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Abstract— Ultrasound image quality is of utmost impor-
tance for a clinician to reach a correct diagnosis. Convention-
ally, image quality is evaluated using metrics to determine the
contrast and resolution. These metrics requires localization of
specific regions and targets in the image such as a region of
interest (ROI), a background region, and or, a point scatterer.
Such objects can all be difficult to identify in in-vivo images,
especially for automatic evaluation of image quality in large
amounts of data. Using a matrix array probe, we have recorded
a Very Large cardiac Channel data Database (VLCD) to
evaluate coherence as an in-vivo image quality metric. The
VLCD consists of 33 280 individual image frames from 538
recordings of 106 patients. We also introduce a Global Image
Coherence (GIC), an in-vivo image quality metric that does
not require any identified ROI since it is defined as an average
coherence value calculated from all the data pixels used to form
the image, below a pre-selected range. The GIC is shown to be
a quantitative metric for in-vivo image quality when applied to
the VLCD. We demonstrate, on a subset of the dataset, that
the GIC correlates well with the conventional metrics contrast
ratio (CR) and the generalized contrast-to-noise ratio (gCNR)
with R=0.74 (p<0.005) and R=0.62 (p<0.005) respectively.
There exists multiple methods to estimate the coherence of
the received signal across the ultrasound array. We further
show that all coherence measures investigated in this study are
highly correlated (R>0.9, p<0.001) when applied to the VLCD.
Thus, even though there are differences in the implementation
of coherence measures, all quantify the similarity of the signal
across the array and can be averaged into a GIC to evaluate
image quality automatically and quantitatively.

Index Terms— Software beamforming, image quality, adap-
tive beamforming, coherence, matrix array, channel data.
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I. INTRODUCTION

VARYING image quality in ultrasound cardiac imag-
ing results in an undesirable lottery for the clinician

performing the scan. Image quality varies from patient
to patient, from view to view and between clinicians.
Slight adaptations to the probe’s position in relation to
the ribs can even change image quality from frame to
frame. Despite its variability, image quality is of utmost
importance for clinicians to reach the correct diagnosis [1].
In echocardiography image quality is degraded from the
common sources of noise in ultrasound imaging; phase-
aberration, reverberation clutter, off-axis scattering and
thermal noise. A quantitative metric of ultrasound image
quality could assist the clinician performing the scan,
and allow an automatic selection of the recording with
the highest image quality, possibly improving diagnostics.
Another important aspect is that such a metric may give
an indication on how reliable the measurements made in
a certain image are. This is useful both while recording
and measuring, and when reviewing a list of measurements
made on a recording. Lastly, a quantitative metric can be
used to optimize imaging parameters and beamforming
methods.

The flexibility of software beamforming has introduced
a myriad of adaptive beamforming methods presented in
the literature [2]–[7] . Adaptive beamforming methods aim
at improving image quality by adapting the processing
based on the received signals. A second aspect of software
beamforming is the ability to easily collect raw channel
data, allowing processing and further analysis of data
offline. This results in an unprecedented flexibility for
researchers to prototype new beamforming methods on
relevant clinical in-vivo data. We have recorded in-vivo
cardiac channel data on a GE Vingmed Ultrasound Vivid
E95 ultrasound system using the 4Vc-D matrix array
probe (GE Vingmed Ultrasound AS, Horten, Norway) in
a Very Large Cardiac channel data Database (VLCD)
consisting of 33 280 individual image frames from 538
recordings of 106 patients.

One category of adaptive beamformers are often de-
noted coherence beamformers, since they in various ways
utilize the coherence, or similarity, of the received sig-
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nals. There are several ways to measure the coherence,
presented in the literature. We will briefly review some
of the most used coherence measures in Section II. Some
of these calculate spatial coherence as the similarity of
the delayed signals across array elements as a function of
element separation or lag. One of these spatial coherence
measures, the Lag-One Coherence (LOC), was suggested
as a metric for ultrasound image quality in [8]. Long et.
al. argue that LOC and coherence in general is sensitive
to all the major forms of ultrasonic noise. Coherence is
reduced by focusing errors, phase aberrations and off-axis
scattering since the delayed signals across the aperture in
these cases are decorrelated [9] [10]. Thermal noise lowers
the coherence since uncorrelated noise across the delayed
array element signals introduce a delta function in the
spatial coherence that scales with amplitude based on
the relative noise power [11]. Additionally, reverberation
clutter has been shown to have a similar effect on the
coherence as thermal noise [12].

