to shift individual sensor measurements in
time before running the PCA to obtain better results. The problem with such a procedure is the
chaotic nature of waves: they rarely (if ever) hit the fish farm at a constant angle and constant
frequency for prolonged periods. Waves in the sea tend to exist in a chaotic and superposed
manner [48]. This makes it exceedingly difficult to estimate the order in which sensors are hit
by waves and the time delays before other sensors are hit by the "same" wave.

Limited number of sensors

Another point worth considering is the limited number of sensors. With only 7 accelerometers
and 5 load shackles, it might be challenging to achieve a substantial reduction in dimension-
ality. While having a high number of features isn’t a requirement per se, most studies applying
PCA often deal with significantly higher dimensions, reducing them to a more manageable
number while still capturing the majority of the variance.

In [49], PCA is used to improve the performance of neural networks. In this context, 50 features
were attempted to be reduced with a PCA, and it was noted that it struggled with non-linear
data. In another paper, the authors used upwards of 1500 features [50]. These were then
reduced to a size of roughly 1000 features. It’s possible that the relatively low number of
sensors used in this thesis, coupled with the significant role each sensor plays in capturing the
sea cage’s state, leads to an equal distribution of explained variance across the sensors.

Furthermore, using more accelerometers and load shackles would decrease the distance
between each sensor. This would help counteract the delayed impact waves can have on
sensors that are far apart, while also giving the PCA more features to work with.
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Dataset size

It is worth clearly stating that the length of each case, 1.5 hours, should easily have been
sufficient. Wave dynamics are much quicker than the dynamics of underwater currents. To
be able to capture wave dynamics, the accelerometers and load shackles sampled data with
frequencies of 8Hz and 4Hz (respectively), as opposed to the vastly slower depth sensors. This
meant that when running a PCA on data from one of the cases in Table 3.2, each accelerometer
would contain 43200 data points and each load shackle would contain 21600 data points.
These numbers far exceed the amount of data points examined in any of the depth sensor
analyses.

Note on dropping NaN values and rounding numbers

Furthermore, it is also worth clarifying that dropping NaN values and rounding numbers to
4 decimal points does not hinder the PCA from reducing the dimensionality of data. NaN
values, though scarce and comprising less than 0.1% of data points in accelerometer data, were
omitted. This should not impact the PCA as the it doesn’t rely on continuous data. Dropping
entire rows doesn’t disrupt any potential linear relationships that might be present.

Additionally, the rounding of accelerometer values to 4 decimal points (from 15), and load
shackle values from 10 to 4, does not significantly alter the data distribution. Considering that
the measurements from these sensors are on the order of 0.1-1, the level of rounding applied
in this thesis simply optimizes computation time without substantially affecting the output of
the PCA.

Even in a hypothetical scenario where accelerometer or load shackle data were to be on a
much smaller scale than that being rounded to, rounding would aid the PCA in finding a
linear relationship by rounding different numbers to the same values. Thus, rounding and
dropping NaN values cannot be said to account for the lack of dimensionality reduction in the
accelerometer and load shackle data.

Summary

In summary, the results from the accelerometer and load shackle data indicated that a straight-
forward PCA might not be the optimal approach for sensor reduction in these cases. The equal
importance of each sensor, the chaotic nature of the data, and the limitations of PCA as a linear
method all contribute to this conclusion.

This invites the exploration of alternative dimensionality reduction techniques, potentially
non-linear ones, to tackle the challenges presented by accelerometer and load shackle data. Al-
ternatively, one might look into various methods for augmenting the data. As shall be presented
next, methods for noise reduction were attempted, but with little success in improving PCA
results. Despite the lack of immediate success, these results offer valuable insights into the
inherent complexities of the data and guide the future direction of research.
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5.2.3 Effectiveness of Butterworth filter and rolling window averages

Following the initial analysis of accelerometer and load shackle data, two techniques were em-
ployed to investigate if the lack of dimensionality reduction from the PCA could be attributed
to the presence of noise. The Butterworth filter and rolling window averages were applied
(separately) to the data before running the PCA in an attempt to improve the dimensional-
ity reduction results. The PCA is known to struggle with noisy measurements and outliers, as
these can cause otherwise linear relationships to appear non-linear. In this context, neither
method resulted in any significant improvements in the PCA results. This indicates that noisy
measurements are not to blame for the PCA’s inability to generate more sparse sensor setups,
a finding that warrants further discussion.

The Butterworth filter, a signal processing tool designed to offer a flat frequency response in
the passband, was used in an attempt to remove high-frequency noise from the sensor data. It
was expected that the removal of such noise would enhance the detection of any underlying
patterns within the data during PCA. However, in this context, the Butterworth filter’s impact
was far less significant than hoped for. Despite trying several cut-off frequencies to ensure
that noise would be removed while retaining the original signal, no real improvements were
achieved. This suggests that high-frequency noise was not substantially obscuring the primary
patterns within the data.

Likewise, the application of rolling window averages, a technique commonly employed to
smooth short-term fluctuations, did not lead to considerable improvements in PCA outcomes.
Again, one explanation for this is that the underlying patterns within the accelerometer and
load shackle data do not seem to follow a consistent long-term trend. It appears as though the
effect of waves on the fish farm is inherently chaotic and dynamic. This means that the data
collected by the accelerometers and load shackles contains patterns that are more complex
than what rolling window averages can help clarify.

As mentioned previously, in both of these methods, a trade-off had to be made between the
degree of data-augmentation and preservation of the original signals. With the Butterworth
filter, it can be noted that a sufficiently low cut-off frequency and sufficiently high filter order
will lead to a substantial improvement in PCA results. However, at such low frequencies, one
is essentially distorting the initial signal to such a degree that the PCA might notice linear
relationships where there in reality is none. In the same way, a sufficiently long rolling window
will lead to a substantial improvements in PCA results, but again, this is not desirable if there
is no underlying linear relationship to be found.

In conclusion, the attempts at removing noise from the accelerometer and load shackle data
did not yield significant improvements in PCA-based dimensionality reduction. This indicates
the absence of noise, or that if there is noise present, it certainly is not obscuring an underly-
ing linear relationship. Furthermore, this analysis highlights the complexity of the data, and
instead prompts the consideration of alternative dimensionality reduction methods that might
be better suited to these particular datasets.
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5.2.4 Combination of sensor data

The idea of combining data from different sensors into a single dataframe was fundamentally
an attempt at uncovering patterns that might not have been apparent when analysing each
sensor type separately. Considering the way in which waves affect the fish farm, it seemed
completely plausible that analysing accelerometer and load shackle data simultaneously might
have improved PCA results. Thus, two attempts were made: one where only accelerometer data
and load shackle data were merged, and another where depth sensor readings were included as
well. In both cases, the sampling frequencies were downsampled to that of the slowest sensor
involved. None of these combined datasets were able to significantly improve PCA results.

