
Task-driven Compression for Collision Encoding
based on Depth Images⋆

Mihir Kulkarni[0000−0003−0895−5867] and Kostas Alexis[0000−0002−9989−298X]

Norwegian University of Science and Technology (NTNU), O. S. Bragstads Plass 2D,
7034, Trondheim, Norway
mihir.kulkarni@ntnu.no

Abstract. This paper contributes a novel learning-based method for
aggressive task-driven compression of depth images and their encoding
as images tailored to collision prediction for robotic systems. A novel 3D
image processing methodology is proposed that accounts for the robot’s
size in order to appropriately “inflate” the obstacles represented in the
depth image and thus obtain the distance that can be traversed by the
robot in a collision-free manner along any given ray within the camera
frustum. Such depth-and-collision image pairs are used to train a neural
network that follows the architecture of Variational Autoencoders to
compress-and-transform the information in the original depth image to
derive a latent representation that encodes the collision information for
the given depth image. We compare our proposed task-driven encoding
method with classical task-agnostic methods and demonstrate superior
performance for the task of collision image prediction from extremely
low-dimensional latent spaces. A set of comparative studies show that
the proposed approach is capable of encoding depth image-and-collision
image tuples from complex scenes with thin obstacles at long distances
better than the classical methods at compression ratios as high as 4050:1.

Keywords: Task-driven compression · Collision prediction · Robotics.

1 Introduction

Methods for autonomous collision-free navigation of aerial robots have tradition-
ally relied on motion planning techniques that exploit a dense map representation
of the environment [3,24,27,28]. Departing from such methods, the community
has recently investigated the potential of deep learning to develop navigation
methods that act directly on exteroceptive data such as depth images instead of
reconstructed maps in order to plan the aerial vehicle’s motions with minimal
latency [12,15,16,22]. However, such methods face the challenge that exteroceptive
data and especially depth images coming from stereo vision or other sensors are
typically of very high dimensionality and the involved neural networks include
layers that partially act as lossy information compression stages. This is reflected
in the architectures of otherwise successful methods such as the works in [12,16,22]
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that exploit depth images to evaluate which among a set of candidate robot
trajectories would collide or not. In [16] the input depth image involves more
than 300, 000 pixels (640× 480 resolution) but through stages of a pre-trained
MobileNetV3 architecture it gets processed to M feature vectors of size 32 each,
where M is the number of candidate trajectories for which this method derives
collision scores. Eventually by combining the 640× 480 pixels depth image with
robot pose information, the method attempts to predict which among M tra-
jectories are safe, thus representing a process of information downsampling and
targeted inference. In other words, despite the dimensionality reduction taking
place through the neural network it is attempted that the method still ensures
collision avoidance. However, it is known that such techniques do not provide
100% success ratio especially in complex and cluttered scenes.
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Fig. 1. Aggressive compression/encoding of depth images on aggresively low-dimensional
latent spaces using conventional techniques is likely to lead to major loss of collision
information. On the contrary, a task-driven compression paradigm is proposed that
allows to retain most of the collision information even in exceptionally low latent spaces.
This work serves as a modular step that delivers compressed latent spaces that retain
collision information and can thus be utilized for further processing by methods that
predict the possible collision of candidate trajectories of robots in complex scenes.

Responding to the above, this work contributes the concept of task-driven
compression and encoding of depth images as visualized in Figure 1. Departing
from the concept that methods aiming to predict the safety of candidate robot
trajectories based on depth images should train collision prediction either a)
directly in an end-to-end fashion through depth data [16,22] or through b) an
explicit intermediate compression stage of the depth image itself [23], we propose
the approach of using the depth image to encode a latent space presenting major
dimensionality reduction that reflects not the depth image itself but instead
a “collision image”. The latter is a remapping of the depth image that has
accounted about the robot’s size and thus presents reduced overall complexity
and greatly reduced presence of narrow/thin features that are hard-to-retain
in an aggressive compression step. To achieve this goal, the method employs a
probabilistic encoder-decoder architecture that is trained in a supervised manner
such that given a depth image as input, it learns to encode and reconstruct
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the collision image. To train this collision-predicting network –dubbed Depth
image-based Collision Encoder (DCE)– the depth image is first processed such
that the collision image is calculated given information for the robot’s size.
Focusing on aggressive dimensionality reduction, it is demonstrated that the
scheme allows to get accurate reconstructions through a latent space that is
more than 3 orders of magnitude smaller than the input image. The benefits of
the approach are demonstrated through comparisons both with a conventional
Variational Autoencoder (VAE) trained to encode the depth image and assessed
regarding the extent to which the reconstructed image can serve as basis to derive
a correct collision image, as well as traditional compression methods using the
Fast Fourier Transform (FFT) and wavelets.