Conventionally, image quality of ultrasound images is
evaluated by measuring contrast and resolution. The most
widely used contrast metrics are the contrast ratio (CR)
[13], contrast-to-noise ratio (CNR) [14] and more recently
the generalized contrast-to-noise ratio (gCNR) [15]. Even
though both CR and CNR are shown to correlate strongly
with assessments by human observers, they can both
be manipulated by alterations to the dynamic range of
images [16]. While the gCNR is immune to dynamic range
alterations [15], all three of these contrast metrics have a
major drawback for in-vivo usability, namely the need
to identify two regions; a region-of-interest (ROI) usually
tissue, against a background typically consisting of noise.
Such regions can be hard to identify in in-vivo images and
often require manual interaction. The LOC can be used
to measure in-vivo image quality, since it is a single ROI
measurement. However, as described in [8] an ROI needs
to be identified.

We will further elaborate on the results from [8], and in-
troduce and demonstrate a metric we denote Global Image
Coherence (GIC). GIC does not require any identified or
segmented ROI since it is defined as an average coherence
value calculated from all the data pixels used to form the
image, below a pre-selected range. We will also study the
similarity between various available coherence measures.
More formally, the vast amount of recorded channel data
in the VLCD allows us to empirically test the following
hypotheses:
i) published coherence measures are strongly correlated.
ii) Global Image Coherence (GIC) can be used as a

quantitative metric for in-vivo image quality.
The current article also builds upon our recent study

[17] where we used a variant of the GIC to estimate
image quality improvements resulting from an aberration
correction algorithm. This was a clinical study where four
clinicians evaluated cardiac cineloops with and without
aberration correction in a blinded and left-right random-
ized side-by-side setup. However, in that study GIC was

used as a metric on the same channel data, with aberration
correction processing as the only difference between the
images. In this manuscript we aim to use GIC as a
general evaluation of image quality comparing images from
different recordings, different patients, and different views.
This article is organized as follows. Section II briefly

review some of the most used coherence measures intro-
duced in the literature, which we further investigate and
compare. Section III describes the VLCD, and the details
of the implemented beamforming, automated cardiac view
classification, and statistical analysis used in this article.
Here, we also define the Global Image Coherence math-
ematically. Section IV presents the results of the various
coherence measures applied to the entire database, as
well as using GIC to evaluate image quality. Results are
discussed in Section V with concluding remarks in Section
VI.

II. BACKGROUND AND THEORY

Let us assume a 2D matrix array of M elements in the
azimuth direction (along the x-axis) and N elements in
the elevation direction (along the y-axis) in a Cartesian
coordinate system. In order to acquire 2D images, in the
xz-plane, we transmit focused beams steered in different
directions in this plane. A received channel signal on
element m in azimuth, and n in elevation, with the
appropriate propagation time delay applied for a specific
pixel (x, z), is here defined as

smn(x, z) ≡ smn. (1)

The following equations, in sub-section II A to F describe
the pixel value in the image b for a given beamforming
method. A 2D image is acquired specifying the pixels in
the 2D xz plane, however it can be extended to calculate
values for a full 3D volume in xyz.
In this article, we focus on 2D sector scan images

acquired by a cardiac 2D matrix array transducer. Since
these are sector scan images we define the pixels in polar
coordinates using an angle θ and a range depth r.

A. Delay-and-sum (DAS)
The conventional DAS implementation is the coherent

combination of the signals received by all elements, yield-
ing

bDAS =

M∑
m=1

N∑
n=1

wmnsmn, (2)

where wmn is the receive apodization for element mn, a
static term often determined from the F-number and pixel
depth r.

B. Coherence Factor (CF)
The CF was first introduced by Mallart and Fink in

1994 [9], as the ratio between the coherent and incoherent
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energy across the aperture:

CF =

∣∣∣∣ M∑
m=1

N∑
n=1

smn

∣∣∣∣2
MN

M∑
m=1

N∑
n=1

|smn|2
. (3)

The CF has been used as an adaptive weight to increase
image quality [2] as;

bCF = CF bDAS. (4)

C. Phase Coherence Factor (PCF)
The PCF was introduced by Camacho et al. in 2009 [3]

as
PCF = max

{
0, 1− γ

σ0
p

}
, (5)

where γ is a parameter to adjust the sensitivity of PCF to
out-of-focus signals, σ0 = π/

√
3 is the nominal standard

deviation of a uniform distribution between −π and π,
and p is given by

p = min
{
σ (ϕϕϕ) , σ

(
ϕϕϕA

)}
, (6)

where ϕϕϕ = [ϕ1,1 ϕ1,2 . . . ϕM,N ] is the instantaneous phase
across the 2D aperture, and σ(ϕϕϕ) is its standard de-
viation. We use γ = 1 in this study. To avoid phase
wrapping discontinuity a set of auxiliary phases ϕϕϕA =
[ϕA

1,1 ϕA
1,2 . . . ϕ

A
M,N ] is computed as

ϕA
mn =

{
ϕmn + π if ϕmn < 0,

ϕmn − π otherwise.
(7)

