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Abstract— This paper contributes a novel strategy for
semantics-aware autonomous exploration and inspection path
planning. Attuned to the fact that environments that need to
be explored often involve a sparse set of semantic entities
of particular interest, the proposed method offers volumetric
exploration combined with two new planning behaviors that
together ensure that a complete mesh model is reconstructed for
each semantic, while its surfaces are observed at appropriate
resolution and through suitable viewing angles. Evaluated in
extensive simulation studies and experimental results using a
flying robot, the planner delivers efficient combined exploration
and high-fidelity inspection planning that is focused on the
semantics of interest. Comparisons against relevant methods
of the state-of-the-art are further presented.

I. INTRODUCTION

Robotic systems have long been utilized for remote sens-
ing and inspection tasks [1–6]. Flying or ground robots,
for example, are actively utilized to explore and inspect
industrial facilities [1–5] or even demanding subterranean
settings [7–14]. Building upon this success, the research
community and the industry are currently actively looking
towards means to completely automate the process of build-
ing and maintaining accurate “digital twins” [15] of the
facilities of interest. In this framework, explicit focus on
specific semantics of interest is of paramount importance,
a task assisted by the progress in semantic segmentation
and mapping [16–21]. Within a large-scale industrial facility,
or other environment of interest, the vast majority of the
surfaces may not represent informative or generally signif-
icant regions. It is in fact mostly specific structures that
require precise and comprehensive monitoring. Accordingly,
traditional methods on exploration or coverage path planning
are not tailored to efficiently undertake the task as they are
agnostic to semantics, rendering them inefficient and unable
to deliver the necessary inspection behavior at scale.

Motivated by the above, in this work we present a
novel Semantics-aWAre exploration and inspection Planner
(SWAP) that is tailored to environments with sparse seman-
tics, assumes no prior map information, and can ensure as
complete mesh reconstruction and surface inspection as pos-
sible at a set minimum resolution. The method is not exploit-
ing merely a volumetric representation [22, 23], as commonly
done in exploration planners [10, 24], and does not make
the often unrealistic assumption of having access to an a
priori available high-resolution overall mesh representation
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Fig. 1. Instance of an autonomous semantics-aware exploration and in-
spection mission in an environment with two sparsely distributed semantics
(S1, S2). The path traversed by the robot and the reconstructed meshes
colorized by camera viewing distance are shown. Furthermore, a simulation
run inside a chemical plant is depicted.

of the environment. Instead, SWAP combines a volumetric
map with a disconnected set of meshes focused only on the
semantics of interest which are also utilized to perform calcu-
lations as to coverage completeness or inspection fidelity in
order to best plan its actions. Importantly, the method ensures
autonomous exploration within unknown maps combined
with complete and selectively detailed semantic inspection by
means of transitioning among a set of behaviors as opposed
to merely combining distinct objectives in an additive manner
that would be highly susceptible to tuning. In particular,
SWAP offers efficient volumetric exploration using a range
sensor (e.g., 3D LiDAR), while at the same time for the
detected semantics of interest it enables capturing the further
point clouds necessary to derive a complete mesh model
for each, and ensures that their surfaces are viewed by
a –possibly separate– camera at sufficient resolution and
through suitable viewing angles.

To verify the proposed solution for semantics-aware ex-
ploration and inspection path planning, a set of simulation
and experimental studies are presented using flying robots,
including comparison against a state-of-the-art exploration
planner that does not explicitly consider semantics. We
demonstrate that SWAP presents significant advantages for
combined exploration and inspection tasks involving a sparse
distribution of semantics, the mesh models of which have to
be reconstructed and their surfaces be captured by a camera
with image quality guarantees. Accordingly, we believe that
the method is tailored to be used in complex facilities for
which digital twins have to be built and then maintained.

In the remaining paper, Section II presents related work,
followed by the problem statement in III. The proposed
approach is detailed in Section IV, with evaluation studies
in Section V and conclusions in Section VI.
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II. RELATED WORK
This work on semantics-aware exploration and inspection

planning has relevance to a host of contributions that relate
to its functionality. With respect to its elementary behavior
on exploration planning it builds upon the relevant litera-
ture [9, 10, 24–28] and especially our prior work on graph-
based exploration [9, 10]. Similarly, regarding its further core
behavior of inspection planning over a reconstructed mesh it
relates to works on coverage path planning [29–34].