In the remaining paper Section 2 presents related work and Section 3 details
the proposed method involving generation of training data, image augmentation
and the training of the neural network. Section 4 compares our proposed method
against traditional image compression methods and evaluates the performance
of task-driven and task-agnostic compression methods at similar degrees of
compression. Finally, conclusions are drawn in Section 5.

2 Related Work

This work draws its motivation from the set of deep learning methods that rely
on directly processing sensor data (such as depth images) in order to predict if a
candidate trajectory of a flying robot shall be in collision or not [12,15,16,22,23]
and accordingly enable safe autonomous navigation. A subset of such methods
instead of relying on direct end-to-end learning from exteroceptive data and robot
pose information to predict if a certain candidate action/trajectory shall allow
collision-free flight, they employ modularization and accordingly an explicit step
of compression that pre-processes high-dimensional input image data arriving to
a low-dimensional latent space [12,23].

Technically, the contribution relates to the body of work on image compression.
In this large body of work, multiple methods are available including classical
schemes that rely on FFT or wavelets [4,14]. Within the breadth of relevant
techniques, of special interest is the utilization deep learning approaches [2,
19] and especially variational autoencoders [5,9,26] as means to achieve good
reconstruction quality for high compression ratios [30,31]. Nevertheless, the
majority of such methods follow the main paradigm of compression which implies
that a uniform metric (e.g., mean squared loss) of over pixel-level reconstruction
against the original image is employed. Even for works that exploit additional
cues such as semantics [29], conventional compression remains the prime goal.
Departing from this paradigm this work reflects the fact that in the line of
works of collision prediction [12,15,16,22,23] it is the information over candidate
collisions that matters and not the depth pixels themselves. In other words, it
is the question if the robot - with the specific volume that it occupies - can
fly along a path within the volume observed and captured by the depth image.
This calls for a new concept that hereby is called purposeful task-driven depth
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image compression/encoding for collision prediction utilizing minimal latent
spaces. It is highlighted that the goal to arrive at a latent space that is multiple
orders of magnitude smaller than the high dimensional depth images –offered by
sensing solutions such as modern stereo vision– is driven from the need of robust
performance and generalization in diverse natural environments. As established
by seminal works such as ResNet [8], deeper models with more parameters require
much more data to train. A low-dimensional compression latent space enables
methods that shall then use it for collision prediction [12] to utilize smaller and
simpler networks for the task, while they further combine with robot data which
are also low-dimensional (e.g., pose states of a quadrotor aerial vehicle over the
SE(3) special Euclidean group [13]).

3 Proposed Method

The proposed approach on task-driven compression and particularly depth image-
based collision encoding is outlined below. First, the process to generate relevant
training data is discussed, followed by the method to derive the collision image
associated with each depth image. Subsequently, the depth images-based collision
encoder motivated by the architecture of variational autoencoders is presented.

3.1 Dataset Generation

Deep learning techniques for data compression require large amounts of data
for training. Moreover, the generalizability of the learned models depends on
the quality of the training data and the variety of samples provided for learning.
Available depth image datasets primarily focus on specific tasks to be performed
using the depth images such as depth completion [21] or autonomous driving [7].
These datasets contain images from scenes that include urban structured indoor
settings and open streets respectively with large-sized obstacles that are sparsely
distributed in the environment. Consequently, such datasets - that are other-
wise common within both research and industry - do not contain images from
highly cluttered complex environments that present challenges to aerial robot
navigation. For the latter, it is important to note that environments with a) high
clutter leading to uncertainty as to the safest flying direction, and b) obstacles
with narrow cross section (“thin” obstacles) are particularly hard to fly through.
In order to train our neural network models for such cluttered environments
containing narrow/thin obstacles, while ensuring generalizability, we rely on
two popular robot simulators - namely Gazebo Classic [25] and Isaac Gym [18]
to generate diverse simulated depth image data. These simulators provide the
necessary interfaces that allow us to rearrange different objects randomly in
a simulated environment. Images from Gazebo Classic are collected using the
onboard depth camera of a simulated aerial robot in an obstacle-rich environment
using the RotorS Simulator [6]. Subsequently, we utilize the Isaac Gym-based
Aerial Gym Simulator [11] in order to simulate environments with randomly
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placed obstacles and collect depth images in a parallelized manner from mul-
tiple randomly generated environments simultaneously. 85, 000 depth images
are collected in environments consisting of a variety of objects ranging from
multi-branched tree-like objects with thin cross-sections to large obstacles with
cavities in them. Depth images are collected and aggregated to be processed for
computing a robot-specific collision image.