Combining accelerometer and load shackle data for a joined analysis seemed logical as an in-
coming wave will both strain the mooring lines and elevate the floating collar simultaneously,
leading to higher readings among both sensor types. While this may be the case, the combin-
ation did not yield any improvements in dimensionality reduction from the PCA, as seen in
Figure 4.9. This result signals the absence of a strong linear correlation between the different
sensor types. The chaotic nature of waves might be such that the relationship between these
sensors is non-linear.

Next, all the different sensor types were combined into a single dataframe that was then used
in a PCA. The justification for this approach stemmed from the understanding that a larger
dimensional space can only enhance the PCA’s performance. Even if there doesn’t exist an
intuitively obvious correlation between the sensors, the worst possible outcome would simply
be the lack of improvement.

Consider the scenario of initially having data from two variables that don’t seem to form a
straight line and can’t be reduced. Adding a third variable (dimension) can either align all
data points on a plane or reveal that they are spread out in the third dimension as well. In the
latter case, all three dimensions are necessary to describe the variables, but in the former, one
dimension can be eliminated. This illustrates that combining data will at worst maintain the
same level of dimensionality reduction or improve it, but never worsen it.

Given the minimal additional effort of combining datasets, it was seen as a worthwhile en-
deavor, even if there was no immediately apparent correlation between the different sensor
types.

All that being said, combining all the data and downsampling it to the sampling rate of the
depth sensors (one measurement per 4 minutes) didn’t seem to yield any improved results. The
results seen in Figure 4.10 simply pointed to the fact that some of the depth sensors could be
removed, a finding that was already previously discovered. All in all, the results obtained from
the combined analysis reflected those obtained when running the PCA on each of the sensor
types separately. Again, this points to the lack of linear relationships between the various sensor
types. However, it also highlights and reinforces the findings regarding reduction of depth
sensor setup.

In summary, while combining data from different sensors into a single dataset might provide
a more comprehensive view of the system’s state, it did not seem to facilitate a more success-
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ful PCA application. The inherent differences in the nature of the data and the limitations of
PCA in capturing complex relationships may both contribute to this result. These findings fur-
ther emphasize the need to consider alternative dimensionality reduction techniques if further
reduction is desired beyond what was observed for the depth sensors.

5.2.5 Reconstruction of depth sensor data

The reconstruction of depth sensor data was another experiment conducted in this study, not
out of direct necessity, but mostly out of curiosity. Given the results of the PCA on the depth
sensor data, a reduced sensor setup was used to "generate" data for the remaining sensors.
This was mostly done to get an intuitive understanding of how well the reduced sensor setup
was able to represent the remaining sensors.

As seen in Figure 4.11, the results of the reconstruction were intriguing, but not necessarily im-
mediately applicable. The reconstructed data was reasonably accurate over short time periods,
with errors ranging from 0cm to 40cm. This served as a reassurance, showcasing the potential
of the reduced sensor setup in representing the original data. Furthermore, this also implied
that despite reducing the number of sensors, significant portions of the original information
were still preserved.

While PCA-based reconstruction of data can be beneficial in specific scenarios, it’s not appro-
priate in this thesis’ context. For instance, one study suggests using PCA for reconstructing
measurements of a faulty sensor from a set of other linearly correlated sensors [51]. However,
this method requires high certainty in sensor correlation and is optimal when only a couple of
sensors are removed. Here, we’re removing over half the depth sensors, leading to significant
reconstruction errors for extended periods.

Furthermore, the mentioned method requires data availability from all sensors that are to
be reconstructed prior to the reconstruction. Recall that one first needs to run the PCA on a
dataset where all the sensors are present in order to extract principal components with correct
dimensions. Contrary to this requirement, this thesis aims for a permanently reduced sensor
setup. If one wanted to reconstruct data for all the 16 depth sensors, these would all have
to be installed on the net cage first. This would essentially completely contradict the goal
of identifying a reduced setup in the first place, since all the sensors would still need to be
installed on the net cage to enable their reconstruction.

Thus it becomes clear that such a reconstruction may not have immediate practical applications
in the context of this thesis. Nonetheless, the process helps visualize the extent to which a
reduced set of sensors can capture the measurements of the discarded sensors. It is also worth
noting that while the reconstruction was not without errors, the range of these errors reaffirms
the potential of PCA for effective sensor setup optimization. Furthermore, it raises interesting
possibilities for future research, where further enhancements to the reconstruction method (or
the investigation of other methods) may possibly result in more accurate approximations.
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5.3 Implications of findings

The results of this study have significant implications for the fish farming industry, particularly
regarding the use of sensor data for monitoring and decision-making purposes. The successful
application of PCA on the depth sensor data suggests that it is possible to operate with a
reduced set of sensors without losing significant information about the state of the fish farm.
Specifically, sensors 10 and 2 emerged as the most important ones, closely followed by sensors
4, 5, 12, and 13. Such a reduction could potentially lead to lower costs and overall more
effective operations.

The concept of reconstructing data from a reduced sensor setup, although academically inter-
esting, seems to have limited practical application in the specific context of fish farming. The
method tends to perform best when only a few sensors are removed. As shown in this thesis,
removing more than half of the depth sensors can lead to relatively large errors, limiting the
feasibility of data reconstruction. Furthermore, the necessity for data to be available from all
sensors prior to commencing reconstruction starkly contradicts the aim of permanently op-
erating with a reduced sensor setup. Thus, while reconstruction might be useful in specific
scenarios, such as temporary sensor failure, it doesn’t seem suitable for achieving long-term
operation with fewer sensors.

However, the PCA did not perform well on all types of sensor data. In particular, the acceler-
ometer and load shackle analyses did not result in any significant dimensionality reduction.
This suggests that these types of sensors all provide unique and necessary information that
cannot be captured by a subset of sensors, or that they contain non-linear data that can’t be
reduced through a PCA. This facilitates the need for further investigations.

Overall, these findings highlight both the potential and the limitations of PCA in processing
sensor data from fish farms, offering valuable insights for future research in this area. Given the
limited success of PCA with non-depth sensor data, other dimensionality reduction techniques
might be explored in future studies.

5.4 Limitations

The PCA algorithm, which was extensively used in this thesis, makes certain assumptions that
may not always hold true in real-world settings. As mentioned throughout this thesis, PCA
operates on the premise that there are linear relationships between the variables in the dataset.
Given the results, this appears to be a reasonable assumption for the depth sensors, but it may
not hold true for the accelerometers and load shackles, which are influenced by the more
complex and chaotic waves.

Even when the PCA is successful in reducing the dimensionality of a dataset, it is very hard to
intuitively explain why some sensors are discarded while others are kept. The PCA’s inability
to effectively reduce the dimensionality of non-linear data or provide an explanation when it
is successful has proved to be central limitation in this project.