The beamformed image is computed using PCF as an
adaptive weight

bPCF = PCF bDAS. (8)

D. Circular Coherence Factor (CCF)
Comacho et al. published in 2011 a slight modification

of the PCF, namely the Circular Coherence Factor (CCF)
[18]. The CCF is defined as the square root of the variance
of the instantaneous phase across the aperture ϕϕϕ,

CCF = 1−
√

var(cosϕϕϕ) + var(sinϕϕϕ). (9)

The CCF is described to ”[…] fall off faster than PCF,
representing a stricter focusing quality measurement” [18].
The CCF can also be used as an adaptive weight to the
beamformed image so that

bCCF = CCF bDAS. (10)

E. Short Lag Spatial Coherence (SLSC)
The short lag spatial coherence (SLSC) algorithm was

introduced by Lediju Bell et al. in [4]. Even though SLSC
can be calculated for a 2D matrix array [19], we will
simplify our implementation and collapse the elevation
dimension of the array by summing the N elements in
elevation after the propagation delay have been applied.

The spatial correlation for a 1D array can be calculated
as

R̂(l) =
1

M − l

M−l∑
m=1

∑r2
r=r1

sm(r)sm+l(r)√∑r2
r=r1

s2m(r)s2m+l(r)
, (11)

where s is the delayed signal, r is the depth sample index,
l is the distance, or lag, in number of elements between
two points on the aperture. The sum over r results in a
correlation over a given kernel size, r2 − r1 of pixels. The
short lag spatial coherence, is calculated as the sum over
the first Q lags,

bSLSC =

Q∑
l=1

R̂(l). (12)

Thus, notice that bSLSC is an image of the coherence
and not the backscattered signal amplitude as with DAS.
The SLSC is a visualization of the spatial coherence
of backscattered ultrasound waves, building upon the
theoretical prediction of the van Cittert-Zernike (VCZ)
theorem. The implications of the VCZ theorem for pulse-
echo ultrasonic imaging is discussed in [9], [20]. In this
study, we used Q = 9 and a kernel size of λ for SLSC.

F. Lag One Coherence (LOC)
Assuming the simplified implementation where we col-

lapse the elevation dimension of the 2D matrix array, the
Lag One Coherence (LOC) [8] can be calculated using
the same expression for the spacial coherence as SLSC in
equation (11), but only evaluated at lag l = 1.

G. Generalized Coherence Factor (GCF)
Again assuming the simplified implementation where we

collapse the elevation dimension of the 2D matrix array,
the generalized coherence factor is defined as [2]

GCF =

∑
n<M0

|Sn|2

M
2 −1∑

n=−M
2

|Sn|2
, (13)

where S is the M -point Fourier spectra over the aperture
of the delayed channel data,

Sn =

M−1∑
m=0

sme−j2π(m−M/2)d n
Md , (14)

where n ∈ [−M
2 , M

2 −1] is the spatial frequency index
where M is assumed to be even, d is the pitch of the
array, and M0 is an arbitrary constant within [0, M

2 −1]
that specifies the low spatial frequency region, thus going
from −M0 to M0. Note that if M0 = 0 the GCF simplifies
to the CF. In this study we used M0 = 4. We collapsed the
elevation dimension of the 2D matrix array to avoid a 2D
Fourier spectra of the 2D aperture data and thus having
to introduce a significantly changed implementation of the
GCF. The beamformed DAS image can then be multiplied
with GCF

bGCF = GCF bDAS. (15)
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III. MATERIALS AND METHODS

A. The Very Large Cardiac Channel Data Database
(VLCD)

The Very Large cardiac Channel data Database (VLCD)
database was recorded at St. Olavs hospital, Trondheim
University Hospital (Trondheim, Norway) in 2018 and
2019. The study was approved by the Regional Committee
for Medical & Health Research Ethics in Central Norway.
All patients provided written informed consent. All data
were recorded by two experienced echocardiographers.

The data were recorded with a GE Vingmed Ultrasound
Vivid E95 ultrasound system and the 4Vc-D matrix array
probe. The scanner was set up with the native Cardiac_E
application and a frequency setting of 1.7/3.4MHz for
second-harmonic imaging. And thus, the reconstructed im-
ages in this study are from second harmonic data. The sys-
tem features ACE (Adaptive Contrast Enhancement) and
HD (High Definition) were turned off. The 4Vc-D matrix
array probe has an aperture of size 21.5mm × 15.6mm
mapped to 10 × 19 subaperture (SAP) channels (each
channel consists of several pre-beamformed elements), in
the azimuth and elevation directions respectively.