3.2 Collision Image Generation

While the collected depth images provide information about the projected distance
to a surface along the central axis of the camera, it is difficult to infer the collision-
free regions in the robot’s field-of-view. Traditional approaches to compute
collision-free regions involve representing the depth image in an intermediate
volumetric map-based representation [10,20,24] that can be queried to derive
collision-free regions. These representations are limited by their discretization
capabilities and often require a large amount of memory to maintain a persistent
map [24]. Generation of such representations is also a computationally expensive
step [10]. Finally, such reconstructions rely on aggregating multiple depth image
readings and thus necessitate consistent pose estimation. At the same time,
methods that use depth images to directly predict if a candidate path is collision-
free or not [16,22] implicitly have to learn that the depth image itself is not a map
of collision-free space but instead this information can be acquired by further
correlating the range to a point and the size of the robot. Contrary to the current
techniques on that front that typically either a) resort on end-to-end learning
of collisions via depth, state and action tuples [16,22] or b) compress the depth
image and use this lossy latent space to then learn collision prediction [12,23],
we here propose the re-mapped representation of depth images in a new form
that directly provides the collision-free distance that can be traversed by a robot
along any direction. A collision image is defined as an image representing the
collision-free distance (projected along the central axis of the camera) traversable
by a robot of known dimensions along the rays corresponding to each pixel in
an image. This revised image representation that encodes all necessary collision
information can then be utilized directly for robot navigation tasks.

To derive collision images from depth images, we propose a computationally
efficient method illustrated in Figure 2. Motivated by the observation that the
most significant change between the depth image and the collision image occurs
at the edges of obstacles in the field-of-view of the camera, a rendering-based
approach is utilized to appropriately inflate the objects in the camera’s field-
of-view about their edges. We cannot perform this inflation accurately using
traditional 2D computer vision techniques since the modified area around each
edge pixel is both dependent on the size of the robot and the distance to the
point in 3D space making the computation intractable. We rely on parallelized
rendering frameworks to visualize virtual robot-sized meshes around the regions
corresponding to the edges of the obstacles in order to inflate them by the size of
the robot. Projecting them back onto the camera plane captures the appropriately
inflated regions of the environments that represent the regions of collision for
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Fig. 2. The acquired dataset is processed for task-driven compression. Edge-detection is
performed on the depth images and each edge pixel is projected to it’s 3D coordinates
to form a pointcloud and a virtual 3D mesh is rendered. The depth image of the virtual
mesh is obtained and combined with an offset range image to form a collision image.

the robot. Edge detection is performed on the original depth image D using
OpenCV [1] to obtain the set of pixels corresponding to the edges E as shown in
Figure 2(a). A fraction of the edge pixels are randomly selected to render meshes.
For each selected edge pixel i with coordinates (ui, vi) ∈ E , the position of the
corresponding point Pi ∈ R3 is calculated as:

Pi = (xi, yi, zi), (1)

where

xi =
cx − ui

fx
zi, (2)

yi =
cy − vi
fy

zi, (3)

zi = D(ui, vi). (4)

A pinhole model of the camera is considered, with fx and fy as the focal
lengths and cx and cy as the optical centers. The shape of the robot is considered
to be cubical with edge length 2r. For each projected point Pi, a robot-sized mesh
Mi is centered at the coordinates (xi, yi, zi) as shown in Figure 2(b). Meshes
created around each point are merged into a single aggregated mesh M. We use
NVIDIA Warp [17], a high-performance graphics and simulation package that
enables rendering simulated depth cameras in a virtual environment consisting of
this aggregated mesh. A parallelized ray-casting operation is performed to project
rays into this virtual mesh environment and obtain a depth image DM only
containing these virtual meshes (Figure 2(c)). This depth image only contains
the information regarding the distances to the virtual meshes corresponding to
the edge pixels in the original depth image D. Since rendering of virtual meshes
is a computationally expensive step, it is reserved only for the edge pixels in the
image. For pixels lying in the interior regions of the object in the depth image,
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an offset depth image Doffset is created with all range values brought closer by
the size of the robot r using the following operation:

