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GAUSSIAN GABOR FRAMES, SESHADRI CONSTANTS AND
GENERALIZED BUSER–SARNAK INVARIANTS

Franz Luef and Xu Wang

Abstract. We investigate the frame set of regular multivariate Gaussian Gabor
frames using methods from Kähler geometry such as Hörmander’s ∂-L2 estimate
with singular weight, Demailly’s Calabi–Yau method for Kähler currents and a
Kähler-variant generalization of the symplectic embedding theorem of McDuff–
Polterovich for ellipsoids. Our approach is based on the well-known link between
sets of interpolation for the Bargmann-Fock space and the frame set of multivariate
Gaussian Gabor frames. We state sufficient conditions in terms of a certain extremal
type Seshadri constant of the complex torus associated to a lattice to be a set of
interpolation for the Bargmann-Fock space, and give also a condition in terms of
the generalized Buser-Sarnak invariant of the lattice. In particular, we obtain an
effective Gaussian Gabor frame criterion in terms of the covolume for almost all lat-
tices, which is the first general covolume criterion in multivariate Gaussian Gabor
frame theory. The recent Berndtsson–Lempert method and the Ohsawa–Takegoshi
extension theorem also allow us to give explicit estimates for the frame bounds in
terms of certain Robin constant. In the one-dimensional case we obtain a sharp es-
timate of the Robin constant using Faltings’ theta metric formula for the Arakelov
Green functions.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779
1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 782
1.2 Part I: Interpolation in Bargmann–Fock space. . . . . . . . . . . . . . . . . 782
1.3 Part II: Gaussian Gabor frames. . . . . . . . . . . . . . . . . . . . . . . . . 786

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 787
2.1 Gabor transform and Bargmann transform. . . . . . . . . . . . . . . . . . . 787
2.2 Proof of Proposition 1.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 792
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1 Introduction

Let Λ be a lattice in R
2n and

H := {Ω ∈ gl(n,C) : Ω = ΩT , Im Ω is positive definite} (1.1)

be the Siegel upper half-space. Fix Ω ∈ H, a Gaussian Gabor system, denoted by
(gΩ, Λ), is the family of functions {πλgΩ}λ∈Λ, where Λ is a lattice in R

2n and

(πλgΩ)(t) := e2πiξT tgΩ(t − x), λ := (ξ, x) ∈ Λ, ξT t :=
n∑

j=1

ξjtj ,

denotes a time-frequency shift of the Gaussian gΩ(t) := eπitT Ωt. Letting I denote the
identity matrix, we note that giI(t) is the standard Gaussian e−π|t|2 . The frame set
of gΩ is the set of all lattices Λ in R

2n such that {πλgΩ}λ∈Λ is a frame for L2(Rn).
Here, by a frame, we mean there exist positive constants A, B (called frame bounds)
such that

A‖f‖2 ≤
∑

λ∈Λ

|(f, πλgΩ)|2 ≤ B‖f‖2 for f ∈ L2(Rn),

where (·, ·) denotes the L2-inner product. Using the Bargmann transform, one may
reformulate the frame property for Gaussian Gabor frames in terms of sampling
property of the Bargmann–Fock space in complex analysis. In the one-dimensional
case there is a density criterion for the interpolation problem in the Bargmann-Fock
space due to Lyubarskii and Seip-Wallstén, which implies a seminal result in the
theory of Gaussian Gabor frames. Namely, that {πλgiI}λ∈Λ is a Gabor frame if and
only if the covolume |Λ| < 1, [Lyu92, Sei92, SW92]. Recent progress on the descrip-
tion of the frame set of a Gabor atom has been made for totally positive functions
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[GS13, GRS18] and for rational functions [BKL21]. Note that all aforementioned
results on frame sets for Gabor systems are for uniformly discrete point sets in the
plane. The generalization to the higher-dimensional case has been one of the most
intriguing problems in the study of Gaussian Gabor frames since the methods in
[Lyu92, Sei92, SW92] do not have natural counterparts in the theory of several com-
plex variables. The reason being that the theory of sampling and interpolation in
several complex variables [MT00, Lin01, Gro11, GL20, LM09] is far more intricate
than in the one-dimensional case (see [PR13, section 3]) and despite considerable ef-
fort not well understood. In particular, the following central problem in multivariate
Gaussian Gabor frame theory is still open.

Problem A. Is there an equivalent Gabor frame criterion for (giI , Λ) only in terms
of the covolume |Λ| for almost all lattices Λ in R

2n (n > 1)?

We obtain the following partial result, which is a direct consequence of Proposi-
tion 1.4 and our Hörmander criterion in Sect. 1.2.

Theorem 1.1 (First main theorem). Fix Ω ∈ H, if |Λ| < n!
nn then (gΩ, Λ) is a Gabor

frame for almost all Λ in R
2n. More precisely, (gΩ, Λ) is a Gabor frame if |Λ| < n!

nn

and (Ω, Λ) is a transcendental pair (see the definition and the remark below for
explicit examples of the transcendental pairs).

Definition 1.1. Let Λ◦ := {(η, y) ∈ R
n ×R

n : ξT y −xT η ∈ Z, ∀ (ξ, x) ∈ Λ} denote
the symplectic dual of Λ (also known as the adjoint lattice of Λ). Put

ΓΩ,Λ◦ := {(Im Ω)−1/2z ∈ C
n : z = η + Ωy, (η, y) ∈ Λ◦}, (1.2)

where (Im Ω)−1/2 denotes the unique positive definite matrix whose square equals
(Im Ω)−1. We call (Ω, Λ) a transcendental pair if the complex torus C

n/ΓΩ,Λ◦ has
no analytic subvariety of dimension 1 ≤ d < n (see Definition 1.4 for a related
notion).

Remark. From the definition we know that all (Ω, Λ) are transcendental in case
n = 1. In case n = 2, by [Sha13, p. 161] we know that (Ω, Λ) is a transcendental
pair if C2/ΓΩ,Λ◦ is biholomorphic to C

2/Γ for some lattice

Γ := Z(1, 0) + Z(0, 1) + Z(a, b) + Z(c, d), a, b, c, d ∈ C,

with the set {1, a, b, c, d, ad − bc} being linearly independent over Z (for example, if

(a, b, c, d) = (π, iπ2, iπ3, π4), (
√

2, i
√

3, i
√

5,
√

7), etc

then Γ is transcendental). In fact, the argument in [Sha13, page 160–163] can also
be used to prove that (Ω, Λ) is transcendental for almost all lattices Λ in C

n. The
proof of our first main theorem also suggests the following conjecture, which would
answer our Problem A (just take Ω = iI).
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Conjecture A. Let (Ω, Λ) be a transcendental pair (see Definition 1.1). Then
(gΩ, Λ) is a Gabor frame for L2(Rn) if and only if |Λ| < n!

nn .

Remark. Since all (Ω, Λ) are transcendental in case n = 1, the above conjecture
is precisely the Lyubarskii-Seip-Wallstén theorem [Lyu92, Sei92, SW92] in the one
dimensional case. In case n > 1, the only known necessary condition is |Λ| < 1,
which is a consequence of the Balian-Low type theorems (see [AFK14, GHO19] or
a complex analysis proof of |Λ| ≤ 1 by Lindholm [Lin01]).

Our second main result is a multivariate Gaussian Gabor frame criterion for
general lattices (see the remark after Theorem A in Sect. 1.2 for the proof and
Corollary 1.8 for applications).

Theorem 1.2 (Second main theorem). Fix Ω ∈ H and a lattice Λ in R
2n. Assume

that there exist r > 1, β = (β1, · · · , βn) ∈ R
n with

β1 + · · · + βn = 1, βj > 0, 1 ≤ j ≤ n,

and a holomorphic injection f from the ellipsoid

Bβ
r :=

⎧
⎨

⎩z ∈ C
n : π

n∑

j=1

βj |zj |2 < r2

⎫
⎬

⎭

to the torus X := C
n/ΓΩ,Λ◦ (see (1.2)) such that

f∗(ω + i∂∂φ) =
i

2

n∑

j=1

dzj ∧ dz̄j on Bβ
r

for some smooth function φ on X, where ω := i
2

∑n
j=1 dwj ∧ dw̄j is the Euclidean

Kähler form on X (note that the holomorphic cotangent bundle of X is trivial with
global frame {dwj}). Then (gΩ, Λ) is a Gabor frame.

Remark. In case (Ω, Λ) is transcendental the above theorem is equivalent to our
first main theorem. In order to prove this equivalence, we generalize (see Theorem
A in Sect. 1.2) McDuff–Polterovich’s result [MP94] (see Theorem 3.4) to all Kähler
ellipsoid embeddings (see Sect. 3.1).

In the one-dimensional case, we also obtain the following frame bound estimates
(see Theorem B in Sect. 1.3 for more results), which can be seen as an effective
version of [BGL10, Theorem 1.1].

Theorem 1.3 (Third main theorem). Let Λ be a lattice in R×R. Suppose that the
lattice

Γ := {z ∈ C : z = η + iy, (η, y) ∈ Λ◦},
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in C is generated by {1, τ} with Im τ > 1. Then for all f ∈ L2(R) with ||f || = 1, we
have

4π(Im τ − 1)|η(τ)|6
(∑

n∈Z
e−πn2Im τ

)2 ≤
√

2 ·
∑

λ∈Λ

|(f, πλgiI)|2 ≤ Im τ

1 − e−C
, C :=

π

4
· inf
0�=λ∈Γ

|λ|2, (1.3)

where η(τ) := eπiτ/12 Π∞
n=1(1 − e2πinτ ) is the Dedekind eta function.

The above three main theorems are special cases of the Hörmander criterion
(Theorem 1.7), Theorems A and B in Sect. 1.2. The whole paper is organized as
follows.

1.1 Background. Our starting point is the following observation, which is an
extension of a well-known duality result for Ω = iI [Jan82, Lyu92, Sei92].

Proposition 1.4. (gΩ, Λ) is a Gabor frame for L2(Rn) if and only if ΓΩ,Λ◦ (see
(1.2)) is a set of interpolation for the Bargmann–Fock space F2 (see (1.4) and Def-
inition 1.2 in Sect. 1.2).

Our first main theorem is an extension of the approach by Berndtsson–Ortega
Cerdà [BO95] for one-dimensional Gaussian Gabor frames to the multivariate case
by utilizing the theory of Hörmander’s L2-estimates for ∂ in the higher-dimensional
case, which has been developed during the past two decades and has received quite
some attention [OT87, Ohs94, Dem92, Ber10, Ber06, Ber09, Blo13, GZ15, BL16].
The new idea is to apply Demailly’s mass concentration technique [Dem93] (see
[Tos16] for a nice survey).

A crucial notion in the proof of our second main theorem is a generalized ex-
tremal type Seshadri constant (see Definition 1.5 and Theorem 3.3 for the extremal
property), which replaces the covolume of a lattice in the one-dimensional case. Note
also that the Seshadri constant has a quite different flavor than the (Beurling) den-
sities used in the discussion of Gabor frames, since it actually takes into account the
volumina of all subvarieties of the complex torus (see Theorem 3.9) and not just of
the whole complex torus.

Our third main theorem is based on a recent result of Berndtsson–Lempert
[BL16], which also yields explicit estimates for the multivariate Gaussian Gabor
frame bounds (see Theorems 5.1 and 5.2).

A short account of our other related results is given in Sects. 1.2 and 1.3 below
(the Hörmander criterion, Theorems A, B are among the most crucial ones).

