
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Jørgen Bele Reinfjell

Automatic Detection of Interconnect
Topologies and Optimization of the
Broadcast Operation for MPI-based
systems

Master’s thesis in MTDT
Supervisor: Jan Christian Meyer
July 2023

Jørgen Bele Reinfjell

Automatic Detection of Interconnect
Topologies and Optimization of the
Broadcast Operation for MPI-based
systems

Master’s thesis in MTDT
Supervisor: Jan Christian Meyer
July 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Dedication
I want to express my appreciation to my supervisor, Jan Christian Meyer, for providing

valuable guidance and for being an outstanding mentor throughout the work on this
thesis. I also want to thank the people at the HPC lab and Prof. Anne C. Elster for giving
me access to the HPC lab. Finally, I want to thank my family and friends for their support

throughout the work on this thesis.

Problem description

This thesis aims to employ empirical measurements for the automatic detection of
interconnect topologies. Furthermore, it examines the utility of those topologies for auto-
matic performance tuning of MPI collective operations.

i

ii

Abstract

In this thesis, pair-wise measurements are used to automatically detect the topology
of a network using MPI. The PLogP model is applied to model the performance of com-
munication between two ranks. The PLogP parameters between two ranks are found by
a micro-benchmark that was created using the LGate test harness. Clustering techniques
are applied to the results of the micro-benchmark and used to extract topology information
on several levels. Using an automatic parameter search, many different topologies can be
extracted.

Results show that applying clustering algorithms to the PLogP micro-benchmark mea-
surements is accurate at detecting both network topology and node-internal topologies.
We run tests with different measurement counts. Analysis shows how that has an impact
on the runtime of the micro-benchmark and the impact on the level of detail. They also
show that increasing the number of repetitions used to get our measurements can be used
to increase the detail in the distance matrices.

We implement a topology-aware MPI_Bcast implementation that can use the topolo-
gies that were automatically detected. A micro-benchmark is used to find the best broad-
cast implementation from a set of algorithms and topologies for a given message size.
We generate a parameterized version of the broadcast operation that uses the results for
a given message size. Our results show a relative speedup ≥ 1.5 for up to P = 512 for
several clusters when compared to OpenMPI and Intel MPI. We apply the technique for
the single-node system ARM1 with a currently unknown topology and achieve a speedup
of 1.5 over OpenMPI.

iii

iv

Table of Contents

Problem description i

Abstract iii

Table of Contents vii

List of Tables ix

List of Figures xii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 1
1.3 Structure . 2

2 Background and related work 3
2.1 Performance models . 3

2.1.1 Fundamental equation of modeling 3
2.1.2 Scaling . 3
2.1.3 Speedup . 4

2.2 Communication models . 4
2.2.1 Hockney . 4
2.2.2 Bulk Synchronous Parallel . 4
2.2.3 LogP model . 5
2.2.4 LogGP and Parameterized LogP (PLogP) 5

2.3 Message Passing Interface (MPI) . 5
2.3.1 Point-to-point communication 6
2.3.2 Communication protocols . 7
2.3.3 Process rank and communication groups 7

v

2.3.4 Collective communication . 7
2.3.5 MPI Implementations . 8

2.4 High Performance Computing . 8
2.4.1 Basic Linear Algebra Subprograms (BLAS) 8
2.4.2 Nodes, clusters and Network topology 8
2.4.3 Topology aware communication 9

2.5 Clustering methods . 10
2.5.1 Metric spaces . 10
2.5.2 Vector spaces . 10
2.5.3 Sparse Spatial Selection (SSS) 10
2.5.4 K-means . 10
2.5.5 K-medoids . 11
2.5.6 Spectral clustering methods . 11
2.5.7 Hierarchical clustering . 11
2.5.8 SSSTree . 12
2.5.9 DBSCAN . 13
2.5.10 HDBSCAN . 13

2.6 Related work . 14
2.6.1 Measurements of the LogP parameters 14
2.6.2 Optimization of broadcast and other collective operations in MPI 14

3 Methodology 15
3.1 PLogP measurements using LGate . 15

3.1.1 LGate . 15
3.1.2 PLogP measurements using LGate 17

3.2 Optimizing network topologies . 22
3.3 Automated clustering parameter search 24
3.4 Experiments . 24
3.5 Clustering algorithm performance . 25

4 Experimental setup 27
4.1 Compilation . 27
4.2 SLURM and MPI . 27
4.3 Analysis and processing . 27
4.4 HPC Lab 06 computer - HPCLAB 27
4.5 IDUN . 28
4.6 FRAM . 28
4.7 BETZY . 29
4.8 IDUN-ARM1 . 29

5 Results and discussion 31
5.1 Finding internal node topologies for a single node 31

5.1.1 Outliers for first two ranks . 32
5.1.2 Cause of diagonal bands . 34

5.2 Finding inter-node topologies between two nodes 34
5.3 Finding node interconnection topologies 35

vi

5.4 Determining the cluster topology for a large number of nodes 35
5.5 Discovery of currently unknown topology for ARM1 37
5.6 Find topology for BETZY . 39
5.7 Baseline . 40
5.8 Scaling . 42
5.9 Clustering algorithms . 42

6 Case study: topology aware MPI broadcast 45
6.1 Motivation . 45
6.2 Background . 46

6.2.1 Broadcast in OpenMPI and Intel MPI 46
6.3 Topology based optimization . 47

6.3.1 Intra-node and inter-node optimization 47
6.3.2 Fat-tree-based communication 47
6.3.3 MagPIe . 47

6.4 Implementation . 47
6.4.1 Limitations . 49
6.4.2 Algorithms . 49

6.5 Methodology . 50
6.5.1 Statistical error . 50
6.5.2 Predicting and algorithmic selection of best broadcast function . . 50

6.6 Experiments . 50
6.7 Results and discussion . 51

6.7.1 FRAM . 51
6.7.2 BETZY . 53
6.7.3 IDUN . 54
6.7.4 ARM1 . 55

6.8 Summary . 56

7 Conclusion 59
7.1 Further work . 60

Bibliography 61

Appendix 67
7.1.1 A - Clustering accuracy . 67
7.1.2 B - Latency matrices . 67

vii

viii

List of Tables

2.1 Relationship between PLogP and LogP/LogGP models 6
2.2 Point-to-point based communication functions in MPI 6
2.3 Some collective communication functions available in MPI 7

3.1 Table of experiments . 25

6.1 List of base broadcast algorithms used 49
6.2 List of top-level broadcast algorithms used 49
6.3 Speedup for P=128,256 for OpenMPI and Intel MPI @ FRAM 53
6.4 Best broadcast algorithm for message size and P, OpenMPI @ FRAM * -

non-blocking, m - using magpie . 53
6.5 Speedup for P=512,1024,2048 for OpenMPI and Intel MPI @ BETZY . . 54
6.6 Best broadcast algorithm for message size and P, OpenMPI @ BETZY * -

non-blocking, m - using magpie . 54

ix

x

List of Figures

2.1 LogP (left) vs PLogP (right) message transmission diagram [1] 6
2.2 Fat-Tree topology with two layers and two nodes for each stem. 9
2.3 Star topology . 10
2.4 Example dendrogram from network measurements on ARM1 12
2.5 Tree construction algorithm for SSSTree 13

3.1 Subset barrier algorithm based on dissemination used in LGate 16
3.3 Algorithm for joining leaves in the cluster tree 16
3.2 Algorithm for running all pairwise test 17
3.4 LGate topology file and tree representation 17
3.5 LogP measurements . 19
3.7 busy() function used to measure clock overhead, same as used in [1] . . . 20
3.6 Algorithm for joining leaves in the cluster tree 21

4.1 Python packages and versions . 28
4.2 HPCLAB system properties . 28
4.3 IDUN system properties . 28
4.4 FRAM system properties . 29
4.5 BETZY system properties . 29
4.6 ARM1 system properties . 30

5.2 Variance for values of R . 31
5.1 Communication time prediction for 1 node @ FRAM. The clear alternat-

ing pattern at R=64 and R=128 is caused by inter-socket communication. 32
5.3 Communication time prediction for 1 node, R = 256 @ FRAM. Using

–distribution block:block . 32
5.4 Two different rank assignments and alternative subset barrier, m=0, P=32,

R=128 @ FRAM . 33
5.5 RTT (0) prediction for 2 nodes @ FRAM. Here the same pattern as for 1

node appears, but the divide between the two nodes is also visible. Outliers
≥ 95th percentile are removed to maintain a reasonable color scale. . . . 34

xi

5.6 Latency for 4 nodes @ FRAM. Here intra-node latency is apparent. Dif-
ferences between runs are due to different node assignments. Outliers ≥
95th percentile are removed to maintain a reasonable color scale. 36

5.9 RTT(0) with 1 core per node, R=64 @ FRAM 36
5.7 Latency for 8 nodes, R=64 @ FRAM. Here intra-node latency is apparent.

Differences between runs are due to different node assignments. Outliers
≥ 95th percentile are removed to maintain a reasonable color scale. . . . 37

5.8 Communication time prediction for 4 nodes @ FRAM. Here intra-node
latency is apparent. Differences between runs are due to different node
assignments. Outliers ≥ 95th percentile are removed to maintain a rea-
sonable color scale. 38

5.10 Predicted RTT(1) and latency, R=8192 @ ARM1 38
5.11 Predicted RTT(1) and latency, R=256 with –map-by core @ ARM1 . . . 38
5.12 HDBSCAN Clustering dendrogram from measurements on ARM1 39
5.13 RTT prediction for m=0,R=8,P=512 @ BETZY 39
5.14 Zoom-in to top left corner of Figure 5.13 40
5.15 Predicted RTT(0) @ HPCLAB . 41
5.16 PLogP Latency, R=8196 @ HPCLAB 41
5.17 Core to core latency [2] . 41
5.18 Time to run PLogP measurements for different numbers of nodes and rep-

etitions, using all 32 cores of each node @ FRAM, M=2MiB 42
5.19 Some clusters found for two-nodes @ FRAM 43

6.1 Fat tree with 12 processes in 3 clusters 47
6.2 Communication ordering using clustering and binary tree bcast 48
6.3 Communication ordering using binary tree bcast 48
6.4 Selection of best broadcast implementation 50
6.5 Broadcast results using OpenMPI @ FRAM 51
6.6 IMPI - 4 nodes, 128 cores total @ FRAM, 32MB, 128MB, and 256MB] . 52
6.7 IMPI vs optimized - 4 nodes, 128 cores total @ FRAM] 52
6.8 Broadcast benchmark results using Intel MPI @ BETZY 54
6.9 Broadcast benchmark results using OpenMPI @ BETZY 55
6.10 16 nodes with 28 cores comparison of OpenMPI Bcast @ IDUN 55
6.11 Performance and speedup curve of optimized BCast using 2 and 4 clusters

compared to OpenMPI default on ARM1. 50 warmup-rounds and 1000
repetitions. 56

6.12 Optimized broadcast decision function for ARM1 with 4 cluster topology 56

7.1 Clustering accuracy for values of R, P=32 @ FRAM 68
7.2 Clustering accuracy for values of R, P=64 @ FRAM 69
7.3 Clustering accuracy for values of R, P=128 @ FRAM 70
7.4 Clustering accuracy for values of R, P=512 @ BETZY 71
7.5 Clustering accuracy for values of R, P=96 @ ARM1 72
7.6 Latency P=32 @ FRAM . 73
7.7 Latency P=128 @ FRAM . 73
7.8 Latency P=96 @ ARM1 . 74

xii

Abbreviations

MPI = Message Passing Interface
SLURM = Simple Linux Utility for Resource Management

S = speedup

RTT = Round-trip time
t = Time
L = Latency
os = PLogP send overhead parameter
or = PLogP recieve overhead parameter
g = PLogP gap parameter

P = number of processes
R = number of repetitions
M = largest message size
m = message size

xiii

xiv

Chapter 1
Introduction

In this chapter, we present the motivation, scope, and structure of this thesis.

1.1 Motivation

An understanding of the network topology is required to reach optimal performance in
HPC applications. Empirical measurements of the network have the possibility of finding
specific properties of that exact network that cannot easily be deduced from the known
facts of the network, or that depend on the state of a continuously changing system.

1.2 Scope

We use the LGate pairwise test-harness to measure PLogP parameters of the interconnec-
tion between processes in MPI applications. The main goal of these measurements is to
find patterns that reveal useful properties of the system. The measurements are used to
define distance functions and distance matrices. We look at using clustering techniques
from data mining and machine learning, in an attempt to extract useful information from
the measurements. Several clustering methods for extracting useful topology information
from these distance functions are applied. The information is used to create a network
topology, which we apply in a topology-aware implementation of the MPI broadcast oper-
ation. The main reason for looking at the broadcast operation is that it is well researched
and optimized implementations exist. We are interested in determining if the topologies
we find can lead to performance improvements in such operations. Therefore we apply the
technique to a system with an unknown architecture to demonstrate that it can be used to
find useful topologies.

1

Chapter 1. Introduction

1.3 Structure
In Chapter 2 we present background information that is useful for understanding the topics
covered in this thesis. Chapter 3 introduces related work. Chapter 4 covers an introduction
to LGate, the PLogP micro-benchmark, automated clustering parameter search, definitions
of metrics, and lists the experiments used in this thesis. The experimental setup and de-
scriptions of the computational resources used in this thesis are presented in Chapter 5.
Our results and discussion of the PLogP micro-benchmark and clustering benchmarks are
presented in Chapter 6. Chapter 7 contains our case study of a topology-aware MPI broad-
cast. Here we introduce the reader to MPI collective operations, and various algorithms
used for broadcast. We also present the implementation, experimental setup, and results
from benchmarks of our parameterized broadcast operation. Finally, Chapter 8 concludes
with both our main results from the PLogP micro-benchmark and clustering algorithms
and the case study, and proposes interesting directions for future research.

2

Chapter 2
Background and related work

This chapter covers the background and related work. We organize the presentation into
several sub-chapters. Sections 2.1 and 2.2 present the performance and communication
models used in this thesis. Section 2.3 covers details of MPI. Section 2.4 presents im-
portant concepts of High-Performance Computing. Section 2.5 introduces clustering, and
presents the methods used in this work. The chapter ends with Section 2.6 that presents
the related work.