The Vivid E95 has a software beamforming architecture
and a special feature on the system, provided to the
authors of this article, which allows recording of channel
data. These are raw in-phase quadrature (IQ) sampled
ultrasound data from each individual SAP prior to general
beamforming and image processing. At least one cineloop
containing one heart cycle was recorded from the five
standard views: parasternal long axis (PLAX), parasternal
short axis (PSAX), apical four chamber (A4C), apical
two chamber (A2C), and apical long axis (ALAX). Some
patients have several recordings of the same cardiac view.
For some patients some cardiac views were not recorded
due to technical difficulties. A total of 535 channel data
recordings were collected from 106 patients containing
33280 individual image frames. On average, there are 64
frames per recording with a frame rate of 40 frames per
second (FPS). A typical size of the channel data file is
between 2 to 5GB and the total approximate size of the
database is 1.5TB.

B. Global Image Coherence
A single value of the coherence per image frame, that

we denote the Global Image Coherence (GIC) can be
calculated from any of the coherence measures described
in Section II. Every coherence measure results in one
coherence value for every pixel in the image. The GIC is
calculated by averaging the pixel coherence values below
a pre-defined range R1 until the end depth of the image
R2. Mathematically, for the CF but valid for all coherence
measures, this can be described as

GICCF =
1

Θ(R2 −R1)

Θ∑
θ=1

R2∑
r=R1

CF(θ, r), (16)

where CF is calculated as in (3), Θ is the number of
reconstructed lines in azimuth and [R1, R2] is set to [R1 =

1/3·Rmax, R2 = Rmax] indicated by the red ROI in Fig. 1a
and Fig. 1c. Even though an advantage of the GIC is that
no manual or segmented ROI is needed, we decided to
avoid the region close to the probe to avoid dependency
of expanding aperture in the receive apodization when
calculating CF, as well as avoiding the top region in the
cardiac images which is often quite noisy with potential
rib interference and reverberations.

-50 0 50

x[mm]

0

50

100

z
[m

m
]

GIC*100 = 3.4

0

0.02

0.04

0.06

0.08

0.1

(a) CF image (b) B-mode

-50 0 50

x[mm]

0

20

40

60

80

100

120

140

z
[m

m
]

GIC*100 = 1.3

0

0.02

0.04

0.06

0.08

0.1

(c) CF image (d) B-mode

Fig. 1: The coherence calculated as CF for a frame with
high image quality in (a) and lower image quality in (c)
with the corresponding b-mode images in (b) and (d)
respectively. The red ROI in (a) and (c) indicates the
regions used to compute the GIC, selected below a pre-
defined range R1 until the end depth of the image R2. The
GIC is indicated in the title of the image in (a) and (c),
notice that the GIC is higher for the image in (a) than in
(c).

The coherence calculated as CF is illustrated for a
frame with high image quality in Fig. 1a and lower image
quality in Fig. 1c with the corresponding b-mode images
in Figs. 1b and 1d respectively.

In all the results presented in this paper, the GIC is
scaled with 100, as indicated on the applicable axis, for
better readability.

C. Conventional Image Quality Contrast Metrics
1) Contrast Ratio (CR): One of the most used measures

of contrast in ultrasound imaging is the contrast ratio
(CR) [21],

CR =
µROI
µB

(17)

where µROI = E
{
|bROI|2

}
, µB = E

{
|bB|2

}
, are, respec-

tively, the mean signal power inside a region of interest
(ROI) and a background region (B), where b denotes the
summed signal from (2). The contrast ratio can take any
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positive real value, and CR→ ∞ as µB → 0. However, it
is often expressed in decibels as,

CR[dB] = 10 log10 CR. (18)
2) Generalized Contrast-to-noise-ratio (gCNR): The gCNR

was introduced in [15], [22] as a robust and quantitative
contrast metric and is calculated using the probability
density functions (PDF) of a region of interest (ROI)
and a background region (B), for which the contrast, or
detectability, is measured, as

gCNR = 1−
∫ ∞

−∞
min[pROI(x), pB(x)]dx. (19)

This estimates the area of the overlap between the two
PDF curves. Two regions with pdfs resulting in a large
overlap will have smaller gCNR and detectability com-
pared to two regions with less overlap. This gives a fair and
robust comparison between images and was specifically
introduced to address the problem of dynamic range
alterations [18] in some modern adaptive beamformers but
is also valid on conventional DAS images as it is used here.

D. Validating GIC using Conventional Contrast Metrics
To validate the GIC we compare and correlate it to

the conventional contrast image quality metrics CR and
gCNR. However, to estimate the CR and gCNR we need
to manually segment an ROI and a background region B.
We therefore created a subset of the VLCD containing
20 images of the A4C view. The datasets were selected
randomly while making sure we spanned low to high image
quality. This was done by selecting the datasets classified
as the A4C view, sorting them with GIC ranging from
low to high and then uniformly draw 20 datasets from the
sorted list of datasets.