With respect to the key innovation in semantics-aware
planning, this work relates to two sets of contributions.
First, it partially relates to works that on one hand only
focus on planning for safe navigation among predefined
waypoints but also simultaneously consider the semantics in
the environment [35–37]. Second, and most importantly, the
proposed method relates to the narrow niche of contributions
that aim to co-optimize exploration and mapping of ob-
jects/semantics of interest [38–41]. Our earlier work in [38]
performs autonomous exploration but also allows for small
deviations from the exploration path in order to improve
the resolution of observation of detected objects based on
a volumetric map. The contribution in [39] considers an a
priori known map and formulates the planning problem as an
orienteering one further considering the desired reconstructed
model resolution. The method in [40] uses a 3-layer semantic
map involving a costmap, a classical exploration grid and
a binary grid that monitors the observation over specific
semantic classes and derives semantics-aware adaptations of
A?, transition-based RRT, and a shortcut algorithm which
are then tested on a combined exploration and observation
task. The authors in [41] use object detection and explicitly
combine semantic information with exploration planning
techniques to improve the quality of the 3D reconstruction.

Compared to the existing literature, SWAP contributes
multiple innovations and key features. First, it makes no
assumption about the shape, size and location of the se-
mantics or any prior map knowledge. Second, it combines
exploration and semantic inspection in a principled manner
through explicit behaviors as opposed to techniques that
merely aggregate goals in an additive objective. Accordingly,
it ensures complete semantic mapping using a range sensor
(no gaps in the reconstructed mesh) and inspection with
a camera at any desired resolution up to what is possible
through collision-free configurations. Finally, it realizes a
task-specific multi-facet environment representation involv-
ing a sparse volumetric map, a semantics-specific locally
dense mesh representation and a sparse global graph for
replanning in the mapped space.

III. PROBLEM FORMULATION
The overall problem considered in this work is that of

combined exploration of a bounded volume V ⊂ R3 with
a depth sensor YD and detailed inspection of a set Λ of
structures of interest within it, called semantics, in terms
of reconstructing meshes of their surfaces using segmented
data from YD, and scanning them using a visual camera
sensor YC . The problem can be cast globally as that of a)

determining which parts of the initially unexplored volume
Vune

init.
= V are free Vfree ⊆ V or occupied Vocc ⊆ V b)

creating complete mesh reconstructions Mj of the surfaces
Sj
S of all the semantics Sj , and c) inspecting every face f of

everyMj with YC at resolution r, defined as the number of
pixels per unit area, higher than or equal to rmin and viewing
angle θI with respect to the outward normal nf to f less
than θI,max. The environment is represented as a volume
discretized in an occupancy map M consisting of cubical
voxels m ∈ M with edge length λV , and a set of surface
meshes {Mj}, ∀Sj ∈ Λ. The operation is subject to the
robot dynamics and the sensors’ visibility constraints based
on two possibly distinct frustum models for YD,YC defined
by the Field of View (FoV) [FD

h , F
D
v ], [FC

h , F
C
v ] respectively

and maximum ranges dDmax, d
C
max. Hence, certain volume and

surface cannot be mapped or inspected resulting in residual
volume and surface. Given the above, we have the following
definition and problem formulation cast globally.

Definition 1 (Residual Volume and Semantic Surface) Let Ξ
be the simply connected set of collision free configurations
and V̄m ⊆ Ξ the set of all configurations from which the
voxel m can be perceived by YD. Then the residual volume is
Vres =

⋃
m∈M(m| V̄m = ∅). Similarly the residual semantic

surface Sres can be defined as the part of {SSj}, ∀Sj ∈ Λ
that cannot be mapped by YD or seen by YC .

Problem 1 (Volumetric Exploration and Semantic Inspection
Problem) Given a volume V and an initial configuration
ξinit = [x, y, z, ψ] ⊂ Ξ find a collision-free path σ that when
traversed by the robot leads to a) identifying Vfree and Vocc
based on YD b) complete mesh reconstructions {Mj} of
{SSj}, ∀Sj ∈ Λ, and c) inspection of every face f of Mj

with YC at the required resolution and viewing angle.