2.1 Performance models

2.1.1 Fundamental equation of modeling

The total time for parallel computation is modeled by the fundamental equation of mod-
eling [3]. The model is based on the property that parallel programs can be reduced into
two parts: computation and communication. It introduces the overlap of computation and
communication. By overlapping computation and communication the total time will be
reduced according to the overlap. Equation 2.1 shows the fundamental equation.

Ttotal = Tcomp + Tcomm − Toverlap (2.1)

2.1.2 Scaling

In this thesis, we define scaling as the capability a program has to utilize computational re-
sources as a function of the computational resources. Understanding how a program scales
as computational resources increase is useful to understand how the program will perform
for new systems. For our purposes, the number of CPUs is the measure of computational
resources.

3

Chapter 2. Background and related work

2.1.3 Speedup

Speedup is a measure used to compare the performance of two program implementations.
The speedup for a program a when compared to another program b is given by Equa-
tion 2.2.

speedup =
Ta

Tb
(2.2)

2.2 Communication models

2.2.1 Hockney

The Hockney model estimates the time required to send a message of size m between two
nodes. It was first described by R. Hockney [4] to compare communication performance
between two types of computers. The model consists of two parameters α and β. α is the
latency, and β is the bandwidth of the link between the two nodes. The model is defined
by Equation 2.3.

t(m) = α+ β−1m (2.3)

The values α and β are found by repeatedly measuring the time required to send mes-
sages between the two nodes for selected message sizes, followed by using linear regres-
sion to find the slope and y-intercept.

2.2.2 Bulk Synchronous Parallel

The Bulk Synchronous Parallel (BSP) model is a computational model designed to merge
the bridge between hardware and software [5]. To achieve this, BSP models a computer by
its computational units, the network that connects the computational units, and the hard-
ware that makes the communication between components possible. The computational
units in the BSP computer are able to do local computation and local memory operations.
In modern computation systems, these computational units are the CPUs and threads of
the system with their own local memory. The BSP model describes parallel program ex-
ecution as a series of global supersteps. Each superstep consists of the following three
components:

• Concurrent computation: local computation and memory operations within each
component

• Communication: where memory operations between components are possible

• Synchronization: a barrier where all processes in a group must arrive until any pro-
cess can proceed

Note that the synchronization step in the BSP model can be implemented using the
broadcast operation.

4

2.3 Message Passing Interface (MPI)

2.2.3 LogP model
The LogP model, as described in [6] by Culler et al., is a communication model that
includes parameters for parallel systems. It estimates the communication time by four
parameters: the latency L, the overhead o, the gap between messages g, and the number
of processors P .

• The latency L is defined as the time it takes a message from the first byte is sent
from the sender until the first byte is received by the receiver. Because the LogP
model assumes independently executing processors, the parameter L is the upper
bound on the latency.

• The overhead o is a measure of the time the CPU has to spend on sending and
receiving a message.

• The gap g is the lower bound on the time interval between two consecutive mes-
sages. This means that two messages that are sent directly after each other will at
least have a gap of g between them.

• P is the number of processors in the system.

A finite capacity for communication is assumed, so no more than L
g messages can be

sent at any time.

2.2.4 LogGP and Parameterized LogP (PLogP)
LogGP is a variant of the LogP model with an additional parameter G. G is the gap
between messages for large messages.

The parameterized LogP model extends the LogP model by making the parameters
depend on message size. PLogP also differentiates between sending overhead os(m) and
receiving overhead or(m), with the relation o(m) = or(m)+os(m)

2 . PLogP is useful when
we want to study performance for various message sizes and with finer granularity than
the standard LogP model.

Table 2.1 shows the relationship between the parameters of the LogP model and the
PLogP model. The main difference is that all LogP/LogGP parameters are expressed
through more parameters than the LogP model.

Figure 2.1 shows the message transmission diagram for LogP and PLogP as it is pre-
sented by Kielmann et al. in their paper on fast measurements of LogP parameters. It
shows what the PLogP parameters measure, and how the measurement compares to that
of the LogP model. In the diagram, the terms measure and mirror are used in the PLogP
model, because that is what the original paper by Kielmann et al. [1] used. In this paper
the terms sender and receiver are used instead.

2.3 Message Passing Interface (MPI)
Message Passing Interface (MPI) is a standardized API for high-performance parallel pro-
grams [7]. MPI is commonly used for parallel computations on large clusters, such as

5

Chapter 2. Background and related work

Figure 2.1: LogP (left) vs PLogP (right) message transmission diagram [1]

LogP/LogGP PLogP
L L+ g(1)− os(1)− or(1)
o (os(1) + or(1))/2
g g(1)
G g(m)/m
P P

Table 2.1: Relationship between PLogP and LogP/LogGP models

supercomputers. It has support for both point-to-point and collective operations. The first
version of MPI only had support for distributed memory, but later versions have support
for shared memory [8].

2.3.1 Point-to-point communication
In MPI, processes can communicate with specific other processes by using point-to-point
communication routines. Support for several communication modes is available. Normal,
synchronized, and non-blocking point-to-point communication are some of these modes.
In normal mode, the call will wait until the buffer is available to be reused. Synchronized
mode forces a send call to wait until the corresponding receive call has started, but does
not wait until it has completed. Non-blocking mode returns immediately but might send
at a later time. It allows for overlap of communication and computation as modeled by
Equation 2.1. For non-blocking mode the user has to check if the send or receive has
been completed manually. Table 2.2 shows a subset of the point-to-point communication
operations available in MPI. Two processes must both start their end of the operation for
them to be able to communicate.

Operation Synchronous Blocking Non-blocking
Send MPI SSend MPI Send MPI ISend

Recieve MPI Recv MPI Irecv
SendRecv MPI Sendrecv MPI Isendrecv

Table 2.2: Point-to-point based communication functions in MPI

6

2.3 Message Passing Interface (MPI)

2.3.2 Communication protocols
Most MPI implementations support two communication protocols: the eager, and the ren-
dezvous protocol. The eager protocol allows for small messages to be sent directly to an-
other process without synchronization [9]. It works by each process reserving memory for
incoming eager messages. In the rendezvous protocol, each send requires to first exchange
information like message size before starting the actual send. Therefore, an overhead of
an extra round-trip is involved when switching to the rendezvous mode. Each implemen-
tation has a different message size threshold for switching from the eager protocol to the
rendezvous protocol, which can lead to different performance for some message sizes.

2.3.3 Process rank and communication groups
Processes in MPI are identified by a numerical id known as the rank. The default com-
munication group MPI_COMM_WORLD is created by MPI on program initialization, and
contains all processes. Each process has a unique rank in a given communication group in
the range 0 . . . P − 1 that can be retrieved by using the function MPI_Comm_rank. Sub-
communicators are communicators that only contain a subset of MPI_COMM_WORLD, and
are used for communication on only a subset of all processes.

2.3.4 Collective communication
Collective operations in MPI are operations that work on communication groups. They
require that all ranks in a communication group call the same operation, and those used in
this thesis will block until all processes in the group are ready. Table 2.3 shows a list of
some commonly used collective operations in MPI.

Several collective operations work with a root rank. The rank that is designated as root
will do extra work such as coordination. For single-to-many or many-to-single operations
the root rank will be the source and receiver of the data distributed to all other ranks.

MPI Function Description
MPI Barrier Synchronization point
MPI Broadcast One-to-many send
MPI Gather Collect data from all ranks to root
MPI Scatter Root sends equal splits of data to all ranks
MPI Allgather All ranks collect data from all other ranks
MPI Reduce Reduce operation on data from all ranks

Table 2.3: Some collective communication functions available in MPI

We only go into further details about the Barrier and Broadcast operations, because
they are most relevant for this thesis.

Barrier

The barrier operation is the simplest collective operation in MPI. It makes all processes in
the communication group synchronize with each other. No processes are allowed to pass

7

Chapter 2. Background and related work

the barrier until all processes in the group are synchronized.

Broadcast

The broadcast is a collective operation used to send data from a single root rank to all other
ranks in the communication group.

MPI Process Affinity

Process affinity refers to the binding of a process to a specific processing unit or core. For
MPI, the process affinity defines which cores should be mapped to which rank. One way
to achieve this is to bind cores by a shared resource or property, such as l2cache, socket,
or board. The process affinity is important for performance because different groups of
cores have different shared resources and properties [10]. The --map-by core option
to OpenMPI can be used to map all cores to ranks sequentially.

2.3.5 MPI Implementations
Intel MPI is a highly optimized version of the MPI specification for Intel processors
[11]. The implementation is not open-source. OpenMPI is an open-source implemen-
tation that provides high performance on both homogenous and heterogenous systems,
and with support for shared memory, Infiniband, and other communication protocols [12]
[13]. MPICH2 is another implementation of MPI and was created in an attempt to pro-
vide an open-source and free, high-performance, and portable implementation of the MPI
standard [14].

2.4 High Performance Computing

2.4.1 Basic Linear Algebra Subprograms (BLAS)
BLAS is an interface to commonly used fundamental linear algebra functions [15]. Func-
tionality includes functions for vector operations like dot product and sum, and matrix
operations like multiplication on both dense and sparse matrices. Highly optimized imple-
mentations of the BLAS interface include ATLAS [16], OpenBLAS [17], and Intel MLK
[18].

2.4.2 Nodes, clusters and Network topology
Nodes are the entities that participate in a network and can be computers, servers, and
other network devices. In the context of High-Performance Computing, a node is a self-
contained system with CPUs and memory shared among these CPU cores. A cluster is
a collection of many nodes that are interconnected in a network, such that each node
can communicate with any other node in the cluster. Interconnect technologies include
Ethernet and InfiniBand. InfiniBand is a high-speed interconnect technology that provides
high bandwidth and low latency communication. Large HPC clusters contain 1000s of
nodes with a total of tens of thousands of cores.

8

2.4 High Performance Computing

The network topology is defined by the way these nodes are interconnected. There are
many different ways to interconnect nodes in clusters. The following are some commonly
used network topologies in HPC clusters:

• Fat-tree topology: A fat-tree topology is a hierarchical network interconnect that
is commonly used in large-scale HPC clusters. It consists of a series of layers, with
each layer containing switches and routers that connect to the layer above and below
it. This topology is highly scalable and can support a large number of nodes, but it
can be expensive to implement. Figure 2.2 shows a fat tree with two layers, with a
total of four nodes.

Agg Agg

Core Core

Edge Edge

1 2

3 4

Figure 2.2: Fat-Tree topology with two layers and two nodes for each stem.

• Star topology: A star topology consists of a single switch connecting all network
devices. Every device is connected to the switch with its own cable, and all com-
munication goes from one node, through the switch, and out to the receiving node.
This topology makes it easy to add or remove devices from the network and isolate
problems to specific devices. When visualized with the switch in the center we get
a star shape, as seen in Figure 2.3.

2.4.3 Topology aware communication
Information about the network topology can be to improve the performance of programs
on clusters. Operations that utilize the network topology in communication are called
topology aware. Topology-aware operations can achieve higher performance because they
are able to better utilize system resources. Communication time is often a significant
part of the total time in HPC applications for distributed systems, and a reduction in time
spent on communication leads to higher performance of the application. Topology-aware
communication is communication that utilizes the topology of the system it runs on to
improve performance.

9

Chapter 2. Background and related work

Switch

Node

Node Node

... ...

Node Node

Node

Figure 2.3: Star topology

2.5 Clustering methods

2.5.1 Metric spaces
A metric space (X, d) consists of objects X and a distance function d : X×X → R+. The
distance function d has to satisfy the following properties in metric spaces:

• non-negativity: d(x, y) > 0 ∀(x, y) ∈ X× X , and x = y if d(x, y) = 0

• symmetry: d(x, y) = d(y, x)

• triangle equality: d(x, z) ≤ d(x, y) + d(y, z)

2.5.2 Vector spaces
A vector space (V, d) is a metric space where all the objects in V are k-dimensional vectors
of real numbers. Distance functions for metric spaces include the Euclidian distance and
the Manhattan distance.

2.5.3 Sparse Spatial Selection (SSS)
Sparse Spatial Selection is a technique used to dynamically select pivots when clustering
[19]. To use SSS as a clustering technique, we start by choosing an object as the first clus-
ter center. We iterate over every object and have a choice between adding it to the closest
existing cluster cclosest, or creating a new cluster. cclosest is the cluster where the distance be-
tween the object and the cluster center is minimal. We let the maximum distance between
objects in a cluster be M , and let α be a constant parameter. If the distance between the
object and the cluster cclosest is greater than Mα, we create a new cluster with the object as
the center. Otherwise, we add it to the closest existing cluster.

2.5.4 K-means
The K-means clustering algorithm [20] is one of the most commonly used clustering algo-
rithms in research. The algorithm works on vector spaces of size n, and creates a partition

10

2.5 Clustering methods

of the vector space into k sets, k ≤ n, hence the name k-means. K-means is a static
clustering algorithm because it takes the number of clusters as part of the input. The goal
of K-means is to minimize the variance within each cluster. The centroid of a cluster is
the mean value of the points in the cluster and does not need to be an object in the vector
space. To find clusters, the K-means algorithm first selects k objects and makes each of
them a new cluster.

Although the algorithm has many applications in research and data mining, it has many
known limitations. Problems include the initial selection of centroids that lead to unex-
pected convergence, and the handling of various data types [21]. The optimal solution
to the K-means problem is NP-hard, and therefore approximations are used. To mitigate
the problems with convergence, many uses of K-means include running the algorithm for
many iterations with different initial centroids, and using the best result. The big-O run-
time complexity of K-means is O(n2), but heuristics have been used to achieve linear
runtime complexity for a fixed number of dimensions and iterations.

2.5.5 K-medoids
K-medoids is a static clustering algorithm that allows for using non-Euclidean data and
arbitrary distance functions. The algorithm takes a dissimilarity matrix and the number
of clusters to find k. The algorithm returns k clusters where the total dissimilarity in
each cluster is minimized. The K-medoids algorithm is less sensitive to outliers than
other traditional clustering algorithms like K-means, because all medoid centers are data
points. It has been shown that the general K-medoids problem is NP-hard [22]. Therefore
approximation algorithms like Partitioning Around Medoids (PAM), or FasterPAM [23]
are used. FasterPAM implementations have a runtime of O(n2) [24]. Another algorithm,
BanditPAM [25], is able to reduce the runtime complexity to O(n log n), but at a cost of
a high constant factor, making it suitable only for problems with N ≥ 105 [24]. These
approximation algorithms make it feasible to use K-medoids in this paper despite being
NP-hard in the general case.