Doffset = R−1(R(D)− r), (5)

where the transformation R converts the depth image to a range image, i.e.,
the value in each pixel of the image represents the Euclidean distance to the
corresponding point on the object. The inverse function R−1 converts the range
image back to a depth image. Finally, an approximate collision image Dcoll is
obtained by taking pixel-wise minimum values of the offset depth image Doffset

and rendered image with inflated meshes DM as shown in Figure 2(d). This
operation is given by:

Dcoll = min(DM,Doffset). (6)

We use this to generate a collision image dataset given the depth image dataset
with each image in the original dataset being processed in the above manner
to produce a collision image. Both the original image and the collision image
are aggregated into a common dataset to be used for training the probabilistic
encoder-decoder network to derive and encode the collision information from the
original depth images.

3.3 Depth Image Compression and Collision Encoding

The interpretation and representation of depth information to derive collision
images requires spatial understanding of the environment. We utilize artificial
neural networks to perform this task by learning a compressed representation that
compresses and encodes the depth image to its associated collision image. The
overall architecture is motivated by the success of VAEs but with the important
distinction that the involved learning includes training of the depth-to-collision
image map transformation. We consider a dataset containing depth images x ∈ D,
and its derived secondary dataset containing collision images xcoll ∈ Dcoll. A
surjective function P : D 7→ Dcoll maps each element from the depth image
dataset to an image in the collision image dataset. This function is imitated
in the collision image generation step (Section 3.2). Each xcoll ∈ Dcoll can be
assumed to be generated by a process using a latent random variable z.

We employ probabilistic encoders and decoders to perform dimensionality
reduction of the input depth data and learn a highly compressed latent represen-
tation for predicting collision images. A probabilistic decoder pθ(xcoll|z), given
z produces a distribution over the possible values of xcoll, while a probabilistic
encoder qϕ(z|x) learns to encode the input image x to a latent distribution with
mean µ and standard deviation σ. This distribution is sampled to obtain z such
that z ∼ N (µ,σ · I). The encoder and decoder networks are jointly trained to
produce a highly compressed but well performing latent representation z given a
depth image x and its xcoll. The decoder can be used to derive a collision image
that approximates xcoll and accurately predicts the distances for collision-free
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Fig. 3. The proposed neural network with an encoder-decoder architecture inspired by
variational autoencoders and tailored to compress and re-map a depth image x to a
latent representation z that can be used to produce the reconstructed image xcoll

recon

that approximates the associated collision image xcoll.

traversal using the given depth image. Figure 3 shows the structure of the DCE
for task-driven compression. To train the DCE the loss function is defined as:

L = Lrecon + βnormLKL, (7)

where

Lrecon(xcoll,x
coll
recon) = MSE(xcoll,x

coll
recon), (8)

LKL(µ,σ) = −1

2

J∑
j=1

(
1 + log(σ2

j )− µ2
j − σ2

j

)
. (9)

Here, L denotes the overall loss term while Lrecon and LKL (scaled by a
constant βnorm [9]) denote the reconstruction loss and the KL-divergence loss
terms respectively in a manner motivated by autoencoder literature [5]. The
Mean-Square Error (MSE) loss function is modified to ignore the errors of the
pixels from the depth image that are invalid, i.e., the pixels that do not contain
accurate depth information owing to the obstacles being too close to the camera
in simulated images or also in case of the incorrect depth from stereo shadows
for real-world depth images. The encoder is a residual neural network consisting
of convolutional layers at each block and uses the ELU activation function. The
final layers of the encoder network are fully connected layers that produce the
mean and variance describing the latent distribution. The decoder consists of
two fully connected layers followed by non-residual de-convolutional layers with
ReLU activation functions. The last convolutional layer has a sigmoid activation
to have bounded values for the collision image. The network is trained on a
dataset consisting of 70, 000 depth and collision image pairs and tested on a
dataset containing 15, 000 image pairs. Each image has a dimension of 270× 480
pixels and contains the distance to the given obstacle projected along the central
axis of the camera. As discussed in the next section, well performing latent
spaces as low as 32 variables are achieved which represents more than 3 orders
of magnitude compression, while simultaneously delivering and exploiting the
described depth-to-collision image transformation.
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4 Evaluation and Results