IV. PROPOSED APPROACH

The proposed semantics-aware exploration and inspection
planner (SWAP) utilizes three planning behaviors, namely
Volumetric Exploration, Semantics Hole Coverage, and Se-
mantics Inspection (Figure 2), for efficient exploration of
the unknown environment combined with targeted inspection
of the surfaces of the semantics of interest. The planner
starts in the exploration mode to efficiently explore and
volumetrically map the unknown environment. During explo-
ration, possible semantic detections –defining which points
of the YD measurements belong to a certain semantic–
are used to generate meshes as described in Section IV-
A. The planner performs exploration for an allotted time
Te. After that, it switches to the hole coverage mode and
identifies the holes possibly left in the semantic meshes. The
semantic closest to the robot is selected first and viewpoints
considering the onboard depth sensor YD are planned to
iteratively fill these holes in meshes of all of the detected
semantics as described in Section IV-C. Once all holes in
the meshes of all the semantics detected so far are filled,
no more collision-free configurations can be found to fill
the remaining holes, or an allotted time for that semantic
has expired, the planner switches to the inspection mode



in order to provide detailed inspection of the semantics of
interest considering the onboard camera sensor YC driven by
certain metrics. Once this process is also complete within
the currently explored map, the method switches back to
exploration mode to explore further and where and when
needed switch to the semantics-driven behaviors.

Fig. 2. The behaviors of the semantics-aware exploration and inspection
planner. SWAP transitions between autonomous volumetric exploration,
semantics mesh hole coverage and semantics inspection considering onboard
depth and camera sensors and exploiting a rich environment representation
combining volumetric maps and a set of semantic-specific meshes. For all
planning stages, a random graph data structure is used for path planning.

A. Environment Representation

For efficient exploration and semantic inspection, SWAP
utilizes a dual representation of the environment consisting
of a volumetric map M and a set D of data structures Dj

storing a reconstructed point cloud P j
R, a surface mesh Mj ,

and corresponding raw sensor data for each semantic Sj ∈ Λ.
In this work we use Voxblox [22] as the volumetric map-
ping framework for collision-free navigation and volumetric
calculations. Along with the volumetric map, we generate
surface meshes for each detected semantic in the environ-
ment using semantically segmented YD data. In this work,
we assume that a semantic segmentation module providing
segmented point cloud exists. However, the method does not
make any other assumptions about the size, shape, or location
of semantics in the environment. From every segmented
point cloud Pseg , the points P j

seg belonging to semantic Sj

are appended to P j
R. At a fixed temporal frequency, P j

R is
subsampled, and the surface mesh Mj is constructed using
the Advancing Front Surface Reconstruction algorithm [42].
The faces of Mj that are observed by YC at a desired
resolution rmin and viewing angle θI,max are further marked.

B. Volumetric Exploration

SWAP implements its autonomous exploration function-
ality by interfacing our previous and open-sourced work on
graph-based exploration (GBPlanner) [7, 9, 10]. The method,
verified extensively in subterranean and industrial environ-
ments, offers efficient exploration within a volume of set
bounds assuming no prior map knowledge. It operates over
a volumetric representation of the environment based on [22]
and functions in a bifurcated architecture of local- and global
path planning. At the local stage the method exploits a dense

random graph GL
E around the robot to identify collision-

free paths maximizing volumetric exploration. Simultane-
ously, as such local steps take place, the algorithm builds
a sparse global graph GG

E , used by the global stage that
is invoked when local exploration reports inability to find
a path of significant gain or when the robot approaches
its endurance limits. Accordingly, the method offers re-
positioning to previously detected unexploited frontiers of
the exploration space or timely auto-homing. In SWAP, the
autonomous exploration behavior is invoked for Te seconds,
before the system possibly switches to its semantically-driven
behaviors.

Fig. 3. Viewpoint generation procedure for a boundary edge of a hole
during Semantics Hole Coverage mode. Robot configurations are sampled
in a spherical coordinate system centered at the edge. The configurations
that respect the viewing angle criteria (as described in Section IV-C) and can
be connected to the hole coverage graph are extracted, and the configuration
with the least viewing angle is selected as the viewpoint.

C. Semantics Hole Coverage

After performing exploration for Te seconds, the planner
identifies the set of semantics, ΛH , whose reconstructed
meshes contain holes, and attempts to plan viewpoints to
collect measurements to fill them considering one semantic
at a time. The iterative procedure for hole coverage of one
semantic is described in Algorithm 1.