1.2 Part I: Interpolation in Bargmann–Fock space. Consider the
Bargmann–Fock space

F2 := {F ∈ O(Cn) : ||F ||2 :=
∫

Cn

|F (z)|2e−π|z|2 < ∞}, (1.4)

where O(Cn) denotes the space of holomorphic functions on C
n and we omit the

Lebesgue measure in the integral. Let Γ be a lattice in C
n.
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Definition 1.2. We call Γ a set of interpolation for F2 if there exists a con-
stant C > 0 such that for every sequence of complex numbers a = {aλ}λ∈Γ with∑

λ∈Γ |aλ|2e−π|λ|2 = 1, there exists F ∈ F2 such that F (λ) = aλ for all λ ∈ Γ and
||F ||2 ≤ C.

Denote by |Γ| (the covolume of Γ) the volume of the torus X := C
n/Γ with

respect to the Lebesgue measure. In the one-dimensional case, Lyubarskii, Seip and
Wallstén [Lyu92, Sei92, SW92] (see [OS98] for the most general one-dimensional
generalization) proved that

Theorem 1.5. A lattice Γ in C is a set of interpolation for F2 if and only if |Γ| > 1.

Another proof of the “sufficient” part of the above theorem was given by Berndts-
son and Ortega Cerdà in [BO95] using the Hörmander ∂ theory. In order to make
best use of the Hörmander theory, we shall introduce the following notion of the
Hörmander constant, which is an analogue of the Seshadri constant introduced by
Demailly in [Dem92].

Definition 1.3. Let Γ be a lattice in C
n. The Hörmander constant of Γ is defined

by

ιΓ := sup{γ ≥ 0 : there exists a Γ-invariant function ψ on C
n such that ψ + π|z|2 is psh and

ψ = γ log(|z1|2/β1 + · · · + |zn|2/βn) near z = 0 for some βj > 0, β1 + · · · + βn = 1},

where “Γ-invariant” means that ψ(z + λ) = ψ(z) for all z ∈ C
n and λ ∈ Γ; “psh”

means subharmonic on each embedded disc.

By using of a result of Tosatti (see [Tos18, Theorem 4.6]), we can prove the
following:

Proposition 1.6. Assume that the only positive dimensional analytic subvariety of
X := C

n/Γ is X itself, then

ιΓ =
(n!)1/n

n
|Γ|1/n. (1.5)

The above result suggests the following definition.

Definition 1.4. A lattice Γ in C
n is said to be transcendental if the only positive

dimensional analytic subvariety of X := C
n/Γ is X itself.

By Proposition 1.4 and Proposition 1.6, we know that the following criterion
implies our first main result — Theorem 1.1.

Theorem 1.7 (The Hörmader criterion). Let Γ be a lattice in C
n. If ιΓ > 1 then Γ

is a set of interpolation for F2. In particular, if Γ is transcendental and |Γ| > nn

n! ,
then Γ is a set of interpolation for F2.
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In order to use the above criterion for non-transcendental lattices we have to
investigate the Hörmander constant in more depth. Our main idea is to introduce
the following definition.

Definition 1.5. Let (X, ω) be an n-dimensional compact Kähler manifold. Fix x ∈
X and take a holomorphic coordinate chart z = {zj} near x such that z(x) = 0. Put

Tβ := log(|z1|2/β1 + · · · + |zn|2/βn), βj > 0, β1 + · · · + βn = 1. (1.6)

The β-Seshadri constant of (X, ω) at x ∈ X is defined by

εx(ω; β) := sup{γ ≥ 0 : there exists an ω-psh function ψ

on X such that ψ = γTβ near x},

where “ω-psh” means that ψ is upper semi continuous on X with

ω + ddcψ ≥ 0, dc := (∂ − ∂)/(4πi),

in the sense of currents on X.

Remark. In case X = C
n/Γ and ω = ddc(π|z|2), we know that εx(ω; β) does not

depend on x ∈ X. Comparing the above definition with Definition 1.3, we further
get

ιΓ = sup
β1+···+βn=1, βj>0, 1≤j≤n

εx(ω; β). (1.7)

In case β1 = · · · = βn = 1/n, we know that nεx(ω; β) equals the classical Se-
shadri constant of Demailly (see [Tos18, section 4.4]). A famous result of McDuff–
Polterovich is a symplectic embedding formula [MP94] for the classical Seshadri con-
stant. Theorem 1.2 follows from the following generalization of McDuff–Polterovich’s
result to all β-Seshadri constants.

Theorem A. Let (X, ω) be a compact Kähler manifold. Denote by Kω the space of
Kähler metrics for the cohomology class [ω]. Fix x ∈ X and βj > 0, 1 ≤ j ≤ n with
β1 + · · · + βn = 1. Then the β-Seshadri constant εx(ω; β) is equal to the following
β-Kähler width

cx(ω; β) := sup
{

πr2 : Bβ
r

holx
↪−−→ (X, ω̃), ∃ ω̃ ∈ Kω

}
,

Bβ
r :=

⎧
⎨

⎩z ∈ C
n :

n∑

j=1

βj |zj |2 < r2

⎫
⎬

⎭ .

where “Bβ
r

holx
↪−−→ (X, ω̃)” means that there exists a holomorphic injection f : Bβ

r → X
such that f(0) = x and f∗(ω̃) = i

2

∑n
j=1 dzj ∧ dz̄j.
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Remark. The above theorem implies Theorem 1.2. In fact, by the above theorem
and (1.7), the assumption in Theorem 1.2 implies that ιΓ > 1. Hence our second
main theorem follows from the Hörmander criterion, Theorem 1.7 and Proposition
1.4.

In case X = C
n/Γ and ω = ddc(π|z|2) is the Euclidean Kähler form, we know

that Bβ
r is included in X if and only if (γ + Bβ

r ) ∩ Bβ
r = ∅, ∀ 0 �= γ ∈ Γ, which is

equivalent to that

r ≤ 1
2

√√√√ inf
0�=z∈Γ

n∑

j=1

βj |zj |2.

Hence Theorem A gives

εx(ω; β) = cx(ω; β) ≥ πr2, ∀ r ≤ 1
2

√√√√ inf
0�=z∈Γ

n∑

j=1

βj |zj |2.

Put
B := {β ∈ R

n : βj ≥ 0, 1 ≤ j ≤ n, β1 + · · · + βn = 1}, (1.8)
then (1.7) gives

ιΓ ≥ π

4
sup
β∈B

inf
0�=z∈Γ

n∑

j=1

βj |zj |2.

Apply the Hörmander criterion above we get:

Corollary 1.8. Let Γ be a lattice in C
n. If supβ∈B inf0�=z∈Γ

∑n
j=1 βj |zj |2 > 4

π , then
the Hörmander constant ιΓ > 1 (see Definition 1.3) and Γ is a set of interpolation
for F2.

Remark. In case all βj are equal to 1/n,

n · inf
0�=z∈Γ

n∑

j=1

βj |zj |2 = inf
0�=z∈Γ

|z|2 (1.9)

is known as the Buser–Sarnak invariant m(Γ) (see [BS94, Laz96], [Laz04, Theorem
5.3.6]) of Γ. For general β ∈ B we call

mβ(Γ) := inf
0�=z∈Γ

n∑

j=1

βj |zj |2 (1.10)

the β-Buser–Sarnak invariant of Γ. In general, we have that supβ∈B mβ(Γ) > m(Γ)/n.
For example, if

Γ := Z(A, 0) + Z(Ai, 0) + Z(0, B) + Z(0, Bi), A > B > 0,

then a direct computation gives

sup
β∈B

mβ(Γ) =
A2B2

A2 + B2
>

B2

2
=

m(Γ)
2

.
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1.3 Part II: Gaussian Gabor frames. In this section we shall show how to
apply the preceding results on sets of interpolation in F2 in Gabor analysis. We use
the same symbol ΓΩ,Λ◦ in (1.2) to denote the underlying lattice

{(η, y) ∈ R
n × R

n : η + iy ∈ ΓΩ,Λ◦}
in R

n × R
n. By a direct computation, we know that the symplectic dual of ΓΩ,Λ◦ is

equal to

ΓΩ,Λ := {(Im Ω)−1/2(ξ + Re Ωx, Im Ωx) ∈ R
n × R

n : (ξ, x) ∈ Λ}.

Hence Proposition 1.4 gives the following:

Corollary 1.9. (gΩ, Λ) defines a frame in L2(Rn) if and only if (giI , ΓΩ,Λ) does.

Remark. Notice that ΓΩ,Λ is equal to fΩ(Λ), where

fΩ(ξ, x) := (Im Ω)−1/2(ξ + Re Ωx, Im Ωx)

is a linear mapping preserving the standard symplectic form ω := dξT ∧ dx on
R

n × R
n. In dimension one, we know that (gΩ, Λ) defines a frame in L2(R) if and

only if (giI , Λ) defines a frame in L2(R) by the Theorem of Lyubarskii-Seip-Wallstén.
However, the following result implies that this is not the case for multivariate Gabor
systems.

Theorem 1.10. The Gabor system (giI , (Z⊕ 1
2Z)2) does not give a frame in L2(R2).

Note that we have

(1) There exists an R-linear isomorphism f of R
4 preserving the standard sym-

plectic form dξT ∧ dx on R
2 ×R

2 such that (giI , f(Z⊕ 1
2Z)2) does give a frame

in L2(R2);
(2) There exists Ω ∈ H such that (gΩ, (Z ⊕ 1

2Z)2) does give a frame in L2(R2).
Moreover, the set {Ω ∈ H : (gΩ, (Z ⊕ 1

2Z)2) is not a frame} is included in a
closed analytic subset of the Siegel upper half-space H.

In the one-dimensional case, we obtain the following estimates thanks to Faltings’
Green function formula [Fal84] (see also Sect. 5.3).

Theorem B. Let Λ be a lattice in R × R. Put

Γ := {z ∈ C : z = η + iy, (η, y) ∈ Λ◦}, C :=
π

4
· inf
0�=λ∈Γ

|λ|2.

Then |Λ|−1 = |Γ| ≥ C and we have the following estimates:

(1) If C ≥ 2 then for all f ∈ L2(R) with ||f || = 1, we have

e

4|Λ| ≤
√

2 ·
∑

λ∈Λ

|(f, πλgiI)|2 ≤ 1
(1 − e−C)|Λ| . (1.11)
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(2) If 1 < C < 2 then for all f ∈ L2(R) with ||f || = 1, we have

(C − 1)e
C2|Λ| ≤

√
2 ·
∑

λ∈Λ

|(f, πλgiI)|2 ≤ 1
(1 − e−C)|Λ| . (1.12)

(3) The most general case. Suppose that Λ’s symplectic dual lattice Γ in C is gener-
ated by {a, τ} with a > 0 and a Im τ > 1. Then for all f ∈ L2(R) with ||f || = 1,
we have

4π(a Im τ − 1)|η(τ/a)|6
(∑

n∈Z
e−πn2Im τ/a

)2 ≤
√

2 ·
∑

λ∈Λ

|(f, πλgiI)|2 ≤ a Im τ

1 − e−C
, (1.13)

where η(τ) := eπiτ/12 Π∞
n=1(1 − e2πinτ ) is the Dedekind eta function.

Remark. With the notation in (3), we have

|Λ|−1 = |Γ| = a Im τ,

thus one may look at (1.13) as an effective version of [BGL10, Theorem 1.1] (or the
corresponding Theorem 1.5). By our definition (1.9) of the Buser–Sarnak constant,
we have

C =
π

4
m(Γ).

The lower bound estimate in (1.13) is based on a precise Robin constant estimate
(see Theorem 5.5). For the upper bound, note that by [Sie89, Theorem 37], we have

C ≤ π

2
√

3
|Γ|,

where equality holds if and only if Γ is the hexagonal lattice. Hence the best upper
bound in (1.13) (for fixed a Im τ) is attached if and only if Γ is the hexagonal lattice.
This fact is compatible with the Strohmer–Beaver conjecture (see [FS17, section
2.4]). However, the upper bound in (1.13) is not optimal in general.