Furthermore, these analyses have been somewhat constrained by the limited number of sensors
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available. PCA’s effectiveness often becomes more apparent when dealing with even higher
dimensional data. While, in theory, it is completely possible to reduce a dataset consisting
of 7 accelerometers or 5 load shackles, it would likely have been easier if more sensors were
available in closer proximity to each other. This highlights another limitation in the application
of the method.

Finally, it’s important to acknowledge that these findings are specific to data gathered from
Buholmen, and may not generalize to all scenarios or other fish farms. Other sea cage sizes
or environmental conditions might provide entirely different results. In other words, sensor
importance might depend on a variety of unaccounted factors. As explained in Chapter 1, the
aquaculture industry in Norway has in recent years seen a trend where fish farms are being
moved to more exposed location. It’s completely conceivable that the "importance" of different
sensors (as indicated by the analyses) could shift when moving to even more exposed locations,
where weather patterns are known to be more extreme. Hence, care should be taken before
extrapolating the findings given in this thesis to other situations.

In light of these limitations, future work could derive great benefit from exploring the use
of other dimensionality reduction techniques that do not rely on the same assumptions as
PCA, such as non-linear dimensionality reduction techniques (this shall be further discussed
shortly). Furthermore, increasing the number of sensors, if possible, could offer a richer dataset
for PCA and other similar algorithms to work with. Lastly, it’s important to validate these
findings with additional case studies to understand whether the results found in this thesis are
generalizable to other fish farms.

5.5 Alternative approaches

In addition to the Principal Component Analysis (PCA), other dimensionality reduction tech-
niques could be explored in future research.

If accelerometer and load shackle data indeed contain non-linear relationships, then tech-
niques such as t-distributed Stochastic Neighbor Embedding (t-SNE) [52] and Uniform Man-
ifold Approximation and Projection (UMAP) [53, 54] might be better suited for achieving di-
mensionality reduction. These have proven to be more effective on non-linear data in part due
to their ability to preserve the local and global structure of data in high-dimensional spaces.
These techniques could potentially be more successful than the PCA when it comes to reducing
the dimensionality of accelerometer and load shackle data. As discussed, this is because the
PCA is unable to capture the more complex non-linear relationships that might be present in
these sensors.

Autoencoders, a type of artificial neural network, represent a machine learning approach to
the dimensionality reduction problem [55]. In short, an autoencoder learns to compress data
from the input layer into a hidden layer, before using this lower dimensional representation
to reconstruct the full data in the output layer. The output layer is then compared to the input
layer to train the weights in the network. The amount of neurons in the hidden layer can be
gradually decreased until the dimensionality is low enough, or until the model’s performance
drops. The compression and decompression functions are learned in an end-to-end manner,
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enabling the autoencoder to capture more complex relationships in the data. However, the
values in the hidden layer are only a lower dimensional representation of the input data. This
approach cannot be used directly to determine exactly which sensors should be kept/discarded
in a reduced sensors setup.

In order to determine exactly which sensors should be kept in an optimal sensor setup, com-
pletely different approaches may also be employed. One such approach would be to apply
various transforms to the dataset in an attempt to identify other underlying components. One
might for example utilize a wavelet transform: an improved version of the well-known Fourier
transform that allows for the analysis of non-stationary components of a signal [56]. Readers
that are interested in an in-depth description of the wavelet transform and its application in
various fields are referred to [57] and [58]. When applied to time-series data from sensors,
wavelet transforms could potentially reveal underlying patterns, trends, and other components
that might be otherwise difficult to see. If it turns out that many of the sensors are in essence
capturing the same components, then this could provide significant assistance in determining
which sensors can safely be discarded in order to obtain an optimal setup.

These are some of the alternative approaches that can be considered in future research to
find the most effective ways of reducing dimensionality/uncovering optimal sensor setups,
especially when it comes to the accelerometers and load shackles.

5.6 Future research

The research presented in this thesis represents an initial exploration into the dimensionality
reduction of sensor data from a marine fish farm. While some of the findings are promising, it
is clear that more can still be done to refine and expand upon this work.

One of the main areas that can be further explored is in refining the application of the PCA
itself. While PCA provided insightful results with the depth sensor data, it was clear that it
struggled with accelerometer and load shackle data. Further work is needed in determining
whether this is due to these sensors containing non-linear relationships, or because each sensor
really is equally important in the context of monitoring conditions at a fish farm.

Future research could also explore the use alternative dimensionality reduction techniques
such as t-SNE or UMAP. Autoencoders or wavelet transforms might also help gain insight into
accelerometer and load shackle data.

While the results of the depth sensor analyses provided lots of insight, future work could benefit
greatly from having more data available, whether through quicker sampling rates or longer
periods of data collection. This could provide great help in further supporting the findings of
this thesis. One could also try entirely different methods for dimensionality reduction, such as
those mentioned before, and compare the results.

Future work would certainly also benefit from a more consistent flow of load shackle data.
Recall that these sensors only recorded data in sporadic 2 hour intervals. In the context of
this thesis, this was not too big an issue, as the high sampling rate meant that there were



Chapter 5: Discussion 65

enough data points in each 2 hour interval. However, other approaches might require a more
consistent data flow in order to yield useful results over longer periods of time.

Part of this thesis was aimed at investigating whether there was a link between severity of
weather conditions and optimal sensor setup. The fact that the PCA only yielded useful results
when run on depth sensor data from several days meant that no conclusions could be drawn
regarding the effect of specific environmental conditions on the optimal sensor setup (for any
of the sensor types). This aspect could also be further investigated, perhaps most simply by
making more frequent depth readings, so that one has enough data to run the PCA on shorter
segments where the conditions are reasonably static.

While the research presented in this thesis offers promising initial insights, it also indicates
that various future work can be conducted for improving the optimization of sensor setups in
fish farming. It is hoped that future work will build upon these findings in order to provide a
better understanding of the optimal sensor setup.
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Conclusion

This thesis has explored the use of Principal Component Analysis (PCA) in reducing the di-
mensionality of sensor data from fish farms. The aim was to identify a reduced sensor setup
that could provide sufficient information to enable decision-making without compromising the
effective functioning of the sea cage. The research presented in this thesis has yielded valuable
insights. As shown, there is both potential and limitations in the use of PCA as a dimensionality
reduction tool in this specific context.

The analyses on depth sensor data showed highly promising results. The PCA showed that one
can reduce the dimensionality without losing significant amounts of information, with certain
sensors emerging as the most important. Specifically, the analysis indicated that sensors [1, 2,
4, 10, 12] or [2, 4, 5, 10, 12, 13] were the most important, depending on the way the PCA
was applied to the data and how one interprets the results.