The planner first selects the semantic SC,H ∈ ΛH closest
to the robot. For the mesh MSC,H

of semantic SC,H the
planner first identifies the set Eb of mesh edges that belong
to only one mesh face, called boundary edges eb,k ∈ Eb, and
their corresponding faces called boundary faces fb,k. We treat
the boundary edges as frontiers on the mesh that need to be
covered iteratively. For each boundary edge eb,k a viewpoint
vk is derived that can view the edge and map the region
around it as shown in Figure 3. Furthermore, the planner
maintains a collision-free 3D graph, called the hole coverage
graph GH , connecting the current robot configuration ξcurr
to all viewpoints vk.

To generate the viewpoint for an edge, the planner ran-
domly samples collision-free robot configurations ξrand,
with YD pointing towards eb,k, in a spherical coordinate sys-
tem centered at the midpoint of the edge eb,k with maximum
radial distance dv,max. The graph GH is extended towards
ξrand and the configurations that cannot be connected to GH



Algorithm 1 Semantics Hole Coverage
1: ΛH ← extractSemanticsWithHoles(Λ)
2: while ΛH 6= ∅ do
3: SC,H ← closestSemantic(ΛH)
4: Eb ← extractBoundaryEdges(SC,H)
5: while Eb 6= ∅ and timeRemaining = True do
6: Wc ← calculateViewpoints(Eb,M,GH)
7: if Wc = ∅ then
8: exit loop
9: Ws ← reduceNumberOfViewpoints(Wc)

10: σhc ← pathToClosestViewpoint(Ws,GH)
11: executePath(σhc)
12: updateMesh(SC,H)

13: ΛH ← ΛH \ SC,H

14: ΛH ← ΛH

⋃
newSemanticsWithHoles

are discarded. Out of the remaining configurations, the one
whose viewing angle θv , defined as the angle between the
tangential vector nP to fb,k and the vector from the center of
eb,k to ξrand (Figure 3), is lowest and less than a threshold
θv,max is selected as the viewpoint for that edge and added to
the setWc of candidate viewpoints. To reduce the number of
viewpoints, a viewpoint vl is selected from Wc and added
to the set Ws of selected viewpoints. All boundary edges
within a distance dv,max from it for which θv of vl is less
than θv,max are extracted, and the corresponding viewpoints
are removed from Wc. This procedure is repeated till Wc is
empty. The path σhc to the viewpoint vclose ∈ Ws having
the least path length from ξcurr along GH is calculated and
executed by the robot. This procedure is repeated until either
no more boundary edges exist or no admissible viewpoints
can be found for any boundary edge. Additionally, another
threshold is introduced for the size of the hole removing
small gaps, as well as a maximum time Thc is allotted for
hole coverage of each semantic. Once the hole coverage
process is finalized for one detected semantic, the planner
proceeds to the next detected semantic before eventually
switching to inspection mode.

D. Semantics Inspection

For the reconstructed mesh of each semantic SI in the
set of detected and partially inspected semantics ΛI , the
inspection mode of the planner finds an efficient path such
that every face of the semantic mesh is inspected from at
least one configuration in that path at the desired resolution
and viewing angle. A face f is said to have been inspected
from a configuration ξ if a) the centroid µf of f lies within
the modeled sensor YC frustum, b) the distance df from ξ
to µf is within a threshold distance lmax (calculated based
on rmin), and c) the angle θI between the vector from µf

to ξ and the outward normal nf is less than a set limit
θI,max. The inspection planning procedure is detailed in
Algorithm 2 and illustrations are shown in Figure 4. The
planner first selects the semantic SI ∈ ΛI that is closest to
the robot, calculates an oriented bounding box Vs around the

Fig. 4. Illustration of the steps involved in the Semantics Inspection mode
of SWAP. A collision-free graph is built around the semantic. k candidate
paths providing complete coverage are calculated from the graph, and the
path having the least cost is executed by the robot.