The manual segmentation of the ROI and background
is done as indicated by high, and one low image quality
case in Fig. 2, We chose to segment the major part of
the interventricular septum, the heart wall, as the ROI
indicated by the blue mask, and compare it with the major
part of the left ventricle segmented as the background
B indicated by the red mask. The validation is done
by correlating the resulting GIC value with the resulting
gCNR and CR value from each frame.

E. Data Processing
The beamforming was performed in MATLAB (The

Mathworks, Inc., Natick, MA, USA) using the gener-
alized beamformer in the UltraSound ToolBox (USTB,
https://www.USTB.no) [23] with retrospective transmit
beamforming and a hybrid transmit delay model as
described in [24]. To limit the computation time, the
beamforming performed for the estimation of the coher-
ence measures used a sector scan of four times the number
of transmit directions in the azimuth direction (4 multiple
line acquisitions (MLAs)) and 256 depth pixels. For the
images displayed in this article, we used 6 MLAs per
transmit and 512 depth pixels for a more visually pleasing
image.

(a) High quality image (b) Low quality image

Fig. 2: Two of the manually segmented images used to
estimate the conventional contrast metrics CR and gCNR
to compare agains the results of the GIC. The blue mask
is the segmentation of the ROI, the major part of the
heart wall, while the red regions, the background B, is
the major part of the left ventricle.

F. View classification
In order to classify cardiac views, we used the machine

learning based view classifier developed by Østvik et
al. [25]. Østvik et al. trained a convolutional neural
network using a network structure detailed in [25]. The
model was trained and validated using data from 4582 cine
loops from 205 patients recorded in transthoracic echocar-
dioagraphy and classified each cine loop into one of seven
standard cardiac views A2C (apical two-chamber), A4C
(apical four-chamber), ALAX (apical long-axis), PLAX
(parasternal long-axis), PSAX (parasternal short-axis),
SC4C (subcostal four-chamber), SCVC (subcostal vena
cava inferior) as well as a non-assignable class ”unknown”.
The reported accuracy was 98.9±0.6 using cross-validation
on the training/validation data. On a separately recorded
dataset, a testset, consisting of data from 2559 cine loops
of the A4C, A2C, ALAX, PLAX, and PSAX view from 265
patients their model achieved an accuracy of 98.5±0.5. See
the discussion for details of the accuracy on our dataset.

G. Statistical Analysis
All statistical analyses were done in MATLAB. To

estimate the similarity between coherence measures, and
image quality metrics, we calculated the correlation using
conventional linear regression and estimation of Pearson’s
correlation. The statistical difference between the median
GIC value for the apical and the parasternal views was
tested using a Wilcoxon Rank Sum Test.

IV. RESULTS

The mean value of the GIC averaged over the number
of frames in one recording for every coherence measure
described in Section II is plotted in the top plot of
Fig. 3, with the same but normalized values in the
bottom plot. From the plotted values we can visually
see a high correlation between the various methods for
calculating coherence. The high correlation is confirmed
in Fig. 4, where we for every coherence measure calculate
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Fig. 3: Mean value over the number of frames for datasets for all coherence measures. The top plot shows raw values
from each method, while the bottom shown the values normalized to the same range.

the Pearsons correlation coefficient R, plotted in the lower
left triangle of the matrix, while the scatter plot with
the estimated regression line is plotted in the upper right
triangle.

From the figure we see that all coherence measures
correlate with each other with an R value higher than 0.9.
With the highest correlation, 0.995 being between the two
ways of calculating phase coherence PCF and CCF, and
the lowest correlation being between GCF and SLSC. All
the p-values are below 0.001 and thus the correlation is
statistically significant.

To visually illustrate the amount of data in the VLCD,
the mean GIC (using CF) averaged over all frames in
each recording is plotted for every dataset in Fig. 5. Two
times the standard deviation is indicated by the whiskers
in the plot, while the cardiac views, PLAX, PSAX, A4C,
A2C and ALAX is indicated in the figure legend. The
x-axis shows the patient number as included into the
study. Notice that some of the datasets have high GIC
(e.g. defined GIC*100>2) , while the greater part of the
datasets have rather low GIC (GIC*100<2).