2 Preliminaries

2.1 Gabor transform and Bargmann transform. For Ω ∈ H (see 1.1) we
identify R

n × R
n with C

n via (ξ, x) �→ z := ξ + Ωx. We call the short-time Fourier
transform of f ∈ L2(Rn) with respect to

gΩ(t) = eπitT Ωt

the Gabor transform of f :

VgΩf(ξ, x) =
∫

Rn

f(t)e−2πiξT tgΩ(t − x)dt1 · · · dtn.



788 F. LUEF AND X. WANG GAFA

The latter can be related to the Ω-Bargmann transform

BΩf(z) :=
∫

Rn

f(t)eπitT Ωte−2πizT tdt1 · · · dtn.

as follows:

VgΩf(ξ, x) = BΩf(z)eπixT Ωx.

By Moyal’s identity we have (note than ||gΩ||2 = (2n det(Im Ω))−1/2)
∫

Cn

|BΩf(z)|2e−2πxT Im Ωxdξ1∧dx1∧· · ·∧dξn∧dxn = (2n det(Im Ω))−1/2 ·||f ||2. (2.1)

Since z = ξ + Ωx implies that

dξ1 ∧ dx1 ∧ · · · ∧ dξn ∧ dxn = (det(Im Ω))−1

(
i

2
∂∂|z|2

)n

,

we know that (2.1) gives

(det(Im Ω))−1||BΩf ||2Ω = (2n det(Im Ω))−1/2 · ||f ||2, (2.2)

where

||BΩf ||2Ω :=
∫

Cn

|BΩf(z)|2e−2πxT Im Ωx

(
i

2
∂∂|z|2

)n

.

Sometimes we shall omit the Lebesgue volume form
(

i
2∂∂|z|2)n in the above. Now

we are ready to introduce the following definition.

Definition 2.1. Fix Ω ∈ H and put (notice that (Im Ω)x = Im z)

φΩ(z) := xT Im Ω x = (Im z)T (Im Ω)−1Im z.

We call the space of holomorphic functions F on C
n with

||F ||2Ω :=
∫

Cn

|F (z)|2e−2πφΩ(z) < ∞,

the Ω-Bargmann–Fock space and denote it by F2
Ω.

Remark. In case Ω = iIn, where In denotes the identity matrix, F2
Ω is precisely

the following classical Bargmann–Fock space (see [Mum79, page 7] for the related
Von-Neumann–Stone theorem)

B :=
{

F ∈ O(Cn) :
∫

Cn

|F (z)|2e−2π|Im z|2 dξ1 · · · dξndx1 · · · dxn < ∞
}

. (2.3)

In time-frequency analysis, the Bargmann–Fock space F2 in (1.4) is more widely
used. But these two spaces are naturally isomorphic to each other since

|F (z)|2e−2πφiIn (z) = |F (z)e−πzT z/2|2e−πzT z.
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Let us briefly recall the basics of Gaussian Gabor frames: We associate to the
Gabor system (gΩ, Λ) the following operators:

• analysis operator: CΛ
gΩ

is a map from L2(Rn) to l2(Λ) defined by
f �→ {(f, πλgΩ)}λ∈Λ;

• synthesis operator: DΛ
gΩ

is a map from l2(Λ) to L2(Rn) given by DΛ
gΩ

c =∑
λ∈Λ cλπλgΩ;

• frame operator: SΛ
gΩ

:= DΛ
gΩ

◦ CΛ
gΩ

is an operator on L2(Rn):

SΛ
g f =

∑

λ∈Λ

(f, πλgΩ)πλgΩ.

An elementary computation shows that (CΛ
gΩ

)∗ = DΛ
gΩ

and thus SΛ
gΩ

:= (CΛ
gΩ

)∗ ◦ CΛ
gΩ

is a selfadjoint operator. The following result is well known, see [Gro01].

Lemma 2.1. For an arbitrary lattice Λ in R
n ×R

n, the coefficient operator CΛ
gΩ

from
L2(Rn) to l2(Λ) is bounded.

Proof. We shall give a proof for readers’ convenience. Using the Ω-Bargmann trans-
form, it suffices to show that

∑

z∈Γ

|F (z)|2e−2π(Im z)T (Im Ω)−1Im z ≤ C ||F ||2Ω, ∀ F ∈ F2
Ω,

where Γ := {z = ξ + Ωx : (ξ, x) ∈ Λ}. Since for w := (Im Ω)−1/2z, we have

|F (z)|2e−2π(Im z)T (Im Ω)−1Im z = |F ((Im Ω)1/2w)e
π

2
wT w|2e−π|w|2 ,

we know the above inequality is equivalent to that
∑

w∈Γ′

|F (w)|2e−π|w|2 ≤ C ||F ||2, ∀ F ∈ F2,

where Γ′ := {w = (Im Ω)−1/2(ξ + Ωx) : (ξ, x) ∈ Λ}. By the submean inequality, we
know that the above inequality is true for

C =
∫

|w|<R
e−π|w|2 , R := inf

w∈Γ′, w �=0
|w|/2,

hence the lemma follows. ��

There is a fundamental duality theory (see [DLL95, Jan95, RS97, CKL04] and
[JL20, Theorem 4.22]) that links the Gabor system (gΩ, Λ) with another Gabor
system associated to the symplectic dual lattice/adjoint lattice defined in Definition
1.1.
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Theorem 2.2 (Duality Theorem). (gΩ, Λ) is a Gabor frame for L2(Rn) with bounds
A and B if and only if {πλ◦gΩ}λ◦∈Λ◦ is a Riesz sequence with bounds A|Λ| and B|Λ|,
i.e. we have

A|Λ| ‖c‖2 ≤ ‖
∑

λ◦∈Λ◦

cλ◦πλ◦gΩ‖2 ≤ B|Λ| ‖c‖2

for all c ∈ �2(Λ◦).

There is an intricate link between Gabor analysis and Bargmann-Fock spaces: a
Gaussian Gabor system (gΩ, Λ) is a frame if and only if Λ is a set of sampling for
F2

Ω, and (gΩ, Λ◦) is a Riesz basis for its closed linear span if and only if Λ◦ is a set
of interpolation for F2

Ω, see [GL20] for the standard case Ω = iI.
Motivated by this we introduce the following well known notions:

Definition 2.2. Let T : H1 → H2 be a bounded C-linear map between two complex
Hilbert spaces. Then

(1) T is called sampling if there exist constants A, B > 0 such that

A ||f ||2 ≤ ||Tf ||2 ≤ B ||f ||2, ∀ f ∈ H1; (2.4)

(2) T is referred to as interpolating if T is surjective and there exist constants
A, B > 0 such that

A ||fc||2 ≤ ||c||2 ≤ B ||fc||2, ∀ c ∈ H2, (2.5)

where fc denotes the (unique) solution of T (·) = c with minimal norm.
The constants A, B above are called the sampling (interpolating) bounds.

Proposition 2.3. T is sampling with (2.4) if and only if T ∗ is interpolating with
(2.5).

Proof. Assume that T is sampling with (2.4). Then the eigenvalues of T ∗T lie in
[A, B], thus T ∗T has an inverse, say S := (T ∗T )−1, which implies that T ∗TSf =
f, ∀ c ∈ H1. Thus T ∗ : H2 → H1 is surjective and the minimal solution of T ∗(·) = f
is TSf (note that TSf is minimal since TSf⊥ ker T ∗). We need to show that

A||TSf ||2 ≤ ||f ||2 ≤ B|||TSf ||2.
In fact, S−1 ≥ A I implies that

||TSf ||2 = (TSf, TSf) = (Sf, T ∗TSf) = (Sf, f) ≤ 1
A

||f ||2,
thus A||TSf ||2 ≤ ||f ||2. Moreover, f = T ∗TSf implies

||f || = sup
||g||=1

(T ∗TSf, g) = sup
||g||=1

(TSf, Tg)

≤ ||TSf || · sup
||g||=1

||Tg|| ≤
√

B||TSf ||,

which gives ||f ||2 ≤ B||TSf ||2. This establishes one direction and the other direction
may be deduced in a similar manner. ��
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The following theorem follows directly from Theorem 2.2 and Definition 2.2.

Theorem 2.4. Let Λ be a lattice in R
n × R

n. Then CΛ
gΩ

is sampling with

A I ≤ SΛ
gΩ

≤ B I

if and only if DΛ◦
gΩ

is sampling with

|Λ| · A ≤ (SΛ◦
gΩ

)∗ ≤ |Λ| · B.

Notice that CΛ
gΩ

is sampling if and only (gΩ, Λ) defines a frame in L2(Rn). The
density theorem for Gabor frames states that if CΛ

gΩ
is sampling, then |Λ| ≤ 1.

Furthermore, a Balian-Low type theorem (see [AFK14, Theorem 1.5] or [GHO19] for
related results associated to general Fock spaces) further gives:

Theorem 2.5. Given a lattice Λ in R
n × R

n. If CΛ
gΩ

is sampling then |Λ| < 1.

The above two theorems and Proposition 2.3 imply

Corollary 2.6. Given a lattice Λ in R
n × R

n. Then CΛ
gΩ

is sampling if and only
if CΛ◦

gΩ
is interpolation. Moreover, the interpolation bounds are a scalar multiple of

the sampling bounds. In particular, CΛ
gΩ

can not be both sampling and interpolation.

Proof. The first part follows directly from Theorem 2.4 and Proposition 2.3. For the
second part, notice that if CΛ

gΩ
is both sampling and interpolation, we must have

|Λ| < 1, |Λ◦| < 1,

which is a contradiction since |Λ| · |Λ◦| = 1. ��

Remark. In case n = 1 and

g(t) = eπiat2 ,

for some complex number a with Im a > 0, we known that CΛ
g is sampling if and

only if |Λ| < 1 (see [Lyu92, Sei92, SW92]). For general n, gΩ(t) := eπitT Ωt, Theorem
1.10 implies that there exists a lattice Λ in R

n ×R
n such that CΛ

gΩ
is sampling (resp.

interpolation) for some Ω ∈ H but not for all Ω ∈ H. On the other hand, if CΛ
gΩ0

is
sampling for some Ω0 ∈ H then by Theorem 1.3 in [AFK14], we know that CΛ

gΩ
is

sampling if Ω is very close to Ω0.
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2.2 Proof of Proposition 1.4.