2.5.6 Spectral clustering methods
Spectral clustering is a group of clustering algorithms that use eigenvalue decomposition
as a step in the clustering. Experimentally they have been shown to result in high-quality
clusterings, but at the cost of high time complexity [26]. These algorithms apply eigen-
value decomposition on the distance matrix as part of the algorithms. Using the top d
eigenvectors on a distance matrix is one of the techniques spectral clustering algorithms
use eigenvalue decomposition.

2.5.7 Hierarchical clustering
Hierarchical clustering algorithms are clustering algorithms that create a hierarchy of clus-
ters. This means that we get a tree of clusters, where each internal node is a cluster, and
leaves are objects. The result of hierarchical clustering is presented in a dendrogram,
which is a tree visualizing the relationship between clusters and sub-clusters. A cut in
the dendrogram at level ε is used to get a flat clustering [27]. By changing the value of ε

11

Chapter 2. Background and related work

we can choose the number of clusters we want. Figure 2.4 shows a dendrogram with two
large clusters. These clusters have a significant distance between each other and smaller
sub-clusters within them. A cut made at distance 0.8e−6 would result in the two clusters
seen in yellow, while a cut at 0.65e−6 would give four clusters.

Figure 2.4: Example dendrogram from network measurements on ARM1

2.5.8 SSSTree

SSSTree [19] is a clustering algorithm for metric spaces. It uses SSS (see Subsection 2.5.3)
for dynamically selecting cluster centers. By using sparse spatial selection clustering it
will automatically determine the number of clusters based on the complexity of the data.
SSSTree is a dynamic clustering algorithm, because it determines the number of clusters
based on the data, and not based on some static input. The SSSTree algorithm builds a
hierarchy of clusters using a top-down approach.

Tree construction

Let X be the collection of objects we want to cluster, and d be the distance function. We
first start by creating what we call a base tree. The base tree is constructed by creating a
single cluster and adding all objects as children of the cluster. The first child of a cluster
is used as the center of the cluster.

We construct the SSSTree by recursively applying the algorithm seen in Figure 2.5.
The algorithm uses the radius of a cluster. The radius is the maximum distance between
the center of the cluster and other objects in the cluster. We use M = 2 · radius as an
approximation of the maximum distance between two objects in the cluster. This works

12

2.5 Clustering methods

because the upper bound on the distance between two objects inside the cluster is 2·radius.
This approximation reduces the runtime of this step from O(n2) to O(n).

def c o n s t r u c t t r e e (node , p a r e n t) :
i f p a r e n t : node . p a r e n t = p a r e n t
i f (not node . i s c l u s t e r () or

l e n (node . c h i l d r e n) < MIN CHILDREN) :
re turn node

node . r a d i u s = c a l c u l a t e r a d i u s (node)
m = 2* node . r a d i u s
r o o t = node . c h i l d r e n [0]
c l u s t e r s = [r o o t]

f o r c h i l d in node . c h i l d r e n [1 :] :
c , d i s t = f i n d c l o s e s t c l u s t e r (c h i l d , c l u s t e r s)
i f d i s t >= m*ALPHA:

c l u s t e r s . append (n e w c l u s t e r w i t h c h i l d (c h i l d))
e l s e :

a d d t o c l u s t e r (c , c h i l d)

f o r i , c in enumerate (c l u s t e r s) :
c l u s t e r s [i] = c o n s t r u c t t r e e (c , node)

node . c h i l d r e n = c l u s t e r s
re turn node

Figure 2.5: Tree construction algorithm for SSSTree

2.5.9 DBSCAN
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [28] is a dy-
namic clustering algorithm that automatically finds clusters and cluster centers. It takes
two parameters; the neighborhood distance ϵ and the minimum number of samples per
cluster minpts. DBSCAN works by finding regions of high and low density in the dataset,
grouping points in regions with high density that are separated by low-density regions into
clusters. The algorithm also deals with outliers, and will return a list of points that was
classified as “noise“. One of the advantages over traditional clustering algorithms like the
K-Means algorithm is that DBSCAN is able to detect irregular shapes, varying clustering
densities, and noise.

2.5.10 HDBSCAN
HDBSCAN [27] is a hierarchical clustering algorithm that expands on the DBSCAN al-
gorithm. It incorporates hierarchical clustering to the DBSCAN algorithm and is therefore

13

Chapter 2. Background and related work

not only able to find clusters similar to the original algorithm, but also returns a hierarchi-
cal representation of the clusters. It differs from the DBSCAN algorithm in the parameters
that it takes. It takes two parameters min_cluster_size and min_samples. These
are easier to determine in practice than the neighborhood distance ϵ and minimum sam-
ples minpts used in DBSCAN, and therefore make HDBSCAN less sensitive to parameter
choices. The hierarchical organization of clusters also makes it more applicable to hierar-
chical data, such as network distance matrices.

2.6 Related work

2.6.1 Measurements of the LogP parameters
Kielmann et al. wrote a paper on “Fast Measurements of LogP parameters“ [1], that
describes a faster technique for measuring pair-wise PLogP parameters. Previous methods
for measuring LogP parameters used link-saturation which takes a significant amount of
time. Their paper presents a new method that does not use link saturation and is able to
run the pairwise measurement faster than previous methods. A limitation of their work is
that it only measures parameters for a single pair.

2.6.2 Optimization of broadcast and other collective operations in
MPI

In their paper “Performance of MPI broadcast applications“ [29], Wadsworth and Chen ex-
plore and benchmark broadcast algorithms in MPICH2. They compare several algorithms
for implementing MPI broadcast and show that it is possible to improve the performance
of the broadcast operation in MPICH2 by careful selection of the algorithm.

The paper “MagPIe: MPI’s Collective Communication Operations for Clustered Wide
Area Systems“ by Kielmann et al. [30], describes techniques for improving MPI collective
operations in wide-area networks. They implement optimized collective operation routines
that minimize communication across slow links. The work was published in 2000, and
the wide-area latency is 10 ms, which is significantly higher than is common for inter-
node communication in modern high-performance computing clusters. In their paper, the
authors state that MagPIe was able to outperform MPICH2 with a factor between 2x and
8x.

Gong et al. created network performance-aware MPI collective operations for use in
the cloud [31]. They define a network performance metric that depends on the bandwidth
and latency of links. Measurements of latency and bandwidth between pairs are then used
to create distance matrices based on this metric. They use a greedy method to find a
performance hierarchy in the network. Their method achieves 30% improvement for the
broadcast operation.

14

Chapter 3
Methodology

This chapter presents the methodology used in this thesis. Subchapter 3.1 covers the
PLogP micro-benchmark. Subchapter 3.2 goes into detail about how we use the PLogP
micro-benchmark together with clustering methods to optimize network topologies. Sub-
chapter 3.3 describes the automated parameter search used in the clustering step. Sub-
chapter 3.4 shows the table of conducted experiments. Finally, Subchapter 3.5 describes
how we assess clustering algorithm performance.

3.1 PLogP measurements using LGate

3.1.1 LGate
LGate is a topology-aware test harness for testing all pairs of ranks in MPI. It provides
functionality for initialization, synchronization, and parallel execution of pairwise tests.
The user implements the test_pair(i,j) function that is called by LGate to run a
pairwise test between ranks i and j. By default, only one pairwise test will be run at a time
in order to avoid interference. However, a network topology can be specified in order to
allow for parallel pairwise tests. The topology file defines which groups of ranks can be
tested simultaneously. Figure 3.4 shows a topology file that tells LGate to allow the four
groups of ranks {0-7},{8-15},{16-23} and {24-31} to be tested at the same time. This
type of configuration is valid when we know that these groups of ranks will communi-
cate independently and without interference, e.g. if they are separate nodes with internal
interconnects.

A custom subset_barrier function is used instead of the builtin MPI_Barrier
function for synchronization provided by MPI. The subset barrier takes an array of ranks to
be synchronized and uses an algorithm based on MPI_ISend and MPI_Recv as shown
in Figure 3.1. This barrier implementation uses the dissemination barrier algorithm [32].

LGate first runs a pairwise test on all leaves in the topology tree simultaneously. It
recursively joins leaves and runs pairwise tests on the combined node. Use of the custom
subset_barrier function ensures that all ranks in the same sub-tree are synchronized

15

Chapter 3. Methodology

def s u b s e t b a r r i e r (r a n k s) :
i f my rank not in r a n k s :

re turn
n u m s t a g e s = math . c e i l (math . l og2 (l e n (r a n k s)))
pos = r a n k s . i n d e x (my rank)
f o r s t a g e in range (n u m s t a g e s) :

f r o m i d x = (pos − (1<< s t a g e) + l e n (r a n k s))
% l e n (r a n k s)

t o i d x = (pos + (1<< s t a g e)) % l e n (r a n k s)
s r c , d s t = r a n k s [f r o m i d x] , r a n k s [t o i d x]
MPI Isend (d s t , &s e n d r e q)
MPI Recv (s r c)
MPI Wait (& s e n d r e q)

Figure 3.1: Subset barrier algorithm based on dissemination used in LGate

while allowing ranks in different sub-trees to be tested at the same time. The algorithm for
running the tests can be seen in Figure 3.2 and Figure 3.3.

def j o i n (node) :
i f i s l e a f (node . l e f t) and i s l e a f (node . r i g h t) :

j o i n l e a v e s (node . l e f t , node . r i g h t)
e l s e :

j o i n (node . l e f t)
j o i n (node . r i g h t)

def j o i n l e a v e s (l e f t , r i g h t) :
a l l r a n k s = l e f t . r a n k s + r i g h t . r a n k s
f o r (l , r) in z i p (l e f t . r anks , r i g h t . r a n k s) :

i f my rank in { l , r } :
t e s t p a i r (l , r)

s u b s e t b a r r i e r (a l l r a n k s)
m e r g e t r e e n o d e (l e f t , r i g h t)

Figure 3.3: Algorithm for joining leaves in the cluster tree

LGate uses a binary tree to store the topology, but we extend LGate to allow more than
two children. The reason is that is gives us more flexibility for other uses of the topology
file because we can define any number of independent groups without having to decide
how they should be merged.

16

3.1 PLogP measurements using LGate

def t e s t s u b s e t (r a n k s) :
f o r (i , j) in z i p (r anks , r a n k s [1 :]) :

s u b s e t b a r r i e r (r a n k s)
i f my rank in { i , j } :

t e s t p a i r (i , j)
s u b s e t b a r r i e r (r a n k s)

def r u n t e s t s (t r e e) :
f o r l e a f in t r e e . l e a v e s () :

t e s t s u b s e t (l e a f . r a n k s)
whi le l e n (t r e e . l e a v e s ()) > 1 :

j o i n (t r e e)

Figure 3.2: Algorithm for running all pairwise test

c l u s t e r {
c l u s t e r {

c l u s t e r { group { 0−7 } }
c l u s t e r { group { 8−15 } }

}
c l u s t e r {

c l u s t e r { group { 16−23 } }
c l u s t e r { group { 24−31 } }

}
}

(a) LGate topology with 4 groups

r o o t :
sub − t r e e :

l e a f : r a n k s 0−7
l e a f : r a n k s 8−15

sub − t r e e :
l e a f : r a n k s 16−23
l e a f : r a n k s 24−31

(b) Tree representation of topology

Figure 3.4: LGate topology file and tree representation

3.1.2 PLogP measurements using LGate
An implementation of a benchmark to estimate the values of the PLogP model was cre-
ated using LGate. The implementation extends the work of Kielmann et al. [1] which
describes a technique for fast measurement of LogP parameters between two nodes. Our
implementation uses techniques from Kielmann’s paper, but measures between all ranks.
The primary goal of the benchmark is to be able to detect network topologies in large clus-
ters (P ≥ 250) within a reasonable timeframe (in minutes). Several techniques to reduce
variance in measurements are applied.

Our implementation finds LogP parameters between all pairs of ranks {(i, j) | i < j}.
We call rank i the sender and j the receiver. LogP parameters are only measured one way,
from the sender to the receiver, thus we implicitly assume symmetry. Allowing measure-
ment both ways is trivial, but unnecessary because we want to analyze the results using
methods that require symmetrical distance matrices (see Subsection 2.5.6). All measure-
ments are made by sending messages between the sender and receiver, timing various

17

Chapter 3. Methodology

stages, and varying the number and size of messages. We have log2 M measurement
iterations, where M is the maximum message size to be measured. For each iteration
i = 0 . . . ⌊log2 M⌋ we measure PLogP parameters for message size m = 2i. The total
number of measurements is O(logM · r · n2), where r is the number of repetitions per
measurement.

Measurement of g(m)

The measurement starts with measuring RTT (0). This is done by sending n messages
with m = 0 from the sender to the receiver. When the receiver has received all messages,
it sends a single message back to the sender. RTT (0) is then the total time taken divided
by n. We have two methods for measuring g(m). The first method is based on link
saturation. Using this method we start by sending n = 10 messages in a row of size m and
calculate the average rtt′ =

∑n
i=0 rtti/n. If the average RTT for the current n only differs

by ε from the previously measured RTT, then we have reached saturation. Otherwise, we
increase n and repeat until we reach saturation, or we exceed n ≥ 37500. By default, ε is
equal to 0.01.

The other method uses the method described by Kielmann et al. [1], where we only
use link saturation for g(0). When we measure RTT (m), the timing diagram for PLogP
(Figure 2.1) shows us that RTT (m) = L + g(m) + g(0) + L. We can rewrite this as
g(m) = 2 · L+ g(0)− RTT (m). Because RTT (0) = 2 · L+ 2 · g(0), we get Equation
3.1 for g(m).

g(m) = RTT (m)−RTT (0) + g(0) (3.1)

Instead of measuring g(m) using link saturation, we can calculate it from RTT (m). This
has no additional cost because RTT (m) is required to determine os(m) and or(m). This
method significantly reduces the amount of network traffic required, and thus makes it
feasible to run the micro-benchmark for large values of P (P > 256). We found experi-
mentally that for values of m ≥ 216 the method gives values of g(m) that are close to that
found using the link saturation method. Therefore, we use the saturation-based method for
values m ≤ 216, and the non-saturation method for larger values of m.