If we sort all the recordings by cardiac view, we can
investigate the GIC per view through the box-whisker plot
in Fig. 6. The boxplots indicates the median as the red line,
the 25th and 75th percentile as the top and bottom of the
box, while the notches indicate the 95% confidence interval
of the median value and thus we can notice that the apical
views have statistically significantly higher GIC values
than the parasternal views. The statistical significance is

Fig. 4: The upper right of the matrix displays the scatter
plots between each coherence measure on all datasets,
while the left triangle indicates the resulting Pearson’s
correlation coefficient. All correlation coefficients have a
p-value < 0.001.

confirmed by a Wilcoxon Rank Sum Test with p < 0.001.
To obtain a more in-depth analysis of the GIC we

have highlighted the GIC per dataset with the cardiac
view indicated for patient 21 to patient 24 in Fig. 7a
- excluding a double recording of the A2C for Patient
21, and correcting a misclassification of the PLAX as
PSAX for patient 22. The corresponding b-mode images
displayed with 55 dB dynamic range is shown in Fig. 7b to
7q. Notice that the GIC in (a) corresponds well with the
visual interpretation of image quality since the A4C, A2C
and ALAX from patient 22 as well as the PSAX, A4C,
A2C and ALAX from patient 24 have better image quality
than the rest. The same observation is confirmed in Fig. 8
where we plot the GIC and corresponding b-mode images
from patients 85 and 86, and we can observe that patient
85 have better image quality than patient 86. A movie loop
of the b-mode images are available in the supplementary
materials. Since patient 85 did not have a recording of the
A2C, we did not display it for patient 86 either.
Fig. 9a plots the GIC against the CR given a segmenta-

tion of the ROI and bacground as described in III-D. The
plotted line is the estimated linear regression line, which in
this case illustrates high correlation between GIC and CR
with a Pearson’s correlation value of R=0.74 (p<0.005).
Notice that the subset of the dataset spans from low to
high image quality as measured in terms of GIC. Further,
the GIC compared to gCNR is plotted in Fig. 9b, with the
line indicating the linear regression results in a fairly high
Pearson’s correlation value of R=0.62 (p<0.005). Notice
that the gCNR saturates with higher image quality, this
observation is further elaborated in the discussion.
The GIC for a full recording of low image quality is

in Fig. 10, and an image of high image quality is in Fig.
11. The top pane in both plots are the b-mode with the
CF images in the middle pane from four frames indicated
in the bottom plot. The bottom is the GIC through all
64 frames. The selected frames are to highlight the parts
of the cardiac cycle containing the highest GIC. We can
observe that for an image of higher quality, the frame
reaching the highest GIC is in the diastole phase of the
cardiac cycle, where the left ventricle is at its largest due
to the high coherence values in the blood. While the lower
quality image has less variation in the GIC over the full
recording.
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Fig. 5: The mean and two times the standard deviation of the Global Image Coherence (GIC) for all the datasets in
the VLCD with view indicated by the marker in the legend. This figure is a graphical illustration of the VLCD.
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Fig. 6: Boxplot of the GIC from each cardiac view.
The red line indicates the median, the bottom and
top edge indicated the 25th and 75th percentile
while the whiskers are the highest and lowest value.
The notches in the box indicate the 95% confidence
interval of the median value. Notice that the apical
views have statistically significantly higher GIC
values than the parasternal views confirmed by a
Wilcoxon Rank Sum Test.
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(a) Global Image Coherence (GIC) displayed for patient 21 to 24 with view indicated in the legend. Notice
higher GIC for the apical views for patient 22, and all views for patient 24.

(b) Patient 21 PLAX ĜIC = 1.1 (c) Patient 22 PLAX ĜIC = 1.3 (d) Patient 23 PLAX ĜIC = 0.9 (e) Patient 24 PLAX ĜIC = 1.5

(f) Patient 21 PSAX ĜIC = 1.0 (g) Patient 22 PSAX ĜIC = 1.0 (h) Patient 23 PSAX ĜIC = 0.7 (i) Patient 24 PSAX ĜIC = 2.6

(j) Patient 21 A4C ĜIC = 1.4 (k) Patient 22 A4C ĜIC = 4.1 (l) Patient 23 A4C ĜIC = 0.9 (m) Patient 24 A4C ĜIC = 3.8

(n) Patient 21 A2C ĜIC = 1.4 (o) Patient 22 A2C ĜIC = 2.9 (p) Patient 23 A2C ĜIC = 1.0 (q) Patient 24 A2C ĜIC = 4.7

(r) Patient 21 ALAX ĜIC = 1.6 (s) Patient 22 ALAX ĜIC = 3.4 (t) Patient 23 ALAX ĜIC = 1.1 (u) Patient 24 ALAX ĜIC = 3.6

Fig. 7: Fig. (b) to (u) are the b-mode images corresponding to the GIC values plotted in (a). Here ĜIC ≡ GIC ∗ 100.
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(a) Global Image Coherence (GIC) displayed for patient
85 and 86 with view indicated in the legend. Notice
higher GIC for patient 85 compared to patient 86.