The main premise of the work is that the implicitly learned transformation of
depth-to-collision image mapping, not only allows to learn directly the informa-
tion pertinent to collision prediction, but also allows major compression while
retaining the necessary information. To demonstrate this fact, we conduct a com-
prehensive set of evaluation studies comparing the performance of our proposed
approach against traditional task-agnostic compression methods such as using the
wavelet transform and the Fast Fourier Transform (FFT). We also compare our
task-driven compression method against a conventionally trained task-agnostic
VAE (vanilla-VAE) that shares the same neural network architecture as the DCE.
We first show that neural network-based compression outperforms traditional
compression methods such as FFT and wavelet transform-based compression for
very high compression ratios for depth images. Furthermore, the reconstructed
collision image obtained from the task-driven DCE accurately represents the
calculated collision image as compared to the derived collision information from
the image reconstructed from the vanilla-VAE. The performance of the proposed
approach is evaluated for a set of different latent dimensions representing varying
levels of extreme compression. Latent spaces of 32, 64, 128 and 256 latent di-
mensions corresponding to compression factors of 4050, 2025, 1012.5 and 506.25
respectively are considered. The proposed learning-based compression and image
domain transformation method not only outperform the currently established ap-
proaches while achieving large compression ratios but also are capable of encoding
spatial information from the depth image to represent collision information. This
is made evident from the results where the depth image is accurately (and range-
and robot size-dependent) “inflated” to obtain a collision image that occludes
the obstacles in the background.

4.1 Comparison of vanilla-VAE with traditional compression
methods

We compare a vanilla-VAE based compression with FFT and wavelet transform-
based compression. The task-agnostic vanilla-VAE is trained using 70, 000 images
to encode a depth image x into a latent distribution and also to reconstruct the
input depth image xvanilla

recon . This is done to first ensure a fair comparison between
task-agnostic methods. A separate network is trained on the dataset for each
latent space size.

We obtain the image representation in the wavelet domain by decomposing the
image with the Daubechies wavelet ‘db1’. To obtain the compressed representation
in this domain corresponding to a latent space size of n, the largest n magnitudes
in the wavelet domain are retained, while all other values are set to 0. The
resultant wavelet domain representation is reconstructed using the inverse wavelet
transform to obtain xwv

recon. Similarly, to compress the image using FFT, the
complex numbers in the frequency domain that correspond to the n/2 largest
magnitudes are retained (with both their real and complex coefficients), while
all others are set to 0. A reconstruction xFFT

recon is obtained from this compressed
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Fig. 4. Comparison between the reconstruction performance on depth images using
traditional methods and the vanilla-VAE for different levels of compression. The images
compressed and reconstructed using vanilla-VAE (xvanilla

recon ), wavelet transform (xwv
recon)

and FFT (xFFT
recon) are shown. The errors in the reconstruction are also highlighted.

representation by performing an inverse FFT. It must be noted that both these
representations are computationally represented as ordered lists that contain the
position-dependent coefficients for the decoder to reconstruct the image. While
we retain only the top n coefficients, we do not remove their position information
to allow the reconstruction software to work seamlessly. As a result, information
retained using this scheme is more than just the n dimensional variable that we
use in the case of the neural networks. Figure 4 compares the reconstructed images
from the compressed representation for different latent space sizes using different
compression methods. The vanilla-VAE preserves the features in the depth image
for complex scenes for small latent sizes, while the wavelet transform-based
compression performs well for larger latent space sizes. The difference between
the reconstructed image using the vanilla-VAE and the wavelet transforms and
the input image is shown to highlight the regions with a higher reconstruction
error. A visual inspection of the reconstructed images from wavelets and frequency
domain representations show that these methodologies are unable to encode the
information in complex depth images for smaller latent space dimensions. The
difference is especially highlighted in images that contain complex and cluttered
settings, where the FFT reconstructions generate artificial patterns, while the
wavelet reconstructions discretize regions of the image non-uniformly, losing out
on the sharper details of the image.

The results are tabulated in Table 4.1 demonstrating that for high compression
ratios corresponding to latent spaces of 32, 64 and 128 dimensions, the vanilla-
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VAE based depth image compression method produces images with a lower MSE
value with the input image. Interestingly, the wavelet transform-based method
produces a lower MSE in the case where the information corresponding to the
top 256 coefficients is retained. As shown in Figure 4, the wavelet reconstruction
corresponding to this size produces sharper edges in the reconstructed image owing
to the capability to encode more information regarding the smaller discretized
regions in the image.