Measurement of L

When we measure RTT (0) we are sending a zero-sized message, and receiving a zero-
sized message. The sending part takes L+ g(0) + os(0) + or(0), but in the PLogP model
this simplifies to L+g(0). The receiving part takes the same time in our model. Therefore
we get RTT (0) = 2 · (L + g(0)). Solving this for L we get Equation 3.2, which we use
to calculate the latency L.

L =
RTT (0)− 2 · g(0)

2
(3.2)

Measurement of os(m)

The PLogP model differentiates between the overhead for sending a message, and the
overhead for receiving a message. To measure the send overhead for a given message size

18

3.1 PLogP measurements using LGate

def m e a s u r e l a t e n c y (i , j) :
c h a r buf [2] ;
s t a r t = wtime ()
i f my rank == i :

send (buf [0] , 0 , j)
r e c v (buf [1] , 0 , j)

e l i f my rank == j :
r e c v (buf [0] , 0 , i)
send (buf [1] , 0 , i)

end = wtime ()
re turn (end − s t a r t) / 2 . 0

(a) Measuring latency

def m e a s u r e s e n d o v e r h e a d
(i , j ,m) :

c h a r buf [m] ;
s t a r t = wtime ()
i f my rank == i :

send (buf , m, j)
s e n d t i m e = wtime ()
r e c v (buf , m, j)

e l i f my rank == j :
r e c v (buf , m, i)
send (buf , m, i)

end = wtime ()
r t t = end − s t a r t
o s = s e n d t i m e − s t a r t
re turn r t t , o s

(b) Measure send overhead and rtt

Figure 3.5: LogP measurements

m, we do the following:

1. Synchronize the receiver and sender

2. Take the time needed to send a message of size m by measuring the wall time before
and after a call to MPI_Ssend. Figure 3.5 (b) shows an implementation that also
stores the RTT .

3. We repeat step 2 N times and store the average as os.

When measuring the send overhead we use MPI_Ssend instead of MPI_Send, because
the MPI specification allows MPI_Send to buffer the send, but MPI_Ssend only returns
after a matching MPI_Recv has been posted.

Measurement of or(m)

The receive overhead is the overhead of the MPI_Recv call. It is the time required for
a MPI_Recv call when no time is spent waiting for the corresponding MPI_Send. We
measure the receive-overhead for a given message size m with these steps.

1. Synchronize sender and receiver

2. Send a message from the sender to the receiver

3. The receiver immediately replies with the same message

4. We make the sender wait for RTT (m) · k

5. The sender calls and times MPI_Recv. We call this the receive-overhead

19

Chapter 3. Methodology

6. We repeat steps 2-5 N times and store the average receive overhead as or

We use the expected round-trip time (RTT) as the time to wait between send and
receive when calculating the receive-overhead. We can wait longer than the expected
RTT if we want more precise measurements of or(m). When a message round-trip takes
longer than RTT , the MPI_Recv call will block while waiting for the message, and
we will get a higher or(m) value. If we wait for k · RTT time, we can find a minimal
value for k such that only an acceptable amount of messages cause a block in MPI_Recv.
Choosing a good value for k is important because waiting for more time than necessary is
wasted time, but a k that is too low gives inaccurate measurements. We choose k = 1.3,
so we will at worst wait 30% longer than necessary. To get an accurate timing we use a
busy wait between the MPI_Send and MPI_Recv call. Figure 3.6 shows an example
implementation.

Accounting for clock overhead

To account for the overhead of MPI_Wtime() we measure the expected time
MPI_Wtime() takes each iteration. We use a busy() function as shown in Figure 3.7
that runs the increment operation 300 times in a loop. We use a variable with volatile
to prevent compiler optimizations from removing the loop. The Godbolt Compiler ex-
plorer [33] was used to confirm that the compiler does not remove the loop for the com-
pilers used in this thesis (Clang, GCC & ICC) using optimization level -O2.

We can now time 1000 calls to busy() and calculate the average time per function
call as tb. In another loop, we have the same number of calls to busy(), but with each
call surrounded by MPI_Wtime(). We store the start and end time per call to busy()
for each iteration i as tsi and tei . We can now calculate the average time for each call
t = (

∑N
i tei − tsi)/N . We repeat this procedure 5 times and calculate the overhead from

mini=0...4 t(i) − mini=0...4 tb(i). The reason we chose 5 is that it is the lowest number
that gives consistent results.

s t a t i c vo id busy (void) {
v o l a t i l e i n t i , dummy ;
f o r (dummy=42 , i = 0 ; i < 300 ; i ++) dummy++;

}

Figure 3.7: busy() function used to measure clock overhead, same as used in [1]

The clock overhead is used to correct for calls to MPI_Wtime() inside measure-
ments. We take the minimum average value from 5 repetitions because we want to be sure
not to use a higher value than expected.

Additional measurements

Inspired by Kielmann et. al [1], we check the results for all measured message sizes.
Let mi be the message size for iteration i. We check that the measured value at iteration

20

3.1 PLogP measurements using LGate

def s y n c h r o n i z e (i , j) :
s u b s e t b a r r i e r ([i , j])

def m e a s u r e s e n d (i , j , N, msg , m) :
Outpu t : r t t , o s

b u f f e r : m b y t e s
r t t s u m , o s sum = 0 ,0
f o r j in range (N) :

s t a r t = MPI Wtime ()
i f my rank == i :

MPI Send (msg , m, j)
s e n d t i m e = MPI Wtime () − s t a r t
MPI Recv (msg , m, i)

e l s e :
MPI Recv (msg , m, j)
MPI Send (msg , m, i)

r t t s u m += MPI Wtime () − s t a r t
o s sum += s e n d t i m e

o s = o s sum /N
r t t = r t t s u m /N

def m e a s u r e r e c v (i , j , N, msg , m, r t t) :
Ou tpu t : o r

o r sum = 0
f o r j in range (N) :

i f my rank == j :
MPI Recv (msg , m, i)
MPI Send (msg , m, i)

e l s e :
s e n d t i m e = MPI Wtime ()
MPI Send (msg , m, j)
s p i n w a i t u n t i l (s e n d t i m e + r t t)
r e c v s t a r t = MPI Wtime ()
MPI Recv (msg , m, j)
o r sum += MPI Wtime () − r e c v s t a r t

o r = o r sum /N

Figure 3.6: Algorithm for joining leaves in the cluster tree

21

Chapter 3. Methodology

i is within ε of what we expect from a linear fit from the measured value at ii−1 and
ii+1. If the difference is greater than ε, then we first make an additional measurement of
the midpoint between ma mi and mi+1. This repeats until there are no more additional
measurements required, or when the difference in the number of bytes is less than or equal
to 32: ma −m1 ≤ 32.

This means that we can choose to use fewer measurements, and only use additional
measurements if needed.

3.2 Optimizing network topologies

The PLogP parameters we obtain by running the LGate microbenchmark can be used to
model the communication performance between ranks in the network. We use clustering
algorithms to find groups of ranks that have low RTT communication together. We want
to find the grouping such that we minimize RTT between members in a group. By finding
the pairwise distance, we can generate a distance matrix. Clustering methods can be used
to find an approximate solution to this problem.

We use two methods to determine how two ranks communicate. The first method
uses linear regression to find the slope p(m) = am + b for each parameter for every
pair of ranks (i, j) in the network. The other method is to use a simple linear regression
between consecutively measured points. This can give more accurate results for the PLogP
micro-benchmark because it takes additional measurements to ensure that a simple linear
regression between consecutive measurements is within ε of the real measurement. We
calculate the distance between ranks (i, j) for a given m. Equation 3.3 predicts the time
required to send or receive a message m between ranks (i, j).

t(m) = pL(m) +
pos(m) + por (m)

2
+ pg(m) (3.3)

For both methods, we create a distance matrix D(m) from the prediction t(m), as seen
in Equation 3.4.

D(m)ij = tij(m) (3.4)

Several algorithms take a list of n-dimensional data points. To transform our PLogP
data into this form, we let the parameters for some message size m; L, os, or, and g define
a four-element vector vij . For each rank i = 1 . . . P we create a vector Vi that contains
all elements vij for every j = 1 . . . P . This gives a 4 · P element vector for every rank as
shown in 3.5

Vi = [vi0 . . . vi1 . . . · · · vij . . .] (3.5)

With V we can create a similarity matrix A(m) by calculating the Euclidean distance,
shown in Equation 3.6, between all pairs of vectors Vi.

d(x, y) = ∥x− y∥ (3.6)

22

3.2 Optimizing network topologies

Using ”fast” measurements

The PLogP micro-benchmark has functionality for enabling ”fast” mode, where we only
check a certain percentage fp of ranks within each group as defined in the topology file.
With this mode, we choose a random selection of ranks per group and disregard the rest.
Because the number of pairwise tests scales quadratically, we can run our benchmark for
a higher node count than otherwise.

Measure of accuracy

To be able to compare different clustering algorithms, we need a way to measure the
quality of results. There are often several valid results because there might be several
ways to group ranks in a way that describes the network. For example, we might have
two nodes each with two sockets. The following are all possible valid groupings of ranks:
one cluster with all ranks, two clusters grouped by nodes, four clusters with one group
per socket, and one group per rank. The detail required to be able to detect topologies
vary. No detail is needed to detect one cluster, a few measurements might be able to detect
the topology on a node level, but much more detail is needed to identify topology on the
socket level. We can improve the granularity by making more measurements at a cost of
more time.

Given the specification of each system, we can compare the result of the clustering
to what we expect based on knowledge about the system. The PLogP micro-benchmark
saves the relationship from rank to node, and node to machine in its output. The program
lstopo from the hwtopo module in OpenMPI is used to collect information about the
hardware on each node, such as the number of sockets and the assignment of cores to
sockets. We define three measures of accuracy:

• Machine level accuracy: ratio of ranks that are mapped to the correct machine

• Node level accuracy: ratio of ranks that are mapped to the correct node

• Socket level accuracy: ratio of ranks that are mapped to the correct socket

accuracymachine =
|{ranks mapped to correct machine}|

|{ranks}|
(3.7)

accuracynode =
|{ranks mapped to correct node}|

|{ranks}|
(3.8)

accuracysocket =
|{ranks mapped to correct socket|}

|{ranks}|
(3.9)

Each clustering method is run several times, using different parameters for each data
set. This is required because each clustering method has different parameters, and the
optimal parameters depend on the data. We run each algorithm with several parameters
and let the score be the maximum value among them to account for this. We parameterize

23

Chapter 3. Methodology

the accuracy and score with the method m, and enumerate the accuracy for each run by i.
Equation 3.10 shows the function used to calculate the score.

scoremetric(m) = max
i=0...n

accuracymetric(m) (3.10)

For static methods such as k-medoids, we use the known number of machines, nodes,
and sockets as the number of clusters. For non-static methods such as SSSTree, we run
it using a variety of parameters that influence the number of clusters. For SSSTree this
means running the algorithm for several values of α. The static methods consistently get
a higher score, but this is heavily impacted by the fact that they are given the number of
clusters as input. The dynamic methods have no knowledge of how the clustering should
be and are therefore prone to getting different answers.

3.3 Automated clustering parameter search
The results of clustering algorithms depend on the parameters chosen. For many algo-
rithms, we have a single parameter, like α for SSSTree, and threshold for connected-
components clustering. Let Sx be a parameter space for the parameter x, defined by
Sx = (low,max). Our parameter search takes an evaluation function f(x) : R → R,
that maps the parameter value x to a real number.

We use a basic linear search which takes the number of points to examine k. The
linear search searches from low to high in increments of high−low

k . This method is use-
ful for static methods like K-medoids and Spectral-clustering because a linear search in
the range [1, P) with increments of 1 is an exhaustive search. It can also be applied to
algorithms with non-integral parameters like SSSTree and DBSCAN. For SSSTree the pa-
rameter space (0.0, 5.0) is used with non-integral increments. For DBSCAN the parameter
space (minA,maxA) is used, where A is the distance matrix.

We use k = 50 for our experiments. The value was chosen because it was the minimal
value that got useful results for P = 32. This means that all clustering algorithms are
called 50 times.

3.4 Experiments
Table 3.1 shows the conducted experiments. For each experiment, the PLogP micro-
benchmark is run with several values of R. The automated clustering parameter search
is then used for several clustering algorithms. The clustering accuracy measure is then
used to compare the results for different systems, algorithms, and values of R.

Every experiment has a specific purpose. First of all, we want to understand what
the limitations of our method are. Secondly, we want to understand to what level we can
extract information about the topology. We want to know if it is possible to find clusters
with distinct characteristics at the CPU level, Socket level, Node level, Machine level, and
Cluster level. Thirdly, we use the method on an unknown system and find out if we can
extract useful information about it. Finally, we want to understand the performance of our
method on large node counts and P ≥ 512.

24

3.5 Clustering algorithm performance

System Nodes/P Purpose
FRAM 1/32 Find node internal topology
FRAM 2/32 Find inter-node topology
FRAM 4/32 Find cluster topology
FRAM 8/32 Understand performance characteristics for large P
FRAM 8/1 Find cluster topology for larger node count
FRAM 16/1 Find cluster topology for larger node count
FRAM 32/1 Find cluster topology for larger node count
ARM 1/96 Discover the currently unknown topology of a research system

BETZY 4/128 Find topology for BETZY
HPCLAB 1/4 Baseline

Table 3.1: Table of experiments

3.5 Clustering algorithm performance
For every experiment, the automated clustering parameter search method is used. We can
then compare the accuracy of clustering algorithms under certain conditions. By running
the algorithms under different conditions we are able to get an understanding of the rel-
ative performance characteristics. We test all clustering algorithms on all experimental
measurements and compare them.

25

Chapter 3. Methodology

26

Chapter 4
Experimental setup

4.1 Compilation
All benchmark code is written in C using MPI. These benchmarks are compiled using
mpiccwith -O2 optimization level, using -std=c99. The C implementation of SSSTree
is compiled using gcc with -std=c99. It uses the GSL and BLAS libraries which are
linked with the linker flags -lgsl -lcblas. The BLAS implementation used is either
Intel MKL or OpenBlas.