The cost-saving implications of these findings for the fish farming industry are significant as
they could potentially lead to reductions in equipment, installation, maintenance, and data
processing expenses. It was also found that the method for reconstructing data from a reduced
sensor setup was not practically feasible for long-term operations, but could prove useful in
specific scenarios like temporary sensor failure.

On the other hand, using PCA on accelerometer and load shackle data was less successful,
indicating one of two things: that these types of sensors all provide unique and necessary
information, or that they contain non-linear relationships. Both conclusions point to the ne-
cessity of using alternative approaches and different methods of dimensionality reduction to
further examine these sensor types.

The PCA algorithm and its assumptions formed the basis of this thesis, which presented some
limitations. As mentioned, the inability of the PCA to reduce the dimensionality of non-linear
data was one of the main limitations. Another big limitation is that the PCA provides no in-
tuitive explanation for the chosen reduction even when successful. Furthermore, the limited
number of sensors available for reduction might have been a limitation. Despite these, the
work undertaken provides a good starting point for further investigations into optimal sensor
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setups in the fish farming industry.

Looking ahead, there is a good amount of opportunity for future research to expand upon this
work. Refined applications of PCA, the exploration of alternative dimensionality reduction
techniques, and better data availability can all form the basis of future studies. Future studies
could also aim at uncovering the relationship between environmental conditions and reduced
sensor setups, if such a relationship exists. This would also help understand whether the results
found in this thesis are generalizable to other fish farms at more exposed locations. These
points highlight the importance of additional case studies.

In conclusion, this thesis provides an insightful foundation upon which future work can be
built. While some challenges have been identified, they do not completely hinder the potential
of PCA and other similar techniques in optimizing sensor setups in fish farming. Although it is
a complex problem, finding an optimal sensor setup in the aquaculture industry offers many
promising paths to explore. This thesis has attempted to explore one of these paths, with the
hope that many more will be explored in future works.



Bibliography

[1] Fish to 2030: Prospects for Fisheries and Aquaculture - World | ReliefWeb, en, Feb. 2014.
[Online]. Available: https://reliefweb.int/report/world/fish-2030-prospects-
fisheries-and-aquaculture (visited on 14/03/2023).

[2] Norway’s seafood exports worth NOK 151.4 billion in 2022. [Online]. Available: https:
//en.seafood.no/news-and-media/news-archive/norways-seafood-exports-
worth-nok-151.4-billion-in-2022/ (visited on 16/06/2023).

[3] T. Olafsen, U. Winter, Y. Olsen and J. Skjermo, Value created from productive oceans in
2050, en, Dec. 2012. [Online]. Available: https://www.sintef.no/en/latest-news/
2012/value-created-from-productive-oceans-in-2050/ (visited on 13/03/2023).

[4] H. V. Bjelland, M. Føre, P. Lader, D. Kristiansen, I. M. Holmen, A. Fredheim, E. I. Grøtli,
D. E. Fathi, F. Oppedal, I. B. Utne and I. Schjølberg, ‘Exposed Aquaculture in Norway,’
in OCEANS 2015 - MTS/IEEE Washington, Oct. 2015, pp. 1–10. DOI: 10.23919/OCEANS.
2015.7404486.

[5] M. Holmer, ‘Environmental issues of fish farming in offshore waters: Perspectives, con-
cerns and research needs,’ en, Aquaculture Environment Interactions, vol. 1, no. 1,
pp. 57–70, Aug. 2010, ISSN: 1869-215X, 1869-7534. DOI: 10.3354/aei00007. [On-
line]. Available: http://www.int-res.com/abstracts/aei/v1/n1/p57-70/ (visited
on 14/03/2023).

[6] Celebrating 50 years of modern aquaculture, en, Mar. 2023. [Online]. Available: https:
//en.seafood.no/news-and-media/news-archive/celebrating-50-years-of-
modern-aquaculture/ (visited on 13/03/2023).

[7] Aquaculture Act, en. [Online]. Available: https://www.fiskeridir.no/English/
Aquaculture/Aquaculture-Act (visited on 21/06/2023).

[8] O. Lekve, Norwegian aquaculture, en, Mar. 2012. [Online]. Available: https://www.
barentswatch.no/en/articles/norwegian-aquaculture/ (visited on 13/03/2023).

[9] Ø. Jensen, T. Dempster, E. B. Thorstad, I. Uglem and A. Fredheim, ‘Escapes of fishes from
Norwegian sea-cage aquaculture: Causes, consequences and prevention,’ en, Aquacul-
ture Environment Interactions, vol. 1, no. 1, pp. 71–83, Aug. 2010, ISSN: 1869-215X,
1869-7534. DOI: 10.3354/aei00008. [Online]. Available: https://www.int-res.com/
abstracts/aei/v1/n1/p71-83/ (visited on 16/06/2023).

69

https://reliefweb.int/report/world/fish-2030-prospects-fisheries-and-aquaculture
https://reliefweb.int/report/world/fish-2030-prospects-fisheries-and-aquaculture
https://en.seafood.no/news-and-media/news-archive/norways-seafood-exports-worth-nok-151.4-billion-in-2022/
https://en.seafood.no/news-and-media/news-archive/norways-seafood-exports-worth-nok-151.4-billion-in-2022/
https://en.seafood.no/news-and-media/news-archive/norways-seafood-exports-worth-nok-151.4-billion-in-2022/
https://www.sintef.no/en/latest-news/2012/value-created-from-productive-oceans-in-2050/
https://www.sintef.no/en/latest-news/2012/value-created-from-productive-oceans-in-2050/
https://doi.org/10.23919/OCEANS.2015.7404486
https://doi.org/10.23919/OCEANS.2015.7404486
https://doi.org/10.3354/aei00007
http://www.int-res.com/abstracts/aei/v1/n1/p57-70/
https://en.seafood.no/news-and-media/news-archive/celebrating-50-years-of-modern-aquaculture/
https://en.seafood.no/news-and-media/news-archive/celebrating-50-years-of-modern-aquaculture/
https://en.seafood.no/news-and-media/news-archive/celebrating-50-years-of-modern-aquaculture/
https://www.fiskeridir.no/English/Aquaculture/Aquaculture-Act
https://www.fiskeridir.no/English/Aquaculture/Aquaculture-Act
https://www.barentswatch.no/en/articles/norwegian-aquaculture/
https://www.barentswatch.no/en/articles/norwegian-aquaculture/
https://doi.org/10.3354/aei00008
https://www.int-res.com/abstracts/aei/v1/n1/p71-83/
https://www.int-res.com/abstracts/aei/v1/n1/p71-83/


70 Armon: Optimization of measurement setup in fish farms

[10] H. M. Føre and T. Thorvaldsen, ‘Causal analysis of escape of Atlantic salmon and rain-
bow trout from Norwegian fish farms during 2010–2018,’ en, Aquaculture, vol. 532,
p. 736 002, Feb. 2021, ISSN: 0044-8486. DOI: 10.1016/j.aquaculture.2020.736002.
[Online]. Available: https : / / www . sciencedirect . com / science / article / pii /
S0044848620315684 (visited on 16/06/2023).