Algorithm 2 Semantics Inspection
1: ΛI ← extractUninspectedSemantics(Λ)
2: while ΛI 6= ∅ and ΛH = ∅ do
3: SC,I ← closestSemantic(ΛI)
4: GI ← buildGraph(SC,I ,M)
5: cb ←∞, σI,best ← ∅
6: for i = 1 to k do
7: Vc ← selectCompleteCoverageVertices()
8: σI,i ← solveTSP(Vc)
9: if cost(σI,i) < cb then

10: cb ← cost(σI,i), σI,best ← σI,i

11: ΛI ← ΛI \ SC,I

12: ΛH ← ΛH

⋃
newSemanticsWithHoles

considered semantic mesh, and samples a 3D collision-free
graph GI . For each vertex νi in GI , the expected unobserved
faces seen by YC from νi are calculated. The set Li of faces
seen by νi is referred to as the visibility of νi. Next, a path
that ensures full inspection of the mesh, within the limitation
of traveling in collision-free space, needs to be searched from
this graph. To this end, the planner calculates k candidate
paths σI,i ∈ ΣI , i = 1...k providing complete coverage of
the semantic mesh and selects the one with the least cost
in terms of the path execution time. Each candidate path is
calculated as follows. All vertices νi in GI are sorted by
the cardinality of Li. The top η% of vertices are selected,
one vertex νl is chosen from them at random and added to
the set Vc of vertices in the final path. The visibility of the
remaining vertices is re-evaluated to account for the overlap
with the vertices in Vc. This process is continued till none of
the remaining vertices have non-empty visibility. The order
in which the vertices in Vc are to be visited is determined by
solving the Traveling Salesman Problem (TSP), by means of
the Lin-Kernighan-Helsgaun (LKH) heuristic [43], where the



Fig. 5. This figure shows the results of the simulation conducted in the model of a chemical plant. The figures on the top show the overall path traversed by
the robot along with the semantic mesh reconstructions annotated with the distance from which the faces of the meshes were viewed for all three planners.
As seen from the mesh reconstructions, the proposed planner is able to provide more complete semantic meshes with near complete visual coverage than
the state-of-the-art. The bottom row shows instances of hole coverage and inspection paths.

cost of travel between any two vertices is the length of the
shortest path along GI . Finally, the path σI,best ∈ ΣI with
the lowest execution time cost cb, is selected and executed by
the robot. At the end of execution, if any new semantics ΛH

requiring hole coverage are detected, the planner switches
to the hole coverage mode, otherwise moves to the next
detected semantic, closest to the robot, for inspection.

V. EVALUATION STUDIES

To evaluate the proposed semantics-aware exploration and
inspection planner, both simulation and experimental studies
were conducted. The computation times of various steps
involved as well as the parameters used in both are presented
in Tables I and II respectively.

A. Simulation Studies

We present a simulation study for evaluating the planner
inside a model of a chemical plant of size 44 × 28 × 20m
involving six semantics of interest. The simulation study
utilized the Gazebo simulator [44] with a model of the RMF-
Owl [45, 46] aerial robot with dimensions 0.38×0.38×0.24m
carrying a 3D LiDAR sensor as YD with [FD

h , F
D
v ] =

[360, 90]◦, dDmax = 50m, and a color camera as YC having
[FC

h , F
C
v ] = [120, 90]◦, dCmax = 7m. We utilize the semantic

segmentation camera from the simulator to get segmented
data. The simulations were conducted on a laptop with an
Intel Core i9-10885H CPU.

The performance of the planner was compared against our
previous Graph-based Exploration Planner (GBPlanner) [7,
9, 10] in both its original form (purely volumetric exploration
given a depth sensor YD) and with a modified objective for
surface coverage. The modified method (hereafter referred
to as GBPlannerMod) annotates the mapped voxels that are
also seen by YC in the volumetric map. The method samples

a random graph as GBPlanner, and the information gain for
each vertex νi is defined as the number of unseen surface
voxels inside YC if the robot were at the configuration ξi
corresponding to νi. An unseen surface voxel is defined as
an unknown voxel or an occupied voxel, that is mapped by
YD but not seen by YC , both neighboring a free voxel. Using
this new information gain formulation, the path is selected
in a manner identical to GBPlanner.

Fig. 6. This plot shows the percentage of the cumulative surface of all
semantics seen by YC over time by all three methods for the conducted
simulation study. Each planner was run five times. The targeted inspection
of SWAP enables it to significantly outperform the other methods.