4.2 SLURM and MPI
The sbatch program from SLURM is used to start jobs on clusters like IDUN, FRAM,
and BETZY. For each job, a job description file is generated that contains information
about the job, such as node count and cores per node. A configuration file for the PLogP
micro-benchmark is also generated for each job. mpirun is used as a process launcher
for OpenMPI and srun is used for IMPI. All experiments use the default rank assignment
if not specified otherwise. Experiments on the clusters IDUN, FRAM, and BETZY use
IMPI. Experiments on ARM1 use OpenMPI, and HPCLAB uses MPICH.

4.3 Analysis and processing
While experiments are run on clusters, the analysis is done locally on the personal com-
puter HPCLAB. Several software packages are used to process, analyze and present the
results of the experiments.

4.4 HPC Lab 06 computer - HPCLAB

We use SPACK [34] to build all software except for MPICH from the source code.

27

Chapter 4. Experimental setup

Name Version
Python3 3.10.6
SKLEARN 1.2.2
NumPy 1.21.5
Matplotlib 3.7.0
Seaborn 0.12.2
Scipy 1.10.1
Networkx 3.1
Pandas 1.5.3
HDBScan master (as of May 23)
KMedoids master (as of May 23)
graph based clustering 0.1.0

Figure 4.1: Python packages and versions

Name Version
Spack 0.20.0.dev0
GCC 12.2.0
MPICH 4.0

(a) Software versions

Processor Intel Core i7-6700K CPU @ 4.0 0GHz
Cores 4
Sockets 1
Memory 15 GiB

(b) Hardware

Figure 4.2: HPCLAB system properties

4.5 IDUN

IDUN is a computing cluster at NTNU [35] that is used for prototyping and rapid testing of
HPC applications. The cluster consists of different types of machines. In order to achieve
consistent results, we choose to use only selected nodes that have the same hardware on
IDUN.

Name Version
GCC 11.3.0
OpenMPI 4.1.4
IMPI 2021.7

(a) Software versions

Nodelist idun-07-[01-32]
Processor Intel Xeon Gold 6348
Interconnect Star topology [36]
Cores 16 per socket
Sockets 2

(b) Hardware

Figure 4.3: IDUN system properties

4.6 FRAM

FRAM is a cluster for research computing hosted at The Arctic University Of Norway
(UiT), and is provided by Sigma2 [37]. It has 1004 nodes in total with 32 cores each.

28

4.7 BETZY

The nodes are interconnected with an Island topology. Figure 4.4 shows relevant hardware
specifications and software versions used.

Name Version
GCC 11.3.0
OpenMPI 4.1.4
IMPI 2021.7

(a) Software versions

Interconnect Island topology [37]
CPU Type Intel E5-2683v4 2.1 GHz
Node count 1004
Cores 32 per node
Sockets 2 per node
Memory 64 GiB per node
NUMA nodes 1 per socket

(b) Hardware

Figure 4.4: FRAM system properties

4.7 BETZY

BETZY is the most powerful supercomputer in Norway [38], and is made available for use
in this thesis through Sigma2. The supercomputer is installed at NTNU in Trondheim,
where it entered production in 2020. Figure 4.5 shows the relevant software versions and
shows the hardware specifications used on BETZY.

Name Version
GCC 11.3.0
OpenMPI 4.1.4
IMPI 2021.7

(a) Software versions

Interconnect InfiniBand HDR 100, Dragonfly+ topology [38]
CPU Type AMD® Epyc™ 7742 2.25GHz
Node count 1344
Cores 128 per node
Sockets 2
Memory 256 GiB per node

(b) Hardware

Figure 4.5: BETZY system properties

4.8 IDUN-ARM1

IDUN-ARM1 is a single-node research ARM64 system with 96 cores with a total of
254GiB of RAM available. Figure 4.6 shows the relevant software and hardware.

29

Chapter 4. Experimental setup

Name Version
GCC 9.2.0
OpenBLAS 0.3.6
OpenMPI 4.1.4

(a) Software versions

CPU Type ARM aarch64
Cores 96
Sockets 2
Memory 254 GiB
Numa nodes 4 total

(b) Hardware

Figure 4.6: ARM1 system properties

30

Chapter 5
Results and discussion

In this chapter, we present results from experiments on the systems FRAM, BETZY, and
ARM1. The chapter is organized by the experiments in Table 3.1. Section 6.1-6.4 dis-
cusses finding topologies for a single node, two nodes, and many nodes on FRAM. In
Section 6.5 we discuss our findings on ARM1. Section 6.6 discusses finding topologies on
BETZY with 4 nodes. Section 6.7 presents a baseline experiment on HPCLAB. Finally,
Section 6.8 and 6.9 presents the scaling and performance of clustering algorithms.

5.1 Finding internal node topologies for a single node
We conduct several experiments on a single FRAM node. The main goal is to understand
whether all cores have the same communication characteristics, or if there are certain
cores that can communicate with lower latency or RTT than others. We experiment with
varying numbers of measurement repetitions to understand how the detail changes when
we increase measurement repetitions.

Figure 5.2: Variance for values of R

Figure 5.1 shows the distance matrix for a sin-
gle node with all 32 cores for several values of R.
Note that the only difference between the R = 8 and
R = 32 distance matrix is that there are fewer points
deviating from the mean. For R = 8 several outliers
with higher predicted RTT (0) are seen. Some out-
liers can be seen for R = 32, but fewer than for
R = 8. As shown in Figure 5.2, the variance in the
distance matrix for R = 128 is less than half of that
of R = 8. This shows that more measurements will
reduce the variance for measurements on a single
node, and increase the detail in the distance matrix.

From the distance matrix, we can observe that
there is an alternating pattern. The alternating pattern results from using round-robin rank
assignment with the 2-socket configuration of FRAM nodes. Figure 5.3 shows the result

31

Chapter 5. Results and discussion

Figure 5.1: Communication time prediction for 1 node @ FRAM. The clear alternating pattern at
R=64 and R=128 is caused by inter-socket communication.

when running with block distribution. Here the two groups are apparent, even though
no other changes to the micro-benchmark were made. We can also see that this pattern
increases in detail with increasing values of R. An automated clustering search reveals the
following groups:
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30},
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}. This is equivalent to the alternating
pattern and shows the two-socket configuration.

Figure 5.3: Communication
time prediction for 1 node,
R = 256 @ FRAM. Using –
distribution block:block

We run the PLogP measurements for R ∈ {8, 32, 64, 128}.
All clustering methods are able to find a clustering with 1.0
machine, node, and socket accuracy (see Figure 7.1). It
is important to be aware that the PLogP micro-benchmark
is run with the additional_measurements flag set.
This causes it to take additional measurements when incon-
sistencies are detected, which occurs more often for lower
values of R. This is the reason that the R = 8 gives results
that match R ≥ 32. The key takeaway from this is that it
is possible to detect internal node topology in the form of
socket-level topologies for a single node with R ≤ 64.

5.1.1 Outliers for first two ranks

As seen in Figure 5.1, the measurements between the first
two ranks (rank 0 and 1), as seen in the upper left corner,

32

5.1 Finding internal node topologies for a single node

(a) Randomized assignment (b) Reversed assignment with –distribution
block:block

(c) Using MPI Barrier instead of subset barrier

Figure 5.4: Two different rank assignments and alternative subset barrier, m=0, P=32, R=128 @
FRAM

33

Chapter 5. Results and discussion

Figure 5.5: RTT (0) prediction for 2 nodes @ FRAM. Here the same pattern as for 1 node appears,
but the divide between the two nodes is also visible. Outliers ≥ 95th percentile are removed to
maintain a reasonable color scale.

differ from the rest. A band of higher measurements is also visible from rank 0. If ranks 0
and 1 have unique properties, then we expect the reversed order to show the same pattern
for ranks 30 and 31. As shown in Figure 5.4, the discrepancy appears in the upper left
corner for both the randomized and reversed rank assignment experiments. This means
that the measurements are not dependent on differences between cores, and are instead
due to measurement artifacts.

5.1.2 Cause of diagonal bands
We can also see that the diagonal bands in the distance matrices are in the same place
regardless of the rank assignments. If these bands were representing an inherent property
of the system we would expect them to be different for each rank assignment. We observe
that the diagonal bands occur at the same places regardless of the rank placement, and are
therefore not due to inherent properties of the core. When the LGate subset_barrier
function is replaced with one based on MPI_Barrier we get a different pattern of di-
agonal bands. Figure 5.4c) shows that the diagonal bands are discontinuous when we use
MPI_Barrier. We conclude that these diagonal bands are measurement artifacts.

5.2 Finding inter-node topologies between two nodes
We conduct experiments using two FRAM nodes. All these experiments used a topology
with one cluster of 32 ranks per node. Figure 5.5 shows the distance matrix for 2 nodes

34

5.3 Finding node interconnection topologies

on FRAM. There is a clear divide between the predicted inter-node and intra-node com-
munication time, which is seen as the two groups in the distance matrix. The inter-node
communication time is ≈ 2x the intra-node communication time. For intra-node commu-
nication, we can see the same pattern as for a single FRAM node, but with more noise for
R = 8.

As shown in Figure 7.2, the clustering accuracy is 1.0 for all static clustering methods.
The dynamic clustering methods HDBSCAN and Connected Components have a socket
accuracy of 1.0 for all R ≥ 8, while SSSTree requires R = 128 to get the same accu-
racy. An interesting result is that DBSCAN has very low scores for all values of R, while
HDBSCAN has a top score. One reason for this might be the fact that DBSCAN is not
a hierarchical clustering algorithm, and therefore might not find the clusters we expect to
find. Another explanation is that DBSCAN is too sensitive to the selection of a parameter
value, such that the parameter search never finds a suitable value. Spectral clustering also
has a similarly low score for all values of R.

5.3 Finding node interconnection topologies
The PLogP parameters L, os(m), or(m) and g(m) all model different properties of net-
work communication. The latency can be used to extract information about how close two
nodes are to each other in the network. The overhead of sending a message varies based on
how MPI does the communication, which itself depends on the architecture. FRAM uses
InfiniBand, which are low-latency, high-bandwidth interconnects. We look at how these
parameters can be used to extract information about the topology.

Figure 5.6 shows the latency, where there are two levels of clusters. The first level is
the nodes, and the second level is the machine. The PLogP micro-benchmark generates a
metadata file with information about the mapping from rank to the hostname of the node.
We group by machine on FRAM by using the hostname prefix. For R = 8 the ranks
32− 95 form a group that has lower latency than other inter-node pairs.

Here the nodes are identified by c48-8, c48-9, c49-2, and c49-3. They are assigned per
our definition to two machines, but no latency variation between them can be observed.

These latency measurements show that intra-socket communication is ≈ 2 faster than
inter-socket communication on FRAM nodes. They also show that due to the way the
nodes are interconnected, some nodes communicate with ≈ 1.5 lower latency than others.
This result means that the specific interconnection between nodes has a higher impact on
the latency than sharing the same machine. This also explains why dynamic clustering
algorithms achieve higher node accuracy than machine accuracy (Figure 7.3).

Figure 5.7 shows the latency for 8 nodes on FRAM. Here the 8 nodes are divided into
two clusters that have lower communication latency.

5.4 Determining the cluster topology for a large number
of nodes

Several experiments were conducted with high node counts on FRAM. These experiments
use a small number of cores, ≤ 4 of cores per node, and instead scale up the number of

35

Chapter 5. Results and discussion

Figure 5.6: Latency for 4 nodes @ FRAM. Here intra-node latency is apparent. Differences between
runs are due to different node assignments. Outliers ≥ 95th percentile are removed to maintain a
reasonable color scale.

nodes. The goal is to see if it is possible to detect the topology caused by the interconnec-
tion of nodes.

(a) 4 nodes (b) 16 nodes (c) 32 nodes

Figure 5.9: RTT(0) with 1 core per node, R=64 @ FRAM

Figure 5.9 shows three experiments with 4, 16, and 32 nodes. We can see that for 16
and 32 nodes, there are visible groups of nodes that can communicate faster and slower.
For 16 nodes we find two clusters {0− 9}, {10− 15} and for 32 nodes a clustering search
finds the following 5 clusters:

{1-4},{5-9},{10-21},{22-30},{31}

These match the areas in the heat plots with the lowest values for RTT (0) between ranks.
The latency within each detected cluster is ≈ 0.45µs, while the latency between clusters
is ≈ 0.65µs. Therefore we have been able to automatically detect inter-node topology on
the FRAM cluster.

36

5.5 Discovery of currently unknown topology for ARM1

Figure 5.7: Latency for 8 nodes, R=64 @ FRAM. Here intra-node latency is apparent. Differences
between runs are due to different node assignments. Outliers ≥ 95th percentile are removed to
maintain a reasonable color scale.

5.5 Discovery of currently unknown topology for ARM1

No information about the internal topology of ARM1 is published. Therefore ARM1 is a
suitable candidate to verify that our PLogP micro-benchmark can be used to extract useful
information for systems with unknown topology. Figure 5.10 shows the predicted RTT (1)
and latency R = 128. The first observation is that the plots are the inverse of those from
FRAM and BETZY, with groups of high latency and RTT (1) surrounding each other.
This is because the experiments on ARM1 were done using OpenMPI, which by default
maps ranks consecutive ranks to different sockets.

An automated parameter search on these measurements finds the following cluster
results:

• 2 clusters of 48 cores each: {0, 2, 4, 6, . . . }, {1, 3, 5, . . . }

• 4 clusters of 24 cores each: {0, 4, 8, . . . }, {1, 5, 9, . . . }, {2, 6, 10, . . . }{3, 7, 11 . . . }

The cluster of high-latency ranks in the lower right corner is not explained by our un-
derstanding of the system. Therefore we repeat the experiment but with the --map-by core
parameter that tells OpenMPI to map by core instead of by socket. Figure 5.11 shows the
corresponding results from this experiment. Here we can see that ranks that are just next
to each other along the diagonal have low latency. This corresponds with the pairs seen on
the bottom of the dendrogram plot in Figure 5.12. The division into two 48-core sockets
is clearly seen in both the RTT (1) prediction plot and the latency plot. Several features
in the plot, like the circular grouping in the top-left corner, cannot be explained without
more information about the system design.

37

Chapter 5. Results and discussion

Figure 5.8: Communication time prediction for 4 nodes @ FRAM. Here intra-node latency is ap-
parent. Differences between runs are due to different node assignments. Outliers ≥ 95th percentile
are removed to maintain a reasonable color scale.