[11] M. J. Costello, ‘How sea lice from salmon farms may cause wild salmonid declines
in Europe and North America and be a threat to fishes elsewhere,’ Proceedings of the
Royal Society B: Biological Sciences, vol. 276, no. 1672, pp. 3385–3394, Jul. 2009, Pub-
lisher: Royal Society. DOI: 10.1098/rspb.2009.0771. [Online]. Available: https:
/ / royalsocietypublishing . org / doi / 10 . 1098 / rspb . 2009 . 0771 (visited on
14/03/2023).

[12] L. T. Barrett, F. Oppedal, N. Robinson and T. Dempster, ‘Prevention not cure:
A review of methods to avoid sea lice infestations in salmon aquaculture,’
en, Reviews in Aquaculture, vol. 12, no. 4, pp. 2527–2543, 2020, _eprint: ht-
tps://onlinelibrary.wiley.com/doi/pdf/10.1111/raq.12456, ISSN: 1753-5131. DOI: 10.
1111/raq.12456. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1111/raq.12456 (visited on 16/06/2023).

[13] P. Klebert, Ø. Patursson, P. C. Endresen, P. Rundtop, J. Birkevold and H. W. Rasmussen,
‘Three-dimensional deformation of a large circular flexible sea cage in high currents:
Field experiment and modeling,’ en, Ocean Engineering, vol. 104, pp. 511–520, Aug.
2015, ISSN: 0029-8018. DOI: 10.1016/j.oceaneng.2015.04.045. [Online]. Avail-
able: https://www.sciencedirect.com/science/article/pii/S0029801815001262
(visited on 13/03/2023).

[14] ABB enables first remote-controlled submersible fish farm in the Arctic Ocean, en, May
2019. [Online]. Available: https://new.abb.com/news/detail/24385/abb-enables-
first-remote-controlled-submersible-fish-farm-in-the-arctic-ocean (visited
on 21/06/2023).

[15] S. J. Ohrem, E. Kelasidi and N. Bloecher, ‘Analysis of a novel autonomous underwa-
ter robot for biofouling prevention and inspection in fish farms,’ in 2020 28th Medi-
terranean Conference on Control and Automation (MED), ISSN: 2473-3504, Sep. 2020,
pp. 1002–1008. DOI: 10.1109/MED48518.2020.9183157.

[16] D. W. Fredriksson, M. R. Swift, J. D. Irish, I. Tsukrov and B. Celikkol, ‘Fish cage and moor-
ing system dynamics using physical and numerical models with field measurements,’ en,
Aquacultural Engineering, vol. 27, no. 2, pp. 117–146, Feb. 2003, ISSN: 0144-8609. DOI:
10.1016/S0144-8609(02)00043-2. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0144860902000432 (visited on 18/06/2023).

[17] P. Lader, T. Dempster, A. Fredheim and Ø. Jensen, ‘Current induced net deformations
in full-scale sea-cages for Atlantic salmon (Salmo salar),’ en, Aquacultural Engineering,
vol. 38, no. 1, pp. 52–65, Jan. 2008, ISSN: 0144-8609. DOI: 10.1016/j.aquaeng.2007.
11.001. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0144860907000957 (visited on 18/06/2023).

https://doi.org/10.1016/j.aquaculture.2020.736002
https://www.sciencedirect.com/science/article/pii/S0044848620315684
https://www.sciencedirect.com/science/article/pii/S0044848620315684
https://doi.org/10.1098/rspb.2009.0771
https://royalsocietypublishing.org/doi/10.1098/rspb.2009.0771
https://royalsocietypublishing.org/doi/10.1098/rspb.2009.0771
https://doi.org/10.1111/raq.12456
https://doi.org/10.1111/raq.12456
https://onlinelibrary.wiley.com/doi/abs/10.1111/raq.12456
https://onlinelibrary.wiley.com/doi/abs/10.1111/raq.12456
https://doi.org/10.1016/j.oceaneng.2015.04.045
https://www.sciencedirect.com/science/article/pii/S0029801815001262
https://new.abb.com/news/detail/24385/abb-enables-first-remote-controlled-submersible-fish-farm-in-the-arctic-ocean
https://new.abb.com/news/detail/24385/abb-enables-first-remote-controlled-submersible-fish-farm-in-the-arctic-ocean
https://doi.org/10.1109/MED48518.2020.9183157
https://doi.org/10.1016/S0144-8609(02)00043-2
https://www.sciencedirect.com/science/article/pii/S0144860902000432
https://www.sciencedirect.com/science/article/pii/S0144860902000432
https://doi.org/10.1016/j.aquaeng.2007.11.001
https://doi.org/10.1016/j.aquaeng.2007.11.001
https://www.sciencedirect.com/science/article/pii/S0144860907000957
https://www.sciencedirect.com/science/article/pii/S0144860907000957


Bibliography 71

[18] J. DeCew, D. W. Fredriksson, P. F. Lader, M. Chambers, W. H. Howell, M. Osienki,
B. Celikkol, K. Frank and E. Høy, ‘Field measurements of cage deformation using
acoustic sensors,’ en, Aquacultural Engineering, vol. 57, pp. 114–125, Nov. 2013, ISSN:
0144-8609. DOI: 10.1016/j.aquaeng.2013.09.006. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0144860913000903 (visited on
18/06/2023).

[19] G. Løland, Current forces on and flow through fish farms. Institutt for Marin Hydro-
dynamikk, 1991.

[20] P. C. Endresen, M. Føre, A. Fredheim, D. Kristiansen and B. Enerhaug, ‘Numerical Mod-
eling of Wake Effect on Aquaculture Nets,’ en, American Society of Mechanical Engin-
eers Digital Collection, Nov. 2013. DOI: 10.1115/OMAE2013- 11446. [Online]. Avail-
able: https://asmedigitalcollection.asme.org/OMAE/proceedings- abstract/
OMAE2013/55355/270685 (visited on 13/03/2023).

[21] H. Moe-Føre, P. Christian Endresen, K. Gunnar Aarsæther, J. Jensen, M. Føre, D. Kristi-
ansen, A. Fredheim, P. Lader and K.-J. Reite, ‘Structural Analysis of Aquaculture Nets:
Comparison and Validation of Different Numerical Modeling Approaches,’ Journal of
Offshore Mechanics and Arctic Engineering, vol. 137, no. 4, Aug. 2015, ISSN: 0892-7219.
DOI: 10.1115/1.4030255. [Online]. Available: https://doi.org/10.1115/1.4030255
(visited on 13/03/2023).