(b) Patient 85 PLAX ĜIC = 4.1 (c) Patient 85 PSAX ĜIC = 3.9 (d) Patient 85 A4C ĜIC = 2.2 (e) Patient 85 ALAX ĜIC = 2.1

(f) Patient 86 PLAX ĜIC = 1.0 (g) Patient 86 PSAX ĜIC = 1.2 (h) Patient 86 A4C ĜIC = 1.4 (i) Patient 86 ALAX ĜIC = 1.4

Fig. 8: Fig. (b) to (i) are the b-mode images corresponding to the GIC values plotted in (a). Here ĜIC ≡ GIC ∗ 100.
A .GIF movie loop of the b-mode images are available in the supplementary materials.
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(a) GIC vs. CR
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(b) GIC vs. gCNR

Fig. 9: In (a) the GIC is plotted against the estimated CR resulting in a correlation value of R=0.74 (p<0.005). The
GIC compared to gCNR is plotted in (b), results in a correlation value of R=0.62 (p<0.005). Notice that the subset
of datasets spans from low to high image quality in terms of GIC.
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V. DISCUSSION

The results in Fig. 3 and Fig. 4 illustrates that there
is a clear correlation between all the inspected coherence
measures. Coherence is impacted by local effects including
backscatter contrast, absolute scattering strength, clutter
level, focal effects, local aberration profile. These effects
might lead to local variations within a single frame
between the different coherence measures we have investi-
gated. However, when we average these quantities over an
entire image frame and then over all frames in a recording,
as we do in our evaluation of the GIC, our results indicates
that although there are differences in how the coherence
measures are implemented and their absolute values, the
information content is very similar. We can therefore
confirm our first hypothesis that published coherence
measures are strongly correlated.

The second hypothesis, that GIC can be used as a
quantitative metric for in-vivo image quality can be
visually confirmed for cardiac images when we compare
the measured value of the GIC to the b-mode images in
Fig. 7a and 8. This is in agreement with the findings
in [8] where they derived an analytic expression relating
coherence through LOC to the channel signal-to-noise
ratio. However, when we sort the GIC values by view
in Fig. 6 we see that there is a significant difference in
the GIC value between the parasternal and the apical
views, with the apical views reaching a higher GIC value.
This could be because the amount of tissue visible in the
image is different in the apical and parasternal views.
In further works one should aim at normalizing the GIC
on the amount of tissue in the images to obtain a GIC
value that can be quantitatively compared across any
cardiac view. The GIC difference between the apical and
parasternal views could also be that the parasternal views
are more prone to the ribs blocking the aperture or the
lung interfering with the image quality. However, further
analysis is needed to explain the difference in GIC between
the apical and parasternal views.

When we investigate the GIC per frame in a full
recording for a low quality recording in Fig. 10 and a high
quality recording in Fig. 11 we noticed that frames in the
diastole phase had the highest GIC for the recording with
high image quality. This is probably because in the high
quality recordings the blood speckles are visible in the b-
mode image. Since blood is coherent it is, together with
tissue, contributing to the higher GIC. While in the lower
quality recording, the blood speckles are not visible in the
b-mode image and thus does not contribute to the GIC
value. We can also observe in Fig. 5 that higher quality
images (higher GIC) seems to have a higher variance of
GIC over frames in a recording. This is most likely since
high quality recordings have blood contributing to the
GIC value, and the amount of blood in the image varies

through the cardiac cycle.
The classification accuracy of the view classificator

on the test set in [25] was 98.5 ± 0.5%. Our dataset
consists of the same cardiac views as in their test set, also
recorded on clinical systems from the same vendor GE
Vingmed Ultrasound. We therefore assume our dataset
to be classified with a similar accuracy even though we
have not manually gone through all our 538 datasets. As
shown in 5 there was only one dataset resulting in the
unknown category (one dataset for patient 10). We can
also notice that this dataset was of low quality as indicated
by the low GIC value. From 5 we can also verify that
almost all patients had all 5 cardiac views as according
to the protocol. Some patients, for example patient two,
have multiple recordings of some of the views. While some
patients do not have all views, for example patient four
lack the ALAX view. The missing views are most likely
due to technical difficulties while storing the raw channel
data. One misclassification was observed for patient 22
where the PLAX was incorrectly classified as PSAX. This
was corrected from Fig. 5 to Fig. 7a. However, we can
once again notice from the GIC value and the images in
Fig.7c and 7g that the misclassification is most likely due
to the low image quality.
Further confirming our second hypothesis, the vali-