Table 1. Comparison of MSE for reconstructed images with vanilla-VAE, FFT and
wavelet transform for different compressed latent dimensions.

MSE against input image x

Latent dims: 32 64 128 256

xvanilla
recon 1249.58 827.00 543.38 477.88

xwv
recon 1481.36 952.58 612.31 382.43

xFFT
recon 2223.87 1634.52 1181.93 840.38

4.2 Task-driven compression for collision representation

While the task-agnostic vanilla-VAE demonstrates good compression capacity of
complex depth images to a small latent code, it still faces limitations in producing
reconstructions that can be used to derive an accurate collision representation
especially in cluttered and complex scenes. As expected, aggressive compression
leads to loss of important information. However, compared to the depth image,
a collision image would typically contain less complex and more low-frequency
information regarding the same scene owing to the “inflation” of the obstacles.
Due to this process, pixels corresponding to thin features in a depth image end
up being represented by a larger region of pixels showing collision-free distance
values. It is noted, transforming the depth image to a collision image requires a
spatial understanding of the scene as robot size-inflated regions in the collision
image occlude the regions near the edges of obstacles represented in depth images.
Nonetheless, once a network is trained to predict this, it also implies reduction
in the information that has to be kept during compression.

We compare the performance of the proposed DCE against the task agnostic
vanilla-VAE to compare the capability of these networks in retaining collision
prediction information in the compressed latent space spanning from the depth
image. The DCE is trained to directly reconstruct the collision image, while the
vanilla-VAE is trained to reconstruct the input depth image and thus for the
purposes of assessing its capacity to retain the information needed for collision
prediction, a new collision image is derived (as in Section 3) from the images
reconstructed from its latent space through the decoder. Essentially, to ensure a
fair comparison, we use the mapping P(xvanilla

recon ) to obtain the derived collision
image from the reconstructed input depth image. Figure 5 presents examples of
images reconstructed using both the DCE and vanilla-VAE.

The reconstructed collision image xcoll
recon and the derived collision image

from the vanilla-VAE reconstruction P(xvanilla
recon ) are compared against the true

collision image. The areas of errors are highlighted in Figure 5. The collision
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Fig. 5. Comparison between DCE and vanilla-VAE to derive the collision information
from the input depth image for different levels of compression. The images compressed
and reconstructed using DCE (xcoll

recon), vanilla-VAE (xvanilla
recon ) are shown. A collision

image P(xvanilla
recon ) is derived from xvanilla

recon . The derived collision images are compared
against the ground-truth collision image xcoll for errors.

image derived from the vanilla-VAE reconstruction shows a greater number of
regions with erroneous collision information, while the image from the DCE
xcoll
recon shows both smaller error magnitudes and only small regions of error when

compared to the true collision image xcoll. Moreover, the reconstructed collision
image captures thin features such as branches in the environment and reconstruct
the regions of collisions in the same. The results calculating the MSE of the
reconstructed collision image and the derived collision image from the depth
image reconstruction are presented in Table 4.2. As presented, the task-driven
DCE outperforms the vanilla-VAE by a large margin.

Table 2. Comparison of MSE for reconstructed images with DCE and a transformed
collision representation of the image reconstructed using vanilla-VAE.

MSE against Collision Image xcoll

Latent dims: 32 64 128 256

xcoll
recon 783.718 516.487 418.03 402.66

P(xvanilla
recon ) 4828.50 4339.76 2532.14 2539.89

5 Conclusions and Future Work

This paper presented a learning-based method for task-driven aggressive com-
pression of depth images to a highly compressed latent representation tailored
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to infer collision-free travel distances for a robot in the environment. A novel
method was proposed to generate robot size-specific collision prediction data
from given depth images using rendering frameworks. Such depth and collision
prediction image tuples are then used to train a neural network performing
the task-driven compression of encoding a latent space that captures collision
information from depth images. We show that our proposed approach is able
to encode depth images by a compression factor over 4000 : 1, while retaining
the information necessary to predict collisions from depth images of complex
cluttered scenes. Moreover, we show that such purposeful neural network-based
compression techniques demonstrate superior performance against traditional
methods using FFT and wavelets or even conventional variational autoencoders
for image reconstruction from highly compressed latent spaces.
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