(a) RTT(1) (b) Latency

Figure 5.10: Predicted RTT(1) and latency, R=8192 @ ARM1

(a) RTT(1) (b) Latency

Figure 5.11: Predicted RTT(1) and latency, R=256 with –map-by core @ ARM1

38

5.6 Find topology for BETZY

Figure 5.12: HDBSCAN Clustering dendrogram from measurements on ARM1

5.6 Find topology for BETZY
We want to understand how the topology of BETZY differs from that of FRAM.

Figure 5.13 shows the result of PLogP measurements on BETZY using 4 nodes with
all 128 cores. Four clusters can be clearly seen that contain ranks belonging to the same
node. For each node, we also see a partition into two groups. These groups match how
cores on the same socket are assigned ranks. The measured RTT (0) is ≈ 1.8µs for
between nodes, ≈ 0.8µs between sockets, and the core-to-core communication between
each core is ≈ 0.6µs. This shows us that both inter-node topology and intra-node topology
is detectable using only R = 8.

We are able to find several clusters from the PLogP measurements. An automated
search finds a clustering of 128 clusters. Each cluster is 4 consecutive ranks, and this
matches the clusters seen in Figure 5.14. The reason for this pattern is unknown. The
clustering accuracy for the socket level is at 1 for all algorithms. The node and machine-
level accuracy is 1.0 for all hierarchical clustering algorithms, except for SSSTree which
has a ≈ 50% node accuracy. See Figure 7.4 in the appendix for more details.

Figure 5.13: RTT prediction for m=0,R=8,P=512 @ BETZY

39

Chapter 5. Results and discussion

Figure 5.14: Zoom-in to top left corner of Figure 5.13

5.7 Baseline

Figure 5.15 shows the result of a PLogP micro-benchmark run on HPCLAB using all 4
cores. It shows the predicted RTT (0) for the system for different R values. The matrix is
different for each R, and without a clear pattern. The same search technique used to find
clusters for the other systems only found the trivial clustering {0, 1, 2, 3} on RTT (0). For
RTT (224) it found {0, 1}, {2, 3}, however 224 ≫ M so any measurement artifacts are
amplified to a great extent. Using RTT does not work when the latency between ranks is
so low that measurement artifacts are the dominating factor. Figure 5.16 shows the latency
measured using the PLogP micro-benchmark for R = 8196. Here the latency between
ranks is in the range of 15 ns to 70 ns. An exception is for the outlier for measurements
between the first two ranks which have 160ns latency, but this extreme value is due to
a measurement artifact. Figure 5.17 shows the core latency measured using compare-
exchange operation from the open-source project core-to-core-latency [2]. The
latency between cores on the Intel Core i7-6700k that is on HPCLAB has a core-to-core
latency ≈ 20ns, which is in the same order of magnitude as the values we measure using
the PLogP micro-benchmark. The outlier for pair (0, 1) has a significant impact on the
experiment because the number of datapoints is so low for P = 4. Therefore it is not
possible to detect intra-CPU level topologies using our PLogP measurement method.

40

5.7 Baseline

Figure 5.15: Predicted RTT(0) @ HPCLAB

Figure 5.16: PLogP Latency, R=8196 @ HPCLAB

Figure 5.17: Core to core latency [2]

41

Chapter 5. Results and discussion

5.8 Scaling
Scalability is important for applications of our network topology detection technique. The
O(n2) number of pairwise tests means that doing tests in parallel is a requirement for
scaling to a large number of nodes. The PLogP extension of LGate allows for specifying
a tree topology, where all subtrees for a given level in the tree can be tested in parallel.
Therefore the performance of the micro-benchmark will heavily depend on the high-level
topology it is given initially.

Figure 5.18: Time to run PLogP measurements
for different numbers of nodes and repetitions,
using all 32 cores of each node @ FRAM,
M=2MiB

Figure 5.18 shows how the PLogP
micro-benchmark scales with an increasing
number of nodes and repetitions on FRAM.
LGate was provided with a topology with all
nodes. This allows LGate to run tests be-
tween all pairs on each node in parallel and
is the reason why the runtime scales sub-
exponentially. More information can be pro-
vided to LGate such that more tests can be
run in parallel, which will further lower the
total time for all pairwise tests.

The time plot also shows that R = 32
only takes ≈ 50% more time than R = 8.
This is because the high number of addi-
tional measurements required for R = 8
causes it to take several times more time than
expected. For R = 32, only a few additional
measurements are needed. A key takeaway
is that using a larger number of measure-
ments can be better than the penalty of additional measurements.

5.9 Clustering algorithms
We have experimented with a variety of static and dynamic clustering methods for the
automatic detection of network topologies. The static clustering methods score higher on
our accuracy measurements than dynamic methods. This can be seen in Figure 7.3, where
static methods have the highest score for each metric and value of R. Several other ac-
curacy plots are available in Appendix A, where the same pattern occurs. However, static
algorithms are only useful when the number of clusters is known, whereas dynamic algo-
rithms will automatically determine the number of clusters in the dataset. The results show
that for the methodology used in this thesis, static clustering algorithms like KMedoids and
Agglomerative Clustering achieve high accuracy. Spectral clustering differs from the other
static clustering algorithms and achieves the lowest overall accuracy. DBSCAN has the
lowest accuracy among the dynamic clustering algorithms.

Hierarchical clustering algorithms like Agglomerative Clustering and HDBSCAN not
only achieve high accuracy scores but also creates a hierarchy of clusters. From this hi-
erarchy, it is possible to create a topology tree starting with nodes at the top and single

42

5.9 Clustering algorithms

Figure 5.19: Some clusters found for two-nodes @ FRAM

cores at the bottom. Figure 2.4 shows such a graph. Hierarchical clustering algorithms are
therefore useful for the problem of automatically detecting network topologies.

It should be noted that our accuracy results are computed from a limited selection of
the entire parameter space of these clustering algorithms. Therefore the accuracy results
is a representation of how difficult it is to find suitable clustering parameters.

43

Chapter 5. Results and discussion

44

Chapter 6
Case study: topology aware MPI
broadcast

In this case study, we focus on improving broadcast operations in OpenMPI and Intel
MPI, by using benchmarking and information about the network topology. We imple-
ment broadcast algorithms that use information about the network topology and compare
it with the performance of OpenMPI and Intel MPI. The network topology is determined
through PLogP measurements and clustering methods, as described previously in Chapter
3. Performance benchmarks are used to compare algorithms for different message sizes
and cluster configurations. We use the results from the benchmarks to generate a parame-
terized broadcast function that selects the best-performing algorithm for a given message
size.

6.1 Motivation

There are several reasons why we chose to look at the broadcast operation. First of all,
the broadcast operation has different performance characteristics for different implemen-
tations of MPI, which we presume is the result of different implementations. Initial testing
showed large differences between OpenMPI and Intel MPI. While there exist many dif-
ferent algorithms for the operation, the problem of choosing the best one to use in any
single situation still has room for improvement. By default, open-source implementations
such as OpenMPI use a pre-compiled heuristic to select the algorithms at runtime [39].
The heuristic function selects the broadcast algorithm based on the message size and the
number of ranks in the communication group.

Wadsworth and Chen demonstrated through their paper Performance of MPI Broad-
cast algorithms [29] that changing broadcast algorithms can improve performance for
MPICH2. In this case-study we will look at topology-based optimization of the broad-
cast operation for IMPI and OpenMPI.

45

Chapter 6. Case study: topology aware MPI broadcast

6.2 Background

The broadcast operation is a collective operation that is used to send data from a single
rank, called the root, to all other ranks in a group. It is useful when we have data in the
root rank that needs to be shared with many other ranks. A trivial but slow implementation
of the broadcast operation consists of the root rank sending to all other ranks in the group
one by one. In MPI the broadcast operation is available through the MPI_Bcast function.

6.2.1 Broadcast in OpenMPI and Intel MPI

OpenMPI implements the following broadcast algorithms [40]:

• Flat tree: root sends to all other ranks one by one.

• Chain tree: rank r receives from rank r − 1 and sends to rank r + 1, making a
communication chain.

• Binary tree: Ranks receive from one rank and send to up to two child nodes.

• Split Binary tree: the same assignment as the binary tree, but we split the message
into two parts. The root then sends one part to its left sub-tree and the other to the
right sub-tree. In the end, the left and right sub-tree swap their values and combine
them into the entire message.

• Split Binary tree: the same assignment as the binary tree, but we split the message
into two parts and send one part to the left sub-tree and the other to the right sub-tree,
and swap between them at the end.

• K-Chain tree: similar to chain tree, but we create k chains, and the root sends to
the start of each chain.

• Binomial tree: similar to the binary tree algorithm, but using a balanced binomial
tree.

Many algorithms use message segmentation to avoid the rendezvous protocol by divid-
ing the message into smaller messages and sending them after each other. We refer to these
algorithms as pipelined, because they form a chain of N messages that are sent sequen-
tially. A pipelined chain tree algorithm works by sending splitting the original message
into parts and pushing these parts through the chain one after the other like in a pipeline.

Intel MPI (IMPI) provides other algorithms such as Binomial, Knomial Recursive
Doubling, Shumilin’s algorithm, and topology- and NUMA-aware algorithms [41]. In-
tel does not publish implementation details about those algorithms. An important detail
is that OpenMPI does not use topology-aware collective operations by default, but IMPI
might be using topology-aware operations.

46

6.3 Topology based optimization

Figure 6.1: Fat tree with 12 processes in 3 clusters

6.3 Topology based optimization

6.3.1 Intra-node and inter-node optimization
The bandwidth and time to communicate are often lower between ranks that are running
on the same node, than for ranks running on separate nodes. The same can apply to other
levels in the topology hierarchy, such as the socket level and machine level. A useful
optimization is therefore to minimize communication between siblings in the topology
hierarchy.

6.3.2 Fat-tree-based communication
Fat tree-based communication can reduce total communication time if there is a difference
in performance characteristics between processes. For example, we measure communica-
tion performance between 12 processes and find a cluster of size 3, as seen in Figure 6.1.
If communication within each cluster is significantly lower than communication between
clusters, then we should try to minimize communication between clusters. One way to
achieve this can be seen in Figure 6.2 where P1 is the root broadcasting to all other pro-
cesses using the binary tree broadcast algorithm. Here we only have two communications
between clusters, and the rest are internal to the clusters, compared to the standard binary
tree algorithm as seen in Figure 6.3 which has seven communications between clusters.

6.3.3 MagPIe
MagPIe is a collective communication library for MPI that is optimized for WANs (wide
area networks). In their paper [30] the authors of MagPIE write that their implementation
was up to 10 times faster than MPICH for a system with 10ms latency on links between
clusters. MagPIe minimizes communication on links with high latency, with their broad-
cast only using it once. The communication pattern for MagPIe broadcasts is a fat tree.

6.4 Implementation
Several implementations of the MPI standard, such as OpenMPI and Intel MPI have sup-
port for at least some way to control the way collective operations like MPI bcast are im-
plemented. OpenMPI has built-in support for several MPI_Bcast implementations. By
default, it uses a heuristic to select the implementation based on information like commu-
nicator size and message size. OpenMPI has a feature called the MCA (Modular Compo-

47

Chapter 6. Case study: topology aware MPI broadcast

Figure 6.2: Communication ordering using clustering and binary tree bcast

Figure 6.3: Communication ordering using binary tree bcast

48

6.4 Implementation

nent Architecture) that allows setting configuration parameters for modules in OpenMPI.
Using MCA it is possible to change some parameters of the ”coll” module for collective
communication, thereby changing the selection of the broadcast algorithm. IMPI (Intel
MPI) also has similar functionality for selecting MPI_Bcast implementation but uses a
different interface.

We re-implement the algorithms from scratch by using point-to-point based commu-
nication functions such as MPI_Send and MPI_Recv. Both blocking and non-blocking
point-to-point communication is used depending on the algorithm. This makes our imple-
mentation portable because it does not rely on details of the MPI implementation used.

6.4.1 Limitations
Some of the broadcast algorithm implementations only support sending from rank 0, and
therefore all benchmarks are on only sending from rank 0. Adding support for sending
from any other rank is trivial, and can be implemented by swapping indices in a lookup
table.

6.4.2 Algorithms
We make a distinction between base-level algorithms and top-level algorithms. The base-
level algorithms are only provided with a group of ranks and are not topology-aware. The
top-level algorithms are topology-aware, and build a communication tree based on the
topology provided by the caller. They use point-to-point based communication together
with base-level algorithms as building blocks to create topology-aware broadcast func-
tions.

Table 6.1 shows the base algorithms implemented and used in the case study. Note that
all of these algorithms are implemented in OpenMPI. Table 6.2 shows the list of top-level
algorithms used.

Name
Binary tree
Binary-tree with swap
Chain
Flat tree
Pipeline
Scatter-Gather

Table 6.1: List of base broadcast algorithms used

Name Description
Magpie Minimize use of slow links. Uses point-to-point communication.
Magpie2 Like magpie but using base-level algorithms to send to groups.
Interpipe Like magpie, but with message segmentation.

Table 6.2: List of top-level broadcast algorithms used

49

Chapter 6. Case study: topology aware MPI broadcast

6.5 Methodology
We created a benchmark suite to make it possible to compare the performance of MPI bcast
implementations. The benchmark takes a list of message sizes, topologies, and benchmark
functions as input parameters. For each combination of these parameters it runs N mea-
surements with W warmup rounds.

6.5.1 Statistical error
Due to the variable nature of network communication, we have to be cautious with how we
benchmark. Experimentally, it was found that the first few measurements often deviated
significantly from the rest of the measurements. Therefore we run some number of itera-
tions W where we discard the result. These warmup rounds run before we start the real
benchmark. For our benchmarks, W = 50 or W = 100 was used, depending on the sys-
tem. We chose to use N = 1000 as the number of measurements for each configuration.
The mean, variance, maximum and minimum time were recorded. Only values within the
90th percentile were used in further analysis.

6.5.2 Predicting and algorithmic selection of best broadcast function
The benchmark measurements can be used to predict the best broadcast function. By
using the measurements for each message size for a selection of broadcast implementations
we used linear regression to find the best function given the message size, as seen in
Figure 6.4.

def c h o o s e b c a s t (P , msgs ize , i m p l s) :
i m p l p r e d s = [(impl , p r e d i c t t i m e (impl , msgs i ze))

f o r impl in i m p l s]
re turn min (i m p l p r e d s , key=lambda x : x [1])

Figure 6.4: Selection of best broadcast implementation

Figure 6.12 shows a decision function generated by using this method on ARM1. Some
limitations can be seen in the resulting function: most notably the alternation between the
two very similar performing implementations magpie with BCastDefault and magpie
with BCastBtreeWSwap.