Proof of Proposition 1.4. By our definition, (gΩ, Λ) defines a frame in L2(Rn) if and
only if CΛ

gΩ
is sampling, which is equivalent to that CΛ◦

gΩ
is interpolation (see Corollary

2.6). Using the Ω Bargmann transform, we know that CΛ◦
gΩ

is interpolation if and
only if CΛ◦

gΩ
is bounded and

Γ := {ξ + Ωx ∈ C
n : (ξ, x) ∈ Λ◦}

is a set of interpolation for F2
Ω. By Lemma 2.1, we know that CΛ◦

gΩ
is always bounded,

hence (gΩ, Λ) defines a frame in L2(Rn) if and only if Γ is a set of interpolation for
F2

Ω. Notice that

|F (z)|2e−2πφΩ(z) = |F ((Im Ω)1/2w)e
π

2
wT w|2e−π|w|2 , w := (Im Ω)−1/2z

implies that
F (z) �→ F ((Im Ω)1/2w)e

π

2
wT w (2.6)

defines an isomorphism from F2
Ω to F2. Thus (gΩ, Λ) defines a frame in L2(Rn) if

and only if

(Im Ω)−1/2Γ = ΓΩ,Λ◦

is a set of interpolation for F2. ��
The duality principle Theorem 2.4 further implies:

Theorem 2.7. With the notation in the above proof, the following statements are
equivalent:

(1) ΓΩ,Λ◦ is a set of interpolation for F2 and for all F ∈ F2 with
∑

γ∈ΓΩ,Λ◦

|F (γ)|2e−π|γ|2 = 1,

we have

A ≤ inf
F ′∈F2, F ′=F onΓΩ,Λ◦

||F ′||2 ≤ B;

(2) Γ is a set of interpolation for F2
Ω and for all F ∈ F2

Ω with
∑

γ∈Γ

|F (γ)|2e−2πφΩ(γ) = 1,

we have

A · det(Im Ω) ≤ inf
F ′∈F2

Ω, F ′=F onΓ
||F ′||2 ≤ B · det(Im Ω);
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(3) (Λ, gΩ) defines a frame in L2(Rn) and for all f ∈ L2(Rn), ||f || = 1,

(B · |Λ|)−1

√
2n det(Im Ω)

≤
∑

λ∈Λ

|(f, πλgΩ)|2 ≤ (A · |Λ|)−1

√
2n det(Im Ω)

.

Proof. (2.6) implies (1) ⇔ (2). By (2.2), we know that (2) is equivalent to that CΛ◦
gΩ

is interpolation (see 2.5) with

B−1 · ||fc||2√
2n det(Im Ω)

≤ ||c||2 ≤ A−1 · ||fc||2√
2n det(Im Ω)

, ∀ c ∈ l2.

By Proposition 2.3, the above inequality is equivalent to that

B−1

√
2n det(Im Ω)

I ≤ (SΛ◦
gΩ

)∗ ≤ A−1

√
2n det(Im Ω)

I.

Thus Theorem 2.4 gives (2) ⇔ (3). ��
2.3 Proof of the Hörmander criterion (Theorem 1.7).

2.3.1 L2-estimate for the ∂-equation. We shall use the following special case of
Hörmander’s theorem (see [Dem, page 378, Theorem 6.5], see also Chapter 4 in
[Hor90]):

Theorem 2.8. Fix a smooth (0, 1)-form v with ∂v = 0 on C
n. Let φ be a plurisub-

harmonic function such that φ−δ|z|2 is also plurisubhamonic on C
n for some positive

constant δ. Then there is a smooth function a on C
n such that ∂u = v and

∫

Cn

|u|2e−φ ≤ 1
δ

∫

Cn

|v|2 e−φ,

where |v|2 :=
∑ |vj̄ |2 for v =

∑
vj̄dz̄j.

Proof of the Hörmander criterion (Theorem 1.7). Notice that the β-Seshadri con-
stant does not depend on the choose of x ∈ C

n/Γ. Thus, if the Hörmander constant
is bigger than one then there exist γ > 1 and an ωeuc-psh function ψ on C

n/Γ such
that ψ = γTβ near 0 ∈ C

n/Γ for some β ∈ B. Let

p : Cn → C
n/Γ,

be the natural quotient mapping. Fix c = {cλ} such that
∑

λ∈Γ

|cλ|2e−π|λ|2 = 1.

Let us apply Theorem 2.8 to

φ(z) := π|z|2 +
ψ(p(z))

γ
, v(z) :=

∑

λ∈Γ

cλeπλ̄(z−λ)∂χ(|z − λ|),
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where χ is a smooth function on R that is equal to 1 near the origin and equals to
0 outside a smooth ball of radius r. Let us take r such that

{z ∈ C
n : |z − λ| < r} ∩ {z ∈ C

n : |z − λ′| < r} = ∅, ∀ λ �= λ′ ∈ Γ.

Then we know that v is smooth, ∂v = 0 and
∫

Cn

|v|2e−φ < C,

for some constant thay does not depend on the sequence c = {cλ}. Moreover, since ψ
is ωeuc-psh, we know that φ(z) − (1 − γ−1)π|z|2 is plurisubharmonic. Thus Theorem
2.8 implies that there exists a smooth function u such that ∂u = v and

∫

Cn

|u|2e−φ <
C

(1 − γ−1)π
. (2.7)

By a direct computation we know that e−Tβ is not integrable near 0 ∈ C
n/Γ, hence

e−φ is not integrable near Γ and (2.7) implies that u vanishes at Γ. Take

F (z) =
∑

λ∈Γ

cλeπλ̄(z−λ)χ(|z − λ|) − u(z),

we know that F is holomorphic in C
n,

∫

Cn

|F (z)|2e−π|z|2 < C1,

for some constant C1 does not depend on c (notice that ψ is bounded from above)
and F (λ) = cλ for all λ ∈ Γ. Thus Γ is a set of interpolation. The final statement is
a direct consequence pf Proposition 1.6, which will be proved in Sect. 3.1. ��

In order to estimate the L2 norm of the extension F in the above proof, we
shall introduce the following Ohsawa–Takegoshi type theorem [OT87] proved by
Berndtsson and Lempert (see [BL16, Theorem 3.8], the main theorem in [GZ15] and
[Blo13] for related results).

Theorem 2.9. Let Γ be a lattice in C
n. Assume that there exists a non positive

Γ invariant function ψ on C
n such that ψ(z) + π|z|2 is plurisubharmonic on C

n, ψ
is smooth outside Γ and ψ(z)−γ log |z|2 is bounded near the origin for some constant
γ > n. Then for every sequence of complex numbers {cλ}λ∈Γ with

∑
λ∈Γ |cλ|2e−π|λ|2 =

1, there exists F ∈ F2 such that F (λ) = cλ for all λ ∈ Γ and

||F ||2 ≤
(

1 − n

γ

)−1

· πn

n!
· e− n

γ
ρ, ρ := lim inf

z→0
ψ(z) − γ log |z|2.
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Proof. Since ψ is Γ invariant, we know that ψ has isolated order γ log poles at Γ,
one may use Ohsawa–Takegoshi extension theorem to extend L2 functions from Γ
to C

n. Denote by F the extension with minimal L2 norm. By our assumption

i∂∂

(
n

γ
ψ(z) + π|z|2

)
≥
(

1 − n

γ

)
i∂∂(π|z|2).

Hence [BL16, Theorem 3.8] or the main theorem in [GZ15] implies
(

1 − n

γ

)∫

Cn

|F |2e−π|z|2 ≤ πn

n!
lim sup

z→0
e− n

γ
(ψ(z)−γ log |z|2),

thus our theorem follows. ��

2.4 Transcendental lattices and jet interpolations. Let us first introduce
the following definition for jet interpolations.

Definition 2.3. Let k ≥ 0 be an integer. Let Γ be a lattice in C
n. Put

Nk := {α = (α1, . . . , αn) ∈ Zn : αj ≥ 0,
∑

αj ≤ k}.

We say that Γ is a set of k-jet interpolation for F2 if there exists a constant C > 0
such that for every sequence of complex numbers {cλ,α}λ∈Γ,α∈Nk

with∑
λ∈Γ,α∈Nk

|cλ,α|2e−π|λ|2 = 1, there exists F ∈ F2 with

(
eπ|z|2∂α(e−π|z|2F )

) ∣∣
z=λ

= cλ,α, ∀λ ∈ Γ, α ∈ Nk, ∂αf :=
∂α1+···+αnf

∂zα1
1 · · · ∂zαn

n
,

and ||F ||2 ≤ C.

The proof of the Hörmander criterion above also implies the following result.

Theorem 2.10. Let k ≥ 0 be an integer. Let Γ be a transcendental lattice in C
n.

Assume that

|Γ| >
(n + k)n

n!
, (2.8)

then Γ is a set of k-jet interpolation for F2.

Proof. Since Γ is transcendental, by (3.2), we know that (2.8) implies that there
exists a non positive Γ invariant function ψ on C

n such that ψ(z)+π|z|2 is plurisub-
harmonic on C

n, ψ is smooth outside Γ and ψ(z) − γ log |z|2 is bounded near the
origin for some constant γ > n + k. Thus the Hörmander L2 estimate with singular
weight ψ (similar to the proof of the Hörmander criterion above) gives the above
theorem. ��
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Remark. If Γ is transcendental with |Γ| > nn

n! then

∣∣
√

n + k

n
Γ
∣∣ >

(n + k)n

n!
,

thus we know that
√

n+k
n Γ is a set of k-jet interpolation for F2. In one dimensional

case, we have the following theorem [GL09].

Theorem 2.11. Let Γ be a lattice in C. Then the followings are equivalent:

(1) Γ is a set of interpolation for F2;
(2)

√
k + 1 Γ is a set of k-jet interpolation for F2 for some positive integer k;

(3) |Γ| > 1.

For the higher-dimensional cases, we can prove the following result.

Theorem 2.12. Let Γ be a transcendental lattice in C
n. If

√
n+k

n Γ is a set of k-jet

interpolation for F2 for some non-negative integer k then |Γ| ≥ (k+1)n

(n+k)n
nn

n! .

Proof. Put ∇αF := eπ|z|2∂α(e−π|z|2F ) and Γk :=
√

n+k
n Γ. Assume that

√
n+k

n Γ is
a set of k-jet interpolation for F2. Let us define

G(z) := sup{|F (z)|2e−π|z|2 : F ∈ F2, ∇αF (λ) = 0, ∀ λ ∈ Γk}. (2.9)

Then by the Balian-Low type theorem, we know that G is not identically zero on
C

n. We claim that G is Γk invariant. In fact, if we put

TλF (z) := F (z + λ)e−π|λ|2/2e−πzλ̄.

Then F �→ TλF is an isomorphism on F2 with ||F || = ||TλF ||, |TλF (0)|2 =
|F (λ)|2e−π|λ|2 and

∇α(TλF )(0) = 0 ⇔ ∇αF (λ) = 0.

Hence G is Γk invariant. Put ψ = log G, we know that ψ is Γ invariant, ψ(z)+π|z|2 is
plurisubharmonic on C

n and ψ(z)−(k+1) log |z|2 is bounded above near z = 0. Since
Γ is transcendental, we know that Γk is also transcendental, thus the Γk invariant
analytic set {ψ = −∞} is discrete. Hence (3.2) gives that

(n!|Γk|)1/n ≥ k + 1,

from which our theorem follows. ��
Remark. The above theorem is our motivation for the conjecture A after Theorem
1.1, moreover, notice that limk→∞ k+1

n+k = 1, the above theorem also suggests the
following higher-dimensional analogue of Theorem 2.11.
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Conjecture B. Let Γ be a transcendental lattice in C
n. Then the followings are

equivalent:

(1) Γ is a set of interpolation for F2;

(2)
√

n+k
n Γ is a set of k-jet interpolation for F2 for some positive integer k;

(3) |Γ| > nn

n! .

Remark. From Proposition 1.4, we know that the above conjecture implies conjec-
ture A.

3 Hörmander constants and Kähler embeddings

3.1 Hörmander constants and proof of Proposition 1.6. In Definitions
1.3 and 1.5 we have defined the Hörmander constants and the β-Seshadri constants
for an n-dimensional compact Kähler manifold (X, ω). If all βj = 1/n and ω ∈ c1(L)
for some ample line bundle L then we have

nεx(ω; β) = εx(ω), (3.1)

where εx(ω) denotes the Seshadri constant introduced by Demailly in [Dem92] (in
fact, from (6.2) in [Dem92], we have nεx(ω; β) = γ(L, x), but Theorem 6.4 in [Dem92]
tells us that γ(L, x) is precisely the Seshadri constant used in algebraic geometry
when L is ample). In general, the condition

∑
βj = 1 is used to make sure that

sup{c ≥ 0 : e−cTβ is integrable near z = 0} = 1.