dation of the GIC against the conventional contrast
metrics CR and gCNR resulting in the plots in Fig. 9
illustrate that we have a high correlation against the
conventional contrast metrics. However, there is a higher
correlation with CR (R=0.74, p<0.005) than with gCNR
(R=0.62,p<0.005). An explanation for this could be that
from Fig. 9b, we can notice that the gCNR saturates
for images with higher image quality. This is probably
explained by the fact that gCNR estimates image quality
in terms of detectability. The ROI, in our case the
interventricular septum, is easily detected from the back-
ground, the left ventricle, when the image quality reaches
a certain level - and thus the ROI and the bacground well
separated also at medium image quality. Having an image
of higher image quality does not necessarily increase the
separability. Based on this it can be debated how well the
gCNR is suited as an quantitative image quality metric
for different in-vivo cardiac images, and thus how relevant
separability between two ROIs are as an in-vivo metric.
The gCNR was first and foremost introduced to evaluate
advanced and non-linear beamforming methods comparing
beamforming methods applied to the same data. Here we
are using it to compare quality across different datasets.
This adds to the discussion that quantitatively evaluating
image quality in in-vivo ultrasound images is hard, and
that we need a collection of metrics to do fair and
correct evaluations. We believe that the GIC is a valuable
contribution to these image quality metrics.
A more relevant validation of the GIC would be a clini-

cal validation with e.g. clinicians ranking images in terms
of image quality and estimating how well this corresponds
to the GIC value. Then one could also assess if there are
quantitative bounds on image quality, for example if the
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Fig. 10: The top pane are the b-mode with the coherence images in the middle pane from four frames indicated in the
bottom plot. The bottom is the GIC through all 64 frames of a lower quality image. The selected frames illustrate
frames with lower and higher GIC.

Fig. 11: The top pane are the b-mode with the coherence images in the middle pane from four frames indicated in the
bottom plot. The bottom is the GIC through all 64 frames of a higher quality image. The selected frames illustrate
frames with lower and higher GIC.

GIC quantitatively can support classifications into low-,
medium- and high image quality. Such a study should be
performed. However, we have recently published a relevant
study in [17] where we used a variant of the GIC to
estimate the image quality improvements resulting from
an aberration correction algorithm. This was a clinical

study where four clinicians evaluated cardiac cineloops
with and without aberration correction blinded, left-right-
randomized and side-by-side. The clinicians’ task was to
choose which image they preferred and the aberration
corrected image was preferred in 97% of the cases of the
116 recorded cardiac cineloops. This matched well with
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the values of the GIC which showed an increase in GIC
in all frames after aberration correction.

In this work, we have focused on cardiac ultrasound
images which may be advantageous to the GIC since they
have well defined standard scan views. This allows for
easier comparison of GIC between recordings since the
clinicians have strived to obtain the same view in all
recordings. In other clinical ultrasound applications that
does not have as standardized views the GIC will still
be valuable to e.g. optimize beamforming parameters for
specific recordings, but it might be harder to compare
recordings from different patients.

A possible clinical utility of these results is a case where
a clinician is recording several cineloops of a patient, and
one of the cineloops should be selected for further post
processing and estimation of clinical cardiac diagnostic
parameteres. Automatic selection of the cineloop with
highest GIC value may improve diagnostic accuracy, and
we hypothesise that automatically selecting the cine loop
with the highest image quality will further support auto-
matic guidance with deep learning tools [26], [27]. The GIC
could also indicate the reliability of measurements made in
a certain image. This is useful both while recording and do-
ing the measurements, but perhaps even more important
reviewing a list of measurement made on a recording. Also,
having a quantitative measure of in-vivo image quality can
allow automatic tuning of parameters such as transmit
setups [8] and other beamforming parameters to achieve
an image of the highest image quality for every patient
scanned. Perhaps this can tilt the odds in favour of the
clinician in the lottery of cardiac image quality. Therefore,
the GIC can strengthen echocardiographic diagnostics,
and ultimately improve the care of cardiac patients.

VI. CONCLUSION

The acquisition of the Very Large Cardiac channel
data Database (VLCD) consisting of 33 280 individual
frames from 538 recordings of 106 patients allowed us to
do an empirical study of coherence as an in-vivo image
quality metric. We demonstrate that all the coherence
measures investigated in this study are highly correlated
(R>0.9, p<0.001) across the database, illustrating that
even though there are differences in the implementation
and absolute values of the coherence measures, their in-
formation content is very similar. Any coherence measure
can be averaged across the pixels in an image frame into
a Global Image Coherence (GIC) and we demonstrated
empirically that this value can be used as a quantitative
value for in-vivo image quality. We validated the GIC
against the conventional contrast metrics contrast ratio
(CR) and the generalized contrast-to-noise ratio (gCNR)
on a subset of the full dataset, and obtained a correlation
of R=0.74 (p<0.005) and R=0.62 (p<0.005) respectively
demonstrating a high correlation against conventional
contrast metrics. We used the coherence factor (CF) to
implement the GIC, however, the exact choice of coherence
measure is probably not critical.
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