[22] K.-J. Reite, M. Føre, K. G. Aarsæther, J. Jensen, P. Rundtop, L. T. Kyllingstad, P. C. En-
dresen, D. Kristiansen, V. Johansen and A. Fredheim, ‘FHSIM — Time Domain Simu-
lation of Marine Systems,’ en, American Society of Mechanical Engineers Digital Col-
lection, Oct. 2014. DOI: 10.1115/OMAE2014- 23165. [Online]. Available: https://
asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2014/45509/
279039 (visited on 13/03/2023).

[23] B. Su, K.-J. Reite, M. Føre, K. G. Aarsæther, M. O. Alver, P. C. Endresen, D. Kristiansen,
J. Haugen, W. Caharija and A. Tsarau, ‘A Multipurpose Framework for Modelling and
Simulation of Marine Aquaculture Systems,’ en, American Society of Mechanical En-
gineers Digital Collection, Nov. 2019. DOI: 10.1115/OMAE2019-95414. [Online]. Avail-
able: https://asmedigitalcollection.asme.org/OMAE/proceedings- abstract/
OMAE2019/58837/1067839 (visited on 13/03/2023).

[24] P. C. Endresen and P. Klebert, ‘Loads and response on flexible conical and cylindrical fish
cages: A numerical and experimental study based on full-scale values,’ en, Ocean Engin-
eering, vol. 216, p. 107 672, Nov. 2020, ISSN: 0029-8018. DOI: 10.1016/j.oceaneng.
2020 . 107672. [Online]. Available: https : / / www . sciencedirect . com / science /
article/pii/S0029801820306661 (visited on 13/03/2023).

[25] B. Su, E. Kelasidi, K. Frank, J. Haugen, M. Føre and M. O. Pedersen, ‘An integrated
approach for monitoring structural deformation of aquaculture net cages,’ en, Ocean
Engineering, vol. 219, p. 108 424, Jan. 2021, ISSN: 0029-8018. DOI: 10 . 1016 / j .
oceaneng . 2020 . 108424. [Online]. Available: https : / / www . sciencedirect . com /
science/article/pii/S0029801820313317 (visited on 13/03/2023).

https://doi.org/10.1016/j.aquaeng.2013.09.006
https://www.sciencedirect.com/science/article/pii/S0144860913000903
https://www.sciencedirect.com/science/article/pii/S0144860913000903
https://doi.org/10.1115/OMAE2013-11446
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2013/55355/270685
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2013/55355/270685
https://doi.org/10.1115/1.4030255
https://doi.org/10.1115/1.4030255
https://doi.org/10.1115/OMAE2014-23165
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2014/45509/279039
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2014/45509/279039
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2014/45509/279039
https://doi.org/10.1115/OMAE2019-95414
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2019/58837/1067839
https://asmedigitalcollection.asme.org/OMAE/proceedings-abstract/OMAE2019/58837/1067839
https://doi.org/10.1016/j.oceaneng.2020.107672
https://doi.org/10.1016/j.oceaneng.2020.107672
https://www.sciencedirect.com/science/article/pii/S0029801820306661
https://www.sciencedirect.com/science/article/pii/S0029801820306661
https://doi.org/10.1016/j.oceaneng.2020.108424
https://doi.org/10.1016/j.oceaneng.2020.108424
https://www.sciencedirect.com/science/article/pii/S0029801820313317
https://www.sciencedirect.com/science/article/pii/S0029801820313317


72 Armon: Optimization of measurement setup in fish farms

[26] J. Turnbull, A. Bell, C. Adams, J. Bron and F. Huntingford, ‘Stocking density and welfare
of cage farmed Atlantic salmon: Application of a multivariate analysis,’ en, Aquacul-
ture, vol. 243, no. 1, pp. 121–132, Jan. 2005, ISSN: 0044-8486. DOI: 10.1016/j.
aquaculture.2004.09.022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0044848604005538 (visited on 17/06/2023).

[27] Z. Yang, Y. Chen and J. Corander, T-SNE Is Not Optimized to Reveal Clusters in Data,
arXiv:2110.02573 [cs, stat], Oct. 2021. DOI: 10.48550/arXiv.2110.02573. [Online].
Available: http://arxiv.org/abs/2110.02573 (visited on 18/06/2023).

[28] M. Wattenberg, F. Viégas and I. Johnson, ‘How to Use t-SNE Effectively,’ en, Distill, vol. 1,
no. 10, e2, Oct. 2016, ISSN: 2476-0757. DOI: 10.23915/distill.00002. [Online].
Available: http://distill.pub/2016/misread-tsne (visited on 18/06/2023).

[29] K. Pearson, ‘LIII. On lines and planes of closest fit to systems of points in
space,’ The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, vol. 2, no. 11, pp. 559–572, Nov. 1901, Publisher: Taylor & Francis
_eprint: https://doi.org/10.1080/14786440109462720, ISSN: 1941-5982. DOI: 10 .
1080 / 14786440109462720. [Online]. Available: https : / / doi . org / 10 . 1080 /
14786440109462720 (visited on 28/04/2023).

[30] H. Hotelling, ‘Analysis of a complex of statistical variables into principal components,’
Journal of Educational Psychology, vol. 24, pp. 417–441, 1933, Place: US Publisher:
Warwick & York, ISSN: 1939-2176. DOI: 10.1037/h0071325.

[31] I. T. Jolliffe and J. Cadima, ‘Principal component analysis: A review and recent de-
velopments,’ Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, vol. 374, no. 2065, p. 20 150 202, Apr. 2016, Pub-
lisher: Royal Society. DOI: 10.1098/rsta.2015.0202. [Online]. Available: https:
/ / royalsocietypublishing . org / doi / 10 . 1098 / rsta . 2015 . 0202 (visited on
28/04/2023).

[32] S. Wold, K. Esbensen and P. Geladi, ‘Principal component analysis,’ en, Chemometrics and
Intelligent Laboratory Systems, Proceedings of the Multivariate Statistical Workshop for
Geologists and Geochemists, vol. 2, no. 1, pp. 37–52, Aug. 1987, ISSN: 0169-7439. DOI:
10.1016/0169-7439(87)80084-9. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0169743987800849 (visited on 28/04/2023).

[33] J. Shlens, A Tutorial on Principal Component Analysis, arXiv:1404.1100 [cs, stat], Apr.
2014. DOI: 10.48550/arXiv.1404.1100. [Online]. Available: http://arxiv.org/abs/
1404.1100 (visited on 09/06/2023).