Remark. For transcendental ω on a general compact Kähler manifold, we know
that (see Theorem 3.2 below for the proof and generalizations) nεx(ω; β) is equal
to the generalized Seshadri constant (also denoted by εx(ω)) defined by Tosatti in
[Tos18, section 4.4]. In this general case, we shall prove the following result.

Proposition 3.1. Let (X, ω) be an n-dimensional compact Kähler manifold. As-
sume that X has no non-trivial analytic subvarieties, then

sup
β∈B

εx(ω; β) =
εx(ω)

n
=

(∫
X ωn

)1/n

n
. (3.2)

Proof. Note that for every β ∈ B, by [Dem, page 167, Corollary 7.4] (our definition
of ddc in Definition 1.5 is half of the one there) we have

(ddcTβ)n
x = (β1 · · ·βn)−1, (ddcTβ)n

x := lim
r→0

∫

|z−x|<r
(ddcTβ)n, (3.3)

which gives
∫

X
ωn ≥ εx(ω; β)n(β1 · · ·βn)−1 ≥ εx(ω; β)nnn.
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Hence

sup
β∈B

εx(ω; β) ≤
(∫

X ωn
)1/n

n
. (3.4)

On the other hand, we have the following identity proved by Tosatti in [Tos18,
Theorem 4.6]

εx(ω) = inf
V �x

(∫
V ωdim V

multxV

) 1
dim V

,

where the infimum runs over all positive-dimensional irreducible analytic subvarieties
V containing x and multxV denotes the multiplicity of V at x. Hence if X has no
non-trivial subvarieties then (put β0 = (1/n, · · · , 1/n), use (3.1) and the remark
above)

sup
β∈B

εx(ω; β) ≥ εx(ω; β0) =
εx(ω)

n
=

(∫
X ωn

)1/n

n
.

The above inequality and (3.4) together imply (3.2). ��

Proof of Proposition 1.6. Apply (3.2) to the case that X = C
n/Γ and ω = ddc(π|z|2),

we get immediately Proposition 1.6 (note that in this case

sup
β∈B

εx(ω; β) = ιΓ

and
∫
X ωn = n! |Γ|). ��

3.2 Relation with the s-invariant. Our β-Seshadri constant is closely related
to the s-invariant introduced by Cutkosky, Ein and Lazarsfeld in [CEL01].

Theorem 3.2. Let (X, ω) be an n-dimensional compact Kähler manifold. Assume
that ω lies in the first Chern class of a holomorphic line bundle L on X. Fix β =
(β1, · · · , βn) ∈ R

n such that all β−1
j are positive integers. Then

εx(ω; β) =
1

sL(Iβ)
, (3.5)

where Iβ is the ideal of OX generated by {z
1/β1

1 , · · · , z
1/βn
n } and

sL(Iβ) := min{s ∈ R : μ∗(sL) − E is nef}

is the s-invariant of Iβ with respect to L (see Definition 5.4.1 in [Laz04]), where μ
is the blowing-up of X along Iβ with exceptional divisor E.
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Proof. First let us prove εx(ω; β) ≥ 1
sL(Iβ) . Note that L is ample since ω is positive,

hence
1

sL(Iβ)
= sup{γ ≥ 0 : μ∗L − γE is ample}.

By Example 5.4.10 in [Laz04], one may replace μ by a desingularization f : Y → X
of Iβ with exceptional divisor F , more precisely, we have

1
sL(Iβ)

= sup{γ ≥ 0 : f∗L − γF is ample}.

which implies that for every γ < 1
sL(Iβ) there is a singular metric e−φ on f∗L with

γ-log pole along F such that i∂∂φ > 0 on Y . Then the weight f∗φ on L will have
the γTβ-singularity, from which we know that εx(ω; β) ≥ γ. Hence εx(ω; β) ≥ 1

sL(Iβ) .
Now let us prove that εx(ω; β) ≤ 1

sL(Iβ) . For every γ < εx(ω; β), we can find

a singular metric e−ψ on L with γTβ-singularity such that i∂∂ψ > 0. Then e−f∗ψ

defines a singular metric on f∗L with γ-log pole along F such that i∂∂(f∗ψ) > 0 on
Y , from which we know that εx(ω; β) ≤ 1

sL(Iβ) . ��
Remark. Since Iβ are special monomial ideals, it is not hard to find the explicit
desingularizations. Let us look at the simple example β = (1, 1

2). Then, in this case,
we have

Iβ = Span{z1, z
2
2}.

First, one may blow up the origin, so z1 = uv, z2 = u gives

Bl0Iβ = Span{uv, u2},

then we can blow up the point (u, v) = (0, 0) := 0̃, so v = ts, u = s gives

Bl0̃Bl0Iβ = Span{s2},

from which we know that F = 2 · |{s = 0}|.
3.3 Extremal property of the β-Seshadri constant. For s-invariant of a
general monomial ideal

IP := Span{zα1
, . . . , zαk}, αj ∈ Z

n
>0, zαj

:= zαj
1

1 · · · zαj
n

n ,

with isolated zero set {x}, where P is the Newton polytope defined by

P := convex hull of ∪1≤j≤k Pαj , Pαj := {x ∈ R
n : xl ≥ αj

l , 1 ≤ l ≤ n},

one may correspondingly define the P -Seshadri constant

εx(ω; P ) := sup{γ ≥ 0 : there exists an ω-psh function ψ

on X with ψ = γTP near x}, (3.6)
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where

TP := log
∑

α∈v(P )

|zα|2, v(P ) denotes the set of vertices of P.

Then the proof of Theorem 3.2 also implies

εx(ω; P ) =
1

sL(IP )
. (3.7)

The reason why we only use β-Seshadri constants in this paper is that they have the
following extremal property.

Theorem 3.3. sup{εx(ω; P ) : (1, . . . , 1) lies in the boundary of P} equals sup∑βj=1

εx(ω; β).

Proof. The proof follows from a very simple fact: for an arbitrary Newton polytope
P such that (1, . . . , 1) lies in the boundary of P , one can always find β ∈ R

n
>0 with∑

βj = 1 and

P ⊂ Pβ := {x ∈ R
n
≥0 : β1x1 + · · · + βnxn ≥ 1},

hence

εx(ω; P ) ≤ εx(ω; Pβ) = εx(ω; β)

gives the theorem. ��
Remark. The condition that (1, . . . , 1) lies in the boundary of P is equivalent to
the following identity

sup{c ≥ 0 : e−cTP is integrable near z = 0} = 1,

see [How01, Gue12] for the proof and related results.

3.4 McDuff–Polterovich’s theorem. McDuff–Polterovich [MP94] proved that
the Seshadri constant

εx(ω) := sup{γ ≥ 0 : there exists an ω-psh function ψ

on X with ψ = γ log |z|2 near x}
is always no bigger than the following Gromov width of (X, ω) (see [LMS13, Theorem
1.1] and [EV16])

cG(X, ω) := sup
{

πr2 : Br
Symplectic

↪−−−−−−→ (X, ω)
}

, Br := {z ∈ C
n : |z| < r},

where Br
Symplectic

↪−−−−−−→ (X, ω) means there exist a smooth injection f : Br ↪→ X such
that f∗(ω) = ωeuc := i

2

∑n
j=1 dzj ∧ dz̄j . In fact, the proof in [MP94] also gives the

following stronger result:
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Theorem 3.4. Let (X, ω) be a compact Kähler manifold. Denote by Kω the space
of Kähler metrics in the cohomology class [ω]. Then the Seshadri constant εx(ω) is
equal to the following Kähler width

cx(ω) := sup
{

πr2 : Br
holx

↪−−→ (X, ω̃), ∃ ω̃ ∈ Kω

}
,

where

Br :=

⎧
⎨

⎩z ∈ C
n :

n∑

j=1

|zj |2 < r2

⎫
⎬

⎭ ,

“Br
holx

↪−−→ (X, ω̃)” means that there exists an holomorphic injection f : Br ↪→ X
such that f(0) = x and f∗(ω̃) = ωeuc.

Proof. The proof here is different from McDuff–Polterovich’s approach in [MP94].
Our main idea is to use the following plurisubharmonic function on C

n

ψr(z) :=

{
πr2

(
log |z|2

r2 + 1
)

|z| < r,

π|z|2 |z| ≥ r,
(3.8)

which satisfies

(L1) ψr(z) − πr2 log |z|2 is bounded near 0.
(L2) ψr(z) ≤ π|z|2 on C

n and {z ∈ C
n : ψr(z) < π|z|2} = Br.

(L3) For every w ∈ Br and 0 < δ < 1 we have

ψr(fδ(w)) = ψr(w) + πr2 log(δ2),

where fδ(w) := (δw1, . . . , δwn).

We shall use (L1)-(L3) to prove (P1), (P2) below which imply the theorem:

(P1) If cx(ω) > πr2 then εx(ω) ≥ πr2.
(P2) If εx(ω) > πr2 then cx(ω) ≥ πr2.

Proof of (P1): If cx(ω) > πr2 then then one may think of Br as a Kähler subset
of X. Let us define ψ̃ such that ψ̃ = ψr − π|z|2 on Br and ψ̃ = 0 outside Br in X.
Then (L2) implies that ψ̃ is ω-psh (note that ωeuc = ddc(π|z|2)). Fix a small ε > 0
(assume that ε < πr2), then by (L1) one may take a sufficiently big C > 0 such that

ψ(z) := max{ψ̃(z) + C, (πr2 − ε) log |z|2} (3.9)

is equal to ψ̃ + C near the boundary of Br. Hence ψ extends to an ω-psh function
on X. Notice that ψ = (πr2 − ε) log |z|2 near z(x) = 0, hence εx(ω) ≥ πr2 − ε for all
ε > 0 and (P1) holds.
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Proof of (P2): To simplify the notation we take r = 1. If εx(ω) > π then one may
use the construction in (3.9) to produce an ω-psh function ψ smooth on X \ {x}
such that

(∗) ω + ddcψ = ddc(ψ1 + |z|2) near z(x) = 0,

and ω + ddcψ > 0 on X, where ψ1 in defined in (3.8). For w ∈ B1 and 0 < δ < 1 let
us define

φ(fδ(w)) := Max
{
ψ1(fδ(w)) + |fδ(w)|2, π(|w|2 + 2 log δ)

}
,

where Max denotes a regularized max function. By (L3) and (L2)

ψ1(fδ(w)) = ψ1(w) + π log(δ2) ≤ π(|w|2 + 2 log δ)

for w ∈ B1, with identity holds if and only if w ∈ ∂B1; together with (∗), we know
that for every 0 < γ < 1, one may take a small δ such that ddcφ extends to a Kähler
form ω̃ ∈ Kω with

f∗
δ (ω̃) = f∗

δ ddcφ = ddc(φ(fδ(w))) = ddc(π|w|2) on Bγ .

Letting γ → 1 we finally get cx(ω) ≥ π. The proof is complete. ��
In order to generalize the above proof to general β-Seshadri constants, we need to

construct the associated β-version of ψr in (3.8) (see Lemma 3.8 below). In the next
subsection, we shall use the Legendre transform theory to decode the construction.

3.5 Iterated Legendre transform and proof of Theorem A. The main
ingredient in our proof of Theorem A is the theory of iterated Legendre transform.

Definition 3.1. Let φ be a smooth convex function on R
n. We call

φ∗(α) := sup
y∈Rn

α · y − φ(y)

the Legendre transform of φ. Let A ⊂ R
n be a closed set. We call

φA(x) := sup
α∈A

α · x − φ∗(α)

the iterated Legendre transform of φ with respect to A.