6.6 Experiments
We run several experiments, on IDUN, FRAM, and ARM1. Each experiment starts by
taking PLogP measurements using the LGate test harness. We then use clustering meth-
ods for each system. Using these clustering results we generate topology files. These
topology files are then passed to the broadcast micro-benchmark which tests many differ-
ent broadcast implementations for the different topologies. We use the choose_bcast

50

6.7 Results and discussion

(a) 4 nodes, 128 cores total @ FRAM (b) 8 nodes, 256 cores total @ FRAM

Figure 6.5: Broadcast results using OpenMPI @ FRAM

function on various message sizes to generate an optimized broadcast function. We run the
broadcast benchmark again, testing the default MPI_Bcast and the optimized version we
generated.

6.7 Results and discussion

We run several experiments on IDUN, FRAM, and ARM1 to see how our topology and
optimized broadcast function performs compared to the default broadcast in Intel MPI and
OpenMPI.

6.7.1 FRAM

We experiment with both Intel MPI and OpenMPI on FRAM. We use 128 and 256 cores.
The topology used is generated from socket-level clusterings as shown in Section 5.3. Fig-
ure 6.5 shows a comparison of the default OpenMPI MPI_Bcast and the automatically
optimized version. Here we can see that the speedup is around 1.5x for P = 128. Note
the dip in speedup around 0.4 MiB. This is because the choose bcast function chose the
wrong algorithm because we only ran the benchmark for messages greater than 0.5 MiB.
In general, the optimized version will always have a speedup ≥ 1.0 because it can choose
to use the default implementation whenever it outperforms our algorithms. For messages
above 0.5 MiB the average speedup is close to 2x, with a speedup of ≥ 2.5x for messages
with size between 1.25 and 2 MiB. For P = 256 we can see that our implementation has
a speedup of ≥ 1.5x for nearly the entire interval from 0 bytes to 2 MiB.

Figure 6.6 shows how each algorithm performs compared to the default in Intel MPI.
It shows that there is a large difference between the different algorithms. Figure 6.7 shows
Intel MPI compared to the optimized broadcast function. Here we are able to get a 1.5−2x
speedup for messages sizes {32, 128, 256} MiB for P = 128.

51

Chapter 6. Case study: topology aware MPI broadcast

Figure 6.6: IMPI - 4 nodes, 128 cores total @ FRAM, 32MB, 128MB, and 256MB]

Figure 6.7: IMPI vs optimized - 4 nodes, 128 cores total @ FRAM]

52

6.7 Results and discussion

P OpenMPI speedup Intel MPI speedup
128 ≈ 2 ≥ 1.5
256 ≥ 1.4 ??

Table 6.3: Speedup for P=128,256 for OpenMPI and Intel MPI @ FRAM

Table 6.4 shows part of the selection function used in the optimized broadcast function
for several message sizes and values of P . Here we can see that using binary tree broadcast
with magpie performs best for all tree P configurations. Scatter-gather performs better
than the default implementation for P ≥ 128, and magpie and scatter-gather outperform
the default implementation as P increases.

P ≤ 16 4096 ≤ 218 ≥ 218 + 1
64 btreem m default default

128 btreem m m scatter gather
256 btreem m scatter gather scatter gather

Table 6.4: Best broadcast algorithm for message size and P, OpenMPI @ FRAM
* - non-blocking, m - using magpie

We have shown that our topology-aware broadcast is able to outperform both OpenMPI
and Intel MPI in these experiments on FRAM.

6.7.2 BETZY
We run experiments by using two different types of topologies to P=512,1024 and 2048
on BETZY. The first topology is the socket level that we found using PLogP experiments
on BETZY. The other is on the node level. We compare both Intel MPI and OpenMPI. For
both IMPI and OpenMPI, we first run the benchmark to compare all algorithms for various
message sizes. From this, we generate an optimized broadcast function and compare it
against the baseline.

Table 6.5 shows the speedup of our optimized broadcast function, compared to the
default MPI Bcast for different P for both Intel MPI and OpenMPI. Here we can see we
achieve higher speedup using OpenMPI than using Intel MPI. This is because the broadcast
function Intel MPI performs better on BETZY than OpenMPI in these experiments. We
only run measurements for certain message sizes. In our experiments, we used message
size doubling and evenly spaced numbers between m = 0 and m = M . Figure 6.8 shows
the results for Intel MPI. Here we can see that the node-level topology outperforms the
socket-level topology. The reason for this is that we used a flat topology for the socket
level, which can cause up to twice as many inter-node communications. This is due to
a limitation in the current implementation of the topology-aware broadcast. A two-level
topology with node level at the top, and socket level as the leaf level, would have higher
performance if inter-socket communication time is higher than the extra overhead.

For BETZY we check for all powers of two up to 221. Table 6.6 shows a selection of
the decision function for the optimized broadcast version found. We can see that for small
sizes that binary tree with magpie is the best for both P = 512 and P = 2048, while

53

Chapter 6. Case study: topology aware MPI broadcast

P OpenMPI speedup Intel MPI speedup
512 ≥ 2.0 ≥ 1.5
1024 ≥ 1.2 1.2
2048 1.1 1

Table 6.5: Speedup for P=512,1024,2048 for OpenMPI and Intel MPI @ BETZY

P ≤ 64 ≤ 219 ≤ 220 ≤ 221 ≥ 221 + 1
512 btreem btreem pipeline∗m m scatter gather
1024 m pipelinem scatter gather scatter gather
2048 btreem various scatter gather pipeline∗m pipelinem

Table 6.6: Best broadcast algorithm for message size and P, OpenMPI @ BETZY
* - non-blocking, m - using magpie

P = 1024 selects to use magpie with the default broadcast implementation. We can also
see that the scatter-gather is selected for large messages when P = 512 and P = 1024,
but pipeline with magpie is the best for P = 2048. We can see that the selection of the
broadcast algorithm varies significantly with the number of processes P and the message
size M . For P = 2048 it is best to use a non-blocking pipeline for messages with sizes in
the range [220 + 1, 221], while for larger messages the blocking variant performs better.

The results show that our optimized implementation outperforms state-of-the-art im-
plementations such as OpenMPI and Intel MPI when using node-level topology for P ∈
{512, 1024, 2048} for power-of-two message sizes. The results also demonstrate that the
selection of broadcast algorithm varies significantly depending on message size and pro-
cess count. This suggests that it is difficult to find a generic hard-coded variant that also
utilizes the system optimally. and therefore could be a good application for auto-tuning.

(a) 4 nodes (b) 8 nodes (c) 16 nodes

Figure 6.8: Broadcast benchmark results using Intel MPI @ BETZY

6.7.3 IDUN
For IDUN we run experiments on 16 nodes with 28 cores per node using OpenMPI and In-
tel MPI. We use a topology with 16 clusters with 28 cores each. This topology matches the
node level we would find using the PLogP micro-benchmark. Figure 6.10 shows that using

54

6.7 Results and discussion

(a) 4 nodes (b) 8 nodes (c) 16 nodes

Figure 6.9: Broadcast benchmark results using OpenMPI @ BETZY

this topology with our broadcast selection algorithm we can achieve a near 2x speedup for
most message sizes in the range 0 . . . 8 MiB compared to OpenMPI. A similar benchmark
was run using Intel MPI but this only achieved 0.9x speedup. The optimized decision
function chooses to use the built-in MPI Bcast whenever it performs best. The reason we
got a speedup of 0.9x is that the experiment used another rank distribution method, and
therefore the provided topology did not match the ranks in the actual experiment.

Figure 6.10: 16 nodes with 28 cores comparison of OpenMPI Bcast @ IDUN

6.7.4 ARM1

Being an ARM-based system there is no support for the Intel MPI library on ARM1. It is
also the only system with only a single node. Figure 6.11 shows the benchmark results and
speedup for the two topologies we found for ARM1 using the PLogP micro-benchmark.
We can see that the socket-level clustering and the other with 4 clusters have very similar
performance. The difference between them is amplified when comparing the optimized
versions. Here the 4 cluster topology gets a ≥ 1.5x speedup compared to the baseline.

55

Chapter 6. Case study: topology aware MPI broadcast

Figure 6.11: Performance and speedup curve of optimized BCast using 2 and 4 clusters compared
to OpenMPI default on ARM1. 50 warmup-rounds and 1000 repetitions.

d e f c h o o s e b e s t b c a s t (msgs i ze) :
i f msgs i ze <= 1 : use B C a s t P i p e l i n e
e l i f msgs i ze <= 8 : use B C a s t D e f a u l t
e l i f msgs i ze <= 256 : use magpie wi th B C a s t D e f a u l t
e l i f msgs i ze <= 512 : use magpie wi th BCastBtreeWSwap
e l i f msgs i ze <= 2048 : use magpie wi th B C a s t D e f a u l t
e l i f msgs i ze <= 4096 : use magpie wi th BCastBtreeWSwap
e l i f msgs i ze <= 262144: use magpie wi th B C a s t D e f a u l t
e l i f msgs i ze <= 2097152: use magpie wi th BCastBtreeWSwap
e l s e : use magpie wi th BCastBtreeWSwap

Figure 6.12: Optimized broadcast decision function for ARM1 with 4 cluster topology

6.8 Summary
In this case study we use the results from the PLogP micro-benchmark to create topolo-
gies. We implemented a topology-aware broadcast algorithm inspired by the work of
Kielmann et al. that utilizes those topologies. In addition, we implemented several other
broadcast algorithms and feed benchmark data to a program that automatically generates
an optimized parameterized version for the system it runs on.

The results show that the parameterized topology-aware broadcast algorithm is able to
outperform both OpenMPI and Intel MPI on several machines. They also show that the
automatic selection method used has potential for both large clusters thousands of total
cores and for single-node computers. This case study also supports the conclusion that

56

6.8 Summary

our PLogP micro-benchmark and clustering methods are able to detect useful topologies
in clusters and single-node systems.

57

Chapter 6. Case study: topology aware MPI broadcast

58

Chapter 7
Conclusion

In this thesis, the LGate pairwise test harness was extended with a PLogP micro-benchmark.
We use the parameters found from the micro-benchmark to create several distance matri-
ces that model the properties of the network. The results show that we are able to extract
information on the node-, machine- and socket level for several machines. We find that de-
tecting socket-level topologies require more detail in the distance matrix than the machine-
and node-level. The results show that we can obtain higher accuracy by increasing the
number of measurements we do between each pair. Using R = 128 has been sufficient to
detect socket-level topology for all systems used in this thesis.

Clustering algorithms are used to extract network topology using the distance matri-
ces created from the pairwise PLogP measurements. We use apriori information about
the system such as the number of nodes, hosts, and sockets, along with the exact rank
assignment, to create accuracy metrics that can be used to understand how well the clus-
tering algorithms work for extracting topological information. We show that K-medoids,
HDBSCAN, Connected Components, and Agglomerative clustering are all suitable for
extracting topologies from distance matrices. Dynamic hierarchical clustering algorithms
like HDBSCAN perform nearly as well as static clustering algorithms and creates a den-
drogram which is useful for creating hierarchical topologies. The SSSTree algorithm also
creates a tree that can be used to create a hierarchical topology but is more sensitive to
parameter values than HDBSCAN.

We implement a parameterized topology-aware broadcast function that takes the topol-
ogy we find by using the clustering algorithm. We run benchmarks on several algorithms
and generate an optimized parameterized broadcast function from these results. Our re-
sults show that the optimized broadcast achieves significant speedup for several clusters
and a single-node system. We compare the optimized broadcast function with both Open-
MPI and Intel MPI. Compared to OpenMPI it is able to achieve a speedup greater than 1.1
for sizes up to P = 2048 on BETZY. The speedup is greater for OpenMPI than for Intel
MPI, and we are only able to achieve a speedup greater than 1.1 for P = 1024 using Intel
MPI on the same system. Applied to the single-node system ARM1 we are able to achieve
1.5x speedup by utilizing topology information that was discovered by the pairwise tests.

59

Chapter 7. Conclusion

We find that it is possible to extract useful information from the distance matrices
generated from PLogP-measurements with as few as R = 128 measurements, and we
have demonstrated this by using the topology in our topology-aware broadcast function to
achieve a speedup of up to 2.5x.

7.1 Further work
This thesis has focused on three components that demonstrate the usefulness of pairwise
measurements to detect topologies; taking measurements, extracting topologies from the
measurements, and showing that these topologies can be used to improve algorithm per-
formance. There are opportunities for further work on all three of these components. A
limitation of our technique is that it does not work in real-time, and therefore assumes
that the performance characteristics measured during the PLogP micro-benchmark do not
change. Therefore, work on an adaptive variant that can take measurements during the
execution of a program, could lead to better results in real-world scenarios.

Both the PLogP micro-benchmark and the clustering algorithms have parameters and
configuration options that heavily impact the performance. More work is needed to de-
termine the optimal parameters for each system, and techniques that allow for automated
search, such as auto-tuning techniques, might be applicable.

Our parameterized topology-aware broadcast algorithm has incomplete support for
multi-level topologies, and therefore all benchmarks were done using flat topologies. It
would be of interest to test and benchmark the multi-level topologies. The selection of op-
timal broadcast algorithms and benchmarking is already partly automated, but the search
techniques used in this case study are not optimal. We run measurements for all methods
even if they take 100x more time than the fastest one for a given message size. Utilizing
more sophisticated techniques can significantly reduce this search for an optimal broad-
cast decision function, and therefore allow for application to larger node- and core counts.
Techniques that speed up this search can also allow for a more detailed decision function,
such as dealing with larger message sizes, non-power-of-two message sizes, and more
topologies.

60

Acknowledgement

The experiments on IDUN were performed on resources provided by NTNU [35]. The
experiments on FRAM and BETZY were performed on resources provided by Sigma2 -
the National Infrastructure for High-Performance Computing and Data Storage in Norway.
The HPC-Lab at NTNU provided the HPCLAB computer used to write this thesis and do
baseline experiments.