[34] H. Abdi and L. J. Williams, ‘Principal component analysis,’ en, WIREs
Computational Statistics, vol. 2, no. 4, pp. 433–459, 2010, _eprint: ht-
tps://onlinelibrary.wiley.com/doi/pdf/10.1002/wics.101, ISSN: 1939-0068. DOI:
10.1002/wics.101. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/wics.101 (visited on 28/04/2023).

https://doi.org/10.1016/j.aquaculture.2004.09.022
https://doi.org/10.1016/j.aquaculture.2004.09.022
https://www.sciencedirect.com/science/article/pii/S0044848604005538
https://www.sciencedirect.com/science/article/pii/S0044848604005538
https://doi.org/10.48550/arXiv.2110.02573
http://arxiv.org/abs/2110.02573
https://doi.org/10.23915/distill.00002
http://distill.pub/2016/misread-tsne
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1037/h0071325
https://doi.org/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202
https://doi.org/10.1016/0169-7439(87)80084-9
https://www.sciencedirect.com/science/article/pii/0169743987800849
https://www.sciencedirect.com/science/article/pii/0169743987800849
https://doi.org/10.48550/arXiv.1404.1100
http://arxiv.org/abs/1404.1100
http://arxiv.org/abs/1404.1100
https://doi.org/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101


Bibliography 73

[35] J. Osborne and A. Costello, ‘Sample size and subject to item ratio in principal compon-
ents analysis,’ Practical Assessment, Research, and Evaluation, vol. 9, no. 1, Nov. 2019,
ISSN: 1531-7714. DOI: https://doi.org/10.7275/ktzq-jq66. [Online]. Available:
https://scholarworks.umass.edu/pare/vol9/iss1/11.

[36] S. S. Shaukat, T. A. Rao and M. A. Khan, ‘Impact of sample size on principal component
analysis ordination of an environmental data set: Effects on eigenstructure,’ en, Ekológia
(Bratislava), vol. 35, no. 2, pp. 173–190, Jun. 2016. DOI: 10.1515/eko-2016-0014.
[Online]. Available: https://sciendo.com/article/10.1515/eko-2016-0014 (visited
on 28/05/2023).

[37] M. Björklund, ‘Be careful with your principal components,’ Evolution, vol. 73, no. 10,
pp. 2151–2158, Oct. 2019, ISSN: 0014-3820. DOI: 10.1111/evo.13835. [Online]. Avail-
able: https://doi.org/10.1111/evo.13835 (visited on 29/05/2023).

[38] P. Podder, M. M. Hasan, M. R. Islam and M. Sayeed, Design and Implementation of But-
terworth, Chebyshev-I and Elliptic Filter for Speech Signal Analysis, en, Feb. 2020. DOI:
10.5120/17195-7390. [Online]. Available: https://arxiv.org/abs/2002.03130v2
(visited on 19/06/2023).

[39] S. Butterworth et al., ‘On the theory of filter amplifiers,’ Wireless Engineer, vol. 7, no. 6,
pp. 536–541, 1930. [Online]. Available: https://www.changpuak.ch/electronics/
downloads/On_the_Theory_of_Filter_Amplifiers.pdf.

[40] S. K. Jagtap and M. D. Uplane, ‘The impact of digital filtering to ECG analysis: Butter-
worth filter application,’ in 2012 International Conference on Communication, Informa-
tion & Computing Technology (ICCICT), Oct. 2012, pp. 1–6. DOI: 10.1109/ICCICT.2012.
6398145.

[41] R. G. T. Mello, L. F. Oliveira and J. Nadal, ‘Digital Butterworth filter for subtracting noise
from low magnitude surface electromyogram,’ en, Computer Methods and Programs in
Biomedicine, vol. 87, no. 1, pp. 28–35, Jul. 2007, ISSN: 0169-2607. DOI: 10.1016/j.
cmpb.2007.04.004. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0169260707000983 (visited on 19/06/2023).

[42] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms, and Ap-
plications, Fifth Edition. Dian zi gong ye chu ban she, 2022, ISBN: 978-7-121-43981-0.
[Online]. Available: https://books.google.no/books?id=9eN6zwEACAAJ.

[43] S. Pond and G. Pickard, Introductory Dynamical Oceanography (Pergamon international
library of science, technology, engineering, and social studies). Elsevier Science, 1983,
ISBN: 978-0-7506-2496-1. [Online]. Available: https://books.google.no/books?id=
5pQf8dBYxIUC.

[44] M. Tomczak and J. S. Godfrey, ‘Regional Oceanography: An Introduction,’ 1994.

[45] R. H. Stewart, Introduction to physical oceanography, en. Robert H. Stewart, 2008, Ac-
cepted: 2017-04-10T21:04:33Z Artwork Medium: Electronic Interview Medium: Elec-
tronic. [Online]. Available: https://oaktrust.library.tamu.edu/handle/1969.1/
160216 (visited on 20/06/2023).

https://doi.org/https://doi.org/10.7275/ktzq-jq66
https://scholarworks.umass.edu/pare/vol9/iss1/11
https://doi.org/10.1515/eko-2016-0014
https://sciendo.com/article/10.1515/eko-2016-0014
https://doi.org/10.1111/evo.13835
https://doi.org/10.1111/evo.13835
https://doi.org/10.5120/17195-7390
https://arxiv.org/abs/2002.03130v2
https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf
https://www.changpuak.ch/electronics/downloads/On_the_Theory_of_Filter_Amplifiers.pdf
https://doi.org/10.1109/ICCICT.2012.6398145
https://doi.org/10.1109/ICCICT.2012.6398145
https://doi.org/10.1016/j.cmpb.2007.04.004
https://doi.org/10.1016/j.cmpb.2007.04.004
https://www.sciencedirect.com/science/article/pii/S0169260707000983
https://www.sciencedirect.com/science/article/pii/S0169260707000983
https://books.google.no/books?id=9eN6zwEACAAJ
https://books.google.no/books?id=5pQf8dBYxIUC
https://books.google.no/books?id=5pQf8dBYxIUC
https://oaktrust.library.tamu.edu/handle/1969.1/160216
https://oaktrust.library.tamu.edu/handle/1969.1/160216


74 Armon: Optimization of measurement setup in fish farms

[46] K. A. Orvik, ‘Long-Term Moored Current and Temperature Measurements of the At-
lantic Inflow Into the Nordic Seas in the Norwegian Atlantic Current; 1995–2020,’
en, Geophysical Research Letters, vol. 49, no. 3, e2021GL096427, 2022, _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021GL096427, ISSN: 1944-8007.
DOI: 10.1029/2021GL096427. [Online]. Available: https://onlinelibrary.wiley.
com/doi/abs/10.1029/2021GL096427 (visited on 20/06/2023).

[47] B. Kinsman, Wind Waves: Their Generation and Propagation on the Ocean Surface, en.
Courier Corporation, Jan. 1984, ISBN: 978-0-486-64652-7.