Remark. Notice that

φ(x) + φ∗(α) ≥ α · x,

hence we always have

φA ≤ φ.
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Lemma 3.5. Let φ be a smooth convex function on R
n. Then

φ(x) + φ∗(α) = α · x

if and only if α = ∇φ(x), where

∇φ(x) :=
(

∂φ

∂x1
(x), . . . ,

∂φ

∂xn
(x)

)
.

Proof. It follows from the fact that x is the maximum point of the following concave
function

ψα : y �→ α · y − φ(y)

if and only if x is a critical point of ψα. ��
Proposition 3.6. If φ is smooth strictly convex and A ⊂ R

n is closed then

{x ∈ R
n : φ(x) = φA(x)} = {x ∈ R

n : ∇φ(x) ∈ A}.

Proof. By the above lemma, we have

α · x − φ∗(α) ≤ φ(x)

with identity holds if and only if α = ∇φ(x). Hence ∇φ(x) is the unique maximum
point of the following function

ρx : α �→ α · x − φ∗(α).

The proof of Proposition 2.2 in [Wan18] implies that ρx is smooth strictly concave
on ∇φ(Rn). Hence the supremum of ρx on the complement of any small ball around
∇φ(x) must be strictly smaller than φ(x). By our assumption, A is closed, thus
φ(x) = φA(x) if and only if ∇φ(x) ∈ A. ��
Definition 3.2. Let φ be a smooth strictly convex function on R

n and A be a closed
set in R

n. We call

ΩA(φ) := {x ∈ R
n : φA(x) < φ(x)}

the Hele–Shaw domain of (φ, A).

The above proposition implies that

ΩA(φ) = (∇φ)−1(Rn \ A). (3.10)

Our key observation is the following:

Theorem 3.7. Assume that φ is smooth strictly convex and A ⊂ R
n is closed. If

x ∈ ΩA(φ) then
φA(x) = sup

α∈∂A
α · x − φ∗(α), (3.11)

where ∂A denotes the boundary of A.
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Proof. Since ∇φ(x) is the unique maximum point of the following concave function

ρx : α �→ α · x − φ∗(α)

and ∇φ(x) /∈ A, we know that for every point a ∈ A,

f(t) := ρx(t∇φ(x) + (1 − t)a)

is increasing on t ∈ [0, 1]. Take t̂ ∈ [0, 1] such that

t̂∇φ(x) + (1 − t̂)a ∈ ∂A,

we know that

ρx(a) = f(0) ≤ f(t̂) ≤ sup
α∈∂A

ρx(α).

Hence the theorem follows. ��
Lemma 3.8. With the notation in Theorem A, for each r > 0 there exists ψr ∈
psh(Cn) such that

(L1) ψr − πr2Tβ is bounded near 0.
(L2) ψr(z) ≤ π|z|2 on C

n and {z ∈ C
n : ψr(z) < π|z|2} = Bβ

r .
(L3) For every w ∈ Bβ

r and 0 < δ < 1 we have

ψr(fδ(w)) = ψr(w) + πr2 log(δ2),

where fδ(w) := (δβ1w1, . . . , δ
βnwn).

Proof. Let us consider

ψr(z) := φA(log |z1|2, . . . , log |zn|2),
where

φ(x) := π(ex1 + · · · + exn), A := {α ∈ R
n : α · β ≥ πr2}.

Then we have

∇φ(x) = π(ex1 , . . . , exn)

and

φ∗(α) =

{∑n
j=1

(
αj log αj

π − αj

) ∀ αj ≥ 0,

∞ ∃ αj < 0,

where 0 log 0 := 0. Hence

φA(x) = sup
α∈A+

α · x −
n∑

j=1

(
αj log

αj

π
− αj

)
,
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where

A+ := {α ∈ [0, ∞)n : α · β ≥ πr2}.

Proof of (L1): Notice that ψr − πr2Tβ is bounded near 0 if and only if φA(x) −
supα∈A+

α · x is bounded on (−∞, 0]n. The above formula for φA implies that

inf
1≤j≤n

(
πr2

βj
− πr2

βj
log

r2

βj

)
≤ φA(x) − sup

α∈A+

α · x ≤ nπ

for all x ∈ (−∞, 0]n. Hence (L1) follows.
Proof of (L2): Follows directly from (3.10).
Proof of (L3): Notice that (3.11) implies

φA(x + (log(δ2))β) = φA(x) + πr2 log(δ2), ∀ x ∈ ΩA(φ),

from which (L3) follows. ��

Proof of Theorem A. Similar as the proof of Theorem 3.4 (replace Br by Bβ
r ), we

know that the lemma above gives Theorem A. ��
3.6 A partial converse of the Hörmander criterion. For general higher
dimensional cases, we do not know whether the Hörmander criterion is an equivalent
criterion or not. Based on Demailly–Păun’s generalized Nakai–Moishezon ampleness
criterion [DP04], a theorem of Nakamaye [Nak96, Oht19], Lindholm’s result [Lin01]
and the Balian-Low type theorem (see [Hei07, Theorem 10] and [AFK14, Theorem
1.5]), we obtain the following partial converse of the Hörmander criterion.

Theorem 3.9. Let Γ be a lattice in C
n. Denote by ιΓ the Hörmander constant of

(Cn/Γ, ωeuc).

(1) If Γ is a set of interpolation for F2 and all irreducible analytic subvarieties of
X are translates of complex tori then ιΓ > 1/n.

(2) If Γ is a set of interpolation for F2 and the only positive dimensional irreducible
analytic subvariety of X is X itself then

ιΓ =
(n! |Γ|)1/n

n
>

(n!)1/n

n
.

(3) Assume that ωeuc is rational on Γ or the Picard number of X is n2. If Γ is a
set of interpolation for F2 then ιΓ > 1/(n e).

Proof. Denote by 0 the unit of the torus and write ω := ωeuc. The main idea is to
use the following Demailly–Păun identity proved by Tosatti in [Tos18, Theorem 4.6]

ε0(ω) = inf
V �0

(∫
V ωdim V

mult0V

) 1
dim V

,
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where the infimum runs over all positive-dimensional irreducible analytic subvarieties
V containing 0, and mult0V denotes the multiplicity of V at 0. Now let us prove
Theorem (1), by our assumption, it suffices to show that for all complex subtorus

∫

V
ωd > 1, d := dim V.

Choose a C linear subspace E of Cn such that V = E/(E ∩ Γ). Notice that if Γ is a
set of interpolation for F2, then E ∩ Γ is a set of interpolation for F2|E . Thus the
Balian–Low type theorem implies that

|V | =
∫

V
ωd/d! > 1,

which gives ε0(ω) > 1, hence (1) follows. Now assume further that X has no non-
trivial subvarieties, then (3.2) implies

(nιΓ)n/n! = |X| = |Γ|,
thus (2) follows directly from the Balian–Low type theorem. To prove (3), we shall
use the following inequality (see [Ito20, Lemma 3.2])

ε0(ω) ≥ inf
V �0

(∫
V ωdim V

) 1
dim V

dim V
, if ω is integral on Γ, (3.12)

where the infimum runs over all positive-dimensional abelian subvarieties V con-
taining 0. Notice that the right hand side of (3.12) is 1-homogeneous with respect
to ω, we know that (3.12) also holds for all ω = cω′, where ω′ is integral on Γ. In
particular, it holds true if ω is rational on Γ. In case the Picard number of X is n2,
we know that ω can be approximated by rational ω′, hence (3.12) is true for all ω.
By Balian–Low type theorem, we have

∫

V
ωd > d!.

By Stirling’s approximation, we have

(d!)1/d/d ≥ e−1,

hence (3) follows. ��
3.7 Hörmander constants and densities of general discrete sets.

Definition 3.3. Let S be a discrete set in C
n. Let ψ be a non positive function such

that ψ + π|z|2 is plurisubharmonic on C
n. Let γ be positive number. We call (ψ, γ)

an S-admissible pair if ψ is smooth outside S, e−ψ/γ is not integrable near every
point in S and there exists a small constant ε0 > 0 such that

inf
ε<|z−λ|<2ε for some λ∈S

ψ(z) > −∞, ∀ 0 < ε ≤ ε0. (3.13)
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Assume that there exists an S-admissible pair, then we call

ι(S) := sup{γ > 0 : there exists ψ such that (ψ, γ) is S-admissible}
the Hörmander constant of S.

Since ψ equals to −∞ at S, (3.13) implies that

|λ − λ′| ≥ 2ε0, ∀ λ �= λ′ ∈ S,

thus S is uniformly discrete. The proof of the Hörmander criterion also implies:

Theorem 3.10. Let S be a discrete set in C
n. Assume that ι(S) > 1. Then there

exists a constant C > 0 such that for every sequence of complex numbers a = {aλ}λ∈S

with

|a|2 :=
∑

λ∈S

|aλ|2e−π|λ|2 = 1,

there exists F ∈ F2 such that F (λ) = aλ for all λ ∈ S and ||F ||2 ≤ C.

Definition 3.4. Let S be a discrete set in C
n. We shall define the upper uniform

density of S as

D+(S) := lim sup
r→∞

sup
z0∈Cn

n(z0, r)
πnr2n/n!

,

where n(z0, r) denotes the number of points in

B(z0, r) := {z ∈ C : |z − z0| < r}.

In case S is a lattice in C
n, we know that D+(S)−1 is equal to the Lebesgue

measure of the torus C
n/S. In the one-dimensional case, we also have the following

general result.

Theorem 3.11. Let S be a uniformly discrete set in C. Then D+(S) · ι(S) = 1.

Proof. Since S is uniformly discrete, we have ι(S) > 0, a change of variable argument
gives

ι((ι(S) − ε)−1/2S) = (ι(S) − ε)−1ε(S) > 1

for every sufficiently small ε > 0. Thus Theorem 3.10 implies that (ι(S) − ε)−1/2S
is F2 interpolating. Apply the main result in [OS98], we know that

1 > D+((ι(S) − ε)−1/2S) = D+(S) · (ι(S) − ε).

Letting ε go to zero, we have

D+(S) · ι(S) ≤ 1.
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Now it suffices to show that

ι(S) ≥ D+(S)−1.

Assume that D+(S)−1 = b, then for every 0 < a < γ < b,

sup
z0∈C

n(z0, r)
πr2

≤ 1
γ

,

for all sufficiently large r, which gives
∫

B(z0,r)
i∂∂|z|2/2 = πr2 ≥ γ · n(z0, r)

for all z0 ∈ C. Apply the Berndtsson–Ortega construction in [BO95, page 113–114],
the above inequality implies that ι(S) ≥ a for every a < b. Hence ι(S) ≥ b =
D+(S)−1. The proof is complete. ��

Using results from [BO95, OS98], one may also generalize the above theorem to
general weight function φ with φzz̄ bounded by two positive constants. For general
higher-dimensional cases, by [Lin01, Theorem 2], we know that if S is F2 interpo-
lating then D+(S) ≤ 1. However, in general, S may not be F2 interpolating even
D+(S) is small enough. Comparing with Theorem 3.10, this means that there exists
S with very small upper uniform density whose Hörmander constant is also small.

3.8 Proof of Theorem 1.10. Notice that if ((Z ⊕ 1
2Z)2, e−π|t|2) gives a frame

in L2(R2) then (Z2, e−πt2) defines a frame in L2(R), which is not true by the Balian-
Low type theorem. Now it suffices to prove (2) since (2) implies (1) by the remark
after Corollary 1.9. Put

X := R
4/(Z ⊕ 2Z)2,

then we know that (X, ω) is of type (1, 4). Since the moduli space of polarized type
(d1, d2) (d1, d2 are fixed positive integers) Abelian surfaces is equal to the Siegel
upper half-space, to prove (2), by the Hörmander criterion, it suffices to show that
the Seshadri constant of a generic polarized type (1, 4) Abelian surface is bigger than
two. Since generically a polarized type (1, 4) Abelian surface has Picard number one,
by Theorem 6.1 (b) in [Bau99], its Seshadri constant equals

8/
√

8 + 1 = 8/3 > 2,

where we use the fact that k = 1, l = 3 is the primitive solution of the following
Pell’s equation

l2 − 8k2 = 1.