61

62

Bibliography

[1] T. Kielmann, H. Bal, and K. Verstoep, “Fast measurement of LogP parameters for
message passing platforms,” in PARALLEL AND DISTRIBUTED PROCESSING,
PROCEEDINGS, ser. Lecture Notes in Computer Science, J. Rolim, Ed., vol. 1800.
IEEE Comp Soc, Tech Comm Parallel Proc; ACM SIGARCH, pp. 1176–1183, ISSN:
0302-9743.

[2] nviennot, “core-to-core-latency.” [Online]. Available: https://github.com/nviennot/
core-to-core-latency/tree/main

[3] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, and J. Sancho,
“Using performance modeling to design large-scale systems,” vol. 42, pp. 42–49.

[4] R. W. Hockney, “The communication challenge for MPP: Intel paragon and
meiko CS-2,” vol. 20, no. 3, pp. 389–398. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167819106800219

[5] L. G. Valiant, “A bridging model for parallel computation,” vol. 33, no. 8, pp.
103–111, place: New York, NY, USA Publisher: Association for Computing
Machinery. [Online]. Available: https://doi.org/10.1145/79173.79181

[6] D. CULLER, R. KARP, D. PATTERSON, A. SAHAY, K. SCHAUSER, E. SANTOS,
R. SUBRAMONIAN, and T. VONEICKEN, “LOGP - TOWARDS a REALISTIC
MODEL OF PARALLEL COMPUTATION,” vol. 28, no. 7, pp. 1–12, publisher: AS-
SOC COMP MACHINERY, SPECIAL INTEREST GRP PROGRAMMING LAN-
GUAGES.

[7] M. Snir, S. Otto, and S. Huss-Lederman, MPI–the Complete Reference: the MPI
core. MIT press, vol. 1.

[8] W. Gropp, “MPI (message passing interface),” in Encyclopedia of Parallel
Computing, D. Padua, Ed. Springer US, pp. 1184–1190. [Online]. Available:
https://doi.org/10.1007/978-0-387-09766-4 222

63

https://github.com/nviennot/core-to-core-latency/tree/main
https://github.com/nviennot/core-to-core-latency/tree/main
https://www.sciencedirect.com/science/article/pii/S0167819106800219
https://www.sciencedirect.com/science/article/pii/S0167819106800219
https://doi.org/10.1145/79173.79181
https://doi.org/10.1007/978-0-387-09766-4_222

[9] M. J. Rashti and A. Afsahi, “Improving communication progress and overlap in MPI
rendezvous protocol over RDMA-enabled interconnects,” in 2008 22nd International
Symposium on High Performance Computing Systems and Applications, pp. 95–101.

[10] R. B. Ganapathi, A. Gopalakrishnan, and R. W. Mcguire, “MPI process and network
device affinitization for optimal HPC application performance,” in 2017 IEEE 25TH
ANNUAL SYMPOSIUM ON HIGH-PERFORMANCE INTERCONNECTS (HOTI).
IEEE; ARISTA; intel; Mellanox Technologies; Lenovo; IEEE Comp Soc, pp. 80–86.

[11] “Intel MPI,” publication Title: Intel. [Online]. Available: https://www.intel.com/
content/www/us/en/developer/tools/oneapi/mpi-library.html#gs.08sc6s

[12] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres, V. Sa-
hay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel, R. L. Gra-
ham, and T. S. Woodall, “Open MPI: Goals, concept, and design of a next genera-
tion MPI implementation,” in Proceedings, 11th European PVM/MPI Users’ Group
Meeting, pp. 97–104.

[13] M. Hafeez, S. Asghar, U. A. Malik, A. u. Rehman, and N. Riaz, “Survey of MPI
implementations,” in Digital Information and Communication Technology and Its
Applications, H. Cherifi, J. M. Zain, and E. El-Qawasmeh, Eds. Springer Berlin
Heidelberg, pp. 206–220.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard,” vol. 22, no. 6,
pp. 789–828. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
0167819196000245

[15] R. A. v. d. Geijn and K. Goto, “BLAS (basic linear algebra subprograms),” in Ency-
clopedia of Parallel Computing.

[16] R. C. Whaley, “ATLAS (automatically tuned linear algebra software),” in
Encyclopedia of Parallel Computing, D. Padua, Ed. Springer US, pp. 95–101.
[Online]. Available: https://doi.org/10.1007/978-0-387-09766-4 85

[17] “OpenBLAS : An optimized BLAS library.” [Online]. Available: http://www.
openblas.net

[18] “Get started with intel oneAPI math kernel library,” publication Title: In-
tel. [Online]. Available: https://www.intel.com/content/www/us/en/docs/onemkl/
get-started-guide/2023-0/overview.html

[19] N. Brisaboa, O. Pedreira, D. Seco, R. Solar, and R. Uribe, “Clustering-based similar-
ity search in metric spaces with sparse spatial centers,” in SOFSEM 2008: THEORY
AND PRACTICE OF COMPUTER SCIENCE, ser. Lecture Notes in Computer Sci-
ence, V. Geffert, J. Karhumaki, A. Bertoni, B. Preneel, P. Navrat, and M. Bielikova,
Eds., vol. 4910. Asseco Slovakia; Data Informat Technol & Expert Consulting; Eu-
ropean Res Consortium Informat & Math; Hewlett Packard Slovakia; IBM Slovakia;
Siemens Slovakia; SOFTEC, pp. 186+, ISSN: 0302-9743.

64

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html#gs.08sc6s
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html#gs.08sc6s
https://www.sciencedirect.com/science/article/pii/0167819196000245
https://www.sciencedirect.com/science/article/pii/0167819196000245
https://doi.org/10.1007/978-0-387-09766-4_85
http://www.openblas.net
http://www.openblas.net
https://www.intel.com/content/www/us/en/docs/onemkl/get-started-guide/2023-0/overview.html
https://www.intel.com/content/www/us/en/docs/onemkl/get-started-guide/2023-0/overview.html

[20] J. MacQueen, “Classification and analysis of multivariate observations,” in 5th
Berkeley Symp. Math. Statist. Probability. University of California Los Angeles
LA USA, 1967, pp. 281–297.

[21] M. Ahmed, R. Seraj, and S. Islam, “The k-means algorithm: A comprehensive survey
and performance evaluation,” vol. 9, p. 1295.

[22] O. Kariv and S. L. Hakimi, “An algorithmic approach to net-
work location problems. II: The p-medians,” vol. 37, no. 3, pp.
539–560, eprint: https://doi.org/10.1137/0137041. [Online]. Available:
https://doi.org/10.1137/0137041

[23] H.-S. Park and C.-H. Jun, “A simple and fast algorithm for k-medoids
clustering,” vol. 36, no. 2, pp. 3336–3341. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S095741740800081X

[24] E. Schubert and L. Lenssen, “Fast k-medoids clustering in rust and python,”
vol. 7, no. 75, p. 4183, publisher: The Open Journal. [Online]. Available:
https://doi.org/10.21105/joss.04183

[25] M. Tiwari, M. J. Zhang, J. Mayclin, S. Thrun, C. Piech, and I. Shomorony,
“Bandit-PAM: Almost linear time k-medoids clustering via multi-armed bandits,”
vol. abs/2006.06856. [Online]. Available: https://arxiv.org/abs/2006.06856

[26] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,”
vol. 14.

[27] R. J. G. B. Campello, D. Moulavi, and J. Sander, “Density-based clustering based
on hierarchical density estimates,” in Advances in Knowledge Discovery and Data
Mining. Springer, pp. 160–172, journal Abbreviation: SpringerLink.

[28] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for dis-
covering clusters in large spatial databases with noise,” in Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, ser. KDD’96.
AAAI Press, pp. 226–231, event-place: Portland, Oregon.

[29] D. M. Wadsworth and Z. Chen, “Performance of MPI broadcast algorithms,” in 2008
IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PRO-
CESSING, VOLS 1-8. IEEE, pp. 3049–3055.

[30] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R. A. F. Bhoedjang, “MagPIe:
MPI’s collective communication operations for clustered wide area systems,” vol. 34,
no. 8, pp. 131–140, place: New York, NY, USA Publisher: Association for
Computing Machinery. [Online]. Available: https://doi.org/10.1145/329366.301116

[31] Y. Gong, B. He, and J. Zhong, “Network performance aware MPI collective commu-
nication operations in the cloud,” vol. 26, no. 11, pp. 3079–3089.

[32] D. Hensgen, R. Finkel, and U. Manber, “Two algorithms for barrier synchronization,”
vol. 17, pp. 1–17.

65

https://doi.org/10.1137/0137041
https://www.sciencedirect.com/science/article/pii/S095741740800081X
https://www.sciencedirect.com/science/article/pii/S095741740800081X
https://doi.org/10.21105/joss.04183
https://arxiv.org/abs/2006.06856
https://doi.org/10.1145/329366.301116

[33] M. Godbolt, “Compiler explorer.” [Online]. Available: https://godbolt.org

[34] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. d.
Supinski, and W. S. Futral, “The spack package manager: Bringing order to
HPC software chaos,” in Supercomputing 2015 (SC’15). [Online]. Available:
http://tgamblin.github.io/pubs/spack-sc15.pdf

[35] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, “Epic: An energy-efficient,
high-performance gpgpu computing research infrastructure,” 2022.

[36] s. , “IDUN hardware – high performance computing group.” [Online]. Available:
https://www.hpc.ntnu.no/idun/hardware

[37] S. , “Fram sigma2 documentation.” [Online]. Available: https://documentation.
sigma2.no/hpc machines/fram

[38] ——, “Betsy sigma2 documentation.” [Online]. Available: https://documentation.
sigma2.no/hpc machines/betsy

[39] “ompi/ompi/mca/coll/tuned/coll tuned decision dynamic.c at main \cdot open-
mpi/ompi,” publication Title: GitHub. [Online]. Available: https://github.com/
open-mpi/ompi/blob/main/ompi/mca/coll/tuned/coll tuned decision fixed.c#L512

[40] E. Nuriyev, J.-A. Rico-Gallego, and A. Lastovetsky, “Model-based selection
of optimal MPI broadcast algorithms for multi-core clusters,” vol. 165,
pp. 1–16. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0743731522000697

[41] intel, “An introduction to the intelıfmmode\circledR\else®\fi
QuickPath interconnect,” publication Title: Intel. [Online].
Available: https://www.intel.com/content/www/us/en/io/quickpath-technology/
quick-path-interconnect-introduction-paper.html

66

https://godbolt.org
http://tgamblin.github.io/pubs/spack-sc15.pdf
https://www.hpc.ntnu.no/idun/hardware
https://documentation.sigma2.no/hpc_machines/fram
https://documentation.sigma2.no/hpc_machines/fram
https://documentation.sigma2.no/hpc_machines/betsy
https://documentation.sigma2.no/hpc_machines/betsy
https://github.com/open-mpi/ompi/blob/main/ompi/mca/coll/tuned/coll_tuned_decision_fixed.c#L512
https://github.com/open-mpi/ompi/blob/main/ompi/mca/coll/tuned/coll_tuned_decision_fixed.c#L512
https://www.sciencedirect.com/science/article/pii/S0743731522000697
https://www.sciencedirect.com/science/article/pii/S0743731522000697
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html

Appendix

7.1.1 A - Clustering accuracy
Clustering accuracy for FRAM P=32

Clustering accuracy for FRAM P=64

Clustering accuracy for FRAM P=128

Clustering accuracy for BETZY P=512

Clustering accuracy for ARM1 P=96

7.1.2 B - Latency matrices
Latency matrix for FRAM P=32, single node

Latency matrix for FRAM P=128, 4 nodes

Latency matrix for ARM1 P=96

67

Figure 7.1: Clustering accuracy for values of R, P=32 @ FRAM

68

Figure 7.2: Clustering accuracy for values of R, P=64 @ FRAM

69

Figure 7.3: Clustering accuracy for values of R, P=128 @ FRAM

70

Figure 7.4: Clustering accuracy for values of R, P=512 @ BETZY

71

Figure 7.5: Clustering accuracy for values of R, P=96 @ ARM1

72

Figure 7.6: Latency P=32 @ FRAM

Figure 7.7: Latency P=128 @ FRAM

73

Figure 7.8: Latency P=96 @ ARM1

74

	Problem description
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Scope
	Structure

	Background and related work
	Performance models
	Fundamental equation of modeling
	Scaling
	Speedup

	Communication models
	Hockney
	Bulk Synchronous Parallel
	LogP model
	LogGP and Parameterized LogP (PLogP)

	Message Passing Interface (MPI)
	Point-to-point communication
	Communication protocols
	Process rank and communication groups
	Collective communication
	MPI Implementations

	High Performance Computing
	Basic Linear Algebra Subprograms (BLAS)
	Nodes, clusters and Network topology
	Topology aware communication

	Clustering methods
	Metric spaces
	Vector spaces
	Sparse Spatial Selection (SSS)
	K-means
	K-medoids
	Spectral clustering methods
	Hierarchical clustering
	SSSTree
	DBSCAN
	HDBSCAN

	Related work
	Measurements of the LogP parameters
	Optimization of broadcast and other collective operations in MPI

	Methodology
	PLogP measurements using LGate
	LGate
	PLogP measurements using LGate

	Optimizing network topologies
	Automated clustering parameter search
	Experiments
	Clustering algorithm performance

	Experimental setup
	Compilation
	SLURM and MPI
	Analysis and processing
	HPC Lab 06 computer - HPCLAB
	IDUN
	FRAM
	BETZY
	IDUN-ARM1

	Results and discussion
	Finding internal node topologies for a single node
	Outliers for first two ranks
	Cause of diagonal bands

	Finding inter-node topologies between two nodes
	Finding node interconnection topologies
	Determining the cluster topology for a large number of nodes
	Discovery of currently unknown topology for ARM1
	Find topology for BETZY
	Baseline
	Scaling
	Clustering algorithms

	Case study: topology aware MPI broadcast
	Motivation
	Background
	Broadcast in OpenMPI and Intel MPI

	Topology based optimization
	Intra-node and inter-node optimization
	Fat-tree-based communication
	MagPIe

	Implementation
	Limitations
	Algorithms

	Methodology
	Statistical error
	Predicting and algorithmic selection of best broadcast function

	Experiments
	Results and discussion
	FRAM
	BETZY
	IDUN
	ARM1

	Summary

	Conclusion
	Further work

	Bibliography
	Appendix
	A - Clustering accuracy
	B - Latency matrices