[48] L. H. Holthuijsen, Waves in Oceanic and Coastal Waters, en. Cambridge University Press,
Feb. 2010, Google-Books-ID: 7tFUL2blHdoC, ISBN: 978-1-139-46252-5.

[49] H. Wang, G. Li, Z. Ma and X. Li, ‘Image recognition of plant diseases based on prin-
cipal component analysis and neural networks,’ in 2012 8th International Conference on
Natural Computation, ISSN: 2157-9563, May 2012, pp. 246–251. DOI: 10.1109/ICNC.
2012.6234701.

[50] F. Song, Z. Guo and D. Mei, ‘Feature Selection Using Principal Component Analysis,’ in
Engineering Design and Manufacturing Informatization 2010 International Conference on
System Science, vol. 1, Nov. 2010, pp. 27–30. DOI: 10.1109/ICSEM.2010.14.

[51] R. Dunia, S. J. Qin, T. F. Edgar and T. J. McAvoy, ‘Identification of faulty sensors using
principal component analysis,’ en, AIChE Journal, vol. 42, no. 10, pp. 2797–2812, 1996,
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690421011, ISSN: 1547-
5905. DOI: 10.1002/aic.690421011. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/aic.690421011 (visited on 01/06/2023).

[52] L. v. d. Maaten and G. Hinton, ‘Visualizing Data using t-SNE,’ Journal of Machine Learn-
ing Research, vol. 9, no. 86, pp. 2579–2605, 2008, ISSN: 1533-7928. [Online]. Available:
http://jmlr.org/papers/v9/vandermaaten08a.html (visited on 01/06/2023).

[53] L. McInnes, J. Healy and J. Melville, UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction, arXiv:1802.03426 [cs, stat], Sep. 2020. DOI: 10.48550/
arXiv.1802.03426. [Online]. Available: http://arxiv.org/abs/1802.03426 (visited
on 01/06/2023).

[54] T. Sainburg, L. McInnes and T. Q. Gentner, Parametric UMAP embeddings for represent-
ation and semi-supervised learning, arXiv:2009.12981 [cs, q-bio, stat], Aug. 2021. DOI:
10.48550/arXiv.2009.12981. [Online]. Available: http://arxiv.org/abs/2009.
12981 (visited on 01/06/2023).

[55] G. E. Hinton and R. R. Salakhutdinov, ‘Reducing the dimensionality of data with neural
networks,’ eng, Science (New York, N.Y.), vol. 313, no. 5786, pp. 504–507, Jul. 2006,
ISSN: 1095-9203. DOI: 10.1126/science.1127647.

[56] M. Sifuzzaman, M. R. Islam and M. Z. Ali, ‘Application of Wavelet Transform and its Ad-
vantages Compared to Fourier Transform,’ en, 2009, Accepted: 2016-12-22T17:15:58Z
Publisher: Vidyasagar University , Midnapore , West-Bengal , India, ISSN: 0972-8791
(Print). [Online]. Available: http://inet.vidyasagar.ac.in:8080/jspui/handle/
123456789/779 (visited on 01/06/2023).

https://doi.org/10.1029/2021GL096427
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021GL096427
https://onlinelibrary.wiley.com/doi/abs/10.1029/2021GL096427
https://doi.org/10.1109/ICNC.2012.6234701
https://doi.org/10.1109/ICNC.2012.6234701
https://doi.org/10.1109/ICSEM.2010.14
https://doi.org/10.1002/aic.690421011
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.690421011
https://onlinelibrary.wiley.com/doi/abs/10.1002/aic.690421011
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
http://arxiv.org/abs/1802.03426
https://doi.org/10.48550/arXiv.2009.12981
http://arxiv.org/abs/2009.12981
http://arxiv.org/abs/2009.12981
https://doi.org/10.1126/science.1127647
http://inet.vidyasagar.ac.in:8080/jspui/handle/123456789/779
http://inet.vidyasagar.ac.in:8080/jspui/handle/123456789/779


Bibliography 75

[57] P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Ap-
plications in Science, Engineering, Medicine and Finance, Second Edition, en. CRC Press,
Jan. 2017, Google-Books-ID: wBoNDgAAQBAJ, ISBN: 978-1-4822-5133-3.

[58] A. N. Akansu and R. A. Haddad, ‘Chapter 6 - Wavelet Transform,’ en, in Multiresolution
Signal Decomposition (Second Edition), A. N. Akansu and R. A. Haddad, Eds., San Diego:
Academic Press, Jan. 2001, pp. 391–442, ISBN: 978-0-12-047141-6. DOI: 10.1016/
B978-012047141-6/50006-9. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780120471416500069 (visited on 20/06/2023).

https://doi.org/10.1016/B978-012047141-6/50006-9
https://doi.org/10.1016/B978-012047141-6/50006-9
https://www.sciencedirect.com/science/article/pii/B9780120471416500069
https://www.sciencedirect.com/science/article/pii/B9780120471416500069



	Abstract
	Acknowledgements
	Table of contents
	Figures
	Tables
	Introduction
	Motivation
	Scope of work
	Main contributions
	Structure of the report

	Background
	Norwegian salmon farming and the shift to more exposed farming sites
	Related works in structural monitoring
	Structural monitoring methods
	Wave induced deformations
	Structural loads and tensions
	Net cage deformations
	Environmental conditions

	Dimensionality reduction and other approaches to optimizing sensor setups
	Principal Component Analysis
	Mathematical workings of PCA
	Using PCA to reconstruct data
	Importance of dataset size

	Filtering
	Description of Butterworth filters
	Mathematical workings and Python implementation of Butterworth filters


	Methods and Experimental Setup
	Sensor setup and data collection
	Buholmen fish farm
	Accelerometers
	Load shackles
	Depth sensors
	Weather buoy
	Sensor overview

	Selecting time periods (cases) for analysis
	Preprocessing
	Accelerometer data
	Load shackle data
	Depth sensor data
	Summary of preprocessing

	Principal Component Analysis
	Principal Component Analysis on individual datasets
	Aggregated analysis of depth sensor data
	Butterworth filtering and PCA
	Rolling window averages and PCA
	Combining datasets
	Reconstructing dataset from a subset of sensors


	Results
	Principal Component Analysis
	Accelerometers
	Load shackles
	Depth sensors
	Aggregated analysis of depth sensors

	Butterworth filter
	Rolling averages
	Combined data analysis
	Accelerometers and load shackles
	All sensors

	Reconstruction of depth sensor data

	Discussion
	Summary of findings
	Interpretation of results
	Depth sensors
	Accelerometers and load shackles
	Effectiveness of Butterworth filter and rolling window averages
	Combination of sensor data
	Reconstruction of depth sensor data

	Implications of findings
	Limitations
	Alternative approaches
	Future research

	Conclusion
	Bibliography