The proof is complete.
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4 Non transcendental examples

4.1 Gröchenig–Lyubarskii’s example. Let us look at the following lattice in
R

2 × R
2 (see [GL20, page 3, (4)]):

Λ =
{(

e +
1
2
f,

√
3

2
f

)
: e, f ∈ Z

2

}
.

Its symplectic dual is

Λ◦ =
{(

e∗,
−1√

3
e∗ +

2√
3
f∗
)

: e∗, f∗ ∈ Z
2

}
.

Fix Ω = iIn, where In denotes the identity matrix. With the notation in Proposition
1.4, we have

ΓΩ,Λ◦ =
{(

e∗,
−1√

3
e∗ +

2√
3
f∗
)

: e∗, f∗ ∈ Z[i]
}

.

Let us estimate the Seshadri constant of

ω = ωeuc :=
i

2

2∑

j=1

dzj ∧ dz̄j

on the complex tori X := C
2/ΓΩ,Λ◦ . Notice that the Riemannian metric induced by

ω is precisely the euclidean metric | · |, hence

inf
λ�=λ′∈ΓΩ,Λ◦

|λ − λ′|2 = inf
0�=μ∈ΓΩ,Λ◦

|μ|2 = |(1, −1/
√

3)|2 =
4
3
.

Thus the following ball

B := {|z| < 1/
√

3}

contains precisely one point in ΓΩ,Λ◦ and we can think of B as a Kähler ball in X,
which gives (see Theorem 3.4) the following Seshadri constant inequality

ε0(ω) ≥ π

3
> 1. (4.1)

However, from [GL20, page 3, (4)], we know that (Λ, gΓ) does not define a frame
in L2(R2). Thus by Proposition 1.4, ΓΩ,Λ◦ is not a set of interpolation for F2. To
summarize, we obtain:

Theorem 4.1. There exists a lattice in C
2 whose Seshadri constant is bigger than

one but it is not a set of interpolation for F2.
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Remark. By the Hörmander criterion, we know every lattice in C
2 with Seshadri

constant bigger than two is a set of interpolation for F2. In the above example, one
may further prove that

4
3

≥ ε0(ω) ≥ π

3
. (4.2)

In fact the complex line C(0, 2/
√

3) covers a subtorus, say

V � C/(2/
√

3)Z[i],

of X, thus [Tos18, Theorem 4.6] implies that

(2/
√

3)2 =
∫

V
ω ≥ ε0(ω),

from which (4.2) follows.

4.2 Complex lattices. We call Γ a complex lattice if

iΓ = Γ.

One may verify the following:

Proposition 4.2. For a lattice Γ in C
n, the followings are equivalent

(1) Γ is a complex lattice;
(2) Γ = Z[i]{γ1, . . . , γn} for some γj ∈ C

n;
(3) Γ = AZ[i]n for some A ∈ GL(n,C);
(4) X := C

n/Γ is biholomorphic to C
n/Z[i]n.

Now we can prove a generalization of (4.2).

Theorem 4.3. Assume that Γ = AZ[i]n is a complex lattice. Then

m(Γ) ≥ ε0(ω) ≥ max
{π

4
m(Γ), emin(A)

}
,

where

emin(A) := inf
z∈Cn, |z|=1

|Az|2.

Proof. Choose z = A−1w as the new variable, one may assume that A = In. Then

ω =
i

2

n∑

j=1

dwj ∧ dw̄j ≥ emin(A) · ω0, ω0 :=
i

2

n∑

j=1

dzj ∧ dz̄j .

Denote by ψ0(z) the Green function on C/Z[i] satisfying

iπdz ∧ dz̄ + i∂∂ψ0 = i∂∂ log |z|2.
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then we know that

ψ := emin(A) · max{ψ0(z1), · · · , ψ0(zn)}
satisfies 2πω + i∂∂ψ ≥ 0 and has order one log pole at Γ. Thus we know that
ε0(ω) ≥ emin(A), together with Theorem 3.4, it gives the lower bound of the Seshadri
constant that we need. To prove the upper bound, it suffices to choose a subtorus

Vγ := C/Z[i]γ, 0 �= γ ∈ Γ,

then [Tos18, Theorem 4.6] gives

ε0(ω) ≤
∫

Vγ

ω = |γ|2.

Take the infimum over all 0 �= γ ∈ Γ, the upper bound follows. ��
Remark. In case

Γ = a1Z[i] × · · · × anZ[i], aj > 0,

we have

emin(A) = m(Γ) = min{a2
1, . . . , a

2
n},

thus the above theorem gives

ε0(ω) = min{a2
1, . . . , a

2
n}.

4.3 Seshadri sequence and Gröchenig’s result. In this section, we shall
rephrase the main result of Gröchenig in [Gro11] in terms of the Seshadri constant.
The main idea is to consider a sequence of extensions, more precisely, let

{0} = X0 ⊂ X1 · · · ⊂ Xk = X := C
n/Γ, nk := dimC Xk, k ≥ 1, (4.3)

be an increasing sequence of complex Lie subgroups of X. We shall introduce the
Seshadri constant εj , 1 ≤ j ≤ k, for extension from Xj−1 to Xj . Let

πj : Ej → Xj

be the covering map, where Ej is an nj dimensional complex subspace of Cn. Let

Ej = Ej−1 ⊕ Fj ,

be the orthogonal decomposition with respect to the Euclidean metric ω. Then

Γj := Fj ∩ π−1
j (Xj−1)

define a lattice in Fj . Put

X⊥
j−1 := Fj/Γj ,

(in general, X⊥
j−1 is not a subtorus of Xj). Denote by

εj := ε0(ω; X⊥
j−1) (4.4)

the Seshadri constant at the origin of X⊥
j−1 with respect to ω.
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Definition 4.1. We call (4.3) an admissible sequence of X if

εj > nj − nj−1, ∀ 1 ≤ j ≤ n.

X is said to be Seshadri admissible if it possesses an admissible sequence.

Theorem 4.4. Assume that X is Seshadri admissible, then Γ is a set of interpola-
tion in F2.

Proof. Let π : Cn → X be the covering map. Put

F2
j :=

{
F holomorphic on π−1(Xj) :

∫

π−1(Xj)
|F |2e−π|z|2 < ∞

}
.

It suffices to prove that each element f in F2
j−1 extends to an element F in F2

j with
||F || ≤ Cj ||f ||. Since π−1(Xj) is a disjoint union of translates of Ej and

π−1(Xj−1) ∩ Ej = π−1
j (Xj−1),

the above extension problem reduces to the extension from F2
j−1|π−1

j (Xj−1)
to F2

j |Ej
.

Apply the Hörmander method, it suffices to construct an ω plurisubharmonic func-
tion with order (nj − nj−1) log pole along π−1

j (Xj−1). Now the assumption εj >
nj −nj−1 gives an ω plurisubharmonic ψj with order nj −nj−1 log pole at the origin
of Fj , the pull back of ψj along the natural projection

Ej → Fj

gives the function that we need. ��
Now we shall show how to use the above theorem to give a new proof of [Gro11,

Theorem 9] on the Gabor frame property for (Λ, gΩ). The setup for [Gro11, Theorem
9] is the following:

Ω = iIn, ΓΩ,Λ◦ is a complex lattice.

Based on Proposition 1.4, we shall prove a similar result with a weaker assumption,
i.e. we shall only assume that ΓΩ,Λ◦ is a complex lattice. Let us write

ΓΩ,Λ◦ = AZ[i]n,

where A ∈ GL(n,C). By the Iwasawa decomposition (see [Bum13, Proposition
26.1]), we have

A = US,

where U is unitary and S is lower triangular with positive eigenvalues λj (U, S are
uniquely determined by A, λ−1

j is equal to γj in [Gro11, Theorem 9]). Since the
Euclidean metric ω is unitary invariant, one may assume that

ΓΩ,Λ◦ = SZ[i]n.
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Put

Ej = {z ∈ C
n : z1 = · · · = zn−j = 0}, 1 ≤ j ≤ n,

and

Xj = π(Ej).

Then we have

Fj � C, Γj � λn−j+1Z[i],

and

εj = λ2
n−j+1, 1 ≤ j ≤ n.

Since nj = j, we have nj − nj−1 = 1. Hence if

λn−j+1 > 1, 1 ≤ j ≤ n,

then X is Seshadri admissible. Thus Theorem 4.4 implies the following slight gen-
eralization of Gröchenig’s result (notice again that γj = λ−1

j ):

Theorem 4.5 (Theorem 9 in [Gro11]). Let ΓΩ,Λ◦ be a complex lattice. With the no-
tation above, assume that λj > 1 for all 1 ≤ j ≤ n. Then ΓΩ,Λ◦ is set of interpolation
for F2 (and equivalently (Λ, gΩ) defines a frame in L2(Rn)).

5 Effective interpolation bounds

5.1 Interpolation bounds in terms of the Buser–Sarnak constant. We
shall use Theorem 2.9 to prove the following:

Theorem 5.1. Fix a lattice Γ in C
n. If

C =
π

4
· inf
0�=μ∈Γ

|μ|2 > n (5.1)

then every sequence of complex numbers a = {aγ} with
∑

γ∈Γ |aγ |2e−π|γ|2 = 1 extends
to a function in F2. Moreover,

1 − e−C
n−1∑

k=0

Ck

k!
≤ inf

F∈F2, F (γ)=aγ , ∀ γ∈Γ
||F ||2 ≤ M(C)

n! en
,

where

M(C) :=

{
(n + 1)n+1 if C ≥ n + 1,

Cn+1/(C − n) if n < C < n + 1.
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Proof of the lower bound. Notice that (by an induction on n)

1 − e−C
n−1∑

k=0

Ck

k!
=
∫ C

0
e−t tn−1

(n − 1)!
dt

and

{z ∈ C
n : π|z − γ|2 < C} ∩ {z ∈ C

n : π|z − γ′|2 < C} = ∅, ∀ γ �= γ′ ∈ Γ,

It suffices to show that
∫

{π|z−γ|2<C}
|F (z)|2e−π|z|2 ≥ |F (γ)|2e−π|γ|2

∫ C

0
e−t tn−1

(n − 1)!
dt. (5.2)

Notice that
∫

{π|z−γ|2<C}
|F (z)|2e−π|z|2 = e−π|γ|2

∫

{π|w|2<C}
|F (w + γ)e−πwT γ |2e−π|w|2 ,

The main observation is that the Taylor expansion

G(w) := F (w + γ)e−πwT γ = F (γ) +
∑

cαwα,

is now an orthogonal decomposition, i.e.
∫

{π|w|2<C}
|G(w)|2e−π|w|2 = |F (γ)|2

∫

{π|w|2<C}
e−π|w|2

+
∑

|cα|2
∫

{π|w|2<C}
|wα|2e−π|w|2 ,

from which we know that
∫

{π|z−γ|2<C}
|F (z)|2e−π|z|2 ≥ |F (γ)|2e−π|γ|2

∫

{π|w|2<C}
e−π|w|2 .