A total of five simulation runs of each planner were
conducted in the same environment starting from the same
location. Each run lasted for 1850s. The overall paths tra-
versed by the robot, the reconstructed meshes for few of the
semantics, and indicative paths from the hole coverage and
inspection steps can be seen in Figure 5. Figure 6 shows the
semantic visibility comparison between the three methods in
terms of the percentage of all semantic surfaces seen by YC ,
within the required quality metrics, as a function of time. Due



Fig. 7. The method was verified experimentally by deploying onboard the RMF-Owl aerial robot inside the basement of NTNU’s Elektro building. The
experiment involved inspection of two machines distributed along three connected corridors connected via two 90◦ turns. In this figure, the top right
sub-figure shows the overall path traversed by the robot along with a timeline of the mission colored according to the active mode. The sub-figure on
the top left presents the mesh reconstruction of one of the semantics with each face colored by the distance from which it was seen by the onboard
camera at the end of exploration (up to the beginning of hole coverage for that semantic), hole coverage, and inspection modes. The two sub-figures at
the bottom right show the inspection and one of the hole coverage paths for one semantic. Finally the sub-figure on the bottom left shows the point cloud
reconstruction of the semantic colorized based on the onboard camera image. The robot was successfully able to explore the environment and inspect both
the semantics at the required metrics due to the planner’s ability to perform combined exploration and targeted inspection of the semantics.

TABLE I
COMPUTATION TIMES FOR VARIOUS STEPS INVOLVED.

Computation Step Simulation Experiment
Volumetric Exploration (s) 0.648 0.446
Semantics Hole Coverage (s) 0.027 0.121
Semantics Inspection (s) 2.689 1.527
Mesh computation (s) 0.024 0.054

TABLE II
PARAMETERS USED IN THE SIMULATION AND EXPERIMENT.

Parameter Simulation Experiment
λV (m) 0.2 0.3
rmin (pixels/cm2) 20.67 5.06
θI,max (deg) 45 45
θH,max (deg) 75 75
k 10 3

to the ability of SWAP to perform targeted inspection of the
semantics, it is able to outperform both the other methods.
Even GBPlannerMod, with its new formulation for surface
inspection, is unable to capture all surfaces of the semantic
at the desired quality.

B. Experimental Studies

For experimental verification, SWAP is deployed onboard
RMF-Owl [45], a small-sized (0.38 × 0.38 × 0.24m) and
lightweight (1.4kg) aerial robot with approximately 10min
of endurance integrating a) a multi-modal sensing suite
involving an OUSTER OS0 3D LiDAR with 64 channels
used as YD ([FD

h , F
D
v ] = [360, 90]◦, dDmax = 20m), a FLIR

Blackfly S 0.4MP visual camera used as YC ([FC
h , F

C
v ] =

[85, 64]◦, dCmax = 7m), and an IMU, and b) a Khadas
VIM3 Pro Single Board Computer (SBC) incorporating ×4
2.2Ghz Cortex-A73 cores, paired with ×2 1.8Ghz Cortex-
A53 cores implementing an A311D big-little architecture.
The robot was developed as part of the activities of Team
CERBERUS in the DARPA Subterranean Challenge [7, 8,

47] and integrates a robust localization and mapping method
as presented in [48] upon which autonomous path planning
can take place.

The conducted experiment took place in the basement
of NTNU’s Elektro Building and involved two industrial
machines as the semantics of interest distributed along three
corridors connected via two 90◦ turns. The robot started at
the beginning of one of the corridors, in the exploration
mode with Te = 20s, and after that switched to the se-
mantic modes. Upon completion, it continued exploration
and switched to semantic modes after detecting the second
semantic. It is noted that as this work is focused on path
planning, the semantic detection and point cloud segmen-
tation is considered given and it in the experiment it was
implemented by using an AprilTag unique to each semantic
object. Figure 7 presents the result of this mission showing
the path traversed by the robot, the mission timeline, in-
stances of hole coverage and inspection paths, the generated
mesh annotated with the camera viewing distance, and the
colorized reconstructed point cloud of one of the semantics.
The average resolution at which the semantics S1 and S2
were viewed was 9.81 and 14.40 pixels/cm2.

VI. CONCLUSIONS

A semantics-aware path planner for exploration of an
unknown environment combined with mesh reconstruction
and inspection of the semantics of interest is presented. The
behavior-based approach allows the planner to volumetri-
cally explore, generate complete mesh reconstructions of the
semantics, and perform an inspection of their faces given
specific image quality metrics without any prior knowledge
or assumptions about the environment. Both simulation stud-
ies comparing the method with a state-of-the-art exploration
planner and an experiment using a flying robot are conducted
to verify the new method.
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