Now put t = π|γ|2, we have
∫

{π|w|2<C}
e−π|w|2 =

∫ C

0
e−td

tn

n!
=
∫ C

0
e−t tn−1

(n − 1)!
dt,

which gives (5.2). ��
Proof of the upper bound. The main idea is to use Theorem 2.9. The definition of C
implies that

B := {z ∈ C
n : π|z|2 < C}

is embedded ball in X := C
n/Γ. For

π

C
≤ δ <

π

n
,
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put (notice that {δ|z|2 < 1} ⊂ B)

ψδ(z) :=

{
log(δ|z|2) + (1 − δ|z|2) δ|z|2 < 1
0 z ∈ X \ {δ|z|2 < 1}.

Then we have

i∂∂ψδ ≥ −δ · i∂∂|z|2.
Denote by ψ the pull back to C

n of πψδ/δ. Apply Theorem 2.9 to ψ, we get

inf
F∈F2, F (γ)=aγ , ∀ γ∈Γ

||F ||2 ≤
(

1 − nδ

π

)−1 πn

n!
e−n(1+log δ).

Put

x :=
nδ

π
,

then n/C ≤ x < 1 and
(

1 − nδ

π

)−1 πn

n!
e−n(1+log δ) =

nn

(1 − x)xn
· 1
n! en

.

Thus the upper bound follows from

inf
n/C≤x<1

nn

(1 − x)xn
= M(C).

The proof of Theorem B is now complete. ��
5.2 Interpolation bounds in terms of the Robin constant. In this sub-
section, we shall generalize Theorem 5.1 to the case that ε0(ω) > n. The main idea
is to consider the following envelope with prescribed singularity

ψπ
a := sup{ψ0 ≤ 0 : 2πω + i∂∂ψ0 ≥ 0, ψ0 has an isolated order a

log pole at the origin}
on the torus X = C

n/Γ. Denote by ψa the pull back to C
n of ψπ

a .

Definition 5.1. We call ψa the a-envelope function on C
n associated to the lattice

Γ and

ρa := lim inf
z→0

ψa(z) − a log |z|2.

the a-Robin constant of Γ.

We have the following generalization of Theorems 5.1 and B.
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Theorem 5.2. Assume that ε := ε0(ω) > n. Put

C =
π

4
· inf
0�=μ∈Γ

|μ|2. (5.3)

Then every sequence of complex numbers c = {cγ} with
∑

γ∈Γ |cγ |2e−π|γ|2 = 1 ex-
tends to a function in F2. Moreover,

1 − e−C
n−1∑

k=0

Ck

k!
≤ inf

F∈F2, F (γ)=cγ , ∀ γ∈Γ
||F ||2 ≤ inf

n<a<ε

(
1 − n

a

)−1 πn

n!
e−nρa/a.

Proof. The proof of the lower bound is the same. For the upper bound, it suffices to
apply Theorem 2.9 to ψ = ψa. ��
Remark. In case n = 1, we know that

ε =
∫

C/Γ
ω.

Moreover, ψπ
ε is also well defined. In fact, we have the following

Proposition 5.3. ψπ
ε is equal to the unique solution, say ψ, of

i∂∂ψ + 2πω = ε · i∂∂ log |z|2, sup
X

ψ = 0,

on X = C/Γ.

Proof. Since
∫

X
i∂∂ψ + 2πω =

∫

X
2πω = 2πε =

∫

X
ε · i∂∂ log |z|2,

from the Hodge theory, we know that up to a constant there exists a unique solution
ψ such that

i∂∂ψ + 2πω = ε · i∂∂ log |z|2.
Thus if we assume further that supX ψ = 0 then ψ is unique. Moreover, we know
that ψ is smooth outside the origin and ψ − ε log |z|2 is smooth near the origin, thus

ψ ≤ ψπ
ε .

On the other hand, notice that ψπ
ε − ψ is subharmonic, thus ψπ

ε − ψ is equal to a
constant, say A. Take z0 such that ψ(z0) = 0, then

A = ψπ
ε (z0) − ψ(z0) = ψπ

ε (z0) ≤ 0,

which gives

ψ ≥ ψπ
ε .

Hence ψ = ψπ
ε . ��

Remark. The above Proposition implies that ψπ
ε is equal to the Arakelov Green

function up to a non-zero constant (see [Fal84, page 393 and 417]).
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5.3 Faltings’ identity for the Robin constant. Notice that
∫

X
ω/ε = 1,

we know that [ω/ε] is the Chern class of the line bundle, L = [0], over X. Choose a
metric h on L such that the Chern curvature satisfies

iΘ(L, h) = 2πω/ε.

Denote by s the canonical section of [0], then we know that

i∂∂ log |s|2h = i∂∂ log |z|2 − 2πω/ε,

which implies that
ε log |s|2h − sup

X
ε log |s|2h = ψπ

ε . (5.4)

The pull back of the line bundle [0] to C is a trivial line bundle, thus one may
identify the pull back to C of s with a holomorphic function, say fs(z) on C. In case
Γ = SpanZ{1, τ}, Im τ = ε, (up to a constant) we have

fs(z) = ϑ

(
z +

1
2

+
τ

2
; τ
)

,

(notice that ϑ
(

1
2 + τ

2 ; τ
)

= 0) where

ϑ(z; τ) =:
∑

n∈Z

e2πinzeπin2τ

is known as the Jacobi theta function. The following formula for the Robin constant
is based on the Faltings’ theta metric ||θ|| (see [Fal84, page 403, 413 and 416] or the
function U below).

Proposition 5.4. Assume further that Γ = SpanZ{1, τ}, Im τ = ε. Denote by ψε

the pull back to C of ψπ
ε , then

ψε

ε
= log U − sup

C

log U, U(z) :=
∣∣ϑ
(

z +
1
2

+
τ

2
; τ
)

e−π(Im z+ ε

2
)2/ε

∣∣2, (5.5)

and the ε-Robin constant of Λ defined by

ρε := lim inf
z→0

ψε(z) − ε log |z|2

satisfies
ρε

ε
= 2 log(2π) + 6 log |η(τ)| − sup

C

log U, (5.6)

where η(τ) is the Dedekind eta function defined by η(τ) := eπiτ/12Π∞
n=1(1 − e2πinτ ).
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Proof. One may verify that U is Γ-invariant and

i∂∂ log U = −2πω/ε +
∑

γ∈Γ

i∂∂ log |z + γ|2,

thus (5.5) follows. To prove (5.6), it suffices to show that

lim
z→0

U(z)/|z|2 = (2π)2 · |η(τ)|6

or equivalently

∣∣∂ϑ

∂z

(
1
2

+
τ

2
; τ
)

e−πε/4
∣∣2 = (2π)2 · |η(τ)|6,

which follows from
(

∂ϑ

∂z

(
1
2

+
τ

2
; τ
)

eπiτ/4

)8

= (2π)8 · η(τ)24

(since both sides are cusp forms of degree 12 with the same leading term). ��
Remark. Notice that

sup
C

log U = 2 · sup
z∈C

log
∣∣ϑ (z; τ) e−π(Im z)2/ε

∣∣

and

sup
z∈C

log
∣∣ϑ (z; τ) e−π(Im z)2/ε

∣∣ = sup
t∈R

φ(t) − πt2/ε, φ(t) := sup
Im z=t

log |ϑ(z; τ)|.

Since ϑ is an even function of z and depends only on e2πiz, we know that

φ(t) = φ(−t)

is an even convex function of t. Moreover, since |ϑ (z; τ) e−π(Im z)2/ε
∣∣ is Γ invariant,

we have

sup
z∈C

log
∣∣ϑ (z; τ) e−π(Im z)2/ε

∣∣ = sup
0<t<ε

φ(t) − πt2/ε

and

φ(t) = sup
0<x<1

log |
∑

n∈Z

e2πin(x+it)eπin2τ |.

Notice that

eφ(t) ≤
∑

n∈Z

e−2πnte−πn2ε

with identity holds if τ = iε. By the Poisson summation formula, we have
√

ε · eπz2/ε
∑

n∈Z

e2πinze−πn2ε =
∑

n∈Z

e2πinz/εe−πn2/ε,
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take z = it, we get

eφ(t)−πt2/ε ≤ e−πt2/ε
∑

n∈Z

e−2πnte−πn2ε =
1√
ε

·
∑

n∈Z

e−πnt/εe−πn2/ε,

which gives

sup
z∈C

∣∣ϑ (z; τ) e−π(Im z)2/ε
∣∣ ≤ 1√

ε
·
∑

n∈Z

e−πn2/ε =
∑

n∈Z

e−πn2ε,

(for a higher-dimensional generalization of the above argument, see [Pa18, Lemma
8.2]). By (5.6), the above estimate gives the following lower bound for ρε/ε.

Theorem 5.5. The ε-Robin constant of Γ = SpanZ{1, τ}, Im τ = ε satisfies

ρε

ε
≥ 2 log(2π) + 6 log |η(τ)| − 2 log

∑

n∈Z

e−πn2ε, (5.7)

with identity holds if τ = iε.

5.4 Proof of Theorem B.

Proof of (1) and (2). Notice that the disc of diameter
∫
0�=λ∈Γ |λ| is contained in a

fundamental domain of C/Γ. Hence |Λ|−1 = |Γ| ≥ C. The frame bounds estimate
follows directly from Theorem 5.1 and Theorem 2.7. ��

Proof of (3). For the lower bound, by Theorem 5.2 (let a go to ε), it suffices to
compute the ε-Robin constant ρ, where

ε := a Im τ

is the Seshadri constant. Denote by ρ′ the Im τ/a-Robin constant of C/〈1, τ/a〉, then
a change of variable argument gives

ρ = a2ρ′.

Thus

ρ/ε = ρ′/(Im τ/a) ≥ 2 log(2π) + 6 log |η(τ/a)| − 2 log
∑

n∈Z

e−πn2Im τ/a,

by Theorem 5.5. Apply Theorems 5.2 and 2.7, we get the lower bound. The upper
bound follows directly from Theorems 2.7 and 5.1. ��



820 F. LUEF AND X. WANG GAFA

Acknowledgments

We would like to thank A. Austad, E. Berge, U. Enstad, M. Faulhuber, L. Polterovich
and E. Skrettingland for their feedback on earlier versions of the manuscript. Thanks
are due to the referee for many helpful suggestions.

Funding Open access funding provided by NTNU Norwegian University of Science and
Technology (incl St. Olavs Hospital - Trondheim University Hospital)

Open Access This article is licensed under a Creative Commons Attribution 4.0 Inter-
national License, which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

References

[AFK14] G. Ascensi, H. G. Feichtinger, and N. Kaiblinger, Dilation of the Weyl
symbol and Balian–Low theorem. Trans. Am. Math. Soc. 366 (2014), 3865–
3880.

[Bau99] T. Bauer, Seshadri constants on algebraic surfaces, Math. Annalen 313
(1999), 547–583.

[BKL21] Y. Belov, A. Kulikov, and Y. Lyubarskii, Gabor frames for rational func-
tions. arXiv preprint arXiv:2103.08959 (2021).

[Ber06] B. Berndtsson, Subharmonicity properties of the Bergman kernel and some
other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Greno-
ble), 56 (2006), 1633–1662.

[Ber09] B. Berndtsson, Curvature of vector bundles associated to holomorphic fibra-
tions, Ann. Math. 169 (2009), 531–560.

[Ber10] B. Berndtsson, An Introduction to things ∂̄, IAS/Park City Math Ser 17,
Amer Math Soc, Providence R I , 2010; available in www.math.chalmers.se/
bob.

[BL16] B. Berndtsson and L. Lempert, A proof of the Ohsawa–Takegoshi theorem
with sharp estimates, J. Math. Soc. Japan 68 (2016), 1461–1472.

[BO95] B. Berndtsson and J. Ortega Cerdà, On interpolation and sampling